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Simulation of Three-Dimensional Slender Droplet 

Motion with Adaptive Mesh Refinement 

 

Abstract 

While droplet moves over surfaces, various structures are observed; cusp and corner 

formation, pearling, pinning/depinning, to name a few. We develop a finite element 

method (FEM) based solver to analyze three-dimensional motion of slender droplets 

over several substrates. To get accurate results within a feasible computation time, an 

adaptive mesh refinement (AMR) based on non-conformal, balanced and preload 

quadtree mesh structure is embedded within our quadratic FEM solver to focus our 

computational power on specific regions like contact lines. We validate our solver with 

the power-law of Tanner and Cox-Voinov law which is the linear relation between 

cube of dynamic contact angle and capillary number (Ca). We analyze various 

problems including flat substrates where complex formations such as cusps, pearls and 

rivulets are observed depending on the dimensionless bond number (Bo), which is the 

measure of prepotency between gravitational and surface tension forces. Addition of 

roughness to surface can expedite such droplet formations. To investigate that we place 

a droplet on chemically homogeneous inclined substrate with a sinusoidal cell, and we 

observed trapped residual droplets at the receding contact line for a various topography 

configuration and Bond number. We conclude that either entrapment frequency or the 

volume of residual droplet is decreasing for small Bond numbers and middling slope 

topographies. We observe that steep and frequent cells are required to trap and pin a 

droplet to surface even for high Bond numbers.  

 

Keywords: Adaptive Mesh Refinement, Lubrication Theory, Interfaces, Finite 

Element Method, Contact Angle Hysteresis, Wetting 
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Uyarlanabilir Ağ Yapısı ile Üç Boyutlu İnce Damla 

Hareketi Simülasyonu 

 

Öz 

Damlacıklar bir yüzey üzerinde hareket ederken değişken yapılar gözlenir; çıkıntı, 

köşe oluşumu, incilenme, tutunma/serbest kalma gibi oluşumlar bunlara örnektir. Üç 

boyutlu ince damla yapılarının çeşitli yüzeylerde analizini yapmak için sonlu 

elemanlar metodu (SEM) temelli bir çözücü geliştirildi. Doğru sonuçları makul 

hesaplama zamanında elde edebilmek için dengelenmiş, yüzeyleri uyumsuz ve ön 

yüklemeli dördün ağaç veri yapılı uyarlanabilir  ağ yapısı, hesaplama gücümüzü temas 

hattı gibi beliri bölgelerde odaklamak için SEM çözücümüz içerisine gömüldü. 

Bulunan sonuçlar Tanner ve capillary katsayısı ile dinamik değme açısının kübü 

arasındaki doğrusallığı belirten Cox-Voinov yasası ile doğrulandı. Çıkıntı, köşe 

oluşumu ve incilenme gibi karmaşık oluşumların gözlemlendiği düz yüzeyler dahil 

çeşitli problemler yerçekimsel ve yüzey gerilimi kuvvetlerinin baskınlığını ölçen 

boyutsuz Bond sayısına (Bo) bağlı olarak incelendi. Yüzeye topografya eklenmesi bu 

tür damla oluşumlarını hızlandırabilir. Bunun incelenmesi için kimyasal olarak 

homojen eğimli sinusoidal bir yüzeye damlacık yerleştirildi ve çeşitli topografya 

biçimi ve Bond sayısı için gerileyen temas hattındaki hapsedilmiş kalıntı damlacıklar 

gözlemlendi. Hapsedilme miktarı ya da kalıntı damlacıkların hacminin küçük Bond 

sayıları ve kısmen eğimli topografya için azaldığı sonucuna varıldı. Bir damlacığı 

büyük Bond sayılarında bile yüzeye hapsedip tutunmasını sağlamak için sarp ve sık 

basamakların olması gerektiği gözlemlendi. 

 

Anahtar Kelimeler: Uyarlanabilir Ağ Yapısı, Yağlama Teorisi, Arayüzey, Sonlu 

Elemanlar Metodu, Değme Açısı Histerezi, Islanma 
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Chapter 1 

Introduction 

Droplet motion is a phenomenon that occurs everywhere and even affects us in 

numerous ways. Sometimes it brings joy or tranquility to a person just by sliding over 

a window on a rainy day and sometimes it is the only survival chance of an insect at 

extreme climates like deserts [1-2]. It is over a century old field of study that is still 

being investigated. To understand the necessity of this study field, let’s examine a 

simple example. Capability of a raindrop to slide over a glass window is an indicator 

of clean or contaminated surface. If the drop slides with difficulty and leaves many 

different regimes on glass surface, this means that the surface is contaminated. 

Otherwise, droplet slides rather with ease. Investigating such features allows us to 

understand self-cleaning properties and this can be utilized for designing surfaces 

where cleanliness is important such as solar panels and car windshields [3-4]. Similar 

benefits can be achieved for industrial applications like printing of electronics [5-6] 

and heat exchangers [7-8] as well. Droplet motion in the nature can be imitated to 

design water harvesting systems [1-2], anti-fogging [9] and anti-icing [10] properties. 

So, there are many ways to utilize from this field of study. 

1.1 Wetting 

Wetting is the study of how well a liquid covers a solid surface and research on origins 

of wetting goes back to early 18th century. Wetting is examined in capillarity tubes and 

thus even today it is often referred to capillarity [11]. For the first time to our 

knowledge, Hauksbee [12] observes the wetting phenomenon on a capillary tube. He 

notes that the fluid height and tube diameter have an inverse proportion and vacuum 

does not influence liquid rise. Similar research is conducted with capillary tubes to 
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explore this subject [11]. But what really is wetting? To answer that we assume solid 

(S), liquid (L) and vapor (V) as well-defined surface energy (𝛾) independent of the 

existence of other interfaces and solid surfaces are assumed to be atomically smooth 

and chemically homogeneous (see Figure 1.1). 

 

Figure 1.1: (a) Unwetted case: surface energy of solid vapor (𝛾𝑆𝑉), (b) Wetted case: 

surface energies of liquid-vapor (𝛾𝐿𝑉) and solid-liquid (𝛾𝑆𝐿)  

The difference of energies of unwetted and wetted cases are defined as the spreading 

parameter denoted as Տ and given as 

 Տ = γ𝑆𝑉 − (𝛾𝑆𝐿 + 𝛾𝐿𝑉). (1.1) 

For negligible gravity, the state of minimum energy is spherical cap meeting the solid 

boundary at a defined angle and this angle known as contact angle denoted with 𝜃. 

This contact angle is the measure of wetting of a fluid. If Տ > 0, wetting is complete 

and reduces the energy of the system. However, if Տ < 0, then wetting is referred to 

as partial (see Figure 1.2). 

 

Figure 1.2: (a) Perfect wetting, 𝜃 = 0°, (b) Partial wetting, 0° < 𝜃 < 90°, 
hydrophilic surface, (c) Partial wetting 𝜃 > 90°, hydrophobic surface 

At the beginning of the 19th century, study conducted by Young [13] on work of 

adhesion relates the contact angle and surface energies at the solid-liquid-gas interface 

or simply contact line (see Figure 1.3). 
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Figure 1.3: Balance between the tangential components of surface forces at the 

contact line 

He determines this angle from tangential force balance at the contact line which is 

known as Young condition and given by 

 cos 𝜃 =
𝛾𝑆𝑉 − 𝛾𝑆𝐿

𝛾𝐿𝑉
. (1.2) 

Angle in equation (1.2) is also known as static or equilibrium contact angle where 

droplet is at its equilibrium. Young defines this angle for ideal substrates (atomically 

smooth and chemically homogeneous). However, real world surfaces are exposed to 

chemical contamination and roughness. In such surfaces, droplet over a tilted substrate 

is pulled by the gravitational forces while surface tension forces restrain it. The force 

balance between these factors distorts the droplet into an asymmetric shape. Therefore, 

we cannot mention a unique contact angle anymore. Front side of the droplet bulks 

over itself due to gravity that makes a larger angle called advancing contact angle while 

rear side decreases because of the retention effects and this angle is called receding 

contact angle. Difference between these two is known as contact angle hysteresis [14-

17] and it is a crucial feature in droplet dynamic studies. Thin film evolution equation 

in long-wave or lubrication approximation is a widely used method to qualitatively 

model these important dynamics. So, before we continue, let’s explore the details of 

the long-wave approximation. 

 



4 

 

1.2 Lubrication Approximation 

 

Figure 1.4: Droplet sliding over a tilted flat substrate 

In continuum regime the motion of Newtonian fluid particles within the droplet (see 

Figure 1.4) is governed by 

 𝜌 (
𝜕𝑢∗

𝜕𝑡∗
+ 𝑢∗ ⋅  ∇𝑢∗) =  −∇𝑝∗ + 𝜇∇2𝑢∗ + 𝜌𝑔, (1.3) 

where asterisk shows dimensional terms and continuity for incompressible fluid is 

 
𝜕𝑢𝑥

∗

𝜕𝑥∗
+

𝜕𝑢𝑦
∗

𝜕𝑦∗
+

𝜕𝑢𝑧
∗

𝜕𝑧∗
= 0. (1.4) 

In a typical microfluidic system, length scales are around 𝐿~10 µ𝑚 and the 

characteristic velocity of the flow scales as 𝑢 ~ <  0.01 𝑚/𝑠. If the fluid is water (𝜌 =

999.7 𝑘𝑔/𝑚3 and µ = 0.001308 𝑘𝑔/(𝑚. 𝑠) at 10° Celsius), then the Reynolds 

number (𝑅𝑒) is around 0.01 which is much less than 1, 𝑅𝑒 =  0.01 ≪  1. So, we can 

conclude that the flow is viscous dominated. In our problem, the velocity along the 

flow (x-y axis) is much bigger than the velocity across the flow (z-axis) and such flows 

are considered as quasi-parallel flows (thin and long flow) which allows us to use 
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lubrication theory [18]. With these two specialties, we alter the Navier-Stokes equation 

by first non-dimensionalizing equation (1.3) and equation (1.4) with the scales below.  

 𝑢𝑥
∗ = 𝑢𝑦

∗ = 𝑢 𝑢𝑠 (1.5) 

 𝑢𝑧
∗ = 𝑢𝑧 𝑢𝑧

𝑠 (1.6) 

 𝑥∗ = 𝑥 ℓ0 (1.7) 

 𝑦∗ = 𝑦 ℓ0 (1.8) 

 𝑧∗ = 𝑧 ℎ0 (1.9) 

 𝜀 =
𝑧𝑠

𝑥𝑠
=

𝑧𝑠

𝑦𝑠
=

ℎ0

ℓ0
 (1.10) 

 𝑡∗ = 𝑡 𝑡𝑠 = 𝑡
ℓ0

𝑢𝑠
 (1.11) 

 𝑝∗ = 𝑝 𝑝𝑠 (1.12) 

First, we begin with equation (1.4). 

 
𝜕(𝑢𝑥 𝑢

𝑠)

𝜕(𝑥 ℓ0)
+

𝜕(𝑢𝑦 𝑢𝑠)

𝜕(𝑦 ℓ0)
+

𝜕(𝑢𝑧 𝑢𝑧
𝑠)

𝜕(𝑧 ℎ0)
= 0 (1.13) 

We rearrange the equation (1.13) by gathering all scales to z-axis component. 

 
𝜕(𝑢𝑥)

𝜕(𝑥)
+

𝜕(𝑢𝑦)

𝜕(𝑦)
+

ℓ0 𝑢𝑧
𝑠

𝑢𝑠 ℎ0
 
𝜕(𝑢𝑧)

𝜕(𝑧)
= 0 (1.14) 

We determine 𝑢𝑧
𝑠 by picking the coefficient of the last term in (1.5) as unity as 
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 𝑢𝑧
𝑠 =

𝑢𝑠 ℎ0

ℓ0
. (1.15) 

Now we use same procedure on Navier-Stokes equation (1.3) by first separating it into 

its components. 

x-component: 𝜌 (
𝜕𝑢𝑥

∗

𝜕𝑡∗
+ 𝑢𝑥

∗
𝜕𝑢𝑥

∗

𝜕𝑥∗
+ 𝑢𝑦

∗
𝜕𝑢𝑥

∗

𝜕𝑦∗
+ 𝑢𝑧

∗
𝜕𝑢𝑥

∗

𝜕𝑧∗
)  

 = −
𝜕𝑝∗

𝜕𝑥∗
+ 𝜌 𝑔 sin 𝛼 + 𝜇 (

𝜕2𝑢𝑥
∗

𝜕𝑥∗2 +
𝜕2𝑢𝑥

∗

𝜕𝑦∗2 +
𝜕2𝑢𝑥

∗

𝜕𝑧∗2) (1.16) 

y-component: 𝜌 (
𝜕𝑢𝑦

∗

𝜕𝑡∗
+ 𝑢𝑥

∗
𝜕𝑢𝑦

∗

𝜕𝑥∗
+ 𝑢𝑦

∗
𝜕𝑢𝑦

∗

𝜕𝑦∗
+ 𝑢𝑧

∗
𝜕𝑢𝑦

∗

𝜕𝑧∗
)  

 = −
𝜕𝑝∗

𝜕𝑦∗
+ 𝜇 (

𝜕2𝑢𝑦
∗

𝜕𝑥∗2 +
𝜕2𝑢𝑦

∗

𝜕𝑦∗2 +
𝜕2𝑢𝑦

∗

𝜕𝑧∗2) (1.17) 

z-component: 𝜌 (
𝜕𝑢𝑧

∗

𝜕𝑡∗
+ 𝑢𝑥

∗
𝜕𝑢𝑧

∗

𝜕𝑥∗
+ 𝑢𝑦

∗
𝜕𝑢𝑧

∗

𝜕𝑦∗
+ 𝑢𝑧

∗
𝜕𝑢𝑧

∗

𝜕𝑧∗
)  

 = −
𝜕𝑝∗

𝜕𝑧∗
− 𝜌 𝑔 cos 𝛼 + 𝜇 (

𝜕2𝑢𝑧
∗

𝜕𝑥∗2 +
𝜕2𝑢𝑧

∗

𝜕𝑦∗2 +
𝜕2𝑢𝑧

∗

𝜕𝑧∗2) (1.18) 

Again, we use the scales above and non-dimensionalize the equation (1.16). 

 𝜌 (
𝑢𝑠

𝑡𝑠

𝜕𝑢𝑥

𝜕𝑡
+ 𝑢𝑠

𝑢𝑠

ℓ0

𝜕𝑢𝑥

𝜕𝑥
𝑢𝑥 + 𝑢𝑠

𝑢𝑠

ℓ0

𝜕𝑢𝑥

𝜕𝑦
𝑢𝑦 + 𝑢𝑧

𝑠
𝑢𝑠

ℎ0

𝜕𝑢𝑥

𝜕𝑧
𝑢𝑧)  

 = −
𝑝𝑠

ℓ0

𝜕𝑝

𝜕𝑥
+ 𝜌 𝑔 sin 𝛼 + 𝜇 (

𝑢𝑠

ℓ0
2

𝜕2𝑢𝑥

𝜕𝑥2
+

𝑢𝑠

ℓ0
2

𝜕2𝑢𝑥

𝜕𝑦2
+

𝑢𝑠

ℎ0
2

𝜕2𝑢𝑥

𝜕𝑧2
) (1.19) 



7 

 

By using the scales (1.10), (1.11) and (1.15), we rearrange equation (1.19).  

 
𝜌 𝑢𝑠2

ℓ0
(
𝜕𝑢𝑥

𝜕𝑡
+

𝜕𝑢𝑥

𝜕𝑥
𝑢𝑥 +

𝜕𝑢𝑥

𝜕𝑦
𝑢𝑦 +

𝜕𝑢𝑥

𝜕𝑧
𝑢𝑧)  

 = −
𝑝𝑠

ℓ0

𝜕𝑝

𝜕𝑥
+ 𝜌 𝑔 sin 𝛼 + 𝜇

𝑢𝑠

ℎ0
2 (𝜀2

𝜕2𝑢𝑥

𝜕𝑥2
+ 𝜀2

𝜕2𝑢𝑥

𝜕𝑦2
+

𝜕2𝑢𝑥

𝜕𝑧2
) (1.20) 

We divide both side of the equation (1.20) with 𝜇
𝑢𝑠

ℎ0
2 and make some algebraic 

adjustments. 

 
𝜌 𝑢𝑠 ℓ0

𝜇
(
𝜕𝑢𝑥

𝜕𝑡
+

𝜕𝑢𝑥

𝜕𝑥
𝑢𝑥 +

𝜕𝑢𝑥

𝜕𝑦
𝑢𝑦 +

𝜕𝑢𝑥

𝜕𝑧
𝑢𝑧)  

 = −
𝑝𝑠ℎ0

2

ℓ0 𝜇 𝑢𝑠

𝜕𝑝

𝜕𝑥
+

ℎ0
2

𝜇 𝑢𝑠
𝜌 𝑔 sin 𝛼 + (𝜀2 (

𝜕2𝑢𝑥

𝜕𝑥2
+

𝜕2𝑢𝑥

𝜕𝑦2
) +

𝜕2𝑢𝑥

𝜕𝑧2
) (1.21) 

Here the term 
𝜌 𝑢𝑠 ℓ0

𝜇
 is the Reynolds number (Re) that gives the ratio between inertial 

forces to viscous forces. As we previously mentioned, our flow is viscous dominated, 

𝑅𝑒 ≪ 1, thus we can nullify the terms that are multiplied with Reynolds number. Also, 

the flow is thin and long such that we neglect the terms with 𝜀 by the fact that 𝜀 ≪ 1. 

So, we end up with the equation (1.22). 

 0 =  −
𝑝𝑠ℎ0

2

ℓ0 𝜇 𝑢𝑠

𝜕𝑝

𝜕𝑥
+

ℎ0
2

𝜇 𝑢𝑠
𝜌 𝑔 sin 𝛼 +

𝜕2𝑢𝑥

𝜕𝑧2
 (1.22) 

From here, we find our pressure scale 𝑝𝑠 and find final non-dimensional equation 

(1.24). 

 𝑝𝑠 =
𝜇 𝑢𝑠 ℓ0

ℎ0
2  (1.23) 
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 0 =  −
𝜕𝑝

𝜕𝑥
+

ℎ0
2

𝜇 𝑢𝑠
𝜌 𝑔 sin 𝛼 +

𝜕2𝑢𝑥

𝜕𝑧2
 (1.24) 

Now we re-dimensionalize equation (1.24). 

 0 =  −
𝜕 (

𝑝∗

𝑝𝑠)

𝜕 (
𝑥∗

ℓ0
)

+
ℎ0

2

𝜇 𝑢𝑠
𝜌 𝑔 sin 𝛼 +

𝜕2 (
𝑢𝑥

∗

𝑢𝑠)

𝜕 (
𝑧∗

ℎ0
)
2  

 0 =
ℎ0

2

𝜇 𝑢𝑠
 (−

𝜕𝑝∗

𝜕𝑥∗
+ 𝜌 𝑔 sin 𝛼 + 𝜇

𝜕2𝑢𝑥
∗

𝜕𝑧∗2) (1.25) 

Finally, we get rid of 
ℎ0

2

𝜇 𝑢𝑠 term. This ends up with dimensional x-component of 

lubrication equation. 

 0 = −
𝜕𝑝∗

𝜕𝑥∗
+ 𝜌 𝑔 sin 𝛼 + 𝜇

𝜕2𝑢𝑥
∗

𝜕𝑧∗2  (1.26) 

Same procedure is followed for y and z components of Navier-Stokes equation but for 

clarity purposes, we don’t include them. They are given below as equation (1.27) and 

(1.28). 

 0 = −
𝜕𝑝∗

𝜕𝑦∗
+ 𝜇

𝜕2𝑢𝑦
∗

𝜕𝑧∗2  (1.27) 

 0 = −
𝜕𝑝∗

𝜕𝑧∗
− 𝜌 𝑔 cos 𝛼 (1.28) 

The length of droplet is much bigger than its thickness (L >> f), height of the droplet 

requires there to be a pressure gradient along the flow axis to satisfy mass-

conservation. Because of that pressure terms cannot be neglected. By this way, we’ve 

altered the Navier-Stokes equation into lubrication equation. 
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1.3 Literature Survey 

Free surfaces of the droplet and moving contact line are the main issues in our model. 

Fluid moving over a solid substrate shows a stick-slip motion referred to as no-slip 

condition. However, we do know that our contact line is moving so there is a 

contradiction to no-slip condition. This lack of physics or singularity at the contact line 

must be alleviated in order to obtain accurate results [19]. Slip length [20-24] or 

disjoining pressure model [25-29] is adopted in the literature to resolve this problem. 

First one imposes a slip length at the contact line to relieve the no-slip boundary 

condition. Latter method introduces a really thin-film, known as precursor film, over 

substrate to incorporate molecular interactions between solid-liquid interface. In other 

words, we assume that the droplet is sliding over this thin film rather than a solid 

surface (see Figure 1.5).  

 

Figure 1.5: Presentation of precursor film thickness (f0) on solid substrate 

Angle 𝜃𝑚 is the mesoscopic angle that replaces our macroscopic contact angle. Under 

normal circumstances, we derive the macroscopic contact angle from the surface 

energies at the three-phase contact line as we previously mentioned. However, by 

adding a thin film over our substrate, we lose the real contact line. Thus, we define a 

new angle that depends on wetting potential [30]. Even though both methods have its 

own downsides and upsides, it is reported that they both lead to similar dynamics [31]. 

Reducing the thin-film equation into a two-dimensional problem is a common 

approach in the literature and it revealed numerous physical qualities. For instance, 

Ceyhan et al. [32] analyze a sliding droplet over a single topography defined as 
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hyperbolic tangent function. They demonstrate the retention force increment for higher 

slope steps and domination over gravity by a simple force balance at the pinned contact 

line. They show that the pinning occurs at the most negative slope of the topography 

and the transition of pinning-depinning can be fit in a phase diagram with numerical 

experiments. If frequency of the step is increased, droplet deposition may occur at the 

receding contact line depending on the step. Surface heterogeneity does not have to be 

limited to surface roughness. It could be defined as chemical or both as well. Thiele 

[33] investigate different pinning types on heterogeneous substrates and incorporate 

depinning process as a bifurcation problem on hydrophobic and hydrophilic steps. 

They observe two different types of depinning where droplet depins from hydrophilic 

defect by destabilizing at a saddle-node bifurcation referred as sniper bifurcation. For 

hydrophobic steps, pinned droplet destabilizes again but this time with an additional 

feature which is back and forth oscillation. Many other studies have been conducted 

experimentally [34-39] and theoretically [40-46] to investigate these behaviors and yet 

there are questions to be answered.  

These physical aspects can be analyzed realistically despite being reduced into two-

dimensional cases [47]. However, ignoring lateral effects in two-dimension detains us 

from important features. For instance, a droplet sliding over a tilted substrate may form 

a cusp at the receding corner and beyond the critical velocity or capillary number 

which is the dimensionless number giving the ratio of viscous forces to capillary 

forces, these cusps break and emit a pearl to the surface [48,49]. These features are all 

three-dimensional. Also, study conducted by Thiele [47] observe different 

morphologies and droplet profiles that we don’t get in two-dimension. Therefore, 

three-dimensional study is required for detailed examination of droplet dynamics.  

Podgorski’s experimental study [49] is renowned in three-dimensional problems. 

Droplet formations and transition between these formations are investigated for silicon 

oil and water. His results show that there exists linear relation between 𝐵𝑜 sin 𝛼, where 

𝛼 is the inclination angle of domain, and capillary number. After critical threshold is 

passed, droplet forms corners and cusps in which further increment of tilt angle 

promotes pearling formation. Snoeijer [50] analyze this corner and rivulet formation 

with lubrication approximation. He relates the speed of the droplet with the corner 

angle to explain the transition from corner to rivulet formation. Winkels [51] conducts 



11 

 

similar study where they analyze V-shape receding contact lines with Immersion 

Lithography. They find that as the contact line speed increases, linear relation between 

cube of dynamic and static contact angle to capillary number known as Cox-Voinov 

law [52] loses its validity due to corner formation. Schwartz [53] presents simple 

dynamical analysis of a droplet on vertical wall. He examines droplet formations for 

single non-dimensional control parameter. These are the studies that inspects 

fundamental dynamics. There exist specific studies in the literature based on delaying 

and trapping droplets. For instance, Espin [54] imposes an external shear to system for 

delaying contact line motion. He also uses a permeable substrate and reveals that 

pearling formations can be suppressed due to decreasing volume of the droplet. Other 

experimental [34,55] and theoretical [33,30] studies introduce chemical heterogeneity 

to pin or delay the contact line.  

1.4 Motivation of the Study 

Even though there exist various types of studies for three-dimensional droplet 

dynamics, entrapment of droplets has received little attention. Thus, we study the 

motion of three-dimensional slender droplet on a rough surface to understand the 

physics behind the entrapment of droplets. Instead of using chemical heterogeneity, 

we investigate surface roughness to manipulate contact angle hysteresis and other 

dynamics that we discuss in this thesis. Sinusoidal wave function is used to associate 

this roughness which is a surface with continuous peaks and troughs.  

Organization of the thesis is as follows. In Chapter 2, problem domain is introduced 

and non-dimensional evolution equation is obtained. Numerical method and solver are 

explained in Chapter 3. Our own data structure, preload data structure, is explained 

with whole adaptive mesh refinement method in Chapter 4. Results from the solver are 

validated with well-known laws and compared with experiments from the literature in 

Chapter 5. Mechanism of droplet entrapment is explained in Chapter 6. Finally, 

conclusion is given in Chapter 7.    
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Chapter 2 

Model Problem 

In this chapter, we represent our problem domain and derive dimensional film 

evolution equation from lubrication equation (1.26 − 1.28). Contact angle hysteresis, 

pinning-depinning transitions and similar physical actions are highly related to force 

balance at the three-phase interface of a droplet. Simplification of a domain is a 

cunning way to solely focus on this force balance which allows us to apprehend this 

mechanics. In our previous study [32], we use this concept to analyze a single 

hyperbolic tangential topography at the end of domain and we revealed that the slope 

of this surface heterogeneity is responsible from pinning-depinning transitions. In the 

light of our previous study, we define our domain (see Figure 2.1) as a chemically 

homogenous substrate with a sinusoidal topography to imitate surface roughness. For 

various amplitudes and frequencies, we investigate trapped or pinned residual droplets.  

 

Figure 2.1: Problem domain, droplet sliding on a substrate with sinusoidal 

topography 
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Here, parameters 𝛼, 𝑓(𝑥, 𝑦, 𝑡), ℎ(𝑥, 𝑦) and g are inclination angle, droplet thickness, 

film surface, topography function and magnitude of gravitation acceleration, 

respectively. The topography function is defined as follows: 

 ℎ(𝑥, 𝑦) = Å (sin
2𝜋

𝜆
 𝑥). (2.1) 

Parameters 𝜆 and  Å are wavelength and amplitude of the sine wave. We utilize these 

parameters to configure the slope of our topography function. To derive dimensional 

film-evolution equation, we use equation (1.26), equation (1.27) and equation (1.28).  

 0 = −
𝜕𝑝∗

𝜕𝑥∗
+ 𝜌 𝑔 sin 𝛼 + 𝜇

𝜕2𝑢𝑥
∗

𝜕𝑧∗2  (1.26) 

 0 = −
𝜕𝑝∗

𝜕𝑦∗
+ 𝜇

𝜕2𝑢𝑦
∗

𝜕𝑧∗2  (1.27) 

 0 = −
𝜕𝑝∗

𝜕𝑧∗
− 𝜌 𝑔 cos 𝛼 (1.28) 

To obtain our flow model, we integrate these equations with following boundary 

conditions. First one is previously mentioned as no-slip boundary condition where the 

fluid sticks to the solid substrate and shears the flow: at 𝑧∗ = ℎ∗, 𝑢𝑥
∗ = 𝑢𝑦

∗ = 0. Second 

is coming from the tangential component of interfacial momentum balance on liquid-

gas interface. Mathematically, at 𝑧∗ = ℎ∗ + 𝑓∗ = 𝜁∗, 
𝜕𝑢𝑥

∗

𝜕𝑧∗ =
𝜕𝑢𝑦

∗

𝜕𝑧∗ = 0. We get the 

velocity profile along the x-axis by integrating equation (1.26) with respect to z-axis. 

 𝑢𝑥
∗(𝑧∗) =

1

2𝜇
(
𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼) 𝑧∗2 + 𝐶1𝑧

∗ + 𝐶2 (2.2) 

We use the second boundary condition, 𝑧∗ = 𝜁∗ , to find unknown constant 𝐶1. 
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1

𝜇
(
𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼) 𝜁∗ + 𝐶1 = 0  

 𝐶1 = −
1

𝜇
(
𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼) 𝜁∗ (2.3) 

Latter constant, 𝐶2, is found by using the no-slip boundary condition and constant in 

equation (2.3). 

 
1

2𝜇
(
𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼) ℎ∗2 + 𝐶1ℎ

∗ + 𝐶2 = 0  

 𝐶2 = −
ℎ∗2 − 2𝜌ℎ

2𝜇
(
𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼) (2.4) 

Substituting the constants (2.3) and (2.4) into equation (2.2) gives us the x-

component of the velocity as 

 𝑢𝑥
∗(𝑧∗) = (

𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼)

(𝑧∗ − ℎ∗)(𝑧∗ − ℎ∗ − 2𝑓∗)

2𝜇
. (2.5) 

With the same boundary conditions, we find velocity along y-axis from equation 

(1.27). 

 𝑢𝑦
∗ (𝑧∗) = (

𝜕𝑝∗

𝜕𝑦∗
)
(𝑧∗ − ℎ∗)(𝑧∗ − ℎ∗ − 2𝑓∗)

2𝜇
 (2.6) 

Equation (1.28) yields the pressure distribution of the system as follows. 

 𝑝∗(𝑥∗, 𝑦∗, 𝑧∗) = −𝜌𝑔 cos 𝛼 𝑧∗ + 𝐶3 (2.7) 
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Figure 2.2: Hydrostatic force balance at the liquid-vapor interface 

The normal stress balance at the liquid-vapor interface is 

 𝑝∗𝐿 − 𝑝∗𝐺 = 𝛾 ∇ ⋅ 𝑛∗ − Π∗, (2.8) 

where 𝑝∗𝐿
, 𝑝∗𝐺

, 𝛾, 𝑛∗, ∇ ⋅ 𝑛∗ and 𝛱∗ are liquid-gas pressure, surface tension, normal 

vector of liquid-gas interface, divergence of normal vector of liquid gas-interface and 

disjoining pressure [56], respectively. At the liquid-vapor interface, 𝑧∗ = 𝜁∗, we make 

an interfacial momentum balance on chosen control volume for a uniform surface 

tension. Our interface is defined as 𝑧∗ − 𝜁∗(𝑥∗, 𝑦∗) = 0. Normal vector from this 

interface is defined below. 

 𝑛∗  =
∇(𝑧∗ − 𝜁∗(𝑥∗, 𝑦∗))

|∇(𝑧∗ − 𝜁∗(𝑥∗, 𝑦∗))|
 (2.9) 

 ∇ ⋅ 𝑛∗ =
𝜕

𝜕𝑥∗

(

 
 
 𝑘 −

𝜕𝜁∗

𝜕𝑥∗  𝑖 −
𝜕𝜁∗

𝜕𝑦∗  𝑗

√1 + (
𝜕𝜁∗

𝜕𝑥∗)
2

+ (
𝜕𝜁∗

𝜕𝑦∗)
2

)

 
 
 

+
𝜕

𝜕𝑦∗

(

 
 
 𝑘 −

𝜕𝜁∗

𝜕𝑥∗  𝑖 −
𝜕𝜁∗

𝜕𝑦∗  𝑗

√1 + (
𝜕𝜁∗

𝜕𝑥∗)
2

+ (
𝜕𝜁∗

𝜕𝑦∗)
2

)

 
 
 

 (2.10) 
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Terms with square roots of 𝜁 simplify to unity due to small slope interface. Then the 

normal at the interface simplifies to 

 ∇ ⋅ 𝑛∗ = −
𝜕2𝜁∗

𝜕𝑥∗2  −
𝜕2𝜁∗

𝜕𝑦∗2 . (2.11) 

For 𝑧∗ = 𝜁∗, the general pressure, equation (2.7), is equal to liquid pressure at liquid-

gas interface, equation (2.8). From this relation, we find the constant 𝐶3. 

 𝑝∗(𝑥∗, 𝑦∗, 𝜁∗) = 𝑝∗𝐿 = −𝜌𝑔 cos 𝛼 𝜁 + 𝐶3  

 𝑝∗𝐺 + 𝛾∇ ⋅ 𝑛∗ − Π∗ = −𝜌𝑔 cos 𝛼 𝜁 + 𝐶3  

 𝐶3 = 𝑝∗𝐺 + 𝜌𝑔 cos 𝛼 𝜁∗ + 𝛾∇ ⋅ 𝑛∗ − Π∗ (2.12) 

We substitute the constant in equation (2.12) into equation (2.7) to find general 

pressure distribution of our system, equation (2.13). 

 𝑝∗(𝑥∗, 𝑦∗, 𝑧∗) = (𝜌𝑔 cos 𝛼) (𝑓∗ + ℎ∗ − 𝑧∗) + 𝑝∗𝐺 + 𝛾∇ ⋅ 𝑛∗ − Π∗ (2.13) 

The disjoining pressure is the excess pressure that emerges from thin film because of 

the cumulative effects of van der Waals, ion-electrostatic and structural forces. We use 

two-term disjoining pressure model [25] to account such interactions. 

 Π∗ = 𝐻 [(
𝑓0
𝑓∗

)
𝑛

− (
𝑓0
𝑓∗

)
𝑚

] (2.14) 

where 𝐻 is the non-dimensional Hamakar constant [57] given by 

 𝐻 =
1

𝑓0
 (

 𝜃𝑒 sin 𝜃𝑒

1 − cos 𝜃𝑒
)
2

 
(𝑛 − 1)(𝑚 − 1)

2 (𝑛 − 𝑚)
. (2.15) 
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Parameters n and m are positive constants and they relate the level of liquid-solid 

repulsion and attraction, respectively. They are chosen as 𝑛 > 𝑚 > 1. Finally, 𝑓0 is 

the thin stable film to alleviate singularities at the contact line, also known as precursor 

film thickness. Thin stable film is a crucial parameter for convenient droplet dynamics 

and its effect is discussed widely in further sections.  

Coming sections require the change of pressure at x and y axes. To find the pressure 

distribution along each axis, derivative of equation (2.13) is taken with related 

Cartesian coordinates. We neglect the changes in gas pressure, 𝑝∗𝐺
, because it is 

uniform along the domain. 

 
𝜕𝑝∗

𝜕𝑥∗
= 𝜌𝑔 cos 𝛼

𝜕𝜁∗

𝜕𝑥∗
+ 𝛾

𝜕

𝜕𝑥∗
 (∇ ⋅ 𝑛) − Π𝑥

∗  (2.16) 

 
𝜕𝑝∗

𝜕𝑦∗
= 𝜌𝑔 cos 𝛼

𝜕𝜁∗

𝜕𝑦∗
+ 𝛾

𝜕

𝜕𝑦∗
 (∇ ⋅ 𝑛) − Π𝑦

∗  (2.17) 

2.1 Unsteady Film-Evolution Equation 

To explain this sub-section, we return to Figure 1.4. But this time we consider the film 

thickness (f) which is a function of space and time. For two-dimensional case, we can 

write volume flow rate for unit depth as follows. 

 𝑞 = ∫ 𝑢𝑥

𝑓(𝑥,𝑡)

0

𝑑𝑦 (2.18) 

We rewrite the change of volume flow rate about x-axis with Leibnitz theorem and 

using a property coming from the continuity equation as follows. 

 
𝑑𝑞

𝑑𝑥
= −𝑢𝑦(𝑥, 𝑓) + 𝑢𝑥

𝜕𝑓

𝜕𝑥
│
𝑓

 (2.19) 
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Our interface is material. So, we take material derivative at the liquid-vapor interface. 

 
𝐷

𝐷𝑡
(𝑦 − 𝑓(𝑥, 𝑡)) = 0  

 
𝜕𝑓

𝜕𝑡
= 𝑢𝑦 − 𝑢𝑥

𝜕𝑓

𝜕𝑥
  

 
𝜕𝑓

𝜕𝑡
= −

𝑑𝑞

𝑑𝑥
 (2.20) 

We combine equation (2.19) and equation (2.20) to obtain unsteady film-evolution 

equation. 

 
𝜕𝑓∗

𝜕𝑡∗
+ ∇ ⋅ 𝑞

─

∗ = 0  (2.21) 

Here 𝑞∗ is the volume flow rate and has two components. Volume flow rate on any 

axis is found by integrating associated axial velocity between solid substrate and 

droplet. From this denotation, volume flow rate along x-axis (qx) and y-axis (qy) are 

obtained as 

 𝑞𝑥
∗ = ∫ (

𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼)

(𝑧∗ − ℎ∗)(𝑧∗ − ℎ∗ − 2𝑓∗)

2𝜇
𝑑𝑧 

𝑓∗+ℎ∗

ℎ∗

  

 𝑞𝑥
∗ = −

𝑓∗3

3𝜇
 (

𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼), (2.22) 

 𝑞𝑦
∗ = ∫

1

2𝜇

𝜕𝑝∗

𝜕𝑦∗
 (𝑧∗ − ℎ∗)(𝑧∗ − ℎ∗ − 2𝑓∗)

𝑓∗+ℎ∗

ℎ∗
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 𝑞𝑦
∗ = −

𝑓∗3

3𝜇

𝜕𝑝∗

𝜕𝑦∗
 . (2.23) 

At this moment, we have all required information. We combine equation (2.21), (2.22) 

and (2.23) to finalize our dimensional unsteady film-evolution equation. 

 
𝜕𝑓∗

𝜕𝑡∗
+

𝜕

𝜕𝑥∗
 [−

𝑓∗3

3𝜇
 (

𝜕𝑝∗

𝜕𝑥∗
− 𝜌𝑔 sin 𝛼)] +

𝜕

𝜕𝑦∗
 [−

𝑓∗3

3𝜇
 
𝜕𝑝∗

𝜕𝑦∗
] = 0 (2.24) 

2.2 Non-dimensional Film-Evolution Equation 

We non-dimensionalize the film evolution equation as follows. As a starting point, we 

approximate the shape of a droplet as a spherical cap [58] meeting the substrate at a 

defined contact angle 𝜃. 

 

Figure 2.3: Droplet is represented as a spherical cap with an equilibrium angle of 𝜃𝑒 

Parameters are non-dimensionalized with the following scales. 

 𝑥∗ = 𝑅 sin 𝜃𝑒  𝑥  (2.25) 

 𝑦∗ = 𝑅 sin 𝜃𝑒  𝑦 (2.26) 
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 𝑧∗ = 𝑅 (1 − cos 𝜃𝑒) 𝑧 (2.27) 

 𝑡∗ =
R sin 𝜃𝑒

𝑢𝑠
 𝑡 (2.28) 

 𝜀 =
𝑧𝑠

𝑥𝑠
=

𝑧𝑠

𝑥𝑠
=

1 − cos 𝜃𝑒

sin 𝜃𝑒
  (2.29) 

Velocity and pressure related parameters, 𝑢𝑠 and Π𝑠 are found by rearranging the film 

evolution equation with scales above. After the alterations, we find the unknown scales 

by equalizing the accompanied constants to unity. Details are given in Appendix A to 

maintain the clarity of the thesis. 

 𝑢𝑠 =
𝜀3 𝛾

3𝜇
 (2.30) 

 Π𝑠 =
𝛾 𝜀

𝑅 sin 𝜃𝑒
 (2.31) 

 𝑡𝑠 =
𝑅 sin 𝜃𝑒  3𝜇

𝛾 𝜀3
 (2.32) 

 𝐵𝑜 =
𝜌 𝑔 (𝑅 sin 𝜃𝑒)

2

𝛾
 (2.33) 

Here in equation (2.33), 𝐵𝑜 is the non-dimensional Bond number that measures the 

ratio of gravitational forces to surface forces. We should note that 𝐵𝑜 definition here 

is based on 𝑥𝑠, later we compare with 𝐵𝑜𝒱 defined using 𝒱
2

3. We initialize our droplet 

with the scales above as given in equation (2.34). 
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𝑓(𝑥, 𝑦, 𝑡) = 𝑓0 +

cos 𝜃𝑒 + sin 𝜃𝑒√
1

sin2 𝜃𝑒
− (𝑥 − 𝑥0)

2 − (𝑦 − 𝑦0)
2

(1 − cos 𝜃𝑒)
 

(2.34) 

Finally, we find non-dimensional unsteady film evolution equation as in equation 

(2.35).  

 
𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑥
[−𝑓3 (𝐵𝑜 cos 𝛼

𝜕(𝑓 + ℎ)

𝜕𝑥
−

𝜕3(𝑓 + ℎ)

𝜕𝑥3
−

𝜕2(𝑓 + ℎ)

𝜕𝑦2

𝜕

𝜕𝑥
)]  

 +
𝜕

𝜕𝑥
[−𝑓3 (−

𝜕Π

𝜕𝑥
−

𝐵𝑜

𝜀
sin 𝛼)] +

𝜕

𝜕𝑦
[−𝑓3 (𝐵𝑜 cos 𝛼

𝜕(𝑓 + ℎ)

𝜕𝑦
)]  

 +
𝜕

𝜕𝑦
[−𝑓3 (−

𝜕3(𝑓 + ℎ)

𝜕𝑦3
−

𝜕2(𝑓 + ℎ)

𝜕𝑥2

𝜕

𝜕𝑦
−

𝜕Π

𝜕𝑦
)] = 0 (2.35) 
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Chapter 3 

Numerical Method 

In this chapter, we present the details of finite element method to solve our non-

dimensional unsteady film-evolution equation which is 4th order non-linear partial 

differential equation. Weak formulation and quadratic shape functions are given in 

§3.1. Finite element approximations and time integration is explained in §3.2. 

Cartesian coordinates are transformed into a natural coordinate system to relate the 

terms with derivatives in §3.3. Dirichlet and Neumann boundary conditions are 

introduced for symmetric domains for different types of problems in §3.4. 

3.1 Weak Formulation and Shape Functions 

3.1.1 Weak Formulation  

To integrate the evolution equation (2.35), space and time is discretized by quadratic 

finite elements and second order backward differentiation formula (BDF) with variable 

step. The equation (2.35) is valid in a domain Ω: 0 ≤ 𝑥 ≤ 𝐿𝑥 and 0 ≤ 𝑦 ≤  𝐿𝑦, 𝐿𝑥 and 

𝐿𝑦 being the domain lengths along x and y axes, respectively. Test functions and f are 

approximated from the same Hilbert-Sobolov space Ԋ1(𝛺). Evolution equation is 

separated into a set of two coupled equations where second system consists of pressure 

related terms. 

 
𝜕𝑓

𝜕𝑡
+ 𝛻 ⋅ [−𝑓3(𝛻(𝐵𝑜 cos 𝛼 (𝑓 + ℎ) − Ƥ))] +

𝜕

𝜕𝑥
(𝑓3

𝐵𝑜

𝜀
sin 𝛼) = 0 (3.1) 



23 

 

 ∇ ⋅ ∇(𝑓 + ℎ) + Π =  Ƥ (3.2) 

The weak formulation of the set of equations are obtained by first multiplying with 

corresponding test functions, namely 𝑓  and 𝑝. Then they are integrated over the 

domain 𝛺. For the clarity purposes, only equation (3.2) is used to demonstrate how to 

obtain weak formulation. Weak formulation of equation (3.1) can be found in  

Appendix B. 

 (
𝜕

𝜕𝑥
 𝑖 +

𝜕

𝜕𝑦
 𝑗)  ⋅  (

𝜕

𝜕𝑥
 𝑖 +

𝜕

𝜕𝑦
 𝑗) (𝑓 + ℎ) + Π =  Ƥ  

 
𝜕2𝑓

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑦2
+ Π = Ƥ  

 ∫
𝜕2𝑓

𝜕𝑥2

Ω

 𝑝 dΩ + ∫
𝜕2ℎ

𝜕𝑥2

Ω

 𝑝 dΩ + ∫
𝜕2𝑓

𝜕𝑦2

Ω

 𝑝 dΩ + ∫
𝜕2ℎ

𝜕𝑦2

Ω

 𝑝 dΩ  

 + ∫ Π 𝑝 dΩ =  ∫ Ƥ 𝑝 dΩ

ΩΩ

 (3.3) 

Here, topography functions are constant. Thus, they are taken into the right side and 

unknown terms, f and Ƥ, are gathered at the left side of the equation. 

 ∫
𝜕

𝜕𝑥
𝜕Ω

(
𝜕𝑓

𝜕𝑥
 𝑝)  dΩ − ∫

𝜕𝑓

𝜕𝑥
Ω

𝜕𝑝

𝜕𝑥
 dΩ + ∫

𝜕

𝜕𝑦
𝜕Ω

 (
𝜕𝑓

𝜕𝑦
 𝑝)  dΩ − ∫

𝜕𝑓

𝜕𝑦
Ω

𝜕𝑝

𝜕𝑦
 dΩ  

 
+ ∫ Π

Ω

 𝑝 dΩ − ∫ Ƥ 𝑝 dΩ

Ω

= − ∫
𝜕2ℎ

𝜕𝑥2
 𝑝 dΩ

Ω

− ∫
𝜕2ℎ

𝜕𝑦2
 𝑝 dΩ

Ω

 

 

(3.4) 
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Unknown terms are modified to weaken the differentiability requirement using the fact 

that the test functions are chosen to be zero at any Dirichlet boundary condition (|𝛤   =

 0). Then, we end up with the weak formulation of equation (3.2) as below. 

 ∫ Ƥ 𝑝 dΩ

Ω

+ ∫
𝜕𝑓

𝜕𝑥
Ω

𝜕𝑝

𝜕𝑥
 dΩ + ∫

𝜕𝑓

𝜕𝑦
Ω

𝜕𝑝

𝜕𝑦
 dΩ − ∫ Π 𝑝 dΩ

Ω

  

 = ∫
𝜕2ℎ

𝜕𝑥2
 𝑝 dΩ

Ω

+ ∫
𝜕2ℎ

𝜕𝑦2
 𝑝 dΩ

Ω

 (3.5) 

Notice that the disjoining pressure Π is taken to left side, because it is a function of 

film thickness (𝑓). Weak formulation of equation (3.1) is found with the same 

procedure above. 

 ∫
𝜕𝑓

𝜕𝑡
 𝑓 dΩ

Ω

+ 𝐵𝑜 cos 𝛼 (∫ 𝑓3
𝜕𝑓

𝜕𝑥
Ω

𝜕𝑓

𝜕𝑥
 dΩ + ∫ 𝑓3

𝜕𝑓

𝜕𝑦
Ω

𝜕𝑓

𝜕𝑦
 dΩ)  

 𝐵𝑜 cos 𝛼 (+ ∫ 𝑓3
𝜕ℎ

𝜕𝑥
Ω

𝜕𝑓

𝜕𝑥
 dΩ + ∫ 𝑓3

𝜕ℎ

𝜕𝑦
Ω

𝜕𝑓

𝜕𝑦
 dΩ) − ∫ 𝑓3

𝜕Ƥ

𝜕𝑥
Ω

𝜕𝑓

𝜕𝑥
 dΩ  

 − ∫ 𝑓3
𝜕Ƥ

𝜕𝑦
Ω

𝜕𝑓

𝜕𝑦
 dΩ −

𝐵𝑜

𝜀
sin 𝛼 ∫ 𝑓3

𝜕𝑓

𝜕𝑥
Ω

 dΩ = 0 (3.6) 

3.1.2 Shape Functions  

We use shape functions or basis functions to map a two-dimensional Cartesian system 

into natural coordinates within the Gauss quadrature rule where the domain is given in 

−1 ≤ 𝑟 ≤ 1 and −1 ≤ 𝑠 ≤ 1 (see Figure 3.1).  
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Figure 3.1: Nine variable number nodes of two-dimensional element [59] 

Corresponding interpolation functions or quadratic shape functions for nine variable 

number nodes of two-dimensional element in Figure 3.1 that we use in our finite 

element solver are given in Table 3.1. 

Table 3.1: Quadratic interpolation functions according to Figure 3.1 

i = 1 𝜑1 = 0.25 (1 − 𝑟) (1 − 𝑠) − 0.5 𝜑6 − 0.5 𝜑5 − 0.25 𝜑7 

i = 2 𝜑2 = 0.25 (1 + 𝑟) (1 − 𝑠) − 0.5 𝜑5 − 0.5 𝜑8 − 0.25 𝜑7 

i = 3 𝜑3 = 0.25 (1 + 𝑟) (1 + 𝑠) − 0.5 𝜑9 − 0.5 𝜑8 − 0.25 𝜑7 

i = 4 𝜑4 = 0.25 (1 − 𝑟) (1 + 𝑠) − 0.5 𝜑9 − 0.5 𝜑6 − 0.25 𝜑7 

i = 5 𝜑5 = 0.5 (1 − 𝑟2) (1 − 𝑠) − 0.25 𝜑7                                    

i = 6 𝜑6 = 0.5 (1 − 𝑠2) (1 − 𝑟) − 0.25 𝜑7                                    

i = 7 𝜑7 = (1 − 𝑟2) (1 − 𝑠2)                                                             

i = 8 𝜑8 = 0.5 (1 − 𝑠2) (1 + 𝑟) − 0.25 𝜑7                                    

i = 9 𝜑9 = 0.5 (1 − 𝑟2) (1 + 𝑠) − 0.25 𝜑7                                    

These shape functions are defined as piecewise continuous polynomials over sub 

elements and satisfy the condition 𝜑𝑖(𝑥𝑗) = 𝛿𝑖𝑗 = {0, 𝑖𝑓 𝑖 ≠ 𝑗 | 1, 𝑖𝑓 𝑖 = 𝑗}.  
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3.2 Finite Element Approximations and Time 

Integrations 

We use piecewise continuous quadratic shape functions (𝜑𝑞) given in Table 3.1 to 

discretize the space. Approximation of f and Ƥ with corresponding test functions in 

isoparametric domain are given below. 

 𝑓𝑛+2 = ∑𝑓𝑗
𝑛+2 𝜑𝑗

𝑞
(𝑟, 𝑠)

𝑁

𝑗=1

 (3.7) 

 Ƥ𝑛+2 = ∑Ƥ𝑗
𝑛+2 𝜑𝑗

𝑞
(𝑟, 𝑠)

𝑁

𝑗=1

 (3.8) 

 𝑓𝑛+1 = ∑𝑓𝑗
𝑛+1 𝜑𝑗

𝑞
(𝑟, 𝑠)

𝑁

𝑗=1

 (3.9) 

 Ƥ𝑛+1 = ∑Ƥ𝑗
𝑛+1 𝜑𝑗

𝑞
(𝑟, 𝑠)

𝑁

𝑗=1

 (3.10) 

 𝑓𝑛 = ∑𝑓𝑗
𝑛 𝜑𝑗

𝑞
(𝑟, 𝑠)

𝑁

𝑗=1

 (3.11) 

 Ƥ𝑛 = ∑Ƥ𝑗
𝑛 𝜑𝑗

𝑞
(𝑟, 𝑠)

𝑁

𝑗=1

 (3.12) 

 𝑓 = ∑𝑓𝑖

𝑁

𝑖=1

 𝜑𝑖
𝑞
(𝑟, 𝑠) (3.13) 
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 𝑝 = ∑𝑝𝑖 𝜑𝑖
𝑞
(𝑟, 𝑠)

𝑁

𝑖=1

 (3.14) 

Here, 𝑓𝑗 and 𝑝𝑗 are the nodal values and the weak formulations are valid for all 𝑓𝑖 and 

𝑝𝑖. For the time integration we use second order variable step backward differentiation 

formula. We approximate the unsteady term by 

 
𝜕𝑓

𝜕𝑡
= 𝑎 𝑓𝑛+2 + 𝑏 𝑓𝑛+1 + 𝑐 𝑓𝑛, (3.15) 

where a, b and c are constants that are coming from Taylor expansion as 

 𝑎 =
(𝜏𝑛+1 + 𝜏𝑛)2 − (𝜏𝑛+1)

2

𝜏𝑛+1 𝜏𝑛 (𝜏𝑛+1 + 𝜏𝑛)
, (3.15. 𝑎) 

 𝑏 =
−(𝜏𝑛+1 + 𝜏𝑛)

𝜏𝑛 𝜏𝑛+1
, (3.15. 𝑏) 

 𝑐 =
𝜏𝑛+1

𝜏𝑛 (𝜏𝑛+1 + 𝜏𝑛)
 . (3.15. 𝑐) 

When step size (Δ𝑡) is uniform, 𝜏𝑛+1 = Δ𝑡 and 𝜏𝑛 = Δ𝑡, equation (3.15) becomes 

second order backward differentiation, i.e. 

 
2Δ𝑡

3
 
𝜕𝑓

𝜕𝑡
= 𝑓𝑛+2 +

4

3
𝑓𝑛+1 +

1

3
𝑓𝑛. (3.15. 𝑑) 

So, we put these relations into the weakened equations (3.5) and (3.6). In compact 

form, approximated equations are given below. 
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 ∑𝑓𝑗
𝑛+2𝑀𝑖𝑗 +

1

𝑎
 𝐵𝑜 cos 𝛼 (∑𝑓𝑗

𝑛+2(𝑁𝐿1𝑥𝑖𝑗 + 𝑁𝐿2𝑥𝑖𝑗 + 𝑁𝐿1𝑦𝑖𝑗)

𝑁

𝑗=1

)

𝑁

𝑗=1

  

 +
1

𝑎
 𝐵𝑜 cos 𝛼 (∑𝑓𝑗

𝑛+2𝑁𝐿2𝑦𝑖𝑗

𝑁

𝑗=1

) −
1

𝑎
 (∑Ƥ𝑗

𝑛+2(𝑁𝐿1𝑥𝑖𝑗 + 𝑁𝐿1𝑦𝑖𝑗)

𝑁

𝑗=1

)  

 −
1

𝑎
 
𝐵𝑜

𝜀
sin 𝛼 ∑𝑓𝑗

𝑛+2𝑁𝐿4𝑖𝑗 = −
𝑏

𝑎
 ∑𝑓𝑗

𝑛+1𝑀𝑖𝑗

𝑁

𝑗=1

−
𝑐

𝑎
 ∑𝑓𝑗

𝑛𝑀𝑖𝑗

𝑁

𝑗=1

𝑁

𝑗=1

 (3.16) 

 ∑Ƥ𝑗
𝑛+2𝑀𝑖𝑗 + ∑𝑓𝑗

𝑛+2(𝐵𝑥𝑖𝑗 + 𝐵𝑦𝑖𝑗) − 𝐻 𝑓0
3 ∑𝑓𝑗

𝑛+2𝑁𝐿2𝑖𝑗

𝑁

𝑗=1

𝑁

𝑗=1

𝑁

𝑗=1

  

 +𝐻 𝑓0
2 ∑𝑓𝑗

𝑛+2𝑁𝐿3𝑖𝑗 = ∫
𝜕2ℎ

𝜕𝑥2
 𝜑𝑖 dΩ +

Ω

∫
𝜕2ℎ

𝜕𝑦2
 𝜑𝑖 dΩ

Ω

 

𝑁

𝑗=1

 (3.17) 

where 𝑀𝑖𝑗  and other non-linear terms are as follows 

 𝑀𝑖𝑗 = ∫ 𝜑𝑗𝜑𝑖 dΩ

Ω

 (3.18) 

 𝑁𝐿1𝑥𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜑𝑗

𝑁

𝑗=1

)

3

𝜕𝜑𝑗

𝜕𝑥
Ω

𝜕𝜑𝑖

𝜕𝑥
 dΩ (3.19) 

 𝑁𝐿1𝑦𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜑𝑗

𝑁

𝑗=1

)

3

𝜕𝜑𝑗

𝜕𝑦
Ω

𝜕𝜑𝑖

𝜕𝑦
 dΩ (3.20) 
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 𝑁𝐿2𝑥𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜑𝑗

𝑁

𝑗=1

)

2

𝜕ℎ

𝜕𝑥
𝜑𝑗

𝜕𝜑𝑖

𝜕𝑥
 dΩ

Ω

 (3.21) 

 𝑁𝐿2𝑦𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜑𝑗

𝑁

𝑗=1

)

2

𝜕ℎ

𝜕𝑦
𝜑𝑗

𝜕𝜑𝑖

𝜕𝑦
 dΩ

Ω

 (3.22) 

 𝑁𝐿4𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜑𝑗

𝑁

𝑗=1

)

2

𝜑𝑗

𝜕𝜑𝑖

𝜕𝑥
 dΩ

Ω

 (3.23) 

 𝐵𝑥𝑖𝑗 = ∫
𝜕𝜑𝑗

𝜕𝑥
Ω

𝜕𝜑𝑖

𝜕𝑥
 dΩ (3.24) 

 𝐵𝑦𝑖𝑗 = ∫
𝜕𝜑𝑗

𝜕𝑦
Ω

𝜕𝜑𝑖

𝜕𝑦
 dΩ (3.25) 

 𝑁𝐿2𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜑𝑗

𝑁

𝑗=1

)

−4

𝜑𝑗𝜑𝑖  dΩ

Ω

 (3.26) 

 𝑁𝐿3𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜑𝑗

𝑁

𝑗=1

)

−3

𝜑𝑗𝜑𝑖  dΩ

Ω

 (3.27) 

Now, we have a coupled system to be solved in the form of (3.28). 

 𝑲(𝑢) 𝑢 = 𝑅 (3.28) 

Here K is the stiffness matrix to be inverted to right side for evaluating unknown vector 

u. However, K is already a function of unknown vector 𝑢 = [𝑓; Ƥ] which makes the 
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problem non-linear. So, we need to find an approximate solution with a numerical 

technique. One of the techniques for the treatment of nonlinearity is Newton’s method 

and we apply exactly this method for our FEM to treat nonlinearity by introducing a 

residual vector.  

 𝑟(𝑢) = 𝑲(𝑢) 𝑢 − 𝑅 (3.28. 𝑎) 

We solve this relation for u to make residual zero. In order to do that we need to find 

the root of r(u). Newton’s method is used to find this root. We apply the classical 

Newton's method to a vector function of a vector variable in which the tangent stiffness 

matrix is computed by equation (3.29). 

 𝑻 =
𝜕𝑟(𝑢)

𝜕𝑢
 (3.29) 

3.3 Mapping of the Derivative Terms 

In §3.1, we show how to map two-dimensional Cartesian domain and in §3.2 we define 

the film thickness with related pressure terms in the natural coordinate system by these 

interpolation functions. One should notice that some of these terms contains 

derivatives with respect to local coordinates. Since the whole system is defined in the 

natural coordinates, we must transform x and y derivatives to r and s derivatives. To 

do that we use chain rule and solve the derivatives for relation below. 

 

[
 
 
 
 
𝜕

𝜕𝑟

𝜕

𝜕𝑠]
 
 
 
 

=

[
 
 
 
 
𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠]
 
 
 
 

[
 
 
 
 
𝜕

𝜕𝑥

𝜕

𝜕𝑦]
 
 
 
 

 (3.30) 
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In matrix notation, equation (3.30) is as follows. 

 

 
𝜕

𝜕𝑟
= 𝑱

𝜕

𝜕𝑥
 (3.30. 𝑎) 

where 𝑱 is the Jacobian operator that relates the derivatives of local and natural 

coordinate systems. Relation above emphasizes unique analogy among these 

coordinate systems due to invertibility requirement of the Jacobian operator. For a 

unique nodal system, 𝑱 is found by following relation. 

 
𝜕

𝜕𝑥
= 𝑱−1

𝜕

𝜕𝑟
 (3.30. 𝑏) 

3.4 Symmetric Boundary Condition 

Under normal circumstances, we enforce precursor film thickness at the edges of our 

domain via Dirichlet boundary condition. However, using a symmetry at x or y axis 

for various problems, such as spreading and sliding, saves a lot of computational time. 

This is introduced with Neumann boundary condition by assuming that the change of 

film thickness does not change along these axes due to symmetry property. 

Mathematically, it is represented for symmetry line around y axis (3.31) and symmetry 

line around x axis (3.32). 

 
𝜕𝑓

𝜕𝑥
= 0 (3.31) 

 
𝜕𝑓

𝜕𝑦
= 0 (3.32) 

Now this raises an important question. How does it change our system? To show that 

let’s get back to equation (3.1). Again, we start by multiplying our system with a test 

function, then integrate over the domain Ω and weaken the differentiability 

requirement. For clarity, we only focus on the following terms. 
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 ∫
𝜕

𝜕𝑥
(−𝑓3 𝐵𝑜 cos 𝛼

𝜕𝑓

𝜕𝑥
𝑓 )

Ω

 dΩ + ∫
𝜕

𝜕𝑦
(−𝑓3 𝐵𝑜 cos 𝛼

𝜕𝑓

𝜕𝑦
𝑓)

Ω

 dΩ (3.1𝑎) 

We modify this term (3.1𝑎) as the divergence of gradient of droplet thickness so that 

we can use Divergence theorem to convert volume integral to surface integral. 

 ∫ ∇ ⋅ (−𝑓3 𝐵𝑜 cos 𝛼 𝑓 ∇ 𝑓)

Ω

 dΩ (3.33) 

or simply 

 ∫ −𝑓3 𝐵𝑜 cos 𝛼  ∇2𝑓 𝑓 dΩ

Ω

. (3.33. 𝑎) 

Here, we rewrite ∇2𝑓 𝑓 as follows. 

 ∇2𝑓 𝑓 = (∇ ⋅ (𝑓 ∇𝑓) − ∇𝑓 ⋅ ∇𝑓)  

So that we have the following relation. 

 − ∫ ∇ ⋅ (𝑓 ∇𝑓) 𝑓3 𝐵𝑜 cos 𝛼  dΩ + ∫(∇𝑓 ⋅ ∇𝑓)

ΩΩ

𝑓3 𝐵𝑜 cos 𝛼  dΩ (3.34) 

Now we use Divergence theorem on the first term of (3.34) to convert the volume 

integral to the surface integral. 

 − ∫ ∇ ⋅ (𝑓 ∇𝑓) 𝑓3 𝐵𝑜 cos 𝛼  dΩ

Ω

= − ∫ 𝑓3 𝐵𝑜 cos 𝛼 (𝑓 ∇𝑓) ⋅ 𝒏 d ∂Ω

𝜕Ω

 (3.35) 
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We break-up the integral by the fact that we have both Dirichlet and Neumann 

boundary conditions. 

 − ∫ 𝑓3 𝐵𝑜 cos 𝛼 (𝑓 ∇𝑓) ⋅ 𝒏 d ∂Ω

𝜕Ω

=  

 − ∫ 𝑓3 𝐵𝑜 cos 𝛼 (𝑓 ∇𝑓) ⋅ 𝒏 d ∂Ω

𝜕Ω1

− ∫ 𝑓3 𝐵𝑜 cos 𝛼 (𝑓 ∇𝑓) ⋅ 𝒏 d ∂Ω

𝜕Ω2

 (3.36) 

Here, 𝜕𝛺1 is the Dirichlet boundary condition and it is zero as we previously 

mentioned. Then we end up with following equation. 

 − ∫ 𝑓3 𝐵𝑜 cos 𝛼 (𝑓 ∇𝑓) ⋅ 𝒏 d ∂Ω

𝜕Ω

= − ∮ 𝑓3 𝐵𝑜 cos 𝛼  Ṅ 𝑑𝜕Ω

𝜕Ω2

 (3.37) 

where Ṅ = (𝑓 𝛻𝑓) ⋅ 𝒏. Now we take normal vector 𝒏 = 𝑖 for y axis. 

 − ∮ 𝑓3 𝐵𝑜 cos 𝛼  𝑓
𝜕𝑓

𝜕𝑥
 d𝜕Ω

𝜕Ω2

 (3.37𝑎) 

Then  𝒏 = 𝑗 for x axis. 

 − ∮ 𝑓3 𝐵𝑜 cos 𝛼  𝑓
𝜕𝑓

𝜕𝑦
 d𝜕Ω

𝜕Ω2

 (3.37𝑏) 

Finally, we implement the boundary conditions (3.31) and (3.32) where Neumann 

states that there exists a symmetry along x and y axes. So, equation (3.37𝑎) and (3.37𝑏) 

are all become zero. Then we are left with only the second term of equation (3.34). 
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 ∫(∇𝑓 ⋅ ∇𝑓) 𝑓3 𝐵𝑜 cos 𝛼  dΩ = ∫ (
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑦
)

Ω

 𝑓3 𝐵𝑜 cos 𝛼  dΩ

Ω

 (3.38) 

Which yields our original Dirichlet boundary condition. In brief, we do not need to 

change our previous weak formulation as long as the boundary nodes are defined 

properly. Whether analyzing quarter droplet spreading or sliding mechanism of a semi 

droplet, we just need to define the Dirichlet nodes (Figure 3.2). 

 

Figure 3.2: (●): Neumann boundary condition, (∎): Dirichlet boundary condition, (a) 

Domain we use to solve spreading of a quarter droplet, (b) Domain we use to solve 

sliding problems where the north axis is the symmetry line 
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Chapter 4 

Adaptive Mesh Refinement and 

Derefinement 

Discretized partial differential equations can be solved in uniform grids and the values 

of unknowns at the grid points are estimated through the solutions of these equations. 

Yet grid size must be handled carefully to obtain for accurate results. For instance, 

precursor film thickness is a crucial parameter in modeling droplet dynamics which 

we are going to discuss its effect in Chapter 5. Studies in the literature often take 𝑓0 as 

around %1 of characteristic thickness which is 0.01 [26,60,61]. However, higher 

values of 𝑓0 leads to an inaccurate result [62] and special treatments like time scale 

corrections are needed to compensate this problem [25]. But as we decrease the 

precursor film, our system becomes stiff and it becomes harder to model molecular 

interactions at the contact line. Thus, higher resolution is required to model contact 

line. But this is computationally not feasible in three-dimensional problems even for 

values of 𝑓0 around 10−3 . So, we decide to implement an adaptive mesh refinement 

method to focus our computation power around contact lines. By this way, we can 

work with smaller values of 𝑓0 within a feasible computation scale. 

There exist various types of AMR in the literature [63-68], but we only focus on nodal 

based quadratic quadrilateral finite elements [69]. Because, in our FEM solver data is 

stored at the vertex and edges of the element. In our previous study [32], we show that 

fine resolution is an obligation to get physically accurate results even in two-

dimensional problems. To achieve such high resolution for three-dimensional 

problems in a uniform grid is not feasible and thus mesh refinement techniques are 

required. There are three basic type of refinement techniques which are p-type, r-type 

and h-type. Using a higher order shape function, quadratic or cubic instead of linear, 
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is the p-type mesh refinement technique. This method obviously increases the 

accuracy. However, for well-tried analysis of droplet spreading with quadratic 

elements, which will be mentioned in further sections, it is inadequate to maintain the 

shape of the droplet. Because pressure distribution at the contact line collapses due to 

weak resolution. Redistributing the existing node or r-type can be a solution to this 

problem at the contact line. But it still needs a fine resolution to begin with and thus 

generates finer resolution at the unused parts of the domain which results in longer 

computation times. Adding new nodes to our area of interest seems to be the most 

favorable choice in all three of them. Marking only the contact line and refining those 

specific regions allows us to concentrate our computational effort on the area where it 

is most needed, decreases memory storage and computation time over a uniform mesh 

for equal accuracy and gives complete control of grid resolution. Despite all these 

benefits, adaptive mesh refinement comes with its own disadvantages. Local mesh 

refinement creates level difference and this leads to a non-conformal interface (Figure 

4.1).  

 

Figure 4.1: (a) Conformal mesh: all edges and vertices are connected; continuity is 

achieved in the domain. (b) Non-conformal mesh: there are non-intersecting edges at 

the level difference, discontinuous system 

This poses an issue to continuity of our discrete functions. Another possible trouble 

with non-conformal mesh is the marking process. Elements to be refined can be 

marked with various approaches. However, decision of mesh size and smoothness of 

domain are key factors to obtain accurate results within a feasible time. Required 

treatments of these problems are discussed in this section. 
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4.1 Quadtree Data Structure 

In brief, data structure is the systematic way of storing and organizing data. Tree is a 

data structure method to access and modify this data efficiently. For each newly 

generated elements, tree structure relates these children with their parents and contains 

other crucial information such as adjacent/neighboring elements, edges and level of 

the elements. Quadtree, a type of tree, is often used to subdivide a two-dimensional 

domain into four partitions or children in our case. In conventional quadtree structures, 

each parent and its children are constructed concurrently (Figure 4.2). 

 

Figure 4.2: Conventional quadtree structure that relates parent and its children 

From now on, every square with a number above will be called as element # where the 

number after hash symbol is going to indicate the corresponding number. Here, 

element #1-4 are called as ROOT which are on the coarsest level. Element #5-8 are 

newly generated elements and they are the children of element #3. Notice that the child 

numbers are in serial and their reference point is the latest element on the ROOT which 

is element #4. So, if we refine another element or one of the children, newly generated 

elements will be element #9-12. This continues until the finest level of the domain is 

achieved. Relation of children, parents and any other information are formed during 

the refinement, so it is a dynamic process. However, quadtree structure that we use in 

our code is quite different. We don’t need to introduce or relate any information. 

Because we already constructed all necessary information beforehand. To show that 

Figure 4.3 is given below. 
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Figure 4.3: Prequad data structure. All data are constructed in advance  

Apparent change from the previous structure is that this time every aspect of the 

domain including parents, children, neighboring elements and even possible hanging 

points at every level are constructed in advance, even though they are not present or 

refined in the domain. So, we have a static structure over a dynamic one which means 

that the order of refinement does not influence our data structure anymore. We call 

this structure as prequad data structure. However, this concept requires a new 

parameter we call as activity to distinguish existing and null elements. If an element is 

not yet present on the domain or it is a recently refined parent, this is a null or an 

inactive element. Otherwise, it is an exist or active element. To clarify the concept, let 

us examine previous example, Figure 4.4, with prequad structure. 

 

Figure 4.4: Same example with Figure 4.1 but with a quadtree data structure 

Here, solid and dashed lines in the tree are active and inactive elements, respectively. 

We only use active elements in our FEM solver. In Figure 4.1 our children are element 

#5-8 due to dynamic structure. But here, they are element #13-16 and they cannot be 
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changed unless ROOT of the domain is modified. With this method, we don’t need to 

add newly generated elements and their connected information into our quadtree 

structure since they are already present. What we must do is to activate recently refined 

children and inactive corresponding parents.  

4.1.1 Consecutive Requirement  

We construct our matrices and vectors in a consecutive manner. In the simplest form, 

row numbers of the connectivity matrix, matrix that contains node numbers of each 

element to satisfy uniqueness, corresponds to that element in the domain. When we 

define our domain priorly, we don’t get consecutive but a higher element number and 

nodes. Let’s compare previous examples. Children in conventional quadtree (Figure 

4.1) are in order with the system by nature. But children of prequad system (Figure 

4.4) and nodes are way bigger than our expectations and thus they must be put in an 

order (Figure 4.5).  

 

Figure 4.5: (a) Conventional data structure from Figure 4.2. Here nodes are in serial 

like their element number.  (b) Prequad data structure from Figure 4.4. ROOT nodes 

are same but newly generated nodes are ordered in counterclockwise. Notice that 

nodes are defined such way that they are all unique 

To modify prequad nodes in a consecutive order, we simply create a vector containing 

the unique node numbers of active elements and then we search this node numbers 

within the active elements again. Corresponding row number of unique vector is the 

consecutive adaption of our preload data. This is valid for every other information on 

the domain. 
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4.1.2 Hanging Points  

In the finite element method, data is stored at the vertices of elements as nodes. Either 

linear or higher polynomial order, local refinement leads to a level difference and thus 

non-conformal mesh. Newly emerged nodes on these non-intersecting edges are 

referred as hanging points (as shown with ∎  Figure 4.6) in the literature [69-71].  

 

Figure 4.6: (a) Hanging points of linear elements, (b) Hanging points of quadratic 

elements at the non-intersecting edges 

These new unknown nodes must be associated/interpolated into our system to maintain 

our continuous discrete functions. We store our hanging points in a matrix where rows 

represent the element number and columns are the walls of the element in counter 

clockwise direction. We check neighbors of the refined elements and since we know 

every information on the domain, thanks to our prequadtree structure, this is an easy 

procedure. Basically, if the neighboring element of newly refined element is active, 

their edges cannot be intersecting and thus there exist a hanging point at that wall. So, 

we check the location of non-intersecting edge by searching counterclockwise and find 

the hanging point at that wall, remember we also know node number of the hanging 

point due to prequadtree structure, and store it in our matrix. Then finally, we find the 

values of these hanging points by interpolating the estimated solutions from previous 

domain. 
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4.2 Element Marking Mechanism 

In order to refine an element, we must mark it first. We demonstrate two ways to mark 

contact line which are geometry based and pressure based. Second one is the most 

versatile since droplet formation is susceptible to topography of the surface and 

sometimes it is hard to catch up these complex transitions with geometrical approach. 

Especially in the presence of liquid deposition to surface. Regardless, both are 

presented step by step.  

4.2.1 Geometrical Marking   

Geometric marking is a rather simple algorithm. We define the location of the contact 

lines. To clarify it, we are going to define the contact line with cardinal directions 

where droplet assumed to be sliding from left to right. So, west and east are receding 

and advancing contact line respectively. North and south are the lateral sides of the 

droplet. We find these locations as minx, maxx, miny and maxy being the contact lines 

at the west, east, south and north, respectively. Then we use ellipse equation to define 

lower limits of our marking. 

 
(𝑥 − 𝑥0)

2

(𝑚𝑎𝑥𝑥 − 𝑚𝑖𝑛𝑥)2
+

(𝑦 − 𝑦0)
2

(𝑚𝑎𝑥𝑦 − 𝑚𝑖𝑛𝑦)2
− 1 ≤ 0 (4.1) 

Equation (4.1) is dependent on the location of droplet. For instance, if our droplet is 

located at the symmetry axis of north wall, then maxy would be the length of y-axis 

which is 𝐿𝑦. Another example would be a spreading droplet. In this case, maxy and 

maxx are both length of the domain. We mark everywhere inside the ellipse with the 

mathematical expression in equation (4.1). To prevent unnecessary marking, we 

specify an upper limit constant (𝜂) or we can use ellipse equation again, but this time 

with a different operator to restrain our marking areas and mark the elements in 

between upper and lower limits (Figure 4.7). 



42 

 

 

Figure 4.7: Geometrical marking of the contact line. (− −): Upper limit (𝜂), (−): 

Lower limit: in this case, it is ellipse equation 

After the marking process, we use our quadtree structure to extend the marked line 

given in figure 4.7 by also taking adjacent neighbors into account. Then we activate 

and deactivate parent-child to refine our contact line. Derifenement is same for both 

methods, we regularly check location of maxx and minx and re-evaluate them and 

mark contact line. We check whether previously refined areas are marked again. If 

they are not marked, then we de-activate children and activate the parents.  

4.2.2 Pressure Marking   

This method is based on the disjoining model. Since we model the contact line by 

disjoining pressure, it gives us exactly the location of our contact line. So, we take the 

modulus of equation (2.14) to rule out the negative pressures at the contact line. Then, 

we put upper and lower limit by taking maximum and mean values of end up equation. 

This method differs from previous method in the sense of marking procedure. Here, 

we don’t need to specify two separate boundaries as we do in geometrical marking. 

Because remaining values already give us the contact line (Figure 4.8). 
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Figure 4.8: Contact line is marked with our disjoining pressure model. Upper and 

lower limits are decided by the pressure model. So, there is no need to specify 

additional parameter in this method 

We believe this method is better than previous one since droplet dynamics can be 

affected with a slightest change on the domain. In some problems, droplet forms a 

pearl behind its tail and these small droplets might deceive the location of receding 

contact line that leads to unnecessary markings. Because of this, we use pressure 

marking method in our adaptive mesh refinement code. Just like the geometrical 

marking, we add neighbor elements after the contact line is marked for proper marking. 

4.2.3 Mesh Balancing  

If the level difference between adjacent elements after the refinement is one at 

maximum, then this mesh is balanced (Figure 4.9) otherwise, it is unbalanced (Figure 

4.10). 

 

Figure 4.9: Balanced mesh: level difference is maximum one after the refinement 
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Figure 4.10: Unbalanced mesh structure: finest level is neighboring (level 4) the level 

2 which means there exist 2 level difference. This is an undesired mesh structure 

Local refinement of the contact line only is not sufficient to get accurate results. 

Balancing and distribution of the mesh, in other words the smooth transition of a mesh, 

is a key factor to get proper results. If these qualifications are not satisfied, then local 

errors become high which causes an issue in accuracy [72]. To overcome these 

problems, we propose the following solutions. After the refinement, we check activity 

of the refined elements, that are at least on first level, neighbors. If they are inactive, 

this means there exist a level difference higher than one. So, we de-activate this 

adjacent element parents and activate four children. We apply this procedure for all 

other refined elements that are not on ROOT. By this way, we balance our mesh. For 

the smooth distribution of mesh, we use neighbors again. Either geometric or pressure-

based method, after marking the elements on contact line, we also take these elements 

neighbors for refining to achieve a proper distribution. This neighbor marking 

procedure is done by experimenting on the domain. We would like to emphasize that 

our preload data structure makes all these processes easier since we know everything 

about the domain. After these modifications, a proper mesh structure should look like 

in Figure 4.11.  
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Figure 4.11: Proper mesh structure: balanced and smooth transition 

Finally, we would like to show how much we save computationally by using adaptive 

mesh refinement. In Table 4.1, we present the number of nodes of an equal resolution 

system to analyze sliding droplet on a flat surface for uniform, three times refined and 

four times refined domain. 

Table 4.1: Number of total nodes to analyze same problem for equal resolution. 

Length on the y-axis is constant and same for all cases, 𝐿𝑦 = 1.2 

𝐿𝑥 Uniform Level 3 Level 4 

3 369985 76707 62533 

3.5 431585 77927 62843 

4 493185 79147 63153 

4.5 554785 80367 63463 

5 616385 81587 63773 

5.5 677985 82807 64083 

6 739585 84027 64393 

6.5 801185 85247 64703 

7 862785 86467 65013 

7.5 924385 87687 65323 

8 985985 88907 65633 

As expected, to achieve same resolution in uniform domain, we require immense 

number of nodes. Even in this rather simple problem, we must use long distances along 
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x-axis, maybe between 10 and 15 to investigate cusp and pearling formations. But at 

𝐿𝑥 = 8, around a million number of nodes is needed to obtain accurate results in 

uniform domain. This is not computationally feasible for an unsteady problem and thus 

adaptive mesh refinement is needed. To compare the level3 and level4 cases, figure 

4.12 is given.   

 

Figure 4.12: Comparison of level3 and level4 refinement for same resolution 

As length of the domain increases, number of active nodes are increasing linearly. 

However, to get same resolution in level3 as level4, ROOT of the domain also needs 

to be finer. Thus, we refine our elements until level4 in our solver. 
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Chapter 5 

Motion of Droplets Over Homogenous 

Substrates: Validation 

In this chapter, we validate our solver for various problems. In §5.1, we check mesh 

independency. In §5.2, we place a droplet on a flat and horizontal substrate and let it 

spread to its equilibrium angle for different precursor film thicknesses to study the 

effect of 𝑓0. Then, we use equilibrium angles in between 20° to 45° for same precursor 

film thickness to check the effect of equilibrium angle on our assumption from 

lubrication equation. In §5.3, we study the same problem, but this time, we set the 

equilibrium angle to zero and let it spread up to the non-dimensional time 100. Then 

we check the change of maximum height of droplet with respect to time to be able to 

compare with the scaling law of Tanner[73]. Finally, in §5.4, we investigate a sliding 

droplet on a flat substrate with a various inclination angle. The physical property of 

the droplet is chosen from the study of Podgorski[49]. Our results are compared with 

the numerical study of Ahmed[61] and Kumar[26]. Linear relation between cube of 

advancing contact angle and capillary number known as Cox-Voinov law is 

established from this analysis. 

5.1 Mesh Independence 

Before we begin to any other validation sections, we must first show that our results 

are independent of our mesh. To do that, we examine 2 problems. In first one, we place 

a droplet on flat horizontal substrate and set equilibrium angle as 20°. Then we let it 

spread until it reaches its static angle. We measure these angles and tabulate them in 

Table 5.1 for various number of elements (𝑁).  
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Table 5.1: Change of the equilibrium angle with total number of elements 𝑁 at 

ROOT 

𝑁 𝜃𝑒 

20𝑥20 19.3314 

25𝑥25 19.3671 

30𝑥30 19.3716 

35𝑥35 19.3754 

40𝑥40 19.3783 

Here, we should note that the total numbers in table 5.1 are the coarsest level. So, if 

we have a domain with a length of 2 in both axes, we have the grid size of 3.125𝑥10−3. 

Because we are using adaptive mesh refinement that refines the domain four times. In 

our prequad structure, we have actually 640𝑥640 of total elements. From results we 

can say that for increasing number of elements, change in the computed equilibrium 

angle vanishes. 

As a second problem, we place the droplet on flat inclined substrate and examine the 

location of the contact lines at same times for four different mesh. For this problem we 

use same precursor film thickness and Bond number which are 𝑓0 = 0.0075 and 𝐵𝑜 =

1.1. The results are shown in figure 5.1. 

 

Figure 5.1: Location of contact lines where 𝐿𝑥 = 20 and 𝐿𝑦 = 1.2 for time 𝑡 = 7.0. 

Dark blue: 50𝑥3, Yellow: 100𝑥6, Red: 125𝑥8, Green: 150𝑥9 
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For all meshes, the element size is same and square. For instance, dark blue mesh has 

a element size of 𝑑𝑥 = 0.4 and 𝑑𝑦 = 0.4 at the ROOT. It is clear from the figure 5.1 

that our mesh does not have an effect for grid size smaller than 0.16 which is a mesh 

finer than 125𝑥8. So, from both of these experiments, we decide our optimal grid size 

as 𝑑𝑥 = 0.1 and 𝑑𝑦 = 0.1 at the ROOT. 

5.2 Equilibrium Angle 

5.2.1 Effect of Precursor Film Thickness  

This part is necessary to check whether we really ensure the equilibrium angle that we 

impose to our droplet. Because static angle directly affects the contact angle hysteresis 

which is the key factor of our study. It is observed that the physics are deteriorating 

for higher values of 𝑓0[62]. However, small precursor film creates a stiff structure to 

solve and thus requires high computational power. So, our aim is to approach to 

equilibrium angle as much as possible within a feasible scale. To do that we place a 

droplet at x and y symmetry axis (Figure 3.2.a) with an equilibrium angle of 20° on a 

flat and horizontal substrate and let it spread until it reaches an equilibrium. For 

different values of 𝑓0, we measure the contact line and decide the optimal precursor 

film thickness for our solver. Results are shown in figure 5.2 and Table 5.2. 
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Table 5.2: Equilibrium angles for decreasing precursor film thickness 

𝑓0 𝜃𝑒 

0.03 16.3771 

0.02 17.3993 

0.01 18.6282 

0.0075 18.7883 

0.005 19.0536 

0.003 19.2689 

0.002 19.3817 

0.0015 19.4382 

0.001 19.4971 

0.00075 19.5136 

0.0005 19.5536 

From table 5.2, it is clear that the computed angle converges to a certain angle that is 

around 19.5° for decreasing 𝑓0. Film thicknesses smaller than 0.005 are within an 

acceptable error number which is 1% deviation from the original imposed angle. So, 

we are safe to use any of these 𝑓0 lower than 0.005.  
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Figure 5.2: Computed equilibrium angle for decreasing precursor film thickness. As 

we decrease the 𝑓0, we approach equilibrium angle 

We should also emphasize that droplet cannot restrain its shape properly and slowly 

diffuses through the domain for film thickness higher than 0.03 which is expected 

because the length of the transition from the static region to flat precursor film region 

gets larger. But as we decrease the precursor film below 0.003, the transition from 

precursor film to contact line becomes sharper which requires higher resolution. This 

transition is given in figure 5.3. 
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Figure 5.3: Location of transition from precursor film thickness to droplet thickness 

for 3 different 𝑓0 along x-axis at the symmetry line 

From figure 5.3 we can see the sharp transition in 𝑓0 = 0.003 and 𝑓0 = 0.0005 while 

𝑓0 = 0.01 is more like diffusing from droplet to precursor film. This sharp transition 

however returns us as a stiff structure that requires higher computation power. For this 

simple analysis, our grid size is 1.95𝑥10−3 where the length of the domain is 1.25 for 

both x and y axis. Reaching this resolution for higher length domains such as 𝐿𝑥 = 10 

or 𝐿𝑥 = 20 is not computationally feasible for us. Thus, with all these information 

above, we decided our optimal precursor film thickness to be 0.0025 in our solver. 

5.2.2 Effect of Equilibrium Angle  

We’ve explained the details of lubrication theory where we assume flow to be thin and 

long such that 𝜀 ≪ 1 or 
(1−cos𝜃𝑒)

sin𝜃𝑒
≪ 1. But we might not satisfy this assumption while 

analyzing droplets with high equilibrium angles. To check this effect, we again 

investigate the same problem in §5.1.1. This time we use same precursor film 
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thickness, but we change the static angle of our droplets. Our analysis is conducted for 

3 different equilibrium angles which are 20°, 30°  and 45°, respectively. Results are 

given in Table 5.3. 

Table 5.3: Relative errors between measured and expected equilibrium angles for 

various film thicknesses 

𝑓0 Expected 𝜃𝑒 Measured 𝜃𝑒 Relative Error % 

0.01 45 39.0114 13.308 

0.01 30 27.1946 9.351 

0.01 20 18.6282 6.859 

0.005 45 40.0291 11.046 

0.005 30 27.9555 6.815 

0.005 20 19.0536 4.732 

0.0025 45 40.5558 9.876 

0.0025 30 28.3451 5.516 

0.0025 20 19.3502 3.249 

As expected, we lost accuracy for droplets with higher equilibrium angle. This is 

because our thin-long flow assumption loses its validity. We show this in table 5.4 

below. Notice that for higher film thickness, e.g., 𝑓0 = 0.01, relative error increases 

drastically which agrees with our results from Table 5.2. 

Table 5.4: Thin flow assumption for different equilibrium angles 

𝜃𝑒 𝜀 

10 0.0875 

20 0.1763 

30 0.2679 

45 0.4142 

55 0.5206 
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For higher equilibrium angles, we are getting closer to unity which does not satisfy our 

thin-film assumption. However, there exist studies in the literature that uses 

equilibrium angle of 45°[61] and even higher like 57°[54]. So, to use higher 

equilibrium angles in analysis, precursor film thickness must be minimized for decent 

results. In our case, we mostly set equilibrium angle to 30°. Another important feature 

is the effect of bond number on the equilibrium angle. For horizontal substrates, 𝛼 =

0, even though 𝐵𝑜 sin 𝛼 is nullified, bond number effects the spreading of our droplet. 

Simply, for increasing Bond numbers, measured equilibrium angle decreases. 

5.3 Tanner’s Law 

Experimental study conducted by Tanner[73] on spreading of silicone oil drops on 

horizontal substrate shows that the maximum height of the droplet is proportional to 

time and it scales with a power law known as Tanner’s law. For three-dimensional 

problems this scaling is 𝑡−0.2. To examine this, we place a droplet on a flat and 

horizontal substrate and let it spread until the time is 100. For this specific problem, 

we assume the droplet to be completely wetting the surface (𝜃𝑒 = 0) for proper 

investigation of this physical aspect and initiate its motion by setting the initial contact 

angle to 20°. 
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Figure 5.4: Change of central droplet height (𝑓𝑚𝑎𝑥) with respect to time t 

For 1 < 𝑡 < 100, we estimate the slope of the line in the figure 5.4 and we find that it 

is −0.2. This shows that our results agree with the Tanner’s power law. We would like 

to make some remarks for the data 𝑡 < 1. We initialize the droplet as spherical cap by 

assuming its sufficiently small. However, even though this is a valid assumption, the 

real shape of a droplet is different from a spherical cap, especially around the transition 

region from macroscopic region to precursor film. Thus, during this period, it is trying 

to obtain its original shape. This is observed in our previous study[32] and other studies 

as well. So, this is completely normal and acceptable.  

5.4 Droplet Sliding Over Inclined Flat Substrates 

Podgorski [49] states in his experimental study there exist three regimes for a sliding 

droplet over an inclined substrate, and they are all related to certain critical inclination 

angle. For smaller inclination angles, droplet reach to a terminal speed and takes an 

oval shape throughout the whole sliding process. This terminal speed is proportional 

to inclination angle and if we increase this angle to its first critical value, droplet 
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changes form and develops a corner at the receding contact line that is resembling to 

a teardrop shape. As we continue to increase tilt angle to second critical value, receding 

contact angle vanishes until it reaches to an effective capillary pressure and forms a 

neck. This neck later breaks into a smaller droplets which are referred as pearling 

[48,49,74]. To see whether we get the same physics, we place a droplet on a flat 

substrate inclined at an angle 𝛼. We increase gradually the inclination angle to adjust 

𝐵𝑜 sin 𝛼 and analyze its effect on the droplet speed and formation (Figure 5.5). The 

physical property of the droplet is taken from Podgorski [49] and our numerical results 

are compared with other two studies which are Kumar et al. [54] and Ahmed[61] for 

the same problem. Droplet is 47V10 silicon oil with a surface tension of 𝛾 =

20.5𝑥10−3 N/m, viscosity 𝜇 = 9.15𝑥10−3 Pa.s, density 𝜌 = 924 kg/m3 and volume 

of  𝒱 = 18 µL. 

 

Figure 5.5: Change of capillary number for different inclination angels. (− ∗): 

Kumar [54] for 𝜃𝑒 = 45° and 𝑓0 = 0.005, (−∎): Ahmed [61] for 𝜃𝑒 = 45° and 
𝑓0 = 0.01, (− − 𝑜): Our results for 𝜃𝑒 = 45° and 𝑓0 = 0.01, (−𝑜): Our results for 

𝜃𝑒 = 45° and 𝑓0 = 0.0025, (− ⋄): Experimental data of Podgorski [49] 
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For two different 𝑓0, we change the 𝛼 and analyze the droplet sliding. As we can see 

from the figure 5.5, our results show similar physics with experimental and other two 

theoretical studies. For increasing 𝛼, terminal speed and thus capillary number is 

increasing. The shape of the droplet is oval for all cases because we don’t pass the first 

critical threshold of 𝐵𝑜 sin 𝛼. Another important feature is that the advancing contact 

angle is directly proportional to capillary number while receding contact angle is 

reciprocally proportional. This relation is also observed in Le Grand’s study [74] as 

well. Thus, we conclude that our results are physically accurate. To see droplet 

formations such as cusps and pearls, we conduct three different runs with required 

information from Podgorski’s study again. Results are shown in figure 5.6 and figure 

5.7.  

 

Figure 5.6: Aerial view of sliding droplets with different tilt angles. (a) Tilt angle is 

so small that droplet takes circular shape, (b) First critical tilt angle is passed, droplet 

begins forming a corner. Change in the mass center of droplet can be seen from 

yellow contour 

Here, both droplets are at their terminal speeds so that their shape does not change 

anymore. Droplet at figure 5.6(b) passes the first critical threshold and forms a corner. 

Further increment leads to pearling formation as shown in figure 5.7 below. 
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Figure 5.7: Aerial view of sliding droplet with pearls behind 

As expected, after second critical angle is passed, receding contact line of the droplet 

vanishes but static angle never gets zero which is consistent with Snoeijer[48]. Then 

it creates a neck and deposits residual droplets after a while. The main droplet 

resembles to characteristic tear drop shape. 
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5.4.1 Cox-Voinov Law  

In this section, we examine the consistency of the change in advancing and receding 

contact angle. The cube of dynamic angle must be linearly proportional to capillary 

number. It is given by the Cox-Voinov Law[52,75] 

 𝜃𝐴,𝑅
3 − 𝜃𝑒

3 = ±9 ln
𝑥

ℓ𝑚𝑖𝑐𝑟𝑜
 𝐶𝑎. (5.1) 

In equation (5.1), ℓ𝑚𝑖𝑐𝑟𝑜 is the microscopic length-scale. To show that, we use our 

previous data from the Podgroski and find the relation between contact angles and 

capillary as follows (Figure 5.8). 

 

Figure 5.8: (−𝑜): 𝐶𝑎 vs 𝜃𝐴
3 , (− ⋄): 𝐶𝑎 vs 𝜃𝑅

3 from Cox-Voinov 

We fit our data into a line in figure 5.8 and it represents linear relation that satisfies 

Cox-Voinov law. This relation is also mentioned in Le Grand’s study[74] as well.  
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In final words, we’ve discussed the effect of equilibrium angle to our results and 

confirm that we are measuring proper angles for decided precursor film thickness. 

Maximum height of the spreading droplet is related with time that satisfies Tanner’s 

law. Linear relation between the cube of advancing, receding contact angles and 

Capillary number is achieved from Cox-Voinov model. Change of Capillary number 

with respect to 𝐵𝑜 sin 𝛼 for different tilt angles is demonstrated. Finally, for three 

different tilt angles we examine different droplet formations where we pass critical 

threshold in two cases. In the lowest 𝛼, droplet takes circular shape. After first critical 

tilt angle, droplet speeds up and forms a corner. In final case, tilt angle is so high that 

droplet forms pearls at the receding contact line. From all these examinations, we 

conclude that our finite element solver can accurately capture the physics of slender 

droplet motion over substrates. 
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Chapter 6 

Effect of Surface Topography on 

Pearling 

Sliding droplet on an inclined substrate takes many formations depending on their 

capillary and bond numbers [74]. As droplet slides on the substrate, surface tension 

forces pull the droplet to opposite side of sliding whilst gravitational forces assist the 

sliding motion and this force balance creates the contact angle hysteresis. For some 

droplets receding contact angle vanishes with this force balance such that gravitational 

forces become insignificant and viscous flow at the receding contact line solely 

depends on the gradient of capillary pressure [48]. For high Bond numbers, this contact 

angle forms a sharp corner and eventually deposits pearls on to substrate. These 

physical features can be expedited with surface heterogeneities while the motion of 

droplets is delayed. Oliver [76] shows this delay on sharp-edged crystalline steps 

where he observes the contact line motion of a spreading droplet on such rough 

surfaces. He states that surface roughness significantly retards the contact line motion.  

Based on this, studies are conducted to delay contact line motion by either using 

chemically heterogeneous substrates or introducing an external force. For instance, 

Yong [77] observe droplet entrapment for a hydrophobic surface with hydrophilic 

cavities where Liang [78] uses Lamb waves and excites the surface to trap pearls onto 

the surface. To analyze this process, we use chemically homogeneous substrate with 

only gravity as a driving force. We delay the contact line motion and trap the residual 

droplets with a surface roughness only. This surface roughness is introduced with a 

basic sinusoidal function given in equation (2.1) to focus on certain parameter effects 

such as slope and cell frequency. For varying amplitudes and frequencies, we try to 

understand the mechanism of droplet entrapment. We construct sinusoidal wave 

grooves to be parallel with the motion of contact line based on Cox’s study [79]. Cox 
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proves that orientation of sinusoidal wave changes the dynamics where grooves that 

are parallel to motion of contact line effectively decelerates the motion of contact line. 

Rest of the chapter is as follows. In §6.1, we begin with a single sinusoidal cell of 

various configurations to investigate the effect of slope on droplet deposition. Then we 

gradually increase the number of cells to maximum three for fixed slope in order to 

examine the effect of topography frequency. In §6.2, we extend the analysis for the 

motion of droplet on full sinusoidal substrates.  

6.1 Factors that Effect Droplet Deposition 

Before we begin with fully sinusoidal domain, we would like to investigate the effect 

of slope on residual droplet formation and droplet entrapment. Thus, we analyze a 

droplet having following parameters 𝐵𝑜 = 1.1, 𝑓0 = 0.0025, 𝜃𝑒 = 30° and 𝛼 = 90° 

on a substrate with a single sinusoidal cell. Slope of the topography is adjusted by the 

amplitude (Å) in equation (2.1). We use three different amplitudes which are Å =

0.05, Å = 0.075 and Å = 0.1 with fixed wavelength 𝜆 = 0.75. Initial droplet has a 

non-dimensional volume of 1.6082. Figure 6.1 shows the droplet profiles in x-z plane 

at non-dimensional times 6.99, 7.76 and 8.23, the coordinate system is same as we 

show in figure 2.1. 

 

Figure 6.1: Residual droplet deposition for (a) Å = 0.05, (b) Å = 0.075, (c)  Å = 0.1 
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For three different cases, we examine droplet formation after it depins itself from the 

sinusoidal groove. In all three cases, the steepest topography, Å = 0.1, is the only one 

that can properly trap a droplet. We measure the non-dimensional volume of this 

trapped droplet as 0.0312, which is nearly %2 of our initial droplet. As Å increases, 

droplet profile changes where receding contact line of droplet sliding on a higher 

amplitude cell tends to elongate more after it depins. We also examine delay in the 

motion with increasing slope. Non-dimensional times are 6.99, 7.76 and 8.23 for 

Figure 6.1(a), Figure 6.1(b) and Figure 6.1(c), respectively. At the same time, droplet 

on the least steep slides faster than other two droplets. Interestingly, in all cases we 

observe a small residual droplet compared to the trapped droplet, around %0.02 of 

initial droplet volume, that either pins or slowly slides into our cell. We believe this 

can be explained with Snoeijer’s and Cox’s statements. When our main droplet slides 

into cell, location of maximum advancing contact angle is achieved at the highest 

absolute slope of the topography[79]. There droplet pins to substrate for a while and 

spreads across the groove until it depins. After depinning, receding contact line of the 

droplet enters the cell. As droplet continues to slide away from the cell, lateral contact 

line propagates parallel to groove orientation whilst receding contact line creates a 

transverse curvature[48]. In this period, capillary pressure tries to maintain the shape 

of receding contact line as contact angle decreases and begins to form a sharp corner 

that later turns into a tail (See Figure 6.2). 
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Figure 6.2: Curvature formation at the receding contact line for Å = 0.1 at times: (a) 

4.55, (b) 4.76, (c) 4.98, (d) 5.29 

Shortly afterwards of tail formation, residual pearl deposition occurs as shown in 

figure 6.2(d). We believe this process is significantly affected by slope of the 

topography. To show that we plot lateral propagation of droplet for these three cases 

where location of the advancing contact line is same, 𝐿𝑥 = 4.59 to be precise, for all 

(Figure 6.3).  
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Figure 6.3: Propagation of lateral contact line from x-y plane for (− ∙ −): Å = 0.1, 

(−): Å = 0.075, (− −): Å = 0.05, (∙∙∙): Single sinusoidal cell  

As expected, lateral propagation of contact line to groove increases as amplitude of the 

cell increases and we observe sharper curvatures. So, one should expect that the 

volume of small residual droplets increases directly proportional with this amplitude. 

However, that’s not always true. For three different cases, we estimate the non-

dimensional volume of these residual droplets (𝒱𝑟) and tabulate them in Table 6.1. 

Table 6.1: Residual droplet volumes for various amplitudes 

Å 𝒱𝑟 

0.05 3.0118e-04 

0.075 3.8101e-04 

0.1 2.5236e-04 
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From Å = 0.05 to Å = 0.075, 𝒱𝑟 increases proportionally. But in the steepest case, 

residual droplet gets smaller. Again, we believe this is result of the lateral affects and 

thus slope of the cell. Receding contact line is disturbed in all cases and it is forced to 

form a corner. Until a critical Å, we observe moderate curvatures at the receding 

contact line and residual droplet volume increases proportionally. However, 

amplitudes higher than critical Å enforce curvature into a sharper form and leads to a 

smaller residual droplet. To show that we plot the receding contact line of three cases 

for same advancing contact line location (see Figure 6.4). 

 

Figure 6.4: Aerial view (x-y plane) of curvature formation for (− ∙ −): Å = 0.1, (−): 

Å = 0.075, (− −): Å = 0.05. (∙∙∙): Single sinusoidal cell 

Higher topography slopes provoke negative curvature formation at the receding 

contact line. As a result, we obtain sharper curvature in Å = 0.1 compared to smaller 

amplitudes. Outcomes from Figure 6.3 and Figure 6.4 lead us to a following 
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conclusion. Residual droplet pins and gets trapped for high slope cells. During this 

process, lateral contact line motion cambers the advancing contact line whilst caves 

the receding contact line of main droplet. These motions impel tail of main droplet to 

form a corner that later deposit a pearling to substrate. For small and medium 

amplitude slopes, in our problem Å = 0.05 and Å = 0.075, this enforcement is mild 

such that we get direct proportion of residual droplet deposition. But for high 

amplitudes, curvature forms rapidly and leaves relatively small pearling.  

Now that we know effect of the slope from single cell, we analyze same problem with 

double and triple cells with Å = 0.05 to examine the effect of cell frequency. We 

choose the smallest slope to find out whether cell frequency can provoke droplet 

deposition or any other formation. Results are given in figure 6.5 below. 

 

 

Figure 6.5: Droplet sliding over double sinusoidal cell with Å = 0.05 and 𝜆 = 0.75 

In double cell, both big and small residual droplets form and has a non-dimensional 

volume of 1.6436e-04 and 0.0190, respectively. In this case, we examine different 

physics where contact angle hysteresis is drastically affected by the second cell. After 

droplet passes over first cell and deposits a residual pearl, it continues to slide over 

second groove and similar to single cell, curvature formation begins. However, this 

time receding contact line motion is retarded by upslope of the first cell. Before it 

deposits another residual droplet to second cell, receding contact line depins from the 

cell and rapidly slides downslope to merge with the formed curvature. By this way, 

second residual droplet formation onto next cell is prevented. But due to this additional 
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motion, we observe relatively big pearl after main droplet is completely freed from 

surface roughness. Upslope of the second cell has a role in this occurrence. Retention 

forces at the receding contact line increases due to pinning at the second cells upslope 

which retards its motion. Also, rivulet like formation occurs due to elongation of the 

main droplet as it slides away from the cells. Combination of these two effects 

eventually breaks the receding contact line and deposits a residual droplet to surface. 

Similar behavior is also observed in two-dimensional studies of Ceyhan [32] and 

Kumar [26]. Hereby, increment of cell frequency from single to double definitely 

changes the droplet formation even though overall contact line motion indicates 

similar behaviors. Main difference is the instantaneous pinning of receding contact 

line at the first cell which later depins from the surface and merges with the curvature 

that later assists droplet deposition by increasing the retention force at the second cell. 

Finally, we increase cell number for the last time. Results of triple cells are given in 

figure 6.6. 

 

Figure 6.6: Droplet sliding over triple sinusoidal cell with Å = 0.05 and 𝜆 = 0.75 

For the first time, we trap a droplet with a volume of 0.0149 at the second (middle) 

cell for specified Å. Other two residual droplet volumes are 1.2644e-04 and 8.2955e-

04 respectively. In this final case, we mostly observe same physics with single and 

double cells. But occurrence of these physics and third residual droplet formation 

differs from the previous ones. Also notice that volume of first residual droplet is 

smaller than it is in double cell. Droplet is long enough to slide over all three cells at 

once. Thus, different curvature regimes are observed at each cell. So, this could be the 

reason for lesser volume in this case. We separate the sliding motion of the droplet in 

3 parts as (i), (ii) and (iii) representing the location of receding contact line at each cell 
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to clarify this complex process. (i) Droplet already depins from the third cell by the 

time first residual deposits to surface. During this time, there exists several curvature 

structures for each individual cells (see Figure 6.7).  

 

Figure 6.7: Aerial view of curvature formation for triple sinusoidal function with Å =
0.05 and 𝜆 = 0.75 

(ii) Receding contact line shows exact behavior as it is in double cell case where it pins 

to upslope of first groove and then unites with the curvature at the second groove. 

However, this time there exist additional curvature formation at the third cell, that we 

don’t have in double cell case, significantly assists retention forces emerging from 

upslope. This is because, curvature decreases the gravitational effect that pulls the 

residual droplet toward main droplet while coalescence of tail and residual droplet 

increases retention force alongside with upslope. With combination of these effects, 

receding contact line separates from the main droplet and pins to the second cell. We 
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believe this process is actually similar to double cell case where residual droplet forms 

due to both upslope and curvature that emerges from elongating tail. However, this 

process is not fast enough to trap the droplet inside the groove, mainly, droplet is 

sliding over a flat substrate rather than a rough one. Here, third cell accelerates this 

negative curvature formation and thus we can trap the residual droplet inside the 

groove. (iii) Third residual droplet is the most unique one out of all these formations. 

When a pearling or residual droplet forms, receding contact line breaks at a single 

point either caused by curvature, slope of the surface roughness or both. But formation 

of the third droplet occurs differently. While residual droplet begins to come in sight, 

a bridge like rivulet forms between main droplet and nascent residual droplet. As 

residual droplet pulls with retention force, sliding main droplet also pulls this bridge. 

Then, eventually it breaks and forms this tiny residual droplet. 

In conclusion, we examine the effect of slope and frequency of cell effect on the 

formation of droplets. We provide an explanation to these incidents by analyzing 

single, double and triple sinusoidal cells for various slopes. We show that lateral 

contact line motion is responsible from the residual droplet formation and it is 

susceptible to slope of the topography. We find that to trap and pin a droplet, frequent 

and steep topographies must be used to maximize the trapped volume. 

6.2 Trapping Droplets on Sinusoidal Substrates 

In this section, we use the knowledge from §6.1 to define our rough surface. We use 

sinusoidal function throughout the domain to maximize droplet entrapment. For 

various Å, we examine the trapped droplets. Droplet properties are same with §6.1 

which are 𝐵𝑜 = 1.1, 𝑓0 = 0.0025, 𝜃𝑒 = 30° and 𝛼 = 90° where amplitudes are Å =

0.025, Å = 0.05 and Å = 0.075 and frequency is 𝜆 = 0.75. Results for three different 

amplitudes are represented in figure 6.8. 
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Figure 6.8: Entrapment of droplets for (a): Å = 0.025, (b): Å = 0.05, (c): Å = 0.075 

for same frequency 𝜆 = 0.75 

With given parameters, Å = 0.075 cell traps droplets at each groove while cell with 

Å = 0.05 traps droplets once in every two grooves. As we stated before in §6.1, for 

increasing amplitudes we trap more droplets. Also, we observe the same physics for 

Å = 0.05 as we predict in §6.1 for triple cells. It traps droplet in between three cells 

through whole domain. In Å = 0.075, droplet exhibits stick-slip motion and the effect 

of retention forces increases as main droplet leaves residuals to each cell. We also 

detect tiny residual droplets after each entrapment similar to part (iii) of triple cell in 

§6.1. Both advancing and receding contact line exhibits complex curvature formation 

that assists entrapment. We cannot trap droplets until the end of our domain for Å =

0.025. This is expected since it is nearly flat substrate compared to outer 

configurations. The total trapped volumes (𝒱𝑡) are tabulated in table 6.2 for each Å. 

Table 6.2: Total volume of trapped droplets 

Å 𝒱𝑡 % of main droplet 

0.025 0.0418 2.6 

0.05 0.0606 3.7862 

0.075 0.0745 4.6325 

In table 6.2, we exclude tiny volumes that are smaller than %0.2 of main droplet. 

Results show that cell with the highest slope has the highest total trapped volume and 

it decreases as Å gets smaller. Because Å = 0.025 is the smallest in 𝒱𝑡 and cannot 

properly trap even small droplets, we exclude this slope from this point on. We prepare 

table 6.3 to demonstrate each trapped droplets volume for remaining Å at given cell 
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number. In total we examine 9 cells from 1 ≤ 𝐿𝑥 ≤ 8 and 0 ≤ 𝐿𝑦 ≤ 1.2. Notice that 

we don’t include first cell between 0 ≤ 𝐿𝑥 ≤ 1 because droplet initialized there. 

Table 6.3: Trapped droplet volumes at each cell for various Å 

#Cell 𝒱𝑡 for Å = 0.05 % Of main droplet 𝒱𝑡 for Å = 0.075 % of main droplet 

1 - - 0.0038 0.2363 

2 - - 0.0092 0.5721 

3 0.0109 0.6778 0.0094 0.5845 

4 - - 0.0092 0.5721 

5 0.0177 1.1006 0.0089 0.5534 

6 - - 0.0087 0.541 

7 0.0156 0.97 0.0084 0.5223 

8 - - 0.0082 0.51 

9 0.0140 0.8705 0.0080 0.4975 

Both topographies show similar trapping characteristics in the sense of 𝒱𝑡 increase and 

decrease rate. First trapped droplet is small where following droplet is bigger than the 

first one. From this point on, trapped droplet volume decreases gradually and 

continuously. It is because gravitational force that pulls the tail toward main droplet 

decreases as residual droplets trap in between each groove. Lastly, we give figure 6.9 

to present final state of the domain with trapped residuals for Å = 0.075. 

 

Figure 6.9: Detailed view of Å = 0.075 and 𝜆 = 0.75 domain in figure 6.8(c) 
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Until now, we get physics that agrees with our previous findings in §6.1 where we 

change the topography slopes. Now, we adjust the cell frequency by changing the 𝜆 in 

equation (2.1). We set it to 1.125 for  Å = 0.075 and analyze the possible changes (see 

Figure 6.10). 

 

Figure 6.10: x-z plane view of sliding droplet over sinusoidal cell with same 

amplitude,  Å = 0.075, as in Figure 6.8(c) but with higher frequency 𝜆 = 0.125 

Here, distance between two peaks of sinusoidal topography increased which results 

decrease in droplet entrapment. We expect to trap lesser volumes in total because even 

though amplitude is same with Figure 6.9, higher distance between two peaks results 

in slower curvature formation. Interestingly, we obtain periodic entrapment similar to  

Å = 0.05 with 𝜆 = 0.75. We remark that for higher 𝜆, total number of cells for same 

length decreases. So, for  Å = 0.05 and 𝜆 = 0.75, we have 8 cells in between 0 ≤

𝐿𝑥 ≤ 8. For  Å = 0.075 and 𝜆 = 1.125, we have 6 cells. Comparison between all four 

cases is presented in Figure 6.11. 

 

Figure 6.11: Entrapment of droplets for (a): Å = 0.025, (b): Å = 0.05, (c): Å =

0.075 for same frequency 𝜆 = 0.75, (d): Å = 0.05 and 𝜆 = 1.25 
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In total, we trap %3.4577 of main droplets volume at 8 grooves for given case which 

is close but higher than cell with Å = 0.05 and 𝜆 = 0.75. This demonstrates that we 

can find similar behaviors for higher slopes by changing the cell frequency. However, 

even though we find better entrapment compared to smaller slope, we trap %1.175 less 

compared to same slope (Å = 0.075) with high frequency wave (𝜆 = 0.75). These 

results are again matching with our previous examinations for single, double and triple 

cell section. In conclusion we require high slope and frequent topography to trap higher 

volumes. 

Table 6.4: Trapped volumes comparison between lower slope high frequency and 

high slope low frequency cells 

#Cell 

𝒱𝑡 for                   

Å = 0.05  
𝜆 = 0.75 

% of main droplet 

𝒱𝑡 for                         

Å = 0.075  
𝜆 = 0.125 

% of main droplet 

1 - - - - 

2 - - - - 

3 0.0109 0.6778 0.0241 1.6082 

4 - - - - 

5 0.0177 1.1006 0.0166 1.0322 

6 - - - - 

7 0.0156 0.97 0.0149 0.9265 

8 - - - - 
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Chapter 7 

Conclusion 

Manipulation of droplet motion such as delaying and entrapment is beneficial for many 

industrial applications. These features depend on contact angle hysteresis which is 

susceptible to surface roughness. There are numerous amounts of studies in the 

literature based on this topic. But entrapment of a droplet has received little attention. 

Motivated by this we study on three-dimensional slender droplets with lubrication 

approximation on rough surface. Surface roughness is implemented as a continuous 

sinusoidal function. We implement our own finite element method-based solver to 

investigate this problem. To get accurate results within a feasible computation time, 

we also implement an adaptive mesh refiner with quadtree data structure and embed it 

into our FEM solver. We validate our solver with three benchmark studies from 

literature. First one is Tanner’s law [73] where we investigate the maximum droplet 

height change with respect to time for spreading droplet on a flat and horizontal 

substrate. Second is the relation between capillary and Bond number from Podgorski’s 

experimental study [49]. For sliding droplet on a flat substrate, we gradually increase 

inclination angle and investigate the change of capillary number. We compare our 

results with other two numerical study of Kumar [54] and Ahmed [61]. We find similar 

physics with both theoretical and experimental studies. Finally, we examine the change 

of cube of advancing contact line with capillary number which we find linear relation 

between 𝜃𝐴
3 and 𝐶𝑎. Our results are compatible with Cox-Voinow Law [52,75].  

We begin to our main problem by examining the factors that affect droplet deposition. 

To show that we first study on a single sinusoidal groove with various 

amplitudes/slopes. We observe that entrapment of droplet increases for higher 

amplitudes. This is because lateral contact line of a sliding droplet on a higher slope 

propagates more to grooves which later recedes and pulls the tail of main droplet. This 
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motion expedites the negative curvature formation that later leads to a residual pearl. 

For double cell, we examine pearl deposition after receding contact line leaves the cell. 

Even though we observe similar physics, second cell affects the curvature formation 

that leads to a pearl later. At the upslope of first cell, receding contact line 

instantaneously pins and negative curvature formation begins at the second cell. 

However, tail depins from the first cell and merges with the curvature which increases 

the retention forces at the second cell. As advancing contact line continues to proceed, 

tail of the droplet elongates due to increased retention forces and later deposits a big 

pearl to outside of the cells. This is caused by combined influence of curvature and 

upslope of second cell. Triple case is the most complex one and we explain it in three 

separate parts (i), (ii) and (iii) representing the location of receding contact line at 

corresponding cell. (i) We observe similar results with singular case. But droplet is 

long enough to cover all three cells that reveals complex curvature formations at each 

individual cell. (ii) Again, we also observe similar physics with double case, however, 

this time droplet has a part on third cell with a curvature that significantly assists pearl 

deposition. This is because coalescence of tail and nascent residual pearl already 

increases the retention forces and with this additional curvature profile from the third 

cell, receding contact line is forced to separate from the main droplet and pins to 

second cell. (iii) We observe another residual pearl in third cell. But formation of this 

one is different from the rest. This pearl occurs during the pinning process on second 

cell. Whilst main droplet pulls nascent residual pearl towards itself, retention force 

emerges from this residual droplet also pulls itself to cell. From this force balance, 

residual droplet forms and pins to downslope of third cell.  

Finally, we proceed to our original problem which is a continuous sinusoidal surface. 

We analyze three different amplitudes for same frequency and find out that the steepest 

cell traps the highest volume of residual pearls at every cell whilst middling cell traps 

residuals periodically. To see the effect of cell frequency, we use high slope and less 

frequent surface configuration. We show that for same high slope, we trap less residual 

droplet in less frequent cell configuration. These two results are matching with our 

previous findings that lead us to following conclusion. To trap a droplet on a surface, 

we require high slope and small frequency/high frequent cell. We believe that our 

study contributes to understanding of droplet entrapment and would motivate other 

theoretical and experimental studies. 
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Appendix A 

Non-dimensional Film Evolution 

Equation 

We use given scales in section 2.2 to non-dimensionalize evolution equation. Velocity 

and pressure related parameters, us and Πs are found by rearranging the film evolution 

equation. After the alterations, film evolution equation is given below. 

 3𝜇 𝑢𝑠

𝛾 𝜀3
 
𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑥
 [− 𝑓3  (

𝜌𝑔 𝑥𝑠
2  cos 𝛼

𝛾
 
𝜕(𝑓 + ℎ)

𝜕𝑥
−

𝜕3(𝑓 + ℎ)

𝜕𝑥3
 )]  

 
+

𝜕

𝜕𝑥
[−𝑓3 (−

𝜕2(𝑓 + ℎ)

𝜕𝑦2

𝜕

𝜕𝑥
−

Π𝑠 𝑥𝑠

𝜀 𝛾
 
𝜕Π

𝜕𝑥
−

𝜌 𝑔 𝑥𝑠
2  sin 𝛼

𝛾
 
1

𝜀
)]  

 
+

𝜕

𝜕𝑦
 [−𝑓3  (

𝜌𝑔 𝑦𝑠
2  cos 𝛼

𝛾
 
𝜕(𝑓 + ℎ)

𝜕𝑦
−

𝜕3(𝑓 + ℎ)

𝜕𝑦3
 )]  

 
+

𝜕

𝜕𝑦
[−𝑓3 (−

𝜕2(𝑓 + ℎ)

𝜕𝑥2

𝜕

𝜕𝑦
−

Π𝑠 𝑦𝑠

𝜀 𝛾
 
𝜕Π

𝜕𝑦
)] = 0 

 

(A.1) 

Equalizing the accompanied constants to one while taking 𝑥𝑠 = 𝑦𝑠 = 𝑅 sin 𝜃𝑒 yields 

to following scales. 

 
𝑢𝑠 =

𝜀3𝛾

3𝜇
 (A.2) 
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 Πs =

𝛾 𝜀

𝑅 sin 𝜃𝑒
 (A.3) 

 
𝑡𝑠 =

𝑅 sin 𝜃𝑒 3𝜇

𝛾 𝜀3
 (A.4) 

 

𝐵𝑜 =
𝜌 𝑔 (𝑅 sin 𝜃𝑒)

2

𝛾
 (A.5) 
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Appendix B  

Weak Formulation of Droplet 

Thickness 

We weaken the equation (3.1) with the same process as we do to equation (3.2).  

 

∫
𝜕𝑓

𝜕𝑡
Ω

𝑓 𝑑Ω + ∫
𝜕

𝜕𝑥
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕𝑓

𝜕𝑥
)

Ω

𝑓𝑑Ω  

 

+ ∫
𝜕

𝜕𝑥
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕ℎ

𝜕𝑥
)

Ω

𝑓𝑑Ω + ∫
𝜕

𝜕𝑥
(𝑓3

𝜕Ƥ

𝜕𝑥
)

Ω

𝑓𝑑Ω  

 

+ ∫
𝜕

𝜕𝑦
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕𝑓

𝜕𝑦
)

Ω

𝑓𝑑Ω  

 

+ ∫
𝜕

𝜕𝑦
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕ℎ

𝜕𝑦
)

Ω

𝑓𝑑Ω + ∫
𝜕

𝜕𝑦
(𝑓3

𝜕Ƥ

𝜕𝑦
)

Ω

𝑓𝑑Ω 

 

 

 

∫
𝜕

𝜕𝑥
(𝑓3

𝐵𝑜

𝜀
sin 𝛼)

Ω

𝑓𝑑Ω = 0 (B.1) 
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∫
𝜕𝑓

𝜕𝑡
Ω

𝑓 𝑑Ω + ∫
𝜕

𝜕𝑥
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕𝑓

𝜕𝑥
 𝑓)

Ω

𝑑Ω  

 

− ∫ (−𝐵𝑜 cos 𝛼 𝑓3
𝜕𝑓

𝜕𝑥
 )

Ω

𝜕𝑓

𝜕𝑥
𝑑Ω  

 

+ ∫
𝜕

𝜕𝑥
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕ℎ

𝜕𝑥
 𝑓)

Ω

𝑑Ω  

 

− ∫ (−𝐵𝑜 cos 𝛼 𝑓3
𝜕ℎ

𝜕𝑥
 )

𝜕𝑓

𝜕𝑥
Ω

𝑑Ω + ∫
𝜕

𝜕𝑥
(𝑓3

𝜕Ƥ

𝜕𝑥
𝑓) 𝑑Ω

Ω

 

 

 

 

− ∫ 𝑓3
𝜕Ƥ

𝜕𝑥

𝜕𝑓

𝜕𝑥
Ω

𝑑Ω + ∫
𝜕

𝜕𝑦
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕𝑓

𝜕𝑦
 𝑓)

Ω

𝑑Ω  

 

− ∫ (−𝐵𝑜 cos 𝛼 𝑓3
𝜕𝑓

𝜕𝑦
 )

Ω

𝜕𝑓

𝜕𝑦
𝑑Ω  

 

+ ∫
𝜕

𝜕𝑦
(−𝐵𝑜 cos 𝛼 𝑓3

𝜕ℎ

𝜕𝑦
 𝑓)

Ω

𝑑Ω  

 

− ∫ (−𝐵𝑜 cos 𝛼 𝑓3
𝜕ℎ

𝜕𝑦
 )

𝜕𝑓

𝜕𝑦
Ω

𝑑Ω + ∫
𝜕

𝜕𝑦
(𝑓3

𝜕Ƥ

𝜕𝑦
𝑓)𝑑Ω

Ω

  

 

− ∫ 𝑓3
𝜕Ƥ

𝜕𝑦

𝜕𝑓

𝜕𝑦
Ω

𝑑Ω + ∫
𝜕

𝜕𝑥
(𝑓3

𝐵𝑜

𝜀
sin 𝛼  𝑓) 𝑑Ω

Ω
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− ∫ 𝑓3
𝐵𝑜

𝜀
sin 𝛼

𝜕𝑓

𝜕𝑥
Ω

𝑑Ω = 0 (B.2) 

Unknown terms are modified to weaken the differentiability requirement using the fact 

that the test functions are chosen to be zero at any Dirichlet boundary condition (|𝛤   =

 0). Then, we end up with the weak formulation of equation (3.1) as below. 

 

∫
𝜕𝑓

𝜕𝑡
Ω

𝑓 𝑑Ω + ∫ (𝐵𝑜 cos 𝛼 𝑓3
𝜕𝑓

𝜕𝑥
 )

Ω

𝜕𝑓

𝜕𝑥
𝑑Ω  

 

+ ∫ (𝐵𝑜 cos 𝛼 𝑓3
𝜕ℎ

𝜕𝑥
 )

𝜕𝑓

𝜕𝑥
Ω

𝑑Ω − ∫ 𝑓3
𝜕Ƥ

𝜕𝑥

𝜕𝑓

𝜕𝑥
Ω

𝑑Ω 

 

 

 

+ ∫ (𝐵𝑜 cos 𝛼 𝑓3
𝜕𝑓

𝜕𝑦
 )

Ω

𝜕𝑓

𝜕𝑦
𝑑Ω + ∫ (𝐵𝑜 cos 𝛼 𝑓3

𝜕ℎ

𝜕𝑦
 )

𝜕𝑓

𝜕𝑦
Ω

𝑑Ω  

 

− ∫ 𝑓3
𝜕Ƥ

𝜕𝑦

𝜕𝑓

𝜕𝑦
Ω

𝑑Ω − ∫ 𝑓3
𝐵𝑜

𝜀
sin 𝛼

𝜕𝑓

𝜕𝑥
Ω

𝑑Ω = 0 (B.3) 
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