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Artificial Intelligence Based Android Assistant for

Colorimetric Detection

Abstract

A colorimetric analysis is a technique that measures the properties of the substance
using color changes in chemical or biochemical analysis. It is vital in analysing
biological, medical, and environmental samples in many fields, such as the food,
medicine, cosmetics, and paint industries. Colorimetric analysis requires correct
measurement and calibration techniques to obtain accurate results. Therefore, artificial
intelligence (Al) and smartphone technology have been widely used in developing
biological sensors in chemistry and biomedicine in recent years. Images obtained using
a smartphone camera are processed with Al techniques, resulting in highly accurate
results. This thesis discusses Al approaches and smartphone-based on-site colorimetric
analyses in three different subjects: hydrogen peroxide (H.O2) detection, lactate
detection in sweat, and food spoilage detection, respectively. First, the iodide-mediated
3,3',5,5'-tetramethylbenzidine (TMB)-H202 reaction system was applied to a
microfluidic paper-based analytical device (uPAD) for the non-enzymatic
colorimetric determination of H2O,. The proposed system is portable and includes a
uPAD and a machine learning (ML)-based smartphone app. The colorimetric change
in detection was achieved without using any enzymes or nanoparticles with catalytic
properties, resulting in a low-cost and stable system. A smartphone application named
“Hi-perox Sens” with image capture, cropping, and processing features has been
developed to make the system simple and user-friendly. Briefly, circular uPADs were
designed and tested with varying concentrations of H.O,. After the color change,

images of the uPADs were taken with four smartphones under seven lighting



conditions. To make the system more robust and adaptable to lighting variations and
camera optics, images were first processed for feature extraction and then used to train
ML classifiers. According to TMB+KI, it showed the highest classification accuracy
(97.8%) with inter-phone reproducibility at t=30 s under illumination and maintained
its accuracy for 10 minutes. Second, a uPAD was combined with a deep learning (DL)
based smartphone app called “DeepLactate” and then applied for quantitative and
selective determination of lactate concentration in sweat. Images of uPADs taken with
smartphones of various brands in different lighting conditions were used to train DL
models to make the system more robust and adaptable to lighting changes. The highest-
performing model, Inception-v3, was later built into a smartphone app, making it easy
to use for non-expert users. Unlike ML classifiers, DL models can automatically
extract features and are embedded in a smartphone app, allowing analysis without
internet access. According to the results, the current system showed 99.9%
classification accuracy with phone-independent repeatability and less than 1 second
processing time. Finally, uPAD was converted into a patch to determine sweat lactate
levels in two volunteers after rest and 15 minutes of jogging. The system detected
lactate in human sweat and confirmed that the lactate level in sweat increased after
running. Third, real-time and on-site food spoilage monitoring is still challenging to
prevent food poisoning. At the beginning of food spoilage, microbial and enzymatic
activities lead to the formation of volatile amines. Monitoring these amines by
conventional methods requires complex, costly, labor-intensive, and time-consuming
analyses. An anthocyanin-rich red cabbage extract (ARCE)-based colorimetric
detection system was developed by incorporating embedded ML into a smartphone
app for real-time food spoilage monitoring. FG-UV-CD100 films were first produced
by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light.
The colorimetric responses of FG-UV-CD100 films to ammonia vapor were captured
in different light sources with smartphones of various brands. A comprehensive dataset
was created to train ML classifiers that are robust and adaptable to environmental
conditions with 98.8% classification accuracy. Meanwhile, the ML classifier was
integrated into our specially designed Android application “SmartFood++ ", allowing
analysis in about 0.1 seconds without internet access, unlike its counterpart using cloud

operation over the internet. The proposed system was also tested on a real fish sample



with 99.6% accuracy, demonstrating its great advantage as a powerful tool for on-site,
real-time monitoring of food spoilage by non-specialized personnel.

Keywords: Artificial intelligence, colorimetric analysis, deep learning,
machine learning, Android, smartphone.



Kolorimetrik Tespit i¢in Yapay Zeka Tabanlt Android

Asistani

Oz

Kolorimetrik analiz, kimyasal veya biyokimyasal analizde maddenin 6zelliklerinin
renk degigsimleri kullanilarak 6l¢iilmesini saglayan bir tekniktir. Gida, ilag, kozmetik
ve boya endiistrileri gibi bircok farkli alanda biyolojik, tibbi ve ¢evresel numunelerin
analizinde hayati 6nem tagimaktadir. Kolorimetrik analiz, dogru sonuglar elde etmek
icin dogru Ol¢iim ve kalibrasyon teknikleri gerektirir. Bu nedenle son yillarda kimya
ve biyotipta biyolojik sensorlerin gelistirilmesinde yapay zeka ve akilli telefon
teknolojisi yaygin olarak kullanilmaktadir. Akilli telefon kamerasi kullanilarak elde
edilen goriintiiler, yapay zeka teknikleriyle islenerek yiiksek dogrulukta sonuglar elde
ediliyor. Bu tezde yapay zeka yaklasimlart ve akilli telefon tabanli yerinde
kolorimetrik analizler sirastyla hidrojen peroksit (H20>) tespiti, terde laktat tespiti ve
gida bozulma tespiti olmak iizere ii¢ farkli konuda ele alinmaktadir. Ilk olarak, iyodiir
aracili 3,3',5,5'-tetrametilbenzidin (TMB)-H20- reaksiyon sistemi, enzimatik olmayan
kolorimetrik H20: belirleme i¢in bir mikroakiskan kagit bazli analitik cihaza (uPAD)
uygulanilmistir. Onerilen sistem tagmabilirdir ve bir tPAD ve makine 6grenimi tabanli
bir akilli telefon uygulamasi igermektedir. Tespitteki kolorimetrik degisim, katalitik
ozelliklere sahip herhangi bir enzim veya nanoparcacik kullanilmadan elde edilmistir,
bu da diisiik maliyetli ve kararli bir sistemle sonuglanmistir. Sistemin basit ve kullanici
dostu olmasi icin “Hi-perox Sens” isimli goriintii yakalama, kirpma ve isleme
ozelliklerine sahip bir akilli telefon uygulamasi gelistirilmistir. Kisaca, dairesel
uPAD'ler tasarlanmis ve degisen konsantrasyonlarda H2O; ile test edilmistir. Renk

degisiminden sonra yedi aydinlatma kosulunda dort akilli telefon ile pPAD'lerin
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goriintiileri alinmistir. Sistemi daha saglam ve aydinlatma varyasyonlarina ve kamera
optiklerine uyarlanabilir hale getirmek icin goriintiiler once Ozellik ¢ikarimi igin
islendi ve ardindan makine 6grenimi siniflandiricilarini e8itmek ic¢in kullanilmastir.
TMB+Kl'ye gore aydinlatma altinda t=30 s'de telefonlar arasi tekrarlanabilirlik ile en
yiiksek siniflandirma dogrulugunu (%97,8) gostermis ve dogrulugunu 10 dakika
korumustur. ikinci olarak, bir uPAD, “DeeplLactate” adli derin 6grenme tabanli bir
akilli  telefon wuygulamasiyla birlestirilmekte ve ardindan terdeki laktat
konsantrasyonunun kantitatif ve secici olarak belirlenmesi i¢in uygulanmistir. Farkli
aydinlatma kosullarinda ¢esitli markalarin akilli telefonlartyla ¢ekilen pPAD'lerin
goriintiileri, sistemi daha saglam ve aydinlatma degisikliklerine uyarlanabilir hale
getirmek i¢in derin O6grenme modellerini egitmek i¢in kullanildi. En yiiksek
performansli model olan Inception-v3, daha sonra bir akilli telefon uygulamasina
yerlestirildi ve uzman olmayan kullanicilar i¢in kullanimi kolaylastirdi. Makine
ogrenimi siniflandiricilarindan farkli olarak, derin 6grenme modelleri 6zellikleri
otomatik olarak cikarabilir ve bir akilli telefon uygulamasina gémiilii olarak internet
erisimi olmadan analiz yapilmasina olanak tanimaktadir. Elde edilen sonuglara gore,
mevcut sistem telefondan bagimsiz tekrarlanabilirlik ve 1 saniyeden kisa islem siiresi
ile %99.9 siniflandirma dogrulugu gostermistir. Son olarak, iki goniilliide dinlenme ve
15 dakikalik kosu sonrasinda ter laktat diizeylerini belirlemek i¢in puPAD bir yamaya
dontstiriilmektedir. Sistem insan terinde laktat tespit etti ve kosu sonrasinda terdeki
laktat seviyesinin arttigmni dogruladi. Ugiinciisii, gida zehirlenmesini 6nlemek igin
gercek zamanl ve yerinde gida bozulma izlemesi hala zordur. Gida bozulmalarinin
basinda mikrobiyal ve enzimatik faaliyetler ugucu aminlerin olusumuna yol
acmaktadir. Bu aminlerin geleneksel yontemlerle izlenmesi, karmasik, maliyetli, emek
yogun ve zaman alic1 analizler gerektirir. Antosiyanin agisindan zengin kirmizi lahana
0zii tabanl bir kolorimetrik algilama sistemi, ger¢cek zamanlh gida bozulma izlemesi
icin bir akilli telefon uygulamasina gomiili makine Ogrenimi dahil edilerek
gelistirilmistir. FG-UV-CD100 filmleri ilk olarak ARCE katkili balik jelatininin
karbon noktalarla UV 15181 altinda ¢apraz baglanmasiyla iiretildi. FG-UV-CD100
filmlerinin amonyak buharina verdigi kolorimetrik tepkiler, c¢esitli markalarin akilh
telefonlariyla farkl 151k kaynaklarinda yakalanmaktadir. Saglam ve ¢evre kosullarina
%98.8 siniflandirma dogrulugu ile uyarlanabilen makine 6grenimi siniflandiricilarini

egitmek icin kapsamli bir veri seti olusturuldu. Bu arada, makine Ogrenimi
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smiflandiricisi, 6zel olarak tasarlanmis Android uygulamamiz “SmartFood++" ile
entegre edilerek, internet iizerinden bulut isletimi kullanan benzerinden farkl olarak,
internet erisimi olmadan yaklasik 0,1 saniyede analiz yapilmasina olanak
saglamaktadir. Onerilen sistem ayn1 zamanda gercek bir balik numunesi iizerinde
%99.6 dogrulukla test edildi ve uzman olmayan personel tarafindan gida
bozulmalarmin yerinde, ger¢ek zamanl izlenmesi i¢in giiclii bir ara¢ olarak biiyiik

avantajin1 gostermektedir.

Anahtar Kelimeler: Yapay zeka, kolorimetrik analiz, derin 6grenme, makine

0grenmesi, Android, akilli telefon.
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Chapter 1

Introduction

This introductory chapter first presents colorimetric analysis and motivation of this
thesis in Section 1.1. Then, Section 1.2 specifies our contributions of the work. Finally,

the outline of the thesis is given in Section 1.3.

1.1 Colorimetric Analysis and Motivation

Colorimetric analysis is a quantitative analytical method that measures the
concentration of a substance in a sample based on its color change. It relies on the
principle that a substance will interact with a specific reagent to produce a measurable
color change [1]. The colorimetric analysis is commonly used in various fields, such
as chemistry [2], biochemistry [3], environmental science [4], food science [5], and
medical diagnostics [6]. In colorimetric analysis, a sample is mixed with a reagent,
which causes a chemical reaction to occur, leading to a color change. The intensity of
the color change is proportional to the concentration of the analyte in the sample. The
color change is measured using a colorimeter or a spectrophotometer, which
determines the intensity of light absorbed by the sample. Colorimetric analysis can
detect various analytes, including proteins [7], enzymes [8], sugars [9], metals [10],
and organic compounds [11]. It is a simple and relatively inexpensive method
compared to other analytical techniques. Colorimetric analysis is widely used in
various industries for quality control and to monitor contaminants in the environment,
food, and water. It is also used in medical diagnostics to detect diseases and monitor

treatment progress.

Colorimetric analysis detection methods are techniques used to detect the presence or
concentration of a substance in a sample based on color changes [12]. These methods



rely on the ability of a substance to interact with a reagent and produce a detectable

color change. Some common colorimetric detection methods include:

Enzyme-linked Immunosorbent Assay (ELISA): This method is commonly
used in medical and biological research to detect the presence of specific
antigens or antibodies in a sample. ELISA uses a specific antibody linked to an
enzyme, producing a detectable color change when interacting with the target
antigen [13].

Lateral Flow Immunoassay (LFA): This is a rapid and simple detection
method commonly used in point-of-care testing. It relies on the movement of
a fluid along a nitrocellulose membrane that contains a specific antibody. When
the target analyte in the sample binds to the antibody, a visible color change is
produced [14].

Colorimetric Paper-based Assay: A colorimetric paper-based assay is a type
of colorimetric analysis that uses paper as a substrate for detecting the presence
or concentration of a target substance in a sample [15]. The paper is
functionalized with specific ligands or receptors that bind to the target
substance, causing a color change. The color change can then be visually
observed or analyzed using colorimetric techniques, such as spectroscopy or
image analysis. Colorimetric paper-based assays have several advantages over
traditional assays. They are low-cost, portable, and require minimal sample
preparation, making them ideal for use in resource-limited settings or the field.
They also have the potential for high sensitivity and specificity, making them
suitable for various applications, including medical diagnostics, environmental
monitoring, and food safety. Colorimetric paper-based assays have been used
in various applications, including the detection of infectious diseases, such as
hydrogen peroxide [16], lactate in sweat [17], and environmental
contaminants, such as heavy metals [18] and pesticides [19]. They are a
promising avenue for developing low-cost, portable, and easy-to-use assays
that can be used in various settings.

Colorimetric Films: Colorimetric films are a type of film that can be used in
colorimetric analysis as a substrate for colorimetric assays [20]. In colorimetric
analysis, a color change is used to detect the presence or concentration of a

target substance in a sample. The colorimetric film can be functionalized with
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specific ligands or receptors that bind to the target substance, causing a color
change in the film. The color change in the colorimetric film can then be
analyzed using colorimetric analysis techniques, such as spectroscopy or image
analysis, to determine the concentration of the target substance in the sample.
The colorimetric film can be optimized to ensure maximum sensitivity and
accuracy by adjusting the film thickness, porosity, and functionalization
method [21]. Colorimetric films have several advantages in colorimetric
analysis [22]. They can be fabricated into films of different shapes and sizes,
making them suitable for various applications. They can also be made from
various materials, including natural polymers like gelatin or chitosan or
synthetic polymers such as polyethylene or polystyrene, allowing for a wide
range of options regarding film properties, such as mechanical strength,
chemical stability, and biocompatibility. Fish Gelatin-UV-Carbon Dots-100
(FG-UV-CD100) films are a type of fish gelatin-based film that has been
modified to enhance its mechanical and thermal properties. They have been
specifically designed for use in food packaging applications, where their high
strength and barrier properties make them ideal for protecting food products
from contamination and deterioration [23].

Colorimetric analysis is closely related to color spaces, mathematical models that
describe colors based on their physical attributes. Color spaces provide a standardized
way of representing colors, allowing accurate color reproduction and comparison

across different devices and media [24].

In colorimetric analysis, the color of a substance or solution is typically measured
using a colorimeter or spectrophotometer, which detects the intensity of light absorbed
or transmitted by the sample at different wavelengths. These measurements are then
used to determine the concentration of the substance in the sample based on the known
relationship between the color and the concentration.

Color spaces are often used to define the colors that are measured in colorimetric
analysis. Some commonly used color spaces include RGB (Red, Green, Blue), CMYK
(Cyan, Magenta, Yellow, Black), and CIELAB (L*, a*, b*), which is based on the

perception of color by the human eye. These color spaces provide a standardized way



of describing and measuring colors, which allows for accurate color reproduction and

comparison.

In colorimetric analysis, various color spaces are used to describe and quantify the
colors produced by a sample. Some of the commonly used color spaces in colorimetric

analysis include:

e RGB: RGB is an additive color space that describes colors produced by digital
displays such as monitors and televisions. It defines colors based on the red,
green, and blue light required to produce a given color [25].

¢ CMYK (Cyan, Magenta, Yellow, Key or Black): CMYK is a subtractive
color space used in printing. It defines colors based on the cyan, magenta,
yellow, and black ink required to produce a given color [26].

e Lab (Lightness, a, b): Lab is a device-independent color space used in
colorimetric analysis to quantify color differences. It defines colors based on
their lightness, or L value, as well as their red-green (a) and blue-yellow (b)
color components [27].

e CIE Lab*: CIE Lab* is a color space defined by the International Commission
on lllumination (CIE) that is widely used in colorimetric analysis. It is similar
to the Lab color space but is based on a standard observer model designed to

match the human visual system [28].

These color spaces are used in colorimetric analysis to quantify and compare colors,
and to calculate color differences and colorimetric parameters such as hue, saturation,
and brightness. The choice of color space depends on the specific application and the
characteristics of the sample being analyzed. In summary, colorimetric analysis and
color spaces are closely related, as color spaces are often used to define and measure
the colors that are analyzed in colorimetric analysis. Using standardized color spaces
allows for accurate and consistent color measurements across different devices and

media, essential in many fields, including graphic design, printing, and photography.

A calibration curve is a graphical representation of the relationship between the
concentration of a substance and the corresponding signal intensity produced by a
colorimetric analysis method [29]. The calibration curve is constructed by analyzing a
series of standards with known concentrations of the target substance and plotting the



resulting signal intensities against the known concentrations. This relationship can
then be used to determine the concentration of the substance in an unknown sample by
measuring its signal intensity and comparing it to the calibration curve. In colorimetric
analysis, a calibration curve is often used to determine the concentration of a particular
substance in a sample [30]. The advantage of a calibration curve is that it provides a
quantitative measure of the concentration of the substance in the sample, which is

essential for accurate and reliable analysis [31].

The calibration curve also allows for the determination of the limit of detection (LOD)
and limit of quantification of the colorimetric analysis method. These limits represent
the minimum concentration of the substance that can be reliably detected and
quantified using the method. The calibration curve also allows for the determination
of the accuracy and precision of the colorimetric analysis method, which is essential

for ensuring the reliability and reproducibility of the results.

A few potential disadvantages of the calibration curve in colorimetric analysis should
be considered [32]. One disadvantage is that the calibration curve is specific to the
method used for the colorimetric analysis. Any changes in the experimental conditions,
such as temperature, pH, or reaction time, may affect the shape and position of the
calibration curve and, therefore, require constructing a new calibration curve. In
addition, the accuracy and precision of the colorimetric analysis method may be
affected by factors such as interference from other substances in the sample matrix or
instrument variability [33]. These factors can lead to inaccuracies in the calibration
curve and affect the accuracy of the results obtained. Finally, the construction of a
calibration curve assumes that the relationship between the concentration of the target
substance and the measured signal intensity is linear over the entire range of
concentrations being analyzed. However, in some cases, this relationship may not be

linear, which can affect the accuracy of the analysis.

Due to these limitations, unlike the calibration curve, Al remains an essential tool in
colorimetric analysis as it allows accurate and reliable measurement of the
concentration of a substance in a sample and provides information about the
sensitivity, accuracy, and precision of the analysis method [34]. With Al, colorimetric

analysis can be used for data analysis and processing. For example, Al algorithms can



be trained to recognize patterns in colorimetric data and use this information to identify
or quantify the presence of a particular substance in a sample.

Furthermore, Al algorithms (ML & DL) can optimize and automate colorimetric
analysis processes, increasing the speed and accuracy of data analysis, reducing the
time and cost associated with manual data analysis, and enabling faster and more
reliable results. Al has several advantages in colorimetric analysis [35]:

e Increased Accuracy: Al algorithms can analyze large amounts of colorimetric
data with high accuracy, reducing the chance of human error and increasing
the reliability of the results.

e Speed: Al algorithms can process colorimetric data much faster than humans,
enabling faster analysis and decision-making.

e Automation: Al algorithms can automate many aspects of colorimetric
analysis, reducing the need for manual labor and making the process more
efficient.

e Optimization: Al algorithms can optimize colorimetric analysis processes by
identifying patterns and trends in the data that may not be immediately apparent
to humans, which can help improve the accuracy and efficiency of the analysis.

e Detection of Complex Patterns: Al algorithms can detect complex patterns
in colorimetric data that may be difficult or impossible for humans to detect,
which can help to identify subtle changes in colorimetric data that may indicate
the presence of a particular substance or condition.

e Integration: Al algorithms can be integrated with other technologies, such as
robotics or laboratory information management systems (LIMS), to create a
fully automated and integrated colorimetric analysis system.

Al has the potential to significantly improve the accuracy, speed, and efficiency of
colorimetric analysis, making it a valuable tool in a wide range of applications,
including food spoilage detection [36], medical diagnostics [37], environmental
monitoring [38], and materials science [39].

Smartphones have become increasingly popular in scientific research due to their
portability, affordability, and high-quality imaging capabilities. Several recent studies
have explored using Android-based smartphones for colorimetric analysis [16, 17].



One way to use an Android-based smartphone in colorimetric analysis is to use its
camera as a colorimeter, which involves capturing an image of the sample and then
analyzing the RGB values of the image to determine the color change caused by the
reaction. There are several advantages of using an Android-based smartphone as a

colorimeter [40]:

e Low-cost: Compared to traditional colorimeters, smartphones are much more
affordable, making them accessible to a wider range of researchers and
students.

e Portability: Smartphones are compact and portable, allowing for field-based
colorimetric analysis.

e High-quality imaging: Smartphone cameras have advanced significantly in
recent years, allowing for capturing high-quality images.

e [Easy to use: Most people are familiar with smartphones, making them an
intuitive and user-friendly tool for colorimetric analysis.

e Integration with apps: Several apps have been developed for Android-based
smartphones that enable colorimetric analysis. These apps can simplify the
process of capturing and analyzing images and can also provide data

management and analysis tools.

Overall, using Android-based smartphones in the colorimetric analysis is a promising
field, offering many advantages over traditional colorimeters. However, there are still
some limitations to be addressed, such as the need for calibration and validation of the
smartphone camera and the potential for variability in lighting conditions that may
affect the accuracy of the analysis [40].

In addition, Android-based smartphones can be used for both online and offline
colorimetric analysis. In online colorimetric analysis, the smartphone is connected to
the internet, and data is transmitted in real-time to a server for analysis, which can be
useful for applications that require immediate feedback or monitoring, such as
environmental monitoring or medical diagnostics. The application transmits the data
to a server for analysis and feedback. The server may perform additional analysis, such
as pattern recognition or ML, to provide more detailed information about the sample
[41]. On the other hand, offline colorimetric analysis involves analyzing colorimetric

data directly on the smartphone without an internet connection, which can be helpful
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when a network connection is unavailable, such as in remote locations or the field. The
application stores the data locally on the smartphone and performs the analysis without
an internet connection [17]. The results can be displayed on the smartphone screen or
exported for further analysis. In summary, Android-based smartphones can be helpful
for online and offline colorimetric analysis, providing a portable, affordable, and

convenient solution for many applications.

In this thesis, it was first aimed to improve the accuracy of different Al models related
to the determination of concentration values in colorimetric analysis studies. Then,
Android-based smartphones were used so that the user could view the results quickly.
Therefore, a colorimetric analysis study was carried out to determine concentration
levels in three areas: hydrogen peroxide detection, lactate detection in sweat, and food
spoilage detection, respectively. In the first study, after the concentration levels of
hydrogen peroxide are determined using ML classifiers, the results are sent online to
the Android-based Hi-perox Sens application with the help of a Firebase remote server.
In the second study, colorimetric lactate analysis concentration levels in sweat were
determined, and DL classifiers were embedded in the Android-based application
DeepLactate after training. This application can work offline without a remote server
and internet. Thus, results were obtained faster and on-site. In the third study, ML
classifiers were trained while determining concentration levels in food spoilage
detection. The Random Forest (RF), which had the highest accuracy among all
classifiers, was embedded into our custom-designed Android application
SmartFood++. Unlike other Android applications that require internet access for data
transfer to the remote server running the ML classifier, SmartFood++ includes an

embedded ML classifier that can complete analysis in around 0.06 seconds.

1.2 Contributions

(1) Firstly, non-enzymatic uPADs coupled with a ML-based smartphone app were
developed for high-sensitive and selective determination of H2O: in transparent liquids
such as water. First, circular patterns were printed on filter paper using a solid ink
(wax) printer, and then the patterns were processed at high temperatures to obtain
hydrophobic boundaries of the uPADs. The use of single or multiple indicators has
been reported for the colorimetric detection of H203, such as 3,3'-diaminobenzidine,
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3,3',5,5'-tetramethylbenzidine (TMB), and potassium iodide (KI). The uPADs were
prepared for testing by adding only two indicators, TMB and KI, to the detection zones
for color change in the presence of different concentrations of H.O2. No enzyme or
nanoparticle with catalytic properties was used to detect, making the system cost-
efficient and chemically/thermally stable. The performance of the system was
compared with those of using Kl only and TMB only. An ML-based smartphone app
with a simple interface was developed to make the process more user-friendly, robust,
and adaptive against illumination variation and camera optics. ML classifiers were
trained using features extracted from images taken under seven different illumination
conditions. The trained classifiers were then integrated into the Hi-perox Sens app to
be presented to the user. The results clearly showed that the proposed system has a

high potential for practical use.

(2) Secondly, a DL approach has been adopted to determine lactate concentration
quantitatively and selectively in sweat. First, a uPAD capable of fluid absorption was
designed and printed on filter paper using a wax printer, and then the patterns were
turned into hydrophobic barriers at high temperatures. The detection area of the uPAD
was modified with 3,3',5,5'-TMB, horse radish peroxidase (HRP), and lactate oxidase
(LOx) for enzymatic colorimetric detection of lactate. The performance of the sensor
was tested in artificial sweat containing lactate at different concentrations. To improve
the robustness of the system and its adaptability to illumination variation and camera
optics, images captured by smartphones of different brands in various lighting
conditions were used to train several DL models. The top-performing model,
Inception-v3, was embedded into an Android-based smartphone app (DeepLactate)
with a user-friendly interface for offline detection of lactate in sweat. To the best of
our knowledge, this is the first study to apply a DL model for colorimetric analysis of
chemical species. The system was also tested on volunteers with a patch in which the
uPAD was sandwiched between a plaster and transparent tape. The results showed
that the current approach has a high potential for practical use, especially in sports

medicine.

(3) Thirdly, ML was embedded in a smartphone application for colorimetric analysis
of food freshness with our developed colorimetric fish gelation films, FG-UV-CD100,

based on red cabbage anthocyanins and the carbon dot. The color response of FG-UV-



CD100 against nine different volatile ammonia concentrations was collected with
smartphone cameras to detect the concentration using an ML classifier. In this regard,
the classifiers were trained separately for the color response of FG-UV-CD100 film to
each ammonia concentration, with a relevant dataset containing color features
extracted from the captured images. The dataset was collected with four smartphones
in seven illumination conditions and three pose angles to ensure robustness against
camera optics and ambient light conditions. The RF, which had the highest accuracy
among all classifiers, was embedded into our custom-designed Android application
SmartFood++. Unlike other Android applications that require internet access for data
transfer to the remote server running the ML classifier, SmartFood++ includes an
embedded ML classifier that can complete analysis in around 0.06 seconds. To the best
of our knowledge, this is the first study that embeds an ML classifier into a smartphone
application and links with FG films, enabling colorimetric food freshness monitoring
for rapid and portable on-site surveillance. The proposed system was also tested in a
real sample (e.g., fish), in which the results prove that it has great potential for food

spoilage monitoring in resource-limited settings.

1.3 Outline of the Thesis

The thesis is organized as follows: The methods used in the related work are
introduced in Chapter 2. Feature extraction, feature selection, Al, software
programs, and performance metrics used throughout the thesis are described in
detail. Chapter 3 presents our proposed non-enzymatic colorimetric detection
of hydrogen peroxide using a uPAD coupled with an ML-based smartphone
application algorithm. Chapter 4 introduces a smartphone-embedded DL
approach for highly accurate and automated colorimetric lactate analysis in sweat.
In Chapter 5, on-site food spoilage monitoring with smartphone embedded ML
and colorimetric gelatin films is presented. Chapter 6 concludes the thesis with

conclusions and recommendations for future work.
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Chapter 2

Methods

This chapter first introduces the feature extraction and selection from datasets in
Section 2.1 and Section 2.2. Then, Section 2.3 presents algorithms of Al, such as ML
and DL. In Section 2.4, Software programs, including MATLAB, Python, Java,
WEKA, Firebase, and Android Studio, used throughout this thesis, are discussed in
detail. Finally, several performance metrics proposed in the literature to measure the

performance of Al algorithms are discussed in Section 2.5.

2.1 Feature Extraction

Feature extraction is the process of extracting more minor processed data from
raw data [42]. This process can be considered a data compression process that
removes unnecessary information by hiding essential information from raw data.
Feature extraction plays a vital role in the pattern recognition problem. Therefore, the
performance of the classifier largely depends on the quality of the feature vectors. This

thesis uses color and texture features for feature extraction from raw image data.

2.1.1 Color Features

The color feature in the low-level set of attributes is one of the most common attributes
to describe an image [43]. The color map of the image can be obtained with the color
histograms of the image. Color is a potent property, especially for reflecting the
general characteristics of an image and identifying objects within it. Before using the
color features, the number of colors in the image should be converted to the other color
spaces. In image processing, many color space models exist, such as RGB, Lab, HSV,
YUV, and HLS [44].

11



Many color spaces are used for many applications, such as image processing [45],
computer vision [46], and computer graphics [47]. The virtual color space in the
RGB is represented as a combination of three primary colors, R, G, and B. Each
pixel in the image consists of three-color channels known as RGB components.
It is possible to convert the RGB color space to different color spaces according
to the needs of the application. The RGB color space is converted to the HSV
color space to obtain the channel (V) containing the luminance information and
the other two channels (H and S) containing the color information. The HSV
color space describes colors like the tendency of the human eye to perceive color.
HSV color space, like the mechanism of human vision and consists of hue,
saturation, and brightness color channels, differs from RGB color space in that
it separates image intensity from color information. This feature provides an
advantage with its resistance to light changes. In the HSV color space, hue
distinguishes colors, saturation refers to the percentage of white added to the
pure color, and brightness refers to the perceived light intensity. The brightness
of the image changes with illumination; however, hue and saturation, channels
containing color information, are either insensitive or less sensitive to the change
in illumination. These features use the HSV color space for color analysis, color-

based detection, and segmentation [48].

To analyze the effect of color spaces in determining the concentration level,
images in RGB color space were converted to HSV and L*a*b* color spaces.
Unlike the RGB color space, L*a*b* color space is designed as a device-
independent color model that will be close to the perception of the human eye.
Defining all the colors the human eye perceives enables the measurement of
color differences that can be expressed in terms of human visual perception. L*,
a*, and b* are the three coordinates of this color space and represent lightness.
The mean, standard deviation, skewness, and kurtosis, which are first, secondary,

third, and fourth-order color moments, are explained below, respectively.

2.1.1.1 Mean

The mean, u, the first color moment, gives the average color value of the image
(Equation (2.1)) [49].
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Here, p and q are the pixel values in the i row j column at image pixel;j.
2.1.1.2 Standard Deviation

Standard deviation measures how spread out the values in a dataset are from the
mean [50]. In image processing, the standard deviation can measure the amount of
variation or noise in an image. To calculate the standard deviation of an image,
you first need to calculate the mean value of the pixel intensities. This can be done
by summing up all the pixel values in the image and dividing them by the total

number of pixels.

Once you have the mean value, you can calculate the standard deviation by taking
the square root of the average of the squared differences between each pixel
intensity and the mean. This formula (Equation (2.2)) can be expressed
mathematically as:

p
211
Standard Deviation (o) = EZ Z(plxelij — W? (2.2)

i=1j=1
2.1.1.3 Skewness

Skewness is a measure of asymmetry in distribution [51]. The dataset is
symmetrical if the left and right sides of the center point are the same. If the
skewness is positive (skewed to the right), the data is spread to the left of the
mean. If the skewness is negative (skewed to the left), the data will apply to the
right of the mean. To extract information from the image, darker and brighter
surfaces tend to have positive skewness compared to lighter and matte surfaces.
Skewness gives information about the color distribution, which is defined in
Equation (2.3),
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2.1.1.4 Kurtosis

Kurtosis is the normalized form of the fourth central moment of distribution [52]. It is
also defined as the measure of the sharpness of the peak of a distribution. A high
kurtosis distribution usually has a sharper rise, while a low kurtosis distribution usually

has a more rounded elevation. Kurtosis is defined in Equation (2.4),

P q
41
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Kurtosis > E E (pixel;; — p) (2.4)

i=1j=1

2.1.2 Texture Features

The texture is one of the critical components in the perception of visual content.
Like color, texture is one of the essential properties to consider when querying
image databases [53]. Anyone can notice the texture of an image; however, the
texture is tough to define. Unlike the color feature, texture occurs over a specific

region rather than a spot.

Texture features are related to the distribution of luminosity on the visual object
and are a natural attribute of all optical surfaces. It contains crucial
information about the structural arrangements of surfaces and their relationship
with the environment. Texture has been studied in image processing and pattern
detection. It has been observed to be very important in distinguishing and
defining different pictures. Therefore, the texture is one of the active features
used in multimedia access. Textures are used not only for painting surfaces,
however, also for perceiving movements. Although no formal structure describes
the texture, the concepts of uniformity, coarseness, regularity, direction,
frequency, and similarity are used as scales that reflect textural features. Different
methods are suggested for defining the texture of any image in the field of image

processing. The most common method of extracting the texture feature is to
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obtain the texture spectrum that can characterize the texture image by designing
various masks or filters [54]. Studies based on feature extraction from the Fourier
power spectrum have also been made to capture the overall repetitions in an

image by identifying the high energies of an image [55].

The texture is usually defined by bringing the image to a gray level. It has
qualities such as texture, periodicity, and size. Homogeneity, correlation, and

contrast are defined as features.
2.1.2.1 Contrast

Contrast measures the intensity or gray level variations between a reference pixel and
its neighbor [56]. Significant contrast indicates large density differences. A still image

has a contrast value of 0. The contrast is defined in Equation (2.5),

Contrast = Z Z(i - )N?r(,j) (2.5)
j

i

Here, r(i, j) is the gray level value of the pixel in the (i,j) coordinate.

2.1.2.2 Correlation

Correlation is the measure of linear dependence of gray level values which returns a
measure between a pixel and its neighbors [57]. The correlation was calculated in

Equation (2.8) with means p;, u; (Equation (2.6)), standard deviations a;, o; (Equation

(2.7)),

=2 2;ir( ), up =X 2 jr(i,)) (2.6)
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(2.7)
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2.1.2.3 Homogeneity
Homogeneity measures how close the distribution of elements in the gray-level co-

occurrence matrix is to the diagonal of the matrix [58]. As homogeneity increases,

contrast decreases. Homogeneity is defined in Equation (2.9),

Homogeneity = ZZ 1 :-(lll]—)jl (2.9)

2.1.2.4 Energy
The energy property, also called the angular second-moment property, is a measure of

image homogeneity [59]. It is expressed as the sum of the squares of the matrix
elements (Equation (2.10)),

Energy = Z Z r(i,j)? (2.10)
i J

2.1.2.5 Entropy

The entropy value was calculated by converting the color input image to a gray-level
image [60]. The entropy of the image is calculated in Equation (2.11),

Entropy = — Z nlog, n (2.11)

where n is the number of normalized histograms.

2.2 Feature Selection

Feature selection is a technique used in Al to identify and select the most relevant
features (or variables) from a more extensive set of available features [61]. The
goal of feature selection is to improve the accuracy and efficiency of an Al model

by reducing the number of input features while maintaining or even improving the
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quality of the results. There are several methods for feature selection, including
[62]:

e Filter methods: These methods use statistical measures to rank the
importance of each feature and select the top-ranked features. Examples
include correlation-based feature selection, Chi-Squared feature selection,
and mutual information-based feature selection [62].

e Embedded methods: These methods incorporate feature selection into the
Al model's training process, selecting the most relevant features during the
model training. Examples include Lasso and Ridge regression [62].

The benefits of feature selection include reducing the dimensionality of the input
data, which can improve the efficiency and accuracy of an Al model. Additionally,
feature selection can help to avoid overfitting and improve the interpretability of
the model's results. However, it is essential to note that feature selection is not
always necessary or beneficial. In some cases, using all available features may be
the best approach, especially when dealing with complex datasets or when the

potential benefits of feature selection are not clear.

The number of features and samples can be pretty high in databases such as
image processing, customer relationship management, and gene analysis. Working
with such large databases can create a problem for ML algorithms [63]. One of
these problems is the prolongation of classification times. Another problem is
that many unnecessary and unimportant features degrade the performance of ML
algorithms. For these reasons, feature selection methods have become crucial and
essential for ML algorithms working with high-dimensional datasets. Feature
selection algorithms offer higher generalization ability in classifying large
datasets and better results in solving recognition problems. In this thesis, the
Chi-Squared was used for feature selection.

2.2.1 Feature Selection with Chi-Squared

The Chi-Squared (?) test is a statistical method used to determine the dependence or
independence of two categorical variables [64]. In feature selection, it is often used as

a filter method to rank the relevance of features based on their association with the
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target variable. The Chi-Squared test would measure the difference between the
observed frequencies of two categorical variables and the expected frequencies if the
variables were independent. The test produces a Chi-Squared statistic, which measures

how much the observed frequencies differ from the expected frequencies.

In the Chi-Squared () algorithm (Equation (2.12)), a ti feature set is selected
based on its correlation with a Cj class, and the discrimination ability (x?) of the

ti feature set with respect to the C; class is calculated as:

SX(aindij —bl-jxcij)z
(ai]-x (b” + Cij ))x(cijx (b” + dl] ))

where S is the total number of samples, the ajjis the number of instances in

Chi — Squared (x?) = (2.12)

the category Cj containing the attribute ti, and the bjj is the number of instances
in the category Cj that does not contain the attribute ti. The cjj is the number
of samples that contain the t; attribute; however, it does not belong to the C;j
category. The dj is the number of samples that do not belong to the C;j category
and do not contain the t; attribute [64].

2.3 Artificial Intelligence

The idea that Al was first introduced in 1956 is that machines can think like
humans. It started to be developed with the idea that machines act like humans. The
famous English mathematician and computer scientist Alan Turing developed a test
to measure whether machines are intelligent in this context [65]. According to the
test, another human asks a human and machine questions. It is a test based on
distinguishing between humans and machines according to the answers received

by the person asking the question.

Al is shaped by the joint work of many branches of science, including philosophy,
mathematics, economics, neurology, psychology, and engineering [66]. There are
many algorithms developed under Al, such as ML and DL. When a machine
encounters a problem, separate algorithms can be used for each stage of analyzing,
navigating, solving, and learning the solution. The definition of machine learning

and its algorithms used in the thesis are explained in this context.
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2.3.1 Machine Learning Algorithms

ML is the ability of the computer to make decisions about similar events that
may occur in the future and to produce solutions to the problems that will
occur by learning the information and experience gained by the computer about
an event [67]. ML uses some methods to take advantage of past data and finds the
most suitable model for new data. It is not easy to manually process and analyze
vast amounts of data. The aim here is to make predictions for future situations
using past data. Regardless of the application area, the importance of ML methods
is increasing daily, with the analysis of large amounts of data, making predictions,

and helping us make decisions (Figure 2.1).

« Collecting raw data is essential for future learning. The greater the variety and
Data amount of this data, the more consistent the machine learning outputs will be.

Collection

Any analytical process depends on the quality of the data used. Time must be spent
determining the quality of the data, resolving issues such as missing data and
outlier processing, and then taking steps.

This step involves selecting the appropriate algorithm and displaying the data in
model form. The cleaned data is divided into two parts: Training-Test, the first part
(training data) is used to develop the model, and the second part (test data) was
used as a reference.

The second part of the data (test data) is used to test the accuracy. This Step\
determines the precision of algorithm selection based on the result. A better test to
check the accuracy of the model is to see the performance of data that was never
used during model creation.

.

/

\
* Depending on the results, it may be necessary to increase efficiency or choose a
different model. Therefore, data collection and mainly preparatory studies require

Improving significant time.
Performance -

Figure 2.1: There are five basic steps used to perform an ML task.

ML, a branch of the field of Al, deals with developing algorithms and
techniques to perform the “learning” task of computers [68]. ML is used in
many areas, such as Natural Language Processing [69], Speech and Handwriting
Recognition [70], Object Recognition [71], Robot Gestures [72], and Medical

Diagnostics [73]. In addition, ML algorithms are shown in Figure 2.2.
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ML is classified under three categories based on learning styles, including

Supervised Learning [74], Unsupervised Learning [75], and Reinforcement
Learning (RL) [76].

Supervised Learning: The system compares the target results
produced with the evaluated dataset and the model created by
combining different inputs. It is essential to catch the optimum by
minimizing the errors by the system. In supervised learning, also called
predictive models used to predict future outcomes based on historical
data, clear instructions are usually given on what to learn and how to
learn from the beginning [74]. Some examples of algorithms used:
Nearest neighbor, Naive Bayes, Decision Trees, Regression, etc.
Unsupervised Learning: Without specifying a target in the dataset that
makes up the system, the model is expected to create a template by
evaluating the inputs of the given parameters within itself. It is used to
train explanatory models where no goals are set, and no feature is more
important than another [75]. Some examples of algorithms can be given
as K-Means / Clustering Algorithms.

RL: Based on supervised learning, this system is based on a new target
parameter creation logic that shows how accurate the target parameter
outputs are in the model. It is an example of ML, where the machine
makes certain decisions based on business needs to maximize
performance. The idea of RL is that the machine constantly trains itself
depending on the environment. This continuous learning process is
time-saving with less involvement of human expertise. An example of
an algorithm used in RL is the Markov Decision Process. There is a
subtle difference between Supervised Learning and RL. RL involves
learning in interaction with an environment. An RL representative learns
from experience rather than a continuous trial-and-error learning process
against supervised learning, for which an external supervisor provides

examples [76].
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Figure 2.2: Machine Learning Algorithms.

2.3.1.1 Regression Algorithms

Regression is about modeling the relationship between variables using a
measure of the error in the predictions made by the model [77]. Regression
algorithms study statistics and have been incorporated into statistical ML. This
can be confusing because regression can be used to refer to problem class and

algorithm class. Popular regression algorithms:

e Ordinary Least Squares Regression (OLSR)

e Linear Regression

e Logistic Regression

e Local Estimated Distribution Line Correction (LOESS)
e Multivariate Adaptive Regression Curves (MARS)

2.3.1.2 Instance-based Algorithms

An instance-based algorithm is a decision problem about the sample or training
data required for the model [78]. These algorithms typically create a sample
database and compare new data to the database using a similarity measure

to find the best match and make an estimate. For this reason, instance-based
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algorithms are also called memory-based learning with practice and acquisition
methods. The focus is on the representation of stored samples and the similarity

measures used between samples. The popular instance-based algorithm is:

e Kk-Nearest Neighbor (KNN)

2.3.1.3 Decision Tree Algorithms

Decision tree algorithms create a decision model based on the actual values
of the attributes in the data [79]. Decisions made in tree structures are valid until
an estimation decision is made for a particular record. Decision trees are trained
on data for classification and regression problems. Decision trees are generally
fast and precise, also a favorite in ML. Popular decision tree algorithms:

e Classification and Regression Tree (CART)

e Recursive Binary Tree (ID3)

e (4.5 and C5.0 (different versions of a strong approach))
e Decision Root

e M5

e 48

2.3.1.4 Bayesian Algorithms

Bayesian is algorithms that explicitly apply Bayes’ Theorem for problems such
as classification and regression [80]. Popular Bayesian algorithms:

o Naive Bayes
e (Gauss Naive Bayes

e Multinomial Naive Bayes

2.3.1.5 Clustering Algorithms

Clustering, like regression, defines the problem and method classes [81].
Clustering methods are typically organized by modeling approaches such as

center- based and hierarchy. All methods are about using natural structures in
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the data best to organize the data into groups with the best commonality. Popular
clustering algorithms are:

o K-Average
e K-Medians

e Hierarchical clustering

2.3.1.6 Ensemble Algorithms

Ensemble algorithms are models of weaker models that have been independently
trained and whose predictions are somehow combined to make an overall
prediction [82]. Much effort goes into combining the factors that undermine
learning and how to combine them. These are a potent class of techniques.

Popular ensemble algorithms:

e Boosting

e Bootstrapped Collection (Bagging)
e AdaBoost

e Stacked Generalization (Stacking)
e RF

2.3.1.7 Dimensionality Reduction Algorithms

Like clustering algorithms, dimensionality reduction looks for natural structure
in the data; however, in this case, to summarize or explain the data using less
information in an unsupervised or sequential manner [83]. This can be useful
for visualizing dimensional data or simplifying data that can later be used in
supervised learning. Many of these algorithms can be adapted for use in

classification and regression. Popular dimensionality reduction algorithms:

e Principal Component Analysis (PCA)
¢ Principal Component Regression (PCR)
e Partial Least Squares Regression (PLSR)

e Linear Discriminant Analysis (LDA)
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e Quadratic Differential Analysis (QDA)
¢ Flexible Differential Analysis (FDA)

2.3.1.8 Artificial Neural Network Algorithms

Artificial Neural Networks are models inspired by the structure and function of
biological neural networks. It is a model-matching class often used for regression
and classification problems; however, it is an enormous subfield of hundreds of
algorithms and variations for all kinds of problems [84]. Due to the enormous
growth and popularity in the field, more classical methods are discussed here,

keeping DL separate from neural networks. Popular neural network algorithms:

e Perceptron

e Backpropagation
2.3.1.9 Deep Learning Algorithms

DL algorithms are a modern update to Neural Networks that use copious
amounts of shoddy computation. They deal with building much larger and more
complex neural networks, and as mentioned above, many methods deal with
semi-supervised learning problems where large datasets contain very few labeled
data [85]. Popular DL algorithms:

e Deep Boltzmann Machine (DBM)
e Deep Belief Networks (DBN)
e Convolutional Neural Network (CNN)

2.4 Software Programs

The software programs used in the thesis, MATLAB, Python, Java, WEKA,

Firebase, and Android Studio are mentioned here (Figure 2.3).
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Figure 2.3: Schematic illustration of the software programs.

24.1 MATLAB

MATLAB is a computer program used for positive science and engineering
calculations. Developed by the MathWorks company, MATLAB is also a
programming language [86]. MATLAB, which is formed by combining the
words “Matrix Laboratory” in English, has a matrix-based working system, as
the name suggests. The MATLAB program enables many mathematical
calculations such as linear algebra, statistics, optimization, numerical analysis,
optimization, and Fourier analysis to be performed effectively and quickly; it is
also used for 2D and 3D graphic drawing. Users can create their programs with
MATLAB, which allows programming with matrices and the functions they
interact with, and even very complex mathematical calculations are completed in
a few seconds. Effective and practical programs can be prepared with MATLAB,
where basic programming and similar functions can be used. It is possible to
work with matrices in one, two, or more dimensions in the MATLAB program,
where matrices are used with the same logic as arrays in programming languages
such as C and Java [86].
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2.4.2 Python

Python is a programming language that can do scientific calculations quickly, is
very useful, advanced, and open source, can run smoothly on different platforms
such as Windows / macOS / Linux, and is highly flexible and straightforward to
learn [87]. The most important feature is that, unlike other programming

languages, it does not need any compiler.

Advanced data analytics has become a crucial topic for IT today. Python has been
the most suitable programming language for these situations. Most of the libraries
in the Python interface are suitable for ML and data science. Its high-quality
commands in libraries in these areas have greatly aided the continued development
of ML libraries and other numerical algorithm libraries.

2.4.3 Java

Developed by Sun Microsystems, Java was first released in 1995. Java: is a
class- based, object-oriented programming language with many uses. Java is also
a computing platform for application development and execution. Java is also an
application run software that the end user can download for free [88]. Since Java
is a programming language that has been used for many years, it has received
many different updates and versions. Finally, Java SE 15 version was released
in September 2020. The software users will download to run applications is the
Java 8 version [89].

The Java software that users will use to run applications is called the Java Runtime
Environment, or JRE for short, and the computing platform used by application
developers is called JRM for short. A Java Development Kit (JDK) tool is also
available to application developers [88]. Java owes its popularity to its ease of
use. Here are some reasons why developers continue to choose Java over other

programming languages:

e High-quality learning resources
e Integrated functions and libraries

e Active community support
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e High-quality development tools

e Security

24.4 WEKA

WEKA is the name of one of the packages used in ML, one of the crucial subjects
of computer science. It was developed as an open source in the Java language at
the University of Waikato and distributed under the GPL license. Waikato is
an acronym for Environment for Knowledge Analysis [90]. WEKA reads data
from a simple file and assumes that stochastic variables on the data are numeric
or nominal values. It can also pull data from the database; however, it is
expected to be file data in this case. Many libraries about ML and statistics are
available at WEKA [90]. For example, data pre-processing, regression,
classification, clustering, feature selection, or feature extraction are some. In
addition, there are visualization tools that allow the results of these operations

to be displayed visually.

2.45 Firebase

Developed with new features added by Google, Firebase is a platform that
claims to meet all these needs and offers free use. There is a need for application
development on any platform for any reason, followed by a control panel and,
in any case, a user data store [91]. Applications today want to access the same
data from every device regardless of platform. Developers whose applications
are installed by many users also need a management panel to easily manage
operations such as saving and keeping session information, analyzing the usage
data of applications, sending notifications to the user to make new
announcements, and testing the application. Firebase, which is constantly
evolving with new features added by Google, is a platform that offers free use

to application developers to meet all these needs.

Firebase, which performs applications such as application management, usage
tracking, data storage, and sending notifications without needing to write a

different server and server-side code, provides access to every application
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equipped with features such as Real-Time Database and Notification [91]. Remote

Config in its new developer-friendly interface (Figure 2.4).
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Figure 2.4: Firebase interface.

2.4.6 Android Studio: Smartphone Applications

Electronic devices such as mobile phones or tablets must have an operating
system. A device cannot work without an operating system. Android is a
communication system developed by Google and billions of people [92]. It uses
the Linux operating system kernel. It also supports APK extension. It is
beneficial for such reasons. When this project is completed, it will be available
on Android operating systems. Android Studio is a programming tool for
developing Android applications. Some essential features of Android Studio are

mentioned below:

e Gradle-based, flexible project-building system

e Fast project generation with the help of basic templates
e The editor that facilitates screen designs

e Easily add Google services to the app

e Easy and secure APK signing

28



2.5 Performance Metrics

During the performance evaluations of the proposed classifiers, accuracy (Equation
(2.13)), precision (Equation (2.14)), recall (Equation (2.15)), F1 score (Equation
(2.16)), AUC-ROC Curve (Equation (2.17)) and Matthews Correlation Coefficient
(MCC) (Equation (2.18)) were calculated.

2.5.1 Accuracy

Accuracy is the most used metric in the classification comparison. It is the ratio

of correctly classified samples to total samples [16].

| ~ TP + TN 213
CeUracy = Tp ¥ TN + FP + FN '

where TP (True-Positive) and TN (True-Negative) describe the number of
correctly identified positive and negative samples, while FP (False-Positive) and
FN (False-Negative) define the incorrectly predicted samples.

2.5.2 Precision

Precision is a performance metric used in Al and ML to evaluate the accuracy of
a model's predictions. Precision measures how often the model correctly identifies
true positive cases, meaning the instances where the model predicted a positive
outcome and it was true. In other words, precision is the ratio of true positives to

the total number of positive predictions made by the model [16].

TP
ision = ————— 2.14
Precision TP T FP (2.14)

2.5.3 Recall

The recall is the ratio of positively labeled samples to the total number of truly

positive samples [16].
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TP

- 2.15
Recall TP+ FN (2.15)

25.4 F1 Score

The F1 score is calculated using precision and recall metrics. It optimises the

system towards precision or recall [16].

1 _ Precision x Recall (2.16)
score =2 x Precision + Recall '

2.5.5 AUC-ROC Curve

ROC curves are one of the methods used to measure the success of the
models in distinguishing each class. The area under these curves (AUC)
approaches shows that the CNN model has successfully classified the

concentrations [17].

(2.17)

1
ROC area == x

2(TP TN)

TP+FN+TN+FP

2.5.6 Matthews Correlation Coefficient

MCC measures the quality of binary (two-class) classification models [93]. It
considers TP, TN, FP, and FN predictions of the model. MCC is calculated as follows:

B (TP x TN) — (FP x FN)
/(TP + TN)(TP x FN)(FP x TN)(FN x TN)

MCC (2.18)

30



Chapter 3

Non-enzymatic colorimetric detection
of hydrogen peroxide using a uPAD
coupled with a machine learning-based

smartphone app

In this chapter, iodide-mediated 3,3',5,5-TMB-H202 reaction system was
applied to a uPAD for non-enzymatic colorimetric determination of H.O2. The
proposed system is portable, incorporating a uPAD and an ML-based smartphone
app. The colorimetric change in detection was obtained without using any
enzymes or nanoparticles with catalytic properties, resulting in a low-cost and
stable system. A smartphone app called “Hi-perox Sens” capable of image
capture, cropping and processing was developed to make the system simple and
user-friendly. Briefly, circular puPADs were designed with three different
detection mixtures containing: (i) TMB, (ii) KI, and (iii) TMB+KI, respectively.
The uPADs were then tested with varying concentrations of H>O;. Following
the color change, the images of the uPADs were taken with four different
smartphones under seven different illumination conditions at t=30 s and t=10
min. Visual inspection showed that H20O- induced color change only in the
case of KI and TMB+KI. Unlike KI, the mixture of TMB+KI performed best
at lower concentrations of H202. To make the system more robust and adaptive
against illumination variation and camera optics, the images were first
processed for feature extraction and then used to train ML classifiers. Twenty-

three ML classifiers were tested to determine the best-performing ML classifier
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for KI and TMB+KI, respectively. A cloud system was used in the application
to communicate with a remote server running ML classifiers. According to the
results, TMB+KI showed the highest classification accuracy with inter-phone
repeatability at t=30 s under versatile illumination and maintained its accuracy
for 10 minutes. In addition, the performance of the system was also comparable

to two different commercially available H2O; kits in real samples.

3.1 Introduction

Hydrogen peroxide (H203) is a reactive oxygen species produced by mammalian
cells to mediate several physiological processes, including cell proliferation,
migration, differentiation, and even apoptosis [94]. Even though H20> is not so
reactive, it can generate hydroxyl radicals that can attack specific cell
components such as DNA and membrane lipids. Changes in its concentration
have been associated with the development of various diseases, including cancer,
Alzheimer, and diabetes mellitus [95]. It is widely used as a disinfectant due
to its antibacterial and virus activity. It is also a by-product of oxidases, and
therefore its high-sensitive detection is of great importance in developing
biosensors for fields ranging from medical diagnostics to environmental
monitoring [96]. Several methods, including chemiluminescence, fluorescence,
electrochemical and colorimetric, have been proposed to detect HO, for
qualitative and quantitative analysis. Among these methods, colorimetry is
promising due to its cost-efficiency and easy operation. HRP is frequently used
in colorimetric sensors where it catalyzes the conversion of a chromogenic agent
[40, 97]. Even though H2O; sensors with HRP offer high sensitivity and
selectivity, they suffer from a narrow pH working range, poor reproducibility,
high cost, and low thermal/chemical stability of the enzyme. To overcome these
limitations, researchers are actively studying the catalytic properties of
nanomaterials, particularly noble metals, and their alloys, to replace enzymes
in sensor applications. However, these nanomaterials still suffer from high cost,
aggregation, and poor stability, and their toxic effects on living things have not
been thoroughly investigated [98, 99]. Apart from enzymes or nanomaterials,
the use of biopolymers with peroxidase-like activity or antioxidative activity,
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such as chitosan and gelatin, have also been reported for the detection of H20>
[98].

In addition to being sensitive, selective, and affordable, H2O> sensors need to be
portable, reliable, fast, and environmentally friendly to operate in remote locations
or resource-limited settings [100]. In that sense, uPADs are found to be
adequate to meet the requirements, resulting in the development of various types
of sensors. Although different methods are used in the fabrication of uPADs, the
most preferred method is the one that was first introduced by Whitesides et al.
[101]. The method is based on printing wax patterns that define the
microfluidic channels and the boundaries of the detection zone with a solid ink
(wax) printer. In pPADs, the concentration of many different analytes can be
quantified simultaneously based on the intensity variation due to the
concentration-dependent color change [40].

In colorimetric analysis, intensity information can be utilized with several color
spaces, including RGB, HSV, and L*a*b* [102]. The conventional approach
derives a calibration curve based on single or multiple channels, leading to the
highest correlation between intensity and concentration (magnitude) [103]. For
example, the average of R, V, and L* was used to obtain the calibration in the
quantification of glucose in artificial saliva [103]. Even though the calibration
curve performs well in a controlled environment, it tends to deviate in the case
of ambient light conditions as the intensity values are sensitive to the illumination
sources. This problem is handled with sophisticated methodologies like ML,
which has emerged as a powerful tool for classification problems due to its
flexibility and adaptability to dynamic conditions based on the features extracted
from colorimetric information [104, 105]. The alcohol level in saliva was detected
using features of four-color spaces (RGB, HSV, YUV, and L*a*b*) under three
ML classifiers [104]. ML classifiers quantified The peroxide concentration with
colour features [105]. Molgaard et al. [106] also employed an ML approach
to detect H202 using colorimetric sensor technology for air sampling. One benefit
of ML is to be compatible with smartphone apps that perform colorimetric
analysis in the field without extensive training [107]. The SPAQ2 app was
developed to test the alcohol level in saliva [104]. The ChemTrainer app detected
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peroxide according to the color changes in the colorimetric test strips [105]. All
these apps provide user-friendly interfaces to perform colorimetric analysis with
ML (Figure 3.1).
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Figure 3.1: Schematic illustration of the proposed system. The color change of
chromogenic agents can be detected with a smartphone camera under ambient light

conditions.

3.2 uPAD fabrication and colorimetric detection

of H,O»

First, a circular design to be used as a reaction/detection zone of uPADs was
drawn in Microsoft PowerPoint. This design was then printed on a Whatman
filter paper with a solid ink (wax printer) printer. Solid ink is a mixture of
hydrocarbons and hydrophobic carbamates with a melting point of about 120
°C. After printing, the solid ink was kept on a heater at approximately +150 °C
for 3 minutes. An aluminum foil and a planar weight (1-2 kg) were placed on
top of the paper to ensure uniform heat transfer from the hot plate to the paper
and penetration of the melted solid ink into the pores of the chromatography
paper. Hence, solid ink boundaries that define the reaction/detection zone were
obtained. Next, three different uPADs were prepared by introducing 0.8 ul KI
(6 M), TMB (10 mM) +KI (6 M), and TMB (10 mM) into uPADs, respectively.
The uPADs were left to dry for about 5 minutes for the liquids to dry. Next, the

uPADs were tested for the colorimetric detection of H.O, at varying
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concentrations (0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 25, 50 mM), in which case 2
pL aliquots of test solutions were introduced into the reaction/detection zones
of uPADs. The image of each uPAD was captured using a smartphone camera

at t=30 s and t=10 min, respectively.
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Figure 3.2: Color changes with respect to chromogenic agents, time, and

concentrations.

3.3 Data Acquisition and Processing

ML classifiers must be trained with a dataset with a strong representation of all
possible conditions to get a significant classification performance [108]. The
robustness and adaptability of the system, therefore, are highly dependent on
the dataset, which needs to be enlarged considering illumination conditions and
camera optics. To address these issues, the images of the uPAD were captured
with multiple smartphones under halogen (H), fluorescent (F), and sunlight (S)
light bulb sources to imitate the conditions. The H bulb emits 2700 K warm colors,
while the F and S bulbs give 4000 K neutral and 6500 K cool colors, respectively.
Three light sources were used to get seven light conditions including H, F, S,
HF, HS, FS, and HFS, running single or multiple light sources together. The
bulb sources were located 50, 53, and 57 cm away from H, F, and S,
respectively. In addition, the capturing was performed at an incidence angle of
30° under a homogeneously illuminated area with a constant distance of 8 cm
between the smartphone and the uPAD.
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To maintain inter-phone operability, four different smartphones with different
brands (Oppo A5 2020, Reeder P10, iPhone 5SE, and iPhone 6S) and operating
systems (Android and iOS) were used for capturing. The specifics of the cameras
for each smartphone are shown in Table 3.1. Images were captured in automatic

mode at t=30 s and t=10 min as shown in Figure 3.2.

Table 3.1: The smartphones are used to create a dataset with images of uPADs for

machine learning.

Smg:g;]r:jone Image Resolution Optics Rce:si)rruetrign
iPhone 5SE 4032 x 3024 /2.2 7 MP
iPhone 6S 4032 x 3024 /2.2 12 MP

Oppo A5 2020 4000 x 3000 f/1.8 12 MP
Reeder P10 4160 x 3120 /2 13 MP

Twenty-eight images were taken with each smartphone separately under seven
different illumination conditions at two-time steps, resulting in fifty-six images.
Since the group of eleven concentrations was captured at a single frame, 616
images of each concentration were collected for TMB+KI and KI, respectively.
These images were then transferred to a computer to process in MATLAB
(MathWorks, MA, USA) environment for feature extraction.

3.4 Feature Extraction and Machine Learning

Analysis

Feature extraction is identifying an object based on properties such as size,
shape, composition, and location of the object [109]. In mathematical terms, it is
the process of inferring from raw data information to increase the variability of
the class pattern while minimizing the in-class pattern variability, which
facilitates quantitative measurements, classification, and object identification
[110]. Feature extraction is a crucial step in visual inspection as it has an

observable effect on the efficiency of the ML classifiers. Before training the
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classifiers, image features were extracted based on color and texture information.
The region of interest (ROI) for each concentration was cropped to convert the
RGB image into HSV and L*a*b*, resulting in a total of nine color channels
(R, G, B, H, S, V, L* a* b*) information. Then, the mean, skewness, and
kurtosis values were calculated for each color channel, leading to twenty-seven
features. As texture features, contrast, correlation, homogeneity, and energy were
also extracted [111]. In addition to the color and texture features, the entropy

and intensity values were also added to have a total of thirty-three features.

To determine the H202 based on color changes, twenty-three ML classifiers were
trained with the extracted features, and their performances were compared
regarding classification accuracy. Among these classifiers, LDA and Ensemble
Bagging Classifier (EBC) outperformed the others for Kl and TMB+KI,
respectively. The LDA is a supervised classifier that applies Bayesian and
maximum likelihood rules to estimate the highest likelihood between input and
pre-defined classes using a discriminant function [112]. EBC is an ensemble
technique used to improve the performance of ML classifiers in terms of stability
and accuracy. It combines the classifications of randomly generated training sets
to estimate the final prediction [113] based on the bagging algorithm.

As the LDA and EBC showed the best classification performance, they were

integrated into our smartphone application called Hi-perox Sens.

3.5 Smartphone Applications: Hi-perox Sens

Our custom-designed Android app, Hi-perox Sens, was developed for quantitative
evaluation of H202 in pPADs with ML, enabling colorimetric analysis operable
whenever or wherever needed. The LDA and EBC ML classifiers, running in the
remote server, were integrated into the Hi-perox Sens due to their outstanding
performances. The Hi-perox Sens uses a Firebase cloud system to transfer the

image to the remote server and receive the classification result back to the app.
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Figure 3.3: Colorimetric hydrogen peroxide quantification steps on the Hi-perox
Sens. The homepage of the Hi-perox Sens is given in (a). The user can select an
image from the gallery or capture a new image using the smartphone camera
in (b) and display it on the screen as in (c). The image can be cropped using
an adjustable crop box in (d). The cropped patch is given in (e) and
uploading the cropped patch is shown in (f). The user selection of the
uploading patch as TMB+KI or KI is shown in (g). The classification result of

the image is given in (h).

With a simple and user-friendly interface, Hi-perox Sens is demonstrated in Fig.
3.3. The home page is given in Figure 3.3(a) where an image can be taken from
the gallery of the smartphone (Figure 3.3(b)) or a new image can be captured

using the smartphone camera. Once the image is selected or captured, it is
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displayed on the app, as shown in Figure 3.3(c). Next, the ROI on the image
needs to be drawn using an adjustable crop box, as shown in Figure 3.3(d-e).
Then, the ROI is cropped and displayed on the app (Figure 3.3(f)) to double-
check the ROI and whether the selected area is suitable for the analysis. If not,
the ROI can be re-drawn before the cropped patch is transferred to the remote
server via a Firebase by tapping the upload icon. ML classifiers running in the
remote server quantify the concentration level. As shown in Figure 3.3(g), the
colorimetric reagent information (TMB+KI or KI) must also be sent to the
remote server to choose the best classifier for the colorimetric analysis. Last,
the result is returned to Hi-perox Sens via a Firebase to display on the app
(Figure 3.3(h)).

3.6 Results and Discussion

Here, the iodide-mediated TMB-H20> reaction system was used instead of an
enzyme or a nanomaterial with catalytic properties to detect H.O». Briefly,
three different chromogenic agent mixtures were tested with varying
concentrations of H203; i) only TMB, ii) only KI, and iii) TMB+KI. As shown in
Figure 3.2, no color change was observed in the case of only TMB, which clearly
demonstrates that TMB alone cannot catalyze the oxidation of H.O2. However, in
the case of only KI, H2O> catalyzes the conversion of KI to iodine and produces
a visual brownish color. Although the changing color intensity was not
proportional to the low concentration of H202, a linear correlation was observed
when the H>O2 concentration exceeded the 1 mM level (Figure 3.2). When
TMB+KI was used as the detection mixture, a blue color appeared in the
presence of H2O2. The oxidation of TMB caused the color change. A possible

chemical reaction equation involving three steps is presented below.
2KI + H,0, & I, + 2KOH

(3.1)

I, + 5H,0, & 2HIO; + 4H,0 (3.2)

39



red —TMB + 105 + 6H" & ox — TMB + I* + 3H,0 (3.3)

In the first step (Equation (3.1)), KI gets into a reaction with H2O2 and produces I,
which then once again reacts with H202 to produce iodic acid (H1O3) (Equation
(3.2)). As HIO; ionizes, iodate (107%) is formed. In the final stage (Equation (3.3)),
the oxidation of TMB is induced by the reduction of 1072 to I, resulting in the
formation of blue color. According to this reaction, iodide catalyzes the rapid
oxidation of TMB. Unlike the chromogenic agent KI, TMB+KI performed best in
the low concentration range of H2O2, and the color intensity became saturated when
the H20:2 concentration level exceeded 5 mM (Figure 3.2). In addition, the effect of
pH and ionic strength on the signal response of pfPADs were tested in the presence
of 1 mM H202. No significant change in colour formation was observed in the pH
range of 5to 11. However, the intensity of the color formed at pH 3 was lower than
the rest. As for the ionic strength, the color intensity slightly increased with NaCl
concentration. The adopted strategy has the potential to provide an essential basis
for simple, rapid, cost-effective, sensitive, and selective colorimetric assay for the
detection of H20>.

In this study, H202 concentration was detected using ML classifiers based on the
color change that occurred in the uPADs. ML classifiers need to be trained in
advance with a dataset that contains similar images that the user might use in
testing. Therefore, the dataset was created with four different smartphones
(iPhone 5SE, iPhone 6S, Oppo A5 2020, and Reeder P10) under seven
illumination conditions (H, F, S, HF, HS, FS, HFS). This dataset was transferred
to a computer for pre-processing in MATLAB 2021b. The ROI for each
concentration was cropped to extract features for training ML classifiers. First,
twenty-three classifiers were trained for TMB+KI and KI with eleven
concentrations ranging from 0 to 50 mM at t=30 s. The best classification results
were 81.3% and 91.9% for KI and TMB+KI, respectively. After careful analysis
of confusion matrices of the classifiers, it was observed that KI and TMB+KI
failed to classify H202 in lower and higher concentration ranges, respectively.
Therefore, classifiers were trained again with low concentration values (0, 0.01,
0.05, 0.1, 0.2, 0.5, 1, 5 mM) for TMB+KI, and high concentration values (0, 0.2,
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0.5, 1, 5, 10, 25, 50 mM) for KI. As a result, the classification accuracies were
improved to 97.3% and 92.4% for TMB+KI and KI, respectively. These results
were summarized in Table 3.2. The same process was repeated with images

taken at t=10 min., and the results were given in

Table 3.3. The system shows similar classification accuracy even after 10 min.,
which proves the robustness of the system.

In classification, the EBC gave the highest accuracy for TMB+KI while the
LDA outperformed for KI. Besides the classification accuracy (Equation (2.13)),
the performance of these classifiers was also tested in terms of precision
(Equation (2.14)), recall (Equation (2.15)), and F1 score (Equation (2.16)).

As can be seen from the performance metrics (Figure 3.4), TMB+KI had the
highest accuracy value, with 97.8% using EBC. The detailed classification reports
and confusion matrices with respect to the type of chromogenic agents, timing, and
concentration range can be found in Appendix A Tables A1-8 and Appendix A Figures
Al-11.
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Figure 3.4: Evaluation of EBC with error bars in terms of precision, recall, and F1

score at t=30 s for TMB+KI using low concentrations.

It should be noted that the performance metric results were lower than the

average valuesinthe casesof0.01 and 0.05mM H2O>. This can also be observed
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in the confusion matrix shown in Figure 3.5(a), visualizing the performance
metrics. A confusion matrix is mainly used to illustrate the relation between
the true and predicted outputs of the classifier concerning each class. The
robustness of the system can be quickly and visually observed when the
confusion matrices of TMB+KI at 30 s (Figure 3.5(a)) and 10 min (Figure
3.5(b)) were compared. Figure 3.5(c) and (d) show performance analysis of LDA
for Kl at 30 s and 10 min, respectively. According to the matrices, much better
prediction accuracy and robustness were achieved in the high concentration
range of H202, as in TMB+KI.

Finally, our study integrated LDA and EBC classifiers with Hi-perox Sens, a
simple and user-friendly mobile app for H202 detection. Images of this app are
shown in Figure 3.3. The photo is selected from the gallery or captured using
the camera; then, the ROI is cropped and sent via Firebase to the remote server
running the ML classifier to measure the concentration level. The result is then
returned and displayed in Hi-perox Sens. For example, the processes performed
on an uploaded image are shown step by step in Figure 3.3. At last, Hi-perox Sens
correctly classified the H2O2 concentration as 25 mM. The smartphone-based
system successfully worked and quantified H>O2 levels in water with ML
classifiers. The LOD of the sensor with TMB+KI was calculated to be 5.4 uM
based on the RGB data of images taken under HFS with iPhone 6S (LOD =
3.3*0/Slope). Although the system works without a calibration curve, the
calculated LOD value demonstrates its potential to be trained for lower

concentrations of H2O».

The most relevant studies include [105, 106, 114, 115], which, however, still
substantially differ from the present study. First of all, either enzymes or
catalytic nanoparticles were used in these papers to induce color change in
the presence of H>O2. On the contrary, an iodide-mediated TMB-H20>2
reaction system was applied to uPADs for non-enzymatic H>O> quantification,
making the system low-cost. Solmaz et al. [105] and Molgaard et al. [106]
also employed machine learning classifiers and reported that H>O> was
detected with 95 % accuracy in both studies. In addition, unlike Cheng et al.

[115] and Bandi etal. [114], where a calibration curve-based colorimetric H20>
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detection was performed, our proposed system is based on ML, offering more
robustness and adaptability against ambient illumination conditions and camera
optics. Therefore, the proposed system is state-of-the-art in robustness,

adaptability, and classification accuracy.

Table 3.2: The classification results at t=30s and t=10 min. for KI.

Classification Accuracy (%)

t=30s t=10 min
ML Classifiers 0-50 MM High Low 0-50mM High Low
Decision Tree 40.8 44.8 - 40.84 449 -
Bagging Classifier 42.68 4548 - 42.01  45.58 -
QDA 52.24 54.4 - 4335 54.68 -
Ensemble
Subspace 50.22 57.02 - 46.13  58.12 -
Discriminant
%:;L‘;e 5458 5746 - 4745 57.89 -
Naive Bayes 55.17 58.77 - 49.53  59.18 -
AdaBoost 55.94 58.97 - 50.02  59.63 -
PCA 58.24 59.64 - 51.18  59.98 -
RBF SVM 60.24 61.83 - 53.63 61.71 -
CroembleRUS  eog2 6202 - 5573 6317 -
GraclentBoosting  eog2 6274 - S6d2 6277 -
Weighted KNN 62.86 6456 - 57.06  64.96 -
Gaussian Process 64.44 65.04 - 62.31  66.16 -
Bernoulli Naive 6784 7234 - 6579 7314 -
Bayes
EBC 71.78 7298 - 67.16  73.88 -
Rtggi:gn 7489 7643 - 6954 7693 -
Random Forest 79.78 81.8 - 72.34 81.9 -
kNN 80.85 82.69 - 75.08  83.29 -
Linear SVM 77.52 85.95 - 76.21 84.81 -
Coarse Tree 77.74 88.69 - 76.94  89.12 -
SVM 76.4 89.5 - 79.4 89.6 -
Bagging 78.74 90.93 - 80.09  90.98 -
LDA 81.3 92.3 - 89.1 92.4 -
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Table 3.3: The classification results at t=30s and t=10 min. for TMB+KI.

ML Classifiers

AdaBoost

Ensemble Subspace
Discriminant
Naive Bayes

QDA
SVM
PCA
RBF SVM
LDA
Gaussian Process
Bagging Classifier
Extra Tree

Classifier
Linear SVM

Ensemble RUS
Boosted Tree
Gradient Boosting
Classifier
Weighted KNN
Decision Tree
Bernoulli Naive
Bayes
Coarse Tree
Bagging
Random Forest
Logistic Regression
kNN
EBC

0-50
mM
26.15
32.06

33.85
36.54
40.31
42.19
46.03
49.68
51.68
53.14
57.02

58.1
58.23

61.32

65.32
65.64
70.65

76.04
80.47
80.54
81.89
86.37
91.9

Classification Accuracy (%)

t=30s
High
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Low

32.12
35.12

41.28
43.57
47.39
47.66
52.93
53.82
54.3
55.23
64.32

65.33
66.28

68.3

71.23
73.42
75.32

80.05
81.19
83.29
87.73
93.3
97.8

0-50

mM

29.2
30.36

30.51
33.07
33.95
34.06
35.57
38.67
41.17
43.2
45.32

48.58
49.2

51.14

52.41
57.2
62.24

63.61
63.82
66.84
69.93
75.36
85.1

t=10 min
High

Low

34.36
39.17

43.26
43.81
47.22
47.59
49.23
54.46
54.84
60.31
61.92

65.29
65.55

71.36

74.47
80.42
81.41

85.86
88.08
89.43
94.12
96.43
97.3
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Figure 3.5: Confusion matrices of TMB+KI for the EBC classifier at t=30 s is given

in (a) and at t=10 min in (b), and confusion matrices of Kl for the LDA classifier at

t=30 s are shown in (c) and at t=10 min in (d).
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Chapter 4

Smartphone embedded deep learning
approach for highly accurate and
automated colorimetric lactate analysis

IN sweat

Here, a pPAD was combined with a DL-based smartphone app called
“DeepLactate” and then applied for quantitative and selective determination of
lactate concentration in sweat. The uPAD was made using wax printing
protocol, and the detection area was modified with HRP, LOx, and the
chromogenic agent 3,3'5,5-TMB for enzymatic detection. The images of
pUPADs taken by smartphones of several brands in different lighting conditions
were used to train various DL models to make the system more robust and
adaptable to lighting changes. The top-performing model, Inception-v3, was
then embedded into a smartphone app, offering easy operation for non-expert
users. Unlike ML classifiers, DL models can automatically extract features and
be embedded in a smartphone app, enabling analysis without internet access.
According to the results, the current system showed a classification accuracy
with phone-independent repeatability and a processing time of less than 1 sec. It
also showed excellent selectivity towards lactate over different interfering
species. Finally, uPAD was turned into a patch to determine the level of sweat
lactate in two volunteers after resting and 15 min of jogging. The system
successfully detected lactate in human sweat and confirmed that the lactate

level in sweat increased after jogging. Since the uPAD was designed first to
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absorb a sample and then transfer it to the detection area, avoiding direct
contact with the skin, the system reduces the possibility of skin irritation and
has great potential for practical use in various fields, including self-health

monitoring and sports medicine.

4.1 Introduction

Wearable sensors have attracted considerable attention lately with their
applications in various fields, such as sports medicine and self-monitoring for
health [116]. Although blood biomarkers are still considered reliable indicators
of health status, wearable sensors based on non-invasive measurement protocols
are gaining more attention as they do not cause blood vessel or skin injuries
[117]. Various body fluids, such as sweat, saliva, and tear, can be used for non-
invasive measurement protocols. However, a well-established correlation of
analyte concentrations between body fluids and blood is required to use them
as a reliable source in clinical applications [118]. A vital part of human
thermoregulation, sweat is a slightly acidic biological fluid produced by sweat
glands. It contains a variety of biomarkers for continuous and non-invasive
measurements, including ions, metabolites (e.g., lactate, glucose), small

molecules, and proteins [119, 120].

Recent reports have shown that blood and sweat lactate levels correlate [121, 122].
Lactate, the second low molecular weight metabolite after glucose, can be used
as a biomarker to evaluate an individual’s physical training and performance
in sports medicine since it is a product of anaerobic metabolism [123]. During
intense exercise, aerobic metabolism cannot meet the energy need, which initiates
anaerobic metabolism and, thus, lactate accumulation in muscles. This
phenomenon, known as lactic acidosis, is usually temporary and results in
discomfort, pain, muscle cramps, soreness, and fatigue [124]. The amount of
lactate production depends on the biological characteristics of a person, gender,
frequency of exercise, and living conditions [125]. Lactate monitoring is
essential, especially for people exposed to oxygen-deficient conditions,
including athletes and military personnel. If lactate concentration reaches a

critical level, it could change the pH of body fluids (blood, sweat, etc.) and
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cause severe damage to various organs, including kidneys and blood vessels
[126]. Furthermore, sweat lactate can be used to diagnose cystic fibrosis and

monitor hypoxia, drug effects, and disease progression.

The enzyme lactate oxidase is commonly used to detect lactate, where it
catalyzes the conversion of lactate to pyruvate and releases H.O; as a by-
product. H202 and, thus, lactate detection has been performed with various
detection protocols such as electrochemical, chemiluminescence, and
colorimetric [127-129]. Colorimetric detection is particularly interesting among
them due to its simplicity, practicality, rapidity, low-cost, and high universality
[23, 111].

Colorimetric analysis with complex instruments requires extensive prior training
and high maintenance costs [130-132]. There are several commercially available
electro-chemical and optical sensors used for lactate analysis, such as Lactate
Scout 4 (EKF Diagnostics, UK), BM-Lactate (Roche, Switzerland), and Lactel
(Marwan Technologies, Italy), all in a strip form. Lactate Scout 4 and Lactel are
electrochemical devices that require a portable electrochemical reader, while
BM-Lactate is a colorimetric sensor that requires a reflection photometer for an
accurate quantitative analysis. Lactel is known to be the first sensor
commercialized for lactate analysis in sweat, whereas the other two are primarily
used for blood analysis. Although they are sensitive enough to detect lactate in
real samples, their cost and dependence on a reader device may limit their
widespread use, especially in remote locations. Alternatively, statistical analysis
or Al-based smartphone applications offer a low-cost solution for non-expert
users [40, 41, 105]. A representative method in statistical analysis is to employ
the calibration curve derived from channel information of color spaces like RGB,
HSV, and L*a*b* [23, 103]. The calibration curve has advantages such as
computational cost and simplicity, making it easily applicable for colorimetric
analysis. Kili¢ et al. employed kurtosis of the a* channel to derive a calibration
curve and applied it for the colorimetric detection of food spoilage [23].
Similarly, Golcez et al. used average R, V and L* channels to obtain a calibration
curve for glucose detection in artificial saliva [103]. However, the performance

of a calibration curve-based analysis is adversely affected by factors such as
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ambient light, camera optics, and illumination variance [16, 40]. ML, a subset
of Al, is not restricted by these limitations due to its robustness, adaptability,
and compatibility, as reported by various groups. For instance, Dogan et al.
detected H202 concentration in different water samples using an ML classifier
trained with paper-based test images [16], while Mercan et al. developed a
portable ML-based system to determine glucose concentration in artificial saliva
[40]. ML also has some limitations application-wise. The first problem stems
from manual feature extraction, which does not always guarantee to obtain
distinctive features. The second problem is the requirement of internet access
for quantitative and qualitative analysis, which makes such systems inoperable in
resource-limited settings. All reported systems were built on a cloud system to
transfer the data between a smartphone and a server, running the ML classifiers.
Depending on the internet speed, this could cause a delay in the analysis due
to data transfer. In addition, the server needs to be always running, which

increases operational costs.

To address these problems, DL has emerged as a useful tool that automatically
detects important features without human supervision. DL-based CNNs offer
tremendous advantages for feature extraction due to their high learning capacity
from many images. However, creating a CNN architecture from scratch is
highly complicated, and slight modification to the structure or parameters
significantly impacts model performance [133]. Therefore, there is a tendency
to employ well-known CNN architectures, including MobileNet [134], Xception
[135], VGG16 [136], VGG19 [137], ResNet50 [138], and Inception-v3 [139]. These
architectures are compatible with Android, allowing them to be embedded in
smartphones. Therefore, no internet connection (offline), cloud, or server is
needed, contrary to the existing ML-based systems. The working principle of the

proposed system is shown in Figure 4.1.
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Figure 4.1: A schematic illustration showing the working principle of the system.
Lactate is first converted to pyruvate by LOX, releasing H2O2 which is then used by
HRP for the oxidation of TMB. The color change is imaged using a smartphone
camera and the lactate is determined by DeeplLactate, an app running a DL
classifier.

4.2 Materials and Methods

The uWPAD for lactate detection was made using a wax printing protocol. Briefly,
the uPAD was designed on Microsoft PowerPoint 2013 Software, and then the
patterns were transferred onto a Whatman filter paper using a wax printer
(Xerox ColorQube 8900, Xerox Corporation, USA). Subsequently, the
microfluidic paper-based analytical device (UPAD) was placed on a hot plate at
180 °C for 120 seconds, where the wax melted and diffused into the pores of
the filter paper, forming hydrophobic channels that allowed controlled fluid
flow. The detection areas of the uPADs were modified by first adding 0.8 uL
TMB and then an enzyme mixture containing 0.2 uL LOx and 0.8 pL HRP.
After each solution addition, the uPADs were left to dry for about 10 min at
+4 °C. The colorimetric behavior of uPADs was evaluated using artificial sweat.
Briefly, uPADs were immersed in artificial sweat solutions containing lactate at
different concentrations (0, 1, 5, 10, 20, and 50 mM), allowing these solutions
to reach the detection areas under lateral flow. Color changes in the detection
areas were imaged at time points of 0, 5, 10, and 15 min. To turn the uPAD into

a lactate patch, a sticking plaster purchased from a local pharmacy was used.
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The plaster was cut with a CNC laser-cutting machine (Genmitsu 3018-PRO
CNC, SainSmart, China) so that only the detection area of the uPAD was
visible. The lactate detecting uPAD was sandwiched between the plaster and a
transparent tape to avoid direct contact between the detection area and the skin.
As shown in Figure 4.8, a sample pad was used to absorb a sweat sample for

analysis.

4.3 Image Capturing

For the DL models to interpret a given image data accurately under various
conditions, the training dataset needs to be fed into the models first, and then
validation and testing datasets are used to optimize the parameters of these
models. The dataset used for training, validation, and testing should contain
enough high-quality images captured under various conditions such as rotation,
illumination conditions, and camera optics. Therefore, image acquisition is a
crucial step as it increases the adequacy of the dataset and leads to better
performance for DL models.

Table 4.1: Camera properties of the smartphones used for imaging.

Smartphone Brand Image Resolution  Optics  Camera Resolution
Huawei Mate 20 L.ite 4000 x 3000 /1.8 12 MP
Lenovo P2a42 4032 x 3024 /2.2 12 MP
Oppo A5 2020 4000 x 3000 /1.8 12 MP
Xiaomi Note 8 Pro 4160 x 3120 f/2 13 MP

As a proof of concept, the images here were captured under different
combinations of three light sources, four smartphone camera optics, and five
shooting angles to mimic as many varying conditions as possible. H, F, and S
bulbs were used as light sources in this context. The color temperature of the
halogen (Osram 60 W) is 2700 K (warm), the fluorescent (Klite 6 W) color
temperature is 4000 K (neutral), and the sunlight (Philips 5.5 W) bulb has a 6500
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K (cold). Switching on these light sources in different sequences created seven
lighting conditions (H, F, S, HF, HS, FS, HFS).

Lactate concentration

0mM glmM 5mM§10mM§20mM§50mM

- OO0 AR
t =10 min ﬁ H 0 F :

Figure 4.2: Images of pPADs showing visually observable color changes with

varying concentrations of lactate in artificial sweat att = 0 min and t = 5 min.

In addition, images were captured at five angles (30°, 60°, 90°, 120°, and 150°)
concerning the vertical axis between the uPAD and the smartphone camera. The
bulb sources were placed 40 cm away from the smartphones, and the distance
between each lamp source was 9 cm. The images were captured at an incidence
angle of 352 between the sources and pPAD. Android smartphones of four
different brands (Huawei Mate 20 lite, Lenovo P2a42, Oppo A5 2020, and
Xiaomi Note 8 Pro) with unique camera properties (Table 4.1) were used for
image capturing to ensure interoperability and compatibility. A total of 840
images were captured using the camera settings of the smartphones in automatic

mode.

Since the number of images in the dataset affects the performance in DL, the
number of images was increased with additional methods such as data
augmentation. The benefits of data augmentation are two-fold. First, it helps
prevent overfitting, which causes the training data to be memorized, making
it unable to interpret new data. Second, new images are created based on altering
the existing ones, which offers an artificially expanded dataset. Seven methods
were employed for augmentation, including a rotation at 90° angles on the
horizontal, vertical, and horizontal-vertical axes and square cropping with 180,
240, 300, and 400 pixels. As a result, the total number of images in the dataset
reached 10080. The images were then resized to 400x400 so that the size of
the images in the dataset was the same as before being fed into the neural

networks.
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4.4 Proposed Deep Learning Architecture

DL is the branch of ML-based on neural network architectures, including
CNNs [140], recurrent neural networks (RNN) [141], autoencoders [142], and
deep belief nets [143]. CNNs perform outstandingly in processing grid-like
topology data such as a digital image (DI) among these architectures. DI
represents visual data in the form of two-dimensional matrices driven by
applications such as classification [144], clustering [145], and object recognition

[146].

Considering their multi-layered structure, CNNs are very powerful and
computationally efficient in image classification as they employ convolution and
pooling operations and perform parameter sharing. Therefore, this study tested
several CNN-based DL models for quantitative and qualitative analysis of lactate
on pPAD images captured by a smartphone camera. CNN models follow
similar architecture, consisting of convolution and pooling operations and

several fully connected layers, as demonstrated in Figure 4.3.
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Figure 4.3: General structure of the CNN.

The convolutional layer is the main block of CNN which applies a convolution
filter on the input data to generate a feature map. The output of the

convolution layer then passes through pooling operations to reduce the
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dimensionality, leading to a smaller number of parameters and shortened
training time. The convolution and pooling operations may be repeated several
times depending on the structure of the architecture. Before the fully connected
layer, the output of the final pooling layer is converted to a vector by flattening.
It is the last and most crucial layer of CNN, which takes the data from the

flattened layer and performs the learning process through the neural network.

Here, six CNN models were trained, and it was observed that Inception-v3
outperforms the others in terms of validation and test accuracy. The dataset
used in training CNN models has a crucial role in performance, as described in

the next section.

4.5 Smartphones Application: DeeplLactate

A smartphone app has been developed for susceptible colorimetric lactate
analysis in sweat with a DL approach. To embed the trained CNN model into
Android smartphones, the TensorFlow-Lite (.tflite) library is used to make the
model compatible with smartphones. Here, the Inception-v3 model was saved as
a data file in the Hierarchical Data Format (HDF - .h5 file) due to its superior
performance among the tested CNN models. Then, the .h5 file was converted to
the .tflite file using Python and embedded in our custom-designed DeepLactate

app.

DeepLactate having a simple and user-friendly interface is demonstrated in Figure
4.4. The home page is given in Figure 4.4(a), where an image can be selected from
the gallery of the smartphone (Figure 4.4(b)), or a new image can be captured
using the smartphone camera. Then, after selecting or capturing the image from
the gallery or camera, the crop alert dialogue is displayed to the user in Figure
4.4(c). If the user taps the “NO” action, the result is calculated directly (without
cropping), as shown in Figure 4.4(d). Otherwise, the user is directed to the crop
screen when tapping the “YES” action. Next, the ROl on the image is cropped
using an adjustable crop box (Figure 4.4(e)) and displayed on the app as shown
in Figure 4.4(g). Then, the cropped image is loaded into the model using the
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“UPLOAD” icon to perform the colorimetric lactate analysis. The results are
displayed in Figure 4.4(f) and (h) on the app screen for two different solutions

with 0 and 50 mM concentrations.
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10 mM: 1,6%
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Figure 4.4: The steps for colorimetric lactate analysis in DeepLactate are as follows.
The home page of DeepLactate is given in (a). The user can select an image from the
gallery in (b) or capture a new image using the smartphone camera. Then, after
selecting the image from the gallery, the crop alert dialogue is asked of the user as in
(c). If the user taps the “NO” action, the result is calculated directly (without

cropping) as shown in (d). Otherwise, the user is directed to the crop screen in (e),
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and (g) when the “YES” action is tapped. The app tests the concentrations of 0 mM
in (f) and 50 mM in (h).

4.6 Experimental Evaluations and Discussion

A DL model embedded into a smartphone app was used with a uPAD for
offline colorimetric lactate determination in artificial and/or human sweat.
The uPAD with a single detection area was designed first to absorb a sample
and then transfer it to the detection area for colorimetric analysis. The two
enzymes LOx and HRP and TMB were used for lactate determination. Briefly,
LOx catalyzes the oxidation of L-lactate to pyruvate and produces H>O3 as a
by-product [147]. The second enzyme HRP uses the by-product H20> to
oxidize the chromogenic substrate TMB, forming a blueish color change. uPADs
were initially tested with artificial saliva containing lactate at various
concentrations. As can be visually observed in Figure 4.2, a bluish color formed,
and color intensity increased with increasing lactate concentration at both 5 and
10 min time points. A detection limit (LOD) of 0.67 mM was calculated based
on color intensity (RGB data) of images taken by Oppo A5 2020 at 5 min (LOD
= 3.3*0/Slope). The uPAD requires less than 5 uL of sample to complete the
analysis. The images of puPADs were captured via four different Android
smartphones (Huawei Mate 20 lite, Lenovo P2a42, Oppo A5 2020, and Xiaomi
Note 8 Pro) with unique camera properties (Table 4.1) under various conditions
such as rotation and illumination. A total of 840 images were captured and
augmented to 10080 images to train various DL models.

Table 4.2: Experimental results of CNN models.

Models Validation Accuracy Test Accuracy
MobileNet 0.9986 0.9869
Xception 0.9990 0.9365
VGG16 0.9926 0.9582
VGG19 0.9665 0.9463
ResNet50 0.9989 0.9767
Inception-v3 0.9992 0.9906
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In this study, six popular CNN models were trained using the created dataset
(Section 4.3). Hyper-parameters of CNN models such as epochs, learning rate,
batch size, and optimizer significantly impact performance. The number of
epochs was set to 30, and the learning rate was chosen as 0.001 with a batch
size of 64 under the optimizer of Adam, which was found to be adequate based
on extensive experimental studies. Regarding validation accuracy, the
Inception-v3 model showed the highest performance with 0.9992 compared to
other models (Table 4.2). Furthermore, the accuracy and loss results for each
epoch in the training and testing of Inception-v3 are graphically shown in
Figure 4.7. Besides validation accuracy (Equation (2.13)), precision (Equation
(2.14)), recall (Equation (2.15)), F1l-score (Equation (2.16)), and ROC curve
(Equation (2.17)) values were also used in the comparison (Table 4.3). The
confusion matrix (Figure 4.6) is also used to represent the true and predicted
labels, which consist of four indices, including TP, TN, FP, and FN.

ROC curves are one of the methods used to measure the success of the
models in distinguishing each class. The AUC approaches show that the CNN
model has successfully classified the concentrations. The threshold value was
used to classify probability values of colorimetric lactate analysis in artificial
sweat and was chosen as 0.5 to obtain the ROC curve. The ROC curve and
AUC value of the proposed CNN model (Inception-v3) to detect lactate in
artificial sweat were shown in Figure 4.5. The y-axis and x-axis in the ROC

curve represent the TP and FP rates, respectively.

Table 4.3: Evaluation of the Inception-v3 for lactate in terms of precision, recall, F1-
score, and ROC-AUC.

Moles (mM) Precision Recall Fl-score ROC-AUC

0 0.990 1.000 0.990 1.000
1 0.990 1.000 0.990 1.000
5 0.990 0.970 0.980 0.980
10 1.000 0.990 1.000 1.000
20 0.970 0.990 0.980 0.990
50 1.000 1.000 1.000 1.000
Average 0.990 0.992 0.990 0.995

The Inception-v3 model was tested with 1008 new sample data for each

concentration value. In Table 4.3 and Figure 4.4, these performance metrics and
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the robustness of the system for six different concentration values were
illustrated for Inception-v3. Figure 4.4 shows that the 5 and 20 mM
concentrations deviated from the predicted labels slightly more than the other
concentrations. However, the test accuracy was close to the validation accuracy
and outperformed the other models (Table 4.2). Next, the Inception-v3 model was
integrated into a user-friendly and simple smartphone app, DeeplLactate, for

colorimetric lactate determination in sweat.

1.0 = —_—
0.8
]
e
0 0.6
2
=
8 —— mol 0 (AUC:1.00)
t 0.4 mol 1 (AUC:1.00)
|‘-=' mol 5 (AUC:0.98)
—— mol 10 (AUC:1.00)
0.2 mol 20 (AUC:0.99)
mol 50 (AUC:1.00)
0.0 —— Random Guessing
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4.5: ROC curves of Inception-v3 in varying concentrations of the test

dataset.

The screenshots of the app were demonstrated step by step in Figure 4.4, where the
selected image from the gallery was classified for lactate detection. After the con-
centration classification, the results were displayed in DeepLactate for two different
samples, as in Figure 4.4(g) and (i), where the samples were correctly classified as 0
and 50 mM, respectively. In addition, confidence and processing time were given
for each concentration value, as shown in Figure 4.4(d), to highlight the impact
of cropping. The comparison results in Figure 4.4(d) and (g) proved that both
confidence (77% - 97.5%) and processing times (767 ms - 622 ms) were improved
for the same sample as cropping operation reduces the size of the image by
removing redundant areas. In addition, the proposed model was robust against

rotated images and showed a reliable performance (Figure 4.4(h) and (i)).
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Figure 4.6: Confusion matrix of Inception-v3 in varying concentrations of the test

dataset.
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Figure 4.7: Model Accuracy of Inception-v3 is given in (a) and Model Loss of

Inception-v3 is shown in (b).
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No. 1
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No. 2 5mM 20 mM

Figure 4.8: An image (a) showing the application of a lactate patch for human sweat
analysis. The patch was made by sandwiching a uPAD between a sticking plaster
and a transparent tape (bi—ii). Classification results of the smartphone app
DeepLactate for lactate level in the sweat of two volunteers after resting and 15

min jogging.
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Chapter 5

On-site food spoilage monitoring with
smartphone embedded machine

learning and colorimetric gelatin films

Real-time and on-site food spoilage monitoring is still challenging to prevent
food poisoning. At the onset of food spoilage, microbial and enzymatic activities
lead to the formation of volatile amines. Monitoring these amines with
conventional methods requires sophisticated, costly, labor-intensive, and time-
consuming analysis. Here, ARCE based colorimetric sensing system was
developed with the incorporation of embedded ML in a smartphone application
for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated
by crosslinking ARCE-doped FG with CDs under UV light. The colorimetric
responses of FG-UV-CD100 films to ammonia vapor were captured in different
light sources with smartphones of various brands, and a comprehensive dataset
was created to train ML classifiers to be robust and adaptable to ambient
conditions. Meanwhile, the ML classifier was integrated into our custom-designed
Android application, SmartFood++, enabling analysis in about 0.1 sec without internet
access, unlike its counterpart using cloud operation via the internet. The proposed
system was also tested on a real fish sample, demonstrating that it has a
significant advantage as a potent tool for on-site, real-time monitoring of food

spoilage by non-specialized personnel.
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5.1 Introduction

Food waste is a globally growing concern due to its potential impacts on
ecological, social, and economic consequences, including greenhouse gas
emissions, nutritional insecurity, unsustainable production, and distribution
chain [148].

According to the Food and Agriculture Organization of the United Nations,
annual food waste reaches 1.3 billion tons [149]. On the other hand, the world
population is expected to increase by almost 25% and reach nearly 10 billion
by 2050 [150]. This drastic population growth means increased consumption
of highly perishable protein-rich food and an expected increase in food waste
[151]. Concern about ensuring the sustainability and safety of food production
for the rapidly growing world population has led to the development of new
strategies, including innovative packaging applications. Smart packaging
systems offer sustainable approaches to reducing food waste by incorporating
active and intelligent compounds into biodegradable and biocompatible
polymers [152]. Normally, conventional packaging aims only to maintain food
safety and quality by serving as a physical barrier, while smart packaging presents
beyond the role of the physical barrier by adding specific functionality to
conventional packaging [153]. Thanks to their antioxidant and halochromic
properties, anthocyanins, natural color pigments, have been widely used in smart

packaging applications [154].

Recent studies have demonstrated the advantage of anthocyanins as colorimetric
freshness indicators in intelligent food packaging labels [23, 155]. The freshness
of food is often monitored by manual observation of the color change of
anthocyanins, which is time-consuming and sensitive to human perception [156].
Therefore, there is a need for an automated system that can detect a color change
to assess the freshness of the food to improve monitoring performance. The color
analysis is mainly based on the intensity values in various color spaces consisting
of three or four channels such as RGB (Red-Green-Blue), HSV (Hue-Saturation-
Value), L*a*b* (Lightness, Green-Red, Blue-Yellow), YUV (Luminance, Blue-
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Luminance, Red-Luminance) and CMYK which have been employed in many
applications including analyte detection [157] and freshness monitoring [23].

The traditional approach in colorimetric analysis is to use single or multiple
channels to derive the calibration curve that establishes a relationship between
intensity and output [130]. The calibration curve offers simplicity and ease of
use, making it widely used for colorimetric analysis in a controlled environment
[23]. However, intensity values are easily affected by the camera optics,
brightness, and source of the lights, causing the curve to be recalibrated for
specific conditions [16]. To overcome this problem and increase robustness,
advanced algorithms such as ML have been used, which learn how to classify
inputs based on features extracted from color information. In [158], a food
freshness detection prototype was developed by ML-based colorimetric analysis
obtained from a glycerol-based sensory film. A colorimetric sensor was used to
detect H,O2 with ML classifiers for air sampling [106]. The alcohol level in
saliva was determined using three ML classifiers with features extracted from four

color channels [104].

In addition to its robustness, ML is highly preferred due to its adaptability and
easy integration into smartphone-based imaging systems for quantitative and
qualitative colorimetric analysis. SPAQ [159] application was developed to detect
the alcohol level in saliva. GlucoSensing [40] application was developed to
determine glucose concentration. A low-cost paper-based microfluidic device for
nitrite concentration measurement and pH determination was integrated with a
custom Android application [160]. A custom-designed smart- phone application,
GlucoQuantifier, was developed to communicate with the remote server running
ML classifiers to determine the glucose concentration of the assay [128]. One
drawback of the mentioned studies is the necessity of cloud operations to transfer
the data to the remote server for colorimetric analysis with ML classifiers.
Internet access is required due to cloud operations, causing inoperable analysis in
resource-limited environments. The speed of the Internet is also critical to
complete the data transfer, which affects the response time for analysis.

Moreover, remote servers need to be kept up and running, resulting in higher
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operating and maintenance costs. The working principle of the proposed system
for food spoilage detection is shown in Figure 5.1.

- TVBN

Gases

Figure 5.1: A schematic illustration showing the working principle of the food

spoilage detection system.

5.2 Materials and methods

FG (200 bloom) was supplied by SG Chemicals. Magnesium oxide, boric acid,
sodium monobasic, potassium dibasic phosphates, and bromocresol green-methyl
red mixed indicator solution, were acquired from Sigma-Aldrich (St. Louis,
MO). Fuming hydrochloric acid (37%), ammonium chloride, and citric acid
were acquired from ISOLAB (Wertheim, Germany). Merck supplied ammonium

hydroxide solution (32%) (Darmstadt, Germany).

5.2.1 Fabrication of colorimetric films

The method used in this study was adapted from methods described in [23].
First, red cabbage extract was prepared following the method [161] where
chopped red cabbage was put in a beaker with distilled water at a 1: 2

cabbages: water (w/v) ratio and left stirring overnight. The extract was then
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filtered and stored in the dark at 4 °C until further use. The concentration of
the extract was determined by a modified pH differential method [162]. Next,
carbon nanodots were synthesized based on microwave-assisted carbonization of
citric acid [163]. Briefly, a 10% w/v citric acid monohydrate solution was
prepared with distilled water. After it was completely dissolved, the mixture was
heated at 550 W for 7 min in a microwave lab station (Ethos D Microwave
Labstation, Milestone Inc., USA). The obtained residue was dissolved in
distilled water and dialyzed against ultrapure water with a dialysis tubing (1200
Da cutoff, Sigma, D7884—10 FT) for 48 h. The resulting solution was then freeze-
dried (Christ Alpha 2-4 LD Plus, Martin Christ, Germany) and used to prepare
a 100 mg/ml stock solution in a sodium phosphate buffer at pH 8. The films
were prepared using the solvent casting method. FG, red cabbage extract,
glycerol, and carbon nanodot were mixed at a final concentration of 10% wi/v, 0.5
mg/l, 1% w/v, and 100 mg/l, respectively while the pH of the final mixture was
adjusted to 8. The solution was then ultrasonicated for 90 min until the gelatin
was completely dissolved. 20 ml of the solution was poured into a (10 cm X 10
cm) square petri dish and treated with 365 nm UV light for 45 min (1.5 mW/cm,
365 nm, Vilber ECX-F20.L-V1) and placed into a desiccator (0% relative
humidity) to dry at 23 °C for 48 h. Next, films were placed inside a climate
chamber with 50% RH at 20 °C and conditioned for at least 24 h before further

use.

Table 5.1: Camera properties of the smartphones used for imaging in food spoilage

detection.
Smartphone Brand Image Resolution Optics R(gsi)rruetrign
iPhone 6 1024x768 /1.8 8 MP
iPhone 11 4032 x 3024 /2.4 12 MP
LG 6 4160 < 3120 /1.8 13 MP
Samsung Galaxy A23 4080 x 1836 /2 13 MP
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5.3 Experimental Design and Image Acquisition

ML models can achieve a high classification accuracy after training on an
appropriate dataset with quantitative and qualitative representations of all
possible conditions [16, 34]. In addition, the dataset needs to be a collection
of data that ensures the robustness and adaptability of the system to new
environments, regardless of illumination conditions and camera optics.
Therefore, in this study, images were captured using smartphones (iPhone 6,
iPhone 11, LG 6, and Samsung Galaxy A23) from Android and iOS operating
systems with different camera properties (Table 5.1) under the combination of
LED (L), F, and S to ensure inter-phone repeatability and robustness against
ambient illumination conditions. Besides, imaging was repeated for three angles
(6092, 909, and 1209) to consider rotation and direction effects. The L (Osram
9 W), F (Klite 6 W), and S (Philips 5.5 W) light sources were deliberately
chosen to ensure imaging under different light characteristics, including warm
(2700 K), neutral (4000 K), and cold (6500 K) colors, respectively. The light
sources and imaging angles can be increased to expand the dataset. However,
it is found to be sufficient based on the experiments. The distances of the light
sources to the smartphones during imaging were kept constant at 20, 24 and 28
cm for L, F and S, respectively. In addition, the capturing was taken at a 302
angle of incidence with 10 cm between the smartphone and the film. The film
response (Table 5.2) was captured with nine different ammonia gas
concentration values under seven lighting conditions (L, F, S, LF, LS, FS, LFS)
in auto mode with four smartphones and three angles, resulting in 756 images for
the dataset. Before training the ML classifiers, the dataset was transferred to a

computer for pre-processing, as discussed in the next.

5.4 Machine Learning for Colorimetric Analysis

Here, ML processes, including feature extraction, selection, and classification

with RF, are introduced for colorimetric analysis of spoilage monitoring.
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5.4.1 Feature Extraction in Machine Learning

Feature extraction, a crucial step in ML training, is a size reduction process
through efficiently representing an image with information such as color,
texture, size, shape, and location [40] Removing redundant or irrelevant
information from the image increases the accuracy of the classifiers as the
learning relies on relevant features and reduced dimensionality. In that sense,
the number and type of the features are critical for the image representation and
thus directly linked to the classifier performance. Here, color information is used
to extract the image features, as it is found to be promising in image
representation [41]. The ROI, namely film response, was cropped to convert
the captured RGB images to HSV, L*a*b*, YUV, and CMYK, so that single
channels (R, G, B, H, S, V, L*, a*, b*, Y, U, V, C, M, Y, and K) were obtained
to determine the color features. Then, the mean, standard deviation, and kurtosis
values for channels were calculated, leading to forty-eight features. To further
reduce the computational complexity and improve the performance, feature

selection was employed as discussed next.

Table 5.2: The color change of FG-UV-CD100 film with varying concentrations of

ammonia vapor.
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5.4.2 Feature Selection in Machine Learning

Feature selection is the process of identifying the most relevant subset features,
providing robust and improved classification with reduced computational burden
[164]. Eliminating irrelevant features contributes to computational efficiency,
leading to a rapid response in colorimetric analysis [165]. In that sense, various
feature selection algorithms were employed, including ReliefF [166], Mutual
Information [167], Gain Ratio [168], Information Gain [169], Fisher’s [170],
Correlation Coefficient [171], and Chi-Squared [64]. These algorithms were
used to select the most relevant subset among the forty-eight features, and their
contribution to the overall performance was observed to select the most
appropriate one. Based on extensive comparative studies, Chi-Squared was found
to be adequate as a feature selection algorithm in this study. After the Chi-
Squared feature selection, eighteen irrelevant features were eliminated, and the

number of features was narrowed down to thirty (Figure 5.2).

Feature importance scores sorted using Chi2 algorithm
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Figure 5.2: Feature selection using Chi-Squared algorithm.
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5.4.3 Classification with Random Forest

Twenty-three ML classifiers were tested using the finalized feature set to monitor
food spoilage based on color variation in film response images. After comparison
in terms of accuracy, precision, recall, F1-score, ROC Area, and MCC, the RF was

chosen due to its superior performance compared to its counterparts.

The RF consists of multiple decision trees and nodes to utilize ensemble learning
combining many classifiers to solve classification and regression problems [172].
In the RF, each node is split using the best of a subset of randomly selected
estimators at that node, whereas, in other standard trees, each node is split using
the best distribution among all variables. Therefore, the RF is more robust
against overfitting, an undesirable ML problem. It uses only two variables,
including the number of variables in the random subset and the number of trees

in the forest [173]. The structure of the RF classifier is shown in Figure 5.3.
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Figure 5.3: The general structure of Random Forest.

5.5 Smartphone Application: SmartFood++

SmartFood++, our ML-based Android application for food spoilage
monitoring, was improved to perform colorimetric analysis without a remote
server and an internet connection (offline). In the SmartFood++ application,

the classification was run in Android with an embedded RF, resulting in more
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robustness than SmartFood [23], the previous version running with the
calibration curve. In addition, the interface of the application has been

improved to be simple and user-friendly with designs and icons.

To run an embedded ML classifier in the application, the feature extraction
and the ML model must be Java-compatible as the application was developed in
Android Studio with Java language. To test an ML classifier in the application,
the input must be represented with the same feature types used in training the
classifier. Therefore, the feature extraction script was first coded in the
Eclipse IDE for Java Developers (2022-06) before being integrated into the
application in Android Studio. The same script was also used to create a
“.CSV” file, containing the feature set to train the RF classifier. To ensure the
compatibility of the trained model with Android, the WEKA 3.9.6 environment
was used as it was also developed in Java. The CSV file was then converted to
ARFF (“.arff”) file extension for the training of the RF in the WEKA. After the
training, it was saved with the model extension file (“.model”) to embed into

the Android application.

With the improved interface, even non-expert users can easily perform operations
such as uploading, viewing, and cropping images. The image can be uploaded
to the application in two ways: an image can be selected by the user from the
gallery, as in Figure 5.4(b), or a new image can be captured using the built-in
camera. Then, using the adjustable crop box, the ROI can be determined from
the image as in Figure 5.4(c), (d), (g) and (h). When the “CALCULATE”
button is tapped in Figure 5.4(e) and (i), the concentration value can be
calculated based on the RF classifier and displayed on the screen (Figure 5.4f

and j).

5.6 Real samples

Freshly caught horse mackerels were purchased from a local market (Ankara,
Turkey) and transported immediately to the laboratory in an ice bucket. Horse
mackerel samples (25-30 g) were put into square petri plates (10 cm x 10 cm).

A film piece of 1 cm x 1 cm was attached to the cellophane and then placed 1
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cm above the fish sample. The plates were kept at 4°C during 8 days of storage.
The color of the films was monitored daily by taking images of the films with a

smartphone.

EEEEEEEEEH=

10 mg/100 g 149 ms 120 mg/100 g

f\/\f\f\ )
Ay \/ \_/u\./vv

AAEEPRRE,
'v'qv \./\/:}\/

A Inconsumable

Figure 5.4: The steps for colorimetric food spoilage monitoring in SmartFood++ are
as follows. The homepage of SmartFood++ is given in (a). The user can select an
image from the gallery in (b) or capture a new image using the smartphone
camera and crop the image using an adjustable crop box as in (c), (d), (9),
and (h). Cropped patches are given in (e) and (i). The application is tested

with the consumable food (fish) in (f), and the inconsumable one in (j).

5.7 Result and Discussion

Gases such as ammonia, trimethylamine, and dimethylamine, also known as
TVB-N compounds, are produced during the spoilage of protein-rich foods due

to microbial and enzymatic activities. Ammonia among these volatile
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nitrogenous with the lowest boiling point is released rapidly at the onset of
spoilage of fish and meat products and thereby can be used as a model TVB-
N compound to develop food freshness labels [174]. In response to ammonia
and other TVB-N compounds, a visible color change of anthocyanins is
expected because of their structural conversion. Therefore, we collected images
of the developed films for different ammonia concentrations. As illustrated in
Table 5.2, the color of the films changed drastically from bright red to dark
green when films were exposed to ammonia concentration above 20 mg N/ 100
g. The alkaline environment on the surface of the films is created due to the
formation of ammonium ions by hydration and hydrolysis of ammonia vapor
[175]. Under primary conditions, deprotonation of the phenolic hydroxyl
groups of anthocyanins leads to color change [176]. Altogether, these results
indicated that ARCE-loaded films were sensitive enough to detect changes in
fish freshness.

Here, we report ML-based colorimetric monitoring of food spoilage using the
color change in FG-UV-CD100 films resulting from the interaction of TVB-N
compounds with anthocyanins. To ensure the robustness of the classifier, a
comprehensive dataset was created by capturing the color response of FG-UV-
CD100 films to nine different ammonia gas concentrations with four different
brands of smartphones under seven different lighting conditions. The images
were then processed to extract forty-eight features from the ROI on films. Next,
the Chi-Squared algorithm was used to select a new subset with thirty features.
Twenty-three ML classifiers were trained with selected features and RF
outperformed other classifiers, as shown in Table 5.3. The performance of the
classifiers was compared with classification accuracy (Equation (2.13)), precision
(Equation (2.14)), recall (Equation (2.15)), Fl-score (Equation (2.16)), ROC
(Equation (2.17)), and MCC (Equation (2.18)).

The performance metrics results of ML classifiers in (Table 5.3) showed that RF
had the highest accuracy for colorimetric food spoilage detection. The ROC
AUC has also proved that the RF has successfully classified the concentrations
(in Appendix B Figures B1-9). Classification metric results and confusion

matrix are available in Table 5.4 and Figure 5.5(a) and (b), respectively. The
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confusion matrices visualize the relationship between the true and predicted
classes of the classifier. In Table 5.3, the metric results are below the average
values for 40 and 50 mg N/100 g concentrations which can be seen in the
confusion matrix (Figure 5.5(a) and (b)) where the true and predicted classes of
RF for each concentration value of FG-UV-CD100 films are illustrated. Next, the
RF classifier was embedded into a user-friendly and simple smartphone

application, SmartFood++, for colorimetric food spoilage detection.

Table 5.3: Classification accuracy results for colorimetric food spoilage detection

with different ML classifiers.

ML Classifiers Classification Accuracy (%)
Random Forest 98.8
SVM 96.5
Nearest Neighbors (KNN) 94.69
Coarse Tree 94.69
Ensemble Bagged Tree 93.93
Linear SVM 85.95
LDA 79.52
Logistic Regression 76.43
EBC 72.98
Bernoulli Naive Bayes 72.34
Gaussian Process 65.04
Weighted KNN 64.56
Gradient Boosting Classifier 62.74
Ensemble RUS Boosted Tree 62.02
RBF SVM 61.83
PCA 59.64
AdaBoost 58.97
Naive Bayes 58.77
Extra Tree Classifier 57.46
Ensemble Subspace Discriminant 57.02
QDA 54.4
Bagging Classifier 45.48
Decision Tree 44.8
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In addition, the proposed system was tested on a real sample to demonstrate its
robustness and performance. In that sense, the fish (horse mackerel) sample was
monitored and captured with smartphone cameras under seven lighting
conditions to create a dataset specific to fish spoilage. After feature extraction
and selection were employed, the RF was trained with a fish-feature set and

showed 99.6% test accuracy.

Table 5.4: Evaluation of the RF for colorimetric food spoilage detection in terms of

Precision, Recall, F1-score, Accuracy, ROC Area, and MCC.

Precision Recall F1score Accuracy ROC MCC Class

1.000 1.000 1.000 1.000 1.000 1.000 0

1.000 0.988 0.994 1.000 0.994 0.994 10
0.988 0.988 0.988 0.988 0993 0.987 20
0.964 0.988 0.976 0964 0992 0973 30
0.988 0.976 0.982 0.988 0987 0.980 40
0.976 0.976 0.976 0976 0987 0973 50
0.988 0.988 0.988 0.988 0993 0987 60
1.000 0.988 0.994 1.000 0.994 0.993 90
0.988 1.000 0.994 0988 0999 0993 120

Weighted 0.988 0.988 0.988 0.988 0.993 0.987
Average

The demonstration with an embedded RF classifier to SmartFood++ was given in
Figure 5.4, where the two different selected images were processed and classified in
the application after cropping with the adjustable crop box (Figure 5.4c-d-g-h). After
classifying the concentration levels, the results were displayed in SmartFood++ as in
Figure 5.4(f) and (j), where the fish samples were correctly classified as 10 mg N/100
g and 120 mg N/100 g. The comparison results in Figure 5.4(f) and (j) proved
that processing times (149 ms - 68 ms) were significantly reduced, providing
real-time colorimetric analysis for fish samples. Moreover, our application

informs the user with various stickers based on the test result. If the food is
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consumable, the “Bon Appetit” text under a happy-face sticker is displayed on
the screen (Figure 5.4(f)). Otherwise, it shows a no-food sticker with

“Inconsumable” text (Figure 5.4(j)).
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Figure 5.5: Confusion matrix of RF in different concentrations.

Finally, in our study, ML and colorimetric analysis are integrated for the first
time under an Android application for food spoilage. Similar studies [104, 177]
reported ML-based colorimetric analysis. However, the proposed study
differentiates itself from them by embedding the ML model into Android
applications, reducing the response time to about 0.01 sec. Unlike existing
studies that require more than minutes for colorimetric analysis due to internet-
based cloud and server operations, this study does not require online
connections, which reduces the cost and enables real-time video processing.
Multiple frames from the video can provide more information than a single

image, resulting in improved food monitoring.
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Chapter 6

Conclusions and Future Research

Here, on-site colorimetric analysis based on Al-embedded Android smartphone
assistants has been investigated. This chapter presents a summary of the critical
contributions of this thesis. Furthermore, based on the discussion on the

limitations of our work, potential directions for future research are also suggested.

6.1 Conclusions

This thesis discusses Al approaches and smartphone-based on-site colorimetric
analyses in three subjects: hydrogen peroxide detection, lactate detection in
sweat, and food spoilage detection. We have presented the following three key
findings in Chapters 3, 4, and 5, respectively: (1) to the best of our knowledge,
this is the first study that links an ML-based smartphone app with chromogenic
agents in pPADs, enabling non-enzymatic quantitative analysis of H>O> for
rapid and portable on-site surveillance, (2) to the best of our knowledge, this
is the first study to link DL with quantitative and qualitative colorimetric analysis
of chemical species, and (3) to the best of our knowledge, this is the first study
that embeds an ML classifier into a smartphone application for food spoilage
monitoring. These contributions will be elaborated on in more detail in the

following subsections.

6.1.1 Non-enzymatic colorimetric detection of hydrogen
peroxide using a pPAD coupled with a machine

learning-based smartphone app
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Here, an iodide-mediated TMB-H202 (TMB+KI) reaction system was
applied for compassionate, selective, and accurate non-enzymatic colorimetric
determination of H2O: in transparent liquids such as water using a pPAD
coupled with an ML-based smartphone app. The results were analyzed by
comparison with those of KI. This paper introduced a non-enzymatic H>0>
detection system using a smartphone app based on colorimetric analysis with
ML. The reaction of H2O2 and chromogenic agents (TMB + KI or Kl) in
UPADs led to a concentration-dependent color change without requiring any
enzymes or catalytic nanoparticles. To the best of our knowledge, this is the
first study that links an ML-based smartphone app with chromogenic agents in
uPADs, enabling non-enzymatic quantitative analysis of H>O> for rapid and
portable on-site surveillance. To ensure the system works independently of
camera optics and ambient light conditions, the dataset was created with four
smartphones in seven different illumination conditions to train ML classifiers.
Based on the performance comparison of various ML classifiers, TMB+KI gave
the highest classification accuracy (97.8%) in the O to 5 mM concentration
range, whereas Kl performed its best between 0.2 and 50 mM with 92.3%
accuracy. These results indicated that in the quantitative analysis of H2O>2, KI
performs better in the high concentration range, while TMB+KI is more

efficient in the low range.

6.1.2 Smartphone embedded deep learning approach for
highly accurate and automated colorimetric lactate

analysis in sweat

This study reports a highly accurate and rapid classification of lactate in sweat
by a DL model-embedded smartphone app, DeepLactate, offering the advantage
of offline analysis. To improve the robustness against illumination variation and
ensure inter-phone repeatability, the DL models were trained with the images
of uPAD captured in seven illumination conditions using four smartphones of
different brands. The top-performing model, Inception-v3, was embedded in a
smartphone app, allowing rapid analysis in a resource-limited setting as no data
sharing is required for the server via cloud systems. The proposed system can
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detect lactate in sweat with 99.9% accuracy in less than 1 sec, demonstrating its
great practical potential in colorimetric analysis. The system was also tested on
volunteers, in which the classification results of the app showed an increase in
sweat lactate after jogging. To the best of our knowledge, this is the first study
to link DL with quantitative and qualitative colorimetric analysis of chemical

species.

6.1.3 On-site food spoilage monitoring with smartphone
embedded machine Ilearning and colorimetric

gelatin films

Herein, we demonstrated a new implementation of ML classifiers that has the
potential for on-site real-time monitoring of food spoilage by incorporating FG
films with embedded RF into the SmartFood++ application. These FG films can
change color in response to the accumulation of ammonia released from spoiled
food. The colorimetric response was captured with four smartphones in seven
different illumination conditions and three exposure angles to create a
comprehensive dataset for the training ML classifiers, leading to improved
robustness against the illumination variance and camera optics. Among the tested
classifiers, the highest classification accuracy (98.8%) was achieved with RF,
demonstrating that the proposed system has great potential in colorimetric
food spoilage monitoring. The system was also trained and tested with real fish
samples, resulting in 99.6% accuracy. In addition, the RF classifier was
embedded in SmartFood++, allowing analysis in about 0.1 sec without internet
access. To the best of our knowledge, this is the first study that embeds an ML

classifier into asmartphone application for food spoilage monitoring.

6.2 Future Research

There are some possible critical extensions to the work discussed in this thesis
based on the problems and limitations of the proposed methods. In this section,

we highlight the limitations and drawbacks of the developed techniques and
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propose some directions for further improvements. An outline of the possible

directions for future research is sketched below.

In non-enzymatic colorimetric detection of hydrogen peroxide, the system
could be further extended by enlarging the dataset for closer
concentration levels and employing more sophisticated methodologies
such as DL and transfer learning to improve classification accuracy and
sensitivity. Overall, the proposed system offers portability, rapid response,
easy operation, and high selectivity, which can be applied in point-of-care
sensing, healthcare, and environmental monitoring in resource-limited

settings.

In automated colorimetric lactate analysis in sweat, it should be noted
that the classification sensitivity of the proposed system can also be
improved by training the system with closer concentration levels. The
proposed system could be easily used for clinical and environmental
monitoring in remote and resource-limited settings by extending
colorimetric analysis for multi-analyte detection in real samples such as

water, urine, and blood.

Unlike conventional measurements in on-site food spoilage monitoring
with smartphone-embedded ML, our system offers real-time, robust, and
easy operation for non-expert users, which can contribute to developing

new tools with advanced functions for smart packaging.

While classifying in colorimetric analysis using Al algorithms, the system
rounds up to whichever concentration level the result is close to. This problem

can be solved by performing regression analysis.

We used only Android as the operating system in smartphone applications. In
future studies, it can be used on phones with different operating systems (iOS).

Experimental design will be developed with modeling and optimization

studies.
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Appendix A

Analysis of precision, recall and F1 score for LDA and EBC classification
algorithms in the classification of H202 concentration at t=30 s and t=10 minutes
of KI and TMB+KI mixtures:

Table A.1: Evaluation of the LDA for Kl at t=30 s in terms of precision, recall and F1

Score.

precision recall F1 score
0 mM 0.79 0.71 0.73
0.01 mM 0.78 0.82 0.72
0.05 mM 0.59 0.61 0.62
0.1 mM 0.64 0.67 0.65
0.2 mM 0.88 0.82 0.78
0.5mM 0.9 0.88 1
1 mM 0.83 0.71 0.77
5mM 0.97 1 1
10 mM 0.9 0.84 0.91
25 mM 0.88 1 1
50 mM 1 1 1
Average 0.83 0.82 0.84

102



14 T T T
I Frecision
N Recall
1.2r [ F1-score | |
1k i
==
= i
1]
| T—
=
£
L}
g i
0 0o.01 0.05 0.1 0.2 0.5 1 5 10 25 50

Concentrations (mM)

Figure A.1: Evaluation of LDA with error bars in terms of precision, recall, and F1
score at t=30 s for TMB+KI.

Table A.2: Evaluation of the LDA for Kl at t=30 s in terms of precision, recall and F1

score.

precision recall F1 score

0 mM 0.92 0.79 0.85
0.01 mM 0.87 0.9 0.9
0.5 mM 0.93 1 0.88

1 mM 0.97 0.92 0.91

5 mM 0.94 1 1

10 mM 0.9 0.91 0.98
25 mM 1 1 1

50 mM 0.92 0.96 0.98
Average 0.93 0.94 0.94
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Figure A.2: Evaluation of LDA with error bars in terms of precision, recall, and F1
score at t=30 s for TMB+KI.

Table A.3: Evaluation of the LDA for Kl at t=10 min in terms of precision, recall and

F1 score.
precision recall F1 score
0 mM 0.83 0.68 0.73
0.01 mM 0.86 0.86 0.86
0.05 mM 0.77 0.86 0.81
0.1 mM 0.81 0.79 0.8
0.2 mM 0.88 0.93 0.88
0.5 mM 0.9 0.96 0.95
1mM 0.96 0.93 0.95
5mM 1 0.89 0.94
10 mM 0.81 0.89 0.85
25 mM 0.96 0.93 0.95
50 mM 0.9 0.93 0.91
Average 0.88 0.88 0.88
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Figure A.3: Evaluation of LDA with error bars in terms of precision, recall, and F1
score at t=10 min for TMB+KI.

Table A.4: Evaluation of the LDA for Kl at t=10 min in terms of precision, recall and

F1 score.

precision recall F1 score

0mM 0.96 0.82 0.88
0.01 mM 0.9 0.93 0.91
0.5 mM 0.93 0.96 0.95

1 mM 0.93 0.93 0.93

5 mM 1 1 1

10 mM 0.9 0.89 0.89
25 mM 0.93 0.93 0.93
50 mM 0.84 0.96 0.9
Average 0.92 0.93 0.92
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Figure A.4: Evaluation of LDA with error bars in terms of precision, recall, and F1
score at t=10 min for TMB+KI.

Table A.5: Evaluation of the EBC for TMB+KI at t=30 s in terms of precision, recall

and F1 score.

precision recall F1 score
0mM 0.96 0.96 0.96
0.01 mM 0.9 0.93 0.91
0.05 mM 0.96 0.93 0.95
0.1 mM 0.97 1 0.98
0.2 mM 0.96 0.96 0.96
0.5 mM 1 1 1
1mM 0.96 0.93 0.95
5mM 0.88 0.86 0.81
10 mM 0.85 0.92 0.86
25 mM 0.88 0.84 0.8
50 mM 0.81 0.72 0.77
Average 0.92 0.92 0.91

106



1.4 T T T
N Frecision
N F:ecall
1.2 r [ JF1-score | |
1k 4
& o8| .
i
=
(]
L ]
= 0.6 [ .
0.4 - ]
0.2 1
o
O o.01 0,05 | 0.2 0.5 1 5 10 25 50

Concentrations (mh)

Figure A.5: Evaluation of EBC with error bars in terms of precision, recall, and F1
score at t=30 s for TMB+KI.

Table A.6: Evaluation of the EBC for TMB+KI at t=30 s in terms of precision, recall
and F1 score.

precision recall F1 score

0mM 0.96 0.96 0.96
0.01 mM 0.81 0.93 0.87
0.05 mM 0.96 0.82 0.88
0.1 mM 1 1 1
0.2 mM 1 1 1
0.5mM 1 1 1

1 mM 1 1 1

5mM 1 1 1
Average 0.97 0.96 0.96
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Table A.7: Evaluation of the EBC for TMB+KI at t=10 min in terms of precision,
recall and F1 score.

precision recall F1 score

0mM 0.96 0.98 0.96

0.01 mM 0.86 0.86 0.86

0.05 mM 0.96 0.86 0.81

0.1 mM 0.96 0.96 0.96

0.2 mM 0.96 0.93 0.88

0.5mM 0.96 0.96 0.95

1 mM 1 1 1

5mM 0.7 0.74 0.78

10 mM 0.9 0.89 0.85

25 mM 0.45 0.52 0.58

50 mM 0.68 0.72 0.65

Average 0.85 0.86 0.84
12 [ F1-score |
g _

o 001 005 01 02 05 1 5 10 25 50

Concentrations (mh1)

Figure A.6: Evaluation of EBC with error bars in terms of precision, recall, and F1
score at t=10 min for TMB+KI.
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Table A.8: Evaluation of the EBC for TMB+KI at t=10 min in terms of precision,

recall and F1 score.

precision recall F1 score
0 mM 0.98 0.96 0.96
0.01 mM 0.92 0.93 0.91
0.05 mM 0.92 0.89 0.91
0.1 mM 0.98 0.96 0.96
0.2 mM 0.98 0.98 0.98
0.5 mM 1 1 1
1mM 0.94 0.93 0.93
5mM 1 1 1
Average 0.97 0.96 0.96
1.4 T T
N Frecision
N Recall
12r [C—F1-score | |
1r { .
& o8t .
©
o
& 0.6 N
0.4 N
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o
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Figure A.7: Evaluation of EBC with error bars in terms of precision, recall, and F1

score at t=10 min for TMB+KI.
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Kl- Concentration: 0-50 mM (t=30 s)
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Figure A.8: Confusion matrix of Kl at t=30 s for the LDA classifier including 0-50
mM concentration.

Kl- Concentration: 0-50 mM (t=10 min)

) 0 0 0
0.01 0 0 0
0.05 0 0 0
0.1 0 0 0
=
[ 0.2 0 0 0
g 0.5 (0} 0 0
©
2
g 1 (0} 0 0
|_
5 3 0 0
10 1 2

25

50

0 0.01 0.05 01 0.2 0.5 1 5 10 25 50

Predicted Label (mM)

Figure A.9: Confusion matrix of Kl at t=10 min for the LDA classifier including 0-50
mM concentration.
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TMB+KI- Concentration: O-50 mM (t=30 s)
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Figure A.10: Confusion matrix of TMB+KI at t=30 s for the EBC classifier including
0-50 mM concentration.
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Figure A.11: Confusion matrix of TMB+KI at t=10 min for the EBC classifier

including 0-50 mM concentration.
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Appendix B

o Weka Classifier Visualize: ThresholdCurve. (Class value 0)
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Figure B.1: ROC curve of 0 mg N/100 g concentration with the RF.
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Figure B.2: ROC curve of 10 mg N/100 g concentration with the RF.
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&) Weka Classifier Visualize: ThresholdCurve. (Class value 20)
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Figure B.3: ROC curve of 20 mg N/100 g concentration with the RF.
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Figure B.4: ROC curve of 30 mg N/100 g concentration with the RF.

113



o Weka Classifier Visualize: ThresholdCurve. (Class value 40)
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Figure B.5: ROC curve of 40 mg N/100 g concentration with the RF.
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Figure B.6: ROC curve of 50 mg N/100 g concentration with the RF.
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&) Weka Classifier Visualize: ThresholdCurve. (Class value 60)
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Figure B.7: ROC curve of 60 mg N/100 g concentration with the RF.
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Figure B.8: ROC curve of 90 mg N/100 g concentration with the RF.
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&) Weka Classifier Visualize: ThresholdCurve. (Class value 120)
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Figure B.9: ROC curve of 120 mg N/100 g concentration with the RF.
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