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Poincaré Plot-Based Fault Detection on Tennessee 

Eastman Process Using Various Machine Learning 

Algorithms 

Abstract 

This thesis presents diagnose and detect faults of Tennessee Eastman Process (TEP) 

with machine learning algorithms via Poincaré plots-based feature extraction and 

statistically analysis-based feature selection. The IEEEDataPort online dataset, 

obtained from a big plant that contains nonlinear processes from various chemical 

units, is utilized in this thesis. It contains measures from 52 process points in TEP with 

20 dissimilar malfunction types. In this study, raw dataset and dataset that applied 

feature extraction and feature selection was used. Poincaré plot was applied to the 

dataset for feature extraction so that four commonly used nonlinear features for every 

measurement point were calculated. After that, among these features, the features that 

show a statistically significant difference (alpha = 0.05) between failure types were 

selected. The machine learning tools such as Decision Tree, Discriminant Analysis, 

Naive Bayes, k-Nearest Neighbors, Support Vector Machine, and Ensemble Learning 

algorithms were utilized to classify the fault types from both datasets. The maximum 

classifier accuracies were 89.5% for the whole feature dataset using the Subspace 

Discriminant Algorithm of the Ensemble Learning Classifier method and 93.5% for 

the selected features only using the Linear Discriminant Analysis during this study. 

These performances could be comprehendible among the results achieved in similar 

studies.  

 

Keywords: Tennessee Eastman Process, Fault Detection and Diagnosis, Poincaré Plot 

Based Feature Extraction, One-way ANOVA Based Feature Selection, Machine 

Learning Tools. 
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Çeşitli Makine Öğrenimi Algoritmalarını Kullanarak 

Tennessee Eastman Sürecinde Poincaré Grafik Tabanlı 

Hata Tespiti 

Öz 

Bu tez, Poincaré grafiğine dayalı öznitelik çıkarımı ve istatistiksel olarak analize dayalı 

öznitelik seçimi yoluyla makine öğrenme algoritmaları ile Tennessee Eastman Süreci 

(TEP) hatalarını teşhis ve tespit etmeyi sunar. Bu çalışmada, çeşitli kimyasal 

birimlerden doğrusal olmayan süreçleri içeren bir prosesten elde edilen IEEEDataPort 

çevrimiçi veri seti kullanılmıştır. 20 farklı arıza tipi ile TEP'de 52 proses noktasından 

alınan önlemleri içerir. Bu çalışmada, öznitelik çıkarımı ve öznitelik seçimi uygulanan 

ham veri seti ve veri seti kullanılmıştır. Her ölçüm noktası için yaygın olarak kullanılan 

dört doğrusal olmayan özellik hesaplanacak şekilde, özellik çıkarımı için veri 

kümesine Poincaré grafiği uygulandı. Daha sonra bu öznitelikler arasından hata türleri 

arasında istatistiksel olarak anlamlı fark (alfa = 0.05) gösteren öznitelikler seçilmiştir. 

Her iki veri setinden de hata türlerini sınıflandırmak için Karar Ağacı, Diskriminant 

Analizi, Naive Bayes, k-En Yakın Komşular, Destek Vektör Makinesi ve Topluluk 

Learning algoritmaları gibi makine öğrenme araçları kullanılmıştır. Topluluk Learning 

Sınıflandırıcı yönteminin Altuzay Ayırım Algoritması kullanılarak tüm özellik veri 

kümesi için maksimum sınıflandırıcı doğruluğu %89,5 ve bu çalışma sırasında 

yalnızca Doğrusal Ayırım Analizi kullanılarak seçilen öznitelikler için %93,5 

olmuştur. Bu performanslar, benzer çalışmalarda elde edilen sonuçlar arasında 

anlaşılabilir bir sonuç olabilir. 

 

Anahtar Kelimeler: Tennessee Eastman Süreci, Arıza Tespiti ve Teşhisi, Poincaré 

Çizimi Tabanlı Özellik Çıkarma, Tek Yönlü ANOVA Tabanlı Özellik Seçimi, Makine 

Öğrenimi Araçları.  
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Chapter 1 

Introduction 

In this thesis, diagnose predictions and upcoming fault detections of Tennessee 

Eastman Process (TEP) is fulfilled with machine learning algorithms by using both 

Poincaré plots-based feature extraction and statistical analysis-based feature selection. 

TEP is complex-process-control-system containing nonlinear chemical units such as 

separators, strippers, reactors and products [1]. The use of maintenance technologies 

is important to continue uninterruptedly mass production process with minimum loss 

for industries. These maintenance methods are made of three sub-classifications such 

as periodic, predictive and after failures [2]. Periodic maintenance ensures that the 

machine parts should be examined after a certain period duration and it might be 

replaced if necessary. Predictive maintenance, unlike periodic maintenance, aims 

prediction of fault detection via monitoring the conditions acquired plant process data. 

After failure method is to fix something such as equipment, motor, sensor that has 

malfunctioned. One of the maintenance requirements is to extend the remaining life of 

the machine element or to prolong the failure time. Therefore, the implemented 

maintenance policies are correctly expected to reduce service and negative interruption 

consequences [3], and the mass production becomes faster and human-induced errors 

minimized [4]. Nowadays, Industry 4.0 and internet of things technology (IoT) have 

been used for predictive maintenances including machine learning (ML), deep learning 

(DL), and artificial intelligence (AI) [5, 6]. In order to develop predictive maintenance 

methods, machine-learning ones might be used with the feature extraction, and feature 

selection stages [7].    

As for the feature extraction, it is to minimize the number of features by generating 

features from the obtaining data or existing ones [8]. Ding X. et al. [9] developed a 

feature extraction method for fault detection in shaft bearings by combining wavelet 
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packet energy (WPE) and deep convolutional neural network (CNN) based on energy 

wave feature learning. WPE first transformed it into a 2-D image according to the 

brightness and then classified it with the deep CNN. As a result of testing the proposed 

method on 6 data sets and 7 different features, it was seen that the success rate was 

between around 96-99%. Simona M. et al. [10] developed Poincare variables for 

feature extractions of Wi-Fi protocols such as IEEE 802.11n and IEEE 802.11ac.  

When it is come to feature selection, its aim is to find the minimal data set by choosing 

the necessary, important and meaningful features in the data set [11]. Senoussi H. et 

al. [12] proposed feature selection methods in TEP with four feature selection methods 

including Correlation Based Feature Selection, Fast Correlation Based Feature 

Selection, Minimum Redundancy Maximum Relevance and Interacting Features 

Based Feature Selection. Yangtao X et al. [13] published that the linear kernel Support 

Vector Machine (SVM) Recursive Feature Selection has been applied to fault 

diagnosis. Şahin Ş. and İşler Y. [14] were performed the ways to perform supervisory 

control and data acquisition (SCADA) and robotics experiments at a reasonable cost 

in control and automation courses, and they quantitatively evaluated the presented 

experiment results using one-way Analysis of Variance (ANOVA) test. Şahin Ş. and 

İşler Y. [15] designed test and experimental setups to show how an economically 

viable SCADA system could be set up, and examined the students' performances. A 

quantitative evaluation was made using the one-way ANOVA test on the exam results 

of the students and a comparison was made with respect to previous years. 

As for fault detection methods, they might be divided into three classes such as model-

based, information-based and signal-based fault detection [16]. In the model-based 

fault detection, a model of the system is composed and the fault of the system might 

be detected by changing its parameters [17,18]. The information-based fault detection 

method is based on the analysis of a large amount of real and/or modeled system data. 

The signal-based fault detection method can be explained with analyzing and 

evaluating the signals obtained from the system via Fast Fourier Transform (FFT) and 

Wavelet Analysis (WA) [19]. ML and DL algorithms are used for fault detection and 

fault diagnosis in various applications such as bearing faults, motor faults, control 

panel faults etc. [20-22]. Haidong S. et al. [23] proposed deep CNN using the data of 

electric locomotive roller bearing’s fault diagnosis. After the comparison other deep 
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Artificial Neural Network (ANN) performances, the proposed algorithm had a success 

rate of 97.43% in a shorter time. Wen, et al. [24] presented DL method using sparse 

auto-encoder for fault diagnosis. In this method, by applying penalty points to neurons 

in the hidden layer with the help of a three-layer sparse auto-encoder, it showed a 

higher performance than traditional auto-encoders. Guo L. et al. [25] proposed an 

intelligent deep CNN for machine failures with unlabeled data. They formed with two 

modules as situation recognition and field adaptation. To learn features from raw 

vibration data in the state recognition module, a one-dimensional CNN was created 

and a health state classifier was designed. They showed that the method they presented 

performed 32.1% more accurate classification compared to traditional methods. He M. 

et al [26] designed a neural network using Large Memory Storage (LMS) structure to 

perform diagnostics on big data. In the presented structure, the signals were formerly 

pre-processed by the Short-time Fourier transform method, the designed neural 

network was latterly trained and used for fault diagnosis. They achieved the 

classification accuracies of 80-88% for the CNN and 96-98% for the LMS networks.  

In other studies, fault detection for electrical motors using machine learning techniques 

is getting popular [27]. Motor current signal analysis is one of the used methods for 

diagnosing motor errors. Since induction motors are symmetrical electromagnetic 

systems, this situation causes eccentricity to occur between the rotor and stator, 

resulting in errors such as winding, bearing, and rotor [28, 29]. Most of the proposed 

approaches to detect bearing failures use vibration signals. Although vibration signals 

are powerful in identifying this error type, sensor selection and localization affect the 

performance of the detection and diagnostic. Therefore, these errors create certain 

changes in the stator current. In this proposed method, the effect of bearing failure on 

both current and vibration signals is investigated [30, 31]. In another interesting study, 

Taştimur C. et al. [32] used images of the obtained vibration signals. They divided the 

signal data into 100 segments and 400 pixels wide. They classified the bearing failures 

in four different categories using CNN from these images’ segments. They tested the 

model they presented with 400 training data, 60 validation data, and 100 test data. 

They reported an accuracy of 100% with this limited data set. As for the principal 

component analysis (PCA) based fault detection, Ammar A. S. et al. [33] and Aldrich, 

C et al. [34] nonlinear dynamical PCA based feed forward neural network is applied 

for fault detection in TEP.  
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In this thesis, dataset of the TEP complex-process-control-system containing nonlinear 

chemical units such as separators, strippers, reactors and products used in order to 

analyze the proposed fault detection techniques. Poincare Plot measurements (i.e., 

Standard Deviation 1 (SD1) and Standard Deviation 2 (SD2)) values, which have 

achieved successful results especially in biomedical applications [35-37], were used 

for the first time in such an application for feature extraction from the raw data set. 

One-way ANOVA method [38, 39], which is used in fault detection and diagnosis and 

with successful results, was used in the thesis to find the optimal data set with the 

statistical-based feature selection method that will help effective learning. As a result 

of this feature selection method, since it was determined that the SD1 measurements 

of the sensors 24, 26, 32, 37, 39, 40, and 41 did not show a statistically significant 

difference, these features were removed from the data set, and a new optimal data set 

was created. Different L algorithm such as Decision Tree, Discriminant, Naive Bayes 

Algorithms, SVM, k-Nearest Neighbors (k-NN) and Ensemble Learning algorithms 

are applied for both raw dataset and optimal dataset. Then, the accuracy of both 

datasets for different methods compared to find an optimal technique for fault 

detection in TEP. The best accuracies for proposed methods are as 93.5% and 89.5% 

by using Linear Discriminant Analysis and Subspace Discriminant that is the method 

of Ensemble Learning.  

The rest of the parts of this thesis are organized as follows: In Chapter 2, background 

on the dataset, Poincare Measures, one-way ANOVA, and classification methods. 

Chapter 3 presents the results and discussion of proposed methods. The conclusions 

are given in Chapter 4. 
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Chapter 2 

Methods 

This section provides background information on thesis research. General information 

about the main components of the TEP and the dataset is given. The feature extraction 

method, which is based on Poincare plot measurements, is explained. The one-way 

ANOVA test method, as a statistical-based feature selection method, is described. 

Then, the classification methods such as Decision Trees, Discriminant Analysis, Naive 

Bayes Classification, SVM, k-NN, and Ensemble Learning are explained. In addition, 

within the scope of this research, the parts of the thesis related to the application are 

explained. 

2.1 Tennessee Eastman Process 

TEP is a process which model was developed by Vogel and Downs with the Eastman 

Chemical Company [40]. The model has become a benchmark issue for academia and 

industry's testing, control, and optimization strategies [34]. Several simulators have 

been established for this issue either in MATLAB [41] or in other coding languages 

[42]. The practicability of this simulator stems from the fact that it represents an actual 

functioning plant that involves different typical engineering units such as several 

controlled and manipulated variables and also disturbances [40]. The process 

simulated within the TEP consists of 5 units including condensers, reactors, separators, 

strippers, and compressors. In addition, the simulation contains several chemical 

reactions that turn into 8 different components in the simulation: 4 reactants (A, C, D, 

and E), 2 products (G and H), a byproduct (F), and an inert (B). Figure 2.1 shows the 

process flow diagram of the TEP that represents the plant operation in detail. 

Moreover, it should be pointed out that the process simulation in an open loop is 

unstable due to the presence of reactions in the reactor. So, there have been several 
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control schemes implemented to equalize the process. The most popular Piping & 

Instrumentation Diagrams (P&ID) of TEP was developed by Ricker [43]. P&ID [44, 

45] represents the piping and related components such as; PI: Pressure Indicator, PC: 

Pressure Controller, FI: Flow Indicator, and FC: Flow Controller,  
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TEP process contains 53 total measurements composed of 22 continuous process 

variables (Table 2.1), 12 manipulated variables (Table 2.3), and 19 sampled analyzer 

process variables (Table 2.2). 

 

Table 2.1: Continuous process measurements in TEP 

No Label Description Unit 

1 xmeas_1 A Feed (Steam 1) kscmh 

2 xmeas_2 D Feed (Steam 2) kg/hr 

3 xmeas_3 E Feed (Steam 3) kg/hr 

4 xmeas_4 A and C Feed (Steam 4) kscmh 

5 xmeas_5 Recycle Flow (Steam 8) kscmh 

6 xmeas_6 Reactor Feedrate (Steam 6) kscmh 

7 xmeas_7 Reactor Pressure kPa gauge 

8 xmeas_8 Reactor Level % 

9 xmeas_9 Reactor Temperature Deg C 

10 xmeas_10 Purge Rate (Steam 9) kscmh 

11 xmeas_11 Product Separator Temperature Deg C 

12 xmeas_12 Product Separator Level & 

13 xmeas_13 Product Separator Pressure kPa gauge 

14 xmeas_14 Product Separator Underflow (Steam 10) m³/hr 

15 xmeas_15 Stripper Level % 

16 xmeas_16 Stripper Pressure kPa gauge 

17 xmeas_17 Stripper Underflow (Steam 11) m³/hr 

18 xmeas_18 Stripper Temperature Deg C 

19 xmeas_19 Stripper Stream Flow kg/hr 

20 xmeas_20 Compressor Work kW 

21 xmeas_21 Reactor Cooling Water Outlet Temperature Deg C 

22 xmeas_22 Separator Cooling Water Outlet Temperature Deg C 
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Table 2.2: Sample process measurements in TEP 

No Label Description 

1 xmeas_23 Reactor Feed Analysis of A (Stream 6) 

2 xmeas_24 Reactor Feed Analysis of B (Stream 6) 

3 xmeas_25 Reactor Feed Analysis of C (Stream 6) 

4 xmeas_26 Reactor Feed Analysis of D (Stream 6) 

5 xmeas_27 Reactor Feed Analysis of E (Stream 6) 

6 xmeas_28 Reactor Feed Analysis of F (Stream 6) 

7 xmeas_29 Purge Gas Analysis of A (Stream 9) 

8 xmeas_30 Purge Gas Analysis of B (Stream 9) 

9 xmeas_31 Purge Gas Analysis of C (Stream 9) 

10 xmeas_32 Purge Gas Analysis of D (Stream 9) 

11 xmeas_33 Purge Gas Analysis of E (Stream 9) 

12 xmeas_34 Purge Gas Analysis of F (Stream 9) 

13 xmeas_35 Purge Gas Analysis of G (Stream 9) 

14 xmeas_36 Purge Gas Analysis of H (Stream 9) 

15 xmeas_37 Product Analysis of D (Stream 11) 

16 xmeas_38 Product Analysis of E (Stream 11) 

17 xmeas_39 Product Analysis of F (Stream 11) 

18 xmeas_40 Product Analysis of G (Stream 11) 

19 xmeas_41 Product Analysis of H (Stream 11) 
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Table 2.3: Manipulated variables in TEP 

No Label Description 

1 xmv_1 D Feed Flow (Steam 2) 

2 xmv_2 E Feed Flow (Steam 3) 

3 xmv_3 A Feed Flow (Steam 1) 

4 xmv_4 A and C Feed Flow (Steam 4) 

5 xmv_5 Compressor Recycle Valve 

6 xmv_6 Purge Valve (Steam 9) 

7 xmv_7 Separator Pot Liquid Flow (Steam 10) 

8 xmv_8 Stripper Liquid Product Flow (Steam 11) 

9 xmv_9 Stripper Steam Valve 

10 xmv_10 Reactor Cooling Water Flow 

11 xmv_11 Condenser Cooling Water Flow 

12 xmv_12 Agitator Speed 

 

 

Variables in the dataset are named "Faulty_Free_Training", "Faulty_Free_Testing", 

"Faulty_Testing" and "Faulty_Training" corresponding to different data files. Each 

data file contains 55 columns of data. The "faultNumber" column defines as 1 to 20 

types of faults in the dataset while the “0” represents no failure. The “Sample” column 

gives the sequence number of the measurement taken in the training data set between 

1 and 500 (between 1 and 960 in the test data set). Starting with “xmeas_1” and ending 

with “xmv_11” (4 to 55) gives the values observed from the sensors, which correspond 

to 25 hours of sensor data in the training dataset and 48 hours in the test dataset, which 

are sampled every 3 minutes. Thus, the dataset is so widely used to compare algorithms 

for detecting abnormal situations containing erroneous and error-free data files.  

The process contains 20 previously programmed faulty scenarios, which are described 

in Table 2.4. In 2015, Ricker release a revision to his original control P&ID for the 
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TEP that brought updates in algorithms, process measurements, and disturbances [43]. 

The labels considered in Tables 2.1 - 2.4 are the labels used in the TEP. 

 

Table 2.4: Process disturbances in TEP 

No & Fault ID Label Type Description 

1 idv_1 Step A/C Feed Ratio, B Composition Constant 

2 idv_2 Step B Composition, A/C Ratio Constant 

3 idv_3 Step D Feed Temperature 

4 idv_4 Step Reactor Cooling Water Inlet Temperature 

5 idv_5 Step Condenser Cooling Water Inlet Temperature 

6 idv_6 Step A Feed Loss 

7 idv_7 Step C Header Pressure Loss-Reduced Availability 

8 idv_8 Random A, B, C Feed Composition 

9 idv_9 Random D Feed Temperature 

10 idv_10 Random C Feed Temperature 

11 idv_11 Random Reactor Cooling Water Inlet Temperature 

12 idv_12 Random Condenser Cooling Water Inlet Temperature 

13 idv_13 Drift Reactor Kinetics 

14 idv_14 Stiction Reactor Cooling Water Valve 

15 idv_15 Stiction Condenser Cooling Water Valve 

16 idv_16 Random Deviations of Heat Transfer Within Stripper 

17 idv_17 Random Deviations of Heat Transfer Within Reactor 

18 idv_18 Random Deviations of Heat Transfer Within Condenser 

19 idv_19 Stiction 

Recycle Valve of Compressor, Underflow 

Separator, Underflow Stripper and Steam Valve 

Stripper 

20 idv_20 Random Unknown 
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There are different measurement points, system variables, and errors which are 

inevitable and detectable challenges for users and designers, so TEP has been 

prevailingly used as an information for process monitors and fault detections [46-48].  

2.2 Poincare Plot Measures 

The Poincare plot measures, a method taken from nonlinear dynamics of the data. It is 

a graph of every single data on the x-axis against the subsequent data on the y-axis 

(Figure 2.2). The shape of the distribution is utilized to characterize the dynamics of 

the time series [49]. The plot provides basic information as well as specific information 

[50-51]. The Poincare plot is becoming a preferred method because of its proved 

ability as a cardiac dysfunction and drawing an ellipse to the Poincare plot is becoming 

popular method [49,51]. The standard deviation of the distance of the data determines 

the width 𝑆𝐷1 and length 𝑆𝐷2 [51]. These variables can be calculated as follows: 

 

𝑆𝐷1 = √
1

2
𝑆𝐷𝑆𝐷2 = 𝑠𝑡𝑑(

𝑥𝑖+1−𝑥𝑖

√2
)    (2.1) 

𝑆𝐷2 = √2(𝑆𝐷)2 −
1

2
𝑆𝐷𝑆𝐷2 = 𝑠𝑡𝑑(

𝑥𝑖+1+𝑥𝑖

√2
)    (2.2) 

 

where 𝑆𝐷𝑆𝐷 and 𝑆𝐷 are standard deviation of consecutive differences and the standard 

deviation of the data where l=1 respectively. The product (𝑆𝐷1. 𝑆𝐷2) and the ratio 

(𝑆𝐷1 / 𝑆𝐷2) can be determined to specify the relationships between these components. 

(𝑆𝐷1 / 𝑆𝐷2) is assumed to be a signal of the balance between the vagal activities and 

sympathetic [50]. In most of the study, the conventional value of lag (l) is 1 53, 54], 

but a few studies used distinct values from 1 to 10 [55, 56]. The results for lagged plots 

are transferred to higher dimensional plots [57]. 
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Figure 2.2: Poincare plot and the measures of 𝑆𝐷1 and 𝑆𝐷2 for simulationRun=1, 

faultNumber=1 of xmeas_3 variable in the dataset 

 

2.3 One-way ANOVA Test 

One-way ANOVA is a statistical method that is concerned with comparing the means 

of several data and it is used to determine whether there is a statistically significant 

difference between the means of independent groups and it is determined by 

investigating the variances. It can be thought of as an appendage of the t-test for two 

independent data to more than two groups [38, 39]. While performing an ANOVA, the 

subsequent assumptions are required: The investigations are independent of one 

another. The investigation of groups might have satisfied as a normal distribution. The 

population variances in every groups are the same.  
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ANOVA is the typically used advanced research method in the economic literature 

and business [58]. This method is useful in revealing information in interpreting 

experimental results and specifying the influence of some factors on other parameters 

[59]. The original ideas of ANOVA were improved by the Sir Ronald A. Fisher [60] 

in his book which is namely “Statistical Methods for Research Workers”. Much of the 

early studies in this area are related to agricultural tests [59].  

Comparison tests are divided into two groups according to equal or different variance 

approaches. These two groups are shown in the Table 2.5 below. 

 

Table 2.5: Groups according to the variance method 

No Equal Variance Different Variance 

1 Fishcer’s Significant Difference Test Tamhane Test 

2 Bonferroni Test Dunnet T3 Test 

3 Tukey HSD Test Games-Howell Test 

4 Scheffe Test Dunnet-C Test 

5 Duncan Test - 

6 Dunnet Test - 

7 Waller-Duncan Test - 

 

2.4 Classification 

Classification is the process of estimating the class of data points that are given. 

Classes are occasionally called labels, targets, or categories. The aim of classification 

is approximating a function of mapping (f) from input (X) to discrete output (Y). For 

instance, classifying given a handwritten character can be identified as a classification 

issue. This is multi-class classification because there are more than two classes as all 

letters are in the alphabet. A classifier utilizes some training data to figure out how 

given data relates to the class. In this case, all letters have to be used as the training 

data. When the classifier is trained successfully, it can be used to estimate a 
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handwritten character. The classification belongs to the category of supervised 

learning. 

There are plenty of applications in classification like diagnosis, target marketing [59, 

60], and also plenty of classification software existing now however it is not feasible 

to finalize which one is superior to the other. It depends on the available data set and 

the application. For instance, if the categories are linearly separable, the linear 

classifiers such as Logistic Regression, Fisher’s Linear Discriminant can outperform 

complicated models. 

Classification methods such as Decision Tree, Discriminant Analysis, Naive Bayes 

Classification, SVM, k-NN, Ensemble Learning techniques are explained. 

2.4.1 Decision Tree 

Decision tree analysis is positioned as a predictive model tool used in many fields 

[112, 113]. Decision trees are created using an algorithmic method for decomposing 

data sets according to different situations. Decision trees can be found in forms suitable 

for multivariate or multi-effect analyses. All forms of multivariate analysis allow to 

predict, describe, explain or classify as targets. These multivariate analyzes have an 

important place in today's technique because almost all specific outcomes that 

determine success are based on different factors. Figure 2.3 shows an example of a 

decision tree with connected nodes. 

Nodes can be categorized as decision nodes and leaf nodes. If one of the decision nodes 

takes place as the initial state, it is called the root node. Decision nodes work to direct 

the path flows that create the rules. Decision nodes provide a branch to subsequent 

nodes, while leaf nodes indicate the end of a consequential path. Relationships in 

decision trees are non-linear and often interactive. It is not possible in regression 

analyses to reveal these patterns in the data set without prior modeling, but 

classification trees reveal these patterns without the need for predetermination. 

Decision trees are machine learning structures that stand out with their flowchart-like 

structures, enable the collection of results to terminal units, that is leaves, by 
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performing a test on each branch, and each branch reflects a classification model from 

roots to leaves.  

 

 

Figure 2.3: Decision tree diagram and its components. 

 

 

One of the first models of analysis studies based on decision trees was found by J. 

Ross Quinlan [63] in his book. The first algorithm he developed was recorded as 

Iterative Dichotomiser 3 (ID3). This algorithm is based on the creation of the smallest 

and most efficient decision tree based on Occam's razor principle. Quinlan continued 

his studies and developed this model, firstly it evolved into C4.5, C5.0 algorithms, 

respectively. To briefly mention other important decision trees; Classification and 

Regression Trees (CART) [64], Chi-square Automatic Interaction Detector (CHAID) 

[65], Multivariate Adaptive Regression Splines (MARS) [66], Random Forest [67] are 

important decision trees in the literature. In decision analysis, decision trees are created 

depending on the use of data, usually with a supervised learning method. The focus is 

on ensuring that the trees created represent both the dataset used and the data to come 

later. In this thesis, different types of decision tree classifier types were used and 

difference of the types are shown in Table 2.6. 
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Table 2.6: Decision Tree classifier types and maximum number of splits 

No Classifier Type Max. Number of Splits 

1 Fine Tree 4 

2 Medium Tree 20 

3 Coarse Tree 100 

 

2.4.2 Discriminant Analysis 

Discriminant analysis is a classifier technique that creates functions that will allow the 

variables in the data set to be divided into two or more real groups, taking into account 

the p-items of the units or observations, and ensuring that these units are optimally 

assigned to their real groups. For example, suppose there are three diseases that have 

similar characteristics, such as A, B, and C. Each disease will have a value according 

to variables. It is possible to create functions that determine its properties. With the 

help of these functions, it can be determined which group feature a new disease 

observation vector has, that is, which disease diagnosis may have, and its assignment 

to the right group can be done by discriminant analysis [68]. 

By minimizing the possibility of misclassification, the researcher will want to divide 

the observations into the groups they belong to or identify the groups from which these 

observations were drawn [69]. Here, it is aimed to maximize the difference between 

the means of the groups to be determined. The basic assumptions of the discriminant 

analysis method are that the variables are normally distributed and that the groups have 

a common variance-covariance matrix. The discriminant function that satisfies these 

assumptions is called the Linear Discriminant Function (LDF). If these assumptions 

are not met, alternative functions can be used. If the data are normally distributed but 

the variance-covariance matrices of the groups are different, the function used is 

defined as the Quadratic Discriminant Function (QDF). 

The functions of discriminant analysis can be grouped under two main headings. The 

first of these is the assignment of any observation (variable) whose audience is 
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unknown to the appropriate audience (group). The second function is to provide 

functions that can be used in the future, due to this function, discriminant analysis 

differs from cluster analysis and approaches multivariate regression analysis. In 

discriminant analysis, the number of clusters (groups) is known, this number does not 

change during the analysis and the researcher is asked to classify the observations into 

these clusters. In this thesis, different types of discriminant analysis classifier types 

were used and difference of the types are shown in Table 2.7. 

 

Table 2.7: Discriminant Analysis classifier types and maximum number of splits 

No Classifier Type Boundaries Type 

1 Linear Discriminant Linear 

2 Quadratic Discriminant Nonlinear 

 

2.4.3 Naive Bayes Classification 

Naive Bayes Classification is an algorithm that predicts the probability that the 

available data belong to the determined classes by applying Bayes theorem under 

strong independence assumption [70]. In this method, classification is done based on 

Bayesian probability. Bayesian probability is a generalized version of the conditional 

probability for k discrete events. The Naive Bayes algorithm allows to predict new and 

unlabeled observations with the same manner by making use of the feature information 

of observations based on the conditional probability function [71]. 

The Naive Bayes formula is as in (2.3). 𝑃(𝑐) represents the previous probability value 

of the target, 𝑃(𝑥|𝑐) the probability value of the parameter relative to the target, 

𝑃(𝑐|𝑥) the next probability value of the target relative to the parameter, 𝑃(𝑥) 

represents the previous probability value of the parameter. The 𝑃(𝑥) value is 

calculated using the data in the training dataset (Eq. 2.3). In this thesis, two types of 

Naive Bayes classifier types were used and difference of the types are listed in Table 

2.8. 
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𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
         (2.3) 

 

Table 2.8: Naive Bayes classifier types and parameters for model flexibility 

No Classifier Type Parameters for Model Flexibility 

1 Gaussian Naive Bayes Cannot change parameters 

2 Kernel Naive Bayes Kernel Type and Support Settings 

 

2.4.4 Support Vector Machine 

SVM is a popular topic in the learning area [72, 73]. In the late 1990s, the neural 

network approaches suffered issues with producing models, generalization. It was 

developed by Vladimir Vapnik [74] and gained popularity due to its features. It is first 

been introduced as a technique for solving classification issues. However, due to its 

attractive properties, it has expanded into the field of regression analysis. 

SVM is a supervised learning method that can use given sample to solve certain issues 

by attempting to turn them into linearly separable problems [75, 76]. The SVM is input 

data called training data sets linked to outputs to classify new observations to one of 

the two classes by creating a separating hyperplane [76]. This study uses six dissimilar 

kernels: Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse 

Gaussian. In this thesis, different types of SVM classifier types were used and 

difference of the types are shown in Table 2.9. 

 

Table 2.9: SVM classifier types and maximum number of neighbors 

No Classifier Type 
Max. Number of 

Neighbors 

1 Linear SVM 1 

2 Quadratic SVM 10 
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3 Cubic SVM 100 

4 Fine Gaussian SVM 10 

5 Medium Gaussian SVM 10 

6 Coarse Gaussian SVM 10 

 

2.4.5 k-Nearest Neighbors 

k-NN is one of the ML algorithms. k-NN is used in pattern recognition and statistical 

estimation for regression [77] and classification [78-81]. For both regression and 

classification, the input consists of the nearest training examples in given data space 

and the output depends on regression or classification. There are several measures for 

calculation of distance like Chebyshev, Euclidean Squared, and Euclidean. Among all 

these Euclidean is the most popular method to measure the distance between two 

points. It is calculated as: 

 

d (x, y) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑁

𝑖=1                       (2.4) 

 

where d (x, y) is the distance of Euclidean between the unknown point, 𝑥, and the 

training point, 𝑦. Other metrics, such as the distance of Manhattan, the coefficient of 

cosine, or the distance of Lagrange have been used [82].  
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Figure 2.4: An example k-NN 

 

There are plenty of approaches for obtaining the appropriate k [83, 84]. The most used 

is to test different values of k by using cross-validation [82] and keep the k giving the 

lowest classification error rate. In this thesis, different types of decision tree classifier 

types were used and difference of the types are listed in Table 2.10. In cosine, cubic 

and weighted k-NN classifier types are applied by using cosine, cubic and weighted 

distance metric respectively.  

 

Table 2.10: k-NN classifier types and maximum number of neighbors 

No Classifier Type 
Max. Number of 

Neighbors 

1 Fine k-NN 1 

2 Medium k-NN 10 

3 Coarse k-NN 100 

4 Cosine k-NN 10 

5 Cubic k-NN 10 

6 Weighted k-NN 10 
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2.4.6 Ensemble Learning 

Ensemble learning creates multiple classifier models, unlike the use of a single 

classifier model that occurs with classical machine learning algorithms. The evaluation 

process is based on the logic of interpreting and presenting the results from all 

classifier models [85,86]. Bagging technique is a popular ensemble learning approach 

applied in various real problem scenarios such as intrusion detection, spam 

classification, credit scoring, etc. [87]. With this technique, the dataset is divided into 

parts and each part is modeled as a separate training set with base classifiers. The test 

takes place on all models. The classification result is obtained by analyzing the 

classification results collected from the models.  

If the classification is performed on a numerical value as a result of classification, Eq. 

2.5 is used and the classification result is produced by taking the average of the 

numerical output values from the multiple classification models. If it occurs on 

categorical values,  it is carried out according to Eq. 2.6 and the most classified 

category among the categorical values from each classifier model is accepted as the 

result [85]. 

n ∈ [1, N] and 𝑀ₙ: The dataset created with a random piece from the main dataset. 

 

𝑀(𝑥) =
1

𝑁
+ ∑ (𝑀ₙ(𝑋))𝑁

𝑛=1     2.5 

 

𝑀(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥ₚ(𝑀ₙ(𝑋) = 𝑝)   2.6 

 

 

The working principle of the bagging technique is shown in Figure 2.5. The main 

dataset is randomly divided by the specified number of parameters. Classifier models 

are trained on each part of the dataset. The classification result collected from all 

models is interpreted according to Formula 2.5 or Formula 2.6. 

The Boosting technique is an ensemble learning technique approach developed to 

develop the performance of learning algorithm. As shown in Figure 2.5, each iteration 
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is weighted on the dataset to decrease the error of the weak learning model. In this 

way, it is aimed to strengthen weak models. Reinforcement works by continually 

running a particular weak learning method on distributions over the training data and 

then combining the weak generated classifiers into a single composite classifier. 

Ensemble learning classifier types that were used in this thesis are listed in Table 2.11. 

 

Figure 2.5. Bagging and boosting type of ensemble learning method [40] 

 

Table 2.11: Ensemble Learning classifier types 

No Classification Type Ensemble Method 

1 Boosted Trees AdaBoost with Decision Tree Learners 

2 Bagged Trees Random Forest Bag with Decision Tree Learners 

3 Subspace Discriminant Subspace with Discriminant Learners 

4 Subspace k-NN Subspace with Nearest Neighbor Learners 

5 RUSBoosted Trees RUSBoost with Decision Tree Learners 
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2.5 Implementation 

As for the preprocessing, 𝑆𝐷1 and 𝑆𝐷2 values were extracted from the raw dataset by 

using Poincare plot measurements. After that, one-way ANOVA test was used to find 

out which of the Poincare measures in this dataset differed between error types at the 

5% significance level. As a result of this test, the features that should be removed from 

the data set were determined and a preprocessed dataset was obtained besides the raw 

dataset. After extraction and selection part of the study, classifier algorithms were run 

to classify 20 different faults for both dataset by using three different Decision Tree 

algorithms (Fine Tree, Medium Tree, and Coarse Tree), two different Discriminant 

algorithms (Linear Discriminant and Quadratic Discriminant), two different Naive 

Bayes algorithms (Gaussian Naive Bayes and Kernel Naive Bayes), six different SVM 

algorithms (Linear SVM, Quadratic SVM, Cubic SVM, Fine Gauss SVM, Medium 

Gauss SVM, and Coarse Gauss SVM), six different k-NN algorithms (Fine k-NN, 

Medium k-NN), Coarse k-NN, Cosines k-NN, Cubic k-NN, and Weighted k-NN) and 

five different Ensemble Learning algorithms (Boosted Trees, Bagged Trees, Subspace 

Discriminant, Subspace k-NN, and RUSBboosted Trees). 

The performances of all classifiers were compared by calculating the ratio of the 

number of correctly classified errors to the total number of errors. Figure 2.6 

summarizes the operation of the proposed fault detection system. 

 

 

Figure 2.6: Proposed diagnostic system diagram 
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Chapter 3 

Results and Discussion 

In this thesis, Poincaré plots were applied to the dataset for feature extraction so that 

four commonly used nonlinear features (i.e., 𝑆𝐷1 and 𝑆𝐷2 values) for every 

measurement point were calculated. After that, among these features, the features that 

show a statistically significant difference of 5% between failure types were selected 

by using one-way ANOVA test. As a result of this test, since it was determined that 

the 𝑆𝐷1 measurements of the sensors 24, 26, 32, 37, 39, 40, and 41 did not show a 

statistically significant difference, these features were removed from the data set, and 

a new data set was created. After all the preprocessing processes, the classification 

stage was applied to classify 20 different faults for both datasets by using three 

different Decision Tree algorithms, two different Discriminant algorithms, two 

different Naive Bayes algorithms, six different SVM algorithms, six different k-NN 

algorithms, and five different Ensemble Learning algorithms. According to the results 

with and without feature selection, the decision tree algorithm gave the classifier 

accuracies listed below in Table 3.1. 

 

Table 3.1: Decision Tree classifier results with and without feature selection 

  Without Feature Selection With Feature Selection 

No 
Classification 

Method 
Accuracy 

Prediction 

Speed 

Training 

Time 
Accuracy 

Prediction 

Speed 

Training  

Time 

1 Fine Tree 76.5% 
~3000 

obs/sec 
3.7655 sec 74.5% 

~17000 

obs/sec 
0.5718 sec 

2 Medium Tree 76.5% 
~12000 

obs/sec 
0.4074 sec 74.5% 

~18000 

obs/sec 
0.1429 sec 

3 Coarse Tree 25.0% 
~16000 

obs/sec 
0.1721 sec 24.5% 

~17000 

obs/sec 
0.1238 sec 
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Decision matrix of Decision Tree classifier for all classification method are shown in 

Figure 3.1 – 3.3. According to Table 3.1, Fine and Medium Decision Tree 

classification method is more successful than coarse tree for Decision Tree algorithm. 

When number of splits are increasing, the time for training is decreasing but the 

accuracy percentage is also decreasing. Although the feature selection applied in all 

cases reduces the training time, it also reduces the accuracy. 

 

 

Figure 3.1: Decision matrix for Fine Tree classifier with and without feature 

selection 

 

 

Figure 3.2: Decision matrix for Medium Tree classifier with and without feature 

selection 
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Figure 3.3: Decision matrix for Coarse Tree classifier with and without feature 

selection 

 

According to the results with and without feature selection, the algorithm gave the 

Discriminant Analysis classifier accuracies listed below in Table 3.2. 

 

Table 3.2: Discriminant Analysis results with and without feature selection 

  Without Feature Selection With Feature Selection 

No 
Classification 

Method 
Accuracy 

Prediction 
Speed 

Training 
Time 

Accuracy 
Prediction 

Speed 
Training  

Time 

1 
Linear 

Discriminant 
90.5% 

~4400 

obs/sec 
0.7896 sec 93.5% 

~11000 

obs/sec 
0.2055 sec 

2 
Quadratic 

Discriminant 
Failed Failed Failed Failed Failed Failed 

 

Decision matrix of Discriminant Analysis classifier for Linear Discriminant are shown 

in Figure 3.4. The relevant decision matrix table for Quadratic Discriminant could not 

be extracted because the learning was unsuccessful. According to Table 3.2, Linear 

Discriminant classification method is more successful than Decision Tree method. The 

feature selection is useful for training time and accuracy. 
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Figure 3.4: Decision matrix for Linear Discriminant classifier with and without 

feature selection 

 

According to the results with and without feature selection, the algorithm gave the 

Naive Bayes classifier accuracies listed below in Table 3.3.  

 

Table 3.3: Naive Bayes classifier results with and without feature selection 

  Without Feature Selection With Feature Selection 

No 
Classification 

Method 
Accuracy 

Prediction 

Speed 

Training 

Time 
Accuracy 

Prediction 

Speed 

Training  

Time 

1 
Gaussian Naive 

Bayes 
77.0% 

~3400 

obs/sec 
1.1045 sec 72.0% 

~5500 

obs/sec 
0.5653 sec 

2 
Kernel Naive 

Bayes 
64.5% 

~140 

obs/sec 
26.016 sec 68.0% 

~130 

obs/sec 
25.695 sec 

 

Decision matrix of Naive Bayes classifier for all classification method are shown in 

Figure 3.5 – 3.6. According to Gaussian Naive Bayes classification method in Table 

3.3, the way that is without feature selection is more successful than the way that is 

with feature selection. Nevertheless, the way that is with feature selection is more 

successful than the way that is without feature selection for Kernel Naive Bayes 

classification method. But Linear Discriminant classification method is still the better 

way for this study. 



28 

 

 

Figure 3.5: Decision matrix for Gaussian Naive Bayes classifier with and without 

feature selection 

 

 

Figure 3.6: Decision matrix for Kernel Naive Bayes classifier with and without 

feature selection 

 

According to the results with and without feature selection, the algorithm gave the 

SVM classifier accuracies listed below in Table 3.4.  
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Table 3.4: SVM classifier results with and without feature selection 

  Without Feature Selection With Feature Selection 

No 
Classification 

Method 
Accuracy 

Prediction 

Speed 

Training 

Time 
Accuracy 

Prediction 

Speed 

Training  

Time 

1 Linear SVM 51.0% 
~590 

obs/sec 
6.4595 sec 54.5% 

~370 

obs/sec 
6.608 sec 

2 Quadratic SVM 56.0% 
~750 

obs/sec 
5.0216 sec 54.5% 

~710 

obs/sec 
6.3595 sec 

3 Qubic SVM 49.0% 
~840 

obs/sec 
4.8289 sec 46.0% 

~420 

obs/sec 
7.3898 sec 

4 
Fine Gaussian 

SVM 
6.0% 

~790 

obs/sec 
4.127 sec 6.5% 

~910 

obs/sec 
4.0549 sec 

5 
Medium Gaussian 

SVM 
64.0% 

~840 

obs/sec 
4.0879 sec 71.0% 

~900 

obs/sec 
3.9831 sec 

6 
Coarse Gaussian 

SVM 
45.0% 

~860 

obs/sec 
4.1042 sec 51.0% 

~920 

obs/sec 
3.9377 sec 

 

Decision matrix of SVM classifier for all classification method are shown in Figure 

3.7 – 3.12. According to Quadratic and Qubic SVM classification method in Table 3.4, 

the way that is without feature selection is more successful than the way that is with 

feature selection.   

Nevertheless, the way that is with feature selection is more successful than the way 

that is without feature selection for Linear, Fine Gaussian, Medium Gaussian and 

Coarse Gaussian classification method. But Linear Discriminant classification method 

is still the better way for this study. 
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Figure 3.7: Decision matrix for Linear SVM classifier with and without feature 

selection 

 

 

Figure 3.8: Decision matrix for Quadratic SVM classifier with and without feature 

selection 
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Figure 3.9: Decision matrix for Qubic SVM classifier with and without feature 

selection 

 

 

Figure 3.10: Decision matrix for Fine Gaussian SVM classifier with and without 

feature selection 
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Figure 3.11: Decision matrix for Medium Gaussian SVM classifier with and without 

feature selection 

 

 

Figure 3.12: Decision matrix for Coarse Gaussian SVM classifier with and without 

feature selection 

 

According to the results with and without feature selection, the algorithm gave the k-

NN classifier accuracies listed below in Table 3.5.  
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Table 3.5: k-NN classifier results with and without feature selection 

  Without Feature Selection With Feature Selection 

No 
Classification 

Method 
Accuracy 

Prediction 

Speed 

Training 

Time 
Accuracy 

Prediction 

Speed 

Training  

Time 

1 Fine k-NN 53.5% 
~4600 

obs/sec 
0.5097 sec 56.0% 

~13000 

obs/sec 
0.1401 sec 

2 Medium k-NN 59.0% 
~12000 

obs/sec 
0.1852 sec 63.0% 

~13000 

obs/sec 
0.1199 sec 

3 Coarse k-NN 5.0% 
~11000 

obs/sec 
0.1332 sec 5.0% 

~13000 

obs/sec 
0.1231 sec 

4 Cosine k-NN 59.0% 
~9700 

obs/sec 
0.1409 sec 65.0% 

~13000 

obs/sec 
0.1232 sec 

5 Cubic k-NN 57.5% 
~5000 

obs/sec 
0.2550 sec 56.5% 

~5600 

obs/sec 
0.2134 sec 

6 Weighted k-NN 55.0% 
~11000 

obs/sec 
0.1231 sec 61.0% 

~13000 

obs/sec 
0.1184 sec 

 

Decision matrix of k-NN classifier for all classification method are shown in Figure 

3.13 – 3.18. According to cubic k-NN classification method in Table 3.5, the way that 

is without feature selection is more successful than the way that is with feature 

selection. Nevertheless, the way that is with feature selection is more successful than 

the way that is without feature selection for the rest of the k-NN classification method. 

But linear discriminant classification method is still the better way for this study. 

 

 

Figure 3.13: Decision matrix for Fine k-NN classifier with and without feature 

selection 



34 

 

 

Figure 3.14: Decision matrix for Medium k-NN classifier with and without feature 

selection 

 

 

Figure 3.15: Decision matrix for Coarse k-NN classifier with and without feature 

selection 
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Figure 3.16: Decision matrix for Cosine k-NN classifier with and without feature 

selection 

 

 

Figure 3.17: Decision matrix for Cubic k-NN classifier with and without feature 

selection 
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Figure 3.18: Decision matrix for Weighted k-NN classifier with and without feature 

selection 

 

According to the results with and without feature selection, the algorithm gave the 

Ensemble Learning classifier accuracies listed below in Table 3.6.  

 

Table 3.6: Ensemble Learning classifier results with and without feature selection 

  Without Feature Selection With Feature Selection 

No 
Classification 

Method 
Accuracy 

Prediction 
Speed 

Training 
Time 

Accuracy 
Prediction 

Speed 
Training  

Time 

1 Boosted Trees 81.5% 
~2300 

obs/sec 
2.3082 sec 79.0% 

~3200 

obs/sec 
1.5173 sec 

2 Bagged Trees 70.5% 
~2800 
obs/sec 

1.1705 sec 70.0% 
~2300 
obs/sec 

0.9184 sec 

3 
Subspace 

Discriminant 
89.5% 

~1200 

obs/sec 
1.4247 sec 89.5% 

~1100 

obs/sec 
1.1595 sec 

4 Subspace k-NN 51.5% 
~1300 

obs/sec 
0.9344 sec 53.5% 

~1300 

obs/sec 
0.8997 sec 

5 RUSBoosted Trees 76.5% 
~3300 

obs/sec 
1.7989 sec 73.0% 

~2900 

obs/sec 
1.6482 sec 

 

Decision matrix of Ensemble Learning classifier for all classification method are 

shown in Figure 3.19 – 3.23. According to Boosted Tree, Bagged Tree and 

RUSBoosted Trees for Ensemble Learning classification method in Table 3.6, the way 
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that is without feature selection is more successful than the way that is with feature 

selection. Nevertheless, the way that is with feature selection is more successful than 

the way that is without feature selection for Subspace k-NN classification method. 

There is no difference of accuracy percentage for Subspace Discriminant but the 

training time is decreasing with feature selection. But Linear Discriminant 

classification method is still the better way for this thesis. 

 

 

Figure 3.19: Decision matrix for Boosted Trees classifier with and without feature 

selection 

 

 

Figure 3.20: Decision matrix for Bagged Trees classifier with and without feature 

selection 
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Figure 3.21: Decision matrix for Subspace Discriminant classifier with and without 

feature selection 

 

 

Figure 3.22: Decision matrix for Subspace k-NN classifier with and without feature 

selection 
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Figure 3.23: Decision matrix for RUSBoosted Trees classifier with and without 

feature selection 

 

According to table for all applied classification methods, Linear Discriminant Analysis 

and Subspace Discriminant Analysis are the best with 93.5%, 89.5% of accuracies and 

0.2055 sec, 1.1595 sec of training time respectively in this study. In another study, 

classifier accuracies were listed in Table 3.7. 

 

Table 3.7: Accuracies of fault detection in other studies 

No Classification Method Accuracy 

1 Fuzzy/Bayesian [88] 88.52% 

2 PCA [88] 67,21% 

3 SVM [88] 41,3% 

4 Hierarchical Neural Network [89] 73.0% 

5 Artificial Neural Network [90] 91.18% 

6 Auto Encoder & Long-Short Term Memory [91] 91.9% 

7 Deep Stacking Network and Sparse Stacked Autoencoders [92] 83.2% 
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Chapter 4 

Conclusion 

The size of the data created with Industry 4.0 has increased and it has become difficult 

to process and make sense of this data by human hands. Changing maintenance 

approaches have made the use of ML methods popular so that production processes 

can continue without interruption. In the thesis study, preprocessing dataset and 

classification of 20 different faults were carried out with different ML methods on 

TEP, which is the online data set of IEEEDataPort that is obtained from a plant that 

contains nonlinear processes from various chemical units such as condenser, reactors, 

separators, strippers, and compressors.  

As for the preprocessing part, Poincare Plot measures that are proven in the field of 

biomedical application are used in the fault classification method in order to extract 

new features from raw dataset. The one-way ANOVA test was used to find out which 

of the Poincare measures differed between faults at the 5% significance level. As a 

result of this test, the features that should be removed from the data set were 

determined and a preprocessed dataset was obtained besides the raw dataset. As for 

the training ML models, the algorithms such as Decision Tree, Discriminant Analysis, 

Naive Bayes, k-Nearest Neighbors, Support Vector Machine, and Ensemble Learning 

algorithms were utilized to classify the fault types from both raw and preprocessed 

datasets. The model accuracies are compared and the maximum classifier accuracies 

were 89.5% for the whole feature dataset using the Subspace Discriminant Algorithm 

of the Ensemble Learning Classifier method and 93.5% for the selected features only 

using the Linear Discriminant Analysis during this study.  These performances could 

be comprehendible among the results achieved in similar studies.  

This thesis study reveals how accurate fault detection is by using preprocessing parts 

and ML models with predictive maintenance method of machines used in industry. 
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Although the data set used in testing the applied methods is the data obtained from the 

real process environment, it is known that the real-life data have similar characteristics. 

As a result, it is obvious that ML approaches will provide serious benefits in 

maintenance work on the data obtained in the industry 4.0 environment. It is aimed 

that the thesis study, together with other studies in the literature, will contribute to the 

studies to be made to use ML models in the predictive maintenance approach, and that 

the maintenance approaches used in the industry will be less costly in this direction. 

Achieving more successful results with different ML and DL approaches and 

optimization algorithms creates motivation for future studies. 
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Learning Algorithms from Poincare Plot Measures (HORA 2021 & European Journal 

of Science and Technology Special Issue 26, pp. 30-34, July 2021) (DOI 

10.31590/ejosat. 952761) 

2. Fault Detection and Diagnosis on Process Control Systems Using k-Nearest 

Neighbors from Poincare Plot Measures (Book of Abstracts, p. 34, 3rd International 
Conference of Applied Sciences, Engineering and Mathematics (IBU-ICASEM 2021), 

June 3-5, Skopje/North Macedonia, 2021)  
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