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Automated Captioning of Image and Audio for Visually 

and Hearing Impaired 

Abstract 

Generating captions and text descriptions of images will enable visually and hearing 

impaired extended accessibility to the real-world, thus reducing their social isolation, 

and improving their well-being, employability, and education experience. This thesis 

presents significant advancements in algorithmic approaches for generating captions 

and text descriptions. These enhancements are pivotal in processing and interpreting 

both image and audio data. The focus on algorithmic innovation ensures that the 

platform is not only efficient but also adaptable to various types of visual and auditory 

information, making it a versatile tool for aiding those with visual impairments. The 

thesis has addressed this aim in three main contribution chapters, image captioning, 

video captioning, and audio-visual video captioning approaches. The progression of 

this research is methodically structured, starting with image captioning. This initial 

phase concentrates on developing sophisticated algorithms capable of accurately 

interpreting and describing still images. This foundational work sets the stage for the 

subsequent phase, video captioning. Here, the complexity increases as the algorithms 

are adapted to handle dynamic visual content, providing contextual and temporal 

descriptions of video sequences. The culmination of this research is in the integration 

of audio-visual video captioning. This final phase synergizes the advances from the 

previous stages, incorporating audio analysis to enhance the depth and accuracy of 

captions. This comprehensive approach ensures a robust and inclusive system, capable 

of providing detailed descriptions for a wide range of visual and auditory inputs, thus 

offering a more complete understanding of the environment for users with visual and 

hearing impairments. 

Keywords: Image Captioning, Video Captioning, Audio-Visual Video Captioning, 

Computer Vision, Natural Language Processing, Audio Processing. 
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Görme ve İşitme Engelliler için Otomatik Görüntü ve 

Ses Altyazılama 

Öz 

Görüntülerin ve ses verilerinin işlenmesi ve yorumlanmasında önemli ilerlemeler 

sunan bu tez, görme ve işitme engelli bireylerin gerçek dünyaya olan erişimlerini 

genişleterek sosyal izolasyonlarını azaltacak, refahlarını, istihdam olanaklarını ve 

eğitim deneyimlerini iyileştirecek görüntü ve ses betimlemeleri üretme üzerine 

algoritmik yaklaşımlarda önemli gelişmeler sunmaktadır. Algoritmik yeniliklere 

odaklanmak, platformun sadece verimli değil, aynı zamanda çeşitli görsel ve işitsel 

bilgi türlerine uyum sağlayabilecek şekilde esnek olmasını sağlar. Bu, görme 

engellilere yardım etmek için çok yönlü bir araç haline gelir. Tez, üç ana katkı 

bölümünde bu amacı ele almıştır: görüntü altyazılama, video altyazılama ve sesli-

görselli video altyazılama yaklaşımları. Bu araştırmanın ilerleyişi ilk olarak görüntü 

altyazılama ile başlar. Bu ilk aşama, durağan resimleri doğru bir şekilde yorumlayıp 

tanımlayabilen sofistike algoritmaların geliştirilmesine odaklanır. Bu temel çalışma, 

ardından gelen video altyazılama aşaması için zemin hazırlar. Burada, algoritmalar 

dinamik görsel içeriği ele alacak şekilde uyarlanır, video dizilerinin bağlamsal ve 

zamansal betimlemelerini sağlar. Bu araştırmanın son noktası, sesli-görselli video 

altyazılama entegrasyonudur. Bu son aşama, önceki aşamalardan elde edilen 

ilerlemeleri senkronize eder, altyazıların derinliğini ve doğruluğunu artırmak için ses 

analizini dahil eder. Bu kapsamlı yaklaşım, geniş bir görsel ve işitsel girdi yelpazesi 

için detaylı açıklamalar sağlayabilen sağlam ve kapsayıcı bir sistem sağlar, böylece 

görme ve işitme engelli kullanıcılara çevrelerini daha iyi bir şekilde anlama imkanı 

sunar. 

Anahtar Kelimeler: Görüntü Altyazılama, Video Altyazılama, İşitsel-Görsel Video 

Altyazılama, Bilgisayar Görüsü, Doğal Dil İşleme, Ses İşleme. 
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Chapter 1 
1. Introduction 

 

 

Introduction 

 
This chapter introduces the foundation of a comprehensive study in the field of 

artificial intelligence, specifically focusing on automated natural language descriptions 

of images, audio, and video. The chapter outlines the motivation, objectives, and 

significant contributions of the study, providing a clear trajectory of the research. 

 
1.1. Motivation 

Automatically generating a natural language description of an image, audio, and video 

has recently received increasing attention from computer vision, machine listening, 

and natural language processing which are major fields in artificial intelligence (AI). 

Especially in image captioning, numerous datasets such as MSCOCO, ImageNet, and 

Flickr, were released to test the performance of the proposed methods in various 

conditions under the performance metrics BLEU-n, ROUGE-L, METEOR, and 

CIDEr. The benchmarks with these performance metrics on the datasets show that the 

image captioning area is open to more investigations and new advanced methodologies 

which are targeted in the first objective of this study. The second objective of this study 

shifts attention to video captioning. Video content offers a richer and more complex 

set of data for analysis compared to static images. This complexity arises from the 

temporal dynamics and the motion between successive frames, presenting unique 

challenges for automatic caption generation. In response, this thesis explores video 

captioning using advanced neural network architectures and feature extraction 

techniques. The aim is to develop methods that not only capture the essence of visual 

content over time but also translate it into coherent and contextually relevant natural 

language descriptions. Datasets such as MSR-VTT and MSVD are utilized for 

benchmarking, employing similar performance metrics as in image captioning, but 
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with additional considerations for the temporal aspects of video data. The third and 

final objective covers audio-visual captioning. This approach recognizes the synergy 

between audio and visual elements in multimedia content. By integrating auditory 

information with visual data, the research aims to create a more comprehensive 

captioning system that leverages the strengths of both modalities. This multimodal 

approach is especially relevant in scenarios where audio provides contextual clues that 

are not visually evident, thereby enhancing the overall accuracy and richness of the 

generated captions. In pursuing this objective, the thesis explores various methods of 

audio-visual data fusion and feature representation, striving to set a new benchmark in 

multimodal captioning. The complementary nature of image and audio will be 

integrated under a new framework, allowing natural language processing to use image 

and audio processing results for more robust caption generation. This will be, 

hopefully, a milestone in automated caption generation, leading to more interest by 

researchers in the community in multimodal captioning. 

1.2. Contributions 

In this thesis, we have explored advanced methodologies in image and video 

captioning, making significant contributions across various facets of this rapidly 

evolving field. Our work primarily focused on enhancing the accuracy and 

computational efficiency of captioning systems using novel neural network 

architectures and efficient processing techniques. 

Multi-layer GRU for Image Captioning: We introduced an innovative image 

captioning approach using the NASNet-Large encoder and a multi-layer GRU based 

decoder. This approach significantly improved the ability to modulate relevant 

information flow, addressing long-term complex dependencies in RNN decoders. Our 

method demonstrated enhanced performance in generating semantically consistent 

captions, as validated on the MSCOCO dataset. 

Leveraging Pre-trained 3D-CNNs for Video Captioning: We developed a video 

captioning method integrating 2D and 3D-CNN architectures with a multi-layer GRU. 

This novel integration effectively enhanced the accuracy of caption generation from 

video data, as evidenced by our evaluations on the MSVD dataset. 
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Efficient Audio-Visual Video Captioning via Knowledge Distillation: Addressing 

the challenge of deploying captioning systems on low-power devices, we proposed a 

method that utilized simple pooling front-ends, down-sampling algorithms, and 

knowledge distillation for efficient audio-visual processing. This approach 

significantly reduced inference time with minimal accuracy loss, offering a practical 

solution for resource-constrained environments. 

These contributions represent significant advancements in the fields of image and 

video captioning. We have not only addressed key challenges in these areas but also 

laid the groundwork for future research, particularly in the integration of transformer 

models, neural architecture search, and the development of real-world applications. 

Our research holds the potential to greatly enhance the accessibility and effectiveness 

of captioning systems across various applications. 

1.3. Outline of the Thesis 

This thesis presents an in-depth exploration of advanced techniques in image and video 

captioning, leveraging neural networks and efficient processing methods to enhance 

captioning performance. The thesis is structured as follows: 

Introduction: Provides an overview of the thesis, outlining the significance of image 

and video captioning in the context of artificial intelligence and machine learning. It 

lays the foundation for the subsequent chapters by discussing the motivation, 

objectives, and scope of the research. 

Methods and Datasets: Describes the fundamental tools and methodologies used in 

the thesis, including deep learning frameworks and datasets like MSCOCO and MSR-

VTT. It covers various neural network layers, attention mechanisms, and feature 

extraction techniques relevant to captioning tasks. 

Multi-layer Gated Recurrent Unit based Recurrent Neural Network for Image 

Captioning: Introduces a novel image captioning approach using NASNet-Large and 

multi-layer GRU, emphasizing its effectiveness in generating contextually accurate 

captions, validated on the MSCOCO dataset. 
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Leveraging Pre-trained 3D-CNNs for Video Captioning: Discusses the 

development of a video captioning method that integrates 2D and 3D-CNN 

architectures with a multi-layer GRU, demonstrating improved captioning accuracy 

on the MSVD dataset. 

Knowledge Distillation for Efficient Audio-Visual Video Captioning: Presents an 

approach combining simple pooling, down-sampling, and knowledge distillation for 

efficient audio-visual video captioning, highlighting its reduced inference time and 

maintained accuracy on the MSR-VTT dataset. 

Conclusions and Future Research: Summarizes the key findings and contributions 

of the thesis, reflecting on the advancements made in image and video captioning. It 

also outlines potential future research directions, including the exploration of 

transformer models, neural architecture search, and real-world applications. 

This thesis structure comprehensively covers the research from foundational methods 

to innovative applications in image and video captioning, concluding with a synthesis 

of findings and future prospects.
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Chapter 2 
2. Methods and Datasets 

 

Methods and Datasets 

 
Chapter 2 serves as the technical foundation of this thesis, outlining essential deep 

learning tools and datasets. It explores various neural network components, feature 

extraction techniques, and datasets used for benchmarking, along with the 

programming languages and frameworks employed, thereby setting a comprehensive 

foundation for the methodologies used in this research. 

 
2.1. Deep Learning Tools 

2.1.1. Linear Layer 

The Linear Layer [1], often a fundamental component in neural networks, plays a 

critical role in text processing. It functions by applying a linear transformation to the 

input data, essentially mapping the input features to a higher or lower-dimensional 

space. In the context of NLP, Linear Layers are used to transform word embeddings 

or feature vectors into a format suitable for further processing or classification tasks. 

This layer is crucial for creating models that can understand and classify textual 

information accurately. 

2.1.2. Embedding Layer 

The Embedding Layer [2] is vital in text processing, especially in handling large 

vocabularies. It converts categorical data, typically words or phrases, into dense 

vectors of fixed-size. This dense representation is more efficient and meaningful than 

traditional one-hot encoded vectors. Embedding layers are extensively used in NLP 

models to capture semantic information about words, allowing the model to understand 

word similarities and relationships based on their usage in the training data. This layer 
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is essential in tasks like word similarity, text classification, and sequence modeling, 

forming the basis for more advanced language models. 

2.1.3. Residual Connections 

Residual Connections [3] are a prominent feature in modern neural network 

architectures, particularly in deep convolutional networks. Introduced in the context 

of ResNet (Residual Network), these connections address the vanishing gradient issue 

common in deep networks by allowing shortcuts for the gradients to flow through. A 

residual connection skips one or more layers and adds the output from a previous layer 

to the output of a stacked layer. This technique effectively allows the model to learn 

an identity function, ensuring that the deeper layers can at least perform as well as the 

shallower ones. By facilitating the training of much deeper networks, residual 

connections lead to significant improvements in tasks like image classification and 

object detection, contributing to the overall robustness and performance of the model. 

2.1.4. Dropouts 

Dropouts [4] are a regularization technique used in neural networks to prevent 

overfitting. This technique involves randomly 'dropping out' or deactivating a subset 

of neurons during training. By doing so, dropout forces the network to not rely 

excessively on any single neuron, thereby promoting redundancy and robustness 

within the network architecture. During training, different subsets of neurons are 

dropped out randomly, ensuring that the network learns more generalized features. At 

test time, all neurons are used, but their outputs are scaled down to account for the 

reduced number of active neurons during training. Dropout is widely used in various 

neural network architectures, including fully connected layers and convolutional 

layers, enhancing the generalization ability of the models in tasks like image 

classification, natural language processing, and more. 

2.1.5. Bahdanau Attention Mechanism 

The Bahdanau Attention Mechanism [5], introduced by Dzmitry Bahdanau and his 

colleagues, represents a significant advancement in the field of neural network-based 

sequence modeling, particularly in tasks involving natural language processing. This 
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mechanism addresses a critical limitation in traditional sequence-to-sequence models: 

the inability to focus on specific parts of the input sequence when generating each 

word in the output sequence. The Bahdanau Attention essentially allows the model to 

learn to assign varying degrees of importance, or 'attention', to different parts of the 

input sequence, creating a context vector for each output step. This context vector is 

then used in conjunction with the decoder's state to generate the output sequence, thus 

enabling the model to produce more accurate and contextually relevant outputs. This 

attention mechanism has been instrumental in improving the performance of various 

applications, including machine translation, speech recognition, and text 

summarization, by providing a more dynamic and adaptive approach to handling 

sequential data. 

2.1.6. Convolutional Neural Networks (CNNs) 

CNNs [6] are a class of deep neural networks highly effective in processing data with 

a grid-like topology, such as images. A CNN typically consists of various layers that 

automatically and adaptively learn spatial hierarchies of features from input images. 

These layers include convolutional layers, pooling layers, fully connected layers, and 

normalization layers. 

Convolutional Layers: The cornerstone of a CNN, these layers perform a convolution 

operation, applying filters to the input to create feature maps. This helps the network 

learn image features such as edges, textures, and complex patterns. 

Pooling Layers: Following convolutional layers, pooling layers (such as max pooling 

or average pooling) reduce the spatial dimensions (width and height) of the input 

volume. This operation is crucial for reducing the number of parameters and 

computational complexity, and also helps in achieving translational invariance in the 

network. 

Fully Connected Layers: Towards the end of a CNN, fully connected layers integrate 

learned features from previous layers to determine the class of the input image. These 

layers are similar to those in a traditional neural network and are used for high-level 

reasoning in the network. 
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Normalization Layers: Layers like Batch Normalization or Local Response 

Normalization are used within CNNs to stabilize and accelerate the training process. 

CNNs have revolutionized the field of computer vision, achieving remarkable success 

in tasks such as image classification, object detection, semantic segmentation, and 

more. Their ability to extract and learn feature representations makes them a powerful 

tool in many applications beyond vision, including audio processing and natural 

language processing. 

2.2. Visual Feature Extraction 

2.2.1. Inception-v3 

Inception-v3 [7] is a deep CNN architecture renowned for its efficiency in visual 

feature extraction, particularly in image classification tasks. This 48-layered network, 

pre-trained on the ImageNet dataset, stands out for its use of an asymmetric approach, 

which breaks down large-scale convolution kernels into smaller, more manageable 

ones. The Inception-v3 architecture is characterized by its combination of convolution, 

pooling, and fully connected (FC) layers, which work together to process input images. 

Specifically, it accepts input images of size 3×299×299, efficiently resizing and 

handling them through its complex layer structure. A notable aspect of Inception-v3 is 

its global average pooling layer, which plays a critical role in the functionality of the 

network. The output from this layer is a feature vector of 2048 units, which effectively 

captures the essential characteristics of the input image. This feature vector then serves 

as a latent vector, crucial for various applications like feature injection in decoders or 

further image processing tasks. The ability of the architecture to extract high-level 

visual features efficiently makes it an invaluable tool in the field of computer vision, 

particularly for tasks involving feature extraction from visual frames. Overall, the 

combination of depth, efficiency, and versatility in Inception-v3 makes it a standout 

choice in the field of deep learning for image analysis. 

2.2.2. ResNet152 v2 

ResNet152 v2 [8], an enhancement of the original ResNet152, is a prominent model 

in deep learning, specifically in computer vision. It belongs to the Residual Network 
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(ResNet) family, known for enabling the training of extremely deep neural networks. 

The 'v2' in ResNet152 v2 indicates refinements over its predecessor, primarily in how 

batch normalization and activation functions are applied, leading to improved 

performance. This model contains 152 layers, facilitating a deeper and more complex 

neural network architecture. Its primary innovation lies in the use of residual 

connections, which address the vanishing gradient problem commonly encountered in 

deep networks. These connections allow the network to learn identity functions 

effectively, ensuring that adding more layers doesn't lead to performance degradation. 

ResNet152 v2 has shown significant success in image classification tasks and is widely 

used in applications requiring detailed feature extraction from images. 

2.2.3. Xception 

Xception [9], short for “Extreme Inception,” is an advanced deep learning model that 

rethinks the Inception architecture. It introduces the concept of depthwise separable 

convolutions, which makes it unique and powerful. The model separates the learning 

of spatial features (through depthwise convolutions) and the learning of cross-channel 

correlations (through pointwise convolutions), leading to a more efficient learning 

process. This architecture consists of 36 convolutional layers, forming the Xception’s 

base. The layers are structured into 14 modules, all of which have linear residual 

connections around them, except for the first and last modules. Xception's efficiency 

and effectiveness lie in its ability to handle a large number of parameters more 

efficiently than traditional convolutional networks, making it particularly suitable for 

tasks with high computational demands, such as large-scale image recognition. 

2.2.4. NASNet-Large 

NASNet-Large  stands as a testament to the advancements in neural architecture search 

(NAS). It is a product of automated machine learning, where a controller neural 

network generates architectures to be evaluated. NASNet-Large is a convolutional 

neural network architecture that is specifically optimized for high performance image 

recognition tasks. This model is characterized by its scalability – it can be efficiently 

scaled up for greater accuracy. The ‘Large’ variant signifies its configuration for 

larger-scale and more complex tasks, featuring a higher number of layers and 

parameters than its smaller counterparts. The architecture of NASNet-Large is notable 
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for its repeated cell structures, which are optimized for both convolutional and 

reduction operations. These cells are identified through a search process on a smaller 

dataset and then scaled up, allowing NASNet-Large to achieve exceptional accuracy 

in image classification challenges. 

2.2.5. S3D (Separated 3D Convolutional Network) 

S3D, or Separated 3D Convolutional Network, is an innovative approach in video 

processing that aims to enhance the efficiency and effectiveness of 3D convolutional 

networks. The core idea behind S3D is the separation of spatial and temporal 

components within the 3D convolution process. Unlike traditional 3D CNNs that 

combine spatial and temporal features in a single convolution step, S3D performs 

spatial convolutions and temporal convolutions separately. This separation allows S3D 

to capture complex spatial details through dedicated spatial convolutions, while 

temporal convolutions focus on the dynamics and movements across video frames. 

The result is a more computationally efficient model that retains the depthwise 

understanding of videos. S3D has shown promising results in tasks like action 

recognition and video classification, offering a balance between computational load 

and the ability to capture intricate features of video data. 

2.2.6. R3D (3D ResNet) 

R3D, or 3D ResNet, extends the principles of the well-known ResNet architecture into 

the realm of video processing. It employs 3D convolutional layers to capture both 

spatial and temporal information present in video sequences. The R3D model 

integrates the concept of residual connections, which are crucial in enabling the 

training of deep networks by allowing the flow of gradients through the network 

without significant loss. These residual connections also help in alleviating the 

vanishing gradient problem often encountered in deep neural networks. By adapting 

the ResNet architecture to 3D convolutions, R3D effectively learns representative 

features from video data, making it suitable for tasks like video classification, action 

recognition, and video captioning. The strength of R3D lies in its ability to deeply 

understand the temporal dynamics without compromising the spatial feature 

extraction. 
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2.2.7. P3D (Pseudo-3D Convolutional Network) 

P3D, or Pseudo-3D Convolutional Network, is a unique approach that aims to bridge 

the gap between 2D and 3D convolutional networks for video processing. P3D adopts 

a series of 2D spatial convolutions followed by 1D temporal convolutions, rather than 

applying 3D convolutions directly. This method effectively decomposes the 3D 

convolution into two separate operations, enabling the model to learn spatial and 

temporal features in a more disentangled and efficient manner. The pseudo-3D 

approach of P3D allows for reduced computational complexity compared to traditional 

3D CNNs while still capturing the essential aspects of both spatial and temporal 

information in videos. P3D networks have been successfully applied in various video 

understanding tasks, offering an innovative way to handle the challenges of video data 

analysis without the intensive computational demands of full 3D convolutions. 

2.2.8. MVIT (Multi-Scale Vision Transformers) 

MVIT, or Multi-Scale Vision Transformers, represent a novel approach in video 

processing, leveraging the power of transformer architectures. Unlike convolutional 

networks, MVIT uses self-attention mechanisms to process video data, allowing it to 

capture long-range dependencies and intricate patterns within the video frames. The 

multi-scale aspect of MVIT enables it to attend to features at various resolutions, 

providing a comprehensive understanding of both fine details and global context. This 

capability makes MVIT particularly adept at handling complex video tasks that require 

a nuanced understanding of spatial and temporal dynamics. MVIT's transformer-based 

approach offers a distinct alternative to traditional CNN based models, emphasizing 

the importance of global context and long-range interactions in video understanding. 

Its application spans across various tasks in video analysis, including classification, 

captioning, and enhanced representation learning. 

2.3. Audio Feature Extraction 

Audio preprocessing [10] is a crucial step in preparing audio data for analysis, 

particularly in machine learning applications. 
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2.3.1. Log-Mel Spectrogram 

A log-Mel spectrogram is another powerful feature for audio analysis, providing a 

time-frequency representation of the sound. It involves computing the spectrogram (a 

visual representation of the spectrum of frequencies in a sound) and then mapping the 

frequencies to the Mel scale. Taking the logarithm of this Mel-scaled spectrogram 

enhances certain signal characteristics, making this representation particularly useful 

for tasks like environmental sound classification or music genre classification. 

Log-Mel spectrograms are critical in transforming raw audio data into a more abstract 

and informative representation, enabling more accurate and efficient pattern 

recognition by machine learning models in audio analysis tasks. 

2.3.2. Pretrained Audio Neural Networks (PANNs) 

PANNs [11] are a groundbreaking development in the field of audio processing and 

analysis. These deep learning models are trained on large and diverse datasets of 

sounds, allowing them to learn a wide range of audio features and characteristics. 

PANNs are designed to be adaptable, and capable of performing various audio-related 

tasks such as sound classification, detection, and event recognition. Their pre-trained 

nature means they can be used effectively without the need for extensive training on 

specific tasks, making them highly efficient and versatile. PANNs are instrumental in 

applications like automated audio tagging, environmental sound analysis, and 

enhancing audio content in multimedia. PANNs represent a significant advancement 

in audio processing and analysis. Trained on vast and diverse audio datasets, these 

deep learning models efficiently learn a broad range of audio features and 

characteristics. PANNs are designed for efficient sound classification, detection, and 

event recognition. Their architecture typically combines a Log-mel Spectrogram for 

transforming raw audio into a time-frequency representation with about 10 CNN layers 

for feature extraction. This setup enables PANNs to handle complex audio processing 

tasks, extracting detailed audio features essential for applications such as automated 

audio tagging, environmental sound analysis, and multimedia enhancement. 
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2.4. Sequence Processing 

2.4.1. Recurrent Neural Networks (RNNs) 

RNN, a type of deep neural network, is able to model long-term dependencies in 

sequential data and suitable for NLP tasks such as speech recognition, machine 

translation, and image captioning [12, 13]. Each output is calculated by repeatedly 

processing the same function over each instance of the sequence in RNN. 

RNN computes the hidden vector sequence ℎ = (ℎ1, … , ℎ𝑇) and output vector 

sequence 𝑦 = (𝑦1, … , 𝑦𝑇) using the input sequence 𝑥 = (𝑥1, … , 𝑥𝑇) with the variable 

length for 𝑡 =  1, … , 𝑇.  

The hidden vector ℎ𝑡 at time step t is computed with the input vector 𝑥𝑡 as ℎ𝑡 =

𝑓(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡) where 𝑊 and 𝑈 denote the weight matrices, and f denotes a 

nonlinear activation function such as tanh, ReLU, and sigmoid. 

The output vector is computed as 𝑦𝑡 = 𝑓(𝑉ℎ𝑡), where 𝑉 is a matrix that connects the 

current hidden layer with the current output layer [12]. 

RNNs employ the information in arbitrarily long sequences in theory but suffer from 

vanishing and exploding gradients in practice and cannot capture long-term 

dependencies.  

Despite the fact that a variety of RNN based architectures could be used, such as 

LSTM, as a proof of concept, the GRU is used here, which is more feasible in handling 

vanishing and exploding gradients problems, employed for processing sequential data 

to generate captions in our experiments. 

2.4.2. Gated Recurrent Unit (GRU) 

GRU, which is a type of RNN with a gating mechanism, has been implemented to 

address the aforementioned issues. GRU consists of a hidden state and two gates: 

update and reset [14]. In GRU, the transition has been carried on based on the 

following equations [14]: 
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rt = σ(Wrxt + Urht−1) 

𝑧𝑡 = σ(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) 

𝑢𝑡 = tanh (𝑊𝑥𝑡 + 𝑈(𝑟𝑡 ⨀ ℎ𝑡−1
)) 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡𝑢𝑡 

(2.1) 

where rt, zt, and ut denote reset gate vector, update gate vector, and candidate hidden 

vector, respectively. The subscripts 𝑟 and z in 𝑊𝑟 and 𝑊𝑧 denote the weights of the 

reset and update gates. σ and tanh are the sigmoid and tangent hyperbolic activation 

functions, respectively. ʘ denotes the element-wise multiplication operator. ℎ𝑡−1 is 

taken from the previous GRU as input, and the output of GRU, 𝑦𝑡 is calculated with 

the sigmoid function as 

𝑦𝑡 = σ(𝑊𝑜ℎ𝑡 + 𝑏) (2.2) 

where the subscript 𝑜 denotes the weight of the output vector, and b is the bias. This 

makes it easier to configure stacked or multi-layer GRU architectures with two or more 

layers that outperform the conventional RNN based architectures on many NLP tasks, 

including language modeling [15]. 

2.5. Feature Injection Architectures 

Images can be incorporated into the decoder with feature injection architectures in two 

different ways (i.e., inject-based and merge) using a fixed-length image feature vector 

and linguistic feature vector (embedding vector) from the encoder and embedding 

layer, respectively. The inject-based architecture is designed based to utilize both 

image feature and linguistic feature vector to the decoder, such as init-inject, pre-inject 

and par-inject. 

Init-inject Architecture 

The hidden state vector of GRU is initialized with the same-sized image feature vector 

[16], and the embedding vector is fed to the GRU as an input vector. 

Pre-inject Architecture 

The image feature vector is utilized as the first input vector of GRU at 𝑡 = −1, whereas 

the embedding vectors are fed to the GRU for the next time step [16]. The image 

feature vector can be considered as the first word of the sequence. 
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Par-inject Architecture 

The image and embedding vector are concatenated as a single input before 

incorporating into the GRU [16]. 

Merge Architecture 

GRU takes only the embedding vector that handles linguistic features in this 

architecture, whereas the image feature vector is fed into the architecture after the GRU 

processes the linguistic features [16].  The image feature vector and the output vector 

of the GRU are concatenated into a single vector to calculate the probability. 

2.6. Performance Metrics 

Performance metrics such as BLEU [17], METEOR [18], ROUGE-L [19], SPICE 

[20], and CIDEr [21] are crucial for evaluating the effectiveness of machine-generated 

captions, whether in image or video captioning systems. Each metric offers a unique 

perspective on assessing the quality of captions. 

2.6.1. BLEU (Bilingual Evaluation Understudy) 

This metric was originally developed for evaluating machine translation systems. 

BLEU measures the overlap of n-grams (a contiguous sequence of n items from a given 

sample of text or speech) between the machine-generated caption and one or more 

reference captions. It uses different versions, such as BLEU-n, where "n" denotes the 

n-gram size, allowing the evaluation of word pairings, triplets, etc. BLEU is known 

for its simplicity and speed, but it often fails to capture the semantic accuracy of the 

captions. 

2.6.2. METEOR (Metric for Evaluation of Translation 

with Explicit Ordering) 

Developed as an alternative to BLEU, METEOR assesses the quality of translations 

by considering not only exact word matches but also stem and synonym matching. It 

calculates the harmonic mean of unigram precision and recall, with more emphasis on 
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recall. This metric is known for its better correlation with human judgment, especially 

at the sentence level. 

2.6.3. ROUGE-L (Recall-Oriented Understudy for 

Gisting Evaluation-Longest Common Subsequence) 

ROUGE-L is used primarily for evaluating text summarization and machine 

translation. It measures the longest common subsequence between the generated 

caption and the reference captions, focusing on the sequence rather than individual 

words. This metric is effective in evaluating the fluency and order of the generated 

text. 

2.6.4. SPICE (Semantic Propositional Image Caption 

Evaluation) 

SPICE is specifically designed for image captioning tasks. Unlike the other metrics 

that focus on syntactic or surface-level matching, SPICE evaluates semantic content. 

It parses both the generated and reference captions to assess the presence and accuracy 

of objects, attributes, and relationships, providing a deeper semantic evaluation of the 

caption quality. 

2.6.5. CIDEr (Consensus-based Image Description 

Evaluation) 

CIDEr focuses on evaluating the consensus between a generated caption and a set of 

reference captions. It utilizes sentence similarity measures to capture notions of 

grammaticality, saliency, and accuracy. CIDEr is particularly useful for captioning 

tasks as it evaluates the relevance and informativeness of captions in relation to the 

image or video content. 

These metrics collectively provide a comprehensive evaluation of captioning systems. 

BLEU and METEOR are more suited for syntactic and surface-level evaluations, while 

ROUGE-L assesses fluency and sequence structure. SPICE and CIDEr delve deeper 
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into semantic accuracy and contextual relevance, respectively. The choice of metric 

often depends on the specific aspects of caption quality that need to be assessed. 

2.7. Relevant Datasets 

Image captioning datasets are essential for training and evaluating algorithms designed 

for automatic caption generation. This task involves creating descriptive text for 

images, and such datasets are crucial in advancing this field. 

2.7.1. MSCOCO Captions Dataset 

One prominent dataset in this area is the Microsoft COCO (Common Objects in 

Context) [22] dataset. It is a large-scale resource widely utilized in the image 

captioning domain. The MSCOCO dataset encompasses a total of 123,287 images, 

which are split into two primary sets: 118,287 images in the training set and 5,000 in 

the validation set. Each image in this dataset is annotated with at least five reference 

captions. In summary, the MSCOCO dataset's extensive collection of images and its 

diverse set of annotations make it an ideal choice for a wide array of image captioning 

applications, catering to tasks that demand a general understanding of everyday 

contexts and objects. 

Video captioning datasets are essential for training and evaluating algorithms that 

generate descriptions for video content. These datasets vary in size, content type, and 

the number of reference captions provided for each video. 

2.7.2. MSR-VTT Dataset 

The Microsoft Research Video-to-Text [23] dataset consists of 10,000 videos 

encompassing a variety of content, including news, sports, and other categories. Each 

video in MSR-VTT is described with 20 reference captions, providing a diverse set of 

descriptions for the same video content. 

2.7.3. MSVD Dataset 

The Microsoft Video Description dataset, also known as Youtube2Text, includes a 

total of 1,970 short video clips collected from YouTube. This dataset is particularly 
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noted for its extensive set of reference captions, with each video having an average of 

40 English descriptions. The MSVD is split into 1,200 training videos, 100 validation 

videos, and 670 test videos. 

Each of these datasets offers unique characteristics. MSR-VTT and MSVD offer 

multiple captions per video, which is beneficial for models that need to understand and 

generate a variety of descriptions. The MSVD, with its large number of captions per 

video, is especially valuable for training robust and versatile video captioning systems. 

The choice of dataset typically depends on the specific requirements of the research or 

application, such as the type of content, the desired level of detail in the captions, and 

the computational resources available for training models. 

2.8. Programming Languages and Tools 

2.8.1. Python 

Python is a high-level, interpreted programming language known for its simplicity and 

readability. Its straightforward syntax allows programmers to express concepts in 

fewer lines of code compared to languages like C++ or Java. Python supports multiple 

programming paradigms, including object-oriented, procedural, and functional 

programming. It comes with an extensive standard library and has a large and active 

community, making it versatile for a wide range of applications, from web 

development to data analysis, machine learning, and scientific computing. 

2.8.2. PyTorch Framework 

PyTorch is an open-source machine learning framework widely used in the field of 

artificial intelligence and deep learning. Developed by AI Research lab of Facebook, 

it is known for its flexibility, ease of use, and dynamic computational graphing, 

enabling more intuitive coding of complex AI models compared to static-graph 

frameworks. PyTorch provides a rich set of tools and libraries for deep learning, and 

it is particularly favored for its efficient memory usage and optimization, especially 

when working with large neural networks. Its compatibility with Python and seamless 

integration with other Python-based scientific computing libraries make PyTorch a 
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preferred choice for researchers and developers in developing, training, and deploying 

AI models. 

torchvision is a specialized library within the PyTorch ecosystem, focused on 

computer vision applications. It provides a rich collection of pre-trained models, 

datasets, and image transformations, facilitating the development and training of deep 

learning models in the field of image processing and analysis. torchvision includes 

implementations of advanced CNNs such as ResNet50, Inception-v3, and DeepLabv3, 

which can be used for tasks like image classification, object detection, and 

segmentation. The library also offers utilities for loading and normalizing various 

standard vision datasets, making it a comprehensive resource for researchers and 

developers working on computer vision projects. 

torchaudio complements PyTorch by providing tools specifically designed for audio 

processing. This library extends the PyTorch framework to the auditory domain, 

enabling the creation, manipulation, and analysis of sound signals using deep learning. 

It includes a variety of datasets, pre-trained models, and transformations that are 

essential for tasks such as speech recognition, audio classification, and sound 

generation. torchaudio also offers functionalities for loading and preprocessing audio 

data, making it an invaluable tool for researchers and practitioners in fields like music 

technology, linguistics, and auditory scene analysis. 

torchtext is a PyTorch domain library aimed at simplifying the preprocessing of textual 

data and making it more accessible for NLP applications. This library provides easy-

to-use abstractions and interfaces for handling text data, including utilities for loading, 

tokenizing, and batching datasets. torchtext also supports building custom datasets and 

iterators, which are essential for training language models. With built-in support for 

common public NLP datasets and word embeddings, torchtext allows researchers and 

developers to focus more on model design and less on data preprocessing, streamlining 

the development of NLP applications such as text classification, machine translation, 

and sentiment analysis.
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Chapter 3 
3. Multi-layer Gated Recurrent Unit based Recurrent Neural Network for Image Captioning 

Multi-layer Gated Recurrent Unit based 

Recurrent Neural Network for Image 

Captioning 
 

Generating natural language descriptions of an image, namely image captioning, has 

received much attention in computer vision and natural language processing. Recent 

image captioning models are mainly based on the encoder-decoder framework in 

which visual information is extracted by an encoder, e.g. using CNN, and captions are 

generated by a decoder, e.g. using RNN. Although this framework is promising for 

image captioning, there are still issues in the RNN decoder for exploiting the visual 

information to generate grammatically and semantically correct captions. More 

specifically, the RNN decoder has limited ability in dealing with long-term complex 

dependencies, leading to ineffective use of contextual information from the encoded 

data. To address this issue, in this paper, we introduce a multi-layer gated recurrent 

unit (ML-GRU) within the conventional RNN decoder, which enables the modulation 

of the relevant information flow inside the unit, and thus leads to the generation of 

semantically coherent captions. The proposed ML-GRU based RNN decoder has been 

extensively evaluated on the MSCOCO dataset, and experimental results demonstrate 

the advantage of our proposed approach over the state-of-the-art approaches across 

multiple performance metrics. 

3.1. Introduction 

Image captioning aims to generate grammatically correct and human-readable 

descriptions of an image using techniques from computer vision (CV) and natural 

language processing (NLP). This task leverages the connection between CV and NLP 

and has attracted increasing interest, due to its potential applications such as image 



21 

 

indexing or retrieval and virtual assistants for visually impaired people [24-26] [27-

29]. Image captioning is a challenging task because it requires an advanced level of 

understanding of an image, including the recognition of the objects and actions in the 

image, in order to generate meaningful captions with proper linguistic properties. 

Therefore, it goes beyond the conventional CV tasks such as image classification and 

object detection. Early efforts to address this problem in the literature have considered 

the use of either retrieval-based or template-based models before using deep neural 

networks. Recently, the encoder-decoder [30] based neural structure has emerged, 

which is promising and has become a popular model for image captioning. This model 

is composed of two sub-networks, where the encoder aims to generate a feature 

representation of an image using methods such as CNN, while the decoder translates 

this representation into natural language descriptions using methods such as RNN. 

For the encoders of the captioning systems, the CNN architectures like Inception-v3 

[31], NASNet-Large [32] (neural architecture search network), Xception [9], and 

ResNet152 v2 [3] are popular choices. Inception-v3 [31] is a 42-layered deep CNN 

architecture that uses the asymmetric approach to decompose a kernel of large-scale 

convolution into a small-scale kernel of convolution. NASNet [31] is designed using 

reinforcement learning and contains two types of cells, namely, the normal cell, which 

keeps the width and height of the feature map, and the reduction cell, which reduces 

the width and height of the feature map by half.  Xception [9] is a deep CNN consisting 

of 36 convolutional layers with 14 modules that have linear residual connections 

around them and a logistic regression layer for feature extraction. This architecture is 

obtained by modifying Inception-v3 with depthwise separable convolutional layers.   

ResNet152 v2 [9] is a deep CNN, which is composed of residual nets with 152 layers. 

Unlike the ResNetV1, this architecture uses the normalization of the stack before each 

weight layer. The ResNet152 v2 architecture with the removed classification layer 

extracts the high-level image feature vector of the input image using convolution and 

pooling layers. The visual information of images extracted by the encoders is then 

utilized in language decoders to convert this information word-by-word into natural 

language captions. The conventional RNN based decoders, however, have vanishing 

and exploding gradient problems. As a result, they are not effective in exploiting long-

term temporal dependencies [1]. Long short-term memory (LSTM) [33] and GRU [14] 

networks are proposed to address these problems. LSTM uses memory cells to retain 
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information for long periods, while GRU does not use additional memory cells to 

maintain the flow of information. 

When the RNN based language decoders are used for caption generation, the visual 

information can be fed either directly into the RNN or in a layer preceding the RNN 

[16, 25]. Several RNN based architectures have been proposed, which can be 

categorized into the following four: init-inject [34], pre-inject [35], par-inject [36], and 

merge [37] . The visual information can be fed as a latent vector to the initial hidden 

state of the RNN in init-inject [2, 38], while the latent vector is used as the initial input 

of the RNN in the pre-inject architecture [39]. The latent vector is used with the word 

vectors of the caption prefix in parallel as an input to the RNN in the par-inject 

architecture [40]. Different from the above architectures, the latent vector is not fed to 

the RNN directly in the merge architecture as the image is presented to the language 

model after the caption prefix is generated by the RNN [16, 41]. 

Although the current encoder-decoder framework improves captioning accuracy 

compared to its counterparts, effectively extracting and employing contextual 

information from encoded data remains a challenge that results in insufficient 

performance in captioning. This paper introduces a novel image captioning model that 

utilizes NASNet-Large for image encoding and a multi-layer GRU based decoder 

under the init-inject architecture, thereby enhancing the use of visual information for 

accurate caption generation. Based on extensive experimental studies, NASNet-Large 

is found to be adequate for encoding visual information. The motivation behind using 

GRU is two-fold. First, GRU needs fewer parameters and is computationally cheaper 

than LSTM as GRU has one hidden state vector while LSTM has two state vectors, 

namely, hidden and cell states  [42]. In addition, GRU has two gates, i.e. the update 

and reset gates, while LSTM has three gates, i.e. the input, forget, and output gates. 

Second, the GRU with one hidden state vector offers an excellent fit for the 

requirement of the init-inject architecture in terms of computational efficiency in 

practical implementation [16]. The number of layers in GRU is incremented to ensure 

the modulation of the most relevant information flow inside the unit. A higher number 

of upper layers deployed in the multi-layer GRU can provide detailed contextual 

information from the data, thereby providing an enhanced prediction model [43, 44].  
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Table 3.1 Comparison of different CNN encoders with single-layer GRU. 

CNN BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE CIDEr 

ResNet152 v2 0.686 0.503 0.359 0.258 0.497 0.221 0.148 0.801 

Inception-v3 0.693 0.513 0.368 0.264 0.506 0.230 0.161 0.851 

Xception 0.702 0.520 0.373 0.265 0.508 0.230 0.162 0.859 

NASNet-Large 0.707 0.524 0.376 0.270 0.510 0.231 0.161 0.876 

As GRUs are operated on sequence data, adding layers will increase the level of 

abstraction over time for input observations. In turn, this can provide chunking of 

observations over time or represent the data at various time scales. 

Integrating an ML-GRU into RNN enhances the ability of the decoder to retain 

important semantic image information, thereby improving caption generation. 

Furthermore, to achieve high-quality image features, we implemented NASNet-Large. 

This integration enriches the quality of the encoded data, thus elevating the coherence 

of the generated captions. Although ML-GRUs are widely used in various 

applications, our study presents an implementation within the field of image captioning 

for the first time. Our approach combines a structured integration of GRU layers under 

the init-inject architecture, with each GRU layer fine-tuned. 

This approach ensures accurate recognition of visual elements and their meaningful 

linguistic translation. By adopting such a precise configuration, the approach aims to 

advance the state-of-the-art image captioning with enhanced accuracy and contextual 

relevance in the generated captions. Experimental results on the MSCOCO dataset 

show the advantage of our proposed approach over the state-of-the-art approaches for 

caption generation with a higher performance metric score. 

The major contributions of this study can be summarized as follows. 

• We propose a new approach to the neural encoder-decoder framework of image 

captioning by introducing multi-layer GRU based RNN, which refines the 

decoder to evaluate the image attributes extracted in the encoder for enhanced 

image captioning. This approach was designed under the init-inject 

architecture, and to the best of our knowledge, this is the first time that the  
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 Figure 3.1 The proposed multi-layer GRU based decoder (inside the red dashed line) 

is given on the left side while unfolded on the right side. 

 

multi-layer GRU is exploited in the encoder-decoder based image captioning 

models. 

• We perform comprehensive experimental results on the MSCOCO dataset and 

show that the proposed model significantly outperforms the state-of-the-art 

approaches consistently across different performance metrics. We also 

investigate the optimal number of GRU layers to be used for image captioning. 

 

3.2. Proposed Multi-layer GRU based Image 

Captioning Approach 

This section presents a new approach to enhance the image captions by introducing 

multi-layer GRU to the image decoder. The proposed image captioning approach 

consists of two steps: image encoder and text decoder. First, the image encoder is 

utilized to extract features from an image. Then, these features are fed into the text 

decoder that processes the features to generate a caption word-by-word. CNN based 

encoder employed here is a recently emerged framework that has been found to be 

promising for feature extraction of an image. The NASNet-Large model is utilized as 
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a CNN architecture where all image features are obtained after the average pooling 

layer, which returns a 4032-element vector. 

The methodology proposed in this study involves a multi-layer GRU based decoder, 

as depicted in  Figure 3.1. This decoder provides a novel solution to several limitations 

in the current literature, such as efficient visual attributes injection and modulation of 

the relevant information flow. The decoder architecture comprises an embedding layer, 

multiple GRU layers, and a dense layer, which are utilized under the init-inject 

architecture. This architecture facilitates the parallel processing of image features 

obtained from a dense map and linguistic features, derived from the embedding layer. 

The multi-layer GRU is a combination of K-GRU for 𝑘 = 1, … , 𝐾, while ℎ𝑡
(𝑘)

 and 𝑥𝑡
(𝑘)

 

are defined as the hidden and input vector for the 𝑘th GRU layer. Each initial hidden 

vector (ℎ1
(𝑘)

) contains image features as a separate vector with reduced size from 4032 

to the 512-element vector by the dense map to feed the multi-layer GRU at 𝑡 = 1. For 

the subsequent iterations, multi-layer GRU is fed by the updated hidden vector from 

the previous iteration (ℎ𝑡−1
(𝑘)

) rather than the dense map. The first GRU layer is located 

after the embedding layer, which generates the predefined size of a meaningful 

embedding vector, namely the linguistic features, using the start token. The embedding 

vector is processed at the first GRU layer, leading to the first output vector  (𝑦1
(1)

),  

which is the input of the next GRU layer (𝑥1
(2)

) . The same procedure is repeated 𝐾 

times until (𝑦1
(𝐾)

) is generated, which is the input for the dense layer as: 

𝑦1
(𝐾)

= σ(𝑊(𝐾)ℎ1
(𝐾)

+ 𝑏(𝐾)) (3.1) 

To generate the first token, the argmax function has been employed on the output of 

the dense layer 𝑑1,  which is computed as: 

𝑑1 = 𝑓(𝑊𝑦1
(𝐾)

+ 𝑏) (3.2) 

then the output and hidden state are carried to the RNN as input and hidden state, 

respectively, to generate the next token. This process is continued until an end-of-

caption token is generated. In the end, the generated tokens are converted into their 

corresponding words employing a vocabulary that is created from the reference 

captions of the training set. 
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Figure 3.2 The generated captions by our proposed approach for four different images 

from the MSCOCO dataset. 
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3.3. Experimental Evaluations 

This section evaluates the proposed captioning approach on the MSCOCO dataset 

[22], and a performance comparison with state-of-the-art approaches is presented. The 

MSCOCO dataset contains 118287 training, 41000 test, and 5000 validation images  

[22] and each image is described with five reference captions. MSCOCO is the most 

suitable dataset for the evaluation of our proposed image captioning approach due to 

its various images with semantically rich reference captions. To analyze the 

performance of the compared captioning approaches, several metrics are employed, 

including BLEU [17], CIDEr [21], METEOR [18], ROUGE-L [19] and SPICE [20]. 

Our results are sorted based on CIDEr and SPICE metrics due to their better correlation 

with human assessment compared to BLEU-n, METEOR, and ROUGE-L.  

Baselines 

• [45] proposes a framework named StyleNet, which utilizes a factored LSTM 

to extract the style factors in captions. 

• [46] proposes a captioning system which can tailor the captions for application 

specific studies. 

• [34] proposes a captioning system named SemStyle, which generates a 

semantically accurate styled caption. 

• [39] proposes a deep neural image captioner based on an encoder-decoder 

framework where Inception-v3 as the encoder and LSTM based sentence 

generator as the decoder. 

• [47] proposes a gLSTM which is specifically developed to employ visual 

attributes to the LSTM for image captioning. 

• [48] proposes a phi-LSTM to describe visual contents as a sentence that 

employs phrases rather than words. 

• [6] proposes a CNN+CNN framework that processes natural language 

attributes with a CNN. 

• [49] proposes a Mixture of Recurrent Exports for image captioning, which 

captures the semantics and generates a styled caption. 

• [50] proposes an attention based image captioning where the visual attributes 

are weighted with soft and hard attention techniques. 
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Table 3.2 Comparison of different CNN encoders with multi-layer GRU. 

CNN 
# of 

Layers 
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE CIDEr 

ResNet152 

v2 

3 0.679 0.494 0.347 0.244 0.488 0.219 0.150 0.782 

6 0.675 0.492 0.349 0.248 0.490 0.221 0.150 0.786 

9 0.683 0.498 0.352 0.249 0.493 0.219 0.148 0.778 

12 0.546 0.326 0.184 0.105 0.414 0.152 0.090 0.420 

15 0.544 0.325 0.182 0.104 0.411 0.151 0.093 0.421 

Inception-

v3 

3 0.678 0.499 0.356 0.254 0.496 0.229 0.158 0.821 

6 0.680 0.500 0.357 0.254 0.496 0.227 0.157 0.818 

9 0.689 0.506 0.362 0.258 0.497 0.225 0.154 0.821 

12 0.547 0.334 0.192 0.112 0.420 0.154 0.091 0.452 

15 0.555 0.335 0.191 0.110 0.417 0.157 0.093 0.453 

Xception 

3 0.698 0.513 0.366 0.261 0.501 0.228 0.160 0.846 

6 0.694 0.509 0.363 0.259 0.499 0.227 0.158 0.844 

9 0.702 0.519 0.371 0.263 0.505 0.229 0.162 0.850 

12 0.692 0.507 0.358 0.251 0.496 0.221 0.155 0.792 

15 0.559 0.343 0.195 0.115 0.420 0.158 0.093 0.467 

NASNet-

Large 

3 0.690 0.513 0.369 0.266 0.506 0.237 0.169 0.884 

6 0.695 0.514 0.370 0.265 0.505 0.236 0.168 0.884 

9 0.705 0.522 0.374 0.268 0.507 0.235 0.168 0.878 

12 0.559 0.343 0.197 0.115 0.427 0.161 0.097 0.488 

15 0.561 0.343 0.195 0.113 0.422 0.161 0.100 0.484 

To construct an image captioning system with high performance, we have analyzed 

four different CNN architectures as an encoder in conjunction with a multi-layer GRU 

based decoder. In this regard, the Inception-v3, Xception, ResNet152 v2, and NASNet-

Large with five different layer-sized GRU were evaluated in terms of BLEU-n, CIDEr, 

METEOR, SPICE, and ROUGE-L metrics. All these configurations have been 

evaluated based on hyper-parameter optimization.  

Our proposed multi-layer GRU based decoder takes linguistic features from the 

embedding layer. Two critical parameters based on linguistic features for the 

performance of image caption generation are the embedding vector size and the 

vocabulary size. The size of the embedding vector is typically set between 50 and 300 

[51]. 

The embedding vector with a small size does not capture the word relations 

completely, whereas the large embedding vectors cause overfitting. The size of the 

embedding vector affects the training time, computational costs, and the performance 

of embedding.  
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Table 3.3 Comparison of our proposed Multi-layer GRU based approach with some 

state-of-the-art architectures on MSCOCO dataset. 

 BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE CIDEr 

[45] 0.625 - - 0.212 - 0.218 0.135 0.664 

[46] - - - 0.270 0.500 0.240 0.009 0.680 

[34] 0.653 0.478 0.337 0.238 0.482 0.219 0.157 0.769 

[39] 0.667 - - 0.238 - 0.224 0.154 0.772 

[47] 0.663 0.485 0.354 0.262 - 0.230 - 0.813 

[48] 0.666 0.489 0.355 0.258 0.497 0.231 0.165 0.821 

[6] 0.688 0.513 0.370 0.265 0.507 0.234 - 0.839 

[49] 0.679 0.501 0.356 0.252 0.501 0.226 0.166 0.844 

[50] - - - 0.250 0.516 0.230 - 0.865 

Our 
proposed 

9-layer 
GRU 

0.705 0.522 0.374 0.268 0.507 0.235 0.168 0.878 

The vocabulary size, which has a critical role in the image captioning tasks, is 

determined based on the number of common words in all reference captions and 

usually varies from 10000 to 40000 words  [52]. To optimize the embedding vector 

and vocabulary values, our proposed multi-layer GRU based decoder is tested under 

ten different vocabulary sizes, including 250, 500, 750, 1000, 2000, 3000, 5000, 

10000, 20000, and 40000, and eight different embedding vector sizes (namely, vector 

sizes with 25, 50, 75, 100, 125, 150, 200, and 250). The optimization tests were carried 

out by keeping one of two parameters fixed due to the high training time and 

computational cost. In the encoder side, the Inception-v3 is employed as a reference 

CNN architecture, while a single-layer GRU based decoder is used in the decoder. 

First, this reference system was evaluated under different performance metrics with 

ten different vocabularies and the embedding vector of fixed-size, as 100. The best 

CIDEr metric was observed when the vocabulary size was 750. Then, the reference 

system was evaluated under the same performance metrics with eight different 

embedding vectors and the vocabulary of fixed-size, as 750. The best CIDEr metric 

was observed when the embedding vector size was 100. Hence, the embedding vector 

size and vocabulary size have been determined based on the empirical analysis of the 

aforementioned configurations. 
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Three different CNN based encoders (i.e., Xception, ResNet152 v2, and NASNet-

Large) are employed to observe the best CNN architecture compatible with these 

embedding vector and vocabulary sizes, 100 and 750, respectively. The evaluation 

results are given in Table 3.1. The NASNet-Large based encoder outperforms the other 

three CNNs. The experiments were employed on NASNet-Large CNN architecture as 

a reference due to its promising results. To find the optimum parameters according to 

layer size, NASNet-Large with three-layer GRU was evaluated under the same 

performance metrics with ten different vocabularies and the embedding vector of 

fixed-size, as 100. The best CIDEr metric was observed when the vocabulary size was 

10000. Then, the best CIDEr metric was observed when the embedding vector size 

was 125. Using these parameters (10000 for vocabulary and 125 for embedding 

vector), three CNN (Inception-v3, ResNet152 v2, and Xception) based encoder was 

employed to observe the best result for 3-layer GRU. Applying the same strategy to 

the 6, 9, 12, and 15 layer GRU, the optimum parameters were determined as 150, 75, 

250, and 200 for the embedding vector size; 20000, 2000, 2000, and 40000 for the 

vocabulary size, respectively.  

The empirical analysis with different vocabulary sizes with a fixed-size embedding 

vector indicates that the CIDEr metric gradually increases until the 9-layer GRU, 

where the maximum level has been reached. The performances of multi-layer GRU 

with four different CNN configurations have been listed in Table 3.2. The empirical 

results listed in Table 3.2 indicate that increasing the number of layers until 12-layer 

can enhance the predictive performance in the proposed image captioning system. 

Among all the configurations, 9-layer GRU architecture outperforms the other 

compared schemes in terms of BLEU-n and ROUGE-L metrics, and 3-layer GRU 

architecture outperforms the other schemes in terms of METEOR, SPICE, and CIDEr. 

Table 3.3 presents a comprehensive performance evaluation of the proposed 9-layer 

GRU against various contemporary image captioning architectures utilizing the 

MSCOCO dataset. Evaluation employs metrics such as BLEU-1 to BLEU-4, ROUGE-

L, METEOR, SPICE, and CIDEr. The proposed model consistently surpasses others, 

especially in BLEU-1, BLEU-2, BLEU-3, SPICE, and CIDEr, highlighting advanced 

context interpretation and description generation capabilities. Furthermore, this is 

further supported by competitive performance in BLEU-4, ROUGE-L, and METEOR. 
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The integration of a 9-layer GRU facilitates the handling of complex temporal 

dynamics and ensures the maintenance of comprehensive context during caption 

generation. The results underscore the potential of the proposed model in progressing 

image captioning research. 

The approaches are sorted based on CIDEr metrics, and the highest score is indicated 

with bold fonts in each column. The proposed approach outperforms BLEU-1, BLEU-

2, SPICE, and CIDEr metrics. Figure 3.2 shows the ground truth and generated 

captions by the proposed approach for four images. From those results, we observe 

that our proposed approach is capable of capturing image information with correct and 

descriptive captions. For instance, in the first image (Figure 3.2 (a)), the generated 

caption can successfully describe the chair and umbrella with its color in the image. 

In the second image (Figure 3.2 (b)), the proposed approach identifies a branch and 

the action of sitting; in the third image (Figure 3.2 (c)), it identifies cattle and the action 

of grazing. In the fourth image (Figure 3.2 (d)), the proposed approach generates the 

words surfboard and row, which accurately describe the content of the image. Images 

show that our proposed approach can generate natural sentences related to the image. 
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Chapter 4 
4. Leveraging Pre-trained 3D-CNNs for Video Captioning 

Leveraging Pre-trained 3D-CNNs for 

Video Captioning 
 

Video captioning is a visual understanding task that aims to generate grammatically 

and semantically accurate descriptions. One of the main challenges in video captioning 

is capturing the complex dynamics present in videos. This study addresses this 

challenge by leveraging pre-trained 3D-CNNs. These networks are particularly 

effective at modeling such dynamics, enhancing video contextual understanding. We 

evaluated the approach on the MSVD dataset, with commonly utilized performance 

metrics in video captioning including CIDEr, BLEU-1 through BLEU-4, ROUGE-L, 

METEOR, and SPICE. The results show significant improvements across all these 

metrics, proving the advantage of pre-trained 3D-CNNs in enhancing video captioning 

accuracy. 

4.1. Introduction 

Video captioning is a task that involves generating descriptions for video frames by 

leveraging techniques from natural language processing and computer vision fields. 

These descriptions are expected to be grammatically correct and semantically accurate.  

Recently, there has been increased attention on video captioning studies due to their 

potential applications in video understanding, video retrieval, and video caption 

generation [5, 53-55]. 

Earlier studies in captioning have explored various approaches, including template-

based, retrieval-based, and deep learning-based. One template-based approach uses a 

predefined template to translate semantic representation into a caption  [56]. The 

retrieval-based approach employs a compositional semantics language model that 
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breaks down video descriptions into subjects, verbs, and objects. These elements are 

then transformed into word vectors, effectively capturing the meaning of the content 

[57]. 

Recently, deep learning-based approaches have emerged as valuable tools for 

generating more accurate captions  [24, 25, 27-29, 41, 43, 44, 58, 59]. These 

approaches leverage deep learning to manage the complexity of videos, including 

diverse objects, scenes, and actions. Various deep learning-based encoder-decoder 

architectures have been proposed. These architectures typically combine CNNs to 

extract features and RNNs for caption generation  [13, 60-66]. There are various CNN 

architectures commonly employed in the encoder for feature extraction from video 

frames to feed RNN based decoders  [8, 9, 31, 67]. However, conventional RNNs 

encounter challenges such as vanishing and exploding gradient issues, limiting their 

ability to process long input sequences due to short-term memory. Two types of RNNs 

have been proposed to address these challenges: LSTM and GRU. LSTM networks 

introduce three gates: the input gate, the forget gate, and the output gate. These gates, 

along with two states known as the hidden state and memory cells, enable LSTMs to 

capture long-term dependencies in sequences effectively. On the other hand, GRU 

networks consist of a hidden state and two gates: the update and the reset gate. GRUs 

can dynamically determine, by utilizing these gates, the amount of information to 

retain from previous time steps and update their hidden state accordingly. This enables 

GRUs to model dependencies in sequences with varying lengths. 

A video captioning approach that utilizes the encoder-decoder architecture 

incorporates a hierarchical recurrent neural encoder (HRNE) with a two-layer LSTM  

[68]. The HRNE extracts temporal features from video frames, which serve as input 

for the LSTM-based decoder that generates captions. The LSTM hidden state and 

memory cell are carried forward to the next step, except when a new video time 

boundary is detected.  

The Sequence-to-Sequence Video-to-Text (S2VT) approach was proposed for video 

captioning to capture the temporal structure of videos and represent them as fixed-

length vectors. This S2VT approach employs LSTMs in both its encoder and decoder, 

facilitating the encoding of the temporal structure of video and the generation of 

captions  [69]. 
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Figure 4.1 Proposed pre-trained 3D-CNNs-based approach for video captioning 

In this paper, we propose a video captioning approach with a combination of two-

dimensional (2D) and 3D-CNN architectures and multi-layer GRU to extract features 

of the videos on the encoder side. Inception-v3 as 2D-CNN is employed to extract 

appearance features from video frames, whereas S3D, R3D, P3D, and MVIT as 3D-

CNNs are utilized for the motion features. Then, a multi-layer GRU is employed to 

preserve the semantic information of the video and leverage contextual information 

more effectively. On the decoder side, a multi-layer GRU is utilized to generate more 

accurate captions by leveraging its ability to compute complex representations. 

Experimental results are obtained on the MSVD dataset using various evaluation 

metrics, including BLEU-n [17], CIDEr [21], METEOR [18], ROUGE-L [19], and 

SPICE [20]. These metrics are used to measure the accuracy of the proposed approach 

on captioning performance and to compare with state-of-the-art approaches. 

4.2. Proposed 3D-CNN based Video Captioning 

Approach 

Here, we introduce our proposed approach as shown in Figure 4.1 for video captioning 

based on sequence-to-sequence learning which utilizes pre-trained 3D-CNNs. 

The proposed video captioning approach is employed under the encoder-decoder 

framework. In this framework, the encoder extracts visual attributes from videos. 
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These extracted attributes are then fed into the decoder, which generates descriptive 

captions detailing events and scenes corresponding to relevant parts of the video. 

For each iteration, the multi-layer GRU of the encoder receives the updated hidden 

state from the previous iteration until it reaches the last feature vectors. The final 

hidden state of the multi-layer GRU in the encoder is then passed to the decoder for 

caption generation. The video decoder consists of an embedding layer, a multi-layer 

GRU, and a fully connected layer. Caption generation begins with a predefined start 

token at 𝑡 = 0 and continues for a variable length 𝑇. The embedding layer transforms 

each token into a meaningful latent vector containing linguistic features. The latent 

vector is then provided as input to the first GRU layer. The output from this layer is 

then transferred to the following layer.  

This procedure is carried out 𝐾 times, with 𝐾 denoting the total count of GRU layers. 

The output of the multi-layer GRU is then directed into a fully connected layer, which 

calculates the prediction probabilities and generates the subsequent word in the 

caption. The fully connected layer generates the token for the first word (word- 1), 

which will be used in the following step. This word generation procedure continues 

for 𝑇 iterations until the end token is reached. 

All generated tokens are converted into their corresponding words to form a caption. 

To evaluate the impact on captioning performance, we varied the number of GRU 

layers, testing configurations with 1, 2, and 4 layers on both the encoder and the 

decoder sides. 

4.3. Experimental Evaluations 

We chose the MSVD dataset for the evaluation of our proposed video captioning 

approach due to its extensive reference captions. The performance of the video 

captioning approaches is evaluated using several metrics, including BLEU-n (n = 1, 2, 

3, 4), METEOR, ROUGE-L, SPICE, and CIDEr. CIDEr is often used to sort the results 

in image and video captioning tasks due to its better correlation with human judgment 

than BLEU-n, METEOR, SPICE, and ROUGE-L. For our evaluation, we prioritize the 

CIDEr metric to sort results, as it aligns more closely with human judgment compared 

to the other metrics. 
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Table 4.1 Comparison of different 3D-CNN architectures with Inception-v3 

Design # of Layers CIDEr BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE-L METEOR SPICE 

S3D + 

Inception-v3 

1 0.860 0.494 0.588 0.678 0.802 0.712 0.350 0.058 

2 0.863 0.493 0.588 0.685 0.807 0.712 0.350 0.060 

4 0.789 0.492 0.593 0.693 0.814 0.702 0.335 0.064 

R3D + 

Inception-v3 

1 0.770 0.442 0.547 0.618 0.780 0.692 0.330 0.054 

2 0.809 0.453 0.550 0.654 0.784 0.700 0.330 0.055 

4 0.850 0.502 0.585 0.684 0.808 0.711 0.339 0.061 

P3D + 

Inception-v3 

1 0.785 0.462 0.561 0.651 0.774 0.700 0.329 0.054 

2 0.822 0.478 0.576 0.672 0.793 0.708 0.337 0.058 

4 0.808 0.477 0.584 0.684 0.805 0.704 0.330 0.063 

MVIT + 

Inception-v3 

1 0.803 0.458 0.561 0.661 0.786 0.700 0.330 0.055 

2 0.716 0.465 0.562 0.653 0.782 0.699 0.333 0.056 

4 0.820 0.482 0.582 0.680 0.801 0.708 0.333 0.058 

Inception-v3  4 0.715 0.491 0.591 0.692 0.813 0.701 0.334 0.063 

S3D  4 0.788 0.491 0.592 0.691 0.813 0.701 0.335 0.063 

R3D  4 0.513 0.370 0.471 0.574 0.720 0.651 0.288 0.043 

P3D  4 0.230 0.270 0.373 0.488 0.670 0.621 0.240 0.038 

MVIT  4 0.181 0.330 0.490 0.601 0.742 0.611 0.240 0.040 

Table 4.1 comprehensively evaluates various 3D-CNN architectures paired with 

Inception-v3, using CIDEr, BLEU (1-4), ROUGE-L, METEOR, and SPICE metrics. 

The S3D+Inception-v3 Multi-layer GRU with 2 layers demonstrated superior 

performance, yielding a CIDEr score of 0.863, which indicates its enhanced ability to 

generate accurate descriptions of videos aligned with human annotations. Furthermore, 

it showed consistent performance across the BLEU-3, BLEU-2, and BLEU-1 metrics. 

The four-layer S3D+Inception-v3 Multi-layer GRU outperformed in terms of the 

SPICE metric, highlighting its proficiency in evaluating semantic content. Moreover, 

the R3D+Inception-v3 Multi-layer GRU with 4 layers achieved a remarkable BLEU-

4 score of 0.502. 

Table 4.2 benchmarks the proposed S3D with a 2-layer GRU against state-of-the-art 

approaches on the MSVD dataset. Remarkably, the proposed approach achieves the 

highest CIDEr 0.863 and METEOR 0.350 scores, indicating enhanced video 

description quality.  
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Although our approach excels in BLEU-4 0.493, indicating relevant and coherent long 

caption generation, it is outperformed by [70] in the metrics BLEU-1 to BLEU-3. This 

demonstrates that their method generates short captions more accurately. 

Table 4.2 Performance metric comparison of the proposed approach with state-of-

the-art architectures on the MSVD dataset. 

  CIDEr BLEU-4 BLEU-3 BLEU-2 BLEU-1 METEOR 

 [68] - 0.438 0.551 0.663 0.792 0.331 

 [71] 0.635 0.425 - - - 0.324 

 [72] 0.517 0.419 0.526 0.647 0.800 0.296 

 [70] 0.658 0.499 0.604 0.704 0.815 0.326 

 [73] - 0.453 0.554 0.660 0.788 0.310 

Proposed S3D with  
2-layer GRU 

0.863 0.493 0.588 0.685 0.807 0.350 

The results emphasize the advanced semantic caption generation of the proposed 

approach while comparing the competitive domain of video captioning architectures.
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Chapter 5 
5. Knowledge Distillation for Efficient Audio-Visual Video Captioning 

Knowledge Distillation for Efficient 

Audio-Visual Video Captioning 
 

Automatically describing audio-visual content with texts, namely video captioning, 

has received significant attention due to its potential applications across diverse fields. 

Deep neural networks are the dominant methods, offering state-of-the-art 

performance. However, these methods are often undeployable in low-power devices 

like smartphones due to the large size of the model parameters. In this study, we 

propose to exploit simple pooling front-end and down-sampling algorithms with 

knowledge distillation for audio and visual attributes using a reduced number of audio-

visual frames. With the help of knowledge distillation from the teacher model, our 

proposed method greatly reduces the redundant information in audio-visual streams 

without losing critical contexts for caption generation. Extensive experimental 

evaluations on the MSR-VTT dataset demonstrate that our proposed approach 

significantly reduces the inference time by about 80% with a small sacrifice (less than 

0.02%) in captioning accuracy. 

5.1. Introduction 

Audio-visual video captioning aims to generate grammatically and semantically 

meaningful sentences for the content of audio-visual media, driven by applications 

such as video indexing or retrieval and virtual assistants for visually and hearing 

impaired people  [24, 28].  

This task involves several challenges, such as identifying objects and scenes in the 

video frame, extracting audio attributes, and audio-visual fusion to describe the content 

with certain grammatical structures and semantics [25, 74-76].   
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These issues could be addressed with the release of large-scale datasets and advances 

in deep learning, which has led to the development of highly complex networks with 

improved caption generation. However, this can also lead to high computational cost 

due to the increased complexity of the networks and scale of the datasets. One 

approach to overcome this issue is to use efficient audio and visual feature extraction 

networks as they provide faster inference time [77]. These networks can be categorized 

into four classes: namely, model compression [7, 78], knowledge distillation [79-81], 

efficient networks [11, 82], and simple pooling front-ends (SimPFs) [83]. A 

framework that applies passive filter pruning to reduce the number of convolutional 

filters is proposed for a compressed CNN [78].  

Similarly, a low-complexity CNN architecture is presented in [7], by reducing model 

parameters and memory usage. A BERT architecture is proposed as a teacher network 

that provides soft labels to guide a seq2seq network for audio speech recognition [79]. 

In a highway deep neural network, knowledge distillation and teacher-student training 

are leveraged to achieve improved accuracy with a reduced number of parameters [80]. 

PANNs [11], which are trained on AudioSet [84],  can be transferred to audio-related 

tasks such as audio classification and captioning  [85-87]. SimPFs are employed to 

reduce the required number of audio frames by reducing floating point operations on 

a network for efficient audio classification [83].  

For visual feature extraction, knowledge distillation is used in [88] to generate soft 

labels for simpler networks to be deployed on a device with low computing resources. 

Similarly, knowledge distillation with an attention mechanism is used in  [89], which 

groups high-dimensional features into low-dimensional vectors. Furthermore, [90] 

uses all the visual frames in a video to train the teacher network. The student network 

then uses uniformly down-sampled frames and mimics the teacher for efficient video 

classification. 

In this study, we propose an efficient audio-visual captioning method based on the 

teacher-student network, which uses knowledge distillation for audio and visual 

feature extraction with a reduced number of frames, leading to substantially improved 

captioning efficiency. More specifically, the PANNs network [11] is used with SimPF 

[83] for audio feature extraction, while Inception-v3 CNN architecture [91] with 

down-sampling is utilized for visual feature extraction [58]. 
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Figure 5.1 Proposed knowledge distillation based approach for audio-visual video 

captioning 

The language model uses simple stacked GRUs [59] with dropouts [4] and residual 

connections [27, 36]. The student network is first trained and fine-tuned with the cross-

entropy loss. To further improve the captioning accuracy, the representation loss is 

also used along with the cross-entropy loss. The experiments show that knowledge 

distillation can speed up audio-visual feature extraction with a negligible drop in 

captioning accuracy. 

5.2. Proposed Knowledge Distillation based Audio-

Visual Video Captioning Approach 

This section presents the proposed video captioning approach based on the teacher-

student model, as illustrated in Figure 5.1.  

In video captioning, a sequence of words needs to be predicted from a vocabulary 

using audio and visual attributes.  

The teacher network utilizes 𝑁𝑎 audio frames 𝐹𝑎 = (𝐹0
𝑎, 𝐹1

𝑎, … 𝐹𝑁𝑎−1
𝑎 ) and 𝑁𝑣 video 

frames 𝐹𝑣 = (𝐹0
𝑣, 𝐹1

𝑣, … 𝐹𝑁𝑣−1
𝑣 ) of the video V to predict a caption which can be stated 

using a neural network n:  

𝑃(𝒀̂|𝑉} = 𝑛(𝐹𝑎, 𝐹𝑣) (5.1) 
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where 𝑌̂ denotes a series of words as (𝑦0̂, 𝑦1̂, … 𝑦𝑁𝑐̂) and 𝑁𝑐 refers to the number of 

words in the caption. 

We employ Inception-v3 CNN architecture pre-trained on the ImageNet dataset to 

extract features from visual frames. The architecture resizes the images to 

3 × 299 × 299, then the average pooling layer outputs a latent vector consisting of 

2048 units. Similarly, audio features are extracted with PANNs CNN architecture 

containing 10 stacked CNN layers pre-trained on AudioSet. An RNN based network 

that utilizes audio and visual features from the Inception-v3 and PANNs is used as a 

language model to generate captions. We employ a mean operator and acquire latent 

vectors from time-series input, which describe audio and visual features. These latent 

vectors are concatenated and fed to the RNN based network consisting of embedding, 

GRUs, and linear layers. Moreover, residual connections and dropouts are applied 

between layers to maintain gradient flow from the lower to upper layers. The teacher 

network is trained with the cross-entropy loss denoted as ℒ𝒞ℰ .  

The student network is similar to the teacher, where SimPF and down-sampling 

algorithms are employed to reduce the number of audio and visual frames by a 

compression rate in a video. Specifically, we use the spectral pooling method of 

SimPF, which computes the discrete Fourier transform (DFT) of the audio frames 𝐹𝑎 

and then crops the center with a bounding box with the shape of (𝑆, 𝑞𝑁𝑎) where 𝑆 

refers to the dimension of the spectral feature to get 𝐹𝑐𝑟𝑜𝑝
𝑎̃ . 

Then the output of the inverse discrete Fourier transform (IDFT) 𝐹𝑎̂ is taken as the 

compressed audio, as shown below,  

𝐹𝑎̃ = 𝐷𝐹𝑇(𝐹𝑎) 

𝐹𝑐𝑟𝑜𝑝
𝑎̃ = 𝐹𝑎(𝑆, 𝑞𝑁𝑎) 

𝐹𝑎̂ = 𝐼𝐷𝐹𝑇(𝐹𝑐𝑟𝑜𝑝
𝑎̃ ). 

(5.2) 

Down-sampling is performed on 𝐹𝑣 to obtain compressed visual frames 𝐹𝑣̂, 

𝐹𝑣̂ = 𝐹𝑣(𝑚/𝑞), 𝑚 = 0,1,2, … , 𝑁𝑣 − 1 (5.3) 

where 𝑞 denotes the compression rate, ranging from 0 to 1. 
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We extract audio and visual features from compressed frames using PANNs and 

Inception-v3. Then, latent vectors are acquired with a mean operator. We employ 

knowledge distillation from the teacher network to increase the accuracy of caption 

generation. A neural network with two hidden layers is utilized to increase the 

resemblance of latent vectors to the teacher. The network is trained to minimize the 

L1 loss between student and teacher latent vectors. We denote this loss as ℒ𝓇ℯ𝓅 where 

rep refers to representation. We train the teacher network, and then the teacher guides 

the optimization of the parameters of the student network. In this study, we train the 

student-teacher network with the following losses: 

ℒ𝓇ℯ𝓅: The student network is only trained by the ℒ𝓇ℯ𝓅 loss and is learned to mimic the 

audio-visual features of the teacher network. Then, the language model is trained with 

the updated neural network. 

ℒ𝓇ℯ𝓅 + ℒ𝒞ℰ: We employ both ℒ𝓇ℯ𝓅 and ℒ𝒞ℰ losses to minimize the representation loss 

and maximize the captioning accuracy. 

5.3. Experimental Evaluations 

The proposed approach is evaluated on the MSR-VTT dataset [23], which initially 

consists of 10,000 videos, each with 20 ground truth captions. However, by the time 

the experiments are executed, only 5,074 and 2,123 videos are available from the 

training and testing sets, respectively. Several performance metrics are employed to 

measure the accuracy of the video captioning approach, including METEOR, BLEU, 

CIDEr, and ROUGE-L, and SPICE. 

The ranking of the results is based on a final SCORE which is calculated as an average 

of all performance metrics. In calculating the final SCORE, we used the mean of the 

BLEU scores. For the experiments, the visual frames of the videos are resized into the 

shape of 3 × 299 × 299. We utilized tokenization and punctuation removal on the 

ground truth captions of the training set. The latent vector size of the layers in the 

language models is set to 2,576, and the dimension of the linear layer output is equal 

to the vocabulary length. We evaluated the proposed approach with 0.2, 0.4, 0.6, and 

 0.8 compression ratios. The accuracy and time consumption of the teacher and student  
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Table 5.1 Performance metric evaluation results on the MSR-VTT test set 

  BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE-L SPICE SCORE Diff (%) 

Student (q=0.2) 

𝓛𝓻𝓮𝓹 
0.722 0.555 0.422 0.311 0.267 0.236 0.554 0.045 0.321 0.127 

Student (q=0.4) 

𝓛𝓻𝓮𝓹 
0.715 0.546 0.411 0.294 0.223 0.234 0.539 0.043 0.306 0.168 

Student (q=0.6) 

𝓛𝓻𝓮𝓹 
0.709 0.542 0.412 0.300 0.232 0.231 0.543 0.041 0.308 0.163 

Student (q=0.8) 

𝓛𝓻𝓮𝓹 
0.719 0.550 0.413 0.300 0.256 0.235 0.545 0.046 0.315 0.144 

Student (q=0.2) 

𝓛𝓻𝓮𝓹 + 𝓛𝓒𝓔 
0.766 0.613 0.476 0.357 0.375 0.256 0.585 0.054 0.365 0.008 

Student (q=0.4) 

𝓛𝓻𝓮𝓹 + 𝓛𝓒𝓔 
0.774 0.618 0.473 0.348 0.359 0.256 0.582 0.055 0.361 0.019 

Student (q=0.6) 

𝓛𝓻𝓮𝓹 + 𝓛𝓒𝓔 
0.769 0.616 0.478 0.357 0.375 0.258 0.586 0.055 0.366 0.005 

Student (q=0.8) 

𝓛𝓻𝓮𝓹 + 𝓛𝓒𝓔 
0.765 0.614 0.479 0.358 0.366 0.255 0.583 0.054 0.362 0.016 

Teacher 0.760 0.612 0.473 0.352 0.397 0.254 0.583 0.054 0.368 0.000 

networks are measured with the test set of the MSR-VTT dataset under the ℒ𝓇ℯ𝓅, and 

ℒ𝓇ℯ𝓅 + ℒ𝒞ℰ losses. 

In the evaluations, we compressed the frames on the student networks to enable faster 

inference time. The results for the students and teacher networks are given in Table 

5.1, while time consumptions are shown in Table 5.2.   

Using only the ℒ𝓇ℯ𝓅 loss resulted in poor captioning performance in all performance 

metrics regarding the teacher network, as seen in Table 5.1. Notably, among the 

student networks trained with the ℒ𝓇ℯ𝓅 loss, the compression rate of 0.2 has achieved 

the highest final SCORE. However, the combination of the ℒ𝓇ℯ𝓅 and ℒ𝒞ℰ losses in the 

student networks offered an accuracy approaching the level of the teacher model across 

all performance metrics. The captioning accuracy of the student network is increased 

from 0.321 to 0.365  with ℒ𝓇ℯ𝓅 + ℒ𝒞ℰ under the compression rate of 0.2. The 

difference between the accuracy of the teacher and student network dropped from 

0.127% to 0.008%. However, the student network with a 0.4 compression rate 

leveraged the final SCORE from 0.306 to 0.361, which is still lower than that of the 

compression rate at 0.2. We achieved the highest final SCORE at 0.366 using the 

student network with a compression rate of 0.6. This is followed by the compressed 

student network with a compression rate of 0.8, with a final SCORE of 0.362. 
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Table 5.2 Time consumption evaluation results on random 100 videos from the 

MSR-VTT test set 

Network 
average time consumption 

(s) 
Diff (%) 

Student (q=0.2)  2.77 79.1 

Student (q=0.4)  5.65 57.4 

Student (q=0.6)  8.31 37.4 

Student (q=0.8)  11.03  16.9 

Teacher  13.28 0.0 

Furthermore, the student networks with compressed audio and visual frames scored 

higher across some metrics than the teacher. This indicates that student networks can 

generate accurate captions similar to the teacher. In Table 5.1, we present the time 

consumption of feature extraction for both audio and visual frames from randomly 

selected 100 videos from the test set of the MSR-VTT dataset. The compression rate 

0.8 reduces feature extraction time up to 16.9%, while 0.6 compression rate decreases 

the audio-visual feature extraction time by about 37.4%. Similarly, 0.4 and 0.2 have 

reduced the inference time by 57.4% and 79.1%, respectively. Table 5.2 shows that 

the student networks reduce inference time significantly compared to the teacher 

network.
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Chapter 6 
6. Conclusions and Future Research 

 

Conclusions and Future Research 
 

In this thesis, we delved into the dynamic field of image and video captioning, 

exploring various innovative techniques. Our focus was on advanced neural networks, 

attention mechanisms, and efficient down-sampling methods to enhance captioning 

accuracy and speed. This research spanned diverse strategies, contributing 

significantly to the evolution of the field. As we conclude, it is crucial to reflect on our 

key findings and contributions. This final chapter synthesizes our insights, 

highlighting major advancements and their implications for future research. We aim 

to show how our work contributes to the image and video captioning. 

6.1. Multi-layer Gated Recurrent Unit based 

Recurrent Neural Network for Image Captioning 

Encoder-decoder frameworks often encounter difficulties in efficiently extracting and 

utilizing contextual information from encoded data, causing inadequate performance 

in caption generation. To address these issues, in this paper, we have introduced a 

novel image captioning approach utilizing the NASNet-Large CNN encoder and a 

multi-layer GRU based decoder under the init-inject architecture. This modification 

substantially enhances the ability of the decoder to modulate the relevant information 

flow within the unit, thereby addressing the long-standing issue of RNN decoders 

challenged by managing long-term complex dependencies. The outcome is an 

improved decoder capable of producing semantically consistent and contextually 

accurate captions. Experimental results obtained from comprehensive evaluations in 

the MSCOCO dataset validate the effectiveness of our approach. Regarding the 

different CNN based encoders considered in the image captioning system, NASNet-

Large architecture outperforms the other compared architectures in terms of seven 
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performance metrics (i.e., BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L, 

METEOR, and CIDEr). The empirical analysis indicates that multi-layer GRU based 

decoders can yield higher performance compared to single-layer. The performance 

improvements can be achieved as the number of layers increases up to 9 layers. 

However, there is a subtle trend of a decrease with 12 and 15 layers. This system was 

developed to respond to significant challenges in the image captioning field, 

particularly in generating semantically consistent and grammatically accurate 

captions. Our future work will focus on the implementation of attention mechanisms 

to enhance caption generation by prioritizing key parts of the input image. 

6.2. Leveraging Pre-trained 3D-CNNs for Video 

Captioning 

In this study, a video captioning approach has been developed under the encoder-

decoder based sequence-to-sequence approach. Different 2D and 3D-CNN 

architectures were used to extract the features of the video frames, and a multi-layer 

GRU was used to process the features and generate the video caption. The evaluations 

in the MSVD dataset show that the proposed approach improves the accuracy of 3D-

CNN architectures in generating meaningful captions. We plan to explore ensembles 

of 3D-CNN architectures in our future study. Additionally, an evaluation of the feature 

extraction and representation capabilities of these architectures will be conducted to 

provide insights into their strengths and weaknesses. 

6.3. Knowledge Distillation for Efficient Audio-

Visual Video Captioning 

In this chapter, we have presented a simple pooling front-end and down-sampling 

method to reduce the number of audio and visual frames in a video for video 

captioning. Furthermore, we have proposed a teacher-student based-network to 

leverage the accuracy of caption generation with knowledge distillation. We used ℒ𝓇ℯ𝓅 

representation and ℒ𝒞ℰ cross-entropy loss for network training. The proposed approach 

is evaluated on the MSR-VTT dataset. Experimental results show that the proposed 
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approach significantly reduces the inference time with a negligible drop in captioning 

accuracy. 

6.4. Future Research 

Integration of Transformers: Given the advancements in neural network architectures, 

the integration of transformer models in both image and video captioning presents a 

promising avenue. Transformers, known for their effectiveness in handling sequential 

data and capturing long-range dependencies, could significantly elevate captioning 

accuracy. Future research could focus on customizing transformer architectures to 

better suit the specific nuances of image and video data, potentially enhancing the 

semantic and contextual understanding in caption generation. 

Neural Architecture Search (NAS): The application of NAS could be a pivotal step in 

optimizing the neural network architectures used in captioning tasks. NAS automates 

the process of architectural engineering, potentially discovering novel and more 

efficient network structures that outperform manually designed models. Implementing 

NAS could lead to the development of optimized models for both image and video 

captioning, providing a balance between computational efficiency and captioning 

accuracy. 

Advanced Attention Mechanisms: Building upon the success of attention mechanisms 

like Bahdanau and Transformer based attentions, future research can delve into more 

advanced attention models. These could include multi-head attention or spatial-

temporal attention mechanisms, particularly for video captioning, to better capture the 

dynamics and intricacies of video data. 

Multimodal Learning: Exploring multimodal learning strategies, especially in the 

context of video captioning, can enhance the system's ability to understand and 

integrate different types of data (e.g., audio, visual, and textual). This approach can 

lead to a more comprehensive and accurate representation of the content, improving 

the quality of generated captions. 

 



48 

 

Knowledge Distillation and Transfer Learning: Further research into knowledge 

distillation and transfer learning can be beneficial. This includes exploring how 

efficiently knowledge can be transferred from complex models (teachers) to simpler, 

more efficient models (students) without significant loss in performance, and how 

these methods can be adapted to different types of captioning tasks. 

Exploration of Loss Functions: Investigating the impact of various loss functions on 

the performance of captioning models can provide insights into more effective training 

strategies. This includes experimenting with different combinations of loss functions 

like cross-entropy, representation loss, and others, to fine-tune the balance between the 

accuracy of captions and the computational efficiency of the models. 

Real-world Application and Deployment: Practical application and deployment of 

developed models, especially in assistive technologies for the visually impaired, is a 

crucial area for future research. This includes refining the models for real-world 

scenarios, ensuring they are robust, user-friendly, and adaptable to various 

environments and user needs. 

In summary, the future research of this thesis will be geared towards leveraging 

advanced neural network architectures and techniques to further enhance the accuracy 

and efficiency of captioning systems. The integration of these cutting-edge 

technologies holds the promise of developing more sophisticated, accurate, and user-

friendly captioning tools for a wide array of applications. 
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