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DESIGN AND ROBOT OPERATING SYSTEM BASED CONTROL OF A 

MODULAR ROBOT MANIPULATOR 

ABSTRACT 

In this thesis, a new design of the modular robot manipulator and its control with Robot 

Operating System is presented. The modules are designed to have an adjustable twist 

angle, which enables to create different robot manipulator configurations. Kinematic 

synthesis on the gripper module is conducted and structural parameters of the gripper 

is determined. Axis sets on the modules are determined by Denavit-Hartenberg 

method. Inverse and forward kinematic analysis and singularity analysis are 

performed. Numerical inverse kinematic solver is proposed for modular robot 

manipulators with more than 3 degrees of freedom and the effectiveness of solver is 

evaluated.  

The robot dynamic model, which is also important in the control of robot manipulators, 

is created for modular robot manipulator. Modular robot manipulator model is created 

in ROS environment in accordance with determined kinematic structure and dynamic 

model and the resulted model is verified by comparing it with MATLAB simulation 

results. Computed torque controller is developed in ROS and its performance is tested 

on simulation model as well as single joint controllers in ROS. 

In order to test the performance of modular robot manipulator an experimental rig is 

created. Joint trajectory controller is implemented on 2 DOF and 3 DOF modular robot 

manipulators and trajectory tracking performance of the controller is given. 

Motion planning studies are performed both on simulation model and experimental 

setup. By means of developed graphical user interface, it is allowed to control the robot 

with jog mode, teach points to the robot and plan motions with predefined command 

sets. 
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MODÜLER ROBOT MANİPÜLATÖR TASARIMI VE ROBOT İŞLETİM 

SİSTEMİ TABANLI KONTROLÜ 

ÖZET 

Bu tezde yeni modüler robot manipulator tasarımı ve Robot İşletim Sistemi ile 

kontrolü sunulmaktadır. Modüller, farklı robot manipulator konfigürasyonları 

oluşturmaya izin veren ayarlanabilir büküm açılarına sahip olacak şekilde 

tasarlanmıştır. Tutucu modülünün kinematik sentezi gerçekleştirilmiş ve tutucunun 

yapısal parametreleri belirlenmiştir. Modüllerdeki eksen takımları Denavit-

Hartenberg yöntemi kullanılarak belirlenmiştir. İleri ve geri yön kinematic analizleri  

ve tekillik analizleri gerçekleştirilmiştir. Üç serbestlik derecesinden fazla modüler 

robot manipülatörler için nümerik ters kinematik çözücüsü önerilmiş ve etkinliği 

değerlendirilmiştir. 

Robot manipülatörlerin kontrolü için de önemli olan robot dinamik modeli  modüler 

robot manipülatör için oluşturmuştur. Belirlenen kinematik yapıya uygun olarak ROS 

ortamında modüler robot manipülatör modeli oluşturulmuş ve model, MATLAB 

simülasyon sonuçları ile kıyaslanarak doğrulanmıştır. Hesaplanan tork kontrolü ROS 

ta geliştirilmiş ve performansı tek eklem kontrolcüsünde olduğu gibi simülasyon 

ortamında test edilmiştir. 

Modüler robot manipülatörün performansını test etmek için bir deney düzeneği 

oluşturulmuştur. Eklem yörünge kontrolcüsü 2 serbestlik dereceli ve 3 serbestlik 

dereceli modular robot manipülatörler için uygulanmış ve yörünge takip 

performansları verilmiştir. 

Simülasyon modeli üzerinde ve deney düzeneği üzerinde hareket planlaması alışmaları 

gerçekleştirilmiştir. Geliştirilen kullanıcı arayüzü sayesinde robotu manuel kontrol 

etme, robota nokta öğretme ve ön tanımlı komut setleri ile hareket planlaması yapma 

imkanı tanınmıştır. 
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1. INTRODUCTION 

Nowadays, most industrial robots can be considered as universal solutions to certain 

types of tasks. These industrial robots usually have minimal mechanical flexibility in 

terms of reconfigurability for achieving different robot configurations. That fixed 

structure of the robot does not allow it to adapt itself optimally to different tasks. 

Therefore, usage of these fixed-structure industrial robots in higher versatility in tasks 

is not always possible and it is vital selecting robot manipulator configuration which 

is capable of fulfilling aimed tasks.  

On contrary to fixed-structure industrial robots, modular robots can be adapted to wide 

variety of tasks due to their construction which include sets of reconfigurable modules. 

Interchangeable modular structure of the robots increases their availability rates in the 

production line. These capabilities of the modular robots create a high potential for use 

in industrial areas.  

This study presents a new modular robot manipulator design and its control with up-

to-date robot control framework ROS. This chapter provides an overview of the thesis. 

The thesis is organized as follows. Section 1.3 describes the motivation for the thesis. 

Section 1.4 provides overview of studies that are made in the modular robotic area. 

Section 2 explains conceptual design of the modules. Section 3 includes detailed 

kinematic and dynamic analysis of the modules. Section 4 introduces ROS and 

components which are used in the ROS. Section 5 presents controller design for 

modular robot manipulator. Section 6 presents used experimental setup. Section 7 

gives the results of the analysis and experiments. 

1.1 Definition of the Problem 

In today's industry, the use of flexible automation lines is needed in production. 

Especially with the developments in Industry 4.0, the importance of flexible 

automation lines has increased. In Industry 4.0, smart components in the production 
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lines communicates with each other and can make decisions themselves without 

human interactions. By accessing and analyzing more data on the process, these 

components optimize themselves to enhance production quality and efficiency.  

In order to achieve this change, industrial robots, one of the most widely used 

equipment in automation, also need to gain structural flexibility. Nowadays, studies 

on modular robot manipulators are being carried out in order to address this issue. 

Reconfigurable structures of the modular robot manipulators ensure the flexibility in 

production lines. By creating smart modules, traceability of the production can be 

enhanced and by gathering more data optimization of the process can be achieved.  

1.2 Motivation 

Motivation to this thesis is considered in four topics. 

Lack of modular robots for industrial areas 

As it will be stated in the Literature Review section 1.3, modular robots have not yet 

fully been adapted to the industrial areas. By studying in this research topic, it is aimed 

to contribute the application areas of the modular robots. When literature is reviewed 

it is observed that modular robot manipulators are mostly used for research purposes. 

However, in this study, it is intended to use of modular robot manipulator in assembly 

line in Industry 4.0.  

Higher potential of modular robots 

In the last decade, modular robots are started to be used in mechatronics education, 

since modularity gives advantages to both students and educators in the 

comprehension of the basic concepts related with the field of robotics and 

mechatronics. For this reason, the secondary aim of this thesis will be to design a user-

friendly modular robot which can be used in mechatronics education. 

Because of their higher potentials as described in the Literature Review, this research 

topic was considered in order to follow increasing trend. 

Lack of modular robot applications in ROS 

Although ROS is utilized in many robotic applications, there are still very few studies 

on integration of ROS with the modular systems. For this reason, the third aim of this 
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thesis is to prove the effectiveness of application of popular robotic software 

framework ROS on modular systems and contribute to the ROS community. 

Low cost robot manipulator solution 

The fourth aim of this study is to offer low cost robot manipulator solution to the 

industrial applications. Open source software structure is important for this purpose. It 

reduces the costs and this is the advantage of the ROS integrated modular robots when 

compared with expensive industrial robots. It is also possible to offer low cost robotic 

integration with modular robot manipulators. Instead of buying two or three industrial 

robots, more tasks can be carried on with having modular robot manipulator and 

reconfiguring it with different robot structure. 

1.3 Literature Review 

Reconfigurable and modular robot manipulators are mechatronic systems composed 

of interchangeable modules. The modular nature of these systems allows them to be 

adapted for different applications, which is a clear advantage with respect to fixed-

structure robots.  

Modular and reconfigurable robot systems have been popular research topics for more 

than 20 years [1]. Modular robots are generally categorized according to their 

configuration properties as manually configurable and self-reconfigurable systems. [2] 

Self-reconfigurable modular robots are those that are able to change their configuration 

on their own, while manually configurable modular robots are modular robots that 

have to be assembled by operator. 

Earlier researches are focused on self-reconfigurable modular robots because of their 

higher potentials. CEBOT [3] , PolyPod [4] and Tetrobot [5], KAIRO3 [6] and 

Modular Amphibious Snake-like Robot [7] and SambotII [8] are some of the self-

reconfigurable modular robots manufactured. On the other hand, Fable II [9] and 

Alligator [10] are the some of the manually reconfigurable modular robots 

manufactured. 

The standard parts of the modular robots can be produced by using 3D printer 

technology. It is showed that modules can be joined (attached) together via magnets 

as well as mechanical components. Joined through magnets are chosen for robots 
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which do not carry loads. It is not the good coupled technique for industrial robots. M-

blocks [11] is one of the studies which use magnetic coupling techniques. 

Thanks to their reconfigurable structures modular robots can adapt themselves to the 

great versatile applications. In literature, it is seen that modular robots are used 

especially for search and rescue operations [12], for space explorations [13] and as 

service robots [14]. One of the challenges of modular robot manipulators is to 

overcome the negative impact of gravity. Since the modules are added end-to-end, the 

center of gravity moves away from the base module under the effects of each actuator 

weights. However, for the robotic applications in space explorations, this disadvantage 

of the modular robot manipulator can be neglected due to the lack of gravity.   

Modular robot manipulators have the following advantages over the fixed-structure 

robot manipulators [15]: 

Versatility: reconfigurable robotic systems are more adaptive than conventional 

systems. The ability to reconfigure allows a robot to disassemble and reassemble to 

form new morphologies that are better suited for new tasks. 

Robustness: Interruptions in production and assembly lines are crucial for the 

production efficiency. Since the robot parts are interchangeable in the modular 

structure, the defective parts can be very quickly replaced automatically (or manually) 

replaced. Hence, this property has a positive effect on system robustness. 

Low cost: reconfigurable robotic systems can potentially lower overall robot cost by 

making many copies of one type of modules so economies of scale and mass 

production come into play. Also, a range of complex solutions can be made from one 

set of modules, saving costs through reuse. 

However, these advantages have not yet been fully implemented in real life, and this 

has led to the lack of modular design of industrial robots used in production. In 

addition, the change in the degree of freedom of the modular robots increases the 

robot's mechanical capability and control complexity as well as increasing the diversity 

of the functionality of the robots. 

As it can be understood from the literature, modular robots have been examined mostly 

for the research purpose until today. However, there are also some studies that have 

been made in last years showing the application of modular robots for industrial 

purposes. G. J. Hamlin and A. C. Sanderson designed a modular robotic system for 
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industrial applications. They made two types of modules; joint modules and they 

simulated a SCARA robot by using these modules [16]. Xinan Pan, Hongguang Wang 

and Yong Jiang developed a calibration method for modular robot manipulators in 

order to overcome machining errors of modules and assembly errors between modules 

[17]. Andrea Giusti and Matthias addressed the problem of controlling reconfigurable 

robot manipulators which are made of heterogeneous modules. They developed an 

automatic centralized controller to synthesize model-based control laws. [18] A. 

Valente proposed a configuration algorithm for reconfigurable robots which gives 

optimal configurations for the given task in terms of statics, kinematics and dynamics. 

[19] 

All of these studies show that a well-designed modular robot system can be used to 

provide production diversity and efficiency in flexible automation assembly lines.  

In addition, open source software is needed to take advantage of these modular robot 

manipulators and in particular to provide cost-effective solutions. To this end, ROS 

provides a suitable open source software framework. Its open and modular structure 

best fits to the modular robot manipulator concept. 

ROS developed for robot applications is shown up as a new approach for robot 

programming. Especially modular structure of the ROS is an important reason for 

selecting it to be used in modular robot applications [20]. In one of the studies that has 

been made on this area, designing and programming of a robotic surgical device was 

realized by using ROS [21]. In another study, programming of a hybrid “pick and 

place” robot was realized by using ROS libraries [22]. In another study, the problem 

of the trajectory following of an unmanned air vehicle was solved by using ROS [23]. 

In addition to these, there are a lot of ROS applications in the literature [24] [25]. 

Modularity in the software architecture is also a research topic in this field. The unified 

software frameworks for modular robot manipulators developed in [26] and [27] but 

these frameworks have not yet been accepted as a standard. In this thesis ROS was 

used to ensure modularity in software architecture. 

Contribution of the research to literature is the new design of the modular robot 

manipulator and the open source software-based control for modular robot 

manipulator.  
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2. CONCEPTUAL DESIGN OF THE MODULES 

In this thesis, the modularity of the links comes with their structures. This means that 

in order to design R – R type modules, we need the minimum specifications related 

with their structures. Those specifications come from the design constraints. Although 

this seems to be a disadvantage of the modularity, with the assembly of more than two 

modules different sort of configurations can be obtained; hence, the capacity of the 

modular robot manipulator increases. 

Throughout this thesis, maximum reachability constraint is determined as a constraint 

and modular structure is determined to be accomplished with adjustable twist angle. 

According to this constraint, conceptual modular robot manipulator is created.  

In order to show the procedural approach, a case study is utilized in section 2.3. 

2.1 Module Types and Structures 

Modular robot manipulator is made of three types of modules.  

• Active module 

• Base module 

• Gripper module 

Active module consists of housing part for the actuator and adjustable coupling part 

for module to module assembly. By means of its reconfigurable coupling part, it allows 

to create different robot configurations. 

Base module consists of stationary mounting points for the active modules. It allows 

to assembly active modules in different configurations. It is responsible for creating 

base frame between world frame and robot frame in the robot manipulator. 

Gripper module which is appended to the active modules, is an end effector tool for 

modular robot manipulator. It is responsible for performing pick and place actions in 

the robot manipulator. 
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In the following chapters, each module types and its kinematic properties are 

discussed. 

2.1.1 Active module 

Active module is made of two parts; housing part and coupling part. In Figure 2.1, 

active module and its components are shown. 

 

Figure 2.1 : Active module. 

Housing part includes a DYNAMIXEL MX64 actuator which is creating moving 

joints structure of the modular robot manipulator. By means of its mounting holes, 

actuator is fixed to the module with bolts. The shaft of the actuator is bedding to the 

module by means of radial and needle roller bearings. Rotary joint which is mounted 

on the shaft has mounting holes for module to module assembly. Housing part of the 

active module is given in Figure 2.2. 
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Figure 2.2 : Active Module Housing Part. 

Coupling part creates configurable structure of the modular robot manipulator. By 

rotating in its longitude axis, twist angle of the consecutive module is configured. It 

has 12 mounting holes and alignment holes to assemble coupling part to the housing 

part of the active module. Therefore, the twist angle of the consecutive module can be 

configured with 30 degrees resolution. Once the twist angle is determined, coupling 

part is mounted to the housing part with bolts. It has needle bearing for bedding which 

is utilized in the configuration process. Coupling part of the active module is given in 

Figure 2.3. 

 

Figure 2.3 : Active Module Coupling Part. 

In the both side of the active module, there are holes that enable to connect power and 

communication cables to the actuator. 
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2.1.2 Base module 

Base module has two separate mounting points to connect active modules. This 

connection is made by using rectangular coupler part. Active module is mounted to 

the rectangular coupler part first and then it is mounted to the base module. 

In Figure 2.4, base module and coupler part are shown with two possible mounting 

situations for coupler part. 

 

Figure 2.4 : Base module and coupler part. 

2.1.3 Gripper module 

Gripper module is an end-effector tool for the modular robot manipulator structure. 

The fingers in the gripper module consist of two symmetrical four-bar mechanisms. 

These fingers are actuated with a DC servo motor. There are 10 mounting points where 

the gripper module is connected to the housing part of the active module. In Figure 2.5 

gripper module is shown. 
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Figure 2.5 : Gripper Module. 

2.2 Determination of the DH Parameters 

The kinematic model of the robot represents the motion of the robot mechanism 

regardless of the force and torque that actuates the motion. Kinematic solution allows 

to determine set of joint variables for the given end-effector pose of the robot and vise-

versa.  

Denavit-Hartenberg (DH) notation is widely used to describe the kinematic model of 

a robot.  In DH convention, each homogeneous transformation 𝑇𝒊
𝒊−𝟏  is represented as 

a product of four basic transformations: 

 T𝐢
𝐢−𝟏 = Rotx(αi−1)Dx(ai−1)𝑅𝑧(𝜃𝑖)𝐷𝑧(𝑑𝑖) = 

 [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1

𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑐𝜃𝑖𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑠𝛼𝑖−1𝑑𝑖

𝑠𝜃𝑖𝑠𝛼𝑖−1 𝑐𝜃𝑖𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑐𝛼𝑖−1𝑑𝑖

0 0 0 1

] 
( 2.1 ) 

where sin(𝜃) is abbreviated as 𝑠𝜃 and cos(𝜃) as 𝑐𝜃, 𝑅𝑜𝑡𝑖 denotes rotation about the 

axis 𝑖, and  𝐷𝑖 denotes translation along axis 𝑖. 

In the equation 2.1, four DH parameters are described with the following: 

• 𝑎𝑖−1 denotes the link length measured between the 𝑍𝑖−1 and 𝑍𝑖  along the 𝑋𝑖−1 

axis. 

• 𝛼𝑖−1 denotes the link twist angle measured between 𝑍𝑖−1 and 𝑍𝑖 along the 𝑋𝑖−1 

axis. 
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• 𝑑𝑖 denotes the link offset measured between 𝑋𝑖−1 and 𝑋𝑖 along the 𝑍𝑖 axis. 

• 𝜃𝑖 denotes the joint angle measured between 𝑋𝑖−1 and 𝑋𝑖 along the 𝑍𝑖 axis. 

As shown in Figure 2.6, where visual representation of DH parameters and coordinate 

frames allocations are given. 

 

Figure 2.6 : DH convention [28]. 

Once the DH parameters determined, transformation matrix of the end-effector relative 

to the base of robot manipulator can be calculated with equation 2.2. 

 𝑇 = 𝑇 𝑇 … 𝑇𝒏
𝒏−𝟏

𝟐
𝟏

𝟏
𝟎

𝒏
𝟎  ( 2.2 ) 

Coordinate frames allocations for modular robot manipulator was made as it is shown 

in Figure 2.7. 
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Figure 2.7 : DH coordinate frames. 

The DH parameters corresponding to the selected coordinate frames are listed in the 

Table 2.1. 

 Table 2.1 : DH Parameters.  

i 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖 

1 𝛼0 0 𝑑1 𝜃1 

2 𝛼1 𝑎1 𝑑2 𝜃2 

3 𝛼2 𝑎2 𝑑3 𝜃3 

4 𝛼3 𝑎3 𝑑4 0° 

In the Table 2.1, 𝛼 variables are configuration parameters, d and a variables are 

structural parameters and 𝜃 variables are joint control parameters for modular robot 

manipulator. Because all joints are revolute joints, the unit of the 𝜃 variables are in 

radians.  
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Homogenous transformation matrices of the given 3 DOF modular robot manipulator 

configuration are obtained as following: 

 

𝑇1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1𝑐𝛼0 𝑐𝜃1𝑐𝛼0 −𝑠𝛼0 −𝑠𝛼0𝑑1

𝑠𝜃1𝑠𝛼0 𝑐𝜃1𝑠𝛼0 𝑐𝛼0 𝑐𝛼0𝑑1

0 0 0 1

] ( 2.3 ) 

 

𝑇2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 𝑎1

𝑠𝜃2𝑐𝛼1 𝑐𝜃2𝑐𝛼1 −𝑠𝛼1 −𝑠𝛼1𝑑2

𝑠𝜃2𝑠𝛼1 𝑐𝜃2𝑠𝛼1 𝑐𝛼1 𝑐𝛼1𝑑2

0 0 0 1

] ( 2.4 ) 

 

𝑇3
2 = [

𝑐𝜃3 −𝑠𝜃3 0 𝑎2

𝑠𝜃3𝑐𝛼2 𝑐𝜃3𝑐𝛼2 −𝑠𝛼2 −𝑠𝛼2𝑑3

𝑠𝜃3𝑠𝛼2 𝑐𝜃3𝑠𝛼2 𝑐𝛼2 𝑐𝛼2𝑑3

0 0 0 1

] ( 2.5 ) 

 

𝑇4
3 = [

1 0 0 𝑎3

0 𝑐𝛼3 −𝑠𝛼3 −𝑠𝛼3𝑑4

0 𝑠𝛼3 𝑐𝛼3 𝑐𝛼3𝑑4

0 0 0 1

] ( 2.6 ) 

2.3 Structural Design of Modular Robot Manipulator 

2.3.1 Structural design of gripper 

In the gripper design, usage of the four-bar mechanism was decided and kinematic 

synthesis of the gripper was proceeded upon 4 bar mechanism. 

Synthesis of the four-bar mechanism can be conducted with path generation, body 

guidance or function generation methods. Due to importance on the orientation of the 

gripper initial and final positions, the synthesis was conducted with body guidance 

method. In body guidance method, entire body is guided with desired body poses. 
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Figure 2.8 : Gripper module design. 

In Figure 2.8 gripper design is given. The designed gripper consists of two pieces of 

four-bar mechanism. Both four-bar fingers are intended to be symmetrical according 

to origin axis of the gripper in the design phase. Therefore, in order to synthesize the 

mechanism only one of the fingers is considered. 

By splitting the four-bar mechanism as it is given in Figure 2.9 into two 2 DOF 

mechanisms, link lengths can be obtained.  

 

Figure 2.9 : Splitting of the four-bar mechanism. 

By using vector-loop equation for the first 2 DOF mechanism, following equations are 

obtained: 
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 𝑙1𝑒
𝑖𝜃1 + 𝑙4𝑒

𝑖𝜃4 = 𝑃𝑥 + 𝑖𝑃𝑦  ( 2.7 ) 

 𝑙1 𝑐𝑜𝑠 𝜃1 + 𝑙4 𝑐𝑜𝑠 𝜃4 = 𝑃𝑥 ( 2.8 ) 

 l1 sin θ1 + l4 sin θ4 = Py ( 2. 9 ) 

By rearranging equations 2.8 and 2.9 as leaving 𝜃1 parameters alone on the left side: 

 𝑙1 𝑐𝑜𝑠 𝜃1 = 𝑃𝑥 − 𝑙4 𝑐𝑜𝑠 𝜃4  ( 2.10 ) 

 𝑙1 𝑠𝑖𝑛 𝜃1 = 𝑃𝑦 − 𝑙4 𝑠𝑖𝑛 𝜃4    ( 2.11 ) 

and by squaring both equations and adding them equation 2.12 is obtained: 

 𝑙1
2 = 𝑃𝑥

2 + 𝑃𝑦
2 − 2𝑃𝑥𝑙4 𝑐𝑜𝑠 𝜃4 − 2𝑃𝑦𝑙4 𝑠𝑖𝑛 𝜃4 + 𝑙4

2
 ( 2.12 ) 

If the obtained equation is divided to the 2𝑙4: 

 (𝑙4
2− 𝑙1

2)

2𝑙4
+ (𝑃𝑥

2 + 𝑃𝑦
2)

1

2𝑙4
− 𝑃𝑥 𝑐𝑜𝑠 𝜃4 − 𝑃𝑦 𝑠𝑖𝑛 𝜃4 = 0  ( 2.13) 

is obtained. The equation 2.13 is the objective function of the kinematic synthesis and 

can be introduced as following: 

 𝑓1𝑖𝑝1 + 𝑓2𝑖𝑝2 + 𝐹𝑖 = 0  (𝑖 = 1, 2) ( 2.14 ) 

where 𝑝𝑘 are constant coefficients, 𝑖 is number of poses, 𝑓𝑘𝑖 are linearly independent 

continuous function of the motion variables: 

 𝐹𝑖 = −𝑃𝑥 𝑐𝑜𝑠 𝜃4 − 𝑃𝑦 𝑠𝑖𝑛 𝜃4  ( 2.15 ) 

 𝑝1 =
(𝑙4

2− 𝑙1
2)

2𝑙4
  ( 2.16 ) 

 𝑓1𝑖 =  1 ( 2.17 ) 

 𝑝2 = 
1

2𝑙4
  ( 2.18 ) 

 𝑓2𝑖 = (𝑃𝑥
2 + 𝑃𝑦

2)  ( 2.19 ) 

When the 2.14 is represented in matrix form, we obtain: 
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[
𝑓11 𝑓21

𝑓12 𝑓22
] [

𝑝1

𝑝2
] = [

−𝐹1

−𝐹2
]  ( 2.20 ) 

In the equation 2.20, 𝑝1 and 𝑝2 coefficients are calculated with the following equation: 

 
[
𝑝1

𝑝2
] = [

𝑓11 𝑓21

𝑓12 𝑓22
]
−1

[
−𝐹1

−𝐹2
]  ( 2.21 ) 

After the 𝑝1 and 𝑝2 coefficients are calculated, 𝑙1 and 𝑙4 link lengths are calculated as: 

 𝑙4 = 
1

2𝑝2
  ( 2.22 ) 

 
𝑙1 = √(𝑙4

2 − 2𝑝1𝑙4)  ( 2.23 ) 

By applying the same steps for the second 2DOF structure, 𝑙2 and 𝑙3 link lengths are 

calculated. By using vector-loop equation following equations are obtained: 

 

 𝑙2⃗⃗⃗  +  𝑙3⃗⃗⃗  = �⃗�    ( 2.24 ) 

 𝑙2 𝑐𝑜𝑠 𝜃2 + 𝑙3 𝑐𝑜𝑠 𝜃3 = 𝑃𝑥  ( 2.25 ) 

 𝑙2 𝑠𝑖𝑛 𝜃2 + 𝑙3 𝑠𝑖𝑛 𝜃3 = 𝑃𝑦 ( 2.26 ) 

By rearranging equations 2.25 and 2.26 as leaving 𝜃2 parameters alone on the left-

hand side we obtain: 

 𝑙2 𝑐𝑜𝑠 𝜃2 = 𝑃𝑥 − 𝑙3 𝑐𝑜𝑠 𝜃3 ( 2.27 ) 

 𝑙2 𝑠𝑖𝑛 𝜃2 = 𝑃𝑦 − 𝑙3 𝑠𝑖𝑛 𝜃3 ( 2.28 ) 

and by squaring both equations and adding them we get: 

 𝑃𝑥
2 + 𝑃𝑦

2 − 2𝑃𝑥𝑙3 𝑐𝑜𝑠 𝜃3 − 2𝑃𝑦𝑙3 𝑠𝑖𝑛 𝜃3 + 𝑙3
2 − 𝑙2

2 = 0 ( 2.29 ) 

The equation 2.29 is expressed as a polynomial function: 

 𝐹𝑖 + 𝑓1𝑖𝑃1 + 𝑓2𝑖𝑃2 + 𝑓3𝑖𝑃3 = 0  (𝑖 = 1, 2) ( 2.30 ) 
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where, 

 𝐹𝑖 = −𝑃𝑥 𝑐𝑜𝑠 𝜃3 − 𝑃𝑦 𝑠𝑖𝑛 𝜃3  ( 2.31 ) 

 𝑝1 =
(𝑙3

2− 𝑙2
2)

2𝑙3
  ( 2.32 ) 

 𝑓1𝑖 =  1 ( 2.33 ) 

 𝑝2 = 
1

2𝑙3
  ( 2.34 ) 

 𝑓2𝑖 = (𝑃𝑥
2 + 𝑃𝑦

2)  ( 2.35 ) 

When the equation 2.30 is represented in matrix form, we have: 

 
[
𝑓11 𝑓21

𝑓12 𝑓22
] [

𝑝1

𝑝2
] = [

−𝐹1

−𝐹2
]  ( 2.36 ) 

In the equation 2.36, 𝑝1 and 𝑝2 coefficients are calculated with the following equation: 

 
[
𝑝1

𝑝2
] = [

𝑓11 𝑓21

𝑓12 𝑓22
]
−1

[
−𝐹1

−𝐹2
]  ( 2.37 ) 

After the 𝑝1 and 𝑝2 coefficients are calculated, 𝑙2 and 𝑙3 link lengths are calculated as: 

 𝑙3 = 
1

2𝑝2
  ( 2.38 ) 

 
𝑙2 = √(𝑙3

2 − 2𝑝1𝑙3)  ( 2.39 ) 

In the gripper design two precision points were chosen as following: 

P1(x = -0.019.98m, y = 0.020.05m, 𝜃3 = 0 rad, 𝜃4 = 3.0018 rad) 

P2(x = 0.002.36m, y = 0.040.36m, 𝜃3 = 0 rad, 𝜃4 = 1.6158 rad) 

The link lengths according to the P1 and P2 precision points were computed by 

applying the discussed procedure above: 

𝑙1 = 0.0171024 m, 𝑙2 = 0.0435236 m 

𝑙3 = 0.0186503 m, 𝑙4 = 0.0236277 m 
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2.3.2 Case study for R-R type modular robot manipulator 

In this section, it is aimed to determine structural parameters  𝛼1, 𝑑1 and 𝑑2 of 2 DOF 

modular robot manipulator configuration which is given in Figure 2.10 for a given task 

space path.  

DH parameters of the robot is given in Table 2.2 as parametric symbols.  

Table 2.2 : DH parameters of the robot which is given in Figure 2.10. 

i 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖 

1 𝛼0 𝑎0 𝑑1 𝜃1 

2 𝛼1 𝑎1 𝑑2 𝜃2 

3 𝛼2  𝑎2 𝑑3 0 

 

 

Figure 2.10 : 2 DOF modular robot manipulator. 

As it will be discussed detailed in section 3.1, forward kinematics solutions for the 2 

DOF modular robot manipulator configuration is obtained as following: 
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𝑇1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 𝑎0

𝑠𝜃1𝑐𝛼0 𝑐𝜃1𝑐𝛼0 −𝑠𝛼0 −𝑠𝛼0𝑑1

𝑠𝜃1𝑠𝛼0 𝑐𝜃1𝑠𝛼0 𝑐𝛼0 𝑐𝛼0𝑑1

0 0 0 1

]  ( 2.40 ) 

 

𝑇2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 𝑎1

𝑠𝜃2𝑐𝛼1 𝑐𝜃2𝑐𝛼1 −𝑠𝛼1 −𝑠𝛼1𝑑2

𝑠𝜃2𝑠𝛼1 𝑐𝜃2𝑠𝛼1 𝑐𝛼1 𝑐𝛼1𝑑2

0 0 0 1

]  ( 2.41 ) 

 

𝑇3
2 = [

1 0 0 𝑎2

0 𝑐𝛼2 −𝑠𝛼2 −𝑠𝛼2𝑑3

0 𝑠𝛼2 𝑐𝛼2 𝑐𝛼2𝑑3

0 0 0 1

]  ( 2.42 ) 

 𝑇 =  𝑇 𝑇 𝑇3
2

2
1

1
0

3
0  ( 2.43 ) 

Position part of the homogenous transformation matrix  

𝑇3
0  is obtained with the following equations: 

 𝑥 =  𝑐1𝛽 − 𝑠1𝛾 + 𝑎0  ( 2.44 ) 

 𝑦 =  𝑠1𝑐𝛼0
𝛽 + 𝑐1𝑐𝛼0

𝛾 − 𝑠𝛼0
𝜏 − 𝑠𝛼0

𝑑1  ( 2.45 ) 

 𝑧 =  𝑠1𝑠𝛼0
𝛽 + 𝑐1𝑠𝛼0

𝛾 + 𝑐𝛼0
𝜏 + 𝑐𝛼0

𝑑1  ( 2.46 ) 

where, 

 𝛽 =  𝑐2𝑎2 + 𝑠2𝑠𝛼2
𝑑3 + 𝑎1  ( 2.47 ) 

 𝛾 =  𝑠2𝑐𝛼1
𝑎2 − 𝑐2𝑐𝛼1

𝑠𝛼2
𝑑3 − 𝑠𝛼1

𝑐𝛼2
𝑑3 − 𝑠𝛼1

𝑑2  ( 2.48 ) 

 𝜏 =  𝑠2𝑠𝛼1
𝑎2 − 𝑐2𝑠𝛼1

𝑠𝛼2
𝑑3 + 𝑐𝛼1

𝑐𝛼2
𝑑3 + 𝑐𝛼1

𝑑2  ( 2.49 ) 

and in the equations, 𝑠𝑖 represents 𝑠𝑖𝑛𝑒(𝑖), 𝑐𝑖 represents 𝑐𝑜𝑠𝑖𝑛𝑒(𝑖), 𝑠𝛼𝑖
 represents 

𝑠𝑖𝑛𝑒(𝛼𝑖) , 𝑐𝛼𝑖
 represents 𝑐𝑜𝑠𝑖𝑛𝑒(𝛼𝑖). 

Equation 2.44 is rearranged with the following transformation: 

 𝑥 − 𝑎0 = 𝑐1𝛽 − 𝑠1𝛾 ( 2.50 ) 
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By squaring and adding equations 2.50, 2.42 and 2.43 following equations are 

obtained: 

 (𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 = 𝛽2 + 𝛾2 + 𝜏2 + 𝑑1

2 + 2𝜏𝑑1 ( 2.51 ) 

 𝛽2 + 𝛾2 + 𝜏2 = 𝑎2
2 + 𝑎1

2 + 𝑑3
2 + 𝑑2

2 + 2𝑐𝛼2
𝑑3𝑑2 +

2𝑐2𝑎2𝑎1 + 2𝑠2𝑠𝛼2
𝑑3𝑎1  

( 2.52 ) 

 (𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 = 𝑎2

2 + 𝑎1
2 + 𝑑3

2 + 𝑑2
2 +

2𝑐𝛼2
𝑑3𝑑2 + 2𝑐2𝑎2𝑎1 + 2𝑠2𝑠𝛼2

𝑑3𝑎1 + 2𝑠2𝑠𝛼1
𝑎2𝑑1 −

2𝑐2𝑠𝛼1
𝑠𝛼2

𝑑3𝑑1 + 2𝑐𝛼1
𝑐𝛼2

𝑑3𝑑1 + 2𝑐𝛼1
𝑑2 + 𝑑1

2
  

( 2.53 ) 

When the equations are reordered as: 

 𝐴𝑠2 + 𝐵𝑐2 = 𝐶 ( 2.54 ) 

where,    

 𝐴 =  2𝑠𝛼1
𝑎2𝑑1 +  2𝑠𝛼2

𝑑3𝑎1 ( 2.55 ) 

 𝐵 =  2𝑎2𝑎1 − 2𝑠𝛼1
𝑠𝛼2

𝑑3𝑑1 ( 2.56 ) 

 𝐶 =  (𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 − 𝑎2

2 − 𝑎1
2 − 𝑑3

2 − 𝑑2
2 −

2𝑐𝛼2
𝑑3𝑑2 − 2𝑐𝛼1

𝑐𝛼2
𝑑3𝑑1 − 2𝑐𝛼1

𝑑2 − 𝑑1
2
  

( 2.57 ) 

By using trigonometric equation in the equation 2.58, 𝜃2 is obtained as following: 

 𝜃2 = 𝐴𝑡𝑎𝑛2(𝐴, 𝐵) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)  ( 2.58 ) 

By substituting 𝜃2 into equation 2.53, objective function which depends on structural 

parameters of the modular robot manipulator is obtained as follows: 

 𝑜𝑏𝑗(𝑥, 𝑦, 𝑧, 𝑎0, 𝑎1, 𝑎2, 𝛼0, 𝛼1, 𝛼2, 𝑑1, 𝑑2, 𝑑3 ) =  

(𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 − [𝑎2

2 + 𝑎1
2 + 𝑑3

2 + 𝑑2
2 + 2𝑐𝛼2

𝑑3𝑑2 +

2 cos (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑎2𝑎1 +

2 sin (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑠𝛼2
𝑑3𝑎1 +

2 sin (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑠𝛼1
𝑎2𝑑1 −

( 2.59 ) 
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2 cos (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑠𝛼1
𝑠𝛼2

𝑑3𝑑1 +

2𝑐𝛼1
𝑐𝛼2

𝑑3𝑑1 + 2𝑐𝛼1
𝑑2 + 𝑑1

2] = 0  

In this case study, 𝑎0, 𝑎1, 𝑎2, 𝑑3, 𝛼0 and 𝛼2 are taken as constant parameters in this 

procedure. 

 𝑎0 = 0 

𝑎1 = 𝑎2 = 0.112 

𝑑3 = 0.04131𝑚 

𝑎0 = 0 𝑟𝑎𝑑 

𝑎2 = −𝜋 

( 2.60 ) 

The optimized structural parameters 𝛼1, 𝑑1 and 𝑑2 are bounded as follows: 

 0 < 𝛼1 < 2𝜋 

0.427𝑚 <  𝑑1 < 0.527𝑚 

0.04131𝑚 < 𝑑2 < 0.1𝑚 

( 2.61 ) 

𝛼1, 𝑑1 and 𝑑2 parameters are sampled within their determined limit values and by 

sweeping joint angles 𝜃1 𝑎𝑛𝑑 𝜃2 between 0 and 2𝜋 for each sample, modular robot 

manipulator’s possible workspace is created as in Figure 2.11. 

 

Figure 2.11 : Possible workspace of the modular robot manipulator. 

Inside the workspace, 13 random points selected as a task to be accomplished as it is 

given in Figure 2.12. 
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Figure 2.12 : Selected task points inside the possible workspace of the modular 

robot manipulator. 

By using x, y and z coordinates of the selected path, 𝛼1, 𝑑1 and 𝑑2 structural parameters 

which makes the root mean square error of the objective function minimum was 

searched via brute force method. 

As a result of the brute force search, minimum root mean square error is obtained as 

1.2 × 10−2 m with the following structural parameters: 

𝛼1 = 1.79 𝑟𝑎𝑑 

𝑑1 = 44.54 × 10−2 𝑚 

𝑑2 = 52.1 × 10−3 𝑚 

Workspace of the modular robot manipulator with the found structural parameters is 

shown in Figure 2.13. 

 

Figure 2.13 : Workspace with calculated 𝛼1, 𝑑1 and 𝑑2 parameters. 
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3. KINEMATICS AND DYNAMICS OF MODULAR ROBOT 

MANIPULATOR 

3.1 Forward Kinematics 

The main aim of the forward kinematics is to determine the pose of the end-effector 

from given set of joint variables. In order to examine forward kinematics of the 

modular robot manipulator, 3 DOF configuration given in the Figure 3.1 was 

considered. 

 

Figure 3.1 : 3 DOF modular robot configuration. 

The DH parameters of the given configuration are listed in the Table 3.1. 
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Table 3.1 : DH parameters of the modular robot in  Figure 3.1. 

i 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖 

1 0° 0 0.427m 𝜃1 

2 −90° 0.112m 0 𝜃2 

3 180° 0.112m 0.0434m 𝜃3 

4 180° 0.112m 0.0434m 0° 

Following transformation matrixes were found by utilizing DH convention. 

 

𝑇1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1 𝑐𝜃1 0 0
0 0 1 0.427
0 0 0 1

]  ( 3.1 ) 

 

𝑇2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 0.112
0 0 1 0

−𝑠𝜃2 −𝑐𝜃2 0 0
0 0 0 1

]  ( 3.2 ) 

 

𝑇3
2 = [

𝑐𝜃3 −𝑠𝜃3 0 0.112
−𝑠𝜃3 −𝑐𝜃3 0 0

0 0 −1 −0.0434
0 0 0 1

]  ( 3.3 ) 

 

𝑇4
3 = [

1 0 0 0.112
0 −1 0 0
0 0 −1 −0.0434
0 0 0 1

] ( 3.4 ) 

The resultant transformation matrix which denotes the end-effector pose as measured 

from base frame then is obtained as following: 

 𝑇 = 𝑇1
0 𝑇2

1 𝑇 𝑇4
3

3
2

4
0  = 

[

𝑐𝜃1𝑐(𝜃2 − 𝜃3) −𝑐𝜃1𝑠(𝜃2 + 𝜃3) −𝑠𝜃1 𝑝𝑥

𝑠𝜃1𝑐(𝜃2 − 𝜃3) −𝑠𝜃1𝑠(𝜃2 − 𝜃3) 𝑐𝜃1 𝑝𝑦

−𝑠(𝜃2 − 𝜃3) −𝑐(𝜃2 − 𝜃3) 0 𝑝𝑧

0 0 0 1

] 
( 3.5 ) 

where, 

 𝑝𝑥 = 0.112(𝑐𝜃1𝑐(𝜃2 − 𝜃3)) +  0.112(𝑐𝜃1𝑐𝜃2) +

 0.0434𝑠𝜃1 +  0.112𝑐𝜃1 −  0.0434𝑠𝜃1  
( 3.6 ) 
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 𝑝𝑦 = 0.112(𝑠𝜃1𝑐(𝜃2 − 𝜃3)) +  0.112(𝑠𝜃1𝑐𝜃2) −

0.0434𝑐𝜃1  +  0.112𝑠𝜃1 +  0.0434𝑐𝜃1  
( 3.7 ) 

 𝑝𝑧 = −0.112(𝑠(𝜃2 − 𝜃3)) −  0.112(𝑠𝜃2) +  0.427 ( 3.8 ) 

In order to verify the solution, initial position of the robot manipulator can be checked 

from the solution.  

When 𝜃1, 𝜃2, 𝜃3 = 0 is substituted into the equation 3.6, 3.7 and 3.8 following end-

effector position is obtained. 

𝑝𝑥 = 0.336 m 

𝑝𝑦 = 0 m 

𝑝𝑧 = 0.427 m 

According to the obtained result, correct location of the end-effector is observed. 

3.2 Jacobian Analysis 

Jacobian matrices map joint velocities to the cartesian velocities of the end effector. 

Jacobian matrices were used for determining singular positions of the robot 

manipulator in the 3.3 section for inverse kinematics procedure and for deriving 

equation of motion of the robot manipulator in 3.4 section. 

By using geometric method, Jacobian matrices for the modular robot manipulator 

configuration given in Figure 3.2 was determined as follows: 
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Figure 3.2 :  Geometric Jacobian. 

 

𝐽4
0 = [

( 𝑍1
0  𝑥 ( 𝑂4

0 − 𝑂1
0 ))3𝑥1 ( 𝑍2

0  𝑥 ( 𝑂4
0 − 𝑂2

0 ))3𝑥1 ( 𝑍3
0  𝑥 ( 𝑂4

0 − 𝑂3
0 ))3𝑥1

( 𝑍1
0 )3𝑥1 ( 𝑍2

0 )3𝑥1 ( 𝑍3
0 )3𝑥1

] ( 3.9 ) 

Where 𝑂4
0  represents to end effector position relative to the base frame, 𝑂𝑥

0  represents 

the position of the reference frame x relative to the base frame and 𝑍𝑥
0  represents the 

third column of the 𝑇𝑥
0  transformation matrix. 

Singular positions of the robot manipulator are determined by the following condition: 

 𝑑𝑒𝑡(𝐽) = 0 ( 3.10 ) 

Because of the Jacobian matrix for the 3 DOF robot manipulator is not in square matrix 

form, in order to calculate determinant of the Jacobian matrix Singular Value 

Decomposition method was used. 

 𝐽 = 𝑈𝑆𝑉𝑇 ( 3.11 ) 
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In the equation 3.11, U represents the left singular matrix, S represents singular matrix 

and V represents right singular matrix. When the Jacobian matrix is decomposed in 

the U, S and V matrices, determinant of the Jacobian is obtained as follows: 

 𝑑𝑒𝑡(𝐽) = 𝑑𝑒𝑡(𝑈)𝑑𝑒𝑡(𝑆) 𝑑𝑒𝑡 (𝑉𝑇) ( 3.12 ) 

In the section 7.1.3 validation of the singularity analysis is given. 

3.3 Inverse Kinematics 

Inverse kinematics is a problem of calculating joints angles from the given end effector 

cartesian poses. 

There is not a unique solution for inverse kinematic problems. In literature there are 

some methods used for solving inverse kinematic problems [29] and these are mainly 

categorized in two groups; analytical and numerical solutions. Analytical solutions 

offer fast and closed form solutions but the solution is not always found for 

complicated robot kinematic configurations. Contrary to analytical solutions, 

numerical solutions offer approximate solutions with sufficient accuracy. 

Due to its reconfigurable structure of the modular robot manipulator, it is not always 

possible to find an analytical solution. Therefore, for higher than 3 DOF modular robot 

manipulator configurations, a numerical method was considered to the inverse 

kinematic problem. 

3.3.1 Inverse kinematic solution with analytic method 

In this section, inverse kinematic solution for 3DOF modular robot manipulator is 

explained. For that purpose, 3 DOF robot manipulator configuration which is given in 

Figure 3.1 was used. 

Forward kinematics equation for the robot manipulator is as the equation 3.5. When 

the equation 3.5 is multiplied by  𝑇1
0 −1: 

 ( 𝑇1
0 )−1 𝑇 = ( 𝑇)1

0 −1 𝑇1
0 𝑇2

1 𝑇 𝑇4
3

3
2

4
0  ( 3.13 ) 

Because of ( 𝑇1
0 )−1 𝑇1

0  multiplication is equal to the identity matrix following equation 

is obtained: 
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 ( 𝑇1
0 )−1 𝑇 = 𝑇2

1 𝑇 𝑇4
3

3
2

4
0  ( 3.14 ) 

By using the equation 3.14 inverse kinematics solution is found. 𝑇1
0 , 𝑇2

1 , 𝑇3
2 , 𝑇4

3  and 

𝑇4
0  transformation matrices were found as equation 3.1, 3.2, 3.3, 3.4 and 3.5 

respectively and inverse of the 𝑇1
0  matrix is obtained as following 

 

𝑇1
0 −1 = [

𝑐𝜃1 𝑠𝜃1 0 0
−𝑠𝜃1 𝑐𝜃1 0 0

0 0 1 𝑑1

0 0 0 1

]  ( 3.15 ) 

When the multiplication of the equation 3.14 is made for both sides and position parts 

of the matrices are extracted as, 

[

… … … 𝑝𝑥𝑐𝜃1 + 𝑝𝑦𝑠𝜃1

… … … −𝑝𝑥𝑠𝜃1 + 𝑝𝑦𝑐𝜃1

… … … 𝑝𝑧 − 𝑑1

0 0 0 1

]=[

… … … 𝑎4𝑐𝜃23 + 𝑎3𝑐𝜃2 + 𝑎2

… … … 𝑑4 − 𝑑3

… … … −𝑎4𝑠𝜃23 − 𝑎3𝑠𝜃2

0 0 0 1

] ( 3.16 ) 

the following equations are obtained: 

 𝑝𝑥𝑐𝜃1 + 𝑝𝑦𝑠𝜃1 = 𝑎4𝑐𝜃23 + 𝑎3𝑐𝜃2 + 𝑎2 ( 3.17 ) 

 −𝑝𝑥𝑠𝜃1 + 𝑝𝑦𝑐𝜃1= 𝑑4 − 𝑑3 ( 3.18 ) 

 𝑝𝑧 − 𝑑1 = −𝑎4𝑠𝜃23 − 𝑎3𝑠𝜃2 ( 3.19 ) 

By using equation 3.18, 𝜃1 is obtained as follows: 

 𝜃1 = Atan2(−px, py)  ±

 𝐴𝑡𝑎𝑛2(√(−𝑝𝑥)2 + 𝑝𝑦
2 − (𝑑4 − 𝑑3)2 , (𝑑4 − 𝑑3))  

(3.20) 

In order to obtain 𝜃3, equation 3.17, 3.18 and 3.19 are used. Equation 3.17 is reordered 

by taking 𝑎2 to the left side of the equation as: 

 𝑝𝑥𝑐𝜃1 + 𝑝𝑦𝑠𝜃1 − 𝑎2 = 𝑎4𝑐𝜃23 + 𝑎3𝑐𝜃2 ( 3.21 ) 

By squaring and adding both side of the equations 3.21, 3.18 and 3.19: 
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 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑎2
2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1 + (𝑝𝑧 − 𝑑1)

2 =

𝑎4
2 + 𝑎3

2 + 2𝑎4𝑎3(𝑐𝜃23𝑐𝜃2 + 𝑠𝜃23𝑠𝜃2) + (𝑑4 − 𝑑3)
2  

( 3.22 ) 

When the trigonometric equation 3.23 is substituted into the 3.22:  

 (𝑐𝜃23𝑐𝜃2 + 𝑠𝜃23𝑠𝜃2) = 𝑐𝜃3  ( 3.23 ) 

 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑎2
2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1 + (𝑝𝑧 − 𝑑1)

2 =

𝑎4
2 + 𝑎3

2 + 2𝑎4𝑎3𝑐𝜃3 + (𝑑4 − 𝑑3)
2  

( 3.24 ) 

From the above equation 3.24, 𝑐𝜃3 is obtained is as following: 

       𝑐𝜃3 =
𝑝𝑥

2+𝑝𝑦
2+𝑎2

2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1+(𝑝𝑧−𝑑1)2−𝑎4
2−𝑎3

2−(𝑑4−𝑑3)2

  2𝑎4𝑎3
          ( 3.25 ) 

Finally, 𝜃3 is found with the equation 3.27: 

 𝑘 =
𝑝𝑥

2+𝑝𝑦
2+𝑎2

2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1+(𝑝𝑧−𝑑1)2−𝑎4
2−𝑎3

2−(𝑑4−𝑑3)2

  2𝑎4𝑎3
  ( 3.26 ) 

 𝜃3 =  𝐴𝑡𝑎𝑛2(±√1 − (𝑘)2, 𝑘)  ( 3.27 ) 

In order to obtain 𝜃2, equation 3.19 is used. By substituting trigonometric function 

3.28 into 3.19, the following equations are obtained: 

 𝑠𝜃23 = (𝑠𝜃2𝑐𝜃3 − 𝑐𝜃2𝑠𝜃3)  ( 3.28 ) 

 𝑝𝑧 − 𝑑1 = −𝑎4𝑠𝜃2𝑐𝜃3 + 𝑎4𝑐𝜃2𝑠𝜃3 − 𝑎3𝑠𝜃2  ( 3.29 ) 

By reordering the equation 3.29 we have: 

 𝑝𝑧 − 𝑑1 = (−𝑎4𝑐𝜃3 − 𝑎3)𝑠𝜃2 + (𝑎4𝑠𝜃3)𝑐𝜃2  ( 3.30 ) 

𝜃2 then is obtained as follows: 

 𝜃2 = 𝐴𝑡𝑎𝑛2(−𝑎4𝑐𝜃3 − 𝑎3, 𝑎4𝑠𝜃3) ±

𝐴𝑡𝑎𝑛2 (√(−𝑎4𝑐𝜃3 − 𝑎3)2 + (𝑎4𝑠𝜃3)2 − (𝑝𝑧 − 𝑑1)2 ,

(𝑝𝑧 − 𝑑1))  

( 3.31) 
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3.3.2 Inverse kinematic solution with numerical method 

For higher than 3 DOF modular robot manipulator configurations, a numerical method 

is considered to the inverse kinematic problem. Among the numerical methods, 

solving the linear least square problem with Newton-Raphson method was chosen and 

implemented with KDL library.  

Cartesian pose of the end-effector is expressed as a function of set of joint variables: 

 𝑌6𝑥1 = 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛)  ( 3.32 ) 

where  𝑞𝑖 denotes the joint angle and Y denotes the 6𝑥1 cartesian pose matrix of the 

end effector. 

When it is taken the derivatives of the cartesian pose matrix with respect to joint angles 

the are taken, the following equations are obtained. 

 𝛿𝑦1 = 
𝛿𝑓1

𝛿𝑞1
𝛿𝑞1 +

𝛿𝑓1

𝛿𝑞2
𝛿𝑞2 + ⋯+

𝛿𝑓1

𝛿𝑞𝑛
𝛿𝑞𝑛  ( 3.33 ) 

 𝛿𝑦2 = 
𝛿𝑓2

𝛿𝑞1
𝛿𝑞1 +

𝛿𝑓2

𝛿𝑞2
𝛿𝑞2 + ⋯+

𝛿𝑓2

𝛿𝑞𝑛
𝛿𝑞𝑛  ( 3.34 ) 

 𝛿𝑦6 = 
𝛿𝑓𝑛

𝛿𝑞1
𝛿𝑞1 +

𝛿𝑓𝑛

𝛿𝑞2
𝛿𝑞2 + ⋯+

𝛿𝑓𝑛

𝛿𝑞𝑛
𝛿𝑞𝑛  ( 3.35 ) 

In matrix form Jacobian matrix is obtained with the following: 

 𝐽(𝑞) =  
𝛿𝑦𝑖

𝛿𝑞1
  ( 3.36 ) 

Iterative methods use the Jacobian matrix which is a linear approximation of a 

differentiable function near a given point. Relation between change of the end effector 

pose and the change of the joint angles are obtained with this linear approximation. 

 ∆𝑌 = 𝐽(𝑞)∆𝑞 ( 3.37 ) 

From this equation change of the joint angles is expressed as follows: 

 ∆𝑞 = 𝐽(𝑞)−1∆𝑌 ( 3.38 ) 

Linear function of the forward kinematics equation can be obtained with Taylor 

expansion: 
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 𝑓(𝑞) ≈  𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑞) = 𝑓(𝑞) + 𝐽(𝑞)∆𝑞 ( 3.39 ) 

By using this linear approximation to the forward kinematics, the aim of the inverse 

kinematic is to find change of the joint angles with respect to the change of the end-

effector pose. 

Error function which is tried to be minimized iteratively, is expressed with the 

following equation: 

 𝐸 =  | 𝐷 − 𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑞)| ( 3.40 ) 

In 3.40, E denotes the error matrix, D denotes desired pose matrix of the end effector 

and 𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑞) represents forward kinematic solution matrix obtained with linear 

approximation. 

KDL library includes inverse kinematic solvers which implements numerical inverse 

kinematic solution with Newton-Raphson method. KDL library is chosen for 

kinematic solver because it is allowed to directly being used with ROS environment. 

In the numerical solver, KDL calculates the inverse of the Jacobian matrix with the 

singular value decomposition method in order to handle with non-square Jacobian 

matrices which it depends to the degrees of freedom of the robot. 

In the Figure 3.3 flow chart of the KDL numerical solver is given. 
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Figure 3.3 : KDL numerical inverse kinematic flow chart. 

Performance of the numerical inverse kinematic solver was evaluated with different 

DOF’s and robot configurations and results were given in the section 7.1.1. 

3.4 Dynamics Modeling of the Modular Robot Manipulator 

Dynamic model of the robot represents the relation between the joint actuator torques 

and the resulting motion. An accurate dynamics model of the robot manipulator is vital 

for the design of motion control systems, the analysis of mechanical design and 

simulation of manipulator motion. Generally, the dynamic performance of the robot 

depends on implementing an effective control algorithm and obtaining an appropriate 

dynamic model of the robot. 

Robot manipulator dynamics model is commonly used in the form: 
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 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) = 𝜏 ( 3.41 ) 

where q denotes the joint angles vector; M(q) is the symmetric, bounded, positive 

definite inertia matrix with size of 𝑛𝑥𝑛 and n is the degree of freedom of the robot 

arm; 𝐶(𝑞, �̇�) denotes the Coriolis and Centrifugal force; G(q) is the gravitational force, 

and 𝜏 is the actuator torques vector. This equation then can be used to calculate either 

forward dynamics, where the manipulator motion is calculated based on a vector of 

applied torques, or the inverse dynamics where the torques for a given set of joint 

parameters can be calculated. 

There are two commonly used methods for obtaining dynamics model of the robot; 

Lagrange-Euler method and Recursive Newton-Euler method.  

The Lagrange-Euler method depends on calculating the kinetic and potential energies 

of a rigid body system.  This method provides the closed form of the robot dynamics, 

and it can be applicable to the analytical computation of robot dynamics and it can be 

used to design joint space control strategies. The Lagrange-Euler method can also be 

used for forward and inverse dynamic calculation, but it requires high computational 

load because of the large number of coefficients in the inertia matrix and 𝐶(𝑞, �̇�) 

matrix. 

The Newton-Euler method depends on a balance of all the forces acting on the link of 

the manipulator. This method constitutes a set of equations with a recursive solution. 

A forward recursion of the process includes obtaining link velocities and accelerations, 

and backward recursion includes obtaining the forces and torques acting on each part 

of the robot manipulator. This recursion structure of the method reduces the 

computational load of the forward and dynamics calculations; therefore, it allows 

implementation of real time control methods of robot manipulators. 

3.4.1 Dynamics modeling procedure 

In order to obtain dynamics model of the modular robot manipulator, Lagrange-Euler 

method was implemented.  In this section, implementation of the Lagrange-Euler 

method is presented for analyzing the dynamics parameters in controller design. 

Nomenclatures that are used in this section are given in the Table 3.2. 
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Table 3.2 : Nomenclatures. 

n Degrees of freedom of the manipulator 

q, �̇�, �̈� Vector of position (rad), angular velocity(rad/s) and 

acceleration(rad/𝑠2), respectively 

a, d, α, θ Variables denoting the Denavit-Hartenberg parameters 

Ii Inertia tensor of link i (kg/𝑚2) 

m Mass of link (kg) 

�̅�𝑖 Center of mass link I (m) 

𝑇𝑗
𝑖  Homogenous transform matrix from link i to j 

3.4.1.1 Active module mass properties 

In active module design, ABS material was chosen at the design phase. In Figure 3.4, 

coordinate frame which is used to measure mass properties is shown. 

 

Figure 3.4 : Active module output coordinate frame. 

Center of mass 

Active module mass was obtained as 0.35 kg from SolidWorks and the center of mass 

of the module measured from the output coordinate frame is listed in the Table 3.3. 

The units are meters. 
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Table 3.3 : Center of mass of the active module. 

�̅� �̅� �̅� 

28.11 × 10−3 8 × 10−5 39.59 × 10−3 

 

Link Inertia Tensors 

Moments of inertia taken at the center of mass and aligned with the output coordinate 

system is listed in the Table 3.4. The units used in the Table 3.4 are kg/𝑚2. 

Table 3.4 : Inertia matrix of the active module which is taken at the center of mass 

and alligned with the ouput coordinate system. 

Ixx Iyy Izz 

19.25 × 10−5 55.36 × 10−5 48.91 × 10−5 

Ixy Iyz Ixz 

−39 × 10−8 27 × 10−8 78.11 × 10−6 

3.4.1.2 Gripper module mass properties 

In gripper module, ABS material was used and coordinate frame which is used to 

measure mass properties is given in Figure 3.5. 

 

Figure 3.5 : Gripper module output coordinate frame. 
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Center of mass 

Gripper module mass was obtained as 0.15 kg from SolidWorks and the center of mass 

of the gripper module measured from the output coordinate frame is listed in the Table 

3.5. The units are meters. 

Table 3.5 : Center of mass of the gripper module. 

�̅� �̅� �̅� 

−40.6 × 10−7 −35.84 × 10−4 −80.82 × 10−4 

Link Inertia Tensors 

Moments of inertia taken at the center of mass and aligned with the output coordinate 

system is listed in the Table 3.6. The units used in the Table 3.6 are kg/𝑚2. 

Table 3.6 : Inertia matrix of the gripper module which is taken at the center of mass 

and alligned with the ouput coordinate system. 

Ixx Iyy Izz 

68.9 × 10−6 71.1 × 10−6 66.8 × 10−6 

Ixy Iyz Ixz 

0 0 0 

3.4.1.3 Base module mass properties 

In base module MDF material was used and in the Figure 3.6, coordinate frame which 

is used to measure mass properties is given. 

Center of mass 

Base module mass was obtained as 5.68 kg from SolidWorks and the center of mass 

of the base module measured from the output coordinate frame is listed in the Table 

3.7. The units are meters. 
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Figure 3.6 : Base module output coordinate frame 

Table 3.7 : Center of mass of the base module. 

�̅� �̅� �̅� 

0 28 × 10−6 95.73 × 10−3 

Link Inertia Tensors 

Moments of inertia taken at the center of mass and aligned with the output coordinate 

system is listed in the Table 3.8. The units used in the Table 3.8 are kg/𝑚2. 

Table 3.8 : Inertia matrix of the gripper module which is taken at the center of mass 

and alligned with the ouput coordinate system. 

Ixx Iyy Izz 

93.43 × 10−3  93.43 × 10−3 54.41 × 10−3 

Ixy Iyz Ixz 

0 34.34 × 10−6 0 

Lagrange-Euler Method 

The Lagrange-Euler equations of motion for a conservative system are given by: 

 𝐿(𝑞, �̇�) = 𝐾(𝑞, �̇�) − 𝑃(𝑞),      𝜏 =  
𝑑

𝑑𝑡

𝜕𝐿(𝑞,�̇�)

𝜕�̇�
− 

𝜕𝐿(𝑞,�̇�)

𝜕𝑞
  ( 3.42 ) 

where K denotes kinetic energy and P denotes the potential of the rigid body.  
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The kinetic energy of the 𝑖’th link is given by:         

 𝐾(𝑞, �̇�) =  
1

2
∑ [(𝑣𝑖

𝑇)𝑚𝑖𝑣𝑖 + 𝑛
𝑖=1 (𝑤𝑖

𝑇)𝐼𝑖𝑤𝑖]  ( 3.43 ) 

If inertia tensor of the link is located at the center of mass of the link, according to the 

principles axis theorem inertia tensor is shown as: 

 

𝐼𝑚 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]  ( 3.44 ) 

Then inertia tensor of the link according to the base frame can be found as: 

 𝐼𝑖 = 𝑅𝐼𝑚( 𝑅)𝑖
0 𝑇

𝑖
0   ( 3.45 ) 

The linear and angular velocities of the link is found by using Jacobian matrix: 

 𝑣𝑖 = 𝐽𝑣𝑖
�̇�  ( 3.46 ) 

 𝑤𝑖 = 𝐽𝑤𝑖
�̇� ( 3.47 ) 

Total kinetic energy is obtained is as following: 

 𝐾(𝑞, �̇�) =  
1

2
�̇�𝑇 ∑ [(𝐽𝑣𝑖

𝑇)𝑚𝑖𝐽𝑣𝑖
+ 𝑛

𝑖=1 (𝐽𝑤𝑖

𝑇)𝐼𝑖𝐽𝑤𝑖
]�̇�  ( 3.48 ) 

This equation can be rewritten as including manipulator inertia matrix 𝐷(𝑞): 

 𝐾(𝑞, �̇�) =  
1

2
�̇�𝑇𝐷(𝑞)�̇�  ( 3.49 ) 

where, 

 𝐷(𝑞) =  ∑ [(𝐽𝑣𝑖

𝑇)𝑚𝑖𝐽𝑣𝑖
+ (𝐽𝑤𝑖

𝑇
)𝐼𝑖𝐽𝑤𝑖

]𝑛
𝑖=1   ( 3.50 ) 

The potential energy of the 𝑖’th link is given by:         

 𝑃(𝑞) = ∑ 𝑚𝑖𝑔
𝑇ℎ𝑖

𝑛
𝑖=1   ( 3.51 ) 

When kinetic and potential energy equations substituted into equation 3.52, dynamic 

model of the robot obtained as: 
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 𝐿(𝑞, �̇�) =
1

2
�̇�𝑇𝐷(𝑞)�̇� + 𝑚𝑔𝑇ℎ  ( 3.52 ) 

 𝜏𝑖 = ∑ 𝐷𝑖𝑗(𝑞)�̈�𝑗
𝑛
𝑗=1 + ∑ ∑ 𝑐𝑘𝑗

𝑖 (𝑞)�̇�𝑘�̇�𝑗 + 𝑦𝑖(𝑞)𝑛
𝑗=1

𝑛
𝑘=1   ( 3.53 ) 

 𝜏 = 𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) ( 3.54 ) 

3.4.2 Validating dynamic model of the modular robot manipulator 

In order to verify the obtained dynamic model, an example joint space trajectory was 

selected and by performing selected trajectory, results were measured from 

SolidWorks software and results compared with the calculated torque values by 

implementing equation 3.54 in the MATLAB. Following joint positions were selected 

as inputs to the trajectory generation. 

 𝑞1(𝑡0) =  0,  𝑞1(𝑡𝑓) =  360°,  𝑞1̇ (𝑡0) = 𝑞1̇(𝑡𝑓) = 0,  

 𝑞1̈(𝑡0) = 𝑞1̈(𝑡𝑓) = 0  

( 3.55 ) 

 𝑞2(𝑡0) =  0,  𝑞2(𝑡𝑓) =  −90°,  𝑞1̇ (𝑡0) = 𝑞2̇(𝑡𝑓) = 0,  

𝑞2̈(𝑡0) = 𝑞2̈(𝑡𝑓) = 0  

( 3.56 ) 

 𝑞3(𝑡0) =  0,  𝑞3(𝑡𝑓) =  −90°,  𝑞3̇ (𝑡0) = 𝑞3̇(𝑡𝑓) = 0,    

𝑞3̈(𝑡0) = 𝑞3̈(𝑡𝑓) = 0  

( 3.57 ) 

In the equations, 𝑞𝑛,  𝑞�̇� and 𝑞�̈� denotes to the position, velocity and acceleration of 

the 𝑛’th module at time 𝑡, 𝑡0 represents starting time, 𝑡𝑓 represents end time which in 

this case 10 seconds. 

In order to create joint space trajectories in SolidWorks, cubic spline interpolation 

method was selected for given points. Besides, in order to create the same trajectory, 

a Simulink block was created in MATLAB. In this block, following cubic polynomial 

equations used for interpolating between points. 

 𝑞(𝑡) =  𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3  ( 3.58 ) 

 �̇�(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2 ( 3.59 ) 
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 �̈�(𝑡) = 2𝑎2 + 6𝑎3𝑡 ( 3.60 ) 

In the equations above, 𝑎0, 𝑎1, 𝑎2 and 𝑎3 coefficients were calculated with the 

following equations. 

 𝑎0 = 𝑞𝑛(𝑡0)  ( 3.61 ) 

 𝑎1 = 𝑞�̇�(𝑡0) ( 3.62 ) 

 
𝑎2 = 

3(𝑞𝑛(𝑡𝑓)−𝑞𝑛(𝑡0))

𝑡𝑓
2 −

2𝑞�̇�(𝑡0)+𝑞�̇�(𝑡𝑓)

𝑡𝑓
  ( 3.63 ) 

 
𝑎3 = 

−2(𝑞𝑛(𝑡𝑓)−𝑞𝑛(𝑡0))

𝑡𝑓
3 +

𝑞�̇�(𝑡𝑓)+𝑞�̇�(𝑡0)

𝑡𝑓
2   ( 3.64 ) 

After polynomial coefficients were determined, joint position, velocity and 

acceleration for modules at time sample t were fed to the dynamic model. This block 

diagram is given in the Figure 3.17. 

Trajectory for joint 1 is given in the Figure 3.7, Figure 3.8 and Figure 3.9. 

 

Figure 3.7 : Displacement in the trajectory for Joint 1 
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Figure 3.8 : Velocity in the trajectory for Joint1. 

 

Figure 3.9 : Acceleration in the trajectory for Joint1. 

Trajectory for joint 2 is given in the Figure 3.10, Figure 3.11 and Figure 3.12. 
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Figure 3.10 : Displacement in the trajectory for Joint2. 

 

Figure 3.11 : Velocity in the trajectory for Joint2. 

 

Figure 3.12 : Acceleration in the trajectory for Joint3. 

Trajectory for joint 3 is given in Figure 3.13, Figure 3.14 and Figure 3.15. 
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Figure 3.13 : Displacement in the trajectory for Joint3. 

 

Figure 3.14 : Velocity in the trajectory for Joint3. 

 

Figure 3.15 : Acceleration in the trajectory for Joint3. 

The tip point of the modular robot manipulator follows the path displayed in the Figure 

3.16 as a result of selected joint space trajectory. 
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Figure 3.16 : Input path for dynamic analysis. 

The Figure 3.17 shows the MATLAB Simulink diagram of the process of calculating 

torque values. 

 

Figure 3.17 : Matlab simulink diagram for dynamic analysis. 

The comparisons of the measured torque values which are obtained during the 

trajectory execution in the SolidWorks motion analysis and calculated from MATLAB 

are shown in the Figure 3.18, Figure 3.19 and Figure 3.20. 
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Figure 3.18 : Torque Results for Joint 1. 

 

Figure 3.19 : Torque Results for Joint 2. 
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Figure 3.20 : Torque Results for Joint 3. 

3.5 Payload Analysis of the Modular Robot Manipulator 

In order to determine maximum payload of the modular robot manipulator, static force 

diagram and bending moment diagram were analyzed by applying payload to the 

gripper. In the payload analysis of the modular robot manipulator 3 DOF, 4 DOF and 

5 DOF modular robot manipulator configurations were evaluated with the extended 

arm positions. 

Because maximum torque of the DYNAMIXEL MX64 smart servo motor is 6 Nm, 

payload which exerts joint torques higher than 6 Nm was considered as maximum 

payload of the modular robot manipulator. It is needed the remark that this maximum 

payload may be differ for dynamic analyses. 

3.5.1 Payload analysis of 3 DOF modular robot manipulator 

In order to evaluate maximum torque values, robot configuration which is given in 

Figure 3.21 was considered. 
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Figure 3.21 : 3 DOF modular robot manipulator payload analysis. 

3.5.1.1 Shear force and bending moment diagram 

Shear force and bending moment diagram of the modular robot manipulator were 

obtained as Figure 3.22 by applying 1.25 kg payload to the gripper. According to the 

conducted analysis, maximum payload was determined as 1.25 kg for 3 DOF modular 

robot manipulator. 

 

Figure 3.22 : Shear force and bending moment diagram for 3 DOF modular robot 

manipulator. 
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3.5.2 Payload analysis of 4 DOF modular robot manipulator 

In order to evaluate maximum torque values, robot configuration which is given in 

Figure 3.23 was considered. 

 

Figure 3.23 : 4 DOF modular robot manipulator payload analysis. 

3.5.2.1 Shear force and bending moment diagram 

 

Figure 3.24 : Shear force and bending moment diagram for 4 DOF modular robot 

manipulator. 

Shear force and bending moment diagram of the modular robot manipulator were 

obtained as Figure 3.24 by applying 0.55 kg payload to the gripper. According to the 
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conducted analysis, maximum payload was determined as 0.55 kg for 4 DOF modular 

robot manipulator. 

3.5.3 Payload analysis of 5 DOF modular robot manipulator 

In order to evaluate maximum torque values, robot configuration which is given in 

Figure 3.25 was considered. 

 

Figure 3.25 : 5 DOF modular robot manipulator payload analysis. 

3.5.3.1 Shear force and bending moment diagram 

Shear force and bending moment diagram of the modular robot manipulator were 

obtained as Figure 3.26 by applying 0.145 kg payload to the gripper. According to the 

conducted analysis, maximum payload was determined as 0.145 kg for 5 DOF modular 

robot manipulator. 
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Figure 3.26 : Shear force and bending moment diagram for 5 DOF modular robot 

manipulator. 
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4. ROS BASED ANALYSIS OF MODULAR ROBOT MANIPULATOR 

4.1 Introduction to ROS 

The Robot Operating System is an open source framework for creating robot 

applications. On contrary to its name, ROS is not an operating system itself. It consists 

of tools, libraries and conventions that aim to simplify the task of creating complex 

and robust robot behavior across a wide variety of robotic platforms. It provides the 

services including hardware abstraction, low-level device control, implementation of 

commonly-used functionality, message passing between processes, and package 

management. 

ROS has distributed and modular structure. The modularity of ROS allows users to 

pick and use ready-made packages which are available in the ROS ecosystem in their 

particular projects. This is particularly useful during system development since several 

research groups can easily connect their respective computers to a working system. 

Also distributed nature of ROS fosters a large community of user-contributed packages 

that add a lot of value on top of the core ROS system. 

In this project ROS is dedicated as software framework because of following reasons: 

• Its natural modular structure best fits to the modular robot manipulator concept. 

Besides mechanical modularity of the robot, software modularity of the robot 

is accomplished by using ROS. Each module of the robot manipulator has the 

same controller structure but the different controller parameters. Therefore, in 

order to add a new module to the robot, only parameters changing is enough 

for controlling it and this builds software modularity to the robot. 

• ROS tools enable to simulate the designed system in the development process 

before it is manufactured. The designed system can be controlled in the physic 

engine which is compatible with ROS. It permits developers to create their 

controllers and to test them on the simulated model. In this project, besides 

SolidWorks simulation tools, Gazebo physic engine is used to evaluate the 

dynamic performance of the robot. The designed controller structures are first 
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tested in the Gazebo and according to the results obtained they can be improved 

before the modules are manufactured. 

• There are versatile ROS packages available and they can be easily used for 

custom robots. In this project, when evaluating kinematics and dynamics 

analyses of the modular robot manipulator, MoveIt! package is used. MoveIt! 

package can solve the inverse kinematics of the custom robot and generate 

collision free trajectories. Both in the simulation analyses and control of the 

robot manipulator, trajectories generated from MoveIt! package is used. 

• ROS visualization tools enable to visualize the execution process of the robot. 

By using these tools, information like transformation relationships between 

robot links, generated trajectories in the motion planning can be monitored 

from the computer in the real time. 

• In real-time applications it is crucial to log the output data in order to validate 

the performance of the system. The rosbag tool makes it easier to record those 

data from the system runtime. By using the rosbag tool, the system log files 

(states of the joints, generated trajectories, controller specific parameters etc.) 

are obtained and used for the performance analysis.  

4.2 ROS Computation Graph 

Computation Graph is the peer-to-peer network of ROS processes that are processing 

data together. The basic Computation Graph concepts of ROS are nodes, Master, 

Parameter Server, messages, services, topics, and bags, all of which provide data to 

the graph in different ways. [30] 
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Figure 4.1 : ROS Computation Graph. 

• Nodes: Nodes are the executable files that fulfills desired tasks. Each node has 

a unique id in the ROS network and they are communicated each other by using 

topics and services. In this project hardware interface is a node and it subscribes 

a reference commands and directed them to the servo motors. 

• Master: The master provides name registration for nodes so that they can find 

each other in the ROS network. It permits message transferring between nodes 

and invoking services. 

• Parameter Server: The Parameter Server is a shared place for nodes to store 

data. In the Parameter Server, data are stored by key variables. In this project, 

motor specific parameters and gain parameters for the controllers are stored in 

the Parameter Server. 

• Messages: Data packets sent on the network are defined in ROS messages. A 

message is a data structure containing variable types. Standard primitive types 

(integer, floating point, boolean, etc.) are supported by ROS and by using these 

standard types different data structures can be obtained. 

• Topics: In the ROS network messages are routed via transport system with 

publish/subscribe semantics. The topic is a name that is used to identify the 
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content of the message. A node can connect to a topic by its name either as a 

publisher in order to send data or as a subscriber in order to receive these data. 

• Services: The Services work with request/reply interaction. It constitutes one-

way transport in the ROS network. A client uses the services by sending the 

request message and awaiting the reply. 

• Bags: Bags are special file formats for storing ROS messages. It is useful for 

collecting large data sets from nodes. It also allows to replay the collected data 

sets by republishing them with timestamps in the ROS network. 

4.3 Used ROS Packages 

4.3.1 Unified robot description format (URDF): 

The Unified Robot Description Format (URDF) is an XML specification to describe a 

robot. [31]  In order to describe a robot in ROS, a way is to use the package named 

URDF. This package represents the physical geometry, the kinematic and dynamic 

properties, the collision model, material, color and texture of the robot. The important 

limitation of the URDF format is that only tree structures can be represented therefore 

parallel robots cannot be introduced in URDF file. 

The representation of a robot in the URDF includes a set of link elements, and a set of 

joint elements which connects the links together. Some XML specifications of the 

URDF are as follows: 

• link element: The link element represents a rigid body with an inertia, visual 

and collision features. 

• joint element: The joint element represents the kinematics and dynamics 

properties of the joint and also specifies the joint enabled limits (maximum 

torques, velocities etc.). 

• transmission element: The transmission element is used to specify 

relationship between actuator and joint. This allows to model gear ratios which 

are especially useful in order to use URDF model of the robot in the simulation 

environment. 



57 
 

• gazebo element: The gazebo element is an extension to the URDF robot 

description format and it is used for simulation purpose in the Gazebo 

simulator.  

4.3.2 MoveIt! 

MoveIt! is state of the art software for mobile manipulation, incorporating the latest 

advances in motion planning, manipulation, 3D perception, kinematics, control and 

navigation [32]. It provides an easy-to-use platform for developing advanced robotics 

applications, evaluating new robot designs and building integrated robotics products 

for industrial, commercial, research and developments and other domains. [32] In this 

project, MoveIt! package is used in order to evaluate and verify the kinematic solver 

used in modular robot manipulator and to control the robot by taking the generated 

trajectories as inputs. 

MoveIt! uses a plugin-based architecture for solving inverse kinematics and a native 

implementation for solving forward kinematics. While the default kinematics plugin 

currently used by MoveIt! is KDL kinematics plugins, users can add their custom 

solvers. The KDL kinematics plugins includes the numerical inverse kinematics solver 

provided by the OROCOS KDL package. 

MoveIt! comes with a plugin for the ROS Visualizer (Rviz). The plugin allows to 

generate plans and visualize the output and interact directly with a visualized robot. It 

allows evaluating kinematics solver on the simulated robot manipulator. By using 

interactive marker on the Rviz, it can be tested if inverse kinematics solver finds 

correct solution or not.  

4.3.3 OROCOS kinematics and dynamics library (KDL) 

The computations required for the kinematics and dynamic models of a robot can be 

realized by using OROCOS Kinematics and Dynamics Library (KDL).   

KDL is an application independent framework for modelling and computation of 

kinematics chains, such as robots, biomechanical human models, computer-animated 

figures, machine tools, etc. [33] It provides class libraries for geometrical objects, 

kinematic chains of various families, and their motion specification and interpolation.  
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KDL constructs kinematic chains and it enables to reach their kinematic and dynamic 

properties by its included functions, such as inverse and forward kinematics and 

dynamics of the chains. 

In this project, KDL is used to compute the dynamic model of the robot in the 

computed torque controller. After constructing the robot model with URDF format, 

this model is transformed to the KDL chain. Then the inverse dynamics of the chain is 

obtained and used in the computed torque controller 

4.3.4 Gazebo 

Gazebo is an open source physic engine for simulating the designed robots in the 

realistic world conditions. It includes ROS packages for testing controllers created in 

the ROS. 

In this thesis, Gazebo is used to evaluate controllers for modular robot manipulator in 

the simulation environment. In order to simulate the controllers in ROS, elements for 

the gazebo_ros_control plugin were added to the URDF model. Created URDF model 

in Gazebo is shown in Figure 4.2. 

 

Figure 4.2 : Modular robot manipulator in Gazebo. 

4.3.5 Rviz  

Rviz is a 3D visualization tool for ROS [34]. It enables to display the obtained sensor 

data and state information on the simulated model of the robot. 
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4.4 Kinematic Analysis Using ROS 

4.4.1 URDF model of the modular robot manipulator 

In the URDF model of the modular robot manipulator, following parts were treated as 

a single link: 

• Base Module  

• Active module housing part  

• Active module coupling part  

• Gripper module 

Then joints between these links were created according to the desired robot 

configurations. Link frames for base module and gripper module were selected as they 

are shown in Figure 3.5 and Figure 3.6 respectively. Link frame for active module was 

selected by splitting active module into two separate links. In order to ensure twist 

angle configuration, a fixed joint was located between them as it is seen in Figure 4.3. 

This fixed joint enables to configure the URDF model with a single parameter in the 

assembly process. 

 

Figure 4.3 : Active module frames in URDF model. 

Inertia matrices for base module and gripper module were taken from SolidWorks as 

it is described in section 3.4.1. Inertia matrices for active module housing part and 

active module coupling part were taken according to the assigned coordinate frames 

in Figure 4.3. Correct inertia matrices are vital for simulation in the Gazebo physics 
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engine. Selected inertia matrices and mass properties of the links then were validated 

in section 7.1.4. 

Collision properties of the URDF model is utilized in the collision detection by 

MoveIt! package. Therefore, detailed collision model has important role in motion 

planning. Visual and collision properties of the links were obtained from SolidWorks 

as a STL file format. For base module and gripper module, STL files were obtained 

according to the output coordinate frames that are used in the section 3.4.1. Besides, 

for active module two separate STL files were exported as it is shown in Figure 4.3. 

Resulted URDF model of the robot is given in the Figure 4.4 and graph visualization 

of the URDF model is given in the appendix A. 

  

Figure 4.4 : URDF model of the modular robot manipulator. 

4.4.2 MoveIt! setup of the modular robot manipulator 

MoveIt! configuration for the modular robot manipulator was created with MoveIt! 

Setup Assistant. URDF model was imported to the setup assistant. Self-collision 

matrix was generated in order to determine pairs of links on the robot that are disabled 

in the collision checking. MoveIt! Package determine these pairs of links when they 

are always in collision, never in collision, in collision in the robot’s default position or 

when the links are adjacent to each other on the kinematic chain. Self-collision matrix 

decreases the motion planning processing time. 

A planning group was created and kinematic chain from the base link to the end 

effector was added to the group. KDL kinematics solver was chosen as a kinematic 
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solver as it is discussed in section 3.3.2 and RRT* path planner was selected as it is 

discussed in section 5.4.1. 

In order to control the robot directly from MoveIt! with the planned motion, action 

controller name was inserted to the configuration file. 

Modular robot in MoveIt! Package is shown in Figure 4.5 and generated configuration 

file is given in appendix B.  

4.4.3 Obtaining simulation results on ROS 

Inverse Kinematic solution tests were conducted with MoveIt! package. By 

transporting interactive marker which is located on the end effector frame to the 

example poses in the workspace of the robot, availability of the inverse kinematic 

solution was verified in Rviz. This process is showed in Figure 4.5. 

 

Figure 4.5 : Motion planning with MoveIt! 

4.5 Graphical User Interface Plugin for Rviz 

Graphical user interface was designed in order to plan motions for modular robot 

manipulator. Qt4 library was used for GUI development. GUI is given in Figure 4.6. 
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Joint space jog control of the modular robot manipulator is provided from GUI with 

the push buttons. During the jog control, self-collision detection is checked by using 

URDF model of the robot and invalid commands are avoided. 

GUI allows user to teach points directly from MoveIt! with interactive markers in Rviz 

or from jogging robot to the desired pose. For the taught points a database created and 

it is allowed to access these points both in programming with GUI and programming 

with custom codes. 

In order to allow user to plan point to point and cartesian motions, a program text box 

is located in the GUI plugin. A command structure created for input to the program 

text box. Command structure includes “Motion Point1 Point2 VEL VALUE;” 

sequence where “Motion” command can be “PTP” for point to point motion and “LIN” 

for cartesian motion, “Point1” and “Point2” can be any point stored in the database 

and VEL command represents velocity percentage that is used to scale output 

trajectory. 

 

Figure 4.6 :  Modular robot GUI plugin in Rviz 
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5. CONTROL OF MODULAR ROBOT MANIPULATOR 

The control problem for robot manipulators is determining joint inputs required for 

manipulator to follow desired trajectory signal. The joint inputs may be joint forces, 

torques or voltage inputs to the actuators.  

In order to realize a better control structure, it is required to obtain an accurate dynamic 

model of the robot manipulator. There are many control techniques and methodologies 

for designing control structure of the manipulator; independent joint control, computed 

torque control, adaptive control etc. 

5.1 Basic Control Strategies 

5.1.1 Independent joint control: 

In this type of control, each module of the robot manipulator is controlled as a single-

input/single-output (SISO) system. The basic structure of this control system is shown 

in the Figure 5.1. 

 

Figure 5.1 : Basic structure of a feedback control system. 

The purpose of control design is to make the robot respond in a predictable and 

desirable fashion to a set of reference input signals. Therefore, the design objective is 

to choose the compensator which makes the plant output follow the given reference 

signal. There are also disturbances acting on the system which influence the behavior 

of the output. The controller must be designed in a such way that reducing the effects 

of the disturbances. 
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5.2 Controller Design for Modular Robot Manipulator 

5.2.1 Actuator dynamics: 

Inside each active module of the modular robot manipulator, a DYNAMIXEL MX64 

DC smart servo motor was used as an actuator. Therefore, dynamic model of an 

armature-controlled DC motor is introduced in this section. In Figure 5.2, an example 

DC motor model is given. 

 

Figure 5.2 : DC motor model. 

The magnitude of the motor torque is proportional to the armature current: 

 𝜏𝑚 = 𝐾𝑚𝑖𝑎  ( 5.1) 

The voltage generated across the terminal of the motor as it is moving: 

 𝑉𝑏 = 𝐾𝑏�̇�𝑚  ( 5.2 ) 

In the Laplace domain differential equations related by electrical and mechanical parts 

of the motor then can be written as: 

 (𝐿𝑠 + 𝑅)𝐼𝑎(𝑠) = 𝑉(𝑠) − 𝐾𝑏𝑠𝜃𝑚(𝑠)  ( 5.3 ) 

 (𝐽𝑚𝑠2 + 𝐵𝑚𝑠)𝜃𝑚(𝑠) =  𝐾𝑚𝐼𝑎(𝑠) − 𝜏𝑙(𝑠)/𝑟 ( 5.4 ) 

The block diagram of this system is shown in the Figure 5.3: 
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Figure 5.3 : DC motor block diagram. 

When it is assumed that the electrical time constant 
𝐿

𝑅
 is much smaller than the 

mechanical time constant 
𝐽𝑚

𝐵𝑚
, electrical time constant can be neglected and the final 

dynamic model of the DC motor is obtained as following: 

 𝐽𝑚�̈�𝑚(𝑡) + (𝐵𝑚 +
𝐾𝑏𝐾𝑚

𝑅
) �̇�𝑚(𝑡) = (

𝐾𝑚

𝑅
)𝑉(𝑡) −

𝜏𝑙(𝑡)

𝑟
  ( 5.5 ) 

The block diagram of the reduced order system is shown in Figure 5.4. 

 

Figure 5.4 : Reduced block diagram of a DC motor. 

In the thesis [35], DYNAMIXEL MX64 smart servo motor plant parameters were 

identified and these plant parameters were utilized in this thesis.  

5.2.2 Independent joint dynamics: 

In case of gear ratios of the actuators 𝑟𝑖 are very large, it has important effect to 

simplify the design of robot manipulator controllers. Large values of 𝑟𝑖 reduces the 

effect of the nonlinear function in the robot manipulator dynamics. Therefore, the robot 

manipulator dynamics can be obtained by n decoupled second-order differential 

equations with constant coefficients. 

 (𝐽𝑚𝑖
+

𝑑𝑖𝑖(𝑞)

𝑟𝑖
2 ) �̈�𝑚𝑖

+ (𝐵𝑚𝑖 +
𝐾𝑏𝑖

𝐾𝑚𝑖

 𝑅𝑖
)�̇�𝑚𝑖

=
𝐾𝑚𝑖

𝑅𝑖
𝑉𝑖 − 𝑑𝑖  ( 5.6 ) 
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where 𝑑𝑖 is a disturbance given by:  

 𝑑𝑖 =
1

𝑟𝑖
∑ 𝑑𝑖𝑗�̈�𝑗𝑗≠𝑖 + ∑ 𝑐𝑗𝑘𝑖�̇�𝑗�̇�𝑘𝑗,𝑘 + 𝑔𝑖  ( 5.7 ) 

And effective inertia and damping of the system is denoted by equations 5.8 and 5.9 

respectively. 

 𝐽𝑒𝑓𝑓 = 𝐽𝑚𝑖
+

𝑑𝑖𝑖(𝑞)

𝑟𝑖
2   ( 5.8 ) 

 𝐵𝑒𝑓𝑓 = 𝐵𝑚𝑖 +
𝐾𝑏𝑖

𝐾𝑚𝑖

 𝑅𝑖
  ( 5.9 ) 

And u denotes the input to the system: 

 𝑢𝑖 =
𝐾𝑚𝑖

𝑅𝑖
𝑉𝑖  ( 5.10 ) 

The dynamic equation which nonlinear effect of the nonlinear coupling terms is treated 

as disturbance 𝑑𝑖, then can be obtained as following: 

 𝐽𝑒𝑓𝑓�̈�𝑚𝑖
+ 𝐵𝑒𝑓𝑓�̇�𝑚𝑖

= 𝑢𝑖 − 𝑑𝑖  ( 5.11 ) 

5.2.3 PID compensator: 

In order to perform independent joint control a PID compensator can be created as it 

is shown in Figure 5.5 and the system transfer function is obtained as equation 5.12. 
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Figure 5.5 : Independent joint control block diagram. 

 𝜃𝑚(𝑠) =
𝐾𝐷𝑠2+𝐾𝑃𝑠+𝐾𝐼

𝐽𝑒𝑓𝑓𝑠3+(𝐵𝑒𝑓𝑓+𝐾𝐾𝐷)𝑠2+𝐾𝐾𝑃𝑠+𝐾𝐾𝐼
𝜃𝑑(𝑠) −

𝑟𝑠

𝐽𝑒𝑓𝑓𝑠3+(𝐵𝑒𝑓𝑓+𝐾𝐾𝐷)𝑠2+𝐾𝐾𝑃𝑠+𝐾𝐾𝐼
𝐷(𝑠)  

( 5.12 ) 

5.2.4 PID based joint trajectory controller: 

 

Figure 5.6 : Independent joint trajectory controller block diagram. 

Single input single output based independent joint trajectory controller which is given 

in Figure 5.6 was used for controlling modular robot manipulator on simulation. On 

the simulation model, joints which actuate with velocity reference was added to the 

model. For tracking given trajectory input, PD control law is implemented to compute 

commanded velocities. The trajectory tracking result for the controller is given in the 

section 7.1.5.1. 

Because of DYNAMIXEL motors have internal PID controllers which take position, 

velocity and torque reference inputs, joint trajectory controller will have two control 

loops as it is shown in Figure 5.7. In the inner control loop block, DYNAMIXEL 
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velocity controller [36] was given. On the experimental setup this block diagram was 

used, and tuning process of the outer and inner loops and trajectory tracking 

performance of the controller are given in section 7.1.6. 

 

Figure 5.7 : Independent joint trajectory controller with inner PID control loop. 

Implementation of the controller in ROS and its test results are discussed in the 

following sections. 

5.2.5 Computed torque controller: 

Computed torque control method can be applied effectively when the loads that may 

come from system dynamics can be measured. Because dynamic analysis of the 

modular robot manipulator was obtained and validated, computed torque controller is 

created in ROS by using dynamic model of the modular robot manipulator and test 

results are validated.  

The dynamics model of the robot manipulator obtained in the section 3.4.1 is as 

follows: 

 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) + 𝜏𝑑 = 𝜏  ( 5.13 ) 

where q denotes the joint variable, τ denotes the input voltage and 𝜏𝑑 denotes a 

disturbance. 

When a desired trajectory 𝑞𝑑(𝑡) is given to the manipulator to ensure trajectory 

tracking by the joint variable, the tracking error can be defined as: 

 𝑒(𝑡) =  𝑞𝑑(𝑡) − 𝑞(𝑡)  ( 5.14 ) 
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 �̇� =  �̇�𝑑 − �̇� ( 5.15 ) 

 �̈� =  �̈�𝑑 − �̈� ( 5.16 ) 

If �̈� is solved from equation 5.13 when 𝜏𝑑 is ignored and substituting into the 5.16 

yields: 

 �̈� =  �̈�𝑑 + 𝑀−1(𝐶(𝑞, �̇�) + 𝐺(𝑞) −  𝜏)  ( 5.17 ) 

Input function can be defined as linearized equation: 

 𝑢 = �̈�𝑑 + 𝑀−1(𝐶(𝑞, �̇�) + 𝐺(𝑞) −  𝜏)  ( 5.18 ) 

We may define a state x(t) as: 

 𝑥 = (
𝑒
�̇� 

)  ( 5.19 ) 

Then tracking error dynamics will be a linear error system as 5.20: 

 𝑑

𝑑𝑡
[
𝑒
�̇�
] =  [

0 𝐈
0 0

] [
𝑒
�̇�
] + [

0
𝐈
] 𝑢  ( 5.20 ) 

Equation 5.18 can be expressed as following equation: 

 𝜏 = 𝑀(�̈�𝑑 − 𝑢) + 𝐶(𝑞, �̇�) + 𝐺(𝑞)  ( 5.21 ) 

If u(t) is selected so that e(t) goes to zero from equation 5.20, then nonlinear control 

input given by 𝜏(𝑡) in equation 5.21 will cause trajectory following in the manipulator. 

The control input u(t) can be selected as the PD feedback: 

 𝑢 = −𝐾𝑝𝑒 − 𝐾𝑑�̇�  ( 5.22 ) 

Then the overall dynamic equation becomes: 

 𝜏 = 𝑀(�̈�𝑑 + 𝐾𝑝𝑒 + 𝐾𝑑�̇�) + 𝐶(𝑞, �̇�) + 𝐺(𝑞)  ( 5.23 ) 

The block diagram of the computed torque control is shown in Figure 5.8. 
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Figure 5.8 : Computed torque control block diagram. 

The closed loop error dynamics are: 

 �̈� +  𝐾𝑑�̇� + 𝐾𝑝𝑒 = 0 ( 5.24 ) 

Equation 5.24 shows that by choosing the matrices 𝐾𝑝 and 𝐾𝑑 in a diagonal form, a 

decouple closed loop system can be obtained where the behavior of each joint error is 

given by a second order differential equation. 

The closed loop characteristic polynomial is: 

 𝑠2𝐼 + 𝐾𝑑𝑠 + 𝐾𝑝 = 0  ( 5.25 ) 

The desired damping ratio ζ and natural frequency 𝑤𝑛 for joint error is calculated with 

these equations: 

 𝐾𝑑 = 𝑑𝑖𝑎𝑔(𝑘𝑑𝑖
)  ( 5.26 ) 

 𝐾𝑝 = 𝑑𝑖𝑎𝑔(𝑘𝑝𝑖
) ( 5.27 ) 

 𝑘𝑝𝑖
= 𝑤𝑛

2 ( 5.28 ) 

 𝑘𝑑𝑖
= 2𝜁𝑤𝑛 ( 5.29 ) 

Which diag() function represents diagonal matrix and for the appropriate 𝑘𝑝𝑖
 and 𝑘𝑑𝑖

 

which are selected as positive numbers system will be asymptotically stable. In order 

to avoid for overshoots in the robot motion, the PD gain is selected for critical damping 

ζ=1. 
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Computed torque controller was implemented in ROS and trajectory tracking results 

was tested on Gazebo. In the following sections implementation and test results are 

given. 

5.3 Implementation of ROS to Modular Robot Control 

In order to create a consistent interface for modular robot in ROS environment, 

ros_control [35] framework was used when creating controllers. The ros_control 

framework provides the capabilities to implement and manage robot controllers with 

a real-time performance and enables sharing of controllers in a robot-agnostic way 

[35]. Thanks to its modular architecture, different controllers can be switched in real-

time. Also, thanks to its plugins, designed controllers can be simulated on Gazebo 

before implementing them on the real robot. 

 

Figure 5.9 : Active module ROS controller diagram. 

In the Figure 5.9, ROS controller diagram which is used to control each active modules 

of the modular robot manipulator is presented.  

There are two important functions in Hardware Resource Interface Layer; “write” 

and “read” which are responsible for interacting with hardware. While creating these 

functions DynamixelSDK [36] library was used owing to it includes communication 
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functions with appropriate communication protocols from ROBOTIS company. By 

using Read ( ) function, PC that runs ROS, acquires joint states which are positions, 

velocities and torques of the motors and by using Write ( ) function it sends an 

appropriate control variable which can be positions or torques to the motors. 

Dynamixel Motor block represents DYNAMIXEL motor’s inner structure. It includes 

an embedded controller inside which implements PID control to drive the motor and 

sensors which can measure the position, velocity and current of the motor. It also, 

allows to change its PID coefficients for each motor control mode with serial 

communication.  

Controller Manager is in charge of managing controller plug-ins at runtime. It deploys 

ROS services that can list, load, unload and switch controllers. By means of its well-

designed architecture, at the moment while switching controllers it prevents joints not 

to remain uncontrolled to prevent falling the links. It detects resource conflicts between 

controllers and handles those situations. Real-time loop inside the controller manager 

follows the read, update and write sequences. In read process, controller manager reads 

joint states from Hardware Resource Interface Layer. In update process of the 

Controller Manager, control method is implemented from currently loaded controller 

for given joint states. In write process, calculated joint command in update process is 

commanded to the hardware. 

5.3.1 Position controller 

Position Controller does not include a control law. It takes position reference command 

in joint space and directs them to the actuators. Control law is expected to be 

implemented in actuators themselves. 

5.3.2 Effort controllers 

Effort controllers are single input single output controllers. In effort controllers control 

variable is torque and they expect effort controllable joint which is 

EffortJointInterface type of hardware interface which can be driven by torque input. 

It includes effort-based position, velocity and effort controllers. In position controller, 

PID control is applied and calculated torque command is directed to the actuator, 

according to the position reference command. In velocity controller, according to the 

velocity reference command, PID control is applied by calculating velocity error and 
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torque command is directed to the actuator. On the other hand, in effort controller, 

according to the torque reference command, PID control is applied by calculating 

torque error and torque command is directed to the actuator. 

5.3.3 Joint trajectory controller 

Joint trajectory controller takes trajectory input in the joint space as a set of waypoints 

and makes interpolation between the trajectory waypoints. In interpolation process it 

utilizes from the waypoint’s timestamps and according to the waypoints specifications 

it uses linear, cubic or quantic interpolation methods. 

According to the used hardware interface type, it calculates the position and velocity 

trajectory following error and apply PID control. 

Joint trajectory controller currently includes single input single output-based position 

controllers, velocity controllers and effort controllers. The designed computed torque 

controller is implemented for joint trajectory controller. 

5.3.4 Computed torque controller 

Computed torque control method which is presented in section 5.2.5 is implemented 

as a ROS controller plugin. KDL library was used for computing inverse dynamics of 

the modular robot manipulator. KDL library offers recursive Newton-Euler solver for 

the inverse dynamics problem.  

Computed torque controller consists of several methods inherited from RobotHW 

class. In the init ( ) method, KDL [33] library dependent KDL chain object is created 

from the URDF model of the robot manipulator. KDL library uses this chain, in order 

to determine kinematic model of the robot. Also, PID controller object is initialized in 

here for outer loop control in computed torque control method.  

In the start ( ) method, control variables are reset. Because of the fact that it will be a 

plugin that will be loaded by controller manager, in start ( ) method all control 

variables are assigned to their initial values, to prevent unpredictable situations when 

controller switching is demanded by controller manager. 

Main algorithm of the computed torque controller is conducted in update ( ) method. 

This method is called by Controller Manager in real time control loop. According to 

the given positions and velocities of the joints, the trajectory following error is 
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computed.  By applying PID control in the outer loop of the controller, acceleration 

input is computed for the trajectory following error. Determined acceleration is 

inputted to the recursive Newton-Euler solver and joint torques are computed. Then 

calculated torque commands are assigned to the joint handles variables and they are 

directed to the actuators by controller manager. 

5.3.5 Joint state controller 

In contrast to its name, it is not a controller but is a controller plugin in ros_control. It 

takes joint states from joint handle resources in the update process of the controller 

manager and publishes them in ROS environment. The other ROS components, i.e. 

MoveIt [32] for motion planning, are aware of the joint states by means of joint state 

controller. 

5.3.6 Gripper controller 

 

Figure 5.10 : Gripper module ROS controller diagram. 

Gripper has an analog servo motor which includes position controller inside it. 

According to the angle reference command, servo motor applies its inner control law 

to reach the reference angle. As position feedback of the servo motor is not available, 

it is just recorded the last reference angle sent to the motor and published in ROS 
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environment. Gripper motion is controlled according to the current feedback from the 

motor drawn. Gripper controller is given in Figure 5.10. 

In the low-level controller, Arduino UNO microcontroller is used. Communication 

between ROS and Arduino DUE is established with RS232 protocol.  Two types of 

packets are created for data exchanging between ROS controller and Arduino 

controller. In the write packet PC sends desired position command to the 

microcontroller and in the read packet PC receives last commanded position of the 

gripper and current of the motor.   

Microcontroller receives position reference command from ROS controller and sends 

its inner control variable which holds last commanded reference angle to the servo 

motor, to the ROS controller. Because of at startup, the last commanded reference 

angle is empty, embedded control has an initialized procedure which drives servo to 

the predefined angle just to ensure that servo is in state of last commanded angle. It 

also includes home procedure which drives the servo motor to a predefined position. 

In the ROS environment, gripper is controlled with position controller and the given 

reference commands are directed to the motors without using any control law. In case 

that current reaches the defined threshold, gripper movement is stopped.  

An action server is created for gripper controller to handle opening and closing actions 

of the gripper. Action server takes a goal which can be open and close gripper and 

sends appropriate joint angle references to the position controller. If the last 

commanded joint angle and load value of the controller are not obtained from 

microcontroller within timeout tolerances, action is canceled and reported to the action 

client.  

In closing action, gripper moves to the desired angle and if the returned current 

feedback is higher than the threshold, success is reported to the client otherwise failed 

is reported to the client and action is canceled.  

In opening action, gripper moves to the set angle for opening situation.  

5.4 Motion Planning 

MoveIt! package is used for motion planning framework. MoveIt! is an open source 

software used for robot motion planning. It uses Open Motion Planning Library 
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(OMPL), Stochastic Trajectory Optimization for Motion Planning (STOMP), Search-

Based Planning Library (SBPL) and Covariant Hamiltonian Optimization for Motion 

Planning (CHOMP) libraries for motion planning implementations. [37] 

MoveIt! has a plugin-based architecture for solving inverse kinematics and a native 

implementation for solving forward kinematics. While the default kinematics plugin 

currently used by MoveIt! is KDL kinematics plugins, users can add their custom 

solvers. In this thesis, Orocos KDL kinematics plugin described in inverse kinematics 

chapter is used in MoveIt! 

For the used path planners in MoveIt! package, there is a benchmarking [38]. 

According to the benchmarking results and experimental tests which are conducted in 

this thesis, RRT* solver is determined in order to create collision free paths. 

5.4.1 RRT* algorithm 

RRT* algorithm operates in the configuration space which has free cells that robot can 

reach and occupied cells by obstacles that cannot be reached by robot. [39] 

RRT* algorithm begins when selecting initial and goal state to find collision free path. 

Processed path is expanded in each iteration towards to the goal. In each iteration, 

RRT* randomly generates points in the configuration space and evaluates them. If 

generated point lies outside of an obstacle and point is reached from nearest node, 

RRT* chains the point to the tree.  

In this chaining process, algorithm searches nearest nodes of the random generated 

point in the tree and by applying cost to them selects best parent to the random point. 

Algorithm iteratively searches for path until the generated node is within the goal 

region or the termination limit is reached. In Figure 5.11, expanding process of the 

RRT* algorithm is shown. 
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Figure 5.11 : RRT* algorithm visualization. [39] 

 

5.4.2 Motion planning flow chart 

Motion planning flow chart that is implemented in this thesis is given in Figure 5.12. 

In the Task Plan block, set of desired end effector poses are determined for robot 

manipulator. These end effector poses should be inside or outside of the reachable 

workspace of the robot. This information will send back to the user on the next 

sections. 
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Figure 5.12 : Motion planning flow chart 

In the inverse kinematics block, for the given cartesian space end effector poses, joint 

angles are calculated by KDL numerical solver discussed before. If the inverse 

kinematic solver could not find the solution, it is seed random state of the manipulator 

to the numerical solver and inverse kinematic solver is executed again. This process is 

repeated until the number of tries is reached or inverse kinematic solution is found. 

In the path planning block, found joint angles from the inverse kinematic solver is 

taken as joint space goal and path planning with RRT* algorithm is conducted from 

current state of the robot to the goal state. During path planning, inner collision 

detection is implemented by using collision description in the URDF model of the 

robot. If the planning scene of the environment is given, RRT* algorithm makes 

collision checking with the objects located in the environment. In this process 

kinematic constraints can also be specified to the RRT* algorithm. 

In the Iterative Time Parameterization block, joint space trajectory is generated from 

found path.  According to the maximum joint velocities and accelerations, spline 

interpolation is made among the points along the path. Maximum velocities and 
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accelerations information of the robot manipulator are taken from the URDF model. 

The calculated joint trajectory is then can be post processed for ensuring the desired 

joint velocities. By using joint space jump detection, it tries to avoid robot singularities. 

MoveIt! has controller manager inside and it expects action client server for controlling 

joints. Created joint trajectory controller is introduced to the MoveIt! and then MoveIt! 

is connected to the action server as a client. MoveIt! takes joint states from the ROS 

topic and it updates inner kinematic model of the robot according to the current joint 

states. After it succeeded to plan a trajectory, it executes joint space trajectory by 

sending it to the joint trajectory controller action server. Trajectory following 

information are obtained as a feedback from action server and according to the goal 

tolerances and if tolerances are exceeded, the goal is aborted and information is sent 

to the user. 
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6. EXPERIMENTAL RIG DESIGN 

In this section, experimental rig design of the modular robot manipulator is discussed. 

6.1 Manufacturing of Modules 

In the manufacturing of active module and gripper module uPrint 3D printer was used 

with ABS filament. Besides, MDF material was used to manufacture base module. 

In order to create a 3 DOF modular robot manipulator three active modules, one 

gripper module and base module were manufactured. Manufactured modules are given 

in Figure 6.1, Figure 6.2 and Figure 6.3. 

 

Figure 6.1 : Manufactured active module 
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Figure 6.2 : Manufactured gripper module which is mounted to the housing part of 

active module 

 

Figure 6.3 : Manufactured base module  

6.2 Mechanic Accessories 

In order to actuate the modular robot manipulator following components are used: 

• DYNAMIXEL MX-64T Servo Motor 
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In the active modules DYNAMIXEL MX-64T servo motors used as actuator. In Figure 

6.4 DYNAMIXEL MX-64T servo motor is shown and its hardware specifications are 

given in the Table 6.1. 

 

Figure 6.4 : Dynamixel MX-64T servo motor. 

Table 6.1 : Dynamixel MX-64T Hardware Specifications. 

Resolution 0.088° 

Stall Torque 6 Nm 

Voltage 12 V 

Communication Protocol TTL 

Weight 135 g 

Running Degree Endless Turn 

• PowerHD 1201 MG Servo Motor 

In the gripper module, PowerHD 1201 MG servo motor which is shown in Figure 6.5 

was used as actuator.  

 

Figure 6.5 : PowerHD 1201 MG servo motor 

Its hardware specifications are listed in Table 6.2. 

Table 6.2 : PowerHD 1201 MG Hardware Specifications. 

Stall Torque 1,294 Nm 

Voltage 6 V 

Weight 60 g 

Running Degree 0° ~ 180° 
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6.3 Electronic Accessories 

In the modular robot manipulator, the following electronic components are used:  

• Arduino UNO 

 

Figure 6.6 : Arduino UNO microcontroller 

Arduino UNO microcontroller is used for controlling gripper. The microcontroller is 

shown in Figure 6.6. 

• DYNAMIXEL Expansion Board 

 

Figure 6.7 : OpenCM 485 Expansion Board 

In order to power DYNAMIXEL MX64 smart servo motors, OpenCM 485 

DYNAMIXEL Expansion Board was used. In the board, there are connectors for TTL 

and RS485 types of DYNAMIXEL servo motors. It allows to connect 12 Volt SMPS 

unit to the board with the power jack. In Figure 6.7, OpenCM 485 expansion board is 

shown. 

• TTL to USB converter 
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Figure 6.8 : USB2Dynamixel 

DYNAMIXEL MX64 servo motors which used in this project have TTL 

communication protocol. TTL to USB converter from ROBOTIS is used for 

communication between DYNAMIXEL servo motors and PC. USB2Dynamixel 

converter is shown in Figure 6.8. 

• Power Supply 

 12V 5A power supply is used for supplying power to the active modules and 

6V 3.5A power supply was used for supplying power to the gripper module. 

6.4 Experimental Setup 

3 DOF and 2 DOF modular robot manipulator configurations were created with the 

manufactured modules as experimental setup. Experimental setups are shown in 

Figure 6.9 and Figure 6.10. 



86 
 

 

Figure 6.9 : 3 DOF Experimental setup. 

 

Figure 6.10 : 2 DOF Experimental setup. 
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7. RESULTS AND DISCUSSIONS 

7.1 Validation and Verification 

7.1.1 Numerical inverse kinematic solver validation 

In order to validate the kinematic solver performance which is discussed in section 

3.3.2, 4 to 6 DOF robot configurations were evaluated. 1000 random sample points 

that are reachable for robot configurations were selected by calculating forward 

kinematics. Joint angles used in the forward kinematics and sample points were 

logged. Inverse kinematic solver was tested by giving sample points as inputs to the 

solver and calculated joint angles were logged if the inverse kinematic solution found.  

Kinematic solver results were then evaluated with inverse kinematic solution success 

rate, average time passed during calculating solution, average end-effector position 

error, average end-effector roll, pitch and yaw angle errors. 

Created test program is added to the appendix C and results are listed in the Table 7.1. 

Table 7.1 : KDL Inverse kinematic solver statistics. 

DOF 4 5 6 

Success 

Rate (%) 

0.99 1 0,88 

Average 

Time (s) 

0.03 81.21 × 10−3 4.20 

AEE 2.37 × 10−7 1.23 × 10−6 2.07 × 10−6 

ARE 8.69 × 10−7 1.97 × 10−6 5.54 × 10−7 

APE 8.69 × 10−7 3.96 × 10−7 5.59 × 10−8 

AYE 9.20 × 10−7 2.06 × 10−6 5.67 × 10−7 

 

In the Table 7.1, AEE denotes average end-effector position error and unit is meters, 

ARE, APE and AYE denotes end-effector roll, pitch and yaw angle errors respectively 

and their units are in radians. 
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Success Rate metric is calculated as following: 

 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

1000
  ( 7.1 ) 

Average time is calculated with the following equation: 

 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 =  
∑ 𝑡𝑖

1000
𝑖=1

1000
  ( 7.2 ) 

In which 𝑡𝑖 denotes time passed to inverse kinematic solving process of the pose 𝑖. 

Average end-effector position error (AEE) is calculated with the following equation: 

 𝐴𝐸𝐸 =  
∑ (𝑑𝑖−𝑝𝑖)

21000
𝑖=1

1000
  ( 7.3 ) 

In equation, 𝑑𝑖 and 𝑝𝑖 represents desired position of the end-effector and calculated 

position from inverse kinematic solver respectively. 

ARE, APE and AYE errors are calculated with equation X, Y, Z respectively as: 

 ARE = 
∑ (dri−pri)

21000
i=1

1000
  ( 7.4 ) 

 
𝐴𝑃𝐸 = 

∑ (𝑑𝑝𝑖 − 𝑝𝑝𝑖)
21000

𝑖=1

1000
 ( 7.5 ) 

 
𝐴𝑌𝐸 = 

∑ (𝑑𝑦𝑖 − 𝑝𝑦𝑖)
21000

𝑖=1

1000
 ( 7.6 ) 

In the equations above, 𝑑𝑟𝑖, 𝑑𝑝𝑖and 𝑑𝑦𝑖 represents desired roll, pitch and yaw angles 

of the end-effector respectively, and 𝑝𝑟𝑖, 𝑝𝑝𝑖 and 𝑝𝑦𝑖 denotes calculated roll, pitch and 

yaw angles respectively. 

According to the obtained results, it is observed that success rate is sufficient but 

decreases when the DOF of the manipulator increases and average time required to 

solve inverse kinematics increases with DOF of the robot. It is also observed that 

results of the inverse kinematic solution highly depend to the solver seeding state. 
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7.1.2 Analytic inverse kinematic solution validation 

Inverse kinematic solution for the 3 DOF modular robot manipulator in the Figure 3.1 

was found in the section 3.1. In this section, analytic inverse kinematic solution is 

tested with a known end effector position. 

For the given joint angles, the end effector position of the robot manipulator is 

determined from forward kinematics solution: 

𝜃1 = 1.57, 𝜃2 = 0.7, 𝜃3 = 0.45 => 𝑋 = 2 × 10−4, 𝑌 = 30.62 × 10−3, 

 𝑍 = 32.71 × 10−1  

By taking the output end-effector position of the forward kinematics solution, inverse 

kinematic procedure was conducted and the following eight solution sets were 

obtained: 

IK 1: {𝜃1 = 1.57, 𝜃2 = 0.6994, 𝜃3 = 0.4486} 

IK 2: {𝜃1 = 1.57, 𝜃2 = −3.3924, 𝜃3 = 0.4486} 

IK 3: {𝜃1 = 1.57, 𝜃2 = 0.2508, 𝜃3 = −0.4486} 

IK 4: {𝜃1 = 1.57, 𝜃2 = −3.8410, 𝜃3 = −0.4486} 

IK 5: {𝜃1 = −1.57, 𝜃2 = 0.4623, 𝜃3 = 0} 

IK 6: {𝜃1 = −1.57, 𝜃2 = −3.6039, 𝜃3 = 0} 

IK 7: {𝜃1 = −1.57, 𝜃2 = 0.4623, 𝜃3 = 0} 

IK 8: {𝜃1 = −1.57, 𝜃2 = −3.6039, 𝜃3 = 0} 

According to obtained solution sets, IK1 solution set ensured the given joint angles 

input.  

7.1.3 Singularity analysis validation 

In order to conduct singularity analysis for 3 DOF modular robot manipulator shown 

in the Figure 3.1, known singular pose was considered. Jacobian matrix of the 3 DOF 

modular robot manipulator in this singular pose was obtained as in equation 7.7: 
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𝐽 =

[
 
 
 
 
 
−0.1121 −0.001 0.001
0.0435 −0.11 0.1120

0 0.0001 0.0001
0 −1 1
0 0.0008 0.0008
1 0 0 ]

 
 
 
 
 

   ( 7.7 ) 

In order to calculate determinant of the Jacobian matrix, SVD of Jacobian was obtained 

with the MATLAB function that is given in appendix D.  

U = 

[
 
 
 
 
 
−0.0004 0.1113 −0.1089 0.0278 0.0739 0.9846
0.1115 −0.0421 −0.6585 −0.587 0.4474 −0.085
0.001 0 −0.0843 0.6670 0.7355 −0.083
0.9938 0.0096 0.0744 0.0653 −0.049 0.0095

−0.0008 0 0.7360 −0.452 0.5008 0.0566
0.0048 0.9929 0.0164 0.0287 −0.011 0.1140]

 
 
 
 
 

 ( 7.8 ) 

 

𝑆 =

[
 
 
 
 
 
1.4231 0 0

0 1.0072 0
0 0 0
0 0 0
0 0 0
0 0 0]

 
 
 
 
 

   ( 7.9 ) 

 
𝑉 = [

0.068 −1 0
−0.7071 −0.0048 0.7071
0.7071 0.0048 0.7071

] ( 7.10 ) 

In the equations above, U represents left singular vector, V represents right singular 

vector, S represents singular values of the Jacobian matrix. 

Determinant of the Jacobian matrix then was obtained by using the equation 3.12: 

 det(J) =  −1.6867x10−16  ( 7.11 ) 

Because determinant of the Jacobian is too close to the zero, this end-effector position 

is verified as singular point for the robot manipulator. 

7.1.4 Gazebo simulation model validation 

As it is stated, modular robot manipulator controllers first tested in the Gazebo physics 

engine. For a realistic simulation it is necessary creating a simulation model accurately. 

In order to validate simulation model of the robot, torque results of the joints when 

they are controlled with a PD controller are evaluated in this section. 
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In MATLAB, output dynamic model of the section 3.4 was used with PD controller. 

Proportional and derivative gains parameters of the controllers were taken the same 

for both MATLAB and Gazebo simulations and motor dynamics properties were 

ignored. An example joint space trajectory was decided as input and the torque results 

were acquired during the trajectory tracking of the joints. 

 

Figure 7.1 : Torque values for module 1 taken from both MATLAB and Gazebo. 

 

Figure 7.2 : Torque values for module 2 taken from both MATLAB and Gazebo. 
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Figure 7.3 : Torque values for module 3 taken from both MATLAB and Gazebo. 

According to the results obtained that are seen in Figure 7.1, Figure 7.2 and Figure 7.3, 

close torque values were observed both in MATLAB and Gazebo simulation. These 

results validate the Gazebo simulation model of the modular robot manipulator. 

7.1.5 Controller results in simulation 

In this section, control results of the modular robot manipulator in the Gazebo are 

evaluated. In order to evaluate the trajectory tracking performances of the modules, 

modular robot manipulator configuration which is given in Figure 3.1 was considered. 

7.1.5.1 Velocity based joint trajectory controller 

As a result of the implemented velocity based joint trajectory controller, tracking 

results were observed as they are given in Figure 7.4, Figure 7.5 and Figure 7.6. 

 

Figure 7.4 : Module 1 trajectory tracking results. 
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Figure 7.5 : Module 2 trajectory tracking results. 

 

 

Figure 7.6 : Module 3 trajectory tracking results 

In the figures above it can be seen that minimum position and velocity tracking errors 

were obtained with the controller. 

7.1.5.2 Computed torque controller 

Computed torque controller was created as a joint trajectory controller as it is discussed 

in section 5.3.4. For the given joint space trajectory, tracking results were obtained as 

they are seen in Figure 7.7, Figure 7.8 and Figure 7.9.  
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Figure 7.7 : Module 1 trajectory tracking results. 

 

Figure 7.8 : Module 2 trajectory tracking results. 

 

Figure 7.9 : Module 3 trajectory tracking results. 

In the figures above it can be seen that position and velocity tracking performance 

were observed to be better than velocity based joint trajectory controller. 

7.1.6 Velocity based joint trajectory controller tracking results on experimental 

setup 

In this section, velocity based joint trajectory controller is evaluated on the 

experimental setup. 3 DOF and 2 DOF modular robot manipulator configurations were 

assembled as they are shown in Figure 6.9 and Figure 6.10. 
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In the Table 7.2 effects of PID coefficients on the closed loop system are given. By 

taking into account to these effects of PID coefficients, the joint trajectory controller 

was tuned. PID tuning process was conducted from tip module to base module. 

Table 7.2 : Effects of PID coefficients 

Response OVERSHOOT STEADY-

STATE 

ERROR 

RISE TIME SETTLING 

TIME 

𝐾𝑝 Increase Decrease Decrease Small Change 

𝐾𝑖 Increase Eliminate Decrease Increase 

𝐾𝑑 Decrease No Change Small 

Change 

Decrease 

In order to tune inner loop controller of the tip module in the 3 DOF modular robot 

manipulator which is given in Figure 6.9, the following procedure was implemented. 

Tuning process was started from inner PI loop which is executed in DYNAMIXEL 

motor’s built-in controller. First, 𝐾𝑝 coefficient is determined such that overshoot was 

observed in step response. Step response of the controller with the different 𝐾𝑝 

coefficients was observed as in Figure 7.10.  

 

Figure 7.10 : 𝐾𝑝 coefficient determination of inner loop controller. 

According to the step response of the controller in Figure 7.10, 𝐾𝑝 coefficient was 

determined as 20. Then in order to eliminate steady-state error, 𝐾𝑖 coefficient was 
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determined when 𝐾𝑝 was 20. Step response of the controller for this process is given 

in the Figure 7.11. 

 

Figure 7.11 :  𝐾𝑖 coefficient determination of inner loop controller. 

According to the experiment results in Figure 7.11, 𝐾𝑖 coefficient chosen as 3. 

After PID parameters of the inner loop controller was determined, outer loop controller 

was tuned by starting with 𝐾𝑝 coefficient selection. 𝐾𝑝 coefficient was determined 

such that position tracking error minimized. Position and velocity tracking results for 

different 𝐾𝑝 coefficients are given in Figure 7.12 and Figure 7.13. 

Figure 7.12 : Position tracking results of 𝐾𝑝 coefficient determination of outer loop 

controller. 



97 
 

 

Figure 7.13 : Velocity tracking results of 𝐾𝑝 coefficient determination of outer loop 

controller. 

In Figure 7.12, minimum position tracking error was observed when 𝐾𝑝 was 5 and this 

coefficient was chosen for outer loop controller. 

Then in order to reduce velocity tracking error, 𝐾𝑑 coefficient was determined when 

𝐾𝑝 was 5. In Figure 7.14 and Figure 7.15, effects of the 𝐾𝑑 coefficient on position and 

velocity tracking are given. 

Figure 7.14 : Position tracking results of 𝐾𝑑 coefficient determination of outer loop 

controller. 
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Figure 7.15 : Velocity tracking results of 𝐾𝑑 coefficient determination of outer loop 

controller. 

According to the experiment results, 𝐾𝑑 coefficient was chosen as 1. 

This tuning procedure was conducted for each module from farthest module to base 

module and trajectory tracking results are given in sections 7.1.6.1 and 7.1.6.2. 

7.1.6.1 2 DOF modular robot 

For 2 DOF robot configuration, velocity-based joint trajectory controller was executed 

with the pre-calculated joint space trajectories and the results were collected during 

the time trajectories executed. Trajectory tracking performance of the controller is 

shown in Figure 7.16 and Figure 7.17. 

Figure 7.16 : Trajectory tracking results of the module 1. 



99 
 

 

Figure 7.17 : Trajectory tracking results of the module 2. 

7.1.6.2 3 DOF modular robot 

For 3 DOF robot configuration, velocity-based joint trajectory controller was executed 

with the pre-calculated joint space trajectories and the trajectory tracking results are 

observed as in Figure 7.18, Figure 7.19 and Figure 7.20. 

Figure 7.18 : Trajectory tracking results of Module 1. 

Figure 7.19 : Trajectory tracking results of Module 2. 
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Figure 7.20 : Trajectory tracking results of Module 3. 

7.1.7 Pick and place task 

In this section, a pick and place task which is performed with experimental setup is 

discussed. Two separate points have been decided for pick and place application, one 

for picking and one for placing. A rubber was chosen as picked object and the object 

is fed from the fixed position at point A at each repetition. The position deviation 

where the end-effector placed the object at point B was observed by performing a 

repeated movement. This process is shown in the Figure 7.21. 

 

Figure 7.21 : Pick and place task. 

 

The position deviation at the point B was calculated as Euclidian distance error and 

the result is given in the Figure 7.22.  
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Figure 7.22 :  Pick and Place task repeatitability result.

According to the Euclidian distance error data obtained during repeated pick and place 

task, maximum error was obtained as 2.5 mm as it is given in Figure 7.22. 
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8. CONCLUSION 

In this thesis, new design of the modular robot manipulator was presented. Modularity 

of the robot manipulator was ensured with reconfigurable twist angle. Experimental 

setup was created with 3 active modules, 1 gripper module and 1 base module and the 

experiments conducted with 2 DOF and 3 DOF robot configurations as it is given in 

section 7. 

Kinematics analyses were conducted for modular robot manipulator. In the inverse 

kinematics analysis section, analytical and numerical kinematics solvers were 

discussed and the results were given in section 7. Dynamics analyses of the modules 

were performed by using MATLAB and SOLIDWORKS softwares. According to the 

comparisons, small differences were observed between joint torque values obtained 

from MATLAB and SOLIDWORKS. SOLIDWORKS takes into account to friction 

when the material properties assigned to the parts however in the analysis conducted 

in MATLAB, friction was not considered. This difference was thought as it is caused 

by this friction effect.  Maximum payloads for the 3 DOF, 4 DOF and 5 DOF modular 

robot manipulators were studied with static analysis. 

After dynamic analyses were validated, URDF model of the modular robot 

manipulator was created and by using this model, simulated model of the modular 

robot manipulator created in GAZEBO physic engine.  URDF model of the modular 

robot manipulator was validated by comparing joint torque values obtained from 

MATLAB and GAZEBO softwares when the robot manipulator tracing an example 

trajectory in section 7. URDF model of the modular robot manipulator enabled to 

investigate motion planning algorithms both in MATLAB and ROS. 

Controllers for the modules of the modular robot manipulator were implemented in 

ROS. Joint trajectory controller was implemented on both simulation and experimental 

setup. It was tested with the output trajectories of the motion planning package of 

modular robot manipulator. Because that available controllers in the joint trajectory 

controller support only SISO systems, MIMO controller support was implemented 

with computed torque control method. Computed torque controller was created as joint 
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trajectory controller by using recursive inverse dynamic solver in the KDL library. 

Computed torque controller was tested with simulated robot model in Gazebo and the 

results were given in section 7. Because DYNAMIXEL MX64 servo motors does not 

support direct current control for DYNAMIXEL protocol 1.0, this controller could not 

implement on experimental setup. Direct current control was available for 

DYNAMIXEL MX64 with protocol 2.0. It is planned to implement current control in 

the inner controllers of the motors by updating software in the servo motor’s inner 

controller to the DYNAMIXEL protocol 2.0 as a future work. 

Motion planning implementation was conducted with MoveIt! package on ROS. 

Collision free motion planning for different modular robot manipulator configurations 

was realized. User interactions with the MoveIt! were eased with the developed GUI. 

Jog control was enabled from GUI and it was allowed to teach points to the robot and 

plan motions by using taught points. Database was created to store taught points. In 

order to test the performance of the MoveIt! a pick and place task was conducted as it 

is given in 7.1.7. Although point to point motion planning was returned with solutions, 

in the cartesian path planning, solutions were not always found. 

According to the pick and place experiments conducted on the experimental setup, 

torque transmission problem was observed in the gripper module when high gripping 

forces were required. It was determined that problem was caused by mechanical 

connection between gripper servo motor and gripper finger. When high gripping forces 

are demanded, servo shaft slips, and it cannot transmit its full power to the fingers. 

This problem is considered to be one of the issues to be studied in the future. 
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APPENDIX 

A - Graph View of the URDF Model of Modular Robot Manipulator 
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B - MoveIt! Configuration File for Modular Robot Manipulator 

<?xml version="1.0" ?> 
<robot name="modular_robot"> 
    <group name="manipulator"> 
        <joint name="joint1" /> 
        <joint name="joint3" /> 
        <joint name="joint5" /> 
        <chain base_link="base_link" tip_link="gripper_base_link" /> 
    </group> 
    <passive_joint name="base_ll2_joint" /> 
    <passive_joint name="ll2_ll3_joint" /> 
    <passive_joint name="base_ll4_joint" /> 
    <passive_joint name="base_rl2_joint" /> 
    <passive_joint name="rl2_rl3_joint" /> 
    <passive_joint name="base_rl4_joint" /> 
    <disable_collisions link1="base_link" link2="link1" reason="Adjacent" /> 
    <disable_collisions link1="base_link" link2="link2" reason="Never" /> 
    <disable_collisions link1="gripper_base_link" link2="left_l2" reason="Adjacent" /> 
    <disable_collisions link1="gripper_base_link" link2="left_l3" reason="Never" /> 
    <disable_collisions link1="gripper_base_link" link2="left_l4" reason="Adjacent" /> 
    <disable_collisions link1="gripper_base_link" link2="link3" reason="Default" /> 
    <disable_collisions link1="gripper_base_link" link2="link4" reason="Default" /> 
    <disable_collisions link1="gripper_base_link" link2="link5" reason="Adjacent" /> 
    <disable_collisions link1="gripper_base_link" link2="right_l2" reason="Adjacent" /> 
    <disable_collisions link1="gripper_base_link" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="gripper_base_link" link2="right_l4" reason="Adjacent" /> 
    <disable_collisions link1="left_l2" link2="left_l3" reason="Adjacent" /> 
    <disable_collisions link1="left_l2" link2="left_l4" reason="Never" /> 
    <disable_collisions link1="left_l2" link2="link3" reason="Default" /> 
    <disable_collisions link1="left_l2" link2="link4" reason="Never" /> 
    <disable_collisions link1="left_l2" link2="link5" reason="Never" /> 
    <disable_collisions link1="left_l2" link2="right_l2" reason="Default" /> 
    <disable_collisions link1="left_l2" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="left_l2" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="left_l3" link2="left_l4" reason="Never" /> 
    <disable_collisions link1="left_l3" link2="link2" reason="Default" /> 
    <disable_collisions link1="left_l3" link2="link3" reason="Default" /> 
    <disable_collisions link1="left_l3" link2="link4" reason="Never" /> 
    <disable_collisions link1="left_l3" link2="link5" reason="Never" /> 
    <disable_collisions link1="left_l3" link2="right_l2" reason="Never" /> 
    <disable_collisions link1="left_l3" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="left_l3" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="link3" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="link4" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="link5" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="right_l2" reason="Never"  
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<disable_collisions link1="left_l3" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="left_l3" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="link3" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="link4" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="link5" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="right_l2" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="left_l4" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="link1" link2="link2" reason="Adjacent" /> 
    <disable_collisions link1="link1" link2="link3" reason="Never" /> 
    <disable_collisions link1="link1" link2="link4" reason="Never" /> 
    <disable_collisions link1="link1" link2="link5" reason="Never" /> 
    <disable_collisions link1="link2" link2="link3" reason="Adjacent" /> 
    <disable_collisions link1="link2" link2="link4" reason="Never" /> 
    <disable_collisions link1="link2" link2="link5" reason="Never" /> 
    <disable_collisions link1="link2" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="link2" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="link3" link2="link4" reason="Adjacent" /> 
    <disable_collisions link1="link3" link2="link5" reason="Default" /> 
    <disable_collisions link1="link3" link2="right_l2" reason="Never" /> 
    <disable_collisions link1="link3" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="link3" link2="right_l4" reason="Never" /> 
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    <disable_collisions link1="link4" link2="right_l2" reason="Never" /> 
    <disable_collisions link1="link4" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="link4" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="link5" link2="right_l2" reason="Never" /> 
    <disable_collisions link1="link5" link2="right_l3" reason="Never" /> 
    <disable_collisions link1="link5" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="right_l2" link2="right_l3" reason="Adjacent" /> 
    <disable_collisions link1="right_l2" link2="right_l4" reason="Never" /> 
    <disable_collisions link1="right_l3" link2="right_l4" reason="Never" /> 
</robot> 
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C - Numerical Inverse Kinematic Test Program 

 

 

  

KDL::Chain chain = urdf 
fk = calculateFK() 
for count < 1000: 
 target = random(fk) 
 ik_seed_state = getRandomJointPose() 
 ik = calculateIK() 
 if ik < 0 and num_try < 5: 
  num_try++ 
  ik_seed_state = getRandomJointPose() 
  ik = calculateIK() 
KDL::Tree tree; 
kdl_parser.treeFromUrdfModel(urdf, tree); 
KDL::Chain chain 
tree.getChain(base_link, end_effector, chain); 
KDL::ChainFkSolverPose_recursive fk_solver(chain); 
for count < 1000: 
 KDL::JntArray q; 
 q << randomJointsValues(n_dof); 
 KDL::Frame target; 
 fk_solver.JntToCart(q, target); 
 ik_seed_state = getRandomJointPose(); 
 ik = calculateIK(); 
 if ik < 0 and num_try < 5: 
  num_try++ 
  ik_seed_state = getRandomJointPose(); 
  ik = calculateIK(); 
 if ik < 0 and num_try < 5: 
  num_try++ 
  ik_seed_state = getRandomJointPose(); 
  ik = calculateIK(); 



113 
 

D - Determinant of the Matrix with Singular Value Decomposition Method in 

MATLAB 

Calculating determinant of the matrix using SVD method in MATLAB : 

 

 

 

 

 

 

  

[r,c]=size(A); 

[u,s,v]=svd(A); 

if r==1 | c==1 

s=s(1); 

else 

s = diag(s); 

end 

d=det(u)*prod(s)*det(v'); 
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