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Artificial Intelligence Based Android Assistant for 

Colorimetric Detection 

 

Abstract 

A colorimetric analysis is a technique that measures the properties of the substance 

using color changes in chemical or biochemical analysis. It is vital in analysing 

biological, medical, and environmental samples in many fields, such as the food, 

medicine, cosmetics, and paint industries. Colorimetric analysis requires correct 

measurement and calibration techniques to obtain accurate results. Therefore, artificial 

intelligence (AI) and smartphone technology have been widely used in developing 

biological sensors in chemistry and biomedicine in recent years. Images obtained using 

a smartphone camera are processed with AI techniques, resulting in highly accurate 

results. This thesis discusses AI approaches and smartphone-based on-site colorimetric 

analyses in three different subjects: hydrogen peroxide (H2O2) detection, lactate 

detection in sweat, and food spoilage detection, respectively. First, the iodide-mediated 

3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 reaction system was applied to a 

microfluidic paper-based analytical device (µPAD) for the non-enzymatic 

colorimetric determination of H2O2. The proposed system is portable and includes a 

µPAD and a machine learning (ML)-based smartphone app. The colorimetric change 

in detection was achieved without using any enzymes or nanoparticles with catalytic 

properties, resulting in a low-cost and stable system. A smartphone application named 

“Hi-perox Sens” with image capture, cropping, and processing features has been 

developed to make the system simple and user-friendly. Briefly, circular µPADs were 

designed and tested with varying concentrations of H2O2. After the color change, 

images of the µPADs were taken with four smartphones under seven lighting 
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conditions. To make the system more robust and adaptable to lighting variations and 

camera optics, images were first processed for feature extraction and then used to train 

ML classifiers. According to TMB+KI, it showed the highest classification accuracy 

(97.8%) with inter-phone reproducibility at t=30 s under illumination and maintained 

its accuracy for 10 minutes. Second, a µPAD was combined with a deep learning (DL) 

based smartphone app called “DeepLactate” and then applied for quantitative and 

selective determination of lactate concentration in sweat. Images of µPADs taken with 

smartphones of various brands in different lighting conditions were used to train DL 

models to make the system more robust and adaptable to lighting changes. The highest-

performing model, Inception-v3, was later built into a smartphone app, making it easy 

to use for non-expert users. Unlike ML classifiers, DL models can automatically 

extract features and are embedded in a smartphone app, allowing analysis without 

internet access. According to the results, the current system showed 99.9% 

classification accuracy with phone-independent repeatability and less than 1 second 

processing time. Finally, µPAD was converted into a patch to determine sweat lactate 

levels in two volunteers after rest and 15 minutes of jogging. The system detected 

lactate in human sweat and confirmed that the lactate level in sweat increased after 

running. Third, real-time and on-site food spoilage monitoring is still challenging to 

prevent food poisoning. At the beginning of food spoilage, microbial and enzymatic 

activities lead to the formation of volatile amines. Monitoring these amines by 

conventional methods requires complex, costly, labor-intensive, and time-consuming 

analyses. An anthocyanin-rich red cabbage extract (ARCE)-based colorimetric 

detection system was developed by incorporating embedded ML into a smartphone 

app for real-time food spoilage monitoring. FG-UV-CD100 films were first produced 

by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light. 

The colorimetric responses of FG-UV-CD100 films to ammonia vapor were captured 

in different light sources with smartphones of various brands. A comprehensive dataset 

was created to train ML classifiers that are robust and adaptable to environmental 

conditions with 98.8% classification accuracy. Meanwhile, the ML classifier was 

integrated into our specially designed Android application “SmartFood++”, allowing 

analysis in about 0.1 seconds without internet access, unlike its counterpart using cloud 

operation over the internet. The proposed system was also tested on a real fish sample 
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with 99.6% accuracy, demonstrating its great advantage as a powerful tool for on-site, 

real-time monitoring of food spoilage by non-specialized personnel. 

 

Keywords: Artificial intelligence, colorimetric analysis, deep learning, 

machine learning, Android, smartphone. 
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Kolorimetrik Tespit için Yapay Zeka Tabanlı Android 

Asistanı  

 

Öz 

Kolorimetrik analiz, kimyasal veya biyokimyasal analizde maddenin özelliklerinin 

renk değişimleri kullanılarak ölçülmesini sağlayan bir tekniktir. Gıda, ilaç, kozmetik 

ve boya endüstrileri gibi birçok farklı alanda biyolojik, tıbbi ve çevresel numunelerin 

analizinde hayati önem taşımaktadır. Kolorimetrik analiz, doğru sonuçlar elde etmek 

için doğru ölçüm ve kalibrasyon teknikleri gerektirir. Bu nedenle son yıllarda kimya 

ve biyotıpta biyolojik sensörlerin geliştirilmesinde yapay zeka ve akıllı telefon 

teknolojisi yaygın olarak kullanılmaktadır. Akıllı telefon kamerası kullanılarak elde 

edilen görüntüler, yapay zeka teknikleriyle işlenerek yüksek doğrulukta sonuçlar elde 

ediliyor. Bu tezde yapay zeka yaklaşımları ve akıllı telefon tabanlı yerinde 

kolorimetrik analizler sırasıyla hidrojen peroksit (H2O2) tespiti, terde laktat tespiti ve 

gıda bozulma tespiti olmak üzere üç farklı konuda ele alınmaktadır. İlk olarak, iyodür 

aracılı 3,3',5,5'-tetrametilbenzidin (TMB)-H2O2 reaksiyon sistemi, enzimatik olmayan 

kolorimetrik H2O2 belirleme için bir mikroakışkan kağıt bazlı analitik cihaza (µPAD) 

uygulanılmıştır. Önerilen sistem taşınabilirdir ve bir µPAD ve makine öğrenimi tabanlı 

bir akıllı telefon uygulaması içermektedir. Tespitteki kolorimetrik değişim, katalitik 

özelliklere sahip herhangi bir enzim veya nanoparçacık kullanılmadan elde edilmiştir, 

bu da düşük maliyetli ve kararlı bir sistemle sonuçlanmıştır. Sistemin basit ve kullanıcı 

dostu olması için “Hi-perox Sens” isimli görüntü yakalama, kırpma ve işleme 

özelliklerine sahip bir akıllı telefon uygulaması geliştirilmiştir. Kısaca, dairesel 

µPAD'ler tasarlanmış ve değişen konsantrasyonlarda H2O2 ile test edilmiştir. Renk 

değişiminden sonra yedi aydınlatma koşulunda dört akıllı telefon ile µPAD'lerin 
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görüntüleri alınmıştır. Sistemi daha sağlam ve aydınlatma varyasyonlarına ve kamera 

optiklerine uyarlanabilir hale getirmek için görüntüler önce özellik çıkarımı için 

işlendi ve ardından makine öğrenimi sınıflandırıcılarını eğitmek için kullanılmıştır. 

TMB+KI'ye göre aydınlatma altında t=30 s'de telefonlar arası tekrarlanabilirlik ile en 

yüksek sınıflandırma doğruluğunu (%97,8) göstermiş ve doğruluğunu 10 dakika 

korumuştur. İkinci olarak, bir µPAD, “DeepLactate” adlı derin öğrenme tabanlı bir 

akıllı telefon uygulamasıyla birleştirilmekte ve ardından terdeki laktat 

konsantrasyonunun kantitatif ve seçici olarak belirlenmesi için uygulanmıştır. Farklı 

aydınlatma koşullarında çeşitli markaların akıllı telefonlarıyla çekilen µPAD'lerin 

görüntüleri, sistemi daha sağlam ve aydınlatma değişikliklerine uyarlanabilir hale 

getirmek için derin öğrenme modellerini eğitmek için kullanıldı. En yüksek 

performanslı model olan Inception-v3, daha sonra bir akıllı telefon uygulamasına 

yerleştirildi ve uzman olmayan kullanıcılar için kullanımı kolaylaştırdı. Makine 

öğrenimi sınıflandırıcılarından farklı olarak, derin öğrenme modelleri özellikleri 

otomatik olarak çıkarabilir ve bir akıllı telefon uygulamasına gömülü olarak internet 

erişimi olmadan analiz yapılmasına olanak tanımaktadır. Elde edilen sonuçlara göre, 

mevcut sistem telefondan bağımsız tekrarlanabilirlik ve 1 saniyeden kısa işlem süresi 

ile %99.9 sınıflandırma doğruluğu göstermiştir. Son olarak, iki gönüllüde dinlenme ve 

15 dakikalık koşu sonrasında ter laktat düzeylerini belirlemek için µPAD bir yamaya 

dönüştürülmektedir. Sistem insan terinde laktat tespit etti ve koşu sonrasında terdeki 

laktat seviyesinin arttığını doğruladı. Üçüncüsü, gıda zehirlenmesini önlemek için 

gerçek zamanlı ve yerinde gıda bozulma izlemesi hala zordur. Gıda bozulmalarının 

başında mikrobiyal ve enzimatik faaliyetler uçucu aminlerin oluşumuna yol 

açmaktadır. Bu aminlerin geleneksel yöntemlerle izlenmesi, karmaşık, maliyetli, emek 

yoğun ve zaman alıcı analizler gerektirir. Antosiyanin açısından zengin kırmızı lahana 

özü tabanlı bir kolorimetrik algılama sistemi, gerçek zamanlı gıda bozulma izlemesi 

için bir akıllı telefon uygulamasına gömülü makine öğrenimi dahil edilerek 

geliştirilmiştir. FG-UV-CD100 filmleri ilk olarak ARCE katkılı balık jelatininin 

karbon noktalarla UV ışığı altında çapraz bağlanmasıyla üretildi. FG-UV-CD100 

filmlerinin amonyak buharına verdiği kolorimetrik tepkiler, çeşitli markaların akıllı 

telefonlarıyla farklı ışık kaynaklarında yakalanmaktadır. Sağlam ve çevre koşullarına 

%98.8 sınıflandırma doğruluğu ile uyarlanabilen makine öğrenimi sınıflandırıcılarını 

eğitmek için kapsamlı bir veri seti oluşturuldu. Bu arada, makine öğrenimi 
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sınıflandırıcısı, özel olarak tasarlanmış Android uygulamamız “SmartFood++” ile 

entegre edilerek, internet üzerinden bulut işletimi kullanan benzerinden farklı olarak, 

internet erişimi olmadan yaklaşık 0,1 saniyede analiz yapılmasına olanak 

sağlamaktadır. Önerilen sistem aynı zamanda gerçek bir balık numunesi üzerinde 

%99.6 doğrulukla test edildi ve uzman olmayan personel tarafından gıda 

bozulmalarının yerinde, gerçek zamanlı izlenmesi için güçlü bir araç olarak büyük 

avantajını göstermektedir. 

Anahtar Kelimeler: Yapay zeka, kolorimetrik analiz, derin öğrenme, makine 

öğrenmesi, Android, akıllı telefon. 
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Chapter 1 

1 Introduction  

Introduction 

This introductory chapter first presents colorimetric analysis and motivation of this 

thesis in Section 1.1. Then, Section 1.2 specifies our contributions of the work. Finally, 

the outline of the thesis is given in Section 1.3. 

1.1 Colorimetric Analysis and Motivation 

Colorimetric analysis is a quantitative analytical method that measures the 

concentration of a substance in a sample based on its color change. It relies on the 

principle that a substance will interact with a specific reagent to produce a measurable 

color change [1]. The colorimetric analysis is commonly used in various fields, such 

as chemistry [2], biochemistry [3], environmental science [4], food science [5], and 

medical diagnostics [6]. In colorimetric analysis, a sample is mixed with a reagent, 

which causes a chemical reaction to occur, leading to a color change. The intensity of 

the color change is proportional to the concentration of the analyte in the sample. The 

color change is measured using a colorimeter or a spectrophotometer, which 

determines the intensity of light absorbed by the sample. Colorimetric analysis can 

detect various analytes, including proteins [7], enzymes [8], sugars [9], metals [10], 

and organic compounds [11]. It is a simple and relatively inexpensive method 

compared to other analytical techniques. Colorimetric analysis is widely used in 

various industries for quality control and to monitor contaminants in the environment, 

food, and water. It is also used in medical diagnostics to detect diseases and monitor 

treatment progress. 

Colorimetric analysis detection methods are techniques used to detect the presence or 

concentration of a substance in a sample based on color changes [12]. These methods 
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rely on the ability of a substance to interact with a reagent and produce a detectable 

color change. Some common colorimetric detection methods include:  

• Enzyme-linked Immunosorbent Assay (ELISA): This method is commonly 

used in medical and biological research to detect the presence of specific 

antigens or antibodies in a sample. ELISA uses a specific antibody linked to an 

enzyme, producing a detectable color change when interacting with the target 

antigen [13]. 

• Lateral Flow Immunoassay (LFA): This is a rapid and simple detection 

method commonly used in point-of-care testing. It relies on the movement of 

a fluid along a nitrocellulose membrane that contains a specific antibody. When 

the target analyte in the sample binds to the antibody, a visible color change is 

produced [14]. 

• Colorimetric Paper-based Assay: A colorimetric paper-based assay is a type 

of colorimetric analysis that uses paper as a substrate for detecting the presence 

or concentration of a target substance in a sample [15]. The paper is 

functionalized with specific ligands or receptors that bind to the target 

substance, causing a color change. The color change can then be visually 

observed or analyzed using colorimetric techniques, such as spectroscopy or 

image analysis. Colorimetric paper-based assays have several advantages over 

traditional assays. They are low-cost, portable, and require minimal sample 

preparation, making them ideal for use in resource-limited settings or the field. 

They also have the potential for high sensitivity and specificity, making them 

suitable for various applications, including medical diagnostics, environmental 

monitoring, and food safety. Colorimetric paper-based assays have been used 

in various applications, including the detection of infectious diseases, such as 

hydrogen peroxide [16], lactate in sweat [17], and environmental 

contaminants, such as heavy metals [18] and pesticides [19]. They are a 

promising avenue for developing low-cost, portable, and easy-to-use assays 

that can be used in various settings. 

• Colorimetric Films: Colorimetric films are a type of film that can be used in 

colorimetric analysis as a substrate for colorimetric assays [20]. In colorimetric 

analysis, a color change is used to detect the presence or concentration of a 

target substance in a sample. The colorimetric film can be functionalized with 
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specific ligands or receptors that bind to the target substance, causing a color 

change in the film. The color change in the colorimetric film can then be 

analyzed using colorimetric analysis techniques, such as spectroscopy or image 

analysis, to determine the concentration of the target substance in the sample. 

The colorimetric film can be optimized to ensure maximum sensitivity and 

accuracy by adjusting the film thickness, porosity, and functionalization 

method [21]. Colorimetric films have several advantages in colorimetric 

analysis [22]. They can be fabricated into films of different shapes and sizes, 

making them suitable for various applications. They can also be made from 

various materials, including natural polymers like gelatin or chitosan or 

synthetic polymers such as polyethylene or polystyrene, allowing for a wide 

range of options regarding film properties, such as mechanical strength, 

chemical stability, and biocompatibility. Fish Gelatin-UV-Carbon Dots-100 

(FG-UV-CD100) films are a type of fish gelatin-based film that has been 

modified to enhance its mechanical and thermal properties. They have been 

specifically designed for use in food packaging applications, where their high 

strength and barrier properties make them ideal for protecting food products 

from contamination and deterioration [23]. 

Colorimetric analysis is closely related to color spaces, mathematical models that 

describe colors based on their physical attributes. Color spaces provide a standardized 

way of representing colors, allowing accurate color reproduction and comparison 

across different devices and media [24].  

In colorimetric analysis, the color of a substance or solution is typically measured 

using a colorimeter or spectrophotometer, which detects the intensity of light absorbed 

or transmitted by the sample at different wavelengths. These measurements are then 

used to determine the concentration of the substance in the sample based on the known 

relationship between the color and the concentration. 

Color spaces are often used to define the colors that are measured in colorimetric 

analysis. Some commonly used color spaces include RGB (Red, Green, Blue), CMYK 

(Cyan, Magenta, Yellow, Black), and CIELAB (L*, a*, b*), which is based on the 

perception of color by the human eye. These color spaces provide a standardized way 
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of describing and measuring colors, which allows for accurate color reproduction and 

comparison. 

In colorimetric analysis, various color spaces are used to describe and quantify the 

colors produced by a sample. Some of the commonly used color spaces in colorimetric 

analysis include: 

• RGB: RGB is an additive color space that describes colors produced by digital 

displays such as monitors and televisions. It defines colors based on the red, 

green, and blue light required to produce a given color [25]. 

• CMYK (Cyan, Magenta, Yellow, Key or Black): CMYK is a subtractive 

color space used in printing. It defines colors based on the cyan, magenta, 

yellow, and black ink required to produce a given color [26]. 

• Lab (Lightness, a, b): Lab is a device-independent color space used in 

colorimetric analysis to quantify color differences. It defines colors based on 

their lightness, or L value, as well as their red-green (a) and blue-yellow (b) 

color components [27]. 

• CIE Lab*: CIE Lab* is a color space defined by the International Commission 

on Illumination (CIE) that is widely used in colorimetric analysis. It is similar 

to the Lab color space but is based on a standard observer model designed to 

match the human visual system [28]. 

These color spaces are used in colorimetric analysis to quantify and compare colors, 

and to calculate color differences and colorimetric parameters such as hue, saturation, 

and brightness. The choice of color space depends on the specific application and the 

characteristics of the sample being analyzed. In summary, colorimetric analysis and 

color spaces are closely related, as color spaces are often used to define and measure 

the colors that are analyzed in colorimetric analysis. Using standardized color spaces 

allows for accurate and consistent color measurements across different devices and 

media, essential in many fields, including graphic design, printing, and photography. 

A calibration curve is a graphical representation of the relationship between the 

concentration of a substance and the corresponding signal intensity produced by a 

colorimetric analysis method [29]. The calibration curve is constructed by analyzing a 

series of standards with known concentrations of the target substance and plotting the 
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resulting signal intensities against the known concentrations. This relationship can 

then be used to determine the concentration of the substance in an unknown sample by 

measuring its signal intensity and comparing it to the calibration curve. In colorimetric 

analysis, a calibration curve is often used to determine the concentration of a particular 

substance in a sample [30]. The advantage of a calibration curve is that it provides a 

quantitative measure of the concentration of the substance in the sample, which is 

essential for accurate and reliable analysis [31]. 

The calibration curve also allows for the determination of the limit of detection (LOD) 

and limit of quantification of the colorimetric analysis method. These limits represent 

the minimum concentration of the substance that can be reliably detected and 

quantified using the method. The calibration curve also allows for the determination 

of the accuracy and precision of the colorimetric analysis method, which is essential 

for ensuring the reliability and reproducibility of the results.  

A few potential disadvantages of the calibration curve in colorimetric analysis should 

be considered [32]. One disadvantage is that the calibration curve is specific to the 

method used for the colorimetric analysis. Any changes in the experimental conditions, 

such as temperature, pH, or reaction time, may affect the shape and position of the 

calibration curve and, therefore, require constructing a new calibration curve. In 

addition, the accuracy and precision of the colorimetric analysis method may be 

affected by factors such as interference from other substances in the sample matrix or 

instrument variability [33]. These factors can lead to inaccuracies in the calibration 

curve and affect the accuracy of the results obtained. Finally, the construction of a 

calibration curve assumes that the relationship between the concentration of the target 

substance and the measured signal intensity is linear over the entire range of 

concentrations being analyzed. However, in some cases, this relationship may not be 

linear, which can affect the accuracy of the analysis. 

Due to these limitations, unlike the calibration curve, AI remains an essential tool in 

colorimetric analysis as it allows accurate and reliable measurement of the 

concentration of a substance in a sample and provides information about the 

sensitivity, accuracy, and precision of the analysis method [34]. With AI, colorimetric 

analysis can be used for data analysis and processing. For example, AI algorithms can 
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be trained to recognize patterns in colorimetric data and use this information to identify 

or quantify the presence of a particular substance in a sample. 

Furthermore, AI algorithms (ML & DL) can optimize and automate colorimetric 

analysis processes, increasing the speed and accuracy of data analysis, reducing the 

time and cost associated with manual data analysis, and enabling faster and more 

reliable results. AI has several advantages in colorimetric analysis [35]: 

• Increased Accuracy: AI algorithms can analyze large amounts of colorimetric 

data with high accuracy, reducing the chance of human error and increasing 

the reliability of the results. 

• Speed: AI algorithms can process colorimetric data much faster than humans, 

enabling faster analysis and decision-making. 

• Automation: AI algorithms can automate many aspects of colorimetric 

analysis, reducing the need for manual labor and making the process more 

efficient. 

• Optimization: AI algorithms can optimize colorimetric analysis processes by 

identifying patterns and trends in the data that may not be immediately apparent 

to humans, which can help improve the accuracy and efficiency of the analysis. 

• Detection of Complex Patterns: AI algorithms can detect complex patterns 

in colorimetric data that may be difficult or impossible for humans to detect, 

which can help to identify subtle changes in colorimetric data that may indicate 

the presence of a particular substance or condition. 

• Integration: AI algorithms can be integrated with other technologies, such as 

robotics or laboratory information management systems (LIMS), to create a 

fully automated and integrated colorimetric analysis system. 

AI has the potential to significantly improve the accuracy, speed, and efficiency of 

colorimetric analysis, making it a valuable tool in a wide range of applications, 

including food spoilage detection [36], medical diagnostics [37], environmental 

monitoring [38], and materials science [39]. 

Smartphones have become increasingly popular in scientific research due to their 

portability, affordability, and high-quality imaging capabilities. Several recent studies 

have explored using Android-based smartphones for colorimetric analysis [16, 17]. 
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One way to use an Android-based smartphone in colorimetric analysis is to use its 

camera as a colorimeter, which involves capturing an image of the sample and then 

analyzing the RGB values of the image to determine the color change caused by the 

reaction. There are several advantages of using an Android-based smartphone as a 

colorimeter [40]: 

• Low-cost: Compared to traditional colorimeters, smartphones are much more 

affordable, making them accessible to a wider range of researchers and 

students. 

• Portability: Smartphones are compact and portable, allowing for field-based 

colorimetric analysis. 

• High-quality imaging: Smartphone cameras have advanced significantly in 

recent years, allowing for capturing high-quality images. 

• Easy to use: Most people are familiar with smartphones, making them an 

intuitive and user-friendly tool for colorimetric analysis. 

• Integration with apps: Several apps have been developed for Android-based 

smartphones that enable colorimetric analysis. These apps can simplify the 

process of capturing and analyzing images and can also provide data 

management and analysis tools. 

Overall, using Android-based smartphones in the colorimetric analysis is a promising 

field, offering many advantages over traditional colorimeters. However, there are still 

some limitations to be addressed, such as the need for calibration and validation of the 

smartphone camera and the potential for variability in lighting conditions that may 

affect the accuracy of the analysis [40]. 

In addition, Android-based smartphones can be used for both online and offline 

colorimetric analysis. In online colorimetric analysis, the smartphone is connected to 

the internet, and data is transmitted in real-time to a server for analysis, which can be 

useful for applications that require immediate feedback or monitoring, such as 

environmental monitoring or medical diagnostics. The application transmits the data 

to a server for analysis and feedback. The server may perform additional analysis, such 

as pattern recognition or ML, to provide more detailed information about the sample 

[41]. On the other hand, offline colorimetric analysis involves analyzing colorimetric 

data directly on the smartphone without an internet connection, which can be helpful 
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when a network connection is unavailable, such as in remote locations or the field. The 

application stores the data locally on the smartphone and performs the analysis without 

an internet connection [17]. The results can be displayed on the smartphone screen or 

exported for further analysis. In summary, Android-based smartphones can be helpful 

for online and offline colorimetric analysis, providing a portable, affordable, and 

convenient solution for many applications. 

In this thesis, it was first aimed to improve the accuracy of different AI models related 

to the determination of concentration values in colorimetric analysis studies. Then, 

Android-based smartphones were used so that the user could view the results quickly. 

Therefore, a colorimetric analysis study was carried out to determine concentration 

levels in three areas: hydrogen peroxide detection, lactate detection in sweat, and food 

spoilage detection, respectively. In the first study, after the concentration levels of 

hydrogen peroxide are determined using ML classifiers, the results are sent online to 

the Android-based Hi-perox Sens application with the help of a Firebase remote server. 

In the second study, colorimetric lactate analysis concentration levels in sweat were 

determined, and DL classifiers were embedded in the Android-based application 

DeepLactate after training. This application can work offline without a remote server 

and internet. Thus, results were obtained faster and on-site. In the third study, ML 

classifiers were trained while determining concentration levels in food spoilage 

detection. The Random Forest (RF), which had the highest accuracy among all 

classifiers, was embedded into our custom-designed Android application 

SmartFood++. Unlike other Android applications that require internet access for data 

transfer to the remote server running the ML classifier, SmartFood++ includes an 

embedded ML classifier that can complete analysis in around 0.06 seconds. 

1.2 Contributions 

(1) Firstly, non-enzymatic µPADs coupled with a ML-based smartphone app were 

developed for high-sensitive and selective determination of H2O2 in transparent liquids 

such as water. First, circular patterns were printed on filter paper using a solid ink 

(wax) printer, and then the patterns were processed at high temperatures to obtain 

hydrophobic boundaries of the µPADs. The use of single or multiple indicators has 

been reported for the colorimetric detection of H2O2, such as 3,3'-diaminobenzidine, 
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3,3',5,5'-tetramethylbenzidine (TMB), and potassium iodide (KI). The µPADs were 

prepared for testing by adding only two indicators, TMB and KI, to the detection zones 

for color change in the presence of different concentrations of H2O2. No enzyme or 

nanoparticle with catalytic properties was used to detect, making the system cost-

efficient and chemically/thermally stable. The performance of the system was 

compared with those of using KI only and TMB only.  An ML-based smartphone app 

with a simple interface was developed to make the process more user-friendly, robust, 

and adaptive against illumination variation and camera optics. ML classifiers were 

trained using features extracted from images taken under seven different illumination 

conditions. The trained classifiers were then integrated into the Hi-perox Sens app to 

be presented to the user. The results clearly showed that the proposed system has a 

high potential for practical use. 

(2) Secondly, a DL approach has been adopted to determine lactate concentration 

quantitatively and selectively in sweat. First, a µPAD capable of fluid absorption was 

designed and printed on filter paper using a wax printer, and then the patterns were 

turned into hydrophobic barriers at high temperatures. The detection area of the µPAD 

was modified with 3,3',5,5'-TMB, horse radish peroxidase (HRP), and lactate oxidase 

(LOx) for enzymatic colorimetric detection of lactate. The performance of the sensor 

was tested in artificial sweat containing lactate at different concentrations. To improve 

the robustness of the system and its adaptability to illumination variation and camera 

optics, images captured by smartphones of different brands in various lighting 

conditions were used to train several DL models. The top-performing model, 

Inception-v3, was embedded into an Android-based smartphone app (DeepLactate) 

with a user-friendly interface for offline detection of lactate in sweat. To the best of 

our knowledge, this is the first study to apply a DL model for colorimetric analysis of 

chemical species. The system was also tested on volunteers with a patch in which the 

µPAD was sandwiched between a plaster and transparent tape.  The results showed 

that the current approach has a high potential for practical use, especially in sports 

medicine.    

(3) Thirdly, ML was embedded in a smartphone application for colorimetric analysis 

of food freshness with our developed colorimetric fish gelation films, FG-UV-CD100, 

based on red cabbage anthocyanins and the carbon dot. The color response of FG-UV-
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CD100 against nine different volatile ammonia concentrations was collected with 

smartphone cameras to detect the concentration using an ML classifier. In this regard, 

the classifiers were trained separately for the color response of FG-UV-CD100 film to 

each ammonia concentration, with a relevant dataset containing color features 

extracted from the captured images. The dataset was collected with four smartphones 

in seven illumination conditions and three pose angles to ensure robustness against 

camera optics and ambient light conditions. The RF, which had the highest accuracy 

among all classifiers, was embedded into our custom-designed Android application 

SmartFood++. Unlike other Android applications that require internet access for data 

transfer to the remote server running the ML classifier, SmartFood++ includes an 

embedded ML classifier that can complete analysis in around 0.06 seconds. To the best 

of our knowledge, this is the first study that embeds an ML classifier into a smartphone 

application and links with FG films, enabling colorimetric food freshness monitoring 

for rapid and portable on-site surveillance. The proposed system was also tested in a 

real sample (e.g., fish), in which the results prove that it has great potential for food 

spoilage monitoring in resource-limited settings. 

1.3 Outline of the Thesis 

The thesis is organized as follows: The methods used in the related work are 

introduced in Chapter 2. Feature extraction, feature selection, AI, software 

programs, and performance metrics used throughout the thesis are described in 

detail. Chapter 3  presents our proposed non-enzymatic colorimetric detection 

of hydrogen peroxide using a µPAD coupled with an ML-based smartphone 

application algorithm. Chapter 4 introduces a smartphone-embedded DL 

approach for highly accurate and automated colorimetric lactate analysis in sweat. 

In Chapter 5 , on-site food spoilage monitoring with smartphone embedded ML 

and colorimetric gelatin films is presented. Chapter 6 concludes the thesis with 

conclusions and recommendations for future work.  
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Chapter 2 

2 Methods  

Methods 

This chapter first introduces the feature extraction and selection from datasets in 

Section 2.1 and Section 2.2. Then, Section 2.3 presents algorithms of AI, such as ML 

and DL. In Section 2.4, Software programs, including MATLAB, Python, Java, 

WEKA, Firebase, and Android Studio, used throughout this thesis, are discussed in 

detail. Finally, several performance metrics proposed in the literature to measure the 

performance of AI algorithms are discussed in Section 2.5. 

2.1 Feature Extraction 

Feature extraction is the process of extracting more minor processed data from 

raw data [42]. This process can be considered a data compression process that 

removes unnecessary information by hiding essential information from raw data.  

Feature extraction plays a vital role in the pattern recognition problem. Therefore, the 

performance of the classifier largely depends on the quality of the feature vectors. This 

thesis uses color and texture features for feature extraction from raw image data. 

2.1.1 Color Features 

The color feature in the low-level set of attributes is one of the most common attributes 

to describe an image [43]. The color map of the image can be obtained with the color 

histograms of the image. Color is a potent property, especially for reflecting the 

general characteristics of an image and identifying objects within it. Before using the 

color features, the number of colors in the image should be converted to the other color 

spaces. In image processing, many color space models exist, such as RGB, Lab, HSV, 

YUV, and HLS [44].  
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Many color spaces are used for many applications, such as image processing [45], 

computer vision [46], and computer graphics [47]. The virtual color space in the 

RGB is represented as a combination of three primary colors, R, G, and B. Each 

pixel in the image consists of three-color  channels known as RGB components. 

It is possible to convert the RGB color space to different color spaces according 

to the needs of the application. The RGB color space is converted to the HSV 

color space to obtain the channel (V) containing the luminance information and 

the other two channels (H and S) containing the color information. The HSV 

color space describes colors like the tendency of the human eye to perceive color. 

HSV color space, like the mechanism of human vision and consists of hue, 

saturation, and brightness color channels, differs from RGB color space in that 

it separates image intensity from color information. This feature provides an 

advantage with its resistance to light changes. In the HSV color space, hue 

distinguishes colors, saturation refers to the percentage of white added to the 

pure color, and brightness refers to the perceived light intensity. The brightness 

of the image changes with illumination; however, hue and saturation, channels 

containing color information, are either insensitive or less sensitive to the change 

in illumination. These features use the HSV color space for color analysis, color-

based detection, and segmentation [48]. 

To analyze the effect of color spaces in determining the concentration level, 

images in RGB color space were converted to HSV and L*a*b* color spaces.  

Unlike the RGB color space, L*a*b* color space is designed as a device-

independent color model that will be close to the perception of the human eye. 

Defining all the colors the human eye perceives enables the measurement of 

color differences that can be expressed in terms of human visual perception. L*, 

a*, and b* are the three coordinates of this color space and represent lightness. 

The mean, standard deviation, skewness, and kurtosis, which are first, secondary, 

third, and fourth-order color moments, are explained below, respectively. 

2.1.1.1 Mean 

The mean, µ, the first color moment, gives the average color value of the image 

(Equation (2.1)) [49]. 
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(2.1) 

Here, p and q are the pixel values in the ith  row jth  column at image pixelij . 

2.1.1.2 Standard Deviation 

Standard deviation measures how spread out the values in a dataset are from the 

mean [50]. In image processing, the standard deviation can measure the amount of 

variation or noise in an image. To calculate the standard deviation of an image, 

you first need to calculate the mean value of the pixel intensities. This can be done 

by summing up all the pixel values in the image and dividing them by the total 

number of pixels. 

Once you have the mean value, you can calculate the standard deviation by taking 

the square root of the average of the squared differences between each pixel 

intensity and the mean. This formula (Equation (2.2)) can be expressed 

mathematically as: 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝜎) = √
1

𝑝𝑞
∑ ∑(𝑝𝑖𝑥𝑒𝑙𝑖𝑗 − 𝜇)2

𝑞

𝑗=1

𝑝

𝑖=1

2

 (2.2) 

2.1.1.3 Skewness 

Skewness is a measure of asymmetry in distribution [51]. The dataset is 

symmetrical if the left and right sides of the center point are the same. If the 

skewness is positive (skewed to the right), the data is spread to the left of the 

mean. If the skewness is negative (skewed to the left), the data will apply to the 

right of the mean. To extract information from the image, darker and brighter 

surfaces tend to have positive skewness compared to lighter and matte surfaces. 

Skewness gives information about the color distribution, which is defined in 

Equation (2.3), 
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2.1.1.4 Kurtosis 

Kurtosis is the normalized form of the fourth central moment of distribution [52]. It is 

also defined as the measure of the sharpness of the peak of a distribution. A high 

kurtosis distribution usually has a sharper rise, while a low kurtosis distribution usually 

has a more rounded elevation. Kurtosis is defined in Equation (2.4), 

 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = √
1

𝑝𝑞
∑ ∑(𝑝𝑖𝑥𝑒𝑙𝑖𝑗 − 𝜇)4

𝑞

𝑗=1

𝑝

𝑖=1

4

 (2.4) 

2.1.2 Texture Features 

The texture is one of the critical components in the perception of visual content. 

Like color, texture is one of the essential properties to consider when querying 

image databases [53]. Anyone can notice the texture of an image; however, the 

texture is tough to define. Unlike the color feature, texture occurs over a specific 

region rather than a spot. 

Texture features are related to the distribution of luminosity on the visual object 

and are a natural attribute of all optical surfaces. It contains crucial 

information about the structural arrangements of surfaces and their relationship 

with the environment. Texture has been studied in image processing and pattern 

detection. It has been observed to be very important in distinguishing and 

defining different pictures. Therefore, t h e  texture is one of the active features 

used in multimedia access. Textures are used not only for painting surfaces, 

however, also for perceiving movements. Although no formal structure describes 

the texture, the concepts of uniformity, coarseness, regularity, direction, 

frequency, and similarity are used as scales that reflect textural features. Different 

methods are suggested for defining the texture of any image in the field of image 

processing. The most common method of extracting the texture feature is to 
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obtain the texture spectrum that can characterize the texture image by designing 

various masks or filters [54]. Studies based on feature extraction from the Fourier 

power spectrum have also been made to capture the overall repetitions in an 

image by identifying the high energies of an image [55]. 

The texture is usually defined by bringing the image to a gray level. It has 

qualities such as texture, periodicity, and size. Homogeneity, correlation, and 

contrast are defined as features. 

2.1.2.1 Contrast 

Contrast measures the intensity or gray level variations between a reference pixel and 

its neighbor [56]. Significant contrast indicates large density differences. A still image 

has a contrast value of 0. The contrast is defined in Equation (2.5), 

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑(𝑖 − 𝑗)2𝑟(𝑖, 𝑗)

𝑗𝑖

 (2.5) 

Here, 𝑟(𝑖, 𝑗) is the gray level value of the pixel in the (𝑖, 𝑗)  coordinate. 

2.1.2.2 Correlation 

Correlation is the measure of linear dependence of gray level values which returns a 

measure between a pixel and its neighbors [57]. The correlation was calculated in 

Equation (2.8) with means 𝜇𝑖, 𝜇𝑗  (Equation (2.6)), standard deviations 𝜎𝑖 , 𝜎𝑗  (Equation  

(2.7)), 

 𝜇𝑖 = ∑ ∑ 𝑖𝑟(𝑖, 𝑗)𝑗𝑖 , 𝜇𝑗 = ∑ ∑ 𝑗𝑟(𝑖, 𝑗)𝑗𝑖    (2.6) 

 𝜎𝑖
2 = ∑ ∑ (𝑖 − 𝜇𝑖)

2𝑟(𝑖, 𝑗)𝑗𝑖 , 𝜎𝑗
2 = ∑ ∑ (𝑗 − 𝜇𝑗)2𝑟(𝑖, 𝑗)𝑗𝑖  

     

(2.7) 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑟(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑗𝑖

 (2.8) 
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2.1.2.3 Homogeneity 

Homogeneity measures how close the distribution of elements in the gray-level co-

occurrence matrix is to the diagonal of the matrix [58]. As homogeneity increases, 

contrast decreases. Homogeneity is defined in Equation (2.9), 

 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑟(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑗𝑖

 (2.9) 

2.1.2.4 Energy 

The energy property, also called the angular second-moment property, is a measure of 

image homogeneity [59]. It is expressed as the sum of the squares of the matrix 

elements (Equation (2.10)), 

 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑟(𝑖, 𝑗)2

𝑗𝑖

 (2.10) 

2.1.2.5 Entropy 

The entropy value was calculated by converting the color input image to a gray-level 

image [60]. The entropy of the image is calculated in Equation (2.11), 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑛 log2 𝑛 (2.11) 

where n is the number of normalized histograms. 

2.2 Feature Selection 

Feature selection is a technique used in AI to identify and select the most relevant 

features (or variables) from a more extensive set of available features [61]. The 

goal of feature selection is to improve the accuracy and efficiency of an AI model 

by reducing the number of input features while maintaining or even improving the 
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quality of the results. There are several methods for feature selection, including 

[62]: 

• Filter methods: These methods use statistical measures to rank the 

importance of each feature and select the top-ranked features. Examples 

include correlation-based feature selection, Chi-Squared feature selection, 

and mutual information-based feature selection [62]. 

• Embedded methods: These methods incorporate feature selection into the 

AI model's training process, selecting the most relevant features during the 

model training. Examples include Lasso and Ridge regression [62]. 

The benefits of feature selection include reducing the dimensionality of the input 

data, which can improve the efficiency and accuracy of an AI model. Additionally, 

feature selection can help to avoid overfitting and improve the interpretability of 

the model's results. However, it is essential to note that feature selection is not 

always necessary or beneficial. In some cases, using all available features may be 

the best approach, especially when dealing with complex datasets or when the 

potential benefits of feature selection are not clear. 

The number of features and samples can be pretty high in databases such as 

image processing, customer relationship management, and gene analysis. Working 

with such large databases can create a problem for ML algorithms [63]. One of 

these problems is the prolongation of classification times. Another problem is 

that many unnecessary and unimportant features degrade the performance of ML 

algorithms. For these reasons, feature selection methods have become crucial and 

essential for ML algorithms working with high-dimensional datasets.  Feature 

selection algorithms offer higher generalization ability in classifying large 

datasets and better results in solving recognition problems. In this thesis, the 

Chi-Squared was used for feature selection. 

2.2.1 Feature Selection with Chi-Squared 

The Chi-Squared (χ²) test is a statistical method used to determine the dependence or 

independence of two categorical variables [64]. In feature selection, it is often used as 

a filter method to rank the relevance of features based on their association with the 
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target variable. The Chi-Squared test would measure the difference between the 

observed frequencies of two categorical variables and the expected frequencies if the 

variables were independent. The test produces a Chi-Squared statistic, which measures 

how much the observed frequencies differ from the expected frequencies. 

In the Chi-Squared (χ2) algorithm (Equation (2.12)), a ti feature set is selected 

based on its correlation with a Cj class, and the discrimination ability (χ2) of the 

ti feature set with respect to the Cj  class is calculated as: 

 Chi − Squared (𝜒2) =
𝑆 𝑥 (𝑎𝑖𝑗 𝑥 𝑑𝑖𝑗 − 𝑏𝑖𝑗  𝑥 𝑐𝑖𝑗 )

2

(𝑎𝑖𝑗 𝑥 (𝑏𝑖𝑗 +  𝑐𝑖𝑗 ))𝑥(𝑐𝑖𝑗 𝑥 (𝑏𝑖𝑗 +  𝑑𝑖𝑗 ))
 (2.12) 

where S is the total number of samples, the aij is the number of instances in 

the category Cj containing the attribute ti, and the bij is the number of instances 

in the category Cj that does not contain the attribute ti. The cij is the number 

of samples that contain the ti attribute; however, it does not belong to the Cj  

category.  The dij is the number of samples that do not belong to the Cj category 

and do not contain the ti attribute [64]. 

2.3 Artificial Intelligence 

The idea that AI was first introduced in 1956 is that machines can think like 

humans. It started to be developed with the idea that machines act like humans. The 

famous English mathematician and computer scientist Alan Turing developed a test 

to measure whether machines are intelligent in this context [65]. According to the 

test, another human asks a human and machine questions. It is a test based on 

distinguishing between humans and machines according to the answers received 

by the person asking the question. 

AI is shaped by the joint work of many branches of science, including philosophy, 

mathematics, economics, neurology, psychology, and engineering [66]. There are 

many algorithms developed under AI, such as ML and DL. When a machine 

encounters a problem, separate algorithms can be used for each stage of analyzing, 

navigating, solving, and learning the solution. The definition of machine learning 

and its algorithms used in the thesis are explained in this context. 
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2.3.1 Machine Learning Algorithms 

ML is the ability of the computer to make decisions about similar events that 

may occur in the future and to produce solutions to the problems that will 

occur by learning the information and experience gained by the computer about 

an event [67]. ML uses some methods to take advantage of past data and finds the 

most suitable model for new data. It is not easy to manually process and analyze 

vast amounts of data. The aim here is to make predictions for future situations 

using past data. Regardless of the application area, the importance of ML methods 

is increasing daily, with the analysis of large amounts of data, making predictions, 

and helping us make decisions (Figure 2.1).  

 

Figure 2.1: There are five basic steps used to perform an ML task. 

ML, a branch of the field of AI, deals with developing algorithms and 

techniques to perform the “learning” task of computers [68]. ML is used in 

many areas, such as Natural Language Processing [69], Speech and Handwriting 

Recognition [70], Object Recognition [71], Robot Gestures [72], and Medical 

Diagnostics [73]. In addition, ML algorithms are shown in Figure 2.2.  
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ML is classified under three categories based on learning styles, including 

Supervised Learning [74], Unsupervised Learning [75], and Reinforcement 

Learning (RL) [76]. 

• Supervised Learning: The system compares the target results 

produced with the evaluated dataset and the model created by 

combining different inputs. It is essential to catch the optimum by 

minimizing the errors by the system. In supervised learning, also called 

predictive models used to predict future outcomes based on historical 

data, clear instructions are usually given on what to learn and how to 

learn from the beginning [74]. Some examples of algorithms used: 

Nearest neighbor, Naive Bayes, Decision Trees, Regression, etc. 

• Unsupervised Learning: Without specifying a target in the dataset that 

makes up the system, the model is expected to create a template by 

evaluating the inputs of the given parameters within itself. It is used to 

train explanatory models where no goals are set, and no feature is more 

important than another [75]. Some examples of algorithms can be given 

as K-Means / Clustering Algorithms. 

• RL: Based on supervised learning, this system is based on a new target 

parameter creation logic that shows how accurate the target parameter 

outputs are in the model. It is an example of ML, where the machine 

makes certain decisions based on business needs to maximize 

performance. The idea of RL is that the machine constantly trains itself 

depending on the environment. This continuous learning process is 

time-saving with less involvement of human expertise. An example of 

an algorithm used in RL is the Markov Decision Process. There is a 

subtle difference between Supervised Learning and RL. RL involves 

learning in interaction with an environment. An RL representative learns 

from experience rather than a continuous trial-and-error learning process 

against supervised learning, for which an external supervisor provides 

examples [76]. 
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Figure 2.2: Machine Learning Algorithms. 

2.3.1.1 Regression Algorithms 

Regression is about modeling the relationship between variables using a 

measure of the error in the predictions made by the model [77]. Regression 

algorithms study statistics and have been incorporated into statistical ML. This 

can be confusing because regression can be used to refer to problem class and 

algorithm class. Popular regression algorithms: 

• Ordinary Least Squares Regression (OLSR) 

• Linear Regression 

• Logistic Regression 

• Local Estimated Distribution Line Correction (LOESS) 

• Multivariate Adaptive Regression Curves (MARS) 

2.3.1.2 Instance-based Algorithms 

An instance-based algorithm is a decision problem about the sample or training 

data required for the model [78]. These algorithms typically create a sample 

database and compare new data to the database using a similarity measure 

to find the best match and make an estimate. For this reason, instance-based 
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algorithms are also called memory-based learning with practice and acquisition 

methods. The focus is on the representation of stored samples and the similarity 

measures used between samples. The popular instance-based algorithm is: 

• k-Nearest Neighbor (kNN) 

2.3.1.3 Decision Tree Algorithms 

Decision tree algorithms create a decision model based on the actual values 

of the attributes in the data [79]. Decisions made in tree structures are valid until 

an estimation decision is made for a particular record. Decision trees are trained 

on data for classification and regression problems. Decision trees are generally 

fast and precise, also a favorite in ML. Popular decision tree algorithms: 

• Classification and Regression Tree (CART) 

• Recursive Binary Tree (ID3) 

• C4.5 and C5.0 (different versions of a strong approach)) 

• Decision Root 

• M5 

• J48 

2.3.1.4 Bayesian Algorithms 

Bayesian is algorithms that explicitly apply Bayes’ Theorem for problems such 

as classification and regression [80]. Popular Bayesian algorithms: 

• Naive Bayes 

• Gauss Naive Bayes 

• Multinomial Naive Bayes 

2.3.1.5 Clustering Algorithms 

Clustering, like regression, defines the problem and method classes [81]. 

Clustering methods are typically organized by modeling approaches such as 

center- based and hierarchy. All methods are about using natural structures in 
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the data best to organize the data into groups with the best commonality. Popular 

clustering algorithms are: 

• K-Average 

• K-Medians 

• Hierarchical clustering 

2.3.1.6 Ensemble Algorithms 

Ensemble algorithms are models of weaker models that have been independently 

trained and whose predictions are somehow combined to make an overall 

prediction [82]. Much effort goes into combining the factors that undermine 

learning and how to combine them. These are a potent class of techniques.  

Popular ensemble algorithms: 

• Boosting 

• Bootstrapped Collection (Bagging) 

• AdaBoost 

• Stacked Generalization (Stacking) 

• RF 

2.3.1.7 Dimensionality Reduction Algorithms 

Like clustering algorithms, dimensionality reduction looks for natural structure 

in the data; however, in this case, to summarize or explain the data using less 

information in an unsupervised or sequential manner [83]. This can be useful 

for visualizing dimensional data or simplifying data that can later be used in 

supervised learning. Many of these algorithms can be adapted for use in 

classification and regression. Popular dimensionality reduction algorithms: 

• Principal Component Analysis (PCA) 

• Principal Component Regression (PCR) 

• Partial Least Squares Regression (PLSR) 

• Linear Discriminant Analysis (LDA) 
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• Quadratic Differential Analysis (QDA) 

• Flexible Differential Analysis (FDA) 

2.3.1.8 Artificial Neural Network Algorithms 

Artificial Neural Networks are models inspired by the structure and function of 

biological neural networks. It is a model-matching class often used for regression 

and classification problems; however, it is an enormous subfield of hundreds of 

algorithms and variations for all kinds of problems [84]. Due to the enormous 

growth and popularity in the field, more classical methods are discussed here, 

keeping DL separate from neural networks. Popular neural network algorithms: 

• Perceptron 

• Backpropagation 

2.3.1.9 Deep Learning Algorithms 

DL algorithms are a modern update to Neural Networks that use copious 

amounts of shoddy computation. They deal with building much larger and more 

complex neural networks, and as mentioned above, many methods deal with 

semi-supervised learning problems where large datasets contain very few labeled 

data [85]. Popular DL algorithms: 

• Deep Boltzmann Machine (DBM) 

• Deep Belief Networks (DBN) 

• Convolutional Neural Network (CNN) 

2.4 Software Programs 

The software programs used in the thesis, MATLAB, Python, Java, WEKA, 

Firebase, and Android Studio are mentioned here (Figure 2.3). 
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Figure 2.3: Schematic illustration of the software programs. 

2.4.1 MATLAB 

MATLAB is a computer program used for positive science and engineering 

calculations. Developed by the MathWorks company, MATLAB is also a 

programming language [86]. MATLAB, which is formed by combining the 

words “Matrix Laboratory” in English, has a matrix-based working system, as 

the name suggests. The MATLAB program enables many mathematical 

calculations such as linear algebra, statistics, optimization, numerical analysis, 

optimization, and Fourier analysis to be performed effectively and quickly; it is 

also used for 2D and 3D graphic drawing. Users can create their programs with 

MATLAB, which allows programming with matrices and the functions they 

interact with, and even very complex mathematical calculations are completed in 

a few seconds. Effective and practical programs can be prepared with MATLAB, 

where basic programming and similar functions can be used. It is possible to 

work with matrices in one, two, or more dimensions in the MATLAB program, 

where matrices are used with the same logic as arrays in programming languages 

such as C and Java [86]. 
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2.4.2 Python 

Python is a programming language that can do scientific calculations quickly, is 

very useful, advanced, and open source, can run smoothly on different platforms 

such as Windows / macOS / Linux, and is highly flexible and straightforward to 

learn [87]. The most important feature is that, unlike other programming 

languages, it does not need any compiler. 

Advanced data analytics has become a crucial topic for IT today. Python has been 

the most suitable programming language for these situations. Most of the libraries 

in the Python interface are suitable for ML and data science. Its high-quality 

commands in libraries in these areas have greatly aided the continued development 

of ML libraries and other numerical algorithm libraries. 

2.4.3 Java 

Developed by Sun Microsystems, Java was first released in 1995. Java: is a 

class- based, object-oriented programming language with many uses.  Java is also 

a computing platform for application development and execution. Java is also an 

application run software that the end user can download for free [88]. Since Java 

is a programming language that has been used for many years, it has received 

many different updates and versions. Finally, Java SE 15 version was released 

in September 2020. The software users will download to run applications is the 

Java 8 version [89]. 

The Java software that users will use to run applications is called the Java Runtime 

Environment, or JRE for short, and the computing platform used by application 

developers is called JRM for short. A Java Development Kit (JDK) tool is also 

available to application developers [88]. Java owes its popularity to its ease of 

use. Here are some reasons why developers continue to choose Java over other 

programming languages: 

• High-quality learning resources 

• Integrated functions and libraries 

• Active community support 
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• High-quality development tools 

• Security 

2.4.4 WEKA 

WEKA is the name of one of the packages used in ML, one of the crucial subjects 

of computer science. It was developed as an open source in the Java language at 

the University of Waikato and distributed under the GPL license. Waikato is 

an acronym for Environment for Knowledge Analysis [90]. WEKA reads data 

from a simple file and assumes that stochastic variables on the data are numeric 

or nominal values. It can also pull data from the database; however, it is 

expected to be file data in this case. Many libraries about ML and statistics are 

available at WEKA [90]. For example, data pre-processing, regression, 

classification, clustering, feature selection, or feature extraction are some. In 

addition, there are visualization tools that allow the results of these operations 

to be displayed visually. 

2.4.5 Firebase 

Developed with new features added by Google, Firebase is a platform that 

claims to meet all these needs and offers free use. There is a need for application 

development on any platform for any reason, followed by a control panel and, 

in any case, a user data store [91]. Applications today want to access the same 

data from every device regardless of platform. Developers whose applications 

are installed by many users also need a management panel to easily manage 

operations such as saving and keeping session information, analyzing the usage 

data of applications, sending notifications to the user to make new 

announcements, and testing the application. Firebase, which is constantly 

evolving with new features added by Google, is a platform that offers free use 

to application developers to meet all these needs. 

Firebase, which performs applications such as application management, usage 

tracking, data storage, and sending notifications without needing to write a 

different server and server-side code, provides access to every application 
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equipped with features such as Real-Time Database and Notification [91]. Remote 

Config in its new developer-friendly interface (Figure 2.4). 

 

Figure 2.4: Firebase interface. 

2.4.6 Android Studio: Smartphone Applications 

Electronic devices such as mobile phones or tablets must have an operating 

system. A device cannot work without an operating system. Android is a 

communication system developed by Google and billions of people [92]. It uses 

the Linux operating system kernel. It also supports APK extension. It is 

beneficial for such reasons. When this project is completed, it will be available 

on Android operating systems. Android Studio is a programming tool for 

developing Android applications. Some essential features of Android Studio are 

mentioned below: 

• Gradle-based, flexible project-building system 

• Fast project generation with the help of basic templates 

• The editor that facilitates screen designs 

• Easily add Google services to the app 

• Easy and secure APK signing 
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2.5 Performance Metrics 

During the performance evaluations of the proposed classifiers, accuracy (Equation 

(2.13)), precision (Equation (2.14)), recall (Equation (2.15)), F1 score (Equation 

(2.16)), AUC-ROC Curve (Equation (2.17)) and Matthews Correlation Coefficient 

(MCC) (Equation (2.18)) were calculated. 

2.5.1 Accuracy 

Accuracy is the most used metric in the classification comparison. It is the ratio 

of correctly classified samples to total samples [16]. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.13) 

where TP (True-Positive) and TN (True-Negative) describe the number of 

correctly identified positive and negative samples, while FP (False-Positive) and 

FN (False-Negative) define the incorrectly predicted samples. 

2.5.2 Precision 

Precision is a performance metric used in AI and ML to evaluate the accuracy of 

a model's predictions. Precision measures how often the model correctly identifies 

true positive cases, meaning the instances where the model predicted a positive 

outcome and it was true. In other words, precision is the ratio of true positives to 

the total number of positive predictions made by the model [16]. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.14) 

2.5.3 Recall 

The recall is the ratio of positively labeled samples to the total number of truly 

positive samples [16]. 
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 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.15) 

2.5.4 F1 Score 

The F1 score is calculated using precision and recall metrics. It optimises the 

system towards precision or recall [16]. 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.16) 

2.5.5 AUC-ROC Curve 

ROC curves are one of the methods used to measure the success of the 

models in distinguishing each class. The area under these curves (AUC) 

approaches shows that the CNN model has successfully classified the 

concentrations [17]. 

 𝑅𝑂𝐶 𝑎𝑟𝑒𝑎 =
1

2
 𝑥 (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) (2.17) 

2.5.6 Matthews Correlation Coefficient 

MCC measures the quality of binary (two-class) classification models [93]. It 

considers TP, TN, FP, and FN predictions of the model. MCC is calculated as follows: 

 𝑀𝐶𝐶 =
(𝑇𝑃 𝑥 𝑇𝑁) −  (𝐹𝑃 𝑥 𝐹𝑁)

√(𝑇𝑃 +  𝑇𝑁)(𝑇𝑃 𝑥 𝐹𝑁)(𝐹𝑃 𝑥 𝑇𝑁)(𝐹𝑁 𝑥 𝑇𝑁)
 (2.18) 
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Chapter 3 

3 Non-enzymatic colorimetric detection of hydrogen p eroxide u sing a µPAD coupled  with a machine learning-based smartphone app  

Non-enzymatic colorimetric detection 

of hydrogen peroxide using a µPAD 

coupled with a machine learning-based 

smartphone app 

In this chapter, iodide-mediated 3,3',5,5'-TMB-H2O2 reaction system was 

applied to a µPAD for non-enzymatic colorimetric determination of H2O2.  The 

proposed system is portable, incorporating a µPAD and an ML-based smartphone 

app. The colorimetric change in detection was obtained without using any 

enzymes or nanoparticles with catalytic properties, resulting in a low-cost and 

stable system.   A smartphone app called “Hi-perox Sens” capable of image 

capture, cropping and processing was developed to make the system simple and 

user-friendly.  Briefly, circular µPADs were designed with three different 

detection mixtures containing: (i) TMB, (ii) KI, and (iii) TMB+KI, respectively.  

The µPADs were then tested with varying concentrations of H2O2.  Following 

the color change, the images of the µPADs were taken with four different 

smartphones under seven different illumination conditions at t=30 s and t=10 

min.  Visual inspection showed that H2O2 induced color change only in the 

case of KI and TMB+KI. Unlike KI, the mixture of TMB+KI performed best 

at lower concentrations of H2O2. To make the system more robust and adaptive 

against illumination variation and camera optics, the images were first 

processed for feature extraction and then used to train ML classifiers. Twenty-

three ML classifiers were tested to determine the best-performing ML classifier 
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for KI and TMB+KI, respectively. A cloud system was used in the application 

to communicate with a remote server running ML classifiers. According to the 

results, TMB+KI showed the highest classification accuracy with inter-phone 

repeatability at t=30 s under versatile illumination and maintained its accuracy 

for 10 minutes. In addition, the performance of the system was also comparable 

to two different commercially available H2O2 kits in real samples. 

3.1 Introduction 

Hydrogen peroxide (H2O2) is a reactive oxygen species produced by mammalian 

cells to mediate several physiological processes, including cell proliferation, 

migration, differentiation, and even apoptosis [94]. Even though H2O2 is not so 

reactive, it can generate hydroxyl radicals that can attack specific cell 

components such as DNA and membrane lipids. Changes in its concentration 

have been associated with the development of various diseases, including cancer, 

Alzheimer, and diabetes mellitus [95] . It is widely used as a disinfectant due 

to its antibacterial and virus activity. It is also a by-product of oxidases, and 

therefore its high-sensitive detection is of great importance in developing 

biosensors for fields ranging from medical diagnostics to environmental 

monitoring [96] . Several methods, including chemiluminescence, fluorescence, 

electrochemical and colorimetric, have been proposed to detect H2O2 for 

qualitative and quantitative analysis. Among these methods, colorimetry is 

promising due to its cost-efficiency and easy operation. HRP is frequently used 

in colorimetric sensors where it catalyzes the conversion of a chromogenic agent 

[ 4 0 ,  9 7 ] . Even though H2O2 sensors with HRP offer high sensitivity and 

selectivity, they suffer from a narrow pH working range, poor reproducibility, 

high cost, and low thermal/chemical stability of the enzyme.  To overcome these 

limitations, researchers are actively studying the catalytic properties of 

nanomaterials, particularly noble metals, and their alloys, to replace enzymes 

in sensor applications. However, these nanomaterials still suffer from high cost, 

aggregation, and poor stability, and their toxic effects on living things have not 

been thoroughly investigated [98,  99] . Apart from enzymes or nanomaterials, 

the use of biopolymers with peroxidase-like activity or antioxidative activity, 
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such as chitosan and gelatin, have also been reported for the detection of H2O2 

[98]. 

In addition to being sensitive, selective, and affordable, H2O2 sensors need to be 

portable, reliable, fast, and environmentally friendly to operate in remote locations 

or resource-limited settings [ 1 0 0 ] . In that sense, µPADs are found to be 

adequate to meet the requirements, resulting in the development of various types 

of sensors. Although different methods are used in the fabrication of µPADs, the 

most preferred method is the one that was first introduced by Whitesides et al. 

[101] . The method is based on printing wax patterns that define the 

microfluidic channels and the boundaries of the detection zone with a solid ink 

(wax) printer. In µPADs, the concentration of many different analytes can be 

quantified simultaneously based on the intensity variation due to the 

concentration-dependent color change [40]. 

In colorimetric analysis, intensity information can be utilized with several color 

spaces, including RGB, HSV, and L*a*b* [ 1 0 2 ] . The conventional approach 

derives a calibration curve based on single or multiple channels, leading to the 

highest correlation between intensity and concentration (magnitude) [103]. For 

example, the average of R, V, and L* was used to obtain the calibration in the 

quantification of glucose in artificial saliva [103]. Even though the calibration 

curve performs well in a controlled environment, it tends to deviate in the case 

of ambient light conditions as the intensity values are sensitive to the illumination 

sources. This problem is handled with sophisticated methodologies like ML, 

which has emerged as a powerful tool for classification problems due to its 

flexibility and adaptability to dynamic conditions based on the features extracted 

from colorimetric information [104, 105]. The alcohol level in saliva was detected 

using features of four-color spaces (RGB, HSV, YUV, and L*a*b*) under three 

ML classifiers [104]. ML classifiers quantified The peroxide concentration with 

colour features [105]. Molgaard et al. [106]  also employed an ML approach 

to detect H2O2 using colorimetric sensor technology for air sampling. One benefit 

of ML is to be compatible with smartphone apps that perform colorimetric 

analysis in the field without extensive training [107] . The SPAQ2 app was 

developed to test the alcohol level in saliva [104] . The ChemTrainer app detected 
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peroxide according to the color changes in the colorimetric test strips [105]. All 

these apps provide user-friendly interfaces to perform colorimetric analysis with 

ML (Figure 3.1). 

 

Figure 3.1: Schematic illustration of the proposed system. The color change of 

chromogenic agents can be detected with a smartphone camera under ambient light 

conditions. 

3.2 µPAD fabrication and colorimetric detection 

of H2O2 

First, a circular design to be used as a reaction/detection zone of µPADs was 

drawn in Microsoft PowerPoint. This design was then printed on a Whatman 

filter paper with a solid ink (wax printer) printer. Solid ink is a mixture of 

hydrocarbons and hydrophobic carbamates with a melting point of about 120 

◦C. After printing, the solid ink was kept on a heater at approximately +150 ◦C 

for 3 minutes. An aluminum foil and a planar weight (1–2 kg) were placed on 

top of the paper to ensure uniform heat transfer from the hot plate to the paper 

and penetration of the melted solid ink into the pores of the chromatography 

paper. Hence, solid ink boundaries that define the reaction/detection zone were 

obtained. Next, three different µPADs were prepared by introducing 0.8 µl KI 

(6 M), TMB (10 mM) +KI (6 M), and TMB (10 mM) into µPADs, respectively. 

The µPADs were left to dry for about 5 minutes for the liquids to dry. Next, the 

µPADs were tested for the colorimetric detection of H2O2 at varying 
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concentrations (0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 25, 50 mM), in which case 2 

µL aliquots of test solutions were introduced into the reaction/detection zones 

of µPADs. The image of each µPAD was captured using a smartphone camera 

at t=30 s and t=10 min, respectively. 

 

Figure 3.2: Color changes with respect to chromogenic agents, time, and 

concentrations. 

3.3 Data Acquisition and Processing 

ML classifiers must be trained with a dataset with a strong representation of all 

possible conditions to get a significant classification performance [ 1 0 8 ] . The 

robustness and adaptability of the system, therefore, are highly dependent on 

the dataset, which needs to be enlarged considering illumination conditions and 

camera optics. To address these issues, the images of the µPAD were captured 

with multiple smartphones under halogen (H), fluorescent (F), and sunlight (S) 

light bulb sources to imitate the conditions. The H bulb emits 2700 K warm colors, 

while the F and S bulbs give 4000 K neutral and 6500 K cool colors, respectively. 

Three light sources were used to get seven light conditions including H, F, S, 

HF, HS, FS, and HFS, running single or multiple light sources together. The 

bulb sources were located 50, 53, and 57 cm away from H, F, and S, 

respectively. In addition, the capturing was performed at an incidence angle of 

30◦ under a homogeneously illuminated area with a constant distance of 8 cm 

between the smartphone and the µPAD. 
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To maintain inter-phone operability, four different smartphones with different 

brands (Oppo A5 2020, Reeder P10, iPhone 5SE, and iPhone 6S) and operating 

systems (Android and iOS) were used for capturing. The specifics of the cameras 

for each smartphone are shown in Table 3.1.  Images were captured in automatic 

mode at t=30 s and t=10 min as shown in Figure 3.2.  

Table 3.1: The smartphones are used to create a dataset with images of µPADs for 

machine learning. 

Smartphone 

Brand 
Image Resolution Optics 

Camera 

Resolution 

iPhone 5SE 4032 x 3024 f/2.2 7 MP 

iPhone 6S  4032 x 3024 f/2.2 12 MP 

Oppo A5 2020 4000 x 3000 f/1.8 12 MP 

Reeder P10 4160 x 3120 f/2 13 MP 

Twenty-eight images were taken with each smartphone separately under seven 

different illumination conditions at two-time steps, resulting in fifty-six images. 

Since the group of eleven concentrations was captured at a single frame, 616 

images of each concentration were collected for TMB+KI and KI, respectively. 

These images were then transferred to a computer to process in MATLAB 

(MathWorks, MA, USA) environment for feature extraction. 

3.4 Feature Extraction and Machine Learning 

Analysis 

Feature extraction is identifying an object based on properties such as size, 

shape, composition, and location of the object [109]. In mathematical terms, it is 

the process of inferring from raw data information to increase the variability of 

the class pattern while minimizing the in-class pattern variability, which 

facilitates quantitative measurements, classification, and object identification 

[ 1 1 0 ] . Feature extraction is a crucial step in visual inspection as it has an 

observable effect on the efficiency of the ML classifiers. Before training the 
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classifiers, image features were extracted based on color and texture information. 

The region of interest (ROI) for each concentration was cropped to convert the 

RGB image into HSV and L*a*b*, resulting in a total of nine color channels 

(R, G, B, H, S, V, L*, a*, b*) information. Then, the mean, skewness, and 

kurtosis values were calculated for each color channel, leading to twenty-seven 

features. As texture features, contrast, correlation, homogeneity, and energy were 

also extracted [ 1 1 1 ] . In addition to the color and texture features, the entropy 

and intensity values were also added to have a total of thirty-three features. 

To determine the H2O2 based on color changes, twenty-three ML classifiers were 

trained with the extracted features, and their performances were compared 

regarding classification accuracy. Among these classifiers, LDA and Ensemble 

Bagging Classifier (EBC) outperformed the others for KI and TMB+KI, 

respectively. The LDA is a supervised classifier that applies Bayesian and 

maximum likelihood rules to estimate the highest likelihood between input and 

pre-defined classes using a discriminant function [112]. EBC is an ensemble 

technique used to improve the performance of ML classifiers in terms of stability 

and accuracy. It combines the classifications of randomly generated training sets 

to estimate the final prediction [113] based on the bagging algorithm.  

As the LDA and EBC showed the best classification performance, they were 

integrated into our smartphone application called Hi-perox Sens. 

3.5 Smartphone Applications: Hi-perox Sens 

Our custom-designed Android app, Hi-perox Sens, was developed for quantitative 

evaluation of H2O2 in µPADs with ML, enabling colorimetric analysis operable 

whenever or wherever needed. The LDA and EBC ML classifiers, running in the 

remote server, were integrated into the Hi-perox Sens due to their outstanding 

performances. The Hi-perox Sens uses a Firebase cloud system to transfer the 

image to the remote server and receive the classification result back to the app. 
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Figure 3.3: Colorimetric hydrogen peroxide quantification steps on the Hi-perox 

Sens. The homepage of the Hi-perox Sens is given in (a). The user can select an 

image from the gallery or capture a new image using the smartphone camera 

in (b) and display it on the screen as in (c). The image can be cropped using 

an adjustable crop box in (d). The cropped patch is given in (e) and 

uploading the cropped patch is shown in (f). The user selection of the 

uploading patch as TMB+KI or KI is shown in (g). The classification result of 

the image is given in (h). 

With a simple and user-friendly interface, Hi-perox Sens is demonstrated in Fig. 

3.3. The home page is given in Figure 3.3(a) where an image can be taken from 

the gallery of the smartphone (Figure 3.3(b)) or a new image can be captured 

using the smartphone camera. Once the image is selected or captured, it is 
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displayed on the app, as shown in Figure 3.3(c). Next, the ROI on the image 

needs to be drawn using an adjustable crop box, as shown in Figure 3.3(d-e). 

Then, the ROI is cropped and displayed on the app (Figure 3.3(f)) to double-

check the ROI and whether the selected area is suitable for the analysis. If not, 

the ROI can be re-drawn before the cropped patch is transferred to the remote 

server via a Firebase by tapping the upload icon. ML classifiers running in the 

remote server quantify the concentration level. As shown in Figure 3.3(g), the 

colorimetric reagent information (TMB+KI or KI) must also be sent to the 

remote server to choose the best classifier for the colorimetric analysis. Last, 

the result is returned to Hi-perox Sens via a Firebase to display on the app 

(Figure 3.3(h)). 

3.6 Results and Discussion 

Here, the iodide-mediated TMB-H2O2 reaction system was used instead of an 

enzyme or a nanomaterial with catalytic properties to detect H2O2. Briefly, 

three different chromogenic agent mixtures were tested with varying 

concentrations of H2O2; i) only TMB, ii) only KI, and iii) TMB+KI. As shown in 

Figure 3.2, no color change was observed in the case of only TMB, which clearly 

demonstrates that TMB alone cannot catalyze the oxidation of H2O2. However, in 

the case of only KI, H2O2 catalyzes the conversion of KI to iodine and produces 

a visual brownish color. Although the changing color intensity was not 

proportional to the low concentration of H2O2, a linear correlation was observed 

when the H2O2 concentration exceeded the 1 mM level (Figure 3.2).  When 

TMB+KI was used as the detection mixture, a blue color appeared in the 

presence of H2O2. The oxidation of TMB caused the color change. A possible 

chemical reaction equation involving three steps is presented below. 

 
2𝐾𝐼 + 𝐻2𝑂2 ↔ 𝐼2 + 2𝐾𝑂𝐻 

(3.1) 

 
𝐼2 + 5𝐻2𝑂2 ↔ 2𝐻𝐼𝑂3 + 4𝐻2𝑂 

(3.2) 
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𝑟𝑒𝑑 − 𝑇𝑀𝐵 + 𝐼𝑂3

− + 6𝐻+ ↔ ox − TMB +  𝐼+ + 3𝐻2𝑂 
(3.3) 

In the first step (Equation (3.1)), KI gets into a reaction with H2O2 and produces I2, 

which then once again reacts with H2O2 to produce iodic acid (HIO3) (Equation 

(3.2)). As HIO3 ionizes, iodate (IO−3) is formed. In the final stage (Equation (3.3)), 

the oxidation of TMB is induced by the reduction of IO−3 to I−, resulting in the 

formation of blue color. According to this reaction, iodide catalyzes the rapid 

oxidation of TMB. Unlike the chromogenic agent KI, TMB+KI performed best in 

the low concentration range of H2O2, and the color intensity became saturated when 

the H2O2 concentration level exceeded 5 mM (Figure 3.2). In addition, the effect of 

pH and ionic strength on the signal response of μPADs were tested in the presence 

of 1 mM H2O2. No significant change in colour formation was observed in the pH 

range of 5 to 11. However, the intensity of the color formed at pH 3 was lower than 

the rest. As for the ionic strength, the color intensity slightly increased with NaCl 

concentration. The adopted strategy has the potential to provide an essential basis 

for simple, rapid, cost-effective, sensitive, and selective colorimetric assay for the 

detection of H2O2. 

In this study, H2O2 concentration was detected using ML classifiers based on the 

color change that occurred in the µPADs. ML classifiers need to be trained in 

advance with a dataset that contains similar images that the user might use in 

testing. Therefore, the dataset was created with four different smartphones 

(iPhone 5SE, iPhone 6S, Oppo A5 2020, and Reeder P10) under seven 

illumination conditions (H, F, S, HF, HS, FS, HFS). This dataset was transferred 

to a computer for pre-processing in MATLAB 2021b. The ROI for each 

concentration was cropped to extract features for training ML classifiers.  First, 

twenty-three classifiers were trained for TMB+KI and KI with eleven 

concentrations ranging from 0 to 50 mM at t=30 s. The best classification results 

were 81.3% and 91.9% for KI and TMB+KI, respectively. After careful analysis 

of confusion matrices of the classifiers, it was observed that KI and TMB+KI 

failed to classify H2O2 in lower and higher concentration ranges, respectively. 

Therefore, classifiers were trained again with low concentration values (0, 0.01, 

0.05, 0.1, 0.2, 0.5, 1, 5 mM) for TMB+KI, and high concentration values (0, 0.2, 
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0.5, 1, 5, 10, 25, 50 mM) for KI. As a result, the classification accuracies were 

improved to 97.3% and 92.4% for TMB+KI and KI, respectively. These results 

were summarized in Table 3.2. The same process was repeated with images 

taken at t=10 min., and the results were given in 

Table 3.3. The system shows similar classification accuracy even after 10 min., 

which proves the robustness of the system. 

In classification, the EBC gave the highest accuracy for TMB+KI while the 

LDA outperformed for KI. Besides the classification accuracy (Equation (2.13)), 

the performance of these classifiers was also tested in terms of precision 

(Equation (2.14)), recall (Equation (2.15)), and F1 score (Equation (2.16)).  

As can be seen from the performance metrics (Figure 3.4), TMB+KI had the 

highest accuracy value, with 97.8% using EBC. The detailed classification reports 

and confusion matrices with respect to the type of chromogenic agents, timing, and 

concentration range can be found in Appendix A Tables A1-8 and Appendix A Figures 

A1-11. 

 

Figure 3.4: Evaluation of EBC with error bars in terms of precision, recall, and F1 

score at t=30 s for TMB+KI using low concentrations. 

It should be noted that the performance metric results were lower than the 

average values in the cases of 0.01 and 0.05 mM H2O2. This can also be observed 
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in the confusion matrix shown in Figure 3.5(a), visualizing the performance 

metrics. A confusion matrix is mainly used to illustrate the relation between 

the true and predicted outputs of the classifier concerning each class. The 

robustness of the system can be quickly and visually observed when the 

confusion matrices of TMB+KI at 30 s (Figure 3.5(a)) and 10 min (Figure 

3.5(b)) were compared. Figure 3.5(c) and (d) show performance analysis of LDA 

for KI at 30 s and 10 min, respectively. According to the matrices, much better 

prediction accuracy and robustness were achieved in the high concentration 

range of H2O2, as in TMB+KI. 

Finally, our study integrated LDA and EBC classifiers with Hi-perox Sens, a 

simple and user-friendly mobile app for H2O2 detection. Images of this app are 

shown in Figure 3.3.  The photo is selected from the gallery or captured using 

the camera; then, the ROI is cropped and sent via Firebase to the remote server 

running the ML classifier to measure the concentration level. The result is then 

returned and displayed in Hi-perox Sens. For example, the processes performed 

on an uploaded image are shown step by step in Figure 3.3. At last, Hi-perox Sens 

correctly classified the H2O2 concentration as 25 mM. The smartphone-based 

system successfully worked and quantified H2O2 levels in water with ML 

classifiers. The LOD of the sensor with TMB+KI was calculated to be 5.4 µM 

based on the RGB data of images taken under HFS with iPhone 6S (LOD = 

3.3*σ/Slope). Although the system works without a calibration curve, the 

calculated LOD value demonstrates its potential to be trained for lower 

concentrations of H2O2. 

The most relevant studies include [105, 106, 114, 115], which, however, still 

substantially differ from the present study. First of all, either enzymes or 

catalytic nanoparticles were used in these papers to induce color change in 

the presence of H2O2. On the contrary, an iodide-mediated TMB-H2O2 

reaction system was applied to µPADs for non-enzymatic H2O2 quantification, 

making the system low-cost. Solmaz et al. [105] and Molgaard et al. [106] 

also employed machine learning classifiers and reported that H2O2 was 

detected with 95 % accuracy in both studies. In addition, unlike Cheng et al. 

[115] and Bandi et al. [114], where a calibration curve-based colorimetric H2O2 
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detection was performed, our proposed system is based on ML, offering more 

robustness and adaptability against ambient illumination conditions and camera 

optics. Therefore, the proposed system is state-of-the-art in robustness, 

adaptability, and classification accuracy.  

Table 3.2: The classification results at t=30s and t=10 min. for KI. 

 Classification Accuracy (%) 

 t=30 s t=10 min 

ML Classifiers 0-50 mM High Low 0-50 mM High Low 

Decision Tree 40.8 44.8 - 40.84 44.9 - 

Bagging Classifier 42.68 45.48 - 42.01 45.58 - 

QDA 52.24 54.4 - 43.35 54.68 - 

Ensemble 

Subspace 

Discriminant 

50.22 57.02 - 46.13 58.12 - 

Extra Tree 

Classifier 
54.58 57.46 - 47.45 57.89 - 

Naive Bayes 55.17 58.77 - 49.53 59.18 - 

AdaBoost 55.94 58.97 - 50.02 59.63 - 

PCA 58.24 59.64 - 51.18 59.98 - 

RBF SVM 60.24 61.83 - 53.63 61.71 - 

Ensemble RUS 

Boosted Tree 
60.82 62.02 - 55.73 63.17 - 

Gradient Boosting 

Classifier 
60.82 62.74 - 56.12 62.77 - 

Weighted KNN 62.86 64.56 - 57.06 64.96 - 

Gaussian Process 64.44 65.04 - 62.31 66.16 - 

Bernoulli Naive 

Bayes 
67.84 72.34 - 65.79 73.14 - 

EBC 71.78 72.98 - 67.16 73.88 - 

Logistic 

Regression 
74.89 76.43 - 69.54 76.93 - 

Random Forest 79.78 81.8 - 72.34 81.9 - 

kNN 80.85 82.69 - 75.08 83.29 - 

Linear SVM 77.52 85.95 - 76.21 84.81 - 

Coarse Tree 77.74 88.69 - 76.94 89.12 - 

SVM 76.4 89.5 - 79.4 89.6 - 

Bagging 78.74 90.93 - 80.09 90.98 - 

LDA 81.3 92.3 - 89.1 92.4 - 
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Table 3.3: The classification results at t=30s and t=10 min. for TMB+KI. 

  Classification Accuracy (%) 

  t=30 s t=10 min 

ML Classifiers 0-50 

mM 

High Low 0-50 

mM 

High Low 

AdaBoost 26.15 - 32.12 29.2 - 34.36 

Ensemble Subspace 

Discriminant 

32.06 - 35.12 30.36 - 39.17 

Naive Bayes 33.85 - 41.28 30.51 - 43.26 

QDA 36.54 - 43.57 33.07 - 43.81 

SVM 40.31 - 47.39 33.95 - 47.22 

PCA 42.19 - 47.66 34.06 - 47.59 

RBF SVM 46.03 - 52.93 35.57 - 49.23 

LDA 49.68 - 53.82 38.67 - 54.46 

Gaussian Process 51.68 - 54.3 41.17 - 54.84 

Bagging Classifier 53.14 - 55.23 43.2 - 60.31 

Extra Tree 

Classifier 

57.02 - 64.32 45.32 - 61.92 

Linear SVM 58.1 - 65.33 48.58 - 65.29 

Ensemble RUS 

Boosted Tree 

58.23 - 66.28 49.2 - 65.55 

Gradient Boosting 

Classifier 

61.32 - 68.3 51.14 - 71.36 

Weighted KNN 65.32 - 71.23 52.41 - 74.47 

Decision Tree 65.64 - 73.42 57.2 - 80.42 

Bernoulli Naive 

Bayes 

70.65 - 75.32 62.24 - 81.41 

Coarse Tree 76.04 - 80.05 63.61 - 85.86 

Bagging 80.47 - 81.19 63.82 - 88.08 

Random Forest 80.54 - 83.29 66.84 - 89.43 

Logistic Regression 81.89 - 87.73 69.93 - 94.12 

kNN 86.37 - 93.3 75.36 - 96.43 

EBC 91.9 - 97.8 85.1 - 97.3 
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Figure 3.5: Confusion matrices of TMB+KI for the EBC classifier at t=30 s is given 

in (a) and at t=10 min in (b), and confusion matrices of KI for the LDA classifier at 

t=30 s are shown in (c) and at t=10 min in (d). 
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Chapter 4 

4 Smartphone embedded deep learning  approach for high ly accurate and automated colorimetric lactate analysis in sweat 

Smartphone embedded deep learning 

approach for highly accurate and 

automated colorimetric lactate analysis 

in sweat 

Here, a µPAD was combined with a DL-based smartphone app called 

“DeepLactate” and then applied for quantitative and selective determination of 

lactate concentration in sweat.  The µPAD was made using wax printing 

protocol, and the detection area was modified with HRP, LOx, and the 

chromogenic agent 3,3',5,5'-TMB for enzymatic detection. The images of 

µPADs taken by smartphones of several brands in different lighting conditions 

were used to train various DL models to make the system more robust and 

adaptable to lighting changes.  The top-performing model, Inception-v3, was 

then embedded into a smartphone app, offering easy operation for non-expert 

users. Unlike ML classifiers, DL models can automatically extract features and 

be embedded in a smartphone app, enabling analysis without internet access.  

According to the results, the current system showed a classification accuracy 

with phone-independent repeatability and a processing time of less than 1 sec. It 

also showed excellent selectivity towards lactate over different interfering 

species. Finally, µPAD was turned into a patch to determine the level of sweat 

lactate in two volunteers after resting and 15 min of jogging. The system 

successfully detected lactate in human sweat and confirmed that the lactate 

level in sweat increased after jogging. Since the µPAD was designed first to 
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absorb a sample and then transfer it to the detection area, avoiding direct 

contact with the skin, the system reduces the possibility of skin irritation and 

has great potential for practical use in various fields, including self-health 

monitoring and sports medicine. 

4.1 Introduction 

Wearable sensors have attracted considerable attention lately with their 

applications in various fields, such as sports medicine and self-monitoring for 

health [116]. Although blood biomarkers are still considered reliable indicators 

of health status, wearable sensors based on non-invasive measurement protocols 

are gaining more attention as they do not cause blood vessel or skin injuries 

[117] . Various body fluids, such as sweat, saliva, and tear, can be used for non-

invasive measurement protocols. However, a well-established correlation of 

analyte concentrations between body fluids and blood is required to use them 

as a reliable source in clinical applications [ 1 1 8 ] . A vital part of human 

thermoregulation, sweat is a slightly acidic biological fluid produced by sweat 

glands. It contains a variety of biomarkers for continuous and non-invasive 

measurements, including ions, metabolites (e.g., lactate, glucose), small 

molecules, and proteins [119,  120] . 

Recent reports have shown that blood and sweat lactate levels correlate [121, 122]. 

Lactate, the second low molecular weight metabolite after glucose, can be used 

as a biomarker to evaluate an individual’s physical training and performance 

in sports medicine since it is a product of anaerobic metabolism [123] . During 

intense exercise, aerobic metabolism cannot meet the energy need, which initiates 

anaerobic metabolism and, thus, lactate accumulation in muscles. This 

phenomenon, known as lactic acidosis, is usually temporary and results in 

discomfort, pain, muscle cramps, soreness, and fatigue [124]. The amount of 

lactate production depends on the biological characteristics of a person, gender, 

frequency of exercise, and living conditions [125] . Lactate monitoring is 

essential, especially for people exposed to oxygen-deficient conditions, 

including athletes and military personnel. If lactate concentration reaches a  

critical level, it could change the pH of body fluids (blood, sweat, etc.) and 
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cause severe damage to various organs, including kidneys and blood vessels 

[1 2 6] . Furthermore, sweat lactate can be used to diagnose cystic fibrosis and 

monitor hypoxia, drug effects, and disease progression. 

The enzyme lactate oxidase is commonly used to detect lactate, where it 

catalyzes the conversion of lactate to pyruvate and releases H2O2 as a by-

product. H2O2 and, thus, lactate detection has been performed with various 

detection protocols such as electrochemical, chemiluminescence, and 

colorimetric [127-129]. Colorimetric detection is particularly interesting among 

them due to its simplicity, practicality, rapidity, low-cost, and high universality 

[23, 111]. 

Colorimetric analysis with complex instruments requires extensive prior training 

and high maintenance costs [130-132]. There are several commercially available 

electro-chemical and optical sensors used for lactate analysis, such as Lactate 

Scout 4 (EKF Diagnostics, UK), BM-Lactate (Roche, Switzerland), and Lactel 

(Marwan Technologies, Italy), all in a strip form. Lactate Scout 4 and Lactel are 

electrochemical devices that require a portable electrochemical reader, while 

BM-Lactate is a colorimetric sensor that requires a reflection photometer for an 

accurate quantitative analysis. Lactel is known to be the first sensor 

commercialized for lactate analysis in sweat, whereas the other two are primarily 

used for blood analysis. Although they are sensitive enough to detect lactate in 

real samples, their cost and dependence on a reader device may limit their 

widespread use, especially in remote locations. Alternatively, statistical analysis 

or AI-based smartphone applications offer a low-cost solution for non-expert 

users [40,  41,  105] . A representative method in statistical analysis is to employ 

the calibration curve derived from channel information of color spaces like RGB, 

HSV, and L*a*b* [ 2 3 ,  1 0 3 ] . The calibration curve has advantages such as 

computational cost and simplicity, making it easily applicable for colorimetric 

analysis. Kılıç et al. employed kurtosis of the a* channel to derive a calibration 

curve and applied it for the colorimetric detection of food spoilage [23]. 

Similarly, Golcez et al. used average R, V and L* channels to obtain a calibration 

curve for glucose detection in artificial saliva [103] . However, the performance 

of a calibration curve-based analysis is adversely affected by factors such as 
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ambient light, camera optics, and illumination variance [16, 40]. ML, a subset 

of AI, is not restricted by these limitations due to its robustness, adaptability, 

and compatibility, as reported by various groups. For instance, Doğan et al. 

detected H2O2 concentration in different water samples using an ML classifier 

trained with paper-based test images [16], while Mercan et al. developed a 

portable ML-based system to determine glucose concentration in artificial saliva 

[40] . ML also has some limitations application-wise. The first problem stems 

from manual feature extraction, which does not always guarantee to obtain 

distinctive features. The second problem is the requirement of internet access 

for quantitative and qualitative analysis, which makes such systems inoperable in 

resource-limited settings. All reported systems were built on a cloud system to 

transfer the data between a smartphone and a server, running the ML classifiers. 

Depending on the internet speed, this could cause a delay in the analysis due 

to data transfer. In addition, the server needs to be always running, which 

increases operational costs. 

To address these problems, DL has emerged as a useful tool that automatically 

detects important features without human supervision. DL-based CNNs offer 

tremendous advantages for feature extraction due to their high learning capacity 

from many images. However, creating a CNN architecture from scratch is 

highly complicated, and slight modification to the structure or parameters 

significantly impacts model performance [ 1 3 3 ] . Therefore, there is a tendency 

to employ well-known CNN architectures, including MobileNet [134], Xception 

[135], VGG16 [136], VGG19 [137], ResNet50 [138], and Inception-v3 [139]. These 

architectures are compatible with Android, allowing them to be embedded in 

smartphones. Therefore, no internet connection (offline), cloud, or server is 

needed, contrary to the existing ML-based systems. The working principle of the 

proposed system is shown in Figure 4.1. 
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Figure 4.1: A schematic illustration showing the working principle of the system. 

Lactate is first converted to pyruvate by LOx, releasing H2O2 which is then used by 

HRP for the oxidation of TMB. The color change is imaged using a smartphone 

camera and the lactate is determined by DeepLactate, an app running a DL 

classifier. 

4.2 Materials and Methods 

The µPAD for lactate detection was made using a wax printing protocol.  Briefly, 

the µPAD was designed on Microsoft PowerPoint 2013 Software, and then the 

patterns were transferred onto a Whatman filter paper using a wax printer 

(Xerox ColorQube 8900, Xerox Corporation, USA). Subsequently, the 

microfluidic paper-based analytical device ( uPAD) was placed on a hot plate at 

180 ◦C for 120 seconds, where the wax melted and diffused into the pores of 

the filter paper, forming hydrophobic channels that allowed controlled fluid 

flow. The detection areas of the µPADs were modified by first adding 0.8 µL 

TMB and then an enzyme mixture containing 0.2 µL LOx and 0.8 µL HRP. 

After each solution addition, the µPADs were left to dry for about 10 min at 

+4 ◦C. The colorimetric behavior of µPADs was evaluated using artificial sweat. 

Briefly, µPADs were immersed in artificial sweat solutions containing lactate at 

different concentrations (0, 1, 5, 10, 20, and 50 mM), allowing these solutions 

to reach the detection areas under lateral flow. Color changes in the detection 

areas were imaged at time points of 0, 5, 10, and 15 min. To turn the µPAD into 

a lactate patch, a sticking plaster purchased from a local pharmacy was used. 
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The plaster was cut with a CNC laser-cutting machine (Genmitsu 3018-PRO 

CNC, SainSmart, China) so that only the detection area of the µPAD was 

visible. The lactate detecting µPAD was sandwiched between the plaster and a 

transparent tape to avoid direct contact between the detection area and the skin. 

As shown in Figure 4.8, a sample pad was used to absorb a sweat sample for 

analysis. 

4.3 Image Capturing 

For the DL models to interpret a given image data accurately under various 

conditions, the training dataset needs to be fed into the models first, and then 

validation and testing datasets are used to optimize the parameters of these 

models. The dataset used for training, validation, and testing should contain 

enough high-quality images captured under various conditions such as rotation, 

illumination conditions, and camera optics. Therefore, image acquisition is a 

crucial step as it increases the adequacy of the dataset and leads to better 

performance for DL models. 

Table 4.1: Camera properties of the smartphones used for imaging. 

Smartphone Brand Image Resolution Optics Camera Resolution 

Huawei Mate 20 Lite 4000 × 3000 f/1.8 12 MP 

Lenovo P2a42 4032 × 3024 f/2.2 12 MP 

Oppo A5 2020 4000 × 3000 f/1.8 12 MP 

    Xiaomi Note 8 Pro 4160 × 3120 f /2 13 MP  

As a proof of concept, the images here were captured under different 

combinations of three light sources, four smartphone camera optics, and five 

shooting angles to mimic as many varying conditions as possible. H, F, and S 

bulbs were used as light sources in this context. The color temperature of the 

halogen (Osram 60 W) is 2700 K (warm), the fluorescent (Klite 6 W) color 

temperature is 4000 K (neutral), and the sunlight (Philips 5.5 W) bulb has a 6500 
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K (cold). Switching on these light sources in different sequences created seven 

lighting conditions (H, F, S, HF, HS, FS, HFS). 

 

Figure 4.2: Images of µPADs showing visually observable color changes with 

varying concentrations of lactate in artificial sweat at t = 0 min and t = 5 min. 

In addition, images were captured at five angles (30°, 60°, 90°, 120°, and 150°) 

concerning the vertical axis between the µPAD and the smartphone camera. The 

bulb sources were placed 40 cm away from the smartphones, and the distance 

between each lamp source was 9 cm. The images were captured at an incidence 

angle of 35º between the sources and µPAD. Android smartphones of four 

different brands (Huawei Mate 20 lite, Lenovo P2a42, Oppo A5 2020, and 

Xiaomi Note 8 Pro) with unique camera properties (Table 4.1) were used for 

image capturing to ensure interoperability and compatibility. A total of 840 

images were captured using the camera settings of the smartphones in automatic 

mode. 

Since the number of images in the dataset affects the performance in DL, the 

number of images was increased with additional methods such as data 

augmentation. The benefits of data augmentation are two-fold. First, it helps 

prevent overfitting, which causes the training data to be memorized, making 

it unable to interpret new data. Second, new images are created based on altering 

the existing ones, which offers an artificially expanded dataset. Seven methods 

were employed for augmentation, including a rotation at 90° angles on the 

horizontal, vertical, and horizontal-vertical axes and square cropping with 180, 

240, 300, and 400 pixels. As a result, the total number of images in the dataset 

reached 10080. The images were then resized to 400x400 so that the size of 

the images in the dataset was the same as before being fed into the neural 

networks. 



53 

 

4.4 Proposed Deep Learning Architecture 

DL is the branch of ML- based on neural network architectures, including 

CNNs [140], recurrent neural networks (RNN) [141], autoencoders [142], and 

deep belief nets [143]. CNNs perform outstandingly in processing grid-like 

topology data such as a digital image (DI) among these architectures. DI 

represents visual data in the form of two-dimensional matrices driven by 

applications such as classification [144], clustering [145], and object recognition 

[146]. 

Considering their multi-layered structure, CNNs are very powerful and 

computationally efficient in image classification as they employ convolution and 

pooling operations and perform parameter sharing. Therefore, this study tested 

several CNN-based DL models for quantitative and qualitative analysis of lactate 

on µPAD images captured by a smartphone camera. CNN models follow 

similar architecture, consisting of convolution and pooling operations and 

several fully connected layers, as demonstrated in Figure 4.3.  

 

Figure 4.3: General structure of the CNN. 

The convolutional layer is the main block of CNN which applies a convolution 

filter on the input data to generate a feature map. The output of the 

convolution layer then passes through pooling operations to reduce the 
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dimensionality, leading to a smaller number of parameters and shortened 

training time. The convolution and pooling operations may be repeated several 

times depending on the structure of the architecture. Before the fully connected 

layer, the output of the final pooling layer is converted to a vector by flattening. 

It is the last and most crucial layer of CNN, which takes the data from the 

flattened layer and performs the learning process through the neural network. 

Here, six CNN models were trained, and it was observed that Inception-v3 

outperforms the others in terms of validation and test accuracy. The dataset 

used in training CNN models has a crucial role in performance, as described in 

the next section. 

4.5 Smartphones Application: DeepLactate 

A smartphone app has been developed for susceptible colorimetric lactate 

analysis in sweat with a DL approach. To embed the trained CNN model into 

Android smartphones, the TensorFlow-Lite (.tflite) library is used to make the 

model compatible with smartphones. Here, the Inception-v3 model was saved as 

a data file in the Hierarchical Data Format (HDF - .h5 file) due to its superior 

performance among the tested CNN models. Then, the .h5 file was converted to 

the .tflite file using Python and embedded in our custom-designed DeepLactate 

app. 

DeepLactate having a simple and user-friendly interface is demonstrated in Figure 

4.4. The home page is given in Figure 4.4(a), where an image can be selected from 

the gallery of the smartphone (Figure 4.4(b)), or a new image can be captured 

using the smartphone camera. Then, after selecting or capturing the image from 

the gallery or camera, the crop alert dialogue is displayed to the user in Figure 

4.4(c). If the user taps the “NO” action, the result is calculated directly (without 

cropping), as shown in Figure 4.4(d). Otherwise, the user is directed to the crop 

screen when tapping the “YES” action. Next, the ROI on the image is cropped 

using an adjustable crop box (Figure 4.4(e)) and displayed on the app as shown 

in Figure 4.4(g). Then, the cropped image is loaded in to the model using the 
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“UPLOAD” icon to perform the colorimetric lactate analysis.  The results are 

displayed in Figure 4.4(f) and (h) on the app screen for two different solutions 

with 0 and 50 mM concentrations. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 4.4: The steps for colorimetric lactate analysis in DeepLactate are as follows. 

The home page of DeepLactate is given in (a). The user can select an image from the 

gallery in (b) or capture a new image using the smartphone camera. Then, after 

selecting the image from the gallery, the crop alert dialogue is asked of the user as in 

(c). If the user taps the “NO” action, the result is calculated directly (without 

cropping) as shown in (d). Otherwise, the user is directed to the crop screen in (e), 



56 

 

and (g) when the “YES” action is tapped. The app tests the concentrations of 0 mM 

in (f) and 50 mM in (h). 

4.6 Experimental Evaluations and Discussion 

A DL model embedded into a smartphone app was used with a µPAD for 

offline colorimetric lactate determination in artificial and/or human sweat.  

The µPAD with a single detection area was designed first to absorb a sample 

and then transfer it to the detection area for colorimetric analysis. The two 

enzymes LOx and HRP and TMB were used for lactate determination. Briefly, 

LOx catalyzes the oxidation of L-lactate to pyruvate and produces H2O2 as a 

by-product [147]. The second enzyme HRP uses the by-product H2O2 to 

oxidize the chromogenic substrate TMB, forming a blueish color change. µPADs 

were initially tested with artificial saliva containing lactate at various 

concentrations. As can be visually observed in Figure 4.2, a bluish color formed, 

and color intensity increased with increasing lactate concentration at both 5 and 

10 min time points. A detection limit (LOD) of 0.67 mM was calculated based 

on color intensity (RGB data) of images taken by Oppo A5 2020 at 5 min (LOD 

= 3.3*σ/Slope). The µPAD requires less than 5 µL of sample to complete the 

analysis. The images of µPADs were captured via four different Android 

smartphones (Huawei Mate 20 lite, Lenovo P2a42, Oppo A5 2020, and Xiaomi 

Note 8 Pro) with unique camera properties (Table 4.1) under various conditions 

such as rotation and illumination. A total of 840 images were captured and 

augmented to 10080 images to train various DL models. 

Table 4.2: Experimental results of CNN models. 

Models Validation Accuracy Test Accuracy 

MobileNet 0.9986 0.9869 
Xception 0.9990 0.9365 

VGG16 0.9926 0.9582 

VGG19 0.9665 0.9463 

ResNet50 0.9989 0.9767 

Inception-v3 0.9992 0.9906 
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In this study, six popular CNN models were trained using the created dataset 

(Section 4.3).  Hyper-parameters of CNN models such as epochs, learning rate, 

batch size, and optimizer significantly impact performance. The number of 

epochs was set to 30, and the learning rate was chosen as 0.001 with a batch 

size of 64 under the optimizer of Adam, which was found to be adequate based 

on extensive experimental studies. Regarding validation accuracy, the 

Inception-v3 model showed the highest performance with 0.9992 compared to 

other models (Table 4.2). Furthermore, the accuracy and loss results for each 

epoch in the training and testing of Inception-v3 are graphically shown in 

Figure 4.7. Besides validation accuracy (Equation (2.13)), precision (Equation 

(2.14)), recall (Equation (2.15)), F1-score (Equation (2.16)), and ROC curve 

(Equation (2.17)) values were also used in the comparison (Table 4.3). The 

confusion matrix (Figure 4.6) is also used to represent the true and predicted 

labels, which consist of four indices, including TP, TN, FP, and FN. 

ROC curves are one of the methods used to measure the success of the 

models in distinguishing each class. The AUC approaches show that the CNN 

model has successfully classified the concentrations. The threshold value was 

used to classify probability values of colorimetric lactate analysis in artificial 

sweat and was chosen as 0.5 to obtain the ROC curve. The ROC curve and 

AUC value of the proposed CNN model (Inception-v3) to detect lactate in 

artificial sweat were shown in Figure 4.5. The y-axis and x-axis in the ROC 

curve represent the TP and FP rates, respectively. 

Table 4.3: Evaluation of the Inception-v3 for lactate in terms of precision, recall, F1-

score, and ROC-AUC. 

Moles (mM) Precision Recall F1-score ROC-AUC 

0 0.990 1.000 0.990 1.000 
1 0.990 1.000 0.990 1.000 

5 0.990 0.970 0.980 0.980 

10 1.000 0.990 1.000 1.000 

20 0.970 0.990 0.980 0.990 

50 1.000 1.000 1.000 1.000 

Average 0.990 0.992 0.990 0.995 

The Inception-v3 model was tested with 1008 new sample data for each 

concentration value. In Table 4.3 and Figure 4.4, these performance metrics and 



58 

 

the robustness of the system for six different concentration values were 

illustrated for Inception-v3. Figure 4.4 shows that the 5 and 20 mM 

concentrations deviated from the predicted labels slightly more than the other 

concentrations. However, the test accuracy was close to the validation accuracy 

and outperformed the other models (Table 4.2). Next, the Inception-v3 model was 

integrated into a user-friendly and simple smartphone app, DeepLactate, for 

colorimetric lactate determination in sweat. 

 

Figure 4.5: ROC curves of Inception-v3 in varying concentrations of the test 

dataset. 

The screenshots of the app were demonstrated step by step in Figure 4.4, where the 

selected image from the gallery was classified for lactate detection. After the con- 

centration classification, the results were displayed in DeepLactate for two different 

samples, as in Figure 4.4(g) and (i), where the samples were correctly classified as 0 

and 50 mM, respectively. In addition, confidence and processing time were given 

for each concentration value, as shown in Figure 4.4(d), to highlight the impact 

of cropping. The comparison results in Figure 4.4(d) and (g) proved that both 

confidence (77% - 97.5%) and processing times (767 ms - 622 ms) were improved 

for the same sample as cropping operation reduces the size of the image by 

removing redundant areas. In addition, the proposed model was robust against 

rotated images and showed a reliable performance (Figure 4.4(h) and ( i)). 
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Figure 4.6: Confusion matrix of Inception-v3 in varying concentrations of the test 

dataset. 

 

  
(a) (b) 

Figure 4.7: Model Accuracy of Inception-v3 is given in (a) and Model Loss of 

Inception-v3 is shown in (b). 
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Figure 4.8: An image (a) showing the application of a lactate patch for human sweat 

analysis. The patch was made by sandwiching a µPAD between a sticking plaster 

and a transparent tape (bi−ii). Classification results of the smartphone app 

DeepLactate for lactate level in the sweat of two volunteers after resting and 15 

min jogging. 
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Chapter 5 

5 On-site f o o d  spo ilage mon itoring with  smartphone embedded machine learning  and colorimetric gelatin films  

On-site food spoilage monitoring with 

smartphone embedded machine 

learning and colorimetric gelatin films 

Real-time and on-site food spoilage monitoring is still challenging to prevent 

food poisoning. At the onset of food spoilage, microbial and enzymatic activities 

lead to the formation of volatile amines. Monitoring these amines with 

conventional methods requires sophisticated, costly, labor-intensive, and time-

consuming analysis. Here, ARCE based colorimetric sensing system was 

developed with the incorporation of embedded ML in a smartphone application 

for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated 

by crosslinking ARCE-doped FG with CDs under UV light. The colorimetric 

responses of FG-UV-CD100 films to ammonia vapor were captured in different 

light sources with smartphones of various brands, and a comprehensive dataset 

was created to train ML classifiers to be robust and adaptable to ambient 

conditions.   Meanwhile, the ML classifier was integrated into our custom-designed 

Android application, SmartFood++, enabling analysis in about 0.1 sec without internet 

access, unlike its counterpart using cloud operation via the internet.  The proposed 

system was also tested on a real fish sample, demonstrating that it has a 

significant advantage as a potent tool for on-site, real-time monitoring of food 

spoilage by non-specialized personnel. 
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5.1 Introduction 

Food waste is a globally growing concern due to its potential impacts on 

ecological, social, and economic consequences, including greenhouse gas 

emissions, nutritional insecurity, unsustainable production, and distribution 

chain [148]. 

According to the Food and Agriculture Organization of the United Nations, 

annual food waste reaches 1.3 billion tons [149]. On the other hand, the world 

population is expected to increase by almost 25% and reach nearly 10 billion 

by 2050 [150]. This drastic population growth means increased consumption 

of highly perishable protein-rich food and an expected increase in food waste 

[151]. Concern about ensuring the sustainability and safety of food production 

for the rapidly growing world population has led to the development of new 

strategies, including innovative packaging applications. Smart packaging 

systems offer sustainable approaches to reducing food waste by incorporating 

active and intelligent compounds into biodegradable and biocompatible 

polymers [152]. Normally, conventional packaging aims only to maintain food 

safety and quality by serving as a physical barrier, while smart packaging presents 

beyond the role of the physical barrier by adding specific functionality to 

conventional packaging [153]. Thanks to their antioxidant and halochromic 

properties, anthocyanins, natural color pigments, have been widely used in smart 

packaging applications [154]. 

Recent studies have demonstrated the advantage of anthocyanins as colorimetric 

freshness indicators in intelligent food packaging labels [23, 155]. The freshness 

of food is often monitored by manual observation of the color change of 

anthocyanins, which is time-consuming and sensitive to human perception [156]. 

Therefore, there is a need for an automated system that can detect a color change 

to assess the freshness of the food to improve monitoring performance. The color 

analysis is mainly based on the intensity values in various color spaces consisting 

of three or four channels such as RGB (Red-Green-Blue), HSV (Hue-Saturation-

Value), L*a*b* (Lightness, Green-Red, Blue-Yellow), YUV (Luminance, Blue-
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Luminance, Red-Luminance) and CMYK which have been employed  in many 

applications including analyte detection [157] and freshness monitoring [23]. 

The traditional approach in colorimetric analysis is to use single or multiple 

channels to derive the calibration curve that establishes a relationship between 

intensity and output [130] . The calibration curve offers simplicity and ease of 

use, making it widely used for colorimetric analysis in a controlled environment 

[23]. However, intensity values are easily affected by the camera optics, 

brightness, and source of the lights, causing the curve to be recalibrated for 

specific conditions [16]. To overcome this problem and increase robustness, 

advanced algorithms such as ML have been used, which learn how to classify 

inputs based on features extracted from color information. In [158], a food 

freshness detection prototype was developed by ML-based colorimetric analysis 

obtained from a glycerol-based sensory film. A colorimetric sensor was used to 

detect H2O2 with ML classifiers for air sampling [106] . The alcohol level in 

saliva was determined using three ML classifiers with features extracted from four 

color channels [104]. 

In addition to its robustness, ML is highly preferred due to its adaptability and 

easy integration into smartphone-based imaging systems for quantitative and 

qualitative colorimetric analysis. SPAQ [159] application was developed to detect 

the alcohol level in saliva. GlucoSensing [40] application was developed to 

determine glucose concentration. A low-cost paper-based microfluidic device for 

nitrite concentration measurement and pH determination was integrated with a 

custom Android application [160]. A custom-designed smart- phone application, 

GlucoQuantifier, was developed to communicate with the remote server running 

ML classifiers to determine the glucose concentration of the assay [128]. One 

drawback of the mentioned studies is the necessity of cloud operations to transfer 

the data to the remote server for colorimetric analysis with ML classifiers. 

Internet access is required due to cloud operations, causing inoperable analysis in 

resource-limited environments. The speed of the Internet is also critical to 

complete the data transfer, which affects the response time for analysis. 

Moreover, remote servers need to be kept up and running, resulting in higher 
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operating and maintenance costs. The working principle of the proposed system 

for food spoilage detection is shown in Figure 5.1. 

 

Figure 5.1: A schematic illustration showing the working principle of the food 

spoilage detection system. 

5.2 Materials and methods 

FG (200 bloom) was supplied by SG Chemicals. Magnesium oxide, boric acid, 

sodium monobasic, potassium dibasic phosphates, and bromocresol green-methyl 

red mixed indicator solution, were acquired from Sigma-Aldrich (St. Louis, 

MO). Fuming hydrochloric acid (37%), ammonium chloride, and citric acid 

were acquired from ISOLAB (Wertheim, Germany). Merck supplied ammonium 

hydroxide solution (32%) (Darmstadt, Germany). 

5.2.1 Fabrication of colorimetric films 

The method used in this study was adapted from methods described in [23]. 

First, red cabbage extract was prepared following the method [16 1]  where 

chopped red cabbage was put in a beaker with distilled water at a 1:  2 

cabbages:  water (w/v) ratio and left stirring overnight. The extract was then 
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filtered and stored in the dark at 4 ◦C until further use. The concentration of 

the extract was determined by a modified pH differential method [162]. Next, 

carbon nanodots were synthesized based on microwave-assisted carbonization of 

citric acid [ 1 6 3 ] . Briefly, a 10% w/v citric acid monohydrate solution was 

prepared with distilled water. After it was completely dissolved, the mixture was 

heated at 550 W for 7 min in a microwave lab station (Ethos D Microwave 

Labstation, Milestone Inc., USA). The obtained residue was dissolved in 

distilled water and dialyzed against ultrapure water with a dialysis tubing (1200 

Da cutoff, Sigma, D7884–10 FT) for 48 h. The resulting solution was then freeze-

dried (Christ Alpha 2–4 LD Plus, Martin Christ, Germany) and used to prepare 

a 100 mg/ml stock solution in a sodium phosphate buffer at pH 8. The films 

were prepared using the solvent casting method. FG, red cabbage extract, 

glycerol, and carbon nanodot were mixed at a final concentration of 10% w/v, 0.5 

mg/l, 1% w/v, and 100 mg/l, respectively while the pH of the final mixture was 

adjusted to 8. The solution was then ultrasonicated for 90 min until the gelatin 

was completely dissolved. 20 ml of the solution was poured into a (10 cm X 10 

cm) square petri dish and treated with 365 nm UV light for 45 min (1.5 mW/cm, 

365 nm, Vilber ECX-F20.L-V1) and placed into a desiccator (0% relative 

humidity) to dry at 23 ◦C for 48 h. Next, films were placed inside a climate 

chamber with 50% RH at 20 ◦C and conditioned for at least 24 h before further 

use. 

Table 5.1: Camera properties of the smartphones used for imaging in food spoilage 

detection. 

Smartphone Brand Image Resolution Optics 
Camera 

Resolution 

iPhone 6 1024×768  f/1.8 8 MP 

iPhone 11 4032 × 3024 f/2.4 12 MP 

LG 6 4160 × 3120 f/1.8 13 MP 

    Samsung Galaxy A23 4080 × 1836 f /2 13 MP  
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5.3 Experimental Design and Image Acquisition 

ML models can achieve a high classification accuracy after training on an 

appropriate dataset with quantitative and qualitative representations of all 

possible conditions [16, 34]. In addition, the dataset needs to be a collection 

of data that ensures the robustness and adaptability of the system to new 

environments, regardless of illumination conditions and camera optics. 

Therefore, in this study, images were captured using smartphones (iPhone 6, 

iPhone 11, LG 6, and Samsung Galaxy A23) from Android and iOS operating 

systems with different camera properties (Table 5.1) under the combination of 

LED (L), F, and S to ensure inter-phone repeatability and robustness against 

ambient illumination conditions. Besides, imaging was repeated for three angles 

(60º, 90º, and 120º) to consider rotation and direction effects. The L (Osram 

9 W), F (Klite 6 W), and S (Philips 5.5 W) light sources were deliberately 

chosen to ensure imaging under different light characteristics, including warm 

(2700 K), neutral (4000 K), and cold (6500 K) colors, respectively. The light 

sources and imaging angles can be increased to expand the dataset. However, 

it is found to be sufficient based on the experiments. The distances of the light 

sources to the smartphones during imaging were kept constant at 20, 24 and 28 

cm for L, F and S, respectively.  In addition, the capturing was taken at a 30º 

angle of incidence with 10 cm between the smartphone and the film.  The film 

response (Table 5.2) was captured with nine different ammonia gas 

concentration values under seven lighting conditions (L, F, S, LF, LS, FS, LFS) 

in auto mode with four smartphones and three angles, resulting in 756 images for 

the dataset. Before training the ML classifiers, the dataset was transferred to a 

computer for pre-processing, as discussed in the next. 

5.4 Machine Learning for Colorimetric Analysis 

Here, ML processes, including feature extraction, selection, and classification 

with RF, are introduced for colorimetric analysis of spoilage monitoring. 
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5.4.1 Feature Extraction in Machine Learning 

Feature extraction, a crucial step in ML training, is a size reduction process 

through efficiently representing an image with information such as color, 

texture, size, shape, and location [40]. Removing redundant or irrelevant 

information from the image increases the accuracy of the classifiers as the 

learning relies on relevant features and reduced dimensionality. In that sense, 

the number and type of the features are critical for the image representation and 

thus directly linked to the classifier performance. Here, color information is used 

to extract the image features, as it is found to be promising in image 

representation [ 4 1 ] . The ROI, namely film response, was cropped to convert 

the captured RGB images to HSV, L*a*b*, YUV, and CMYK, so that single 

channels (R, G, B, H, S, V, L*, a*, b*, Y, U, V, C, M, Y, and K) were obtained 

to determine the color features. Then, the mean, standard deviation, and kurtosis 

values for channels were calculated, leading to forty-eight features. To further 

reduce the computational complexity and improve the performance, feature 

selection was employed as discussed next. 

Table 5.2: The color change of FG-UV-CD100 film with varying concentrations of 

ammonia vapor. 

Ammonia (mg N/100 g) Film Response Images 
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5.4.2 Feature Selection in Machine Learning 

Feature selection is the process of identifying the most relevant subset features, 

providing robust and improved classification with reduced computational burden 

[164]. Eliminating irrelevant features contributes to computational efficiency, 

leading to a rapid response in colorimetric analysis [165]. In that sense, various 

feature selection algorithms were employed, including ReliefF [166], Mutual 

Information [167], Gain Ratio [168], Information Gain [169], Fisher’s [170], 

Correlation Coefficient [171], and Chi-Squared [64]. These algorithms were 

used to select the most relevant subset among the forty-eight features, and their 

contribution to the overall performance was observed to select the most 

appropriate one. Based on extensive comparative studies, Chi-Squared was found 

to be adequate as a feature selection algorithm in this study. After the Chi-

Squared feature selection, eighteen irrelevant features were eliminated, and the 

number of features was narrowed down to thirty (Figure 5.2). 

 

Figure 5.2: Feature selection using Chi-Squared algorithm. 
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5.4.3 Classification with Random Forest 

Twenty-three ML classifiers were tested using the finalized feature set to monitor 

food spoilage based on color variation in film response images. After comparison 

in terms of accuracy, precision, recall, F1-score, ROC Area, and MCC, the RF was 

chosen due to its superior performance compared to its counterparts. 

The RF consists of multiple decision trees and nodes to utilize ensemble learning 

combining many classifiers to solve classification and regression problems [172]. 

In the RF, each node is split using the best of a subset of randomly selected 

estimators at that node, whereas, in other standard trees, each node is split using 

the best distribution among all variables. Therefore, the RF is more robust 

against overfitting, an undesirable ML problem. It uses only two variables, 

including the number of variables in the random subset and the number of trees 

in the forest [173] . The structure of the RF classifier is shown in Figure 5.3. 

 

Figure 5.3: The general structure of Random Forest. 

5.5 Smartphone Application: SmartFood++ 

SmartFood++, our ML-based Android application for food spoilage 

monitoring, was improved to perform colorimetric analysis without a remote 

server and an internet connection (offline). In the SmartFood++ application, 

the classification was run in Android with an embedded RF, resulting in more 
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robustness than SmartFood [23], the previous version running with the 

calibration curve. In addition, the interface of the application has been 

improved to be simple and user-friendly with designs and icons. 

To run an embedded ML classifier in the application, the feature extraction 

and the ML model must be Java-compatible as the application was developed in 

Android Studio with Java language. To test an ML classifier in the application, 

the input must be represented with the same feature types used in training the 

classifier. Therefore, the feature extraction script was first coded in the 

Eclipse IDE for Java Developers (2022-06) before being integrated into the 

application in Android Studio. The same script was also used to create a 

“.CSV” file, containing the feature set to train the RF classifier. To ensure the 

compatibility of the trained model with Android, the WEKA 3.9.6 environment 

was used as it was also developed in Java. The CSV file was then converted to 

ARFF (“.arff”) file extension for the training of the RF in the WEKA. After the 

training, it was saved with the model extension file (“.model”) to embed into 

the Android application. 

With the improved interface, even non-expert users can easily perform operations 

such as uploading, viewing, and cropping images. The image can be uploaded 

to the application in two ways: an image can be selected by the user from the 

gallery, as in Figure 5.4(b), or a new image can be captured using the built-in 

camera. Then, using the adjustable crop box, the ROI can be determined from 

the image as in Figure 5.4(c), (d), (g) and (h). When the “CALCULATE” 

button is tapped in Figure 5.4(e) and ( i), the concentration value can be 

calculated based on the RF classifier and displayed on the screen (Figure 5.4f 

and j). 

5.6 Real samples 

Freshly caught horse mackerels were purchased from a local market (Ankara, 

Turkey) and transported immediately to the laboratory in an ice bucket. Horse 

mackerel samples (25-30 g) were put into square petri plates (10 cm × 10 cm). 

A film piece of 1 cm × 1 cm was attached to the cellophane and then placed 1 
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cm above the fish sample. The plates were kept at 4◦C during 8 days of storage. 

The color of the films was monitored daily by taking images of the films with a 

smartphone. 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Figure 5.4: The steps for colorimetric food spoilage monitoring in SmartFood++ are 

as follows. The homepage of SmartFood++ is given in (a). The user can select an 

image from the gallery in (b) or capture a new image using the smartphone 

camera and crop the image using an adjustable crop box as in (c), (d), (g), 

and (h). Cropped patches are given in (e) and (i). The application is tested 

with the consumable food (fish) in (f), and the inconsumable one in (j). 

5.7 Result and Discussion 

Gases such as ammonia, trimethylamine, and dimethylamine, also known as 

TVB-N compounds, are produced during the spoilage of protein-rich foods due 

to microbial and enzymatic activities. Ammonia among these volatile 
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nitrogenous with the lowest boiling point is released rapidly at the onset of 

spoilage of fish and meat products and thereby can be used as a model TVB-

N compound to develop food freshness labels [17 4 ] . In response to ammonia 

and other TVB-N compounds, a visible color change of anthocyanins is 

expected because of their structural conversion. Therefore, we collected images 

of the developed films for different ammonia concentrations. As illustrated in 

Table 5.2,  the color of the films changed drastically from bright red to dark 

green when films were exposed to ammonia concentration above 20 mg N/ 100 

g. The alkaline environment on the surface of the films is created due to the 

formation of ammonium ions by hydration and hydrolysis of ammonia vapor 

[175] . Under primary conditions, deprotonation of the phenolic hydroxyl 

groups of anthocyanins leads to color change [176] . Altogether, these results 

indicated that ARCE-loaded films were sensitive enough to detect changes in 

fish freshness. 

Here, we report ML-based colorimetric monitoring of food spoilage using the 

color change in FG-UV-CD100 films resulting from the interaction of TVB-N 

compounds with anthocyanins. To ensure the robustness of the classifier, a 

comprehensive dataset was created by capturing the color response of FG-UV-

CD100 films to nine different ammonia gas concentrations with four different 

brands of smartphones under seven different lighting conditions. The images 

were then processed to extract forty-eight features from the ROI on films. Next, 

the Chi-Squared algorithm was used to select a new subset with thirty features. 

Twenty-three ML classifiers were trained with selected features and RF 

outperformed other classifiers, as shown in Table 5.3. The performance of the 

classifiers was compared with classification accuracy (Equation (2.13)), precision 

(Equation (2.14)), recall (Equation (2.15)), F1-score (Equation (2.16)), ROC 

(Equation (2.17)), and MCC (Equation (2.18)). 

The performance metrics results of ML classifiers in (Table 5.3) showed that RF 

had the highest accuracy for colorimetric food spoilage detection. The ROC 

AUC has also proved that the RF has successfully classified the concentrations 

(in Appendix B Figures B1-9). Classification metric results and confusion 

matrix are available in Table 5.4 and Figure 5.5(a) and (b), respectively. The 
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confusion matrices visualize the relationship between the true and predicted 

classes of the classifier. In Table 5.3, the metric results are below the average 

values for 40 and 50 mg N/100 g concentrations which can be seen in the 

confusion matrix (Figure 5.5(a) and (b)) where the true and predicted classes of 

RF for each concentration value of FG-UV-CD100 films are illustrated. Next, the 

RF classifier was embedded into a user-friendly and simple smartphone 

application, SmartFood++, for colorimetric food spoilage detection. 

Table 5.3: Classification accuracy results for colorimetric food spoilage detection 

with different ML classifiers. 

ML Classifiers Classification Accuracy (%) 

Random Forest 98.8 

SVM 96.5 

Nearest Neighbors (KNN) 94.69 

Coarse Tree 94.69 

Ensemble Bagged Tree 93.93 

Linear SVM 85.95 

LDA 79.52 

Logistic Regression 76.43 

EBC 72.98 

Bernoulli Naive Bayes 72.34 

Gaussian Process 65.04 

Weighted KNN 64.56 

Gradient Boosting Classifier 62.74 

Ensemble RUS Boosted Tree 62.02 

RBF SVM 61.83 

PCA 59.64 

AdaBoost 58.97 

Naive Bayes 58.77 

Extra Tree Classifier 57.46 

Ensemble Subspace Discriminant 57.02 

QDA 54.4 

Bagging Classifier 45.48 

Decision Tree 44.8 
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In addition, the proposed system was tested on a real sample to demonstrate its 

robustness and performance. In that sense, the fish (horse mackerel) sample was 

monitored and captured with smartphone cameras under seven lighting 

conditions to create a dataset specific to fish spoilage. After feature extraction 

and selection were employed, the RF was trained with a fish-feature set and 

showed 99.6% test accuracy.  

Table 5.4: Evaluation of the RF for colorimetric food spoilage detection in terms of 

Precision, Recall, F1-score, Accuracy, ROC Area, and MCC. 

 Precision Recall F1 score Accuracy ROC MCC Class 

 1.000 1.000 1.000 1.000 1.000 1.000 0 

 1.000 0.988 0.994 1.000 0.994 0.994 10 

 0.988 0.988 0.988 0.988 0.993 0.987 20 

 0.964 0.988 0.976 0.964 0.992 0.973 30 

 0.988 0.976 0.982 0.988 0.987 0.980 40 

 0.976 0.976 0.976 0.976 0.987 0.973 50 

 0.988 0.988 0.988 0.988 0.993 0.987 60 

 1.000 0.988 0.994 1.000 0.994 0.993 90 

 0.988 1.000 0.994 0.988 0.999 0.993 120 

Weighted 

Average 

0.988 0.988 0.988 0.988 0.993 0.987  

The demonstration with an embedded RF classifier to SmartFood++ was given in 

Figure 5.4, where the two different selected images were processed and classified in 

the application after cropping with the adjustable crop box (Figure 5.4c-d-g-h).  After 

classifying the concentration levels, the results were displayed in SmartFood++ as in 

Figure 5.4(f) and (j), where the fish samples were correctly classified as 10 mg N/100 

g and 120 mg N/100 g.  The comparison results in Figure 5.4(f) and ( j) proved 

that processing times (149 ms - 68 ms) were significantly reduced, providing 

real-time colorimetric analysis for fish samples. Moreover, our application 

informs the user with various stickers based on the test result. If the food is 
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consumable, the “Bon Appetit” text under a happy-face sticker is displayed on 

the screen (Figure 5.4(f)). Otherwise, it shows a no-food sticker with 

“Inconsumable” text (Figure 5.4(j)). 

 

(a) 

Figure 5.5: Confusion matrix of RF in different concentrations. 

Finally, in our study, ML and colorimetric analysis are integrated for the first 

time under an Android application for food spoilage. Similar studies [104, 177] 

reported ML-based colorimetric analysis. However, the proposed study 

differentiates itself from them by embedding the ML model into Android 

applications, reducing the response time to about 0.01 sec. Unlike existing 

studies that require more than minutes for colorimetric analysis due to internet-

based cloud and server operations, this study does not require online 

connections, which reduces the cost and enables real-time video processing. 

Multiple frames from the video can provide more information than a single 

image, resulting in improved food monitoring. 
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Chapter 6 

6 Conclus ions and Fu ture Research 

Conclusions and Future Research 

Here, on-site colorimetric analysis based on AI-embedded Android smartphone 

assistants has been investigated. This chapter presents a summary of the critical 

contributions of this thesis. Furthermore, based on the discussion on the 

limitations of our work, potential directions for future research are also suggested. 

6.1 Conclusions 

This thesis discusses AI approaches and smartphone-based on-site colorimetric 

analyses in three subjects: hydrogen peroxide detection, lactate detection in 

sweat, and food spoilage detection. We have presented the following three key 

findings in Chapters 3 , 4 , and 5 , respectively: (1) to the best of our knowledge, 

this is the first study that links an ML-based smartphone app with chromogenic 

agents in µPADs, enabling non-enzymatic quantitative analysis of H2O2 for 

rapid and portable on-site surveillance, (2) to the best of our knowledge, this 

is the first study to link DL with quantitative and qualitative colorimetric analysis 

of chemical species, and (3) to the best of our knowledge, this is the first study 

that embeds an ML classifier into a smartphone application for food spoilage 

monitoring. These contributions will be elaborated on in more detail in the 

following subsections. 

6.1.1 Non-enzymatic colorimetric detection of hydrogen 

peroxide using a µPAD coupled with a machine 

learning-based smartphone app 
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Here, an iodide-mediated TMB-H2O2 (TMB+KI) reaction system was 

applied for compassionate, selective, and accurate non-enzymatic colorimetric 

determination of H2O2 in transparent liquids such as water using a µPAD 

coupled with an ML-based smartphone app. The results were analyzed by 

comparison with those of KI. This paper introduced a non-enzymatic H2O2 

detection system using a smartphone app based on colorimetric analysis with 

ML. The reaction of H2O2 and chromogenic agents (TMB + KI or KI) in 

µPADs led to a concentration-dependent color change without requiring any 

enzymes or catalytic nanoparticles. To the best of our knowledge, this is the 

first study that links an ML-based smartphone app with chromogenic agents in 

µPADs, enabling non-enzymatic quantitative analysis of H2O2 for rapid and 

portable on-site surveillance. To ensure the system works independently of 

camera optics and ambient light conditions, the dataset was created with four 

smartphones in seven different illumination conditions to train ML classifiers. 

Based on the performance comparison of various ML classifiers, TMB+KI gave 

the highest classification accuracy (97.8%) in the 0 to 5 mM concentration 

range, whereas KI performed its best between 0.2 and 50 mM with 92.3% 

accuracy. These results indicated that in the quantitative analysis of H2O2, KI 

performs better in the high concentration range, while TMB+KI is more 

efficient in the low range. 

6.1.2 Smartphone embedded deep learning approach for 

highly accurate and automated colorimetric lactate 

analysis in sweat 

This study reports a highly accurate and rapid classification of lactate in sweat 

by a DL model-embedded smartphone app, DeepLactate, offering the advantage 

of offline analysis. To improve the robustness against illumination variation and 

ensure inter-phone repeatability, the DL models were trained with the images 

of µPAD captured in seven illumination conditions using four smartphones of 

different brands. The top-performing model, Inception-v3, was embedded in a 

smartphone app, allowing rapid analysis in a resource-limited setting as no data 

sharing is required for the server via cloud systems. The proposed system can 
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detect lactate in sweat with 99.9% accuracy in less than 1 sec, demonstrating its 

great practical potential in colorimetric analysis. The system was also tested on 

volunteers, in which the classification results of the app showed an increase in 

sweat lactate after jogging. To the best of our knowledge, this is the first study 

to link DL with quantitative and qualitative colorimetric analysis of chemical 

species. 

6.1.3 On-site food spoilage monitoring with smartphone 

embedded machine learning and colorimetric 

gelatin films 

Herein, we demonstrated a new implementation of ML classifiers that has the 

potential for on-site real-time monitoring of food spoilage by incorporating FG 

films with embedded RF into the SmartFood++ application. These FG films can 

change color in response to the accumulation of ammonia released from spoiled 

food. The colorimetric response was captured with four smartphones in seven 

different illumination conditions and three exposure angles to create a 

comprehensive dataset for the training ML classifiers, leading to improved 

robustness against the illumination variance and camera optics. Among the tested 

classifiers, the highest classification accuracy (98.8%) was achieved with RF, 

demonstrating that the proposed system has great potential in colorimetric 

food spoilage monitoring. The system was also trained and tested with real fish 

samples, resulting in 99.6% accuracy. In addition, the RF classifier was 

embedded in SmartFood++, allowing analysis in about 0.1 sec without internet 

access. To the best of our knowledge, this is the first study that embeds an ML 

classifier into a smartphone application for food spoilage monitoring. 

6.2 Future Research 

There are some possible critical extensions to the work discussed in this thesis 

based on the problems and limitations of the proposed methods. In this section, 

we highlight the limitations and drawbacks of the developed techniques and 
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propose some directions for further improvements. An outline of the possible 

directions for future research is sketched below. 

• In non-enzymatic colorimetric detection of hydrogen peroxide, the system 

could be further extended by enlarging the dataset for closer 

concentration levels and employing more sophisticated methodologies 

such as DL and transfer learning to improve classification accuracy and 

sensitivity. Overall, the proposed system offers portability, rapid response, 

easy operation, and high selectivity, which can be applied in point-of-care 

sensing, healthcare, and environmental monitoring in resource-limited 

settings. 

• In automated colorimetric lactate analysis in sweat, it should be noted 

that the classification sensitivity of the proposed system can also be 

improved by training the system with closer concentration levels. The 

proposed system could be easily used for clinical and environmental 

monitoring in remote and resource-limited settings by extending 

colorimetric analysis for multi-analyte detection in real samples such as 

water, urine, and blood. 

• Unlike conventional measurements in on-site food spoilage monitoring 

with smartphone-embedded ML, our system offers real-time, robust, and 

easy operation for non-expert users, which can contribute to developing 

new tools with advanced functions for smart packaging. 

• While classifying in colorimetric analysis using AI algorithms, the system 

rounds up to whichever concentration level the result is close to. This problem 

can be solved by performing regression analysis. 

• We used only Android as the operating system in smartphone applications. In 

future studies, it can be used on phones with different operating systems (iOS). 

• Experimental design will be developed with modeling and optimization 

studies. 
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Appendix A  

Analysis of precision, recall and F1 score for LDA and EBC classification 

algorithms in the classification of H2O2 concentration at t=30 s and t=10 minutes 

of KI and TMB+KI mixtures: 

Table A.1: Evaluation of the LDA for KI at t=30 s in terms of precision, recall and F1 

score. 

 precision recall F1 score 

0 mM 0.79 0.71 0.73 

0.01 mM 0.78 0.82 0.72 

0.05 mM 0.59 0.61 0.62 

0.1 mM 0.64 0.67 0.65 

0.2 mM 0.88 0.82 0.78 

0.5 mM 0.9 0.88 1 

1 mM 0.83 0.71 0.77 

5 mM 0.97 1 1 

10 mM 0.9 0.84 0.91 

25 mM 0.88 1 1 

50 mM 1 1 1 

Average 0.83 0.82 0.84 
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Figure A.1: Evaluation of LDA with error bars in terms of precision, recall, and F1 

score at t=30 s for TMB+KI. 

 

Table A.2: Evaluation of the LDA for KI at t=30 s in terms of precision, recall and F1 

score. 

 precision recall F1 score 

0 mM 0.92 0.79 0.85 

0.01 mM 0.87 0.9 0.9 

0.5 mM 0.93 1 0.88 

1 mM 0.97 0.92 0.91 

5 mM 0.94 1 1 

10 mM 0.9 0.91 0.98 

25 mM 1 1 1 

50 mM 0.92 0.96 0.98 

Average 0.93 0.94 0.94 
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Figure A.2: Evaluation of LDA with error bars in terms of precision, recall, and F1 

score at t=30 s for TMB+KI. 

 

Table A.3: Evaluation of the LDA for KI at t=10 min in terms of precision, recall and 

F1 score. 

 precision recall F1 score 

0 mM 0.83 0.68 0.73 

0.01 mM 0.86 0.86 0.86 

0.05 mM 0.77 0.86 0.81 

0.1 mM 0.81 0.79 0.8 

0.2 mM 0.88 0.93 0.88 

0.5 mM 0.9 0.96 0.95 

1 mM 0.96 0.93 0.95 

5 mM 1 0.89 0.94 

10 mM 0.81 0.89 0.85 

25 mM 0.96 0.93 0.95 

50 mM 0.9 0.93 0.91 

Average 0.88 0.88 0.88 
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Figure A.3: Evaluation of LDA with error bars in terms of precision, recall, and F1 

score at t=10 min for TMB+KI. 

 

Table A.4: Evaluation of the LDA for KI at t=10 min in terms of precision, recall and 

F1 score. 

 precision recall F1 score 

0 mM 0.96 0.82 0.88 

0.01 mM 0.9 0.93 0.91 

0.5 mM 0.93 0.96 0.95 

1 mM 0.93 0.93 0.93 

5 mM 1 1 1 

10 mM 0.9 0.89 0.89 

25 mM 0.93 0.93 0.93 

50 mM 0.84 0.96 0.9 

Average 0.92 0.93 0.92 
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Figure A.4: Evaluation of LDA with error bars in terms of precision, recall, and F1 

score at t=10 min for TMB+KI. 

 

Table A.5: Evaluation of the EBC for TMB+KI at t=30 s in terms of precision, recall 

and F1 score. 

 precision recall F1 score 

0 mM 0.96 0.96 0.96 

0.01 mM 0.9 0.93 0.91 

0.05 mM 0.96 0.93 0.95 

0.1 mM 0.97 1 0.98 

0.2 mM 0.96 0.96 0.96 

0.5 mM 1 1 1 

1 mM 0.96 0.93 0.95 

5 mM 0.88 0.86 0.81 

10 mM 0.85 0.92 0.86 

25 mM 0.88 0.84 0.8 

50 mM 0.81 0.72 0.77 

Average 0.92 0.92 0.91 
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Figure A.5: Evaluation of EBC with error bars in terms of precision, recall, and F1 

score at t=30 s for TMB+KI. 

 

Table A.6: Evaluation of the EBC for TMB+KI at t=30 s in terms of precision, recall 

and F1 score. 

 precision recall F1 score 

0 mM 0.96 0.96 0.96 

0.01 mM 0.81 0.93 0.87 

0.05 mM 0.96 0.82 0.88 

0.1 mM 1 1 1 

0.2 mM 1 1 1 

0.5 mM 1 1 1 

1 mM 1 1 1 

5 mM 1 1 1 

Average 0.97 0.96 0.96 
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Table A.7: Evaluation of the EBC for TMB+KI at t=10 min in terms of precision, 

recall and F1 score. 

 precision recall F1 score 

0 mM 0.96 0.98 0.96 

0.01 mM 0.86 0.86 0.86 

0.05 mM 0.96 0.86 0.81 

0.1 mM 0.96 0.96 0.96 

0.2 mM 0.96 0.93 0.88 

0.5 mM 0.96 0.96 0.95 

1 mM 1 1 1 

5 mM 0.7 0.74 0.78 

10 mM 0.9 0.89 0.85 

25 mM 0.45 0.52 0.58 

50 mM 0.68 0.72 0.65 

Average 0.85 0.86 0.84 

 

 

Figure A.6: Evaluation of EBC with error bars in terms of precision, recall, and F1 

score at t=10 min for TMB+KI. 
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Table A.8: Evaluation of the EBC for TMB+KI at t=10 min in terms of precision, 

recall and F1 score. 

 precision recall F1 score 

0 mM 0.98 0.96 0.96 

0.01 mM 0.92 0.93 0.91 

0.05 mM 0.92 0.89 0.91 

0.1 mM 0.98 0.96 0.96 

0.2 mM 0.98 0.98 0.98 

0.5 mM 1 1 1 

1 mM 0.94 0.93 0.93 

5 mM 1 1 1 

Average 0.97 0.96 0.96 

 

 

Figure A.7: Evaluation of EBC with error bars in terms of precision, recall, and F1 

score at t=10 min for TMB+KI. 
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Figure A.8: Confusion matrix of KI at t=30 s for the LDA classifier including 0-50 

mM concentration. 

 

Figure A.9: Confusion matrix of KI at t=10 min for the LDA classifier including 0-50 

mM concentration. 
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Figure A.10: Confusion matrix of TMB+KI at t=30 s for the EBC classifier including 

0-50 mM concentration. 

 

Figure A.11: Confusion matrix of TMB+KI at t=10 min for the EBC classifier 

including 0-50 mM concentration. 
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Appendix B 

 

Figure B.1: ROC curve of 0 mg N/100 g concentration with the RF. 

 

Figure B.2: ROC curve of 10 mg N/100 g concentration with the RF. 
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Figure B.3: ROC curve of 20 mg N/100 g concentration with the RF. 

 

 

Figure B.4: ROC curve of 30 mg N/100 g concentration with the RF. 
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Figure B.5: ROC curve of 40 mg N/100 g concentration with the RF. 

 

 

Figure B.6: ROC curve of 50 mg N/100 g concentration with the RF. 
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Figure B.7: ROC curve of 60 mg N/100 g concentration with the RF. 

 

 

Figure B.8: ROC curve of 90 mg N/100 g concentration with the RF. 
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Figure B.9: ROC curve of 120 mg N/100 g concentration with the RF. 
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