

Artificial Intelligence and Language

Processing with Chrome Extension

Department of Software Engineering

Term Project

Özgür GÜRCAN

Advisor: Prof. Dr. Aytuğ ONAN

August 2024

Artificial intelligence and language processing with

Chrome extension

Abstract

This term project presents the development of a Chrome extension that harnesses the

power of artificial intelligence (AI) and natural language processing (NLP) to enhance

the job-seeking experience on LinkedIn. The extension integrates seamlessly with

LinkedIn’s platform, enabling users to compare job descriptions with their uploaded

curriculum vitae (CV) using advanced AI models, specifically ChatGPT 3.5 Turbo and

ChatGPT 4.0 Mini. By analyzing the semantic similarities between job descriptions

and CVs, the extension provides personalized feedback, highlighting the alignment of

the user’s qualifications with the job requirements. Key features of the extension

include user authentication and data storage managed through Firebase services, as

well as a robust backend developed with Node.js and Express.js to handle AI-driven

comparisons.

The project aims to address the inefficiencies and challenges faced by job seekers in

manually assessing their suitability for various positions. The extension’s AI

capabilities significantly reduce the time and effort required to match qualifications

with job opportunities, thereby optimizing the job application process. Moreover, the

system maintains a history of comparisons, allowing users to track their progress and

make informed decisions throughout their job search journey. This project represents

a significant contribution to the application of AI and NLP technologies in the

recruitment domain, offering practical solutions to improve job market efficiency and

candidate-position matching.

Keywords: Artificial Intelligence, Natural Language Processing, Chrome Extension,

LinkedIn Integration, CV Comparison, ChatGPT

ii

Yapay Zekâ ve Dil İşleme ile Chrome Eklentisi

Öz

Bu dönem projesi, LinkedIn üzerinde iş arayanların deneyimlerini geliştirmek

amacıyla yapay zeka (YZ) ve doğal dil işleme (DDİ) teknolojilerini kullanan bir

Chrome uzantısının geliştirilmesini sunmaktadır. Uzantı, LinkedIn platformu ile

sorunsuz bir şekilde entegre olarak, kullanıcıların yükledikleri özgeçmişlerini (CV) iş

tanımlarıyla karşılaştırmalarına olanak tanır ve bu işlem için gelişmiş YZ modelleri,

özellikle ChatGPT 3.5 Turbo ve ChatGPT 4.0 Mini kullanılmaktadır. Uzantı, iş

tanımları ile CV'ler arasındaki anlamsal benzerlikleri analiz ederek, kullanıcının

niteliklerinin iş gereksinimleriyle ne kadar örtüştüğüne dair kişiselleştirilmiş geri

bildirim sağlar. Uzantının temel özellikleri arasında Firebase hizmetleriyle yönetilen

kullanıcı kimlik doğrulama ve veri depolama, ayrıca YZ destekli karşılaştırmaların

işlenmesini sağlayan Node.js ve Express.js ile geliştirilen sağlam bir arka uç

bulunmaktadır.

Bu proje, iş arayanların çeşitli pozisyonlara uygunluklarını manuel olarak

değerlendirmede karşılaştıkları verimsizlikleri ve zorlukları ele almayı

amaçlamaktadır. Uzantının YZ yetenekleri, niteliklerin iş fırsatlarıyla eşleştirilmesi

için gereken zaman ve çabayı önemli ölçüde azaltarak iş başvuru sürecini optimize

eder. Ayrıca sistem, kullanıcıların ilerlemelerini izlemelerine ve iş arama yolculukları

boyunca bilinçli kararlar vermelerine olanak tanıyan bir karşılaştırma geçmişi tutar.

Bu proje, işe alım alanında YZ ve DDİ teknolojilerinin uygulanmasına önemli bir katkı

sağlamakta ve iş piyasası verimliliğini ve aday-pozisyon eşleştirmesini iyileştirmek

için pratik çözümler sunmaktadır.

Anahtar Sözcükler: Yapay Zeka, Doğal Dil İşleme, Chrome Uzantısı, LinkedIn

Entegrasyonu, CV Karşılaştırma, ChatGPT

iii

Acknowledgment

I wish to express my deepest gratitude to my advisor, Prof. Dr. Aytuğ Onan, whose

invaluable guidance and support have been crucial to the success of this project. His

expertise and feedback greatly enhanced the quality of my research and provided

constant motivation.

I also extend my thanks to the Department of Software Engineering at İzmir Katip

Çelebi University for providing the resources and academic environment necessary for

this research. The department’s dedication to innovation and academic excellence has

been instrumental in the development of this project.

Special recognition goes to the open-source community, particularly the developers of

Node.js, Express, and the ChatGPT model, whose contributions were fundamental to

this project’s implementation. The collaborative nature of the open-source community

significantly enriched my learning experience.

I am grateful to LinkedIn for offering a platform that served as the foundation for

testing and implementing this Chrome extension, and to my fellow students and

colleagues for their valuable feedback and suggestions throughout the development

process.

Finally, I extend heartfelt thanks to my family and friends for their unwavering support

and encouragement throughout my academic journey. Their belief in me has been a

driving force behind my perseverance and success.

This project would not have been possible without the collective efforts and support

of these individuals and institutions, and I am sincerely thankful for their contributions.

iv

Table of Contents

Abstract .. i

Öz ... ii

Acknowledgment .. iii

List of Figures ... vi

List of Abbreviations.. vii

1 Introduction .. 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Project Objectives .. 3

1.4 Significance of the Project ... 3

1.5 Methodology Overview ... 4

2 Literature review and theoretical background .. 6

2.1 Artificial Intelligence in Recruitment ... 6

2.1.1 AI-Powered Job Matching .. 6

2.2 Natural Language Processing in Resume Parsing and Job Matching 7

2.2.1 Resume Parsing .. 7

2.2.2 Semantic Similarity in Job Matching ... 7

2.3 Browser Extensions for Productivity .. 7

2.3.1 AI-Powered Browser Extensions .. 7

2.4 AI Integration with Professional Networking Platforms 8

2.4.1 LinkedIn's Own AI Initiatives .. 8

2.4.2 Third-Party AI Applications for LinkedIn .. 8

v

2.5 Ethical Considerations in AI-Powered Recruitment Tools 8

2.6 Theoretical Framework ... 8

2.7 Gap int the Literature .. 9

3 System architecture and implementation details .. 10

3.1 Overview of System Architecture .. 10

3.2 System Integration and Data Flow ... 11

3.3 Backend Architecture and AI Integration ... 12

3.4 User Interface and Experience .. 14

3.4.1 Enabling Developer Mode .. 14

3.4.2 Loading the Extension .. 14

3.4.3 Logging In or Signing Up ... 15

3.4.4 Viewing Previous Comparison Results .. 16

3.4.5 Using LinkedInSight on LinkedIn Job Pages 17

3.5 Performance Optimization and Security Considerations 19

3.6 Deployment and Maintenance ... 19

4 Results and performance analysis of the extension ... 20

4.1 Evaluation Methodology and Overview ... 20

4.2 Functional Accuracy and System Performance .. 21

4.3 User Experience and Interface Usability .. 21

4.4 Security, Privacy, and Ethical Considerations .. 22

4.5 Challenges and Limitations ... 22

4.6 Summary and Implications for Future Development 23

5 Implications, limitations, and future work .. 24

5.1 Summary of Key Findings and Project Significance 24

5.2 Implications for Users, Recruiters, and the Job Market 25

5.3 Ethical Considerations and Challenges ... 25

vi

5.4 Limitations of the Study and Implementation .. 26

5.5 Future Work and Development Directions ... 26

5.6 Research Opportunities and Interdisciplinary Collaboration 27

5.7 Conclusion and Final Thoughts .. 28

References ... 29

Appendices .. 31

vii

List of Figures

Figure 3.1 System Architecture Diagram ... 11

Figure 3.2 Data Flow Diagram ... 12

Figure 3.3 AI Processing Flow ... 13

Figure 3.4 Enabling Developer Mode in Chrome Extensions 14

Figure 3.5 Loading the Unpacked Extension ... 15

Figure 3.6 Login or Sign Up Interface.. 15

Figure 3.7 Viewing Uploaded Resume and Comparison Results 16

Figure 3.8 LinkedIn Job Page with 'Compare with Your CV!' Button..................... 17

Figure 3.9 Displaying Job-CV Comparison Results .. 18

viii

List of Abbreviations

AI Artificial Intelligence

NLP Natural Language Processing

CV Curriculum Vitae

API Application Programming Interface

JWT JSON Web Token

UI User Interface

UX User Experience

VPS Virtual Private Server

CI/CD Continuous Integration/Continuous Deployment

PDF Portable Document Format

HTTPS Hypertext Transfer Protocol Secure

DDİ Doğal Dil İşleme (Natural Language Processing in Turkish)

YZ Yapay Zeka (Artificial Intelligence in Turkish)

1

Chapter 1

Introduction

In the rapidly evolving digital landscape, the intersection of artificial intelligence (AI)

and job searching has opened new avenues for enhancing the efficiency and

effectiveness of career development processes. This project introduces a novel Chrome

extension that leverages AI and natural language processing (NLP) technologies to

revolutionize how job seekers interact with LinkedIn, one of the world's leading

professional networking platforms.

1.1 Background

The job search process has undergone a significant transformation over the past few

decades. Traditionally, job seekers would rely on newspaper advertisements, career

fairs, and networking events to discover potential employment opportunities. This

process, while effective in its time, was often labor-intensive and limited by

geographical and social boundaries. The advent of the internet and online job portals

marked a turning point, providing job seekers with unprecedented access to a vast array

of opportunities across various industries and regions. Professional networking

platforms, such as LinkedIn, have further revolutionized this process by integrating

social networking features with job searching capabilities.

LinkedIn, launched in 2003, has emerged as a pivotal platform for professional

networking, boasting over 750 million members worldwide. The platform allows users

to create detailed profiles, connect with other professionals, and explore job

opportunities tailored to their skills and experiences. Despite these advancements, the

sheer volume of job listings on platforms like LinkedIn has introduced a new

challenge: how to efficiently match job seekers with the most suitable positions based

2

on their qualifications and experience. The manual process of browsing through

numerous job listings, comparing job descriptions with one's qualifications, and

deciding on the most appropriate applications remains a daunting task for many users.

Recent developments in AI and NLP have presented promising solutions to this

problem. AI technologies, particularly those involving machine learning and NLP,

have demonstrated the capability to analyze large datasets, extract meaningful patterns,

and generate insights that can aid in decision-making processes. In the context of job

searching, these technologies can be harnessed to automate the comparison of job

descriptions with user qualifications, thereby streamlining the job application process.

The integration of AI into professional networking platforms like LinkedIn has the

potential to significantly enhance the job-seeking experience by providing users with

personalized, data-driven recommendations that are both efficient and accurate.

1.2 Problem Statement

Despite the advancements in online job searching, there remains a significant gap

between the efficiency of browsing job listings and the ability to quickly assess one's

suitability for a position. Job seekers often spend considerable time reading through

numerous job descriptions, manually comparing them to their own qualifications. This

process is not only time-consuming but also prone to oversight and subjective

interpretation. Moreover, the manual nature of this task means that job seekers may

overlook important details or misinterpret the relevance of specific qualifications,

leading to suboptimal job applications.

The problem is further compounded by the dynamic nature of job markets, where job

descriptions can vary widely in terms of requirements, preferred qualifications, and

job responsibilities. Job seekers, especially those navigating through multiple

industries or roles, may find it challenging to keep track of the diverse set of skills and

experiences required for different positions. Consequently, they may either apply to

jobs that do not fully align with their qualifications or miss out on opportunities that

would be a good fit.

This project seeks to address these challenges by developing a Chrome extension that

integrates AI and NLP technologies into the LinkedIn platform. The extension aims to

3

automate the process of comparing job descriptions with user-uploaded CVs,

providing job seekers with a quick and accurate assessment of their suitability for a

given position. By doing so, the project endeavors to enhance the overall efficiency of

the job-seeking process, reducing the time and effort required to find and apply for

relevant positions.

1.3 Project Objectives

The primary objective of this project is to develop a Chrome extension that bridges the

gap between the manual effort required in job searching and the potential for AI-driven

automation. The extension is designed to integrate seamlessly with LinkedIn's job

pages, allowing users to upload and store their CVs securely and initiate AI-powered

comparisons between job descriptions and their qualifications. The results of these

comparisons are displayed directly within the LinkedIn interface, providing users with

immediate feedback on their suitability for specific roles. Additionally, the extension

maintains a history of comparisons, enabling users to track their job application

process and make informed decisions based on past assessments.

To achieve this objective, the project employs a combination of cutting-edge web

technologies, cloud services, and AI models. The Chrome extension is developed using

JavaScript and React, ensuring compatibility with LinkedIn's dynamic interface and

providing a user-friendly experience. The backend system, implemented using Node.js

with Express.js, handles server-side logic, processes user data, and manages

interactions with external AI services. Firebase Authentication and Firestore are

utilized for secure user management and data storage, ensuring that sensitive user

information, such as CVs and job application history, is protected. The AI component

of the project leverages the ChatGPT 4.0 Mini model, a state-of-the-art NLP system

capable of performing complex text comparisons and generating meaningful insights.

1.4 Significance of the Project

This project represents a significant step forward in applying AI and NLP technologies

to practical job-seeking tasks. By automating the initial assessment of job suitability,

the extension aims to save time for job seekers, enabling them to focus on the most

4

relevant opportunities. The AI-powered comparisons provided by the extension are

designed to improve the accuracy of job applications, highlighting the match between

candidate skills and job requirements and thereby increasing the likelihood of

successful applications.

The project's significance extends beyond its immediate application in job searching.

The integration of AI into professional networking platforms like LinkedIn has broader

implications for the future of work. As AI technologies continue to evolve, they have

the potential to reshape the job market, influencing how job seekers interact with

employers and how employers identify and recruit talent. By developing tools that

enhance the job-seeking process, this project contributes to a growing body of research

and development aimed at leveraging AI to improve career outcomes for individuals

and efficiency in the job market.

Moreover, the project addresses several critical issues related to AI in recruitment,

including the ethical considerations of using AI to influence job application decisions.

The extension is designed with a focus on transparency and fairness, ensuring that AI-

driven recommendations are presented clearly and that users retain control over their

job application process. By emphasizing user empowerment and informed decision-

making, the project seeks to mitigate potential biases and ethical concerns associated

with AI in recruitment.

1.5 Methodology Overview

The methodology for developing the LinkedInSight Chrome extension involves a

multi-faceted approach that combines web development, cloud computing, and AI

integration. The project begins with the design and implementation of the Chrome

extension, which serves as the user interface for interacting with LinkedIn's job pages.

This frontend component is built using React, a popular JavaScript library for building

user interfaces, and is integrated directly into LinkedIn's job description pages.

The backend system is developed using Node.js, a server-side JavaScript runtime

environment, and Express.js, a web application framework for Node.js. The backend

handles user authentication, data storage, and the processing of AI-powered

comparisons. Firebase services, including Firebase Authentication and Firestore

5

Database, are employed to manage user accounts, store user data securely, and ensure

real-time synchronization between the frontend and backend components.

The AI integration is a critical aspect of the project, involving the use of the ChatGPT

4.0 Mini model for natural language processing and text comparison tasks. This model

is accessed via an API, which allows the backend to submit job descriptions and user

CVs for analysis and receive AI-generated comparison results. The AI model is trained

to assess the semantic similarity between job descriptions and CVs, identify relevant

skills and qualifications, and generate actionable insights for users.

Throughout the development process, the project adheres to best practices in software

engineering, including modular design, version control, and continuous integration

and deployment (CI/CD). The system architecture is designed to be scalable and

maintainable, with a focus on performance optimization and security. Regular testing

and validation are conducted to ensure that the extension functions as intended and

meets the needs of users.

In conclusion, this project represents an innovative application of AI and NLP

technologies in the domain of job searching. By developing a Chrome extension that

automates the comparison of job descriptions with user CVs, the project seeks to

enhance the job-seeking experience on LinkedIn, improve the accuracy of job

applications, and contribute to the broader field of AI-driven career development tools.

The project's significance, both in terms of its immediate application and its potential

impact on the future of work, underscores the importance of continued research and

development in this area.

6

Chapter 2

Literature review and theoretical

background

This chapter provides an overview of the relevant literature and theoretical concepts

that underpin the development of our AI-powered Chrome extension for job matching

on LinkedIn. We explore key areas including artificial intelligence in recruitment,

natural language processing for resume parsing and job matching, browser extensions

for productivity, and the integration of AI with professional networking platforms.

2.1 Artificial Intelligence in Recruitment

The application of AI in recruitment has been gaining significant traction in recent

years. Upadhyay and Khandelwal (2018) provide a comprehensive review of AI

applications in human resource management, highlighting the potential for AI to

streamline recruitment processes. They note that AI can significantly reduce time-to-

hire and improve the quality of candidate matches.

2.1.1 AI-Powered Job Matching

Mehrabad and Brojeny (2007) proposed one of the early models for using AI in job-

person matching. Their work laid the foundation for more advanced systems that we

see today. More recently, Mehta et al. (2021) demonstrated a machine learning

approach to match job descriptions with candidate profiles, achieving high accuracy

in predicting suitable matches.

7

2.2 Natural Language Processing in Resume Parsing and

Job Matching

Natural Language Processing (NLP) plays a crucial role in understanding and

comparing job descriptions and resumes.

2.2.1 Resume Parsing

Chen et al. (2018) developed an NLP-based system for automatically extracting

information from resumes. Their work demonstrates the feasibility of using AI to

understand unstructured text in professional documents.

2.2.2 Semantic Similarity in Job Matching

Zhao et al. (2020) explored the use of semantic similarity measures to match job

descriptions with candidate profiles. Their research shows that NLP techniques can

capture nuanced relationships between skills and job requirements, going beyond

simple keyword matching.

2.3 Browser Extensions for Productivity

Browser extensions have become powerful tools for enhancing web browsing

experiences. Dhillon et al. (2016) studied the impact of browser extensions on user

productivity, finding that well-designed extensions can significantly improve task

efficiency.

2.3.1 AI-Powered Browser Extensions

While literature on AI-powered browser extensions is limited, Beel et al. (2019)

demonstrated the potential of integrating recommendation systems into browser

extensions for academic literature search. Their work provides insights into the

challenges and opportunities of embedding AI capabilities directly into the browsing

experience.

8

2.4 AI Integration with Professional Networking

Platforms

LinkedIn, as the world's largest professional networking platform, has been the subject

of numerous studies regarding AI integration.

2.4.1 LinkedIn's Own AI Initiatives

Stadler et al. (2020) analyzed LinkedIn's use of AI in its job recommendation system.

Their study provides valuable insights into how large-scale professional networks

leverage AI to improve user experiences.

2.4.2 Third-Party AI Applications for LinkedIn

Research on third-party AI applications for LinkedIn is relatively scarce, highlighting

the novelty of our approach. However, Bastian et al. (2014) explored the potential of

using external data sources to enrich LinkedIn profiles, which bears some similarity to

our approach of augmenting LinkedIn's functionality with external AI services.

2.5 Ethical Considerations in AI-Powered Recruitment

Tools

As AI becomes more prevalent in recruitment, ethical considerations have come to the

forefront. Raghavan et al. (2020) discuss the potential for bias in AI-powered hiring

tools and propose frameworks for mitigating these risks.

2.6 Theoretical Framework

Our project builds upon several theoretical frameworks:

1. Natural Language Understanding: Utilizing theories of semantic analysis and

text comparison (Mikolov et al., 2013).

9

2. Human-Computer Interaction: Applying principles of user-centered design in

browser extension development (Norman, 2013).

3. Information Retrieval: Leveraging concepts from information retrieval to

improve job-resume matching accuracy (Manning et al., 2008).

2.7 Gap in the Literature

While significant research has been conducted in various aspects of AI in recruitment

and job matching, there is a notable gap in studies that explore the integration of these

technologies directly into the user's browsing experience, particularly in the context of

professional networking sites like LinkedIn. Our project aims to address this gap by

developing a Chrome extension that brings advanced AI-powered job matching

capabilities directly to the user's LinkedIn browsing session.

10

Chapter 3

System Architecture and

Implementation Details

Chapter 3 introduces the system architecture and implementation details of

LinkedInSight. This chapter provides a comprehensive overview of the design and

integration of the system's core components, focusing on how the frontend, backend,

and AI services work together to deliver a seamless and secure user experience. It also

addresses key considerations in performance optimization and security, ensuring the

system's efficiency and reliability in real-world usage.

3.1 Overview of System Architecture

The LinkedInSight system architecture was meticulously designed to integrate

advanced artificial intelligence (AI) and natural language processing (NLP)

capabilities within the LinkedIn platform, providing users with enhanced job matching

and CV comparison functionalities. The architecture comprises three core

components: the Chrome extension (frontend), a Node.js Express server (backend),

and Firebase services, which collectively facilitate seamless interaction between the

user and the underlying AI-driven processes.

11

Figure 3.1: System Architecture Diagram

The Chrome extension serves as the primary user interface, embedded within the

LinkedIn job pages to enable direct interaction with the platform. This frontend

component is responsible for detecting relevant job descriptions, allowing users to

trigger AI-powered comparisons with their uploaded CVs. The backend, implemented

using Node.js and Express, manages the processing of these comparisons, interfacing

with the ChatGPT 4.0 Mini API to deliver accurate and contextually relevant results.

Firebase services are employed for user authentication, data storage, and secure

handling of user CVs, ensuring the integrity and confidentiality of sensitive user

information.

3.2 System Integration and Data Flow

The integration of the Chrome extension with LinkedIn’s dynamic environment is a

key feature of the LinkedInSight system. The extension is designed to recognize when

a user is viewing a job description, at which point it injects a “Compare with CV”

button directly into the LinkedIn interface. This button, when clicked, initiates a data

flow process that involves the extraction of the job description text and its transmission

to the backend server.

The Node.js backend retrieves the user’s CV from Firebase Storage and submits both

the job description and the CV to the ChatGPT 4.0 Mini API for analysis. The AI

model processes the data, generating a comparison that highlights the degree of

alignment between the job requirements and the user’s qualifications. The results are

12

then relayed back to the Chrome extension, where they are displayed in a user-friendly

format within the LinkedIn page.

Figure 3.2: Data Flow Diagram

3.3 Backend Architecture and AI Integration

The backend architecture is designed to handle the computational demands of AI

processing while maintaining responsiveness and scalability. Node.js and Express

form the backbone of the server-side logic, offering a robust framework for handling

user requests, processing CVs, and managing interactions with the AI API.

13

Figure 3.3: AI Processing Flow

A critical aspect of the backend is its integration with ChatGPT 4.0 Mini, an AI model

tasked with performing the core comparison function. The backend formulates

prompts that instruct the AI to analyze the job description and the user’s CV, assessing

the match in terms of required skills, experience, and qualifications. The prompt

engineering process is central to achieving accurate and meaningful results, guiding

the AI to generate insights that are both relevant and actionable for the user.

Security is a paramount concern in the backend’s design, particularly given the

sensitive nature of the data being processed. Data is encrypted during transmission

between the extension, backend, and Firebase services, ensuring that user information

is protected at all stages. Authentication is handled using JSON Web Tokens (JWT),

which safeguard access to user data and restrict API interactions to authorized users

only.

14

3.4 User Interface and Experience

The user interface (UI) of the LinkedInSight extension is designed to be intuitive and

seamlessly integrated into the LinkedIn platform, ensuring that both new users and

those familiar with LinkedIn can easily access and utilize the extension's

functionalities.

3.4.1 Enabling Developer Mode

To begin, users need to navigate to the Chrome Extensions page by entering

chrome://extensions/ in the address bar. As depicted in Figure 3.5, users should enable

Developer mode if it’s not already activated. This step is crucial for loading unpacked

extensions.

Figure 3.4: Enabling Developer Mode in Chrome Extensions

3.4.2 Loading the Extension

Once Developer mode is enabled, users can proceed by clicking the "Load unpacked"

button, as shown in Figure 3.6. They should then select the directory containing the

LinkedInSight extension's files. This step allows users to install the extension

manually on their browser.

15

Figure 3.5: Loading the Unpacked Extension

3.4.3 Logging In or Signing Up

After successfully loading the extension, users are prompted to log in or sign up, as

seen in Figure 3.7. They can enter their email and password to access their

LinkedInSight account. If the user hasn’t uploaded a resume yet, they are guided to do

so.

Figure 3.6: Login or Sign Up Interface

16

3.4.4 Viewing Previous Comparison Results

Users can view their previously uploaded resume and comparison results within the

extension interface, as illustrated in Figure 3.8. This feature allows them to review past

job comparisons and make informed decisions about future applications.

Figure 3.7: Viewing Uploaded Resume and Comparison Results

17

3.4.5 Using LinkedInSight on LinkedIn Job Pages

When users navigate to a LinkedIn job posting, the LinkedInSight extension

automatically integrates a "Compare with your CV!" button directly beneath the

"Apply" button, as depicted in Figure 3.9. Upon clicking this button, the extension

quickly processes and displays the comparison results, typically within five seconds,

directly on the job posting page, as shown in Figure 3.10.

Figure 3.8: LinkedIn Job Page with 'Compare with Your CV!' Button

18

Figure 3.9: Displaying Job-CV Comparison Results

The interface is crafted with usability in mind, featuring one-click comparisons that

significantly streamline the job application process. By minimizing user effort and

offering real-time feedback, LinkedInSight enhances the overall job-seeking

experience on LinkedIn.

19

3.5 Performance Optimization and Security

Considerations

To ensure a smooth user experience, several performance optimization strategies were

implemented. Caching mechanisms reduce the need for repeated AI processing by

storing previously computed results, which can be quickly retrieved for subsequent

requests. Asynchronous processing further enhances system responsiveness, allowing

the extension to handle multiple tasks concurrently without causing delays or

disruptions to the user experience.

In addition to performance optimization, security remains a central focus of the

LinkedInSight system. All communications are encrypted using HTTPS, and strict

access controls are enforced through Firebase security rules and JWT-based

authentication. These measures protect user data from unauthorized access and ensure

that the system complies with best practices in data security and privacy.

3.6 Deployment and Maintenance

The deployment of the LinkedInSight system is managed through a combination of

automated tools and manual oversight, ensuring that the extension and backend are

consistently updated and maintained. The backend server is hosted on an Oracle

Virtual Private Server (VPS) and managed using Coolify, an open-source platform that

supports Continuous Integration/Continuous Deployment (CI/CD) workflows. This

setup allows for rapid deployment of updates and scaling of resources as needed,

ensuring that the system remains responsive and capable of handling increased user

demand.

Monitoring tools, including New Relic, are employed to track the performance and

health of the system, enabling proactive identification and resolution of potential

issues. Regular updates to both the extension and backend codebases ensure that the

system remains secure and up-to-date with the latest advancements in AI and web

technologies.

20

Chapter 4

Results and performance analysis of the

extension

Chapter 4 provides a detailed analysis of the LinkedInSight extension's performance

and evaluation results. This chapter explores the functional accuracy of the AI-driven

job-CV comparison, the system's responsiveness, and user experience feedback.

Additionally, it addresses security, privacy, and ethical considerations, as well as the

challenges and limitations encountered during testing, outlining the implications for

future development.

4.1 Evaluation Methodology and Overview

The LinkedInSight extension was developed with the primary aim of enhancing the

job-seeking experience on LinkedIn by leveraging AI-powered comparisons between

job descriptions and user CVs. To assess the effectiveness and efficiency of this

extension, a comprehensive evaluation methodology was employed. The evaluation

focused on several key aspects, including the functional accuracy of the job-CV

matching process, the responsiveness of the system under varying conditions, and the

overall user experience, despite the extension not yet being publicly released.

The extension was tested in a controlled environment to simulate real-world usage

scenarios. This involved functional testing across various LinkedIn job postings, as

well as usability testing to gauge the user experience and interface intuitiveness.

Additionally, the backend system's performance was scrutinized to ensure reliable

processing of AI-driven comparisons, secure user data management, and prompt

responses to user interactions.

21

4.2 Functional Accuracy and System Performance

The primary functionality of the LinkedInSight extension centers on accurately

comparing job descriptions with user-uploaded CVs, using advanced natural language

processing techniques facilitated by the ChatGPT 4.0 Mini API. The accuracy of these

comparisons was evaluated through manual verification processes, where the AI-

generated results were cross-referenced with human judgments. While comprehensive

field testing was not possible due to the extension's unpublished status, initial findings

indicate that the AI model demonstrates a satisfactory level of accuracy in matching

relevant skills and qualifications.

System performance, particularly response times, was also a key focus of the

evaluation. Despite the limited scope of testing, it was observed that the backend

system, built on Node.js and Express, handled processing tasks efficiently. The

integration of Firebase services for user authentication, data storage, and real-time

updates further contributed to the smooth operation of the extension. The use of

asynchronous processing and caching strategies were instrumental in maintaining a

responsive user interface, minimizing delays during AI processing tasks.

4.3 User Experience and Interface Usability

User experience (UX) is a critical factor in the success of any browser extension, and

the LinkedInSight extension was designed with a focus on simplicity and ease of use.

The interface, built with React and Material-UI, was subjected to usability testing to

ensure it met the needs of potential users. Key aspects of the interface, such as the

integration of the "Compare with CV" button directly into LinkedIn job pages and the

clear presentation of comparison results, were highlighted as particularly effective in

streamlining the job application process.

Feedback gathered during the testing phase indicated that users found the extension

intuitive and easy to navigate, with the one-click CV comparison feature being

especially well-received. However, there were suggestions for further improvements,

such as enhancing the speed at which comparison results are delivered and refining the

AI's recommendations to be more contextually relevant.

22

4.4 Security, Privacy, and Ethical Considerations

Given the sensitive nature of the data involved, particularly user CVs and personal

information, stringent security and privacy measures were implemented. Data

encryption was utilized for all communications between the extension, backend, and

Firebase services, ensuring that user information remained protected throughout the

process. Additionally, the use of JSON Web Tokens (JWT) for authentication provided

a robust mechanism for securing access to user data and ensuring that only authorized

users could perform comparisons.

Ethical considerations were also a central aspect of the project, particularly in relation

to the AI's role in influencing job application decisions. Efforts were made to ensure

that the AI-driven recommendations were transparent and fair, minimizing potential

biases that could disadvantage certain users. The extension’s design emphasized user

control and informed decision-making, allowing users to view and assess AI-generated

insights before acting upon them.

4.5 Challenges and Limitations

Despite the promising results observed during testing, the LinkedInSight extension

faces several challenges and limitations that need to be addressed in future

development phases. The unpublished status of the extension limited the scope of

testing, restricting the ability to gather comprehensive data on real-world performance.

Additionally, the reliance on LinkedIn’s existing infrastructure posed challenges in

maintaining compatibility with dynamic changes to the platform.

The accuracy of the AI model, while generally satisfactory, could benefit from further

refinement, particularly in understanding and comparing complex job requirements

with user qualifications. Moreover, the need for ongoing updates to the AI model and

backend systems is evident to keep pace with advancements in AI and changes to

LinkedIn’s platform.

23

4.6 Summary and Implications for Future Development

In summary, the LinkedInSight extension demonstrates significant potential to

enhance the job-seeking experience on LinkedIn through AI-powered job-CV

comparisons. Initial testing indicates that the extension is capable of delivering

accurate and timely insights, with a user-friendly interface that integrates seamlessly

into LinkedIn's ecosystem. However, the unpublished status of the extension and the

limitations of the current testing phase highlight the need for further development and

testing to fully realize its potential.

Future work will focus on expanding the scope of testing, refining the AI algorithms,

and addressing the challenges identified during the initial evaluation. By continuing to

enhance the system's accuracy, performance, and user experience, LinkedInSight can

become a valuable tool for job seekers, improving the efficiency and effectiveness of

the job application process.

24

Chapter 5

Implications, Limitations, and Future

Work

Chapter 5 explores the broader implications, limitations, and future directions for the

LinkedInSight project. This chapter summarizes the key findings and significance of

the project, discusses the ethical considerations and challenges associated with AI-

driven job matching, and outlines the limitations of the current implementation. It also

proposes future work, including expanding the extension’s capabilities, addressing its

limitations, and exploring research opportunities through interdisciplinary

collaboration.

5.1 Summary of Key Findings and Project Significance

The LinkedInSight project represents a significant advancement in the application of

AI and NLP technologies to enhance the job-seeking process. By integrating these

technologies into a Chrome extension tailored for LinkedIn, this project has laid the

groundwork for more efficient, accurate, and user-friendly job application processes.

The extension’s ability to perform AI-driven comparisons between job descriptions

and user CVs directly within the LinkedIn platform addresses a critical need for

streamlined job matching, potentially transforming how users interact with

professional networking sites.

The findings from the initial testing phase indicate that the extension is capable of

delivering valuable insights that can improve job-seeking outcomes. Despite the

limitations posed by the extension's unpublished status, the controlled testing

environment provided useful data on the system’s functionality, user interface, and

overall performance. The project's significance extends beyond its immediate

25

application, offering insights into the broader implications of integrating AI into

professional networking platforms.

5.2 Implications for Users, Recruiters, and the Job Market

The introduction of AI-driven tools like LinkedInSight has profound implications for

job seekers, recruiters, and the broader job market. For job seekers, the extension offers

a powerful tool that can save time and reduce the cognitive load associated with

evaluating job opportunities. By automating the comparison of CVs with job

descriptions, the extension enables users to focus on the most relevant opportunities,

thereby improving the quality and relevance of job applications.

For recruiters and employers, LinkedInSight can enhance the recruitment process by

promoting better alignment between job requirements and candidate qualifications.

This can lead to higher quality applicant pools and more efficient hiring processes,

ultimately benefiting organizations by reducing the time and resources spent on

recruitment.

At the macro level, the widespread adoption of AI-powered job matching tools could

have significant implications for the job market as a whole. By improving the

efficiency of job-skill alignment, such tools could contribute to reducing

unemployment rates and increasing job satisfaction among employees, as individuals

find positions that better match their skills and career aspirations.

5.3 Ethical Considerations and Challenges

The integration of AI in job matching raises important ethical considerations,

particularly concerning privacy, bias, and transparency. The LinkedInSight extension

handles sensitive personal data, such as user CVs and job histories, necessitating robust

data protection measures. Encryption and secure data storage practices have been

implemented to safeguard user information, but ongoing vigilance is required to ensure

these measures remain effective against evolving cybersecurity threats.

AI bias is another critical concern. The algorithms used in LinkedInSight must be

continually assessed to ensure they do not inadvertently disadvantage certain groups

26

of users. Bias in AI-driven job matching could exacerbate existing inequalities in the

job market, making it essential to implement fairness checks and regular audits of the

AI’s decision-making processes.

Transparency is also paramount in maintaining user trust. Users need to understand

how the AI operates, the factors it considers when making comparisons, and how they

can influence or override AI-generated recommendations. Clear communication about

these aspects is essential to foster informed decision-making and prevent over-reliance

on AI.

5.4 Limitations of the Study and Implementation

The LinkedInSight project, while promising, has several limitations that must be

acknowledged. First and foremost, the extension has not yet been published, which

restricted the scope of testing and limited the ability to gather real-world usage data.

This lack of public deployment means that the findings are based on simulated

environments and may not fully capture the challenges or variations encountered in

broader, real-world applications.

The current implementation is also constrained by its reliance on LinkedIn’s platform,

which may change its structure or functionalities over time. These changes could affect

the extension’s compatibility and necessitate ongoing updates to maintain

functionality. Furthermore, the AI model used in LinkedInSight, while effective, is

dependent on the quality and comprehensiveness of the data it processes. Any

limitations in the data (e.g., incomplete CVs or job descriptions) could impact the

accuracy of the AI’s recommendations.

5.5 Future Work and Development Directions

Future work on LinkedInSight should focus on addressing the limitations identified

and expanding the extension’s capabilities. Immediate priorities include the public

release of the extension, which would allow for comprehensive real-world testing and

provide more robust data on user engagement, system performance, and overall

27

effectiveness. This will be crucial for refining the extension’s features and improving

user satisfaction.

In the medium term, there is potential to expand the functionality of LinkedInSight to

support additional platforms beyond LinkedIn. This could involve integrating with

other professional networking sites or job portals, thereby broadening the extension’s

user base and applicability. Additionally, enhancements to the AI model, such as

incorporating more advanced NLP techniques or personalizing the AI based on

individual user data, could further improve the accuracy and relevance of the job

matching process.

In the long term, the vision for LinkedInSight could extend beyond its current form as

a browser extension. Exploring the development of a standalone platform or mobile

application that offers comprehensive career development tools, including job

searching, networking, and skills assessment, could position LinkedInSight as a leader

in the HR tech industry.

5.6 Research Opportunities and Interdisciplinary

Collaboration

The LinkedInSight project opens up several avenues for future research. Longitudinal

studies on the impact of AI-assisted job searching on career outcomes would provide

valuable insights into the long-term benefits and potential drawbacks of such

technologies. Comparative studies between LinkedInSight and other job matching

tools could also offer important benchmarks and identify areas for improvement.

Interdisciplinary collaboration with fields such as labor economics, organizational

psychology, and human-computer interaction could further enrich the development of

LinkedInSight. Understanding the societal impacts of widespread AI adoption in job

searching, including its effects on employment patterns and worker mobility, is critical

for ensuring that these technologies are used responsibly and equitably.

28

5.7 Conclusion and Final Thoughts

The LinkedInSight project represents a pioneering effort to harness the power of AI

and NLP in enhancing the job-seeking experience on LinkedIn. While there are

challenges and limitations to be addressed, the project has demonstrated the potential

of AI-driven tools to transform how job seekers interact with professional networking

platforms. As AI continues to evolve, there is a tremendous opportunity to further

integrate these technologies into the recruitment process, ultimately contributing to

more efficient, fair, and satisfying job markets.

Looking ahead, the ongoing development and refinement of LinkedInSight will be

essential to realizing its full potential. By continuing to prioritize user needs, ethical

considerations, and technological advancements, LinkedInSight can become a

valuable asset for job seekers and recruiters alike, shaping the future of work in

meaningful ways.

29

References

Bastian, M., Hayes, M., Vaughan, W., Shah, S., Skomoroch, P., Kim, H., Uryasev, S.,

& Lloyd, C. (2014). LinkedIn skills: Large-scale topic extraction and inference.

Proceedings of the 8th ACM Conference on Recommender Systems, 1-8.

https://doi.org/10.1145/2645710.2645728

Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). Research-paper recommender

systems: A literature survey. International Journal on Digital Libraries, 17(4),

305-338. https://doi.org/10.1007/s00799-015-0156-0

Chen, J., Gao, L., & Tang, Z. (2018). Information extraction from resume documents

in PDF format. 2018 IEEE 3rd International Conference on Big Data Analysis

(ICBDA), 268-273. https://doi.org/10.1109/ICBDA.2018.8367707

Dhillon, S., & Mahmoud, Q. H. (2016). An evaluation framework for cross-platform

mobile application development tools. Software: Practice and Experience,

46(10), 1331-1357. https://doi.org/10.1002/spe.2376

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information

retrieval. Cambridge University Press.

Mehta, S., Paunwala, C. N., & Vaidya, B. (2021). Recruitment recommendation

system using machine learning approaches. 2021 7th International Conference

on Advanced Computing and Communication Systems (ICACCS), 1361-1367.

https://doi.org/10.1109/ICACCS51430.2021.9441867

Mehrabad, M. S., & Brojeny, M. F. (2007). The development of an expert system for

effective selection and appointment of the jobs applicants in human resource

management. Computers & Industrial Engineering, 53(2), 306-312.

https://doi.org/10.1016/j.cie.2007.06.023

https://doi.org/10.1145/2645710.2645728
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1109/ICBDA.2018.8367707
https://doi.org/10.1002/spe.2376
https://doi.org/10.1109/ICACCS51430.2021.9441867
https://doi.org/10.1016/j.cie.2007.06.023

30

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. Advances in

Neural Information Processing Systems, 26, 3111-3119.

Norman, D. A. (2013). The design of everyday things: Revised and expanded edition.

Basic Books.

Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in

algorithmic hiring: Evaluating claims and practices. Proceedings of the 2020

Conference on Fairness, Accountability, and Transparency, 469-481.

https://doi.org/10.1145/3351095.3372828

Stadler, G., Hautz, J., Matzler, K., & Von Den Eichen, S. F. (2020). Distributed

knowledge across organizational boundaries: The role of online professional

networks in sharing expertise. In Engineering a Better Future (pp. 107-124).

Springer. https://doi.org/10.1007/978-3-030-20656-7_7

Zhao, M., Javed, F., Jacob, F., & McNair, M. (2020). SKILL: A system for skill

identification and normalization. Proceedings of the AAAI Conference on

Artificial Intelligence, 34(08), 9529-9536.

https://doi.org/10.1609/aaai.v34i08.7037

https://doi.org/10.1145/3351095.3372828
https://doi.org/10.1007/978-3-030-20656-7_7
https://doi.org/10.1609/aaai.v34i08.7037

31

Appendices

32

Appendix A: Chrome Extension Code

webpack.prod.js


```js 

const { merge } = require('webpack-merge'); 

const common = require('./webpack.common.js'); 

 

module.exports = merge(common, { mode: 'production' }); 

 

``` 


webpack.dev.js


```js 

const { merge } = require('webpack-merge'); 

const common = require('./webpack.common.js'); 

 

module.exports = merge(common, { mode: 'development', devtool: 'cheap-module-source-map' }); 

 

``` 


webpack.common.js


```js 

const path = require('path'); 

const CopyPlugin = require('copy-webpack-plugin'); 

const HtmlPlugin = require('html-webpack-plugin'); 

 

module.exports = { 

  entry: { 

    popup: path.resolve('src/popup/popup.tsx'), 

    options: path.resolve('src/options/options.tsx'), 

    background: path.resolve('src/background/background.ts'), 

    contentScript: path.resolve('src/contentScript/contentScript.tsx'), 

  }, 

  module: { 

    rules: [ 

      { test: /\.tsx?$/, use: 'ts-loader', exclude: /node_modules/ }, 

      { test: /\.css$/i, use: ['style-loader', 'css-loader'] }, 

      { test: /\.(jpg|jpeg|png|woff|woff2|eot|ttf|svg)$/, type: 'asset/resource' } 

    ] 

  }, 

  resolve: { extensions: ['.tsx', '.ts', '.js'] }, 

  plugins: [ 

    new CopyPlugin({ patterns: [{ from: 'src/static', to: 'dist' }] }), 

    ...['popup', 'options'].map(chunk => new HtmlPlugin({ filename: `${chunk}.html`, chunks: 

[chunk] })) 

  ], 

  output: { filename: '[name].js', path: path.resolve('dist') }, 

  optimization: { splitChunks: { chunks: chunk => chunk.name !== 'contentScript' } } 

}; 

 

``` 


tsconfig.json

33


```json 

{ 

  "compilerOptions": { 

    "jsx": "react", 

    "module": "es6", 

    "target": "es6", 

    "moduleResolution": "node", 

    "esModuleInterop": true, 

    "lib": [ 

      "dom", 

      "esnext" 

    ] 

  } 

} 

``` 


package.json


```json 

{ 

  "name": "LinkedInSight", 

  "version": "1.0.0", 

  "description": "Compare LinkedIn job postings with user-uploaded resumes and provide feedback.", 

  "scripts": { 

    "start": "webpack --watch --progress --config webpack.dev.js", 

    "build": "webpack --watch --progress --config webpack.prod.js" 

  }, 

  "author": "Ozgur Gurcan", 

  "devDependencies": { 

    "@emotion/react": "^11.11.4", 

    "@emotion/styled": "^11.11.5", 

    "@mui/icons-material": "^5.15.16", 

    "@mui/material": "^5.15.16", 

    "@types/chrome": "^0.0.267", 

    "@types/react": "^18.3.0", 

    "@types/react-dom": "^18.3.0", 

    "clean-webpack-plugin": "^3.0.0", 

    "copy-webpack-plugin": "^7.0.0", 

    "css-loader": "^5.2.4", 

    "fontsource-roboto": "^4.0.0", 

    "html-webpack-plugin": "^4.5.2", 

    "react": "^18.3.0", 

    "react-dom": "^18.3.0", 

    "style-loader": "^2.0.0", 

    "terser-webpack-plugin": "^5.1.1", 

    "ts-loader": "^8.2.0", 

    "typescript": "^5.4.5", 

    "webpack": "^5.35.1", 

    "webpack-cli": "^4.6.0", 

    "webpack-merge": "^5.7.3" 

  } 

} 

``` 


.gitignore


``` 

dist 

node_modules 

 

``` 


src\constants.tsx


```tsx 



34 

 

export const ELEMENT_IDS = { 

    JOB_DETAILS: 'job-details', 

    COMPARISON_CARD: 'job-compare-card', 

}; 

 

``` 


src\utils\storage.ts


```ts 

export const setStorageUser = (user) => chrome.storage.local.set({ user }); 

export const getStorageUser = () => new Promise(resolve => chrome.storage.local.get(['user'], res 

=> resolve(res.user || null))); 

export const clearStorageUser = () => chrome.storage.local.remove(['user']); 

 

export const setStorageToken = (token) => chrome.storage.local.set({ authToken: token }); 

export const getStorageToken = () => new Promise(resolve => chrome.storage.local.get(['authToken'], 

res => resolve(res.authToken || null))); 

export const clearStorageToken = () => chrome.storage.local.remove(['authToken']); 

 

``` 


src\utils\messages.ts


```ts 

export enum Messages { 

    // Content script to background script 

    TOGGLE_OVERLAY, 

 

    // Background script to content script 

} 

``` 


src\utils\jobUtils.tsx


```tsx 

export function getJobDescription() { 

    const jobDescriptionElement = document.getElementById('job-details'); 

    if (!jobDescriptionElement) return 'Job description not found'; 

 

    let jobDescription = ''; 

    jobDescriptionElement.querySelectorAll('h2, p, ul, li').forEach(section => { 

        if (section.tagName === 'H2') jobDescription += `\n\n${section.textContent}\n`; 

        else if (section.tagName === 'UL') section.querySelectorAll('li').forEach(li => 

jobDescription += ` - ${li.textContent}\n`); 

        else jobDescription += `${section.textContent}\n`; 

    }); 

 

    return jobDescription.trim(); 

} 

 

export function getLinkedinJobId() { 

    return new URLSearchParams(window.location.search).get('currentJobId') || ''; 

} 

 

``` 


src\utils\chromeHelper.ts


```ts 

export function getCurrentTab(): Promise<chrome.tabs.Tab> { 

    return new Promise((resolve, reject) => { 

        chrome.tabs.query({ active: true, currentWindow: true }, (tabs) => { 

            if (tabs.length === 0) { 

                reject('No active tab'); 

            } 



35 

 

            resolve(tabs[0]); 

        }); 

    }); 

} 

``` 


src\utils\api.ts


```ts 

import { clearStorageToken, clearStorageUser, getStorageToken, setStorageToken, setStorageUser } 

from "./storage"; 

 

const BASE_URL = 'https://linkedinsight.ozgurgurcan.dev/api/v1'; 

// const BASE_URL = 'https://linkedinsight.vercel.app/api/v1'; 

//const BASE_URL = 'http://127.0.0.1:3000/api/v1'; 

 

export async function login(email, password) { 

    const response = await fetch(`${BASE_URL}/auth/login`, { 

        method: 'POST', 

        headers: { 'Content-Type': 'application/json' }, 

        body: JSON.stringify({ email, password }), 

    }); 

    const user = await response.json(); 

    await setStorageToken(user.token); 

    await setStorageUser(user); 

    return user; 

} 

 

export async function signup(email, password) { 

    const response = await fetch(`${BASE_URL}/auth/signup`, { 

        method: 'POST', 

        headers: { 'Content-Type': 'application/json' }, 

        body: JSON.stringify({ email, password }), 

    }); 

    const user = await response.json(); 

    await setStorageUser(user); 

    await setStorageToken(user.token); 

    return user; 

} 

 

export const logout = async () => { 

    await clearStorageToken(); 

    await clearStorageUser(); 

}; 

 

export const getUser = async () => { 

    const response = await authFetch(`${BASE_URL}/user`); 

    const user = await response.json(); 

    await setStorageUser(user); 

    return user; 

}; 

 

export async function uploadResume(file, uid) { 

    const formData = new FormData(); 

    formData.append("resume", file); 

    const response = await authFetch(`${BASE_URL}/upload-resume?uid=${uid}`, { 

        method: 'POST', 

        body: formData 

    }); 

    return response.json(); 

} 

 

export async function compareJobWithCv(jobDescription, linkedinJobId, uid) { 

    const response = await authFetch(`${BASE_URL}/job/compare`, { 

        method: 'POST', 

        headers: { 'Content-Type': 'application/json' }, 



36 

 

        body: JSON.stringify({ jobDescription, linkedinJobId, uid }) 

    }); 

    return response.json(); 

} 

 

async function authFetch(url, options = {}) { 

    const token = await getStorageToken(); 

    return fetch(url, { 

        ...options, 

        headers: { ...options.headers, 'Authorization': `Bearer ${token}` }, 

    }); 

} 

 

``` 


src\static\manifest.json


```json 

{ 

  "name": "LinkedInSight", 

  "description": "Compare LinkedIn job postings with user-uploaded resumes and provide feedback.", 

  "version": "1.0.6", 

  "manifest_version": 3, 

  "icons": { 

    "16": "icon2.png", 

    "48": "icon2.png", 

    "128": "icon2.png" 

  }, 

  "action": { 

    "default_title": "LinkedInSight", 

    "default_icon": "icon2.png" 

  }, 

  "permissions": [ 

    "storage", 

    "offscreen", 

    "activeTab" 

  ], 

  "options_page": "options.html", 

  "background": { 

    "service_worker": "background.js" 

  }, 

  "content_scripts": [ 

    { 

      "matches": [ 

        "https://www.linkedin.com/jobs/*" 

      ], 

      "js": [ 

        "contentScript.js" 

      ] 

    } 

  ] 

} 

``` 


src\static\icon2.png

This is a binary file of the type: Image

src\static\icon.png

This is a binary file of the type: Image

src\contentScript\contentScript.tsx


```tsx 

import React, { useEffect, useState } from 'react'; 



37 

 

import ReactDOM from 'react-dom'; 

import { compareJobWithCv } from '../utils/api'; 

import { getJobDescription, getLinkedinJobId } from '../utils/jobUtils'; 

import { ELEMENT_IDS } from '../constants'; 

import ComparisonCard from '../components/ComparisonCard'; 

 

const App: React.FC = () => { 

    const [user, setUser] = useState(null); 

    const [comparisonResult, setComparisonResult] = useState(''); 

 

    const updateCard = (result) => { 

        const jobDescriptionElement = document.getElementById(ELEMENT_IDS.JOB_DETAILS); 

        if (!jobDescriptionElement) return; 

 

        const existingCard = document.getElementById(ELEMENT_IDS.COMPARISON_CARD); 

        if (existingCard) existingCard.remove(); 

 

        const card = document.createElement('div'); 

        card.id = ELEMENT_IDS.COMPARISON_CARD; 

        jobDescriptionElement.prepend(card); 

 

        ReactDOM.render(<ComparisonCard user={user} comparisonResult={result} 

onCompare={handleCompare} />, card); 

    }; 

 

    const handleCompare = async () => { 

        const jobDescription = getJobDescription(); 

        const linkedinJobId = getLinkedinJobId(); 

        const { comparisonResult } = await compareJobWithCv(jobDescription, linkedinJobId, 

user.uid); 

        setComparisonResult(comparisonResult); 

        updateCard(comparisonResult); 

    }; 

 

    useEffect(() => { 

        chrome.storage.local.get(['user'], (result) => { 

            const user = result.user || null; 

            setUser(user); 

            if (user) updateCard(''); 

        }); 

    }, []); 

 

    return null; 

}; 

 

ReactDOM.render(<App />, document.createElement('div')); 

 

``` 


src\contentScript\contentScript.css


```css 

.overlayCard { 

    position: fixed; 

    left: 5%; 

    top: 15%; 

    max-width: 240px; 

    max-height: 240px; 

    background-color: white !important; 

    z-index: 1000; 

} 

``` 


src\components\ErrorBoundary.tsx


```tsx 



38 

 

import React from 'react'; 

 

class ErrorBoundary extends React.Component { 

    state = { hasError: false }; 

 

    static getDerivedStateFromError() { return { hasError: true }; } 

 

    componentDidCatch(error, errorInfo) { console.error('Uncaught error:', error, errorInfo); } 

 

    render() { return this.state.hasError ? <h1>Something went wrong.</h1> : this.props.children; } 

} 

 

export default ErrorBoundary; 

 

``` 


src\components\ComparisonCard.tsx


```tsx 

import React from 'react'; 

import { User } from '../utils/api'; 

 

const ComparisonCard: React.FC<{ user: User, comparisonResult: string, onCompare: () => void }> = 

({ comparisonResult, onCompare }) => ( 

    <div style={{ border: '1px solid #ccc', borderRadius: '5px', padding: '10px', marginBottom: 

'10px', boxShadow: '0 2px 4px rgba(0,0,0,0.1)' }}> 

        <button onClick={onCompare}>Compare with your CV!</button> 

        {comparisonResult && <div style={{ marginTop: '10px', whiteSpace: 'pre-wrap' 

}}><strong>Comparison Result:</strong><br />{comparisonResult}</div>} 

    </div> 

); 

 

export default ComparisonCard; 

 

``` 


src\options\options.tsx


```tsx 

import React, { useEffect, useState } from 'react'; 

import ReactDOM from 'react-dom'; 

import { Box, Button, Card, CardContent, Grid, TextField, Typography } from '@mui/material'; 

import { getUser, login, logout, signup, uploadResume } from '../utils/api'; 

import { getStorageUser } from '../utils/storage'; 

 

const App: React.FC = () => { 

    const [email, setEmail] = useState(''); 

    const [password, setPassword] = useState(''); 

    const [error, setError] = useState(''); 

    const [user, setUser] = useState(null); 

    const [file, setFile] = useState(null); 

 

    useEffect(() => { 

        getStorageUser().then(setUser); 

    }, []); 

 

    const handleAuth = async (authFunc) => { 

        try { 

            setUser(await authFunc(email, password)); 

            setError(''); 

        } catch (err) { 

            setError(`Auth failed: ${err.message}`); 

        } 

    }; 

 

    const handleFileChange = (e) => setFile(e.target.files[0]); 



39 

 

 

    const handleUploadResume = async () => { 

        if (!file || !user) return; 

        try { 

            await uploadResume(file, user.uid); 

            setFile(null); 

        } catch (err) { 

            setError('Failed to upload resume'); 

        } 

    }; 

 

    return ( 

        <Box mx="10%" my="2%"> 

            <Card> 

                <CardContent> 

                    <Typography variant="h4">Interview GPT Options</Typography> 

                    {error && <Typography color="error">{error}</Typography>} 

                    {!user ? ( 

                        <Grid container spacing={2}> 

                            <Grid item xs={12}> 

                                <TextField fullWidth label="Email" value={email} onChange={(e) => 

setEmail(e.target.value)} /> 

                            </Grid> 

                            <Grid item xs={12}> 

                                <TextField fullWidth label="Password" type="password" 

value={password} onChange={(e) => setPassword(e.target.value)} /> 

                            </Grid> 

                            <Grid item xs={6}> 

                                <Button variant="contained" color="primary" onClick={() => 

handleAuth(login)}>Login</Button> 

                            </Grid> 

                            <Grid item xs={6}> 

                                <Button variant="contained" color="secondary" onClick={() => 

handleAuth(signup)}>Signup</Button> 

                            </Grid> 

                        </Grid> 

                    ) : ( 

                        <Grid container spacing={2}> 

                            <Grid item xs={12}> 

                                <Typography>Logged in as: {user.email}</Typography> 

                            </Grid> 

                            {user.cv?.url ? ( 

                                <Grid item xs={12}> 

                                    <Typography>Resume uploaded: <a href={user.cv.url} 

target="_blank">View Resume</a></Typography> 

                                </Grid> 

                            ) : ( 

                                <Grid item xs={12}> 

                                    <input accept=".pdf,.doc,.docx" style={{ display: 'none' }} 

id="raised-button-file" type="file" onChange={handleFileChange} /> 

                                    <label htmlFor="raised-button-file"> 

                                        <Button variant="contained" component="span">Select 

Resume</Button> 

                                    </label> 

                                    {file && ( 

                                        <Button onClick={handleUploadResume} variant="contained" 

color="primary" style={{ marginLeft: '10px' }}> 

                                            Upload Resume 

                                        </Button> 

                                    )} 

                                </Grid> 

                            )} 

                            <Grid item xs={12}> 

                                <Button variant="contained" color="secondary" 

onClick={logout}>Logout</Button> 

                            </Grid> 



40 

 

                        </Grid> 

                    )} 

                </CardContent> 

            </Card> 

        </Box> 

    ); 

}; 

 

ReactDOM.render(<App />, document.createElement('div')); 

 

``` 


src\options\options.css


```css 

body { 

  background-color: #f5f5f5; 

} 

 

``` 


src\background\background.ts


```ts 

chrome.action.onClicked.addListener(() => chrome.runtime.openOptionsPage()); 

 

chrome.runtime.onInstalled.addListener(() => chrome.runtime.openOptionsPage()); 

 

``` 


41

Appendix B: Node.js Server Code

package.json


```json 

{ 

  "name": "linkedinsight-server", 

  "version": "1.0.0", 

  "main": "app.js", 

  "scripts": { 

    "nodemon": "nodemon src/index.js", 

    "start": "node src/index.js", 

    "digest": "npx ai-digest" 

  }, 

  "license": "ISC", 

  "dependencies": { 

    "ai-digest": "^1.0.5", 

    "bcrypt": "^5.1.1", 

    "body-parser": "^1.20.2", 

    "cors": "^2.8.5", 

    "cross-fetch": "^4.0.0", 

    "dotenv": "^16.4.0", 

    "ejs": "^3.1.9", 

    "express": "^4.18.2", 

    "firebase-admin": "^12.1.0", 

    "jsonwebtoken": "^9.0.2", 

    "multer": "^1.4.5-lts.1", 

    "openai": "^4.25.0", 

    "pdf-parse": "^1.1.1" 

  }, 

  "devDependencies": { 

    "nodemon": "^3.0.3" 

  }, 

  "helpful": [ 

    "https://www.sitepoint.com/speech-to-text-whisper-react-node/", 

    "https://github.com/vercel/examples/blob/main/solutions/express/vercel.json" 

  ] 

} 

``` 


.gitignore


``` 

node_modules 

.env 

/uploads/ 

./idea/ 

.vercel 

*.key 

*.zip 

donem odevi.txt 

 

``` 


src\pdfHandler.js

42


```js 

const pdf = require('pdf-parse'); 

const { completions } = require('./openai'); 

 

const extractTextFromPdf = async (dataBuffer) => (await pdf(dataBuffer)).text; 

 

const transcribeCvText = async (cvText) => completions("you are a recruiter, here is my cv, 

sumirize it for me please.", cvText); 

 

module.exports = { extractTextFromPdf, transcribeCvText }; 

 

``` 


src\openai.js


```js 

const OpenAI = require("openai"); 

require('dotenv').config(); 

 

const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY }); 

 

const completions = async (systemContent, userContent) => { 

    const { choices } = await openai.chat.completions.create({ 

        messages: [{ role: "system", content: systemContent }, { role: 'user', content: userContent 

}], 

        model: "gpt-4o-mini" 

    }); 

    return choices[0].message.content; 

}; 

 

module.exports = { completions }; 

 

``` 


src\jobHandler.js


```js 

const { completions } = require('./openai'); 

 

async function compareJobDescriptionWithMyCv(jobDescription, cvText) { 

  return await completions( 

    "Your job is to compare a job description with my cv. When you compare you should give score 

from 0 to 10 for 10 perfect match, 0 no match according to job description. Give importance to 

Mandatory skills. Give overall score. Specify all missing skills. Also please provide what should 

be improved in the cv." + 

    " For example you can give response like: " + 

    "1. Minimum 3 years Java development experience.\n" + 

    "   - You have approximately 2 years and 4 months of experience, which is close.\n" + 

    "   - Score: 8/10\n" + 

    "\n" + 

    "2. Computer engineering degree.\n" + 

    "   - You have a Bachelor of Engineering in Computer Engineering.\n" + 

    "   - Score: 10/10" + 

    "**Missing Skills:**" + 

    "**Overall score: 67/100.**" + 

    "**Improvements:**", 

    "Here is my cv: " + cvText + "\n\nHere is the job description: " + jobDescription 

  ) 

} 

 

module.exports = { compareJobDescriptionWithMyCv }; 

 

``` 


src\index.js

43


```js 

const app = require("./app"); 

app.listen(process.env.PORT, () => console.log(`App listening on port ${process.env.PORT}`)); 

 

``` 


src\firebase.js


```js 

const { initializeApp, cert } = require('firebase-admin/app'); 

const { getFirestore, Timestamp, FieldValue } = require('firebase-admin/firestore'); 

const { getStorage, getDownloadURL } = require('firebase-admin/storage'); 

const { getAuth } = require('firebase-admin/auth'); 

const serviceAccount = require("./config/firebase.json"); 

 

initializeApp({ credential: cert(serviceAccount), storageBucket: 'interview-gpt-cc505.appspot.com' 

}); 

 

const DB = getFirestore(); 

const BUCKET = getStorage().bucket(); 

const AUTH = getAuth(); 

 

const loginWithEmail = (email) => AUTH.getUserByEmail(email).then(user => updateUser(user.uid, { 

lastLogin: FieldValue.serverTimestamp() }).then(() => user)); 

 

const getUserDO = (uid) => DB.collection('users').doc(uid).get().then(doc => doc.exists ? 

doc.data() : null); 

 

const uploadCv = (uid, file) => { 

  const fileName = `resume/${uid}/${file.originalname}`; 

  const fileUpload = BUCKET.file(fileName); 

  return new Promise((resolve, reject) => { 

    fileUpload.createWriteStream({ contentType: file.mimetype }) 

      .on('error', reject) 

      .on('finish', () => resolve(getDownloadURL(fileUpload))) 

      .end(file.buffer); 

  }); 

}; 

 

const updateUser = (uid, data) => DB.collection('users').doc(uid).set(data, { merge: true }); 

 

const verifyIdToken = async (idToken) => AUTH.verifyIdToken(idToken).then(decoded => 

decoded.uid).catch(() => null); 

 

module.exports = { loginWithEmail, uploadCv, updateUser, getUserDO, verifyIdToken, DB, AUTH, BUCKET 

}; 

 

``` 


src\app.js


```js 

require("dotenv").config(); 

const express = require("express"); 

const cors = require("cors"); 

const { authenticateToken } = require("./middleware/auth"); 

 

const app = express(); 

app.use(cors()); 

app.use(express.json()); 

 

app.get("/", (req, res) => res.send("Express on Coolify")); 

 

app.use("/api/v1", authenticateToken, require("./api")); 

 



44 

 

module.exports = app; 

 

``` 


api\index.js


```js 

const app = require('../src/app'); 

 

module.exports = app; 

``` 


src\middleware\auth.js


```js 

const jwt = require('jsonwebtoken'); 

const JWT_SECRET = process.env.JWT_SECRET; 

 

const authenticateToken = (req, res, next) => { 

    const token = req.headers['authorization']?.split(' ')[1]; 

    if (!token) return res.sendStatus(401); 

 

    jwt.verify(token, JWT_SECRET, (err, user) => { 

        if (err) return res.sendStatus(403); 

        req.user = user; 

        next(); 

    }); 

}; 

 

module.exports = { authenticateToken }; 

 

``` 


src\config\firebase.json


```json 

{ 

  "type": "service_account", 

  "project_id": "interview-gpt-cc505", 

  "private_key_id": "******", 

  "private_key": "*****", 

  "client_id": "******", 

  "auth_uri": "https://accounts.google.com/o/oauth2/auth", 

  "token_uri": "https://oauth2.googleapis.com/token", 

  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", 

  "client_x509_cert_url": *****", 

  "universe_domain": "googleapis.com" 

} 

``` 


src\api\index.js


```js 

const router = require('express').Router(); 

const multer = require('multer'); 

const upload = multer({ storage: multer.memoryStorage() }); 

 

const { loginWithEmail, uploadCv, updateUser, getUserDO } = require('../firebase'); 

const { compareJobDescriptionWithMyCv } = require('../jobHandler'); 

const { extractTextFromPdf, transcribeCvText } = require('../pdfHandler'); 

 

router.post('/upload-resume', upload.single('resume'), async (req, res) => { 

    const { uid } = req.query; 

    const file = req.file; 

    if (!file) return res.status(400).json({ message: 'No resume file provided' }); 

 



45 

 

    try { 

        const publicUrl = await uploadCv(uid, file); 

        const cvText = await extractTextFromPdf(file.buffer); 

        const cvSummary = await transcribeCvText(cvText); 

        await updateUser(uid, { cvText, cvSummary, cvUrl: publicUrl }); 

        res.json({ message: 'Resume uploaded successfully', cvUrl: publicUrl }); 

    } catch (error) { 

        res.status(500).json({ message: 'Failed to upload resume', error: error.message }); 

    } 

}); 

 

router.get('/cv', async (req, res) => { 

    const user = await getUserDO(req.query.uid); 

    user ? res.json(user) : res.status(404).json({ message: 'User not found' }); 

}); 

 

router.post('/job/compare', async (req, res) => { 

    const { uid, jobDescription, linkedinJobId } = req.body; 

    const user = await getUserDO(uid); 

    if (!user) return res.status(404).json({ message: 'User not found' }); 

 

    const jobs = user.jobs || []; 

    const existingJob = jobs.find(job => job.linkedinJobId === linkedinJobId); 

    if (existingJob) return res.json({ comparisonResult: existingJob.comparisonResult }); 

 

    const comparisonResult = await compareJobDescriptionWithMyCv(jobDescription, user.cvText); 

    jobs.push({ jobDescription, linkedinJobId, comparisonResult }); 

    await updateUser(uid, { jobs }); 

    res.json({ comparisonResult }); 

}); 

 

router.get('/job', async (req, res) => { 

    const user = await getUserDO(req.query.uid); 

    user ? res.json(user.jobs || []) : res.status(404).json({ message: 'User not found' }); 

}); 

 

router.delete('/job', async (req, res) => { 

    const { uid, linkedinJobId } = req.body; 

    const user = await getUserDO(uid); 

    if (!user) return res.status(404).json({ message: 'User not found' }); 

 

    const updatedJobs = (user.jobs || []).filter(job => job.linkedinJobId !== linkedinJobId); 

    await updateUser(uid, { jobs: updatedJobs }); 

    res.json({ message: 'Job removed' }); 

}); 

 

module.exports = router; 

 

``` 


