[ZMIR .
K ATIP CELEBI
UNIVERSITES]

FEN BILIMLERI ENSTITUSU

Artificial Intelligence and Language
Processing with Chrome Extension

Department of Software Engineering

Term Project

Ozgur GURCAN

Advisor: Prof. Dr. Aytug ONAN

August 2024

Artificial intelligence and language processing with

Chrome extension

Abstract

This term project presents the development of a Chrome extension that harnesses the
power of artificial intelligence (Al) and natural language processing (NLP) to enhance
the job-seeking experience on LinkedIn. The extension integrates seamlessly with
LinkedIn’s platform, enabling users to compare job descriptions with their uploaded
curriculum vitae (CV) using advanced Al models, specifically ChatGPT 3.5 Turbo and
ChatGPT 4.0 Mini. By analyzing the semantic similarities between job descriptions
and CVs, the extension provides personalized feedback, highlighting the alignment of
the user’s qualifications with the job requirements. Key features of the extension
include user authentication and data storage managed through Firebase services, as
well as a robust backend developed with Node.js and Express.js to handle Al-driven

comparisons.

The project aims to address the inefficiencies and challenges faced by job seekers in
manually assessing their suitability for various positions. The extension’s Al
capabilities significantly reduce the time and effort required to match qualifications
with job opportunities, thereby optimizing the job application process. Moreover, the
system maintains a history of comparisons, allowing users to track their progress and
make informed decisions throughout their job search journey. This project represents
a significant contribution to the application of Al and NLP technologies in the
recruitment domain, offering practical solutions to improve job market efficiency and

candidate-position matching.

Keywords: Artificial Intelligence, Natural Language Processing, Chrome Extension,
LinkedIn Integration, CV Comparison, ChatGPT

Yapay Zeka ve Dil Isleme ile Chrome Eklentisi

Oz

Bu donem projesi, LinkedIn iizerinde is arayanlarin deneyimlerini gelistirmek
amacityla yapay zeka (YZ) ve dogal dil isleme (DDI) teknolojilerini kullanan bir
Chrome uzantisinin gelistirilmesini sunmaktadir. Uzanti, LinkedIn platformu ile
sorunsuz bir sekilde entegre olarak, kullanicilarin yiikledikleri 6zge¢cmislerini (CV) is
tanimlariyla karsilastirmalarina olanak tanir ve bu islem i¢in gelismis YZ modelleri,
Ozellikle ChatGPT 3.5 Turbo ve ChatGPT 4.0 Mini kullanilmaktadir. Uzanti, is
tanimlar1 ile CV'ler arasindaki anlamsal benzerlikleri analiz ederek, kullanicinin
niteliklerinin is gereksinimleriyle ne kadar Ortilistiigiine dair kisisellestirilmis geri
bildirim saglar. Uzantinin temel 6zellikleri arasinda Firebase hizmetleriyle yonetilen
kullanic1 kimlik dogrulama ve veri depolama, ayrica YZ destekli karsilastirmalarin
islenmesini saglayan Node.js ve Express.js ile gelistirilen saglam bir arka ug

bulunmaktadir.

Bu proje, is arayanlarin c¢esitli pozisyonlara uygunluklarini manuel olarak
degerlendirmede karsilastiklar1 ~ verimsizlikleri ve zorluklar1 ele almayi
amaglamaktadir. Uzantinin YZ yetenekleri, niteliklerin is firsatlariyla eslestirilmesi
icin gereken zaman ve ¢abay1 6nemli Olglide azaltarak is bagvuru siirecini optimize
eder. Ayrica sistem, kullanicilarin ilerlemelerini izlemelerine ve is arama yolculuklar
boyunca bilingli kararlar vermelerine olanak taniyan bir karsilastirma ge¢misi tutar.
Bu proje, ise alim alaninda YZ ve DDI teknolojilerinin uygulanmasina énemli bir katk1
saglamakta ve is piyasast verimliligini ve aday-pozisyon eslestirmesini iyilestirmek

icin pratik ¢oziimler sunmaktadir.

Anahtar Sozcukler: Yapay Zeka, Dogal Dil Isleme, Chrome Uzantisi, LinkedIn
Entegrasyonu, CV Karsilastirma, ChatGPT

Acknowledgment

I wish to express my deepest gratitude to my advisor, Prof. Dr. Aytug Onan, whose
invaluable guidance and support have been crucial to the success of this project. His
expertise and feedback greatly enhanced the quality of my research and provided

constant motivation.

I also extend my thanks to the Department of Software Engineering at Izmir Katip
Celebi University for providing the resources and academic environment necessary for
this research. The department’s dedication to innovation and academic excellence has

been instrumental in the development of this project.

Special recognition goes to the open-source community, particularly the developers of
Node.js, Express, and the ChatGPT model, whose contributions were fundamental to
this project’s implementation. The collaborative nature of the open-source community

significantly enriched my learning experience.

I am grateful to LinkedIn for offering a platform that served as the foundation for
testing and implementing this Chrome extension, and to my fellow students and
colleagues for their valuable feedback and suggestions throughout the development

process.

Finally, I extend heartfelt thanks to my family and friends for their unwavering support
and encouragement throughout my academic journey. Their belief in me has been a
driving force behind my perseverance and success.

This project would not have been possible without the collective efforts and support

of these individuals and institutions, and | am sincerely thankful for their contributions.

Table of Contents

ADSIFACT ... [
OZ ettt ettt ettt ii
ACKNOWIEBAGMENT ...t sre e sne e e iii
LISE OF FIQUIES ...ttt bbb Vi
LiSt Of ADDIEVIALIONS. ..ot vii
1 INTrOQUCTION ...ttt 1
1.1 BaCKQrOUNGcviiiiiiieie ettt reere e 1
1.2 Problem StatemeNnt.........cooiiiiiiiieee s 2
1.3 Project ODJECHIVEScviiiiiiece ettt 3
1.4 Significance of the ProjJect.........ccccoeiiiiiiiiiiiiceeee e 3
1.5 Methodology OVEIVIEWcveiieiiicieiie e 4

2 Literature review and theoretical background............cccooiiiiiiiiiiicee, 6
2.1 Atrtificial Intelligence in RECITUItMENtccocoviiiiiiiieie e 6
2.1.1 Al-Powered Job MatChing.........ccooeiiiiiiiiiiiiece e 6

2.2 Natural Language Processing in Resume Parsing and Job Matching............ 7
2.2.1 RESUME PAISING ..c.eoviiitiiiisiiiieieie ettt 7

2.2.2 Semantic Similarity in Job Matchingccccccevviviiii i, 7

2.3 Browser Extensions for ProduCtiVityccccocvininininienene e, 7
2.3.1 Al-Powered Browser EXtENSIONS.........ccccoiviieiiiienenenienesieseseeeennes 7

2.4 Al Integration with Professional Networking Platformscccevvvneneen. 8
2.4.1 LinkedIn's Own Al INITALIVEScoooviiiiiiiiiececce e 8

2.4.2 Third-Party Al Applications for LinkedIn..........cccccoooiiiininininnnnnn, 8

2.5 Ethical Considerations in Al-Powered Recruitment TOOIS...........coeeecuuvveee... 8

2.6 Theoretical Framework ..o 8
2.7 Gap iNtthe LITEraturecccveoeiieiecie et 9
System architecture and implementation detailscccceveviieiiniieien 10
3.1 Overview of System ArChIteCIUIEccecvvviieiieiicere e 10
3.2 System Integration and Data FIOWccocoiiiiiiiiiiiieec 11
3.3 Backend Architecture and Al Integrationcccoevveveiievieve e, 12
3.4 User Interface and EXPEIIENCEcccovviiiriiiiiiiieiee e 14

3.4.1 Enabling Developer Mode.........cccocevveieiiieiieie e 14

3.4.2 Loading the EXIENSIONccviieieieiieriesie e 14

3.4.3 Logging IN or SigNing UpP.......ccccveieiieie e 15

3.4.4 Viewing Previous Comparison ReSUltScccooeveiiiiniiiiicee, 16

3.4.5 Using LinkedInSight on LinkedIn Job Pages..........cccccevvviverivenenne. 17
3.5 Performance Optimization and Security Considerations.............cccccecveeene. 19
3.6 Deployment and MainteNanCeccecvevveiieieeie e, 19
Results and performance analysis of the extensionccccocvviiiiieieen, 20
4.1 Evaluation Methodology and OVEIVIEWcc.cceeveieeiieeie s 20
4.2 Functional Accuracy and System Performanceccocveevvnineineiennene 21
4.3 User Experience and Interface Usabilityc.cccoovevieiiiiicieccce, 21
4.4 Security, Privacy, and Ethical Considerations...........c.ccecveverivervnieeneennnn. 22
4.5 Challenges and LImMitations...........cccceeiveiieiiieesiiiii e 22
4.6 Summary and Implications for Future Development.........c..ccccccveiernenenn. 23
Implications, limitations, and future Workc.ccocovvi i 24
5.1 Summary of Key Findings and Project Significance...........c.ccocovvvovnienne. 24
5.2 Implications for Users, Recruiters, and the Job Market..............cccccveenen. 25
5.3 Ethical Considerations and Challenges............ccooovvviiiinencineieee 25

5.4 Limitations of the Study and Implementationccccceeveiiiiiiin e 26
5.5 Future Work and Development DireCtions..........cccccevvvevvevieveeseeiieseenan, 26
5.6 Research Opportunities and Interdisciplinary Collaboration...................... 27
5.7 Conclusion and Final ThoughtsSccceveiieiiieieccceee e 28
RETEIENCES ...ttt 29
N o] 01T o [o0 SR 31

Vi

List of Figures

Figure 3.1 System Architecture DIagramcccceeeivereeieeiieneese e 11
Figure 3.2 Data FIOW DIagramcccouiiiirieiiieie st 12
Figure 3.3 Al Processing FIOWcccooiiiiiiiiiiieice e 13
Figure 3.4 Enabling Developer Mode in Chrome EXtensions..........c.cccccvvevveieennenn. 14
Figure 3.5 Loading the Unpacked EXtENSIONcccccveveeiiieieieeie e 15
Figure 3.6 Login or Sign Up INterface..........cccooeveiiiiiiiiiiseeees e 15
Figure 3.7 Viewing Uploaded Resume and Comparison Results............c.cccceevenene. 16
Figure 3.8 LinkedIn Job Page with ‘Compare with Your CV!' Button..................... 17
Figure 3.9 Displaying Job-CV Comparison ReSUltSccccevveiieiieieeiecic e, 18

vii

List of Abbreviations

Al
NLP
Cv
API
JWT
ul
uXx
VPS
Cl/ICD
PDF
HTTPS
DDI

YZ

Artificial Intelligence

Natural Language Processing

Curriculum Vitae

Application Programming Interface

JSON Web Token

User Interface

User Experience

Virtual Private Server

Continuous Integration/Continuous Deployment
Portable Document Format

Hypertext Transfer Protocol Secure

Dogal Dil Isleme (Natural Language Processing in Turkish)

Yapay Zeka (Artificial Intelligence in Turkish)

viii

Chapter 1

Introduction

In the rapidly evolving digital landscape, the intersection of artificial intelligence (Al)
and job searching has opened new avenues for enhancing the efficiency and
effectiveness of career development processes. This project introduces a novel Chrome
extension that leverages Al and natural language processing (NLP) technologies to
revolutionize how job seekers interact with LinkedIn, one of the world's leading

professional networking platforms.

1.1 Background

The job search process has undergone a significant transformation over the past few
decades. Traditionally, job seekers would rely on newspaper advertisements, career
fairs, and networking events to discover potential employment opportunities. This
process, while effective in its time, was often labor-intensive and limited by
geographical and social boundaries. The advent of the internet and online job portals
marked a turning point, providing job seekers with unprecedented access to a vast array
of opportunities across various industries and regions. Professional networking
platforms, such as LinkedIn, have further revolutionized this process by integrating

social networking features with job searching capabilities.

LinkedIn, launched in 2003, has emerged as a pivotal platform for professional
networking, boasting over 750 million members worldwide. The platform allows users
to create detailed profiles, connect with other professionals, and explore job
opportunities tailored to their skills and experiences. Despite these advancements, the
sheer volume of job listings on platforms like LinkedIn has introduced a new

challenge: how to efficiently match job seekers with the most suitable positions based

on their qualifications and experience. The manual process of browsing through
numerous job listings, comparing job descriptions with one's qualifications, and

deciding on the most appropriate applications remains a daunting task for many users.

Recent developments in Al and NLP have presented promising solutions to this
problem. Al technologies, particularly those involving machine learning and NLP,
have demonstrated the capability to analyze large datasets, extract meaningful patterns,
and generate insights that can aid in decision-making processes. In the context of job
searching, these technologies can be harnessed to automate the comparison of job
descriptions with user qualifications, thereby streamlining the job application process.
The integration of Al into professional networking platforms like LinkedIn has the
potential to significantly enhance the job-seeking experience by providing users with

personalized, data-driven recommendations that are both efficient and accurate.

1.2 Problem Statement

Despite the advancements in online job searching, there remains a significant gap
between the efficiency of browsing job listings and the ability to quickly assess one's
suitability for a position. Job seekers often spend considerable time reading through
numerous job descriptions, manually comparing them to their own qualifications. This
process is not only time-consuming but also prone to oversight and subjective
interpretation. Moreover, the manual nature of this task means that job seekers may
overlook important details or misinterpret the relevance of specific qualifications,

leading to suboptimal job applications.

The problem is further compounded by the dynamic nature of job markets, where job
descriptions can vary widely in terms of requirements, preferred qualifications, and
job responsibilities. Job seekers, especially those navigating through multiple
industries or roles, may find it challenging to keep track of the diverse set of skills and
experiences required for different positions. Consequently, they may either apply to
jobs that do not fully align with their qualifications or miss out on opportunities that

would be a good fit.

This project seeks to address these challenges by developing a Chrome extension that
integrates Al and NLP technologies into the LinkedIn platform. The extension aims to

automate the process of comparing job descriptions with user-uploaded CVs,
providing job seekers with a quick and accurate assessment of their suitability for a
given position. By doing so, the project endeavors to enhance the overall efficiency of
the job-seeking process, reducing the time and effort required to find and apply for

relevant positions.

1.3 Project Objectives

The primary objective of this project is to develop a Chrome extension that bridges the
gap between the manual effort required in job searching and the potential for Al-driven
automation. The extension is designed to integrate seamlessly with LinkedIn's job
pages, allowing users to upload and store their CVs securely and initiate Al-powered
comparisons between job descriptions and their qualifications. The results of these
comparisons are displayed directly within the LinkedIn interface, providing users with
immediate feedback on their suitability for specific roles. Additionally, the extension
maintains a history of comparisons, enabling users to track their job application

process and make informed decisions based on past assessments.

To achieve this objective, the project employs a combination of cutting-edge web
technologies, cloud services, and Al models. The Chrome extension is developed using
JavaScript and React, ensuring compatibility with LinkedIn's dynamic interface and
providing a user-friendly experience. The backend system, implemented using Node.js
with Express.js, handles server-side logic, processes user data, and manages
interactions with external Al services. Firebase Authentication and Firestore are
utilized for secure user management and data storage, ensuring that sensitive user
information, such as CVs and job application history, is protected. The Al component
of the project leverages the ChatGPT 4.0 Mini model, a state-of-the-art NLP system

capable of performing complex text comparisons and generating meaningful insights.

1.4 Significance of the Project

This project represents a significant step forward in applying Al and NLP technologies
to practical job-seeking tasks. By automating the initial assessment of job suitability,

the extension aims to save time for job seekers, enabling them to focus on the most

relevant opportunities. The Al-powered comparisons provided by the extension are
designed to improve the accuracy of job applications, highlighting the match between
candidate skills and job requirements and thereby increasing the likelihood of

successful applications.

The project's significance extends beyond its immediate application in job searching.
The integration of Al into professional networking platforms like LinkedIn has broader
implications for the future of work. As Al technologies continue to evolve, they have
the potential to reshape the job market, influencing how job seekers interact with
employers and how employers identify and recruit talent. By developing tools that
enhance the job-seeking process, this project contributes to a growing body of research
and development aimed at leveraging Al to improve career outcomes for individuals

and efficiency in the job market.

Moreover, the project addresses several critical issues related to Al in recruitment,
including the ethical considerations of using Al to influence job application decisions.
The extension is designed with a focus on transparency and fairness, ensuring that Al-
driven recommendations are presented clearly and that users retain control over their
job application process. By emphasizing user empowerment and informed decision-
making, the project seeks to mitigate potential biases and ethical concerns associated

with Al in recruitment.

1.5 Methodology Overview

The methodology for developing the LinkedInSight Chrome extension involves a
multi-faceted approach that combines web development, cloud computing, and Al
integration. The project begins with the design and implementation of the Chrome
extension, which serves as the user interface for interacting with LinkedIn's job pages.
This frontend component is built using React, a popular JavaScript library for building
user interfaces, and is integrated directly into LinkedIn's job description pages.

The backend system is developed using Node.js, a server-side JavaScript runtime
environment, and Express.js, a web application framework for Node.js. The backend
handles user authentication, data storage, and the processing of Al-powered

comparisons. Firebase services, including Firebase Authentication and Firestore

4

Database, are employed to manage user accounts, store user data securely, and ensure
real-time synchronization between the frontend and backend components.

The Al integration is a critical aspect of the project, involving the use of the ChatGPT
4.0 Mini model for natural language processing and text comparison tasks. This model
Is accessed via an API, which allows the backend to submit job descriptions and user
CVs for analysis and receive Al-generated comparison results. The Al model is trained
to assess the semantic similarity between job descriptions and CVs, identify relevant

skills and qualifications, and generate actionable insights for users.

Throughout the development process, the project adheres to best practices in software
engineering, including modular design, version control, and continuous integration
and deployment (CI/CD). The system architecture is designed to be scalable and
maintainable, with a focus on performance optimization and security. Regular testing
and validation are conducted to ensure that the extension functions as intended and
meets the needs of users.

In conclusion, this project represents an innovative application of Al and NLP
technologies in the domain of job searching. By developing a Chrome extension that
automates the comparison of job descriptions with user CVs, the project seeks to
enhance the job-seeking experience on LinkedIn, improve the accuracy of job
applications, and contribute to the broader field of Al-driven career development tools.
The project's significance, both in terms of its immediate application and its potential
impact on the future of work, underscores the importance of continued research and
development in this area.

Chapter 2

Literature review and theoretical

background

This chapter provides an overview of the relevant literature and theoretical concepts
that underpin the development of our Al-powered Chrome extension for job matching
on LinkedIn. We explore key areas including artificial intelligence in recruitment,
natural language processing for resume parsing and job matching, browser extensions

for productivity, and the integration of Al with professional networking platforms.

2.1 Artificial Intelligence in Recruitment

The application of Al in recruitment has been gaining significant traction in recent
years. Upadhyay and Khandelwal (2018) provide a comprehensive review of Al
applications in human resource management, highlighting the potential for Al to
streamline recruitment processes. They note that Al can significantly reduce time-to-

hire and improve the quality of candidate matches.

2.1.1 Al-Powered Job Matching

Mehrabad and Brojeny (2007) proposed one of the early models for using Al in job-
person matching. Their work laid the foundation for more advanced systems that we
see today. More recently, Mehta et al. (2021) demonstrated a machine learning
approach to match job descriptions with candidate profiles, achieving high accuracy

in predicting suitable matches.

2.2 Natural Language Processing in Resume Parsing and
Job Matching

Natural Language Processing (NLP) plays a crucial role in understanding and

comparing job descriptions and resumes.

2.2.1 Resume Parsing

Chen et al. (2018) developed an NLP-based system for automatically extracting
information from resumes. Their work demonstrates the feasibility of using Al to

understand unstructured text in professional documents.

2.2.2 Semantic Similarity in Job Matching

Zhao et al. (2020) explored the use of semantic similarity measures to match job
descriptions with candidate profiles. Their research shows that NLP techniques can
capture nuanced relationships between skills and job requirements, going beyond

simple keyword matching.

2.3 Browser Extensions for Productivity

Browser extensions have become powerful tools for enhancing web browsing
experiences. Dhillon et al. (2016) studied the impact of browser extensions on user
productivity, finding that well-designed extensions can significantly improve task

efficiency.

2.3.1 Al-Powered Browser Extensions

While literature on Al-powered browser extensions is limited, Beel et al. (2019)
demonstrated the potential of integrating recommendation systems into browser
extensions for academic literature search. Their work provides insights into the
challenges and opportunities of embedding Al capabilities directly into the browsing

experience.

2.4 Al Integration with Professional Networking

Platforms

LinkedIn, as the world's largest professional networking platform, has been the subject

of numerous studies regarding Al integration.

2.4.1 LinkedIn's Own Al Initiatives

Stadler et al. (2020) analyzed LinkedIn's use of Al in its job recommendation system.
Their study provides valuable insights into how large-scale professional networks

leverage Al to improve user experiences.

2.4.2 Third-Party Al Applications for LinkedIn

Research on third-party Al applications for LinkedIn is relatively scarce, highlighting
the novelty of our approach. However, Bastian et al. (2014) explored the potential of
using external data sources to enrich LinkedIn profiles, which bears some similarity to

our approach of augmenting LinkedIn's functionality with external Al services.

2.5 Ethical Considerations in Al-Powered Recruitment

Tools

As Al becomes more prevalent in recruitment, ethical considerations have come to the
forefront. Raghavan et al. (2020) discuss the potential for bias in Al-powered hiring

tools and propose frameworks for mitigating these risks.

2.6 Theoretical Framework

Our project builds upon several theoretical frameworks:

1. Natural Language Understanding: Utilizing theories of semantic analysis and

text comparison (Mikolov et al., 2013).

2. Human-Computer Interaction: Applying principles of user-centered design in
browser extension development (Norman, 2013).
3. Information Retrieval: Leveraging concepts from information retrieval to

improve job-resume matching accuracy (Manning et al., 2008).

2.7 Gap in the Literature

While significant research has been conducted in various aspects of Al in recruitment
and job matching, there is a notable gap in studies that explore the integration of these
technologies directly into the user's browsing experience, particularly in the context of
professional networking sites like LinkedIn. Our project aims to address this gap by
developing a Chrome extension that brings advanced Al-powered job matching

capabilities directly to the user's LinkedIn browsing session.

Chapter 3

System Architecture and
Implementation Detalls

Chapter 3 introduces the system architecture and implementation details of
LinkedInSight. This chapter provides a comprehensive overview of the design and
integration of the system's core components, focusing on how the frontend, backend,
and Al services work together to deliver a seamless and secure user experience. It also
addresses key considerations in performance optimization and security, ensuring the

system's efficiency and reliability in real-world usage.

3.1 Overview of System Architecture

The LinkedInSight system architecture was meticulously designed to integrate
advanced artificial intelligence (Al) and natural language processing (NLP)
capabilities within the LinkedIn platform, providing users with enhanced job matching
and CV comparison functionalities. The architecture comprises three core
components: the Chrome extension (frontend), a Node.js Express server (backend),
and Firebase services, which collectively facilitate seamless interaction between the

user and the underlying Al-driven processes.

10

Figure 3.1: System Architecture Diagram

The Chrome extension serves as the primary user interface, embedded within the
LinkedIn job pages to enable direct interaction with the platform. This frontend
component is responsible for detecting relevant job descriptions, allowing users to
trigger Al-powered comparisons with their uploaded CVs. The backend, implemented
using Node.js and Express, manages the processing of these comparisons, interfacing
with the ChatGPT 4.0 Mini API to deliver accurate and contextually relevant results.
Firebase services are employed for user authentication, data storage, and secure
handling of user CVs, ensuring the integrity and confidentiality of sensitive user

information.

3.2 System Integration and Data Flow

The integration of the Chrome extension with LinkedIn’s dynamic environment is a
key feature of the LinkedInSight system. The extension is designed to recognize when
a user is viewing a job description, at which point it injects a “Compare with CV”
button directly into the LinkedIn interface. This button, when clicked, initiates a data
flow process that involves the extraction of the job description text and its transmission

to the backend server.

The Node.js backend retrieves the user’s CV from Firebase Storage and submits both
the job description and the CV to the ChatGPT 4.0 Mini API for analysis. The Al
model processes the data, generating a comparison that highlights the degree of

alignment between the job requirements and the user’s qualifications. The results are

11

then relayed back to the Chrome extension, where they are displayed in a user-friendly

format within the LinkedIn page.

Figure 3.2: Data Flow Diagram

3.3 Backend Architecture and Al Integration

The backend architecture is designed to handle the computational demands of Al
processing while maintaining responsiveness and scalability. Node.js and Express
form the backbone of the server-side logic, offering a robust framework for handling

user requests, processing CVs, and managing interactions with the Al API.

12

Data Validation

NatGPT 4.0 Min

Comparison and Analysis

ging and Storage

Qutput Result:

Figure 3.3: Al Processing Flow

A critical aspect of the backend is its integration with ChatGPT 4.0 Mini, an Al model
tasked with performing the core comparison function. The backend formulates
prompts that instruct the Al to analyze the job description and the user’s CV, assessing
the match in terms of required skills, experience, and qualifications. The prompt
engineering process is central to achieving accurate and meaningful results, guiding

the Al to generate insights that are both relevant and actionable for the user.

Security is a paramount concern in the backend’s design, particularly given the
sensitive nature of the data being processed. Data is encrypted during transmission
between the extension, backend, and Firebase services, ensuring that user information
is protected at all stages. Authentication is handled using JSON Web Tokens (JWT),
which safeguard access to user data and restrict API interactions to authorized users

only.

13

3.4 User Interface and Experience

The user interface (Ul) of the LinkedInSight extension is designed to be intuitive and
seamlessly integrated into the LinkedIn platform, ensuring that both new users and
those familiar with LinkedIn can easily access and utilize the extension's

functionalities.

3.4.1 Enabling Developer Mode

To begin, users need to navigate to the Chrome Extensions page by entering
chrome://extensions/ in the address bar. As depicted in Figure 3.5, users should enable
Developer mode if it’s not already activated. This step is crucial for loading unpacked

extensions.

+

& chrome chrome://extensions

Q Developer mode (@

Find extensions and themes in the Chrome Web Store

Figure 3.4: Enabling Developer Mode in Chrome Extensions

3.4.2 Loading the Extension

Once Developer mode is enabled, users can proceed by clicking the "Load unpacked"
button, as shown in Figure 3.6. They should then select the directory containing the
LinkedInSight extension's files. This step allows users to install the extension

manually on their browser.

14

& c ® Chrome chrome:/extensions w -

= EXtenSionS Q, Developermode @O

Load unpacked Pack extension Update

Find extensions and themes in the Chrome Web Store

Figure 3.5: Loading the Unpacked Extension

3.4.3 Logging In or Signing Up

After successfully loading the extension, users are prompted to log in or sign up, as
seen in Figure 3.7. They can enter their email and password to access their
LinkedInSight account. If the user hasn’t uploaded a resume yet, they are guided to do

SO.

v W Extensions X Interview GPT X +

C '} LinkedinSight chrome-extension://gkpjjchefnhdegifkckaokhej... ¥t

Interview GPT Options

Emai

ozgurgurcan1996@gmail.com

LOGIN SIGNUP

Figure 3.6: Login or Sign Up Interface

15

3.4.4 Viewing Previous Comparison Results

Users can view their previously uploaded resume and comparison results within the
extension interface, as illustrated in Figure 3.8. This feature allows them to review past

job comparisons and make informed decisions about future applications.

B Interview GPT

5} LinkedinSight ~chrome-extensit

Interview GPT Options

Logged in as: ozgurgurcan1996@gmail.com

Resume uploaded: View Resume
Previous Job Comparisons:

Job ID: 3983996649

Your CV is impressive with a strong background in software development, especially in
backend development. However, there are certain gaps when compared to the job
description for the Senior Software Developer position at Upfolx. Here is the comparison
based on the job description: 1. Minimum 4 years of experience in enterprise software
development. - Your experience spans around 3 years as a Software Developer at Getir and
PiA, which aligns closely, but not fully, with the requirement. Score: 8 2. Effective verbal and
written communication skills in English - There's no explicit mention in your CV about your
English communication skills. Score: 0 3. Experience in team management at a functional
level - While you have experience mentoring junior engineers, there's a lack of explicit
experience in functional team management. Score: 5 4. Growth mindset with a fast-paced
startup experience - Your experience in startups at PiA and Corebit Tech demonstrates some
startup exposure, but the requirement specifically asks for a fast-paced startup experience.
Score: 6 5. Front-end development and Golang knowledge - Your primary expertise and
experience seem to be in Java, JavaScript, and TypeScript, with no mention of front-end
technologies or Golang in your skills. Score: 0 6. Knowledge of CI/CD tools like GitHub
Actions, AWS ALB, ECR, Route53, ACM, AP| Gateway, and laC Tool: Terraform/Terragrunt -
While you have experience with Git and AWS, there is a lack of experience with the specific
tools and technologies mentioned in the job description. Score: 3 Based on the comparison,
your overall score for the job description would be 3.3 out of 10. Missing Skills: 1. Front-end
development skills, particularly with VueJS and NuxtJS. 2. Strong English communication
skills are not explicitly mentioned in the CV. 3. Experience in functional team management
4. Experience with Golang. 5. Knowledge of CI/CD tools, AWS services, and 1aC Tools
mentioned in the job description. To improve the CV for this particular job, you could
consider: 1. Highlighting any English language proficiency or international work experience.
2. Adding any experience or projects involving front-end development or Golang. 3.
Emphasizing any experience related to team management at a functional level. 4.
Considering gaining exposure to the specific technologies mentioned in the job description,
such as VuedS, NuxtJS, and the CI/CD tools and AWS services.

Job ID: 3972932819

Your CV has a strong technical background in software development and engineering,
particularly in backend development. However, it lacks the specific skills and experience
required for the Game Designer role, such as Unity game development, C# knowledge
strong knowledge of art and design, strong knowledge of UX, and a passion for crafting
gameplay systems, mechanics, and gamemodes. Score: 1. Unity game development
technologies - 3 2. C# Knowledge - 2 3. Creativity and imagination - 8 4. Flexibility and
adaptability - 6 5. Strong knowledge of Art and Design - 2 6. Strong Knowledge of UX - 2 7.

Passion for crafting namenlav svstems mechanics and aamemodes - 3 Overall the CV

Figure 3.7: Viewing Uploaded Resume and Comparison Results

16

3.4.5 Using LinkedInSight on LinkedIn Job Pages

When users navigate to a LinkedIn job posting, the LinkedInSight extension
automatically integrates a "Compare with your CV!" button directly beneath the
"Apply" button, as depicted in Figure 3.9. Upon clicking this button, the extension
quickly processes and displays the comparison results, typically within five seconds,

directly on the job posting page, as shown in Figure 3.10.

Superside o
Backend Engineer @

EMEA - 4 weeks ago - Over 100 people clicked Apply

& Remote - Full-time - Associate

[] .
@& 2 company alumni work here
of —
o —
o —

6 of 10 skills match your profile - you may be a good fit

:&ji See how you compare to over 100 other applicants. Reactivate Premium

+ 4 Am | a good fit for this job? 4 How can | best position myself for = »

Compare with your CV!

About the job

Superside is looking for a Backend Engineer to help us build a product that strongly
impacts the creative industry.

Superside is the leading Al-powered creative service company, delivering creative services
to some of the largest companies in the US. We're building a collaboration platform that
enables our globally distributed team members and customers to work together remaotely.
We enable seamless creative project management thanks to features like briefing, staffing,
design feedback, and asset delivery. You'll be a part of a forward-thinking team that values
ownership, initiative, and growth.

Reporting to the Engineering Manager, you'll get to collaborate with people across
different departments, building technology and processes that will directly impact the
product and the business.

What you'll do:
e Build, test, and ship product features like chat, staffing, project management,
design collaboration, integrations, and briefing in a secure and scalable way.

Figure 3.8: LinkedIn Job Page with 'Compare with Your CV!" Button

17

Backend Engineer
Superside - EMEA (Remote)

contributing to systems upgrade and cre;
- Score: 8/10

ating RESTful APIs.

2. ™3+ years of experience in working with Kotlin and Spring er related backend
frameworks.™

- You have experience with Spring, but your total experience is approximately 2 years
and 4 months, and there is no mention of Kotlin.

- Score: 4/10
3. **Experience with unit, functional, and end-to-end testing.”*

- Your CV does nat mention any specific experience with testing methodologies or
frameworks.

- Scare: 0/10

4, **Hard-working team player and focused individual contributor.™

- You have experience mentoring junior engineers and working in agile teams, which
indicates your ability to collaborate and contribute as a team player.

- Score: 8/10

5. =Critical thinking skills and eagerness to solve challenging problems creatively and
effectively.™

- Your contributions in optimizing the performance and enhancing services at Getir
suggest critical thinking capabilities.

- Score: 8/10

6. **Eagerness to learn and develop new skills.™

- Your intent to grow technically and invalvement in building new services indicates a
desire to learn.

- Score: 8/10

7. Self-motivated, independent, and autonomous attitude””

- The summary indicates active engagement in projects and contributions to team
improvement processes, showing independence and motivation.

- Score: 8/10

8. =Excellent English verbal and written communication skills.**

- While you seem capable of communicating through your experience in remate
teams and interactions within international teams, there's no explicit evidence of
excellent written communication.

- Score: 7/10

“*Missing Skills:*=
- 3+ years of experience with Kotlin
- Explicit experience with unit, functional, and end-to-end testing

=*Qverall Score: 51/80 (approximately 54/100)"*

*“*Improvements:**

1. Include any experience with Kotlin or emphasize your willingness to learn it if you
have not worked with it yet.

2. Add specific examples of testing you have implemented, or express an understanding
of testing frameworks if applicable.

3. Highlight any projects where you've led or contributed to critical discussions or
innovative problem-solving more explicitly to demonstrate your thought leadership.

4, Clarify and ensure that your English communication capabilities are reflected in your
description of team interactions, documentation efforts, etc,

About the job

Figure 3.9: Displaying Job-CV Comparison Results

The interface is crafted with usability in mind, featuring one-click comparisons that
significantly streamline the job application process. By minimizing user effort and
offering real-time feedback, LinkedInSight enhances the overall job-seeking

experience on LinkedIn.

18

3.5 Performance Optimization and Security

Considerations

To ensure a smooth user experience, several performance optimization strategies were
implemented. Caching mechanisms reduce the need for repeated Al processing by
storing previously computed results, which can be quickly retrieved for subsequent
requests. Asynchronous processing further enhances system responsiveness, allowing
the extension to handle multiple tasks concurrently without causing delays or

disruptions to the user experience.

In addition to performance optimization, security remains a central focus of the
LinkedInSight system. All communications are encrypted using HTTPS, and strict
access controls are enforced through Firebase security rules and JWT-based
authentication. These measures protect user data from unauthorized access and ensure

that the system complies with best practices in data security and privacy.

3.6 Deployment and Maintenance

The deployment of the LinkedInSight system is managed through a combination of
automated tools and manual oversight, ensuring that the extension and backend are
consistently updated and maintained. The backend server is hosted on an Oracle
Virtual Private Server (VPS) and managed using Coolify, an open-source platform that
supports Continuous Integration/Continuous Deployment (CI/CD) workflows. This
setup allows for rapid deployment of updates and scaling of resources as needed,
ensuring that the system remains responsive and capable of handling increased user

demand.

Monitoring tools, including New Relic, are employed to track the performance and
health of the system, enabling proactive identification and resolution of potential
issues. Regular updates to both the extension and backend codebases ensure that the
system remains secure and up-to-date with the latest advancements in Al and web

technologies.

19

Chapter 4

Results and performance analysis of the

extension

Chapter 4 provides a detailed analysis of the LinkedInSight extension's performance
and evaluation results. This chapter explores the functional accuracy of the Al-driven
job-CV comparison, the system's responsiveness, and user experience feedback.
Additionally, it addresses security, privacy, and ethical considerations, as well as the
challenges and limitations encountered during testing, outlining the implications for

future development.

4.1 Evaluation Methodology and Overview

The LinkedInSight extension was developed with the primary aim of enhancing the
job-seeking experience on LinkedIn by leveraging Al-powered comparisons between
job descriptions and user CVs. To assess the effectiveness and efficiency of this
extension, a comprehensive evaluation methodology was employed. The evaluation
focused on several key aspects, including the functional accuracy of the job-CV
matching process, the responsiveness of the system under varying conditions, and the

overall user experience, despite the extension not yet being publicly released.

The extension was tested in a controlled environment to simulate real-world usage
scenarios. This involved functional testing across various LinkedIn job postings, as
well as usability testing to gauge the user experience and interface intuitiveness.
Additionally, the backend system's performance was scrutinized to ensure reliable
processing of Al-driven comparisons, secure user data management, and prompt

responses to user interactions.

20

4.2 Functional Accuracy and System Performance

The primary functionality of the LinkedInSight extension centers on accurately
comparing job descriptions with user-uploaded CVs, using advanced natural language
processing techniques facilitated by the ChatGPT 4.0 Mini API. The accuracy of these
comparisons was evaluated through manual verification processes, where the Al-
generated results were cross-referenced with human judgments. While comprehensive
field testing was not possible due to the extension's unpublished status, initial findings
indicate that the Al model demonstrates a satisfactory level of accuracy in matching

relevant skills and qualifications.

System performance, particularly response times, was also a key focus of the
evaluation. Despite the limited scope of testing, it was observed that the backend
system, built on Node.js and Express, handled processing tasks efficiently. The
integration of Firebase services for user authentication, data storage, and real-time
updates further contributed to the smooth operation of the extension. The use of
asynchronous processing and caching strategies were instrumental in maintaining a

responsive user interface, minimizing delays during Al processing tasks.

4.3 User Experience and Interface Usability

User experience (UX) is a critical factor in the success of any browser extension, and
the LinkedInSight extension was designed with a focus on simplicity and ease of use.
The interface, built with React and Material-Ul, was subjected to usability testing to
ensure it met the needs of potential users. Key aspects of the interface, such as the
integration of the "Compare with CV" button directly into LinkedIn job pages and the
clear presentation of comparison results, were highlighted as particularly effective in

streamlining the job application process.

Feedback gathered during the testing phase indicated that users found the extension
intuitive and easy to navigate, with the one-click CV comparison feature being
especially well-received. However, there were suggestions for further improvements,
such as enhancing the speed at which comparison results are delivered and refining the

Al's recommendations to be more contextually relevant.

21

4.4 Security, Privacy, and Ethical Considerations

Given the sensitive nature of the data involved, particularly user CVs and personal
information, stringent security and privacy measures were implemented. Data
encryption was utilized for all communications between the extension, backend, and
Firebase services, ensuring that user information remained protected throughout the
process. Additionally, the use of JSON Web Tokens (JWT) for authentication provided
a robust mechanism for securing access to user data and ensuring that only authorized

users could perform comparisons.

Ethical considerations were also a central aspect of the project, particularly in relation
to the Al's role in influencing job application decisions. Efforts were made to ensure
that the Al-driven recommendations were transparent and fair, minimizing potential
biases that could disadvantage certain users. The extension’s design emphasized user
control and informed decision-making, allowing users to view and assess Al-generated

insights before acting upon them.

4.5 Challenges and Limitations

Despite the promising results observed during testing, the LinkedInSight extension
faces several challenges and limitations that need to be addressed in future
development phases. The unpublished status of the extension limited the scope of
testing, restricting the ability to gather comprehensive data on real-world performance.
Additionally, the reliance on LinkedIn’s existing infrastructure posed challenges in

maintaining compatibility with dynamic changes to the platform.

The accuracy of the Al model, while generally satisfactory, could benefit from further
refinement, particularly in understanding and comparing complex job requirements
with user qualifications. Moreover, the need for ongoing updates to the Al model and
backend systems is evident to keep pace with advancements in Al and changes to

LinkedIn’s platform.

22

4.6 Summary and Implications for Future Development

In summary, the LinkedInSight extension demonstrates significant potential to
enhance the job-seeking experience on LinkedIn through Al-powered job-CV
comparisons. Initial testing indicates that the extension is capable of delivering
accurate and timely insights, with a user-friendly interface that integrates seamlessly
into LinkedIn's ecosystem. However, the unpublished status of the extension and the
limitations of the current testing phase highlight the need for further development and

testing to fully realize its potential.

Future work will focus on expanding the scope of testing, refining the Al algorithms,
and addressing the challenges identified during the initial evaluation. By continuing to
enhance the system's accuracy, performance, and user experience, LinkedInSight can
become a valuable tool for job seekers, improving the efficiency and effectiveness of

the job application process.

23

Chapter 5

Implications, Limitations, and Future
Work

Chapter 5 explores the broader implications, limitations, and future directions for the
LinkedInSight project. This chapter summarizes the key findings and significance of
the project, discusses the ethical considerations and challenges associated with Al-
driven job matching, and outlines the limitations of the current implementation. It also
proposes future work, including expanding the extension’s capabilities, addressing its
limitations, and exploring research opportunities through interdisciplinary

collaboration.

5.1 Summary of Key Findings and Project Significance

The LinkedInSight project represents a significant advancement in the application of
Al and NLP technologies to enhance the job-seeking process. By integrating these
technologies into a Chrome extension tailored for LinkedIn, this project has laid the
groundwork for more efficient, accurate, and user-friendly job application processes.
The extension’s ability to perform AI-driven comparisons between job descriptions
and user CVs directly within the LinkedIn platform addresses a critical need for
streamlined job matching, potentially transforming how users interact with

professional networking sites.

The findings from the initial testing phase indicate that the extension is capable of
delivering valuable insights that can improve job-seeking outcomes. Despite the
limitations posed by the extension's unpublished status, the controlled testing
environment provided useful data on the system’s functionality, user interface, and

overall performance. The project's significance extends beyond its immediate

24

application, offering insights into the broader implications of integrating Al into
professional networking platforms.

5.2 Implications for Users, Recruiters, and the Job Market

The introduction of Al-driven tools like LinkedInSight has profound implications for
job seekers, recruiters, and the broader job market. For job seekers, the extension offers
a powerful tool that can save time and reduce the cognitive load associated with
evaluating job opportunities. By automating the comparison of CVs with job
descriptions, the extension enables users to focus on the most relevant opportunities,

thereby improving the quality and relevance of job applications.

For recruiters and employers, LinkedInSight can enhance the recruitment process by
promoting better alignment between job requirements and candidate qualifications.
This can lead to higher quality applicant pools and more efficient hiring processes,
ultimately benefiting organizations by reducing the time and resources spent on

recruitment.

At the macro level, the widespread adoption of Al-powered job matching tools could
have significant implications for the job market as a whole. By improving the
efficiency of job-skill alignment, such tools could contribute to reducing
unemployment rates and increasing job satisfaction among employees, as individuals

find positions that better match their skills and career aspirations.

5.3 Ethical Considerations and Challenges

The integration of Al in job matching raises important ethical considerations,
particularly concerning privacy, bias, and transparency. The LinkedInSight extension
handles sensitive personal data, such as user CVs and job histories, necessitating robust
data protection measures. Encryption and secure data storage practices have been
implemented to safeguard user information, but ongoing vigilance is required to ensure

these measures remain effective against evolving cybersecurity threats.

Al bias is another critical concern. The algorithms used in LinkedInSight must be

continually assessed to ensure they do not inadvertently disadvantage certain groups

25

of users. Bias in Al-driven job matching could exacerbate existing inequalities in the
job market, making it essential to implement fairness checks and regular audits of the

AT’s decision-making processes.

Transparency is also paramount in maintaining user trust. Users need to understand
how the Al operates, the factors it considers when making comparisons, and how they
can influence or override Al-generated recommendations. Clear communication about
these aspects is essential to foster informed decision-making and prevent over-reliance
on Al.

5.4 Limitations of the Study and Implementation

The LinkedInSight project, while promising, has several limitations that must be
acknowledged. First and foremost, the extension has not yet been published, which
restricted the scope of testing and limited the ability to gather real-world usage data.
This lack of public deployment means that the findings are based on simulated
environments and may not fully capture the challenges or variations encountered in

broader, real-world applications.

The current implementation is also constrained by its reliance on LinkedIn’s platform,
which may change its structure or functionalities over time. These changes could affect
the extension’s compatibility and necessitate ongoing updates to maintain
functionality. Furthermore, the Al model used in LinkedInSight, while effective, is
dependent on the quality and comprehensiveness of the data it processes. Any
limitations in the data (e.g., incomplete CVs or job descriptions) could impact the

accuracy of the Al’s recommendations.

5.5 Future Work and Development Directions

Future work on LinkedInSight should focus on addressing the limitations identified
and expanding the extension’s capabilities. Immediate priorities include the public
release of the extension, which would allow for comprehensive real-world testing and

provide more robust data on user engagement, system performance, and overall

26

effectiveness. This will be crucial for refining the extension’s features and improving

user satisfaction.

In the medium term, there is potential to expand the functionality of LinkedInSight to
support additional platforms beyond LinkedlIn. This could involve integrating with
other professional networking sites or job portals, thereby broadening the extension’s
user base and applicability. Additionally, enhancements to the Al model, such as
incorporating more advanced NLP techniques or personalizing the Al based on
individual user data, could further improve the accuracy and relevance of the job

matching process.

In the long term, the vision for LinkedInSight could extend beyond its current form as
a browser extension. Exploring the development of a standalone platform or mobile
application that offers comprehensive career development tools, including job
searching, networking, and skills assessment, could position LinkedInSight as a leader
in the HR tech industry.

5.6 Research Opportunities and Interdisciplinary

Collaboration

The LinkedInSight project opens up several avenues for future research. Longitudinal
studies on the impact of Al-assisted job searching on career outcomes would provide
valuable insights into the long-term benefits and potential drawbacks of such
technologies. Comparative studies between LinkedInSight and other job matching
tools could also offer important benchmarks and identify areas for improvement.

Interdisciplinary collaboration with fields such as labor economics, organizational
psychology, and human-computer interaction could further enrich the development of
LinkedInSight. Understanding the societal impacts of widespread Al adoption in job
searching, including its effects on employment patterns and worker mobility, is critical
for ensuring that these technologies are used responsibly and equitably.

27

5.7 Conclusion and Final Thoughts

The LinkedInSight project represents a pioneering effort to harness the power of Al
and NLP in enhancing the job-seeking experience on LinkedIn. While there are
challenges and limitations to be addressed, the project has demonstrated the potential
of Al-driven tools to transform how job seekers interact with professional networking
platforms. As Al continues to evolve, there is a tremendous opportunity to further
integrate these technologies into the recruitment process, ultimately contributing to

more efficient, fair, and satisfying job markets.

Looking ahead, the ongoing development and refinement of LinkedInSight will be
essential to realizing its full potential. By continuing to prioritize user needs, ethical
considerations, and technological advancements, LinkedInSight can become a
valuable asset for job seekers and recruiters alike, shaping the future of work in

meaningful ways.

28

References

Bastian, M., Hayes, M., Vaughan, W., Shah, S., Skomoroch, P., Kim, H., Uryasev, S.,
& Lloyd, C. (2014). LinkedIn skills: Large-scale topic extraction and inference.
Proceedings of the 8th ACM Conference on Recommender Systems, 1-8.
https://doi.org/10.1145/2645710.2645728

Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). Research-paper recommender
systems: A literature survey. International Journal on Digital Libraries, 17(4),
305-338. https://doi.org/10.1007/s00799-015-0156-0

Chen, J., Gao, L., & Tang, Z. (2018). Information extraction from resume documents
in PDF format. 2018 IEEE 3rd International Conference on Big Data Analysis
(ICBDA), 268-273. https://doi.org/10.1109/ICBDA.2018.8367707

Dhillon, S., & Mahmoud, Q. H. (2016). An evaluation framework for cross-platform
mobile application development tools. Software: Practice and Experience,
46(10), 1331-1357. https://doi.org/10.1002/spe.2376

Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to information
retrieval. Cambridge University Press.

Mehta, S., Paunwala, C. N., & Vaidya, B. (2021). Recruitment recommendation
system using machine learning approaches. 2021 7th International Conference
on Advanced Computing and Communication Systems (ICACCS), 1361-1367.
https://doi.org/10.1109/ICACCS51430.2021.9441867

Mehrabad, M. S., & Brojeny, M. F. (2007). The development of an expert system for
effective selection and appointment of the jobs applicants in human resource
management. Computers & Industrial Engineering, 53(2), 306-312.
https://doi.org/10.1016/j.cie.2007.06.023

29

https://doi.org/10.1145/2645710.2645728
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1109/ICBDA.2018.8367707
https://doi.org/10.1002/spe.2376
https://doi.org/10.1109/ICACCS51430.2021.9441867
https://doi.org/10.1016/j.cie.2007.06.023

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in

Neural Information Processing Systems, 26, 3111-3119.

Norman, D. A. (2013). The design of everyday things: Revised and expanded edition.

Basic Books.

Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in
algorithmic hiring: Evaluating claims and practices. Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, 469-481.
https://doi.org/10.1145/3351095.3372828

Stadler, G., Hautz, J., Matzler, K., & Von Den Eichen, S. F. (2020). Distributed
knowledge across organizational boundaries: The role of online professional
networks in sharing expertise. In Engineering a Better Future (pp. 107-124).
Springer. https://doi.org/10.1007/978-3-030-20656-7_7

Zhao, M., Javed, F., Jacob, F., & McNair, M. (2020). SKILL: A system for skill
identification and normalization. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(08), 9529-9536.
https://doi.org/10.1609/aaai.v34i08.7037

30

https://doi.org/10.1145/3351095.3372828
https://doi.org/10.1007/978-3-030-20656-7_7
https://doi.org/10.1609/aaai.v34i08.7037

Appendices

31

Appendix A: Chrome Extension Code

e
{ merge } = require('webpack-merge');
common = require('./webpack.common.js");

module.exports = merge(common, { mode: 'production’ });

s
{ merge } = require('webpack-merge');
common = require('./webpack.common.js"');

module.exports = merge(common, { mode: 'development', devtool: 'cheap-module-source-map’

> 9s
path = require('path');
CopyPlugin = require('copy-webpack-plugin');
HtmlPlugin = require('html-webpack-plugin');

module.exports =
entry: {
popup: path.resolve('src/popup/popup.tsx"'),
options: path.resolve('src/options/options.tsx'),
background: path.resolve('src/background/background.ts"'),
contentScript: path.resolve('src/contentScript/contentScript.tsx'),
s
module: {
rules: [

{ test: . ?$/, use: 'ts-loader', exclude: Do

{ test: . $/i, use: ['style-loader', 'css-loader'] },

{ test: . | | | | | | |)$/, type: 'asset/resource' }
]

¥
resolve: { extensions: ['.tsx', '.ts', '.js'] },
plugins: [
CopyPlugin({ patterns: [{ from: 'src/static', to: 'dist' }] }),
...["popup', 'options'].map(chunk HtmlPlugin({ filename: "${chunk}.html
[chunk] }))
1,
output: { filename: '[name].js', path: path.resolve('dist') },
optimization: { splitChunks: { chunks: chunk chunk.name !== ‘'contentScript' } }

35

32

““json

"compilerOptions": {
"jsx": "react",
"module": "es6",
"target": "es6",
"moduleResolution™:
"esModuleInterop":
"lib": [

"dom",
"esnext”

““json

"name": "LinkedInSight",
"version": "1.0.0",
"description”: "Compare LinkedIn job postings with user-uploaded resumes and provide feedback.",
"scripts": {
"start": "webpack --watch --progress --config webpack.dev.js",
"build": "webpack --watch --progress --config webpack.prod.js"
1
"author": "Ozgur Gurcan",
"devDependencies": {
"@emotion/react™: "~11.11.4",
"@emotion/styled": "~11.11.5",
"@mui/icons-material": "~5.15.16",
"@mui/material": "~5.15.16",
"@types/chrome": ""0.0.267",
"@types/react": "718.3.0",
"@types/react-dom": "~18.3.0",
"clean-webpack-plugin": "~3.0.0",
"copy-webpack-plugin": "~7.0.0",
"css-loader": "~5.2.4",
"fontsource-roboto": "74.0.0",
"html-webpack-plugin": "~4.5.2",
"react": "718.3.0",
"react-dom": "718.3.0",
"style-loader": "72.0.0",
"terser-webpack-plugin": "~5.1.1",
"ts-loader": "78.2.0",
"typescript": "~5.4.5",
"webpack": "~5.35.1",
"webpack-cli": "~.6.0",
"webpack-merge": "~5.7.3"

dist
node_modules

export ELEMENT_IDS =
JOB_DETAILS: 'job-details',
COMPARISON_CARD: 'job-compare-card’,
¥

T ts

export setStorageUser = (user) chrome.storage.local.set({ user });

export getStorageUser = () Promise(resolve chrome.storage.local.get(['user'], res
resolve(res.user ||)

export clearStorageUser = () chrome.storage.local.remove(['user']);

export setStorageToken = (token) chrome.storage.local.set({ authToken: token });

export getStorageToken = () Promise(resolve chrome.storage.local.get(['authToken'],
res resolve(res.authToken || N);

export clearStorageToken = () chrome.storage.local.remove(['authToken']);

T ts
export Messages {

TOGGLE_OVERLAY,

ST Ttsx
export getJobDescription() {
jobDescriptionElement = document.getElementById('job-details');
if (!jobDescriptionElement) return 'Job description not found';

jobDescription = '';
jobDescriptionElement.querySelectorAll('h2, p, ul, 1i').forEach(section {
if (section.tagName === 'H2') jobDescription += ~\n\n${section.textContent}\n";
else if (section.tagName === 'UL') section.querySelectorAll('1li').forEach(li
jobDescription += = - li.textContent}\n');
else jobDescription += “${section.textContent}\n ;

Hs

return jobDescription.trim();

export getLinkedinJobId() {
return URLSearchParams (window.location.search).get('currentJobId") || '';

R
export getCurrentTab(): Promise<chrome.tabs.Tab> {
return Promise((resolve, reject) {
chrome.tabs.query({ active: , currentWindow:
if (tabs.length === 0) {
reject('No active tab');

resolve(tabs[@]);
1)
s

T ts
import { clearStorageToken, clearStorageUser, getStorageToken, setStorageToken, setStorageUser }

from "./storage";

BASE_URL = 'https://linkedinsight.ozgurgurcan.dev/api/vl"';

login(email, password) {
response = await fetch(${BASE_URL}/auth/login™, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ email, password }),
1)
user = await response.json();
await setStorageToken(user.token);
await setStorageUser(user);
return user;

signup(email, password) {
response = await fetch(${BASE_URL}/auth/signup, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ email, password }),
1)
user = await response.json();
await setStorageUser(user);
await setStorageToken(user.token);
return user;

logout = O
clearStorageToken();
clearStorageUser();

getUser = @) {
response = await authFetch(” ${BASE_URL}/user’);
user = await response.json();
await setStorageUser(user);
return user;

s

export uploadResume(file, uid) {
formData = FormData();
formData.append("resume", file);
response = await authFetch(” ${BASE_URL}/upload-resume?uid=${uid}", {
method: 'POST',
body: formData
3

return response.json();

compareJobWithCv(jobDescription, linkedinJobId, uid) {
response = await authFetch(” ${BASE_URL}/job/compare™, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({ jobDescription, linkedinJobId,
1)

return response.json();

authFetch(url, options = {}) {
token = await getStorageToken();
return fetch(url, {
...options,
headers: { ...options.headers, 'Authorization': “Bearer ${token} 1},

B

““json

"name": "LinkedInSight",
"description": "Compare LinkedIn job postings with user-uploaded resumes and provide feedback.",
"version": "1.0.6",
"manifest_version": 3,
"icons": {
"16": "icon2.png",
"48": "icon2.png",
"128": "icon2.png"
1
"action": {
"default_title": "LinkedInSight",
"default_icon": "icon2.png"
1
"permissions": [
"storage",
"offscreen",
"activeTab"
1
"options_page": "options.html",
"background”: {
"service_worker": "background.js"
¥
"content_scripts": [
{
"matches": [
"https://www.linkedin.com/jobs/*"
1
"js": [
"contentScript.js”

This is a binary file of the type: Image

This is a binary file of the type: Image

T Ttsx

import React, { useEffect, useState } from 'react’;

ReactDOM from 'react-dom';

{ compareJobWithCv } from '../utils/api';

{ getJobDescription, getLinkedinJobId } from '../utils/jobUtils';
{ ELEMENT_IDS } from '../constants';

ComparisonCard from '../components/ComparisonCard";

App: React.FC = () {
[user, setUser] = useState()8
[comparisonResult, setComparisonResult] = useState('');

updateCard = (result) {
jobDescriptionElement = document.getElementById(ELEMENT_IDS.JOB_DETAILS);
if (!jobDescriptionElement) return;

existingCard = document.getElementById(ELEMENT_IDS.COMPARISON_CARD);
if (existingCard) existingCard.remove();

card = document.createElement('div');
card.id = ELEMENT_IDS.COMPARISON_CARD;
jobDescriptionElement.prepend(card);

ReactDOM. render (<ComparisonCard user={user} comparisonResult={result
onCompare={handleCompare , card);

3

handleCompare = Q) {
jobDescription = getJobDescription();
linkedinJobId = getlLinkedinJobId();
{ comparisonResult } = await compareJobWithCv(jobDescription, linkedinJoblId,
user.uid);
setComparisonResult(comparisonResult);
updateCard(comparisonResult);

1

useEffect(() {
chrome.storage.local.get(['user'], (result)
user = result.user || g
setUser(user);
if (user) updateCard('");

1)
b [

return

s

ReactDOM. render (<App , document.createElement('div"

“Tcss

.overlayCard {
position: fixed;
left: 5%;
top: 15%;
max-width: 240px;
max-height: 240px;
background-color: white
z-index: 1000;

import React from 'react’;

ErrorBoundary React.Component {
state = { hasError: I8

getDerivedStateFromerror() { return { hasError: }; 3

componentDidCatch(error, errorInfo) { console.error('Uncaught error:', error, errorInfo); }

render() { return .state.hasError ? Something went wrong. : .props.children; }

export default ErrorBoundary;

T tsx
import React from 'react’;
import { User } from '../utils/api';

ComparisonCard: React.FC<{ user: User, comparisonResult: string, onCompare: () void }> =
({ comparisonResult, onCompare }) (
style={{ border: 'lpx solid #ccc', borderRadius: '5px', padding: '1@px', marginBottom:
'10px"', boxShadow: '@ 2px 4px rgba(0,0,0,0.1)"' }
onClick={onCompare}>Compare with your CV!
comparisonResult && style={{ marginTop: '10px', whiteSpace: 'pre-wrap'
Comparison Result: comparisonResult

default ComparisonCard;

React, { useEffect, useState } from 'react’;

ReactDOM from 'react-dom';

{ Box, Button, Card, CardContent, Grid, TextField, Typography } from '@mui/material’;
{ getUser, login, logout, signup, uploadResume } from '../utils/api';

{ getStorageUser } from '../utils/storage’;

App: React.FC = () {
[email, setEmail] = useState('');
[password, setPassword] = useState('');
[error, setError] = useState('');
[user, setUser] = useState()8
[file, setFile] = useState()8

useEffect(() {
getStorageUser().then(setUser);
b IDs

handleAuth = (authFunc)
try {
setUser(await authFunc(email, password));
setError('');
} catch (err) {
setError(Auth failed: err.message}’);

handleFileChange = (e) setFile(e.target.files[0]);

handleUploadResume = ()
if (!file || !user) return;
try {
await uploadResume(file, user.uid);
setFile()
} catch (err) {
setError('Failed to upload resume');

}s

return (
Box mx="10%" my="2%"
Card
CardContent
Typography variant="h4">Interview GPT Options</Typography
error && <Typography color="error">{error Typography
luser ? (
Grid container spacing={2
Grid item xs={12
TextField fullWidth label="Email" value={email} onChange={(e)
setEmail(e.target.value)
Grid
Grid item xs={12
TextField fullWidth label="Password" type="password"
value={password} onChange={(e) setPassword(e.target.value)
Grid
Grid item xs={6
Button variant="contained" color="primary" onClick={()
handleAuth(login)}>Login</Button
Grid
Grid item xs={6
Button variant="contained" color="secondary" onClick={()
handleAuth(signup)}>Signup</Button
Grid
Grid
(
Grid container spacing={2
Grid item xs={12
Typography>Logged in as: {user.email}</Typography
Grid
user.cv?.url ? (
Grid item xs={12
Typography>Resume uploaded: href={user.cv.url
target="_blank">View Resume Typography
Grid
(
Grid item xs={12
accept=".pdf, .doc, .docx" style={{ display: 'none' }
id="raised-button-file" type="file" onChange={handleFileChange
htmlFor="raised-button-file"
Button variant="contained" component="span">Select
Resume</Button

file && (
Button onClick={handleUploadResume} variant="contained"
color="primary" style={{ marginLeft: '1@px' }
Upload Resume
Button
)
Grid
)
Grid item xs={12
Button variant="contained" color="secondary"

onClick={logout}>Logout</Button
Grid

Grid
)
CardContent
Card
Box

ReactDOM. render (<App , document.createElement('div'));

“Tcss
body {
background-color: #f5f5f5;

R o
chrome.action.onClicked.addListener(() chrome.runtime.openOptionsPage());

chrome.runtime.onInstalled.addListener(() chrome.runtime.openOptionsPage());

40

Appendix B: Node.js Server Code

““json

"name": "linkedinsight-server",
"version": "1.0.0",
"main pp.js",
"scripts": {
"nodemon": "nodemon src/index.js",
"start": "node src/index.js",
"digest": "npx ai-digest"
¥
"license": "ISC",
"dependencies": {
"ai-digest": "71.0.5",
"bcrypt": "A5.1.1",
"body-parser": "71.20.2",
"cors": "72.8.5",
"cross-fetch": "74.0.0",
"dotenv": "716.4.0",
"ejs": "73.1.9",
"express": "74.18.2",
"firebase-admin": "~12.1.0",
"jsonwebtoken": "79.0.2",
"multer": "7~1.4.5-1ts.1",
"openai": "74.25.0",
"pdf-parse": "~1.1.1"
¥
"devDependencies": {
"nodemon™: "~3.0.3

}s

"helpful": [
"https://www.sitepoint.com/speech-to-text-whisper-react-node/",
"https://github.com/vercel/examples/blob/main/solutions/express/vercel

node_modules
.env

/uploads/
./idea/

.vercel

*. key

*.zip

donem odevi.txt

41

pdf = require('pdf-parse');
{ completions } = require('./openai');

extractTextFromPdf = (dataBuffer) (await pdf(dataBuffer)).text;

transcribeCvText = (cvText) completions("you are a recruiter, here is my cv,
sumirize it for me please.", cvText);

module.exports = { extractTextFromPdf, transcribeCvText };

OpenAI = require("openai");
require('dotenv').config();

openai = OpenAI({ apiKey: process.env.OPENAI_API_KEY });

completions = (systemContent, userContent) {
{ choices } = await openai.chat.completions.create({
messages: [{ role: "system", content: systemContent }, { role: 'user', content: userContent

model: "gpt-4o-mini"

s

return choices[@].message.content;

}s

module.exports = { completions };

e
{ completions } = require('./openai');

compareJobDescriptionWithMyCv(jobDescription, cvText) {
return await completions(

"Your job is to compare a job description with my cv. When you compare you should give score
from @ to 1@ for 10 perfect match, © no match according to job description. Give importance to
Mandatory skills. Give overall score. Specify all missing skills. Also please provide what should
be improved in the cv." +

For example you can give response like: +
"1. Minimum 3 years Java development experience.\n" +

- You have approximately 2 years and 4 months of experience, which is close.\n" +
" - Score: 8/10\n" +

"\n" +

"2. Computer engineering degree.\n" +

" - You have a Bachelor of Engineering in Computer Engineering.\n" +
" - Score: 10/10" +

"**Missing Skills:**" +

"**0verall score: 67/100.**" +

"**Improvements: **",

"Here is my cv: + cvText + "\n\nHere is the job description: + jobDescription

~4s
app = require("./app");
app.listen(process.env.PORT, () console.log(App listening on port ${process.env.PORT}));

{ initializeApp, cert } = require('firebase-admin/app"');

{ getFirestore, Timestamp, FieldValue } = require('firebase-admin/firestore');
{ getStorage, getDownloadURL } = require('firebase-admin/storage');

{ getAuth } = require('firebase-admin/auth');

serviceAccount = require("./config/firebase.json");

initializeApp({ credential: cert(serviceAccount), storageBucket: 'interview-gpt-cc505.appspot.com’

1)

DB = getFirestore();
BUCKET = getStorage().bucket();
AUTH = getAuth();

loginWithEmail = (email) AUTH.getUserByEmail(email).then(user updateUser(user.uid, {
lastlLogin: FieldValue.serverTimestamp() }).then(() user));

getUserDO = (uid) DB.collection('users').doc(uid).get().then(doc doc.exists ?
doc.data() :)5

uploadCv = (uid, file) {
fileName = “resume/${uid}/${file.originalname}";
fileUpload = BUCKET.file(fileName);
return Promise((resolve, reject) {
fileUpload.createWriteStream({ contentType: file.mimetype })
.on('error', reject)
.on('finish', () resolve(getDownloadURL(fileUpload)))
.end(file.buffer);
1
¥

updateUser = (uid, data) DB.collection('users').doc(uid).set(data, { merge: s

verifyIdToken = (idToken) AUTH.verifyIdToken(idToken).then(decoded
decoded.uid).catch(())

module.exports = { loginWithEmail, uploadCv, updateUser, getUserDO, verifyIdToken, DB, AUTH, BUCKET
s

js
require("dotenv").config();
express = require("express");
cors = require("cors");
{ authenticateToken } = require("./middleware/auth");

app = express();
app.use(cors());
app.use(express.json());

app.get("/", (req, res) res.send("Express on Coolify"));

app.use("/api/v1l", authenticateToken, require("./api"));

module.exports = app;

i
app = require('../src/app');

module.exports = app;

“4s
jwt = require('jsonwebtoken');
JWT_SECRET = process.env.JWT_SECRET;

authenticateToken = (req, res, next) {
token = reqg.headers['authorization']?.split(
if (!token) return res.sendStatus(401);

jwt.verify(token, JWT_SECRET, (err, user)
if (err) return res.sendStatus(403);
req.user = user;
next();
1)
s

module.exports = { authenticateToken };

““json

"type": "service_account”,

"project_id": "interview-gpt-cc505",

"private_key_id": "FExEkEE")

"private_key": "F¥xFx")

"client_id": "kkxkkkn)

"auth_uri": "https://accounts.google.com/o/oauth2/auth",

"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/vl/certs",
"client_x509_cert_url": #¥fxx"/

"universe_domain": "googleapis.com"

router = require('express').Router();
multer = require('multer');
upload = multer({ storage: multer.memoryStorage() });

{ loginWithEmail, uploadCv, updateUser, getUserDO } = require('../firebase');
{ compareJobDescriptionWithMyCv } = require('../jobHandler');
{ extractTextFromPdf, transcribeCvText } = require('../pdfHandler");

router.post('/upload-resume', upload.single('resume'), (req, res)
{ uid } = req.query;
file = req.file;
if (!file) return res.status(400).json({ message: 'No resume file provided' });

publicUrl = await uploadCv(uid, file);
cvText = await extractTextFromPdf(file.buffer);
cvSummary = await transcribeCvText(cvText);
await updateUser(uid, { cvText, cvSummary, cvUrl: publicUrl });
res.json({ message: 'Resume uploaded successfully', cvUrl: publicUrl });
} catch (error) {
res.status(500).json({ message: 'Failed to upload resume', error: error.message });

1)

router.get('/cv', (req, res) {
user = await getUserDO(req.query.uid);
user ? res.json(user) : res.status(404).json({ message: 'User not found' });

Hs

router.post('/job/compare’, (req, res) {
{ uid, jobDescription, linkedinJobId } = req.body;
user = await getUserDO(uid);
if (luser) return res.status(404).json({ message: 'User not found' });

jobs = user.jobs || [1;
existingJob = jobs.find(job job.linkedinJobId === linkedinJobId);
if (existingJob) return res.json({ comparisonResult: existingJob.comparisonResult });

comparisonResult = await compareJobDescriptionWithMyCv(jobDescription, user.cvText);
jobs.push({ jobDescription, linkedinJobId, comparisonResult });
await updateUser(uid, { jobs });
res.json({ comparisonResult });

1)

router.get('/job", (req, res) {
user = await getUserDO(req.query.uid);
user ? res.json(user.jobs || []) : res.status(404).json({ message: 'User not found' });

s

router.delete('/job", (req, res) {
{ uid, linkedinJobId } = req.body;
user = await getUserDO(uid);
if (luser) return res.status(404).json({ message: 'User not found' });

updatedJobs = (user.jobs || []).filter(job job.linkedinJobId !== linkedinJoblId);
await updateUser(uid, { jobs: updatedJobs });
res.json({ message: 'Job removed' });

s

module.exports = router;

45

