
IZ
M

IR
 K

A
T

IP
 C

E
L

E
B

I U
N

IV
E

R
S

IT
Y

 2
0

1
9

A
. K

A
H

V
E

C
İ

M.Sc. THESIS

JULY 2019

DESIGN AND ROBOT OPERATING SYSTEM BASED CONTROL OF A

MODULAR ROBOT MANIPULATOR

IZMIR KATIP CELEBI UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

Aytaç KAHVECİ

Department of Mechanical Engineering

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

IZMIR KATIP CELEBI UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

JULY 2019

DESIGN AND ROBOT OPERATING SYSTEM BASED CONTROL OF A

MODULAR ROBOT MANIPULATOR

M.Sc. THESIS

Aytaç KAHVECİ

 (Y160217009)

Department of Mechanical Engineering

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisors: Asst. Prof. Dr. Özgün BAŞER

 Asst. Prof. Dr. Erkin GEZGİN

TEMMUZ 2019

İZMİR KATİP ÇELEBİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

MODÜLER ROBOT MANİPÜLATÖR TASARIMI VE ROBOT İŞLETİM

SİSTEMİ TABANLI KONTROLÜ

YÜKSEK LİSANS TEZİ

Aytaç KAHVECİ

(Y160217009)

Makine Mühendisliği Ana Bilim Dalı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanları: Dr. Öğr. Üyesi Özgün BAŞER

 Dr. Öğr. Üyesi Erkin GEZGİN

iii

Jury Members :

Assoc. Prof. Dr. Levent MALGACA

Dokuz Eylül University

Assoc. Prof. Dr. Ahmet ÖZKURT

Dokuz Eylül University

Asst. Prof. Dr. Fatih Cemal CAN

İzmir Katip Çelebi University

Thesis Advisor :

Asst. Prof. Dr. Özgün BAŞER

İzmir Katip Çelebi University

Thesis Co-Advisor :

Asst. Prof. Dr. Erkin GEZGİN

İzmir Katip Çelebi University

Aytaç KAHVECİ, a M.Sc. student of IKCU Graduate School Of Natural And

Applied Sciences, successfully defended the thesis entitled “DESIGN AND ROBOT

OPERATING SYSTEM BASED CONTROL OF A MODULAR ROBOT

MANIPULATOR”, which he prepared after fulfilling the requirements specified in

the associated legislations, before the jury whose signatures are below.

Date of Submission : 02.07.2019

Date of Defense : 22.07.2019

iv

v

TABLE OF CONTENTS

Page

TABLE OF CONTENTS ... v

LIST OF ABBREVIATIONS ... vii

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

ABSTRACT .. xv

ÖZET ... xvii

1. INTRODUCTION .. 1
1.1 Definition of the Problem ... 1
1.2 Motivation... 2
1.3 Literature Review ... 3

2. CONCEPTUAL DESIGN OF THE MODULES .. 7
2.1 Module Types and Structures ... 7

2.1.1 Active module .. 8

2.1.2 Base module ... 10
2.1.3 Gripper module .. 10

2.2 Determination of the DH Parameters ... 11

2.3 Structural Design of Modular Robot Manipulator.. 14
2.3.1 Structural design of gripper.. 14

2.3.2 Case study for R-R type modular robot manipulator 19

3. KINEMATICS AND DYNAMICS OF MODULAR ROBOT

MANIPULATOR ... 25
3.1 Forward Kinematics.. 25

3.2 Jacobian Analysis ... 27
3.3 Inverse Kinematics ... 29

3.3.1 Inverse kinematic solution with analytic method 29
3.3.2 Inverse kinematic solution with numerical method 32

3.4 Dynamics Modeling of the Modular Robot Manipulator 34

3.4.1 Dynamics modeling procedure .. 35
3.4.2 Validating dynamic model of the modular robot manipulator 41

3.5 Payload Analysis of the Modular Robot Manipulator 48
3.5.1 Payload analysis of 3 DOF modular robot manipulator 48
3.5.2 Payload analysis of 4 DOF modular robot manipulator 50
3.5.3 Payload analysis of 5 DOF modular robot manipulator 51

4. ROS BASED ANALYSIS OF MODULAR ROBOT MANIPULATOR 53
4.1 Introduction to ROS .. 53
4.2 ROS Computation Graph .. 54

4.3 Used ROS Packages ... 56
4.3.1 Unified robot description format (URDF): .. 56
4.3.2 MoveIt!... 57
4.3.3 OROCOS kinematics and dynamics library (KDL) 57
4.3.4 Gazebo ... 58

vi

4.3.5 Rviz .. 58

4.4 Kinematic Analysis Using ROS ... 59

4.4.1 URDF model of the modular robot manipulator .. 59
4.4.2 MoveIt! setup of the modular robot manipulator 60
4.4.3 Obtaining simulation results on ROS ... 61

4.5 Graphical User Interface Plugin for Rviz ... 61
5. CONTROL OF MODULAR ROBOT MANIPULATOR 63

5.1 Basic Control Strategies .. 63
5.1.1 Independent joint control: .. 63

5.2 Controller Design for Modular Robot Manipulator .. 64
5.2.1 Actuator dynamics: .. 64
5.2.2 Independent joint dynamics: .. 65

5.2.3 PID compensator: ... 66
5.2.4 PID based joint trajectory controller: ... 67
5.2.5 Computed torque controller: .. 68

5.3 Implementation of ROS to Modular Robot Control ... 71
5.3.1 Position controller .. 72
5.3.2 Effort controllers .. 72
5.3.3 Joint trajectory controller ... 73

5.3.4 Computed torque controller ... 73
5.3.5 Joint state controller ... 74

5.3.6 Gripper controller ... 74
5.4 Motion Planning ... 75

5.4.1 RRT* algorithm ... 76

5.4.2 Motion planning flow chart .. 77
6. EXPERIMENTAL RIG DESIGN... 81

6.1 Manufacturing of Modules ... 81
6.2 Mechanic Accessories ... 82
6.3 Electronic Accessories .. 84

6.4 Experimental Setup ... 85

7. RESULTS AND DISCUSSIONS... 87
7.1 Validation and Verification .. 87

7.1.1 Numerical inverse kinematic solver validation .. 87
7.1.2 Analytic inverse kinematic solution validation .. 89
7.1.3 Singularity analysis validation ... 89
7.1.4 Gazebo simulation model validation .. 90
7.1.5 Controller results in simulation .. 92

7.1.6 Velocity based joint trajectory controller tracking results on experimental

setup 94
7.1.7 Pick and place task ... 100

8. CONCLUSION ... 103
REFERENCES ... 105

APPENDIX ... 109

 A - Graph View of the URDF Model of Modular Robot Manipulator 109

 B - MoveIt! Configuration File for Modular Robot Manipulator 110

 C - Numerical Inverse Kinematic Test Program .. 112

 D - Determinant of the Matrix with Singular Value Decomposition Method in

MATLAB ... 113
CURRICULUM VITAE .. 114

vii

LIST OF ABBREVIATIONS

ABS : Acrylonitrile Butadiene Styrene

DH : Denavit-Hartenberg

DOF : Degrees of Freedom

GUI : Graphical User Interface

KDL : The Kinematics and Dynamics Library

MDF : Medium Density Fiberboard

MIMO : Multiple Input Multiple Output

OROCOS : Open Robot Control Software

PC : Personal Computer

ROS : Robot Operating System

RRT* : Rapidly-Exploring Random Tree Star

Rviz : ROS Visualizer

SDK : Software Development Kit

SISO : Single Iput Single Output

STL : Stereolithography

URDF : Unified Robot Description Format

XML : Extensible Markup Language

viii

ix

LIST OF TABLES

Page

Table 2.1 : DH Parameters. ... 13

Table 2.2 : DH parameters of the robot which is given in Figure 2.10. 19

Table 3.1 : DH parameters of the modular robot in Figure 3.1. 26

Table 3.2 : Nomenclatures. ... 36

Table 3.3 : Center of mass of the active module. .. 37

Table 3.4 : Inertia matrix of the active module which is taken at the center of mass

and alligned with the ouput coordinate system. ... 37

Table 3.5 : Center of mass of the gripper module. .. 38

Table 3.6 : Inertia matrix of the gripper module which is taken at the center of mass

and alligned with the ouput coordinate system. ... 38

Table 3.7 : Center of mass of the base module. .. 39

Table 3.8 : Inertia matrix of the gripper module which is taken at the center of mass

and alligned with the ouput coordinate system. ... 39

Table 6.1 : Dynamixel MX-64T Hardware Specifications. 83

Table 6.2 : PowerHD 1201 MG Hardware Specifications. 83

Table 7.1 : KDL Inverse kinematic solver statistics. .. 87

Table 7.2 : Effects of PID coefficients .. 95

x

xi

LIST OF FIGURES

Page

Figure 2.1 : Active module. .. 8

Figure 2.2 : Active Module Housing Part. .. 9

Figure 2.3 : Active Module Coupling Part. ... 9

Figure 2.4 : Base module and coupler part. .. 10

Figure 2.5 : Gripper Module. .. 11

Figure 2.6 : DH convention [28]. .. 12

Figure 2.7 : DH coordinate frames. .. 13

Figure 2.8 : Gripper module design. ... 15

Figure 2.9 : Splitting of the four-bar mechanism. ... 15

Figure 2.10 : 2 DOF modular robot manipulator. ... 19

Figure 2.11 : Possible workspace of the modular robot manipulator. 22

Figure 2.12 : Selected task points inside the possible workspace of the modular

robot manipulator. .. 23

Figure 2.13 : Workspace with calculated α1, d1 and d2 parameters. 23

Figure 3.1 : 3 DOF modular robot configuration. ... 25

Figure 3.2 : Geometric Jacobian. ... 28

Figure 3.3 : KDL numerical inverse kinematic flow chart. 34

Figure 3.4 : Active module output coordinate frame. ... 36

Figure 3.5 : Gripper module output coordinate frame. ... 37

Figure 3.6 : Base module output coordinate frame ... 39

Figure 3.7 : Displacement in the trajectory for Joint 1 ... 42

Figure 3.8 : Velocity in the trajectory for Joint1. ... 43

Figure 3.9 : Acceleration in the trajectory for Joint1. ... 43

Figure 3.10 : Displacement in the trajectory for Joint2. ... 44

Figure 3.11 : Velocity in the trajectory for Joint2... 44

Figure 3.12 : Acceleration in the trajectory for Joint3. ... 44

Figure 3.13 : Displacement in the trajectory for Joint3. ... 45

Figure 3.14 : Velocity in the trajectory for Joint3... 45

Figure 3.15 : Acceleration in the trajectory for Joint3. ... 45

Figure 3.16 : Input path for dynamic analysis. ... 46

Figure 3.17 : Matlab simulink diagram for dynamic analysis. 46

Figure 3.18 : Torque Results for Joint 1. .. 47

Figure 3.19 : Torque Results for Joint 2. .. 47

Figure 3.20 : Torque Results for Joint 3. .. 48

Figure 3.21 : 3 DOF modular robot manipulator payload analysis. 49

Figure 3.22 : Shear force and bending moment diagram for 3 DOF modular robot

manipulator. ... 49

Figure 3.23 : 4 DOF modular robot manipulator payload analysis. 50

xii

Figure 3.24 : Shear force and bending moment diagram for 4 DOF modular robot

manipulator. .. 50

Figure 3.25 : 5 DOF modular robot manipulator payload analysis. 51

Figure 3.26 : Shear force and bending moment diagram for 5 DOF modular robot

manipulator. .. 52

Figure 4.1 : ROS Computation Graph... 55

Figure 4.2 : Modular robot manipulator in Gazebo. .. 58

Figure 4.3 : Active module frames in URDF model. .. 59

Figure 4.4 : URDF model of the modular robot manipulator. 60

Figure 4.5 : Motion planning with MoveIt! .. 61

Figure 4.6 : Modular robot GUI plugin in Rviz ... 62

Figure 5.1 : Basic structure of a feedback control system. 63

Figure 5.2 : DC motor model. ... 64

Figure 5.3 : DC motor block diagram. .. 65

Figure 5.4 : Reduced block diagram of a DC motor. .. 65

Figure 5.5 : Independent joint control block diagram. .. 67

Figure 5.6 : Independent joint trajectory controller block diagram. 67

Figure 5.7 : Independent joint trajectory controller with inner PID control loop. 68

Figure 5.8 : Computed torque control block diagram. .. 70

Figure 5.9 : Active module ROS controller diagram. ... 71

Figure 5.10 : Gripper module ROS controller diagram. ... 74

Figure 5.11 : RRT* algorithm visualization. [39] ... 77

Figure 5.12 : Motion planning flow chart ... 78

Figure 6.1 : Manufactured active module ... 81

Figure 6.2 : Manufactured gripper module which is mounted to the housing part of

active module ... 82

Figure 6.3 : Manufactured base module .. 82

Figure 6.4 : Dynamixel MX-64T servo motor. ... 83

Figure 6.5 : PowerHD 1201 MG servo motor... 83

Figure 6.6 : Arduino UNO microcontroller .. 84

Figure 6.7 : OpenCM 485 Expansion Board ... 84

Figure 6.8 : USB2Dynamixel .. 85

Figure 6.9 : 3 DOF Experimental setup. ... 86

Figure 6.10 : 2 DOF Experimental setup. ... 86

Figure 7.1 : Torque values for module 1 taken from both MATLAB and Gazebo. . 91

Figure 7.2 : Torque values for module 2 taken from both MATLAB and Gazebo. . 91

Figure 7.3 : Torque values for module 3 taken from both MATLAB and Gazebo. . 92

Figure 7.4 : Module 1 trajectory tracking results. ... 92

Figure 7.5 : Module 2 trajectory tracking results. ... 93

Figure 7.6 : Module 3 trajectory tracking results .. 93

Figure 7.7 : Module 1 trajectory tracking results. ... 94

Figure 7.8 : Module 2 trajectory tracking results. ... 94

Figure 7.9 : Module 3 trajectory tracking results. ... 94

Figure 7.10 : Kp coefficient determination of inner loop controller. 95

Figure 7.11 : Ki coefficient determination of inner loop controller. 96

Figure 7.12 : Position tracking results of Kp coefficient determination of outer loop

controller. ... 96

xiii

Figure 7.13 : Velocity tracking results of Kp coefficient determination of outer loop

controller. ... 97

Figure 7.14 : Position tracking results of Kd coefficient determination of outer loop

controller. ... 97

Figure 7.15 : Velocity tracking results of Kd coefficient determination of outer loop

controller. ... 98

Figure 7.16 : Trajectory tracking results of the module 1. .. 98

Figure 7.17 : Trajectory tracking results of the module 2. .. 99

Figure 7.18 : Trajectory tracking results of Module 1. ... 99

Figure 7.19 : Trajectory tracking results of Module 2. ... 99

Figure 7.20 : Trajectory tracking results of Module 3. ... 100

Figure 7.21 : Pick and place task. ... 100

Figure 7.22 : Pick and Place task repeatitability result. ... 101

xiv

xv

DESIGN AND ROBOT OPERATING SYSTEM BASED CONTROL OF A

MODULAR ROBOT MANIPULATOR

ABSTRACT

In this thesis, a new design of the modular robot manipulator and its control with Robot

Operating System is presented. The modules are designed to have an adjustable twist

angle, which enables to create different robot manipulator configurations. Kinematic

synthesis on the gripper module is conducted and structural parameters of the gripper

is determined. Axis sets on the modules are determined by Denavit-Hartenberg

method. Inverse and forward kinematic analysis and singularity analysis are

performed. Numerical inverse kinematic solver is proposed for modular robot

manipulators with more than 3 degrees of freedom and the effectiveness of solver is

evaluated.

The robot dynamic model, which is also important in the control of robot manipulators,

is created for modular robot manipulator. Modular robot manipulator model is created

in ROS environment in accordance with determined kinematic structure and dynamic

model and the resulted model is verified by comparing it with MATLAB simulation

results. Computed torque controller is developed in ROS and its performance is tested

on simulation model as well as single joint controllers in ROS.

In order to test the performance of modular robot manipulator an experimental rig is

created. Joint trajectory controller is implemented on 2 DOF and 3 DOF modular robot

manipulators and trajectory tracking performance of the controller is given.

Motion planning studies are performed both on simulation model and experimental

setup. By means of developed graphical user interface, it is allowed to control the robot

with jog mode, teach points to the robot and plan motions with predefined command

sets.

xvi

xvii

MODÜLER ROBOT MANİPÜLATÖR TASARIMI VE ROBOT İŞLETİM

SİSTEMİ TABANLI KONTROLÜ

ÖZET

Bu tezde yeni modüler robot manipulator tasarımı ve Robot İşletim Sistemi ile

kontrolü sunulmaktadır. Modüller, farklı robot manipulator konfigürasyonları

oluşturmaya izin veren ayarlanabilir büküm açılarına sahip olacak şekilde

tasarlanmıştır. Tutucu modülünün kinematik sentezi gerçekleştirilmiş ve tutucunun

yapısal parametreleri belirlenmiştir. Modüllerdeki eksen takımları Denavit-

Hartenberg yöntemi kullanılarak belirlenmiştir. İleri ve geri yön kinematic analizleri

ve tekillik analizleri gerçekleştirilmiştir. Üç serbestlik derecesinden fazla modüler

robot manipülatörler için nümerik ters kinematik çözücüsü önerilmiş ve etkinliği

değerlendirilmiştir.

Robot manipülatörlerin kontrolü için de önemli olan robot dinamik modeli modüler

robot manipülatör için oluşturmuştur. Belirlenen kinematik yapıya uygun olarak ROS

ortamında modüler robot manipülatör modeli oluşturulmuş ve model, MATLAB

simülasyon sonuçları ile kıyaslanarak doğrulanmıştır. Hesaplanan tork kontrolü ROS

ta geliştirilmiş ve performansı tek eklem kontrolcüsünde olduğu gibi simülasyon

ortamında test edilmiştir.

Modüler robot manipülatörün performansını test etmek için bir deney düzeneği

oluşturulmuştur. Eklem yörünge kontrolcüsü 2 serbestlik dereceli ve 3 serbestlik

dereceli modular robot manipülatörler için uygulanmış ve yörünge takip

performansları verilmiştir.

Simülasyon modeli üzerinde ve deney düzeneği üzerinde hareket planlaması alışmaları

gerçekleştirilmiştir. Geliştirilen kullanıcı arayüzü sayesinde robotu manuel kontrol

etme, robota nokta öğretme ve ön tanımlı komut setleri ile hareket planlaması yapma

imkanı tanınmıştır.

xviii

1

1. INTRODUCTION

Nowadays, most industrial robots can be considered as universal solutions to certain

types of tasks. These industrial robots usually have minimal mechanical flexibility in

terms of reconfigurability for achieving different robot configurations. That fixed

structure of the robot does not allow it to adapt itself optimally to different tasks.

Therefore, usage of these fixed-structure industrial robots in higher versatility in tasks

is not always possible and it is vital selecting robot manipulator configuration which

is capable of fulfilling aimed tasks.

On contrary to fixed-structure industrial robots, modular robots can be adapted to wide

variety of tasks due to their construction which include sets of reconfigurable modules.

Interchangeable modular structure of the robots increases their availability rates in the

production line. These capabilities of the modular robots create a high potential for use

in industrial areas.

This study presents a new modular robot manipulator design and its control with up-

to-date robot control framework ROS. This chapter provides an overview of the thesis.

The thesis is organized as follows. Section 1.3 describes the motivation for the thesis.

Section 1.4 provides overview of studies that are made in the modular robotic area.

Section 2 explains conceptual design of the modules. Section 3 includes detailed

kinematic and dynamic analysis of the modules. Section 4 introduces ROS and

components which are used in the ROS. Section 5 presents controller design for

modular robot manipulator. Section 6 presents used experimental setup. Section 7

gives the results of the analysis and experiments.

1.1 Definition of the Problem

In today's industry, the use of flexible automation lines is needed in production.

Especially with the developments in Industry 4.0, the importance of flexible

automation lines has increased. In Industry 4.0, smart components in the production

2

lines communicates with each other and can make decisions themselves without

human interactions. By accessing and analyzing more data on the process, these

components optimize themselves to enhance production quality and efficiency.

In order to achieve this change, industrial robots, one of the most widely used

equipment in automation, also need to gain structural flexibility. Nowadays, studies

on modular robot manipulators are being carried out in order to address this issue.

Reconfigurable structures of the modular robot manipulators ensure the flexibility in

production lines. By creating smart modules, traceability of the production can be

enhanced and by gathering more data optimization of the process can be achieved.

1.2 Motivation

Motivation to this thesis is considered in four topics.

Lack of modular robots for industrial areas

As it will be stated in the Literature Review section 1.3, modular robots have not yet

fully been adapted to the industrial areas. By studying in this research topic, it is aimed

to contribute the application areas of the modular robots. When literature is reviewed

it is observed that modular robot manipulators are mostly used for research purposes.

However, in this study, it is intended to use of modular robot manipulator in assembly

line in Industry 4.0.

Higher potential of modular robots

In the last decade, modular robots are started to be used in mechatronics education,

since modularity gives advantages to both students and educators in the

comprehension of the basic concepts related with the field of robotics and

mechatronics. For this reason, the secondary aim of this thesis will be to design a user-

friendly modular robot which can be used in mechatronics education.

Because of their higher potentials as described in the Literature Review, this research

topic was considered in order to follow increasing trend.

Lack of modular robot applications in ROS

Although ROS is utilized in many robotic applications, there are still very few studies

on integration of ROS with the modular systems. For this reason, the third aim of this

3

thesis is to prove the effectiveness of application of popular robotic software

framework ROS on modular systems and contribute to the ROS community.

Low cost robot manipulator solution

The fourth aim of this study is to offer low cost robot manipulator solution to the

industrial applications. Open source software structure is important for this purpose. It

reduces the costs and this is the advantage of the ROS integrated modular robots when

compared with expensive industrial robots. It is also possible to offer low cost robotic

integration with modular robot manipulators. Instead of buying two or three industrial

robots, more tasks can be carried on with having modular robot manipulator and

reconfiguring it with different robot structure.

1.3 Literature Review

Reconfigurable and modular robot manipulators are mechatronic systems composed

of interchangeable modules. The modular nature of these systems allows them to be

adapted for different applications, which is a clear advantage with respect to fixed-

structure robots.

Modular and reconfigurable robot systems have been popular research topics for more

than 20 years [1]. Modular robots are generally categorized according to their

configuration properties as manually configurable and self-reconfigurable systems. [2]

Self-reconfigurable modular robots are those that are able to change their configuration

on their own, while manually configurable modular robots are modular robots that

have to be assembled by operator.

Earlier researches are focused on self-reconfigurable modular robots because of their

higher potentials. CEBOT [3] , PolyPod [4] and Tetrobot [5], KAIRO3 [6] and

Modular Amphibious Snake-like Robot [7] and SambotII [8] are some of the self-

reconfigurable modular robots manufactured. On the other hand, Fable II [9] and

Alligator [10] are the some of the manually reconfigurable modular robots

manufactured.

The standard parts of the modular robots can be produced by using 3D printer

technology. It is showed that modules can be joined (attached) together via magnets

as well as mechanical components. Joined through magnets are chosen for robots

4

which do not carry loads. It is not the good coupled technique for industrial robots. M-

blocks [11] is one of the studies which use magnetic coupling techniques.

Thanks to their reconfigurable structures modular robots can adapt themselves to the

great versatile applications. In literature, it is seen that modular robots are used

especially for search and rescue operations [12], for space explorations [13] and as

service robots [14]. One of the challenges of modular robot manipulators is to

overcome the negative impact of gravity. Since the modules are added end-to-end, the

center of gravity moves away from the base module under the effects of each actuator

weights. However, for the robotic applications in space explorations, this disadvantage

of the modular robot manipulator can be neglected due to the lack of gravity.

Modular robot manipulators have the following advantages over the fixed-structure

robot manipulators [15]:

Versatility: reconfigurable robotic systems are more adaptive than conventional

systems. The ability to reconfigure allows a robot to disassemble and reassemble to

form new morphologies that are better suited for new tasks.

Robustness: Interruptions in production and assembly lines are crucial for the

production efficiency. Since the robot parts are interchangeable in the modular

structure, the defective parts can be very quickly replaced automatically (or manually)

replaced. Hence, this property has a positive effect on system robustness.

Low cost: reconfigurable robotic systems can potentially lower overall robot cost by

making many copies of one type of modules so economies of scale and mass

production come into play. Also, a range of complex solutions can be made from one

set of modules, saving costs through reuse.

However, these advantages have not yet been fully implemented in real life, and this

has led to the lack of modular design of industrial robots used in production. In

addition, the change in the degree of freedom of the modular robots increases the

robot's mechanical capability and control complexity as well as increasing the diversity

of the functionality of the robots.

As it can be understood from the literature, modular robots have been examined mostly

for the research purpose until today. However, there are also some studies that have

been made in last years showing the application of modular robots for industrial

purposes. G. J. Hamlin and A. C. Sanderson designed a modular robotic system for

5

industrial applications. They made two types of modules; joint modules and they

simulated a SCARA robot by using these modules [16]. Xinan Pan, Hongguang Wang

and Yong Jiang developed a calibration method for modular robot manipulators in

order to overcome machining errors of modules and assembly errors between modules

[17]. Andrea Giusti and Matthias addressed the problem of controlling reconfigurable

robot manipulators which are made of heterogeneous modules. They developed an

automatic centralized controller to synthesize model-based control laws. [18] A.

Valente proposed a configuration algorithm for reconfigurable robots which gives

optimal configurations for the given task in terms of statics, kinematics and dynamics.

[19]

All of these studies show that a well-designed modular robot system can be used to

provide production diversity and efficiency in flexible automation assembly lines.

In addition, open source software is needed to take advantage of these modular robot

manipulators and in particular to provide cost-effective solutions. To this end, ROS

provides a suitable open source software framework. Its open and modular structure

best fits to the modular robot manipulator concept.

ROS developed for robot applications is shown up as a new approach for robot

programming. Especially modular structure of the ROS is an important reason for

selecting it to be used in modular robot applications [20]. In one of the studies that has

been made on this area, designing and programming of a robotic surgical device was

realized by using ROS [21]. In another study, programming of a hybrid “pick and

place” robot was realized by using ROS libraries [22]. In another study, the problem

of the trajectory following of an unmanned air vehicle was solved by using ROS [23].

In addition to these, there are a lot of ROS applications in the literature [24] [25].

Modularity in the software architecture is also a research topic in this field. The unified

software frameworks for modular robot manipulators developed in [26] and [27] but

these frameworks have not yet been accepted as a standard. In this thesis ROS was

used to ensure modularity in software architecture.

Contribution of the research to literature is the new design of the modular robot

manipulator and the open source software-based control for modular robot

manipulator.

6

7

2. CONCEPTUAL DESIGN OF THE MODULES

In this thesis, the modularity of the links comes with their structures. This means that

in order to design R – R type modules, we need the minimum specifications related

with their structures. Those specifications come from the design constraints. Although

this seems to be a disadvantage of the modularity, with the assembly of more than two

modules different sort of configurations can be obtained; hence, the capacity of the

modular robot manipulator increases.

Throughout this thesis, maximum reachability constraint is determined as a constraint

and modular structure is determined to be accomplished with adjustable twist angle.

According to this constraint, conceptual modular robot manipulator is created.

In order to show the procedural approach, a case study is utilized in section 2.3.

2.1 Module Types and Structures

Modular robot manipulator is made of three types of modules.

• Active module

• Base module

• Gripper module

Active module consists of housing part for the actuator and adjustable coupling part

for module to module assembly. By means of its reconfigurable coupling part, it allows

to create different robot configurations.

Base module consists of stationary mounting points for the active modules. It allows

to assembly active modules in different configurations. It is responsible for creating

base frame between world frame and robot frame in the robot manipulator.

Gripper module which is appended to the active modules, is an end effector tool for

modular robot manipulator. It is responsible for performing pick and place actions in

the robot manipulator.

8

In the following chapters, each module types and its kinematic properties are

discussed.

2.1.1 Active module

Active module is made of two parts; housing part and coupling part. In Figure 2.1,

active module and its components are shown.

Figure 2.1 : Active module.

Housing part includes a DYNAMIXEL MX64 actuator which is creating moving

joints structure of the modular robot manipulator. By means of its mounting holes,

actuator is fixed to the module with bolts. The shaft of the actuator is bedding to the

module by means of radial and needle roller bearings. Rotary joint which is mounted

on the shaft has mounting holes for module to module assembly. Housing part of the

active module is given in Figure 2.2.

9

Figure 2.2 : Active Module Housing Part.

Coupling part creates configurable structure of the modular robot manipulator. By

rotating in its longitude axis, twist angle of the consecutive module is configured. It

has 12 mounting holes and alignment holes to assemble coupling part to the housing

part of the active module. Therefore, the twist angle of the consecutive module can be

configured with 30 degrees resolution. Once the twist angle is determined, coupling

part is mounted to the housing part with bolts. It has needle bearing for bedding which

is utilized in the configuration process. Coupling part of the active module is given in

Figure 2.3.

Figure 2.3 : Active Module Coupling Part.

In the both side of the active module, there are holes that enable to connect power and

communication cables to the actuator.

10

2.1.2 Base module

Base module has two separate mounting points to connect active modules. This

connection is made by using rectangular coupler part. Active module is mounted to

the rectangular coupler part first and then it is mounted to the base module.

In Figure 2.4, base module and coupler part are shown with two possible mounting

situations for coupler part.

Figure 2.4 : Base module and coupler part.

2.1.3 Gripper module

Gripper module is an end-effector tool for the modular robot manipulator structure.

The fingers in the gripper module consist of two symmetrical four-bar mechanisms.

These fingers are actuated with a DC servo motor. There are 10 mounting points where

the gripper module is connected to the housing part of the active module. In Figure 2.5

gripper module is shown.

11

Figure 2.5 : Gripper Module.

2.2 Determination of the DH Parameters

The kinematic model of the robot represents the motion of the robot mechanism

regardless of the force and torque that actuates the motion. Kinematic solution allows

to determine set of joint variables for the given end-effector pose of the robot and vise-

versa.

Denavit-Hartenberg (DH) notation is widely used to describe the kinematic model of

a robot. In DH convention, each homogeneous transformation 𝑇𝒊
𝒊−𝟏 is represented as

a product of four basic transformations:

 T𝐢
𝐢−𝟏 = Rotx(αi−1)Dx(ai−1)𝑅𝑧(𝜃𝑖)𝐷𝑧(𝑑𝑖) =

 [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1

𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑐𝜃𝑖𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑠𝛼𝑖−1𝑑𝑖

𝑠𝜃𝑖𝑠𝛼𝑖−1 𝑐𝜃𝑖𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑐𝛼𝑖−1𝑑𝑖

0 0 0 1

]
(2.1)

where sin(𝜃) is abbreviated as 𝑠𝜃 and cos(𝜃) as 𝑐𝜃, 𝑅𝑜𝑡𝑖 denotes rotation about the

axis 𝑖, and 𝐷𝑖 denotes translation along axis 𝑖.

In the equation 2.1, four DH parameters are described with the following:

• 𝑎𝑖−1 denotes the link length measured between the 𝑍𝑖−1 and 𝑍𝑖 along the 𝑋𝑖−1

axis.

• 𝛼𝑖−1 denotes the link twist angle measured between 𝑍𝑖−1 and 𝑍𝑖 along the 𝑋𝑖−1

axis.

12

• 𝑑𝑖 denotes the link offset measured between 𝑋𝑖−1 and 𝑋𝑖 along the 𝑍𝑖 axis.

• 𝜃𝑖 denotes the joint angle measured between 𝑋𝑖−1 and 𝑋𝑖 along the 𝑍𝑖 axis.

As shown in Figure 2.6, where visual representation of DH parameters and coordinate

frames allocations are given.

Figure 2.6 : DH convention [28].

Once the DH parameters determined, transformation matrix of the end-effector relative

to the base of robot manipulator can be calculated with equation 2.2.

 𝑇 = 𝑇 𝑇 … 𝑇𝒏
𝒏−𝟏

𝟐
𝟏

𝟏
𝟎

𝒏
𝟎 (2.2)

Coordinate frames allocations for modular robot manipulator was made as it is shown

in Figure 2.7.

13

Figure 2.7 : DH coordinate frames.

The DH parameters corresponding to the selected coordinate frames are listed in the

Table 2.1.

 Table 2.1 : DH Parameters.

i 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖

1 𝛼0 0 𝑑1 𝜃1

2 𝛼1 𝑎1 𝑑2 𝜃2

3 𝛼2 𝑎2 𝑑3 𝜃3

4 𝛼3 𝑎3 𝑑4 0°

In the Table 2.1, 𝛼 variables are configuration parameters, d and a variables are

structural parameters and 𝜃 variables are joint control parameters for modular robot

manipulator. Because all joints are revolute joints, the unit of the 𝜃 variables are in

radians.

14

Homogenous transformation matrices of the given 3 DOF modular robot manipulator

configuration are obtained as following:

𝑇1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1𝑐𝛼0 𝑐𝜃1𝑐𝛼0 −𝑠𝛼0 −𝑠𝛼0𝑑1

𝑠𝜃1𝑠𝛼0 𝑐𝜃1𝑠𝛼0 𝑐𝛼0 𝑐𝛼0𝑑1

0 0 0 1

] (2.3)

𝑇2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 𝑎1

𝑠𝜃2𝑐𝛼1 𝑐𝜃2𝑐𝛼1 −𝑠𝛼1 −𝑠𝛼1𝑑2

𝑠𝜃2𝑠𝛼1 𝑐𝜃2𝑠𝛼1 𝑐𝛼1 𝑐𝛼1𝑑2

0 0 0 1

] (2.4)

𝑇3
2 = [

𝑐𝜃3 −𝑠𝜃3 0 𝑎2

𝑠𝜃3𝑐𝛼2 𝑐𝜃3𝑐𝛼2 −𝑠𝛼2 −𝑠𝛼2𝑑3

𝑠𝜃3𝑠𝛼2 𝑐𝜃3𝑠𝛼2 𝑐𝛼2 𝑐𝛼2𝑑3

0 0 0 1

] (2.5)

𝑇4
3 = [

1 0 0 𝑎3

0 𝑐𝛼3 −𝑠𝛼3 −𝑠𝛼3𝑑4

0 𝑠𝛼3 𝑐𝛼3 𝑐𝛼3𝑑4

0 0 0 1

] (2.6)

2.3 Structural Design of Modular Robot Manipulator

2.3.1 Structural design of gripper

In the gripper design, usage of the four-bar mechanism was decided and kinematic

synthesis of the gripper was proceeded upon 4 bar mechanism.

Synthesis of the four-bar mechanism can be conducted with path generation, body

guidance or function generation methods. Due to importance on the orientation of the

gripper initial and final positions, the synthesis was conducted with body guidance

method. In body guidance method, entire body is guided with desired body poses.

15

Figure 2.8 : Gripper module design.

In Figure 2.8 gripper design is given. The designed gripper consists of two pieces of

four-bar mechanism. Both four-bar fingers are intended to be symmetrical according

to origin axis of the gripper in the design phase. Therefore, in order to synthesize the

mechanism only one of the fingers is considered.

By splitting the four-bar mechanism as it is given in Figure 2.9 into two 2 DOF

mechanisms, link lengths can be obtained.

Figure 2.9 : Splitting of the four-bar mechanism.

By using vector-loop equation for the first 2 DOF mechanism, following equations are

obtained:

16

 𝑙1𝑒
𝑖𝜃1 + 𝑙4𝑒

𝑖𝜃4 = 𝑃𝑥 + 𝑖𝑃𝑦 (2.7)

 𝑙1 𝑐𝑜𝑠 𝜃1 + 𝑙4 𝑐𝑜𝑠 𝜃4 = 𝑃𝑥 (2.8)

 l1 sin θ1 + l4 sin θ4 = Py (2. 9)

By rearranging equations 2.8 and 2.9 as leaving 𝜃1 parameters alone on the left side:

 𝑙1 𝑐𝑜𝑠 𝜃1 = 𝑃𝑥 − 𝑙4 𝑐𝑜𝑠 𝜃4 (2.10)

 𝑙1 𝑠𝑖𝑛 𝜃1 = 𝑃𝑦 − 𝑙4 𝑠𝑖𝑛 𝜃4 (2.11)

and by squaring both equations and adding them equation 2.12 is obtained:

 𝑙1
2 = 𝑃𝑥

2 + 𝑃𝑦
2 − 2𝑃𝑥𝑙4 𝑐𝑜𝑠 𝜃4 − 2𝑃𝑦𝑙4 𝑠𝑖𝑛 𝜃4 + 𝑙4

2
 (2.12)

If the obtained equation is divided to the 2𝑙4:

 (𝑙4
2− 𝑙1

2)

2𝑙4
+ (𝑃𝑥

2 + 𝑃𝑦
2)

1

2𝑙4
− 𝑃𝑥 𝑐𝑜𝑠 𝜃4 − 𝑃𝑦 𝑠𝑖𝑛 𝜃4 = 0 (2.13)

is obtained. The equation 2.13 is the objective function of the kinematic synthesis and

can be introduced as following:

 𝑓1𝑖𝑝1 + 𝑓2𝑖𝑝2 + 𝐹𝑖 = 0 (𝑖 = 1, 2) (2.14)

where 𝑝𝑘 are constant coefficients, 𝑖 is number of poses, 𝑓𝑘𝑖 are linearly independent

continuous function of the motion variables:

 𝐹𝑖 = −𝑃𝑥 𝑐𝑜𝑠 𝜃4 − 𝑃𝑦 𝑠𝑖𝑛 𝜃4 (2.15)

 𝑝1 =
(𝑙4

2− 𝑙1
2)

2𝑙4
 (2.16)

 𝑓1𝑖 = 1 (2.17)

 𝑝2 =
1

2𝑙4
 (2.18)

 𝑓2𝑖 = (𝑃𝑥
2 + 𝑃𝑦

2) (2.19)

When the 2.14 is represented in matrix form, we obtain:

17

[
𝑓11 𝑓21

𝑓12 𝑓22
] [

𝑝1

𝑝2
] = [

−𝐹1

−𝐹2
] (2.20)

In the equation 2.20, 𝑝1 and 𝑝2 coefficients are calculated with the following equation:

[
𝑝1

𝑝2
] = [

𝑓11 𝑓21

𝑓12 𝑓22
]
−1

[
−𝐹1

−𝐹2
] (2.21)

After the 𝑝1 and 𝑝2 coefficients are calculated, 𝑙1 and 𝑙4 link lengths are calculated as:

 𝑙4 =
1

2𝑝2
 (2.22)

𝑙1 = √(𝑙4

2 − 2𝑝1𝑙4) (2.23)

By applying the same steps for the second 2DOF structure, 𝑙2 and 𝑙3 link lengths are

calculated. By using vector-loop equation following equations are obtained:

 𝑙2⃗⃗⃗ + 𝑙3⃗⃗⃗ = �⃗� (2.24)

 𝑙2 𝑐𝑜𝑠 𝜃2 + 𝑙3 𝑐𝑜𝑠 𝜃3 = 𝑃𝑥 (2.25)

 𝑙2 𝑠𝑖𝑛 𝜃2 + 𝑙3 𝑠𝑖𝑛 𝜃3 = 𝑃𝑦 (2.26)

By rearranging equations 2.25 and 2.26 as leaving 𝜃2 parameters alone on the left-

hand side we obtain:

 𝑙2 𝑐𝑜𝑠 𝜃2 = 𝑃𝑥 − 𝑙3 𝑐𝑜𝑠 𝜃3 (2.27)

 𝑙2 𝑠𝑖𝑛 𝜃2 = 𝑃𝑦 − 𝑙3 𝑠𝑖𝑛 𝜃3 (2.28)

and by squaring both equations and adding them we get:

 𝑃𝑥
2 + 𝑃𝑦

2 − 2𝑃𝑥𝑙3 𝑐𝑜𝑠 𝜃3 − 2𝑃𝑦𝑙3 𝑠𝑖𝑛 𝜃3 + 𝑙3
2 − 𝑙2

2 = 0 (2.29)

The equation 2.29 is expressed as a polynomial function:

 𝐹𝑖 + 𝑓1𝑖𝑃1 + 𝑓2𝑖𝑃2 + 𝑓3𝑖𝑃3 = 0 (𝑖 = 1, 2) (2.30)

18

where,

 𝐹𝑖 = −𝑃𝑥 𝑐𝑜𝑠 𝜃3 − 𝑃𝑦 𝑠𝑖𝑛 𝜃3 (2.31)

 𝑝1 =
(𝑙3

2− 𝑙2
2)

2𝑙3
 (2.32)

 𝑓1𝑖 = 1 (2.33)

 𝑝2 =
1

2𝑙3
 (2.34)

 𝑓2𝑖 = (𝑃𝑥
2 + 𝑃𝑦

2) (2.35)

When the equation 2.30 is represented in matrix form, we have:

[
𝑓11 𝑓21

𝑓12 𝑓22
] [

𝑝1

𝑝2
] = [

−𝐹1

−𝐹2
] (2.36)

In the equation 2.36, 𝑝1 and 𝑝2 coefficients are calculated with the following equation:

[
𝑝1

𝑝2
] = [

𝑓11 𝑓21

𝑓12 𝑓22
]
−1

[
−𝐹1

−𝐹2
] (2.37)

After the 𝑝1 and 𝑝2 coefficients are calculated, 𝑙2 and 𝑙3 link lengths are calculated as:

 𝑙3 =
1

2𝑝2
 (2.38)

𝑙2 = √(𝑙3

2 − 2𝑝1𝑙3) (2.39)

In the gripper design two precision points were chosen as following:

P1(x = -0.019.98m, y = 0.020.05m, 𝜃3 = 0 rad, 𝜃4 = 3.0018 rad)

P2(x = 0.002.36m, y = 0.040.36m, 𝜃3 = 0 rad, 𝜃4 = 1.6158 rad)

The link lengths according to the P1 and P2 precision points were computed by

applying the discussed procedure above:

𝑙1 = 0.0171024 m, 𝑙2 = 0.0435236 m

𝑙3 = 0.0186503 m, 𝑙4 = 0.0236277 m

19

2.3.2 Case study for R-R type modular robot manipulator

In this section, it is aimed to determine structural parameters 𝛼1, 𝑑1 and 𝑑2 of 2 DOF

modular robot manipulator configuration which is given in Figure 2.10 for a given task

space path.

DH parameters of the robot is given in Table 2.2 as parametric symbols.

Table 2.2 : DH parameters of the robot which is given in Figure 2.10.

i 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖

1 𝛼0 𝑎0 𝑑1 𝜃1

2 𝛼1 𝑎1 𝑑2 𝜃2

3 𝛼2 𝑎2 𝑑3 0

Figure 2.10 : 2 DOF modular robot manipulator.

As it will be discussed detailed in section 3.1, forward kinematics solutions for the 2

DOF modular robot manipulator configuration is obtained as following:

20

𝑇1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 𝑎0

𝑠𝜃1𝑐𝛼0 𝑐𝜃1𝑐𝛼0 −𝑠𝛼0 −𝑠𝛼0𝑑1

𝑠𝜃1𝑠𝛼0 𝑐𝜃1𝑠𝛼0 𝑐𝛼0 𝑐𝛼0𝑑1

0 0 0 1

] (2.40)

𝑇2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 𝑎1

𝑠𝜃2𝑐𝛼1 𝑐𝜃2𝑐𝛼1 −𝑠𝛼1 −𝑠𝛼1𝑑2

𝑠𝜃2𝑠𝛼1 𝑐𝜃2𝑠𝛼1 𝑐𝛼1 𝑐𝛼1𝑑2

0 0 0 1

] (2.41)

𝑇3
2 = [

1 0 0 𝑎2

0 𝑐𝛼2 −𝑠𝛼2 −𝑠𝛼2𝑑3

0 𝑠𝛼2 𝑐𝛼2 𝑐𝛼2𝑑3

0 0 0 1

] (2.42)

 𝑇 = 𝑇 𝑇 𝑇3
2

2
1

1
0

3
0 (2.43)

Position part of the homogenous transformation matrix

𝑇3
0 is obtained with the following equations:

 𝑥 = 𝑐1𝛽 − 𝑠1𝛾 + 𝑎0 (2.44)

 𝑦 = 𝑠1𝑐𝛼0
𝛽 + 𝑐1𝑐𝛼0

𝛾 − 𝑠𝛼0
𝜏 − 𝑠𝛼0

𝑑1 (2.45)

 𝑧 = 𝑠1𝑠𝛼0
𝛽 + 𝑐1𝑠𝛼0

𝛾 + 𝑐𝛼0
𝜏 + 𝑐𝛼0

𝑑1 (2.46)

where,

 𝛽 = 𝑐2𝑎2 + 𝑠2𝑠𝛼2
𝑑3 + 𝑎1 (2.47)

 𝛾 = 𝑠2𝑐𝛼1
𝑎2 − 𝑐2𝑐𝛼1

𝑠𝛼2
𝑑3 − 𝑠𝛼1

𝑐𝛼2
𝑑3 − 𝑠𝛼1

𝑑2 (2.48)

 𝜏 = 𝑠2𝑠𝛼1
𝑎2 − 𝑐2𝑠𝛼1

𝑠𝛼2
𝑑3 + 𝑐𝛼1

𝑐𝛼2
𝑑3 + 𝑐𝛼1

𝑑2 (2.49)

and in the equations, 𝑠𝑖 represents 𝑠𝑖𝑛𝑒(𝑖), 𝑐𝑖 represents 𝑐𝑜𝑠𝑖𝑛𝑒(𝑖), 𝑠𝛼𝑖
 represents

𝑠𝑖𝑛𝑒(𝛼𝑖) , 𝑐𝛼𝑖
 represents 𝑐𝑜𝑠𝑖𝑛𝑒(𝛼𝑖).

Equation 2.44 is rearranged with the following transformation:

 𝑥 − 𝑎0 = 𝑐1𝛽 − 𝑠1𝛾 (2.50)

21

By squaring and adding equations 2.50, 2.42 and 2.43 following equations are

obtained:

 (𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 = 𝛽2 + 𝛾2 + 𝜏2 + 𝑑1

2 + 2𝜏𝑑1 (2.51)

 𝛽2 + 𝛾2 + 𝜏2 = 𝑎2
2 + 𝑎1

2 + 𝑑3
2 + 𝑑2

2 + 2𝑐𝛼2
𝑑3𝑑2 +

2𝑐2𝑎2𝑎1 + 2𝑠2𝑠𝛼2
𝑑3𝑎1

(2.52)

 (𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 = 𝑎2

2 + 𝑎1
2 + 𝑑3

2 + 𝑑2
2 +

2𝑐𝛼2
𝑑3𝑑2 + 2𝑐2𝑎2𝑎1 + 2𝑠2𝑠𝛼2

𝑑3𝑎1 + 2𝑠2𝑠𝛼1
𝑎2𝑑1 −

2𝑐2𝑠𝛼1
𝑠𝛼2

𝑑3𝑑1 + 2𝑐𝛼1
𝑐𝛼2

𝑑3𝑑1 + 2𝑐𝛼1
𝑑2 + 𝑑1

2

(2.53)

When the equations are reordered as:

 𝐴𝑠2 + 𝐵𝑐2 = 𝐶 (2.54)

where,

 𝐴 = 2𝑠𝛼1
𝑎2𝑑1 + 2𝑠𝛼2

𝑑3𝑎1 (2.55)

 𝐵 = 2𝑎2𝑎1 − 2𝑠𝛼1
𝑠𝛼2

𝑑3𝑑1 (2.56)

 𝐶 = (𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 − 𝑎2

2 − 𝑎1
2 − 𝑑3

2 − 𝑑2
2 −

2𝑐𝛼2
𝑑3𝑑2 − 2𝑐𝛼1

𝑐𝛼2
𝑑3𝑑1 − 2𝑐𝛼1

𝑑2 − 𝑑1
2

(2.57)

By using trigonometric equation in the equation 2.58, 𝜃2 is obtained as following:

 𝜃2 = 𝐴𝑡𝑎𝑛2(𝐴, 𝐵) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶) (2.58)

By substituting 𝜃2 into equation 2.53, objective function which depends on structural

parameters of the modular robot manipulator is obtained as follows:

 𝑜𝑏𝑗(𝑥, 𝑦, 𝑧, 𝑎0, 𝑎1, 𝑎2, 𝛼0, 𝛼1, 𝛼2, 𝑑1, 𝑑2, 𝑑3) =

(𝑥 − 𝑎0)
2 + 𝑦2 + 𝑧2 − [𝑎2

2 + 𝑎1
2 + 𝑑3

2 + 𝑑2
2 + 2𝑐𝛼2

𝑑3𝑑2 +

2 cos (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑎2𝑎1 +

2 sin (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑠𝛼2
𝑑3𝑎1 +

2 sin (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑠𝛼1
𝑎2𝑑1 −

(2.59)

22

2 cos (𝐴𝑡𝑎𝑛2(−𝐵, 𝐴) ± 𝐴𝑡𝑎𝑛2(√𝐴2 + 𝐵2 − 𝐶2, 𝐶)) 𝑠𝛼1
𝑠𝛼2

𝑑3𝑑1 +

2𝑐𝛼1
𝑐𝛼2

𝑑3𝑑1 + 2𝑐𝛼1
𝑑2 + 𝑑1

2] = 0

In this case study, 𝑎0, 𝑎1, 𝑎2, 𝑑3, 𝛼0 and 𝛼2 are taken as constant parameters in this

procedure.

 𝑎0 = 0

𝑎1 = 𝑎2 = 0.112

𝑑3 = 0.04131𝑚

𝑎0 = 0 𝑟𝑎𝑑

𝑎2 = −𝜋

(2.60)

The optimized structural parameters 𝛼1, 𝑑1 and 𝑑2 are bounded as follows:

 0 < 𝛼1 < 2𝜋

0.427𝑚 < 𝑑1 < 0.527𝑚

0.04131𝑚 < 𝑑2 < 0.1𝑚

(2.61)

𝛼1, 𝑑1 and 𝑑2 parameters are sampled within their determined limit values and by

sweeping joint angles 𝜃1 𝑎𝑛𝑑 𝜃2 between 0 and 2𝜋 for each sample, modular robot

manipulator’s possible workspace is created as in Figure 2.11.

Figure 2.11 : Possible workspace of the modular robot manipulator.

Inside the workspace, 13 random points selected as a task to be accomplished as it is

given in Figure 2.12.

23

Figure 2.12 : Selected task points inside the possible workspace of the modular

robot manipulator.

By using x, y and z coordinates of the selected path, 𝛼1, 𝑑1 and 𝑑2 structural parameters

which makes the root mean square error of the objective function minimum was

searched via brute force method.

As a result of the brute force search, minimum root mean square error is obtained as

1.2 × 10−2 m with the following structural parameters:

𝛼1 = 1.79 𝑟𝑎𝑑

𝑑1 = 44.54 × 10−2 𝑚

𝑑2 = 52.1 × 10−3 𝑚

Workspace of the modular robot manipulator with the found structural parameters is

shown in Figure 2.13.

Figure 2.13 : Workspace with calculated 𝛼1, 𝑑1 and 𝑑2 parameters.

24

25

3. KINEMATICS AND DYNAMICS OF MODULAR ROBOT

MANIPULATOR

3.1 Forward Kinematics

The main aim of the forward kinematics is to determine the pose of the end-effector

from given set of joint variables. In order to examine forward kinematics of the

modular robot manipulator, 3 DOF configuration given in the Figure 3.1 was

considered.

Figure 3.1 : 3 DOF modular robot configuration.

The DH parameters of the given configuration are listed in the Table 3.1.

26

Table 3.1 : DH parameters of the modular robot in Figure 3.1.

i 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖

1 0° 0 0.427m 𝜃1

2 −90° 0.112m 0 𝜃2

3 180° 0.112m 0.0434m 𝜃3

4 180° 0.112m 0.0434m 0°

Following transformation matrixes were found by utilizing DH convention.

𝑇1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1 𝑐𝜃1 0 0
0 0 1 0.427
0 0 0 1

] (3.1)

𝑇2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 0.112
0 0 1 0

−𝑠𝜃2 −𝑐𝜃2 0 0
0 0 0 1

] (3.2)

𝑇3
2 = [

𝑐𝜃3 −𝑠𝜃3 0 0.112
−𝑠𝜃3 −𝑐𝜃3 0 0

0 0 −1 −0.0434
0 0 0 1

] (3.3)

𝑇4
3 = [

1 0 0 0.112
0 −1 0 0
0 0 −1 −0.0434
0 0 0 1

] (3.4)

The resultant transformation matrix which denotes the end-effector pose as measured

from base frame then is obtained as following:

 𝑇 = 𝑇1
0 𝑇2

1 𝑇 𝑇4
3

3
2

4
0 =

[

𝑐𝜃1𝑐(𝜃2 − 𝜃3) −𝑐𝜃1𝑠(𝜃2 + 𝜃3) −𝑠𝜃1 𝑝𝑥

𝑠𝜃1𝑐(𝜃2 − 𝜃3) −𝑠𝜃1𝑠(𝜃2 − 𝜃3) 𝑐𝜃1 𝑝𝑦

−𝑠(𝜃2 − 𝜃3) −𝑐(𝜃2 − 𝜃3) 0 𝑝𝑧

0 0 0 1

]
(3.5)

where,

 𝑝𝑥 = 0.112(𝑐𝜃1𝑐(𝜃2 − 𝜃3)) + 0.112(𝑐𝜃1𝑐𝜃2) +

 0.0434𝑠𝜃1 + 0.112𝑐𝜃1 − 0.0434𝑠𝜃1
(3.6)

27

 𝑝𝑦 = 0.112(𝑠𝜃1𝑐(𝜃2 − 𝜃3)) + 0.112(𝑠𝜃1𝑐𝜃2) −

0.0434𝑐𝜃1 + 0.112𝑠𝜃1 + 0.0434𝑐𝜃1
(3.7)

 𝑝𝑧 = −0.112(𝑠(𝜃2 − 𝜃3)) − 0.112(𝑠𝜃2) + 0.427 (3.8)

In order to verify the solution, initial position of the robot manipulator can be checked

from the solution.

When 𝜃1, 𝜃2, 𝜃3 = 0 is substituted into the equation 3.6, 3.7 and 3.8 following end-

effector position is obtained.

𝑝𝑥 = 0.336 m

𝑝𝑦 = 0 m

𝑝𝑧 = 0.427 m

According to the obtained result, correct location of the end-effector is observed.

3.2 Jacobian Analysis

Jacobian matrices map joint velocities to the cartesian velocities of the end effector.

Jacobian matrices were used for determining singular positions of the robot

manipulator in the 3.3 section for inverse kinematics procedure and for deriving

equation of motion of the robot manipulator in 3.4 section.

By using geometric method, Jacobian matrices for the modular robot manipulator

configuration given in Figure 3.2 was determined as follows:

28

Figure 3.2 : Geometric Jacobian.

𝐽4
0 = [

(𝑍1
0 𝑥 (𝑂4

0 − 𝑂1
0))3𝑥1 (𝑍2

0 𝑥 (𝑂4
0 − 𝑂2

0))3𝑥1 (𝑍3
0 𝑥 (𝑂4

0 − 𝑂3
0))3𝑥1

(𝑍1
0)3𝑥1 (𝑍2

0)3𝑥1 (𝑍3
0)3𝑥1

] (3.9)

Where 𝑂4
0 represents to end effector position relative to the base frame, 𝑂𝑥

0 represents

the position of the reference frame x relative to the base frame and 𝑍𝑥
0 represents the

third column of the 𝑇𝑥
0 transformation matrix.

Singular positions of the robot manipulator are determined by the following condition:

 𝑑𝑒𝑡(𝐽) = 0 (3.10)

Because of the Jacobian matrix for the 3 DOF robot manipulator is not in square matrix

form, in order to calculate determinant of the Jacobian matrix Singular Value

Decomposition method was used.

 𝐽 = 𝑈𝑆𝑉𝑇 (3.11)

29

In the equation 3.11, U represents the left singular matrix, S represents singular matrix

and V represents right singular matrix. When the Jacobian matrix is decomposed in

the U, S and V matrices, determinant of the Jacobian is obtained as follows:

 𝑑𝑒𝑡(𝐽) = 𝑑𝑒𝑡(𝑈)𝑑𝑒𝑡(𝑆) 𝑑𝑒𝑡 (𝑉𝑇) (3.12)

In the section 7.1.3 validation of the singularity analysis is given.

3.3 Inverse Kinematics

Inverse kinematics is a problem of calculating joints angles from the given end effector

cartesian poses.

There is not a unique solution for inverse kinematic problems. In literature there are

some methods used for solving inverse kinematic problems [29] and these are mainly

categorized in two groups; analytical and numerical solutions. Analytical solutions

offer fast and closed form solutions but the solution is not always found for

complicated robot kinematic configurations. Contrary to analytical solutions,

numerical solutions offer approximate solutions with sufficient accuracy.

Due to its reconfigurable structure of the modular robot manipulator, it is not always

possible to find an analytical solution. Therefore, for higher than 3 DOF modular robot

manipulator configurations, a numerical method was considered to the inverse

kinematic problem.

3.3.1 Inverse kinematic solution with analytic method

In this section, inverse kinematic solution for 3DOF modular robot manipulator is

explained. For that purpose, 3 DOF robot manipulator configuration which is given in

Figure 3.1 was used.

Forward kinematics equation for the robot manipulator is as the equation 3.5. When

the equation 3.5 is multiplied by 𝑇1
0 −1:

 (𝑇1
0)−1 𝑇 = (𝑇)1

0 −1 𝑇1
0 𝑇2

1 𝑇 𝑇4
3

3
2

4
0 (3.13)

Because of (𝑇1
0)−1 𝑇1

0 multiplication is equal to the identity matrix following equation

is obtained:

30

 (𝑇1
0)−1 𝑇 = 𝑇2

1 𝑇 𝑇4
3

3
2

4
0 (3.14)

By using the equation 3.14 inverse kinematics solution is found. 𝑇1
0 , 𝑇2

1 , 𝑇3
2 , 𝑇4

3 and

𝑇4
0 transformation matrices were found as equation 3.1, 3.2, 3.3, 3.4 and 3.5

respectively and inverse of the 𝑇1
0 matrix is obtained as following

𝑇1
0 −1 = [

𝑐𝜃1 𝑠𝜃1 0 0
−𝑠𝜃1 𝑐𝜃1 0 0

0 0 1 𝑑1

0 0 0 1

] (3.15)

When the multiplication of the equation 3.14 is made for both sides and position parts

of the matrices are extracted as,

[

… … … 𝑝𝑥𝑐𝜃1 + 𝑝𝑦𝑠𝜃1

… … … −𝑝𝑥𝑠𝜃1 + 𝑝𝑦𝑐𝜃1

… … … 𝑝𝑧 − 𝑑1

0 0 0 1

]=[

… … … 𝑎4𝑐𝜃23 + 𝑎3𝑐𝜃2 + 𝑎2

… … … 𝑑4 − 𝑑3

… … … −𝑎4𝑠𝜃23 − 𝑎3𝑠𝜃2

0 0 0 1

] (3.16)

the following equations are obtained:

 𝑝𝑥𝑐𝜃1 + 𝑝𝑦𝑠𝜃1 = 𝑎4𝑐𝜃23 + 𝑎3𝑐𝜃2 + 𝑎2 (3.17)

 −𝑝𝑥𝑠𝜃1 + 𝑝𝑦𝑐𝜃1= 𝑑4 − 𝑑3 (3.18)

 𝑝𝑧 − 𝑑1 = −𝑎4𝑠𝜃23 − 𝑎3𝑠𝜃2 (3.19)

By using equation 3.18, 𝜃1 is obtained as follows:

 𝜃1 = Atan2(−px, py) ±

 𝐴𝑡𝑎𝑛2(√(−𝑝𝑥)2 + 𝑝𝑦
2 − (𝑑4 − 𝑑3)2 , (𝑑4 − 𝑑3))

(3.20)

In order to obtain 𝜃3, equation 3.17, 3.18 and 3.19 are used. Equation 3.17 is reordered

by taking 𝑎2 to the left side of the equation as:

 𝑝𝑥𝑐𝜃1 + 𝑝𝑦𝑠𝜃1 − 𝑎2 = 𝑎4𝑐𝜃23 + 𝑎3𝑐𝜃2 (3.21)

By squaring and adding both side of the equations 3.21, 3.18 and 3.19:

31

 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑎2
2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1 + (𝑝𝑧 − 𝑑1)

2 =

𝑎4
2 + 𝑎3

2 + 2𝑎4𝑎3(𝑐𝜃23𝑐𝜃2 + 𝑠𝜃23𝑠𝜃2) + (𝑑4 − 𝑑3)
2

(3.22)

When the trigonometric equation 3.23 is substituted into the 3.22:

 (𝑐𝜃23𝑐𝜃2 + 𝑠𝜃23𝑠𝜃2) = 𝑐𝜃3 (3.23)

 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑎2
2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1 + (𝑝𝑧 − 𝑑1)

2 =

𝑎4
2 + 𝑎3

2 + 2𝑎4𝑎3𝑐𝜃3 + (𝑑4 − 𝑑3)
2

(3.24)

From the above equation 3.24, 𝑐𝜃3 is obtained is as following:

 𝑐𝜃3 =
𝑝𝑥

2+𝑝𝑦
2+𝑎2

2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1+(𝑝𝑧−𝑑1)2−𝑎4
2−𝑎3

2−(𝑑4−𝑑3)2

 2𝑎4𝑎3
 (3.25)

Finally, 𝜃3 is found with the equation 3.27:

 𝑘 =
𝑝𝑥

2+𝑝𝑦
2+𝑎2

2−2𝑝𝑥𝑎2𝑐𝜃1−2𝑝𝑦𝑎2𝑠𝜃1+(𝑝𝑧−𝑑1)2−𝑎4
2−𝑎3

2−(𝑑4−𝑑3)2

 2𝑎4𝑎3
 (3.26)

 𝜃3 = 𝐴𝑡𝑎𝑛2(±√1 − (𝑘)2, 𝑘) (3.27)

In order to obtain 𝜃2, equation 3.19 is used. By substituting trigonometric function

3.28 into 3.19, the following equations are obtained:

 𝑠𝜃23 = (𝑠𝜃2𝑐𝜃3 − 𝑐𝜃2𝑠𝜃3) (3.28)

 𝑝𝑧 − 𝑑1 = −𝑎4𝑠𝜃2𝑐𝜃3 + 𝑎4𝑐𝜃2𝑠𝜃3 − 𝑎3𝑠𝜃2 (3.29)

By reordering the equation 3.29 we have:

 𝑝𝑧 − 𝑑1 = (−𝑎4𝑐𝜃3 − 𝑎3)𝑠𝜃2 + (𝑎4𝑠𝜃3)𝑐𝜃2 (3.30)

𝜃2 then is obtained as follows:

 𝜃2 = 𝐴𝑡𝑎𝑛2(−𝑎4𝑐𝜃3 − 𝑎3, 𝑎4𝑠𝜃3) ±

𝐴𝑡𝑎𝑛2 (√(−𝑎4𝑐𝜃3 − 𝑎3)2 + (𝑎4𝑠𝜃3)2 − (𝑝𝑧 − 𝑑1)2 ,

(𝑝𝑧 − 𝑑1))

(3.31)

32

3.3.2 Inverse kinematic solution with numerical method

For higher than 3 DOF modular robot manipulator configurations, a numerical method

is considered to the inverse kinematic problem. Among the numerical methods,

solving the linear least square problem with Newton-Raphson method was chosen and

implemented with KDL library.

Cartesian pose of the end-effector is expressed as a function of set of joint variables:

 𝑌6𝑥1 = 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) (3.32)

where 𝑞𝑖 denotes the joint angle and Y denotes the 6𝑥1 cartesian pose matrix of the

end effector.

When it is taken the derivatives of the cartesian pose matrix with respect to joint angles

the are taken, the following equations are obtained.

 𝛿𝑦1 =
𝛿𝑓1

𝛿𝑞1
𝛿𝑞1 +

𝛿𝑓1

𝛿𝑞2
𝛿𝑞2 + ⋯+

𝛿𝑓1

𝛿𝑞𝑛
𝛿𝑞𝑛 (3.33)

 𝛿𝑦2 =
𝛿𝑓2

𝛿𝑞1
𝛿𝑞1 +

𝛿𝑓2

𝛿𝑞2
𝛿𝑞2 + ⋯+

𝛿𝑓2

𝛿𝑞𝑛
𝛿𝑞𝑛 (3.34)

 𝛿𝑦6 =
𝛿𝑓𝑛

𝛿𝑞1
𝛿𝑞1 +

𝛿𝑓𝑛

𝛿𝑞2
𝛿𝑞2 + ⋯+

𝛿𝑓𝑛

𝛿𝑞𝑛
𝛿𝑞𝑛 (3.35)

In matrix form Jacobian matrix is obtained with the following:

 𝐽(𝑞) =
𝛿𝑦𝑖

𝛿𝑞1
 (3.36)

Iterative methods use the Jacobian matrix which is a linear approximation of a

differentiable function near a given point. Relation between change of the end effector

pose and the change of the joint angles are obtained with this linear approximation.

 ∆𝑌 = 𝐽(𝑞)∆𝑞 (3.37)

From this equation change of the joint angles is expressed as follows:

 ∆𝑞 = 𝐽(𝑞)−1∆𝑌 (3.38)

Linear function of the forward kinematics equation can be obtained with Taylor

expansion:

33

 𝑓(𝑞) ≈ 𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑞) = 𝑓(𝑞) + 𝐽(𝑞)∆𝑞 (3.39)

By using this linear approximation to the forward kinematics, the aim of the inverse

kinematic is to find change of the joint angles with respect to the change of the end-

effector pose.

Error function which is tried to be minimized iteratively, is expressed with the

following equation:

 𝐸 = | 𝐷 − 𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑞)| (3.40)

In 3.40, E denotes the error matrix, D denotes desired pose matrix of the end effector

and 𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑞) represents forward kinematic solution matrix obtained with linear

approximation.

KDL library includes inverse kinematic solvers which implements numerical inverse

kinematic solution with Newton-Raphson method. KDL library is chosen for

kinematic solver because it is allowed to directly being used with ROS environment.

In the numerical solver, KDL calculates the inverse of the Jacobian matrix with the

singular value decomposition method in order to handle with non-square Jacobian

matrices which it depends to the degrees of freedom of the robot.

In the Figure 3.3 flow chart of the KDL numerical solver is given.

34

Figure 3.3 : KDL numerical inverse kinematic flow chart.

Performance of the numerical inverse kinematic solver was evaluated with different

DOF’s and robot configurations and results were given in the section 7.1.1.

3.4 Dynamics Modeling of the Modular Robot Manipulator

Dynamic model of the robot represents the relation between the joint actuator torques

and the resulting motion. An accurate dynamics model of the robot manipulator is vital

for the design of motion control systems, the analysis of mechanical design and

simulation of manipulator motion. Generally, the dynamic performance of the robot

depends on implementing an effective control algorithm and obtaining an appropriate

dynamic model of the robot.

Robot manipulator dynamics model is commonly used in the form:

35

 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) = 𝜏 (3.41)

where q denotes the joint angles vector; M(q) is the symmetric, bounded, positive

definite inertia matrix with size of 𝑛𝑥𝑛 and n is the degree of freedom of the robot

arm; 𝐶(𝑞, �̇�) denotes the Coriolis and Centrifugal force; G(q) is the gravitational force,

and 𝜏 is the actuator torques vector. This equation then can be used to calculate either

forward dynamics, where the manipulator motion is calculated based on a vector of

applied torques, or the inverse dynamics where the torques for a given set of joint

parameters can be calculated.

There are two commonly used methods for obtaining dynamics model of the robot;

Lagrange-Euler method and Recursive Newton-Euler method.

The Lagrange-Euler method depends on calculating the kinetic and potential energies

of a rigid body system. This method provides the closed form of the robot dynamics,

and it can be applicable to the analytical computation of robot dynamics and it can be

used to design joint space control strategies. The Lagrange-Euler method can also be

used for forward and inverse dynamic calculation, but it requires high computational

load because of the large number of coefficients in the inertia matrix and 𝐶(𝑞, �̇�)

matrix.

The Newton-Euler method depends on a balance of all the forces acting on the link of

the manipulator. This method constitutes a set of equations with a recursive solution.

A forward recursion of the process includes obtaining link velocities and accelerations,

and backward recursion includes obtaining the forces and torques acting on each part

of the robot manipulator. This recursion structure of the method reduces the

computational load of the forward and dynamics calculations; therefore, it allows

implementation of real time control methods of robot manipulators.

3.4.1 Dynamics modeling procedure

In order to obtain dynamics model of the modular robot manipulator, Lagrange-Euler

method was implemented. In this section, implementation of the Lagrange-Euler

method is presented for analyzing the dynamics parameters in controller design.

Nomenclatures that are used in this section are given in the Table 3.2.

36

Table 3.2 : Nomenclatures.

n Degrees of freedom of the manipulator

q, �̇�, �̈� Vector of position (rad), angular velocity(rad/s) and

acceleration(rad/𝑠2), respectively

a, d, α, θ Variables denoting the Denavit-Hartenberg parameters

Ii Inertia tensor of link i (kg/𝑚2)

m Mass of link (kg)

�̅�𝑖 Center of mass link I (m)

𝑇𝑗
𝑖 Homogenous transform matrix from link i to j

3.4.1.1 Active module mass properties

In active module design, ABS material was chosen at the design phase. In Figure 3.4,

coordinate frame which is used to measure mass properties is shown.

Figure 3.4 : Active module output coordinate frame.

Center of mass

Active module mass was obtained as 0.35 kg from SolidWorks and the center of mass

of the module measured from the output coordinate frame is listed in the Table 3.3.

The units are meters.

37

Table 3.3 : Center of mass of the active module.

�̅� �̅� �̅�

28.11 × 10−3 8 × 10−5 39.59 × 10−3

Link Inertia Tensors

Moments of inertia taken at the center of mass and aligned with the output coordinate

system is listed in the Table 3.4. The units used in the Table 3.4 are kg/𝑚2.

Table 3.4 : Inertia matrix of the active module which is taken at the center of mass

and alligned with the ouput coordinate system.

Ixx Iyy Izz

19.25 × 10−5 55.36 × 10−5 48.91 × 10−5

Ixy Iyz Ixz

−39 × 10−8 27 × 10−8 78.11 × 10−6

3.4.1.2 Gripper module mass properties

In gripper module, ABS material was used and coordinate frame which is used to

measure mass properties is given in Figure 3.5.

Figure 3.5 : Gripper module output coordinate frame.

38

Center of mass

Gripper module mass was obtained as 0.15 kg from SolidWorks and the center of mass

of the gripper module measured from the output coordinate frame is listed in the Table

3.5. The units are meters.

Table 3.5 : Center of mass of the gripper module.

�̅� �̅� �̅�

−40.6 × 10−7 −35.84 × 10−4 −80.82 × 10−4

Link Inertia Tensors

Moments of inertia taken at the center of mass and aligned with the output coordinate

system is listed in the Table 3.6. The units used in the Table 3.6 are kg/𝑚2.

Table 3.6 : Inertia matrix of the gripper module which is taken at the center of mass

and alligned with the ouput coordinate system.

Ixx Iyy Izz

68.9 × 10−6 71.1 × 10−6 66.8 × 10−6

Ixy Iyz Ixz

0 0 0

3.4.1.3 Base module mass properties

In base module MDF material was used and in the Figure 3.6, coordinate frame which

is used to measure mass properties is given.

Center of mass

Base module mass was obtained as 5.68 kg from SolidWorks and the center of mass

of the base module measured from the output coordinate frame is listed in the Table

3.7. The units are meters.

39

Figure 3.6 : Base module output coordinate frame

Table 3.7 : Center of mass of the base module.

�̅� �̅� �̅�

0 28 × 10−6 95.73 × 10−3

Link Inertia Tensors

Moments of inertia taken at the center of mass and aligned with the output coordinate

system is listed in the Table 3.8. The units used in the Table 3.8 are kg/𝑚2.

Table 3.8 : Inertia matrix of the gripper module which is taken at the center of mass

and alligned with the ouput coordinate system.

Ixx Iyy Izz

93.43 × 10−3 93.43 × 10−3 54.41 × 10−3

Ixy Iyz Ixz

0 34.34 × 10−6 0

Lagrange-Euler Method

The Lagrange-Euler equations of motion for a conservative system are given by:

 𝐿(𝑞, �̇�) = 𝐾(𝑞, �̇�) − 𝑃(𝑞), 𝜏 =
𝑑

𝑑𝑡

𝜕𝐿(𝑞,�̇�)

𝜕�̇�
−

𝜕𝐿(𝑞,�̇�)

𝜕𝑞
 (3.42)

where K denotes kinetic energy and P denotes the potential of the rigid body.

40

The kinetic energy of the 𝑖’th link is given by:

 𝐾(𝑞, �̇�) =
1

2
∑ [(𝑣𝑖

𝑇)𝑚𝑖𝑣𝑖 + 𝑛
𝑖=1 (𝑤𝑖

𝑇)𝐼𝑖𝑤𝑖] (3.43)

If inertia tensor of the link is located at the center of mass of the link, according to the

principles axis theorem inertia tensor is shown as:

𝐼𝑚 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (3.44)

Then inertia tensor of the link according to the base frame can be found as:

 𝐼𝑖 = 𝑅𝐼𝑚(𝑅)𝑖
0 𝑇

𝑖
0 (3.45)

The linear and angular velocities of the link is found by using Jacobian matrix:

 𝑣𝑖 = 𝐽𝑣𝑖
�̇� (3.46)

 𝑤𝑖 = 𝐽𝑤𝑖
�̇� (3.47)

Total kinetic energy is obtained is as following:

 𝐾(𝑞, �̇�) =
1

2
�̇�𝑇 ∑ [(𝐽𝑣𝑖

𝑇)𝑚𝑖𝐽𝑣𝑖
+ 𝑛

𝑖=1 (𝐽𝑤𝑖

𝑇)𝐼𝑖𝐽𝑤𝑖
]�̇� (3.48)

This equation can be rewritten as including manipulator inertia matrix 𝐷(𝑞):

 𝐾(𝑞, �̇�) =
1

2
�̇�𝑇𝐷(𝑞)�̇� (3.49)

where,

 𝐷(𝑞) = ∑ [(𝐽𝑣𝑖

𝑇)𝑚𝑖𝐽𝑣𝑖
+ (𝐽𝑤𝑖

𝑇
)𝐼𝑖𝐽𝑤𝑖

]𝑛
𝑖=1 (3.50)

The potential energy of the 𝑖’th link is given by:

 𝑃(𝑞) = ∑ 𝑚𝑖𝑔
𝑇ℎ𝑖

𝑛
𝑖=1 (3.51)

When kinetic and potential energy equations substituted into equation 3.52, dynamic

model of the robot obtained as:

41

 𝐿(𝑞, �̇�) =
1

2
�̇�𝑇𝐷(𝑞)�̇� + 𝑚𝑔𝑇ℎ (3.52)

 𝜏𝑖 = ∑ 𝐷𝑖𝑗(𝑞)�̈�𝑗
𝑛
𝑗=1 + ∑ ∑ 𝑐𝑘𝑗

𝑖 (𝑞)�̇�𝑘�̇�𝑗 + 𝑦𝑖(𝑞)𝑛
𝑗=1

𝑛
𝑘=1 (3.53)

 𝜏 = 𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) (3.54)

3.4.2 Validating dynamic model of the modular robot manipulator

In order to verify the obtained dynamic model, an example joint space trajectory was

selected and by performing selected trajectory, results were measured from

SolidWorks software and results compared with the calculated torque values by

implementing equation 3.54 in the MATLAB. Following joint positions were selected

as inputs to the trajectory generation.

 𝑞1(𝑡0) = 0, 𝑞1(𝑡𝑓) = 360°, 𝑞1̇ (𝑡0) = 𝑞1̇(𝑡𝑓) = 0,

 𝑞1̈(𝑡0) = 𝑞1̈(𝑡𝑓) = 0

(3.55)

 𝑞2(𝑡0) = 0, 𝑞2(𝑡𝑓) = −90°, 𝑞1̇ (𝑡0) = 𝑞2̇(𝑡𝑓) = 0,

𝑞2̈(𝑡0) = 𝑞2̈(𝑡𝑓) = 0

(3.56)

 𝑞3(𝑡0) = 0, 𝑞3(𝑡𝑓) = −90°, 𝑞3̇ (𝑡0) = 𝑞3̇(𝑡𝑓) = 0,

𝑞3̈(𝑡0) = 𝑞3̈(𝑡𝑓) = 0

(3.57)

In the equations, 𝑞𝑛, 𝑞�̇� and 𝑞�̈� denotes to the position, velocity and acceleration of

the 𝑛’th module at time 𝑡, 𝑡0 represents starting time, 𝑡𝑓 represents end time which in

this case 10 seconds.

In order to create joint space trajectories in SolidWorks, cubic spline interpolation

method was selected for given points. Besides, in order to create the same trajectory,

a Simulink block was created in MATLAB. In this block, following cubic polynomial

equations used for interpolating between points.

 𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 (3.58)

 �̇�(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2 (3.59)

42

 �̈�(𝑡) = 2𝑎2 + 6𝑎3𝑡 (3.60)

In the equations above, 𝑎0, 𝑎1, 𝑎2 and 𝑎3 coefficients were calculated with the

following equations.

 𝑎0 = 𝑞𝑛(𝑡0) (3.61)

 𝑎1 = 𝑞�̇�(𝑡0) (3.62)

𝑎2 =

3(𝑞𝑛(𝑡𝑓)−𝑞𝑛(𝑡0))

𝑡𝑓
2 −

2𝑞�̇�(𝑡0)+𝑞�̇�(𝑡𝑓)

𝑡𝑓
 (3.63)

𝑎3 =

−2(𝑞𝑛(𝑡𝑓)−𝑞𝑛(𝑡0))

𝑡𝑓
3 +

𝑞�̇�(𝑡𝑓)+𝑞�̇�(𝑡0)

𝑡𝑓
2 (3.64)

After polynomial coefficients were determined, joint position, velocity and

acceleration for modules at time sample t were fed to the dynamic model. This block

diagram is given in the Figure 3.17.

Trajectory for joint 1 is given in the Figure 3.7, Figure 3.8 and Figure 3.9.

Figure 3.7 : Displacement in the trajectory for Joint 1

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
t(

d
eg

re
e)

Time(s)

43

Figure 3.8 : Velocity in the trajectory for Joint1.

Figure 3.9 : Acceleration in the trajectory for Joint1.

Trajectory for joint 2 is given in the Figure 3.10, Figure 3.11 and Figure 3.12.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10
V

el
o

ci
ty

(d
eg

re
e/

s)

Time(s)

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

A
cc

el
er

at
io

n
(d

eg
re

e/
s^

2
)

Time(s)

44

Figure 3.10 : Displacement in the trajectory for Joint2.

Figure 3.11 : Velocity in the trajectory for Joint2.

Figure 3.12 : Acceleration in the trajectory for Joint3.

Trajectory for joint 3 is given in Figure 3.13, Figure 3.14 and Figure 3.15.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
t(

d
eg

re
e)

Time(s)

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8 9 10

V
el

o
ci

ty
(d

eg
re

e/
s)

Time(s)

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10

A
cc

el
er

at
io

n
(d

eg
re

e/
s^

2
)

Time(s)

45

Figure 3.13 : Displacement in the trajectory for Joint3.

Figure 3.14 : Velocity in the trajectory for Joint3.

Figure 3.15 : Acceleration in the trajectory for Joint3.

The tip point of the modular robot manipulator follows the path displayed in the Figure

3.16 as a result of selected joint space trajectory.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
t(

d
eg

re
e)

Time(s)

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8 9 10

V
el

o
ci

ty
(d

eg
re

e/
s)

Time(s)

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10

A
cc

el
er

at
io

n
(d

eg
re

e/
s^

2
)

Time(s)

46

Figure 3.16 : Input path for dynamic analysis.

The Figure 3.17 shows the MATLAB Simulink diagram of the process of calculating

torque values.

Figure 3.17 : Matlab simulink diagram for dynamic analysis.

The comparisons of the measured torque values which are obtained during the

trajectory execution in the SolidWorks motion analysis and calculated from MATLAB

are shown in the Figure 3.18, Figure 3.19 and Figure 3.20.

47

Figure 3.18 : Torque Results for Joint 1.

Figure 3.19 : Torque Results for Joint 2.

-0,00700
-0,00600
-0,00500
-0,00400
-0,00300
-0,00200
-0,00100
0,00000
0,00100
0,00200
0,00300
0,00400
0,00500
0,00600
0,00700
0,00800
0,00900
0,01000
0,01100
0,01200
0,01300
0,01400
0,01500

0 1 2 3 4 5 6 7 8 9 10

To
rq

u
e(

N
m

)

Time(s)

SolidWorks Data

Matlab Data

-0,6500

-0,6000

-0,5500

-0,5000

-0,4500

-0,4000

-0,3500

-0,3000

-0,2500

-0,2000

-0,1500

-0,1000

-0,0500

0,0000

0 1 2 3 4 5 6 7 8 9 10

To
rq

u
e(

N
m

)

Time(sec)

SolidWorks Data

Matlab Data

48

Figure 3.20 : Torque Results for Joint 3.

3.5 Payload Analysis of the Modular Robot Manipulator

In order to determine maximum payload of the modular robot manipulator, static force

diagram and bending moment diagram were analyzed by applying payload to the

gripper. In the payload analysis of the modular robot manipulator 3 DOF, 4 DOF and

5 DOF modular robot manipulator configurations were evaluated with the extended

arm positions.

Because maximum torque of the DYNAMIXEL MX64 smart servo motor is 6 Nm,

payload which exerts joint torques higher than 6 Nm was considered as maximum

payload of the modular robot manipulator. It is needed the remark that this maximum

payload may be differ for dynamic analyses.

3.5.1 Payload analysis of 3 DOF modular robot manipulator

In order to evaluate maximum torque values, robot configuration which is given in

Figure 3.21 was considered.

49

Figure 3.21 : 3 DOF modular robot manipulator payload analysis.

3.5.1.1 Shear force and bending moment diagram

Shear force and bending moment diagram of the modular robot manipulator were

obtained as Figure 3.22 by applying 1.25 kg payload to the gripper. According to the

conducted analysis, maximum payload was determined as 1.25 kg for 3 DOF modular

robot manipulator.

Figure 3.22 : Shear force and bending moment diagram for 3 DOF modular robot

manipulator.

50

3.5.2 Payload analysis of 4 DOF modular robot manipulator

In order to evaluate maximum torque values, robot configuration which is given in

Figure 3.23 was considered.

Figure 3.23 : 4 DOF modular robot manipulator payload analysis.

3.5.2.1 Shear force and bending moment diagram

Figure 3.24 : Shear force and bending moment diagram for 4 DOF modular robot

manipulator.

Shear force and bending moment diagram of the modular robot manipulator were

obtained as Figure 3.24 by applying 0.55 kg payload to the gripper. According to the

51

conducted analysis, maximum payload was determined as 0.55 kg for 4 DOF modular

robot manipulator.

3.5.3 Payload analysis of 5 DOF modular robot manipulator

In order to evaluate maximum torque values, robot configuration which is given in

Figure 3.25 was considered.

Figure 3.25 : 5 DOF modular robot manipulator payload analysis.

3.5.3.1 Shear force and bending moment diagram

Shear force and bending moment diagram of the modular robot manipulator were

obtained as Figure 3.26 by applying 0.145 kg payload to the gripper. According to the

conducted analysis, maximum payload was determined as 0.145 kg for 5 DOF modular

robot manipulator.

52

Figure 3.26 : Shear force and bending moment diagram for 5 DOF modular robot

manipulator.

53

4. ROS BASED ANALYSIS OF MODULAR ROBOT MANIPULATOR

4.1 Introduction to ROS

The Robot Operating System is an open source framework for creating robot

applications. On contrary to its name, ROS is not an operating system itself. It consists

of tools, libraries and conventions that aim to simplify the task of creating complex

and robust robot behavior across a wide variety of robotic platforms. It provides the

services including hardware abstraction, low-level device control, implementation of

commonly-used functionality, message passing between processes, and package

management.

ROS has distributed and modular structure. The modularity of ROS allows users to

pick and use ready-made packages which are available in the ROS ecosystem in their

particular projects. This is particularly useful during system development since several

research groups can easily connect their respective computers to a working system.

Also distributed nature of ROS fosters a large community of user-contributed packages

that add a lot of value on top of the core ROS system.

In this project ROS is dedicated as software framework because of following reasons:

• Its natural modular structure best fits to the modular robot manipulator concept.

Besides mechanical modularity of the robot, software modularity of the robot

is accomplished by using ROS. Each module of the robot manipulator has the

same controller structure but the different controller parameters. Therefore, in

order to add a new module to the robot, only parameters changing is enough

for controlling it and this builds software modularity to the robot.

• ROS tools enable to simulate the designed system in the development process

before it is manufactured. The designed system can be controlled in the physic

engine which is compatible with ROS. It permits developers to create their

controllers and to test them on the simulated model. In this project, besides

SolidWorks simulation tools, Gazebo physic engine is used to evaluate the

dynamic performance of the robot. The designed controller structures are first

54

tested in the Gazebo and according to the results obtained they can be improved

before the modules are manufactured.

• There are versatile ROS packages available and they can be easily used for

custom robots. In this project, when evaluating kinematics and dynamics

analyses of the modular robot manipulator, MoveIt! package is used. MoveIt!

package can solve the inverse kinematics of the custom robot and generate

collision free trajectories. Both in the simulation analyses and control of the

robot manipulator, trajectories generated from MoveIt! package is used.

• ROS visualization tools enable to visualize the execution process of the robot.

By using these tools, information like transformation relationships between

robot links, generated trajectories in the motion planning can be monitored

from the computer in the real time.

• In real-time applications it is crucial to log the output data in order to validate

the performance of the system. The rosbag tool makes it easier to record those

data from the system runtime. By using the rosbag tool, the system log files

(states of the joints, generated trajectories, controller specific parameters etc.)

are obtained and used for the performance analysis.

4.2 ROS Computation Graph

Computation Graph is the peer-to-peer network of ROS processes that are processing

data together. The basic Computation Graph concepts of ROS are nodes, Master,

Parameter Server, messages, services, topics, and bags, all of which provide data to

the graph in different ways. [30]

55

Figure 4.1 : ROS Computation Graph.

• Nodes: Nodes are the executable files that fulfills desired tasks. Each node has

a unique id in the ROS network and they are communicated each other by using

topics and services. In this project hardware interface is a node and it subscribes

a reference commands and directed them to the servo motors.

• Master: The master provides name registration for nodes so that they can find

each other in the ROS network. It permits message transferring between nodes

and invoking services.

• Parameter Server: The Parameter Server is a shared place for nodes to store

data. In the Parameter Server, data are stored by key variables. In this project,

motor specific parameters and gain parameters for the controllers are stored in

the Parameter Server.

• Messages: Data packets sent on the network are defined in ROS messages. A

message is a data structure containing variable types. Standard primitive types

(integer, floating point, boolean, etc.) are supported by ROS and by using these

standard types different data structures can be obtained.

• Topics: In the ROS network messages are routed via transport system with

publish/subscribe semantics. The topic is a name that is used to identify the

56

content of the message. A node can connect to a topic by its name either as a

publisher in order to send data or as a subscriber in order to receive these data.

• Services: The Services work with request/reply interaction. It constitutes one-

way transport in the ROS network. A client uses the services by sending the

request message and awaiting the reply.

• Bags: Bags are special file formats for storing ROS messages. It is useful for

collecting large data sets from nodes. It also allows to replay the collected data

sets by republishing them with timestamps in the ROS network.

4.3 Used ROS Packages

4.3.1 Unified robot description format (URDF):

The Unified Robot Description Format (URDF) is an XML specification to describe a

robot. [31] In order to describe a robot in ROS, a way is to use the package named

URDF. This package represents the physical geometry, the kinematic and dynamic

properties, the collision model, material, color and texture of the robot. The important

limitation of the URDF format is that only tree structures can be represented therefore

parallel robots cannot be introduced in URDF file.

The representation of a robot in the URDF includes a set of link elements, and a set of

joint elements which connects the links together. Some XML specifications of the

URDF are as follows:

• link element: The link element represents a rigid body with an inertia, visual

and collision features.

• joint element: The joint element represents the kinematics and dynamics

properties of the joint and also specifies the joint enabled limits (maximum

torques, velocities etc.).

• transmission element: The transmission element is used to specify

relationship between actuator and joint. This allows to model gear ratios which

are especially useful in order to use URDF model of the robot in the simulation

environment.

57

• gazebo element: The gazebo element is an extension to the URDF robot

description format and it is used for simulation purpose in the Gazebo

simulator.

4.3.2 MoveIt!

MoveIt! is state of the art software for mobile manipulation, incorporating the latest

advances in motion planning, manipulation, 3D perception, kinematics, control and

navigation [32]. It provides an easy-to-use platform for developing advanced robotics

applications, evaluating new robot designs and building integrated robotics products

for industrial, commercial, research and developments and other domains. [32] In this

project, MoveIt! package is used in order to evaluate and verify the kinematic solver

used in modular robot manipulator and to control the robot by taking the generated

trajectories as inputs.

MoveIt! uses a plugin-based architecture for solving inverse kinematics and a native

implementation for solving forward kinematics. While the default kinematics plugin

currently used by MoveIt! is KDL kinematics plugins, users can add their custom

solvers. The KDL kinematics plugins includes the numerical inverse kinematics solver

provided by the OROCOS KDL package.

MoveIt! comes with a plugin for the ROS Visualizer (Rviz). The plugin allows to

generate plans and visualize the output and interact directly with a visualized robot. It

allows evaluating kinematics solver on the simulated robot manipulator. By using

interactive marker on the Rviz, it can be tested if inverse kinematics solver finds

correct solution or not.

4.3.3 OROCOS kinematics and dynamics library (KDL)

The computations required for the kinematics and dynamic models of a robot can be

realized by using OROCOS Kinematics and Dynamics Library (KDL).

KDL is an application independent framework for modelling and computation of

kinematics chains, such as robots, biomechanical human models, computer-animated

figures, machine tools, etc. [33] It provides class libraries for geometrical objects,

kinematic chains of various families, and their motion specification and interpolation.

58

KDL constructs kinematic chains and it enables to reach their kinematic and dynamic

properties by its included functions, such as inverse and forward kinematics and

dynamics of the chains.

In this project, KDL is used to compute the dynamic model of the robot in the

computed torque controller. After constructing the robot model with URDF format,

this model is transformed to the KDL chain. Then the inverse dynamics of the chain is

obtained and used in the computed torque controller

4.3.4 Gazebo

Gazebo is an open source physic engine for simulating the designed robots in the

realistic world conditions. It includes ROS packages for testing controllers created in

the ROS.

In this thesis, Gazebo is used to evaluate controllers for modular robot manipulator in

the simulation environment. In order to simulate the controllers in ROS, elements for

the gazebo_ros_control plugin were added to the URDF model. Created URDF model

in Gazebo is shown in Figure 4.2.

Figure 4.2 : Modular robot manipulator in Gazebo.

4.3.5 Rviz

Rviz is a 3D visualization tool for ROS [34]. It enables to display the obtained sensor

data and state information on the simulated model of the robot.

59

4.4 Kinematic Analysis Using ROS

4.4.1 URDF model of the modular robot manipulator

In the URDF model of the modular robot manipulator, following parts were treated as

a single link:

• Base Module

• Active module housing part

• Active module coupling part

• Gripper module

Then joints between these links were created according to the desired robot

configurations. Link frames for base module and gripper module were selected as they

are shown in Figure 3.5 and Figure 3.6 respectively. Link frame for active module was

selected by splitting active module into two separate links. In order to ensure twist

angle configuration, a fixed joint was located between them as it is seen in Figure 4.3.

This fixed joint enables to configure the URDF model with a single parameter in the

assembly process.

Figure 4.3 : Active module frames in URDF model.

Inertia matrices for base module and gripper module were taken from SolidWorks as

it is described in section 3.4.1. Inertia matrices for active module housing part and

active module coupling part were taken according to the assigned coordinate frames

in Figure 4.3. Correct inertia matrices are vital for simulation in the Gazebo physics

60

engine. Selected inertia matrices and mass properties of the links then were validated

in section 7.1.4.

Collision properties of the URDF model is utilized in the collision detection by

MoveIt! package. Therefore, detailed collision model has important role in motion

planning. Visual and collision properties of the links were obtained from SolidWorks

as a STL file format. For base module and gripper module, STL files were obtained

according to the output coordinate frames that are used in the section 3.4.1. Besides,

for active module two separate STL files were exported as it is shown in Figure 4.3.

Resulted URDF model of the robot is given in the Figure 4.4 and graph visualization

of the URDF model is given in the appendix A.

Figure 4.4 : URDF model of the modular robot manipulator.

4.4.2 MoveIt! setup of the modular robot manipulator

MoveIt! configuration for the modular robot manipulator was created with MoveIt!

Setup Assistant. URDF model was imported to the setup assistant. Self-collision

matrix was generated in order to determine pairs of links on the robot that are disabled

in the collision checking. MoveIt! Package determine these pairs of links when they

are always in collision, never in collision, in collision in the robot’s default position or

when the links are adjacent to each other on the kinematic chain. Self-collision matrix

decreases the motion planning processing time.

A planning group was created and kinematic chain from the base link to the end

effector was added to the group. KDL kinematics solver was chosen as a kinematic

61

solver as it is discussed in section 3.3.2 and RRT* path planner was selected as it is

discussed in section 5.4.1.

In order to control the robot directly from MoveIt! with the planned motion, action

controller name was inserted to the configuration file.

Modular robot in MoveIt! Package is shown in Figure 4.5 and generated configuration

file is given in appendix B.

4.4.3 Obtaining simulation results on ROS

Inverse Kinematic solution tests were conducted with MoveIt! package. By

transporting interactive marker which is located on the end effector frame to the

example poses in the workspace of the robot, availability of the inverse kinematic

solution was verified in Rviz. This process is showed in Figure 4.5.

Figure 4.5 : Motion planning with MoveIt!

4.5 Graphical User Interface Plugin for Rviz

Graphical user interface was designed in order to plan motions for modular robot

manipulator. Qt4 library was used for GUI development. GUI is given in Figure 4.6.

62

Joint space jog control of the modular robot manipulator is provided from GUI with

the push buttons. During the jog control, self-collision detection is checked by using

URDF model of the robot and invalid commands are avoided.

GUI allows user to teach points directly from MoveIt! with interactive markers in Rviz

or from jogging robot to the desired pose. For the taught points a database created and

it is allowed to access these points both in programming with GUI and programming

with custom codes.

In order to allow user to plan point to point and cartesian motions, a program text box

is located in the GUI plugin. A command structure created for input to the program

text box. Command structure includes “Motion Point1 Point2 VEL VALUE;”

sequence where “Motion” command can be “PTP” for point to point motion and “LIN”

for cartesian motion, “Point1” and “Point2” can be any point stored in the database

and VEL command represents velocity percentage that is used to scale output

trajectory.

Figure 4.6 : Modular robot GUI plugin in Rviz

63

5. CONTROL OF MODULAR ROBOT MANIPULATOR

The control problem for robot manipulators is determining joint inputs required for

manipulator to follow desired trajectory signal. The joint inputs may be joint forces,

torques or voltage inputs to the actuators.

In order to realize a better control structure, it is required to obtain an accurate dynamic

model of the robot manipulator. There are many control techniques and methodologies

for designing control structure of the manipulator; independent joint control, computed

torque control, adaptive control etc.

5.1 Basic Control Strategies

5.1.1 Independent joint control:

In this type of control, each module of the robot manipulator is controlled as a single-

input/single-output (SISO) system. The basic structure of this control system is shown

in the Figure 5.1.

Figure 5.1 : Basic structure of a feedback control system.

The purpose of control design is to make the robot respond in a predictable and

desirable fashion to a set of reference input signals. Therefore, the design objective is

to choose the compensator which makes the plant output follow the given reference

signal. There are also disturbances acting on the system which influence the behavior

of the output. The controller must be designed in a such way that reducing the effects

of the disturbances.

64

5.2 Controller Design for Modular Robot Manipulator

5.2.1 Actuator dynamics:

Inside each active module of the modular robot manipulator, a DYNAMIXEL MX64

DC smart servo motor was used as an actuator. Therefore, dynamic model of an

armature-controlled DC motor is introduced in this section. In Figure 5.2, an example

DC motor model is given.

Figure 5.2 : DC motor model.

The magnitude of the motor torque is proportional to the armature current:

 𝜏𝑚 = 𝐾𝑚𝑖𝑎 (5.1)

The voltage generated across the terminal of the motor as it is moving:

 𝑉𝑏 = 𝐾𝑏�̇�𝑚 (5.2)

In the Laplace domain differential equations related by electrical and mechanical parts

of the motor then can be written as:

 (𝐿𝑠 + 𝑅)𝐼𝑎(𝑠) = 𝑉(𝑠) − 𝐾𝑏𝑠𝜃𝑚(𝑠) (5.3)

 (𝐽𝑚𝑠2 + 𝐵𝑚𝑠)𝜃𝑚(𝑠) = 𝐾𝑚𝐼𝑎(𝑠) − 𝜏𝑙(𝑠)/𝑟 (5.4)

The block diagram of this system is shown in the Figure 5.3:

65

Figure 5.3 : DC motor block diagram.

When it is assumed that the electrical time constant
𝐿

𝑅
 is much smaller than the

mechanical time constant
𝐽𝑚

𝐵𝑚
, electrical time constant can be neglected and the final

dynamic model of the DC motor is obtained as following:

 𝐽𝑚�̈�𝑚(𝑡) + (𝐵𝑚 +
𝐾𝑏𝐾𝑚

𝑅
) �̇�𝑚(𝑡) = (

𝐾𝑚

𝑅
)𝑉(𝑡) −

𝜏𝑙(𝑡)

𝑟
 (5.5)

The block diagram of the reduced order system is shown in Figure 5.4.

Figure 5.4 : Reduced block diagram of a DC motor.

In the thesis [35], DYNAMIXEL MX64 smart servo motor plant parameters were

identified and these plant parameters were utilized in this thesis.

5.2.2 Independent joint dynamics:

In case of gear ratios of the actuators 𝑟𝑖 are very large, it has important effect to

simplify the design of robot manipulator controllers. Large values of 𝑟𝑖 reduces the

effect of the nonlinear function in the robot manipulator dynamics. Therefore, the robot

manipulator dynamics can be obtained by n decoupled second-order differential

equations with constant coefficients.

 (𝐽𝑚𝑖
+

𝑑𝑖𝑖(𝑞)

𝑟𝑖
2) �̈�𝑚𝑖

+ (𝐵𝑚𝑖 +
𝐾𝑏𝑖

𝐾𝑚𝑖

 𝑅𝑖
)�̇�𝑚𝑖

=
𝐾𝑚𝑖

𝑅𝑖
𝑉𝑖 − 𝑑𝑖 (5.6)

66

where 𝑑𝑖 is a disturbance given by:

 𝑑𝑖 =
1

𝑟𝑖
∑ 𝑑𝑖𝑗�̈�𝑗𝑗≠𝑖 + ∑ 𝑐𝑗𝑘𝑖�̇�𝑗�̇�𝑘𝑗,𝑘 + 𝑔𝑖 (5.7)

And effective inertia and damping of the system is denoted by equations 5.8 and 5.9

respectively.

 𝐽𝑒𝑓𝑓 = 𝐽𝑚𝑖
+

𝑑𝑖𝑖(𝑞)

𝑟𝑖
2 (5.8)

 𝐵𝑒𝑓𝑓 = 𝐵𝑚𝑖 +
𝐾𝑏𝑖

𝐾𝑚𝑖

 𝑅𝑖
 (5.9)

And u denotes the input to the system:

 𝑢𝑖 =
𝐾𝑚𝑖

𝑅𝑖
𝑉𝑖 (5.10)

The dynamic equation which nonlinear effect of the nonlinear coupling terms is treated

as disturbance 𝑑𝑖, then can be obtained as following:

 𝐽𝑒𝑓𝑓�̈�𝑚𝑖
+ 𝐵𝑒𝑓𝑓�̇�𝑚𝑖

= 𝑢𝑖 − 𝑑𝑖 (5.11)

5.2.3 PID compensator:

In order to perform independent joint control a PID compensator can be created as it

is shown in Figure 5.5 and the system transfer function is obtained as equation 5.12.

67

Figure 5.5 : Independent joint control block diagram.

 𝜃𝑚(𝑠) =
𝐾𝐷𝑠2+𝐾𝑃𝑠+𝐾𝐼

𝐽𝑒𝑓𝑓𝑠3+(𝐵𝑒𝑓𝑓+𝐾𝐾𝐷)𝑠2+𝐾𝐾𝑃𝑠+𝐾𝐾𝐼
𝜃𝑑(𝑠) −

𝑟𝑠

𝐽𝑒𝑓𝑓𝑠3+(𝐵𝑒𝑓𝑓+𝐾𝐾𝐷)𝑠2+𝐾𝐾𝑃𝑠+𝐾𝐾𝐼
𝐷(𝑠)

(5.12)

5.2.4 PID based joint trajectory controller:

Figure 5.6 : Independent joint trajectory controller block diagram.

Single input single output based independent joint trajectory controller which is given

in Figure 5.6 was used for controlling modular robot manipulator on simulation. On

the simulation model, joints which actuate with velocity reference was added to the

model. For tracking given trajectory input, PD control law is implemented to compute

commanded velocities. The trajectory tracking result for the controller is given in the

section 7.1.5.1.

Because of DYNAMIXEL motors have internal PID controllers which take position,

velocity and torque reference inputs, joint trajectory controller will have two control

loops as it is shown in Figure 5.7. In the inner control loop block, DYNAMIXEL

68

velocity controller [36] was given. On the experimental setup this block diagram was

used, and tuning process of the outer and inner loops and trajectory tracking

performance of the controller are given in section 7.1.6.

Figure 5.7 : Independent joint trajectory controller with inner PID control loop.

Implementation of the controller in ROS and its test results are discussed in the

following sections.

5.2.5 Computed torque controller:

Computed torque control method can be applied effectively when the loads that may

come from system dynamics can be measured. Because dynamic analysis of the

modular robot manipulator was obtained and validated, computed torque controller is

created in ROS by using dynamic model of the modular robot manipulator and test

results are validated.

The dynamics model of the robot manipulator obtained in the section 3.4.1 is as

follows:

 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) + 𝜏𝑑 = 𝜏 (5.13)

where q denotes the joint variable, τ denotes the input voltage and 𝜏𝑑 denotes a

disturbance.

When a desired trajectory 𝑞𝑑(𝑡) is given to the manipulator to ensure trajectory

tracking by the joint variable, the tracking error can be defined as:

 𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡) (5.14)

69

 �̇� = �̇�𝑑 − �̇� (5.15)

 �̈� = �̈�𝑑 − �̈� (5.16)

If �̈� is solved from equation 5.13 when 𝜏𝑑 is ignored and substituting into the 5.16

yields:

 �̈� = �̈�𝑑 + 𝑀−1(𝐶(𝑞, �̇�) + 𝐺(𝑞) − 𝜏) (5.17)

Input function can be defined as linearized equation:

 𝑢 = �̈�𝑑 + 𝑀−1(𝐶(𝑞, �̇�) + 𝐺(𝑞) − 𝜏) (5.18)

We may define a state x(t) as:

 𝑥 = (
𝑒
�̇�

) (5.19)

Then tracking error dynamics will be a linear error system as 5.20:

 𝑑

𝑑𝑡
[
𝑒
�̇�
] = [

0 𝐈
0 0

] [
𝑒
�̇�
] + [

0
𝐈
] 𝑢 (5.20)

Equation 5.18 can be expressed as following equation:

 𝜏 = 𝑀(�̈�𝑑 − 𝑢) + 𝐶(𝑞, �̇�) + 𝐺(𝑞) (5.21)

If u(t) is selected so that e(t) goes to zero from equation 5.20, then nonlinear control

input given by 𝜏(𝑡) in equation 5.21 will cause trajectory following in the manipulator.

The control input u(t) can be selected as the PD feedback:

 𝑢 = −𝐾𝑝𝑒 − 𝐾𝑑�̇� (5.22)

Then the overall dynamic equation becomes:

 𝜏 = 𝑀(�̈�𝑑 + 𝐾𝑝𝑒 + 𝐾𝑑�̇�) + 𝐶(𝑞, �̇�) + 𝐺(𝑞) (5.23)

The block diagram of the computed torque control is shown in Figure 5.8.

70

Figure 5.8 : Computed torque control block diagram.

The closed loop error dynamics are:

 �̈� + 𝐾𝑑�̇� + 𝐾𝑝𝑒 = 0 (5.24)

Equation 5.24 shows that by choosing the matrices 𝐾𝑝 and 𝐾𝑑 in a diagonal form, a

decouple closed loop system can be obtained where the behavior of each joint error is

given by a second order differential equation.

The closed loop characteristic polynomial is:

 𝑠2𝐼 + 𝐾𝑑𝑠 + 𝐾𝑝 = 0 (5.25)

The desired damping ratio ζ and natural frequency 𝑤𝑛 for joint error is calculated with

these equations:

 𝐾𝑑 = 𝑑𝑖𝑎𝑔(𝑘𝑑𝑖
) (5.26)

 𝐾𝑝 = 𝑑𝑖𝑎𝑔(𝑘𝑝𝑖
) (5.27)

 𝑘𝑝𝑖
= 𝑤𝑛

2 (5.28)

 𝑘𝑑𝑖
= 2𝜁𝑤𝑛 (5.29)

Which diag() function represents diagonal matrix and for the appropriate 𝑘𝑝𝑖
 and 𝑘𝑑𝑖

which are selected as positive numbers system will be asymptotically stable. In order

to avoid for overshoots in the robot motion, the PD gain is selected for critical damping

ζ=1.

71

Computed torque controller was implemented in ROS and trajectory tracking results

was tested on Gazebo. In the following sections implementation and test results are

given.

5.3 Implementation of ROS to Modular Robot Control

In order to create a consistent interface for modular robot in ROS environment,

ros_control [35] framework was used when creating controllers. The ros_control

framework provides the capabilities to implement and manage robot controllers with

a real-time performance and enables sharing of controllers in a robot-agnostic way

[35]. Thanks to its modular architecture, different controllers can be switched in real-

time. Also, thanks to its plugins, designed controllers can be simulated on Gazebo

before implementing them on the real robot.

Figure 5.9 : Active module ROS controller diagram.

In the Figure 5.9, ROS controller diagram which is used to control each active modules

of the modular robot manipulator is presented.

There are two important functions in Hardware Resource Interface Layer; “write”

and “read” which are responsible for interacting with hardware. While creating these

functions DynamixelSDK [36] library was used owing to it includes communication

72

functions with appropriate communication protocols from ROBOTIS company. By

using Read () function, PC that runs ROS, acquires joint states which are positions,

velocities and torques of the motors and by using Write () function it sends an

appropriate control variable which can be positions or torques to the motors.

Dynamixel Motor block represents DYNAMIXEL motor’s inner structure. It includes

an embedded controller inside which implements PID control to drive the motor and

sensors which can measure the position, velocity and current of the motor. It also,

allows to change its PID coefficients for each motor control mode with serial

communication.

Controller Manager is in charge of managing controller plug-ins at runtime. It deploys

ROS services that can list, load, unload and switch controllers. By means of its well-

designed architecture, at the moment while switching controllers it prevents joints not

to remain uncontrolled to prevent falling the links. It detects resource conflicts between

controllers and handles those situations. Real-time loop inside the controller manager

follows the read, update and write sequences. In read process, controller manager reads

joint states from Hardware Resource Interface Layer. In update process of the

Controller Manager, control method is implemented from currently loaded controller

for given joint states. In write process, calculated joint command in update process is

commanded to the hardware.

5.3.1 Position controller

Position Controller does not include a control law. It takes position reference command

in joint space and directs them to the actuators. Control law is expected to be

implemented in actuators themselves.

5.3.2 Effort controllers

Effort controllers are single input single output controllers. In effort controllers control

variable is torque and they expect effort controllable joint which is

EffortJointInterface type of hardware interface which can be driven by torque input.

It includes effort-based position, velocity and effort controllers. In position controller,

PID control is applied and calculated torque command is directed to the actuator,

according to the position reference command. In velocity controller, according to the

velocity reference command, PID control is applied by calculating velocity error and

73

torque command is directed to the actuator. On the other hand, in effort controller,

according to the torque reference command, PID control is applied by calculating

torque error and torque command is directed to the actuator.

5.3.3 Joint trajectory controller

Joint trajectory controller takes trajectory input in the joint space as a set of waypoints

and makes interpolation between the trajectory waypoints. In interpolation process it

utilizes from the waypoint’s timestamps and according to the waypoints specifications

it uses linear, cubic or quantic interpolation methods.

According to the used hardware interface type, it calculates the position and velocity

trajectory following error and apply PID control.

Joint trajectory controller currently includes single input single output-based position

controllers, velocity controllers and effort controllers. The designed computed torque

controller is implemented for joint trajectory controller.

5.3.4 Computed torque controller

Computed torque control method which is presented in section 5.2.5 is implemented

as a ROS controller plugin. KDL library was used for computing inverse dynamics of

the modular robot manipulator. KDL library offers recursive Newton-Euler solver for

the inverse dynamics problem.

Computed torque controller consists of several methods inherited from RobotHW

class. In the init () method, KDL [33] library dependent KDL chain object is created

from the URDF model of the robot manipulator. KDL library uses this chain, in order

to determine kinematic model of the robot. Also, PID controller object is initialized in

here for outer loop control in computed torque control method.

In the start () method, control variables are reset. Because of the fact that it will be a

plugin that will be loaded by controller manager, in start () method all control

variables are assigned to their initial values, to prevent unpredictable situations when

controller switching is demanded by controller manager.

Main algorithm of the computed torque controller is conducted in update () method.

This method is called by Controller Manager in real time control loop. According to

the given positions and velocities of the joints, the trajectory following error is

74

computed. By applying PID control in the outer loop of the controller, acceleration

input is computed for the trajectory following error. Determined acceleration is

inputted to the recursive Newton-Euler solver and joint torques are computed. Then

calculated torque commands are assigned to the joint handles variables and they are

directed to the actuators by controller manager.

5.3.5 Joint state controller

In contrast to its name, it is not a controller but is a controller plugin in ros_control. It

takes joint states from joint handle resources in the update process of the controller

manager and publishes them in ROS environment. The other ROS components, i.e.

MoveIt [32] for motion planning, are aware of the joint states by means of joint state

controller.

5.3.6 Gripper controller

Figure 5.10 : Gripper module ROS controller diagram.

Gripper has an analog servo motor which includes position controller inside it.

According to the angle reference command, servo motor applies its inner control law

to reach the reference angle. As position feedback of the servo motor is not available,

it is just recorded the last reference angle sent to the motor and published in ROS

75

environment. Gripper motion is controlled according to the current feedback from the

motor drawn. Gripper controller is given in Figure 5.10.

In the low-level controller, Arduino UNO microcontroller is used. Communication

between ROS and Arduino DUE is established with RS232 protocol. Two types of

packets are created for data exchanging between ROS controller and Arduino

controller. In the write packet PC sends desired position command to the

microcontroller and in the read packet PC receives last commanded position of the

gripper and current of the motor.

Microcontroller receives position reference command from ROS controller and sends

its inner control variable which holds last commanded reference angle to the servo

motor, to the ROS controller. Because of at startup, the last commanded reference

angle is empty, embedded control has an initialized procedure which drives servo to

the predefined angle just to ensure that servo is in state of last commanded angle. It

also includes home procedure which drives the servo motor to a predefined position.

In the ROS environment, gripper is controlled with position controller and the given

reference commands are directed to the motors without using any control law. In case

that current reaches the defined threshold, gripper movement is stopped.

An action server is created for gripper controller to handle opening and closing actions

of the gripper. Action server takes a goal which can be open and close gripper and

sends appropriate joint angle references to the position controller. If the last

commanded joint angle and load value of the controller are not obtained from

microcontroller within timeout tolerances, action is canceled and reported to the action

client.

In closing action, gripper moves to the desired angle and if the returned current

feedback is higher than the threshold, success is reported to the client otherwise failed

is reported to the client and action is canceled.

In opening action, gripper moves to the set angle for opening situation.

5.4 Motion Planning

MoveIt! package is used for motion planning framework. MoveIt! is an open source

software used for robot motion planning. It uses Open Motion Planning Library

76

(OMPL), Stochastic Trajectory Optimization for Motion Planning (STOMP), Search-

Based Planning Library (SBPL) and Covariant Hamiltonian Optimization for Motion

Planning (CHOMP) libraries for motion planning implementations. [37]

MoveIt! has a plugin-based architecture for solving inverse kinematics and a native

implementation for solving forward kinematics. While the default kinematics plugin

currently used by MoveIt! is KDL kinematics plugins, users can add their custom

solvers. In this thesis, Orocos KDL kinematics plugin described in inverse kinematics

chapter is used in MoveIt!

For the used path planners in MoveIt! package, there is a benchmarking [38].

According to the benchmarking results and experimental tests which are conducted in

this thesis, RRT* solver is determined in order to create collision free paths.

5.4.1 RRT* algorithm

RRT* algorithm operates in the configuration space which has free cells that robot can

reach and occupied cells by obstacles that cannot be reached by robot. [39]

RRT* algorithm begins when selecting initial and goal state to find collision free path.

Processed path is expanded in each iteration towards to the goal. In each iteration,

RRT* randomly generates points in the configuration space and evaluates them. If

generated point lies outside of an obstacle and point is reached from nearest node,

RRT* chains the point to the tree.

In this chaining process, algorithm searches nearest nodes of the random generated

point in the tree and by applying cost to them selects best parent to the random point.

Algorithm iteratively searches for path until the generated node is within the goal

region or the termination limit is reached. In Figure 5.11, expanding process of the

RRT* algorithm is shown.

77

Figure 5.11 : RRT* algorithm visualization. [39]

5.4.2 Motion planning flow chart

Motion planning flow chart that is implemented in this thesis is given in Figure 5.12.

In the Task Plan block, set of desired end effector poses are determined for robot

manipulator. These end effector poses should be inside or outside of the reachable

workspace of the robot. This information will send back to the user on the next

sections.

78

Figure 5.12 : Motion planning flow chart

In the inverse kinematics block, for the given cartesian space end effector poses, joint

angles are calculated by KDL numerical solver discussed before. If the inverse

kinematic solver could not find the solution, it is seed random state of the manipulator

to the numerical solver and inverse kinematic solver is executed again. This process is

repeated until the number of tries is reached or inverse kinematic solution is found.

In the path planning block, found joint angles from the inverse kinematic solver is

taken as joint space goal and path planning with RRT* algorithm is conducted from

current state of the robot to the goal state. During path planning, inner collision

detection is implemented by using collision description in the URDF model of the

robot. If the planning scene of the environment is given, RRT* algorithm makes

collision checking with the objects located in the environment. In this process

kinematic constraints can also be specified to the RRT* algorithm.

In the Iterative Time Parameterization block, joint space trajectory is generated from

found path. According to the maximum joint velocities and accelerations, spline

interpolation is made among the points along the path. Maximum velocities and

79

accelerations information of the robot manipulator are taken from the URDF model.

The calculated joint trajectory is then can be post processed for ensuring the desired

joint velocities. By using joint space jump detection, it tries to avoid robot singularities.

MoveIt! has controller manager inside and it expects action client server for controlling

joints. Created joint trajectory controller is introduced to the MoveIt! and then MoveIt!

is connected to the action server as a client. MoveIt! takes joint states from the ROS

topic and it updates inner kinematic model of the robot according to the current joint

states. After it succeeded to plan a trajectory, it executes joint space trajectory by

sending it to the joint trajectory controller action server. Trajectory following

information are obtained as a feedback from action server and according to the goal

tolerances and if tolerances are exceeded, the goal is aborted and information is sent

to the user.

80

81

6. EXPERIMENTAL RIG DESIGN

In this section, experimental rig design of the modular robot manipulator is discussed.

6.1 Manufacturing of Modules

In the manufacturing of active module and gripper module uPrint 3D printer was used

with ABS filament. Besides, MDF material was used to manufacture base module.

In order to create a 3 DOF modular robot manipulator three active modules, one

gripper module and base module were manufactured. Manufactured modules are given

in Figure 6.1, Figure 6.2 and Figure 6.3.

Figure 6.1 : Manufactured active module

82

Figure 6.2 : Manufactured gripper module which is mounted to the housing part of

active module

Figure 6.3 : Manufactured base module

6.2 Mechanic Accessories

In order to actuate the modular robot manipulator following components are used:

• DYNAMIXEL MX-64T Servo Motor

83

In the active modules DYNAMIXEL MX-64T servo motors used as actuator. In Figure

6.4 DYNAMIXEL MX-64T servo motor is shown and its hardware specifications are

given in the Table 6.1.

Figure 6.4 : Dynamixel MX-64T servo motor.

Table 6.1 : Dynamixel MX-64T Hardware Specifications.

Resolution 0.088°

Stall Torque 6 Nm

Voltage 12 V

Communication Protocol TTL

Weight 135 g

Running Degree Endless Turn

• PowerHD 1201 MG Servo Motor

In the gripper module, PowerHD 1201 MG servo motor which is shown in Figure 6.5

was used as actuator.

Figure 6.5 : PowerHD 1201 MG servo motor

Its hardware specifications are listed in Table 6.2.

Table 6.2 : PowerHD 1201 MG Hardware Specifications.

Stall Torque 1,294 Nm

Voltage 6 V

Weight 60 g

Running Degree 0° ~ 180°

84

6.3 Electronic Accessories

In the modular robot manipulator, the following electronic components are used:

• Arduino UNO

Figure 6.6 : Arduino UNO microcontroller

Arduino UNO microcontroller is used for controlling gripper. The microcontroller is

shown in Figure 6.6.

• DYNAMIXEL Expansion Board

Figure 6.7 : OpenCM 485 Expansion Board

In order to power DYNAMIXEL MX64 smart servo motors, OpenCM 485

DYNAMIXEL Expansion Board was used. In the board, there are connectors for TTL

and RS485 types of DYNAMIXEL servo motors. It allows to connect 12 Volt SMPS

unit to the board with the power jack. In Figure 6.7, OpenCM 485 expansion board is

shown.

• TTL to USB converter

85

Figure 6.8 : USB2Dynamixel

DYNAMIXEL MX64 servo motors which used in this project have TTL

communication protocol. TTL to USB converter from ROBOTIS is used for

communication between DYNAMIXEL servo motors and PC. USB2Dynamixel

converter is shown in Figure 6.8.

• Power Supply

 12V 5A power supply is used for supplying power to the active modules and

6V 3.5A power supply was used for supplying power to the gripper module.

6.4 Experimental Setup

3 DOF and 2 DOF modular robot manipulator configurations were created with the

manufactured modules as experimental setup. Experimental setups are shown in

Figure 6.9 and Figure 6.10.

86

Figure 6.9 : 3 DOF Experimental setup.

Figure 6.10 : 2 DOF Experimental setup.

87

7. RESULTS AND DISCUSSIONS

7.1 Validation and Verification

7.1.1 Numerical inverse kinematic solver validation

In order to validate the kinematic solver performance which is discussed in section

3.3.2, 4 to 6 DOF robot configurations were evaluated. 1000 random sample points

that are reachable for robot configurations were selected by calculating forward

kinematics. Joint angles used in the forward kinematics and sample points were

logged. Inverse kinematic solver was tested by giving sample points as inputs to the

solver and calculated joint angles were logged if the inverse kinematic solution found.

Kinematic solver results were then evaluated with inverse kinematic solution success

rate, average time passed during calculating solution, average end-effector position

error, average end-effector roll, pitch and yaw angle errors.

Created test program is added to the appendix C and results are listed in the Table 7.1.

Table 7.1 : KDL Inverse kinematic solver statistics.

DOF 4 5 6

Success

Rate (%)

0.99 1 0,88

Average

Time (s)

0.03 81.21 × 10−3 4.20

AEE 2.37 × 10−7 1.23 × 10−6 2.07 × 10−6

ARE 8.69 × 10−7 1.97 × 10−6 5.54 × 10−7

APE 8.69 × 10−7 3.96 × 10−7 5.59 × 10−8

AYE 9.20 × 10−7 2.06 × 10−6 5.67 × 10−7

In the Table 7.1, AEE denotes average end-effector position error and unit is meters,

ARE, APE and AYE denotes end-effector roll, pitch and yaw angle errors respectively

and their units are in radians.

88

Success Rate metric is calculated as following:

 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

1000
 (7.1)

Average time is calculated with the following equation:

 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 =
∑ 𝑡𝑖

1000
𝑖=1

1000
 (7.2)

In which 𝑡𝑖 denotes time passed to inverse kinematic solving process of the pose 𝑖.

Average end-effector position error (AEE) is calculated with the following equation:

 𝐴𝐸𝐸 =
∑ (𝑑𝑖−𝑝𝑖)

21000
𝑖=1

1000
 (7.3)

In equation, 𝑑𝑖 and 𝑝𝑖 represents desired position of the end-effector and calculated

position from inverse kinematic solver respectively.

ARE, APE and AYE errors are calculated with equation X, Y, Z respectively as:

 ARE =
∑ (dri−pri)

21000
i=1

1000
 (7.4)

𝐴𝑃𝐸 =

∑ (𝑑𝑝𝑖 − 𝑝𝑝𝑖)
21000

𝑖=1

1000
 (7.5)

𝐴𝑌𝐸 =

∑ (𝑑𝑦𝑖 − 𝑝𝑦𝑖)
21000

𝑖=1

1000
 (7.6)

In the equations above, 𝑑𝑟𝑖, 𝑑𝑝𝑖and 𝑑𝑦𝑖 represents desired roll, pitch and yaw angles

of the end-effector respectively, and 𝑝𝑟𝑖, 𝑝𝑝𝑖 and 𝑝𝑦𝑖 denotes calculated roll, pitch and

yaw angles respectively.

According to the obtained results, it is observed that success rate is sufficient but

decreases when the DOF of the manipulator increases and average time required to

solve inverse kinematics increases with DOF of the robot. It is also observed that

results of the inverse kinematic solution highly depend to the solver seeding state.

89

7.1.2 Analytic inverse kinematic solution validation

Inverse kinematic solution for the 3 DOF modular robot manipulator in the Figure 3.1

was found in the section 3.1. In this section, analytic inverse kinematic solution is

tested with a known end effector position.

For the given joint angles, the end effector position of the robot manipulator is

determined from forward kinematics solution:

𝜃1 = 1.57, 𝜃2 = 0.7, 𝜃3 = 0.45 => 𝑋 = 2 × 10−4, 𝑌 = 30.62 × 10−3,

 𝑍 = 32.71 × 10−1

By taking the output end-effector position of the forward kinematics solution, inverse

kinematic procedure was conducted and the following eight solution sets were

obtained:

IK 1: {𝜃1 = 1.57, 𝜃2 = 0.6994, 𝜃3 = 0.4486}

IK 2: {𝜃1 = 1.57, 𝜃2 = −3.3924, 𝜃3 = 0.4486}

IK 3: {𝜃1 = 1.57, 𝜃2 = 0.2508, 𝜃3 = −0.4486}

IK 4: {𝜃1 = 1.57, 𝜃2 = −3.8410, 𝜃3 = −0.4486}

IK 5: {𝜃1 = −1.57, 𝜃2 = 0.4623, 𝜃3 = 0}

IK 6: {𝜃1 = −1.57, 𝜃2 = −3.6039, 𝜃3 = 0}

IK 7: {𝜃1 = −1.57, 𝜃2 = 0.4623, 𝜃3 = 0}

IK 8: {𝜃1 = −1.57, 𝜃2 = −3.6039, 𝜃3 = 0}

According to obtained solution sets, IK1 solution set ensured the given joint angles

input.

7.1.3 Singularity analysis validation

In order to conduct singularity analysis for 3 DOF modular robot manipulator shown

in the Figure 3.1, known singular pose was considered. Jacobian matrix of the 3 DOF

modular robot manipulator in this singular pose was obtained as in equation 7.7:

90

𝐽 =

[

−0.1121 −0.001 0.001
0.0435 −0.11 0.1120

0 0.0001 0.0001
0 −1 1
0 0.0008 0.0008
1 0 0]

 (7.7)

In order to calculate determinant of the Jacobian matrix, SVD of Jacobian was obtained

with the MATLAB function that is given in appendix D.

U =

[

−0.0004 0.1113 −0.1089 0.0278 0.0739 0.9846
0.1115 −0.0421 −0.6585 −0.587 0.4474 −0.085
0.001 0 −0.0843 0.6670 0.7355 −0.083
0.9938 0.0096 0.0744 0.0653 −0.049 0.0095

−0.0008 0 0.7360 −0.452 0.5008 0.0566
0.0048 0.9929 0.0164 0.0287 −0.011 0.1140]

 (7.8)

𝑆 =

[

1.4231 0 0

0 1.0072 0
0 0 0
0 0 0
0 0 0
0 0 0]

 (7.9)

𝑉 = [

0.068 −1 0
−0.7071 −0.0048 0.7071
0.7071 0.0048 0.7071

] (7.10)

In the equations above, U represents left singular vector, V represents right singular

vector, S represents singular values of the Jacobian matrix.

Determinant of the Jacobian matrix then was obtained by using the equation 3.12:

 det(J) = −1.6867x10−16 (7.11)

Because determinant of the Jacobian is too close to the zero, this end-effector position

is verified as singular point for the robot manipulator.

7.1.4 Gazebo simulation model validation

As it is stated, modular robot manipulator controllers first tested in the Gazebo physics

engine. For a realistic simulation it is necessary creating a simulation model accurately.

In order to validate simulation model of the robot, torque results of the joints when

they are controlled with a PD controller are evaluated in this section.

91

In MATLAB, output dynamic model of the section 3.4 was used with PD controller.

Proportional and derivative gains parameters of the controllers were taken the same

for both MATLAB and Gazebo simulations and motor dynamics properties were

ignored. An example joint space trajectory was decided as input and the torque results

were acquired during the trajectory tracking of the joints.

Figure 7.1 : Torque values for module 1 taken from both MATLAB and Gazebo.

Figure 7.2 : Torque values for module 2 taken from both MATLAB and Gazebo.

-0,01005

-0,00505

-0,00005

0,00495

0,00995

0,01495

0 2 4 6 8 10To
rq

u
e

(N
m

)

Time (s)

Module 1

Gazebo

Matlab

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 2 4 6 8 10

To
rq

u
e(

N
m

)

Time (s)

Module 2

Gazebo

Matlab

92

Figure 7.3 : Torque values for module 3 taken from both MATLAB and Gazebo.

According to the results obtained that are seen in Figure 7.1, Figure 7.2 and Figure 7.3,

close torque values were observed both in MATLAB and Gazebo simulation. These

results validate the Gazebo simulation model of the modular robot manipulator.

7.1.5 Controller results in simulation

In this section, control results of the modular robot manipulator in the Gazebo are

evaluated. In order to evaluate the trajectory tracking performances of the modules,

modular robot manipulator configuration which is given in Figure 3.1 was considered.

7.1.5.1 Velocity based joint trajectory controller

As a result of the implemented velocity based joint trajectory controller, tracking

results were observed as they are given in Figure 7.4, Figure 7.5 and Figure 7.6.

Figure 7.4 : Module 1 trajectory tracking results.

0,1005

0,101

0,1015

0,102

0,1025

0,103

0 2 4 6 8 10

To
rq

u
e

(N
m

)

Time (s)

Module 3

Gazebo

Matlab

93

Figure 7.5 : Module 2 trajectory tracking results.

Figure 7.6 : Module 3 trajectory tracking results

In the figures above it can be seen that minimum position and velocity tracking errors

were obtained with the controller.

7.1.5.2 Computed torque controller

Computed torque controller was created as a joint trajectory controller as it is discussed

in section 5.3.4. For the given joint space trajectory, tracking results were obtained as

they are seen in Figure 7.7, Figure 7.8 and Figure 7.9.

94

Figure 7.7 : Module 1 trajectory tracking results.

Figure 7.8 : Module 2 trajectory tracking results.

Figure 7.9 : Module 3 trajectory tracking results.

In the figures above it can be seen that position and velocity tracking performance

were observed to be better than velocity based joint trajectory controller.

7.1.6 Velocity based joint trajectory controller tracking results on experimental

setup

In this section, velocity based joint trajectory controller is evaluated on the

experimental setup. 3 DOF and 2 DOF modular robot manipulator configurations were

assembled as they are shown in Figure 6.9 and Figure 6.10.

95

In the Table 7.2 effects of PID coefficients on the closed loop system are given. By

taking into account to these effects of PID coefficients, the joint trajectory controller

was tuned. PID tuning process was conducted from tip module to base module.

Table 7.2 : Effects of PID coefficients

Response OVERSHOOT STEADY-

STATE

ERROR

RISE TIME SETTLING

TIME

𝐾𝑝 Increase Decrease Decrease Small Change

𝐾𝑖 Increase Eliminate Decrease Increase

𝐾𝑑 Decrease No Change Small

Change

Decrease

In order to tune inner loop controller of the tip module in the 3 DOF modular robot

manipulator which is given in Figure 6.9, the following procedure was implemented.

Tuning process was started from inner PI loop which is executed in DYNAMIXEL

motor’s built-in controller. First, 𝐾𝑝 coefficient is determined such that overshoot was

observed in step response. Step response of the controller with the different 𝐾𝑝

coefficients was observed as in Figure 7.10.

Figure 7.10 : 𝐾𝑝 coefficient determination of inner loop controller.

According to the step response of the controller in Figure 7.10, 𝐾𝑝 coefficient was

determined as 20. Then in order to eliminate steady-state error, 𝐾𝑖 coefficient was

96

determined when 𝐾𝑝 was 20. Step response of the controller for this process is given

in the Figure 7.11.

Figure 7.11 : 𝐾𝑖 coefficient determination of inner loop controller.

According to the experiment results in Figure 7.11, 𝐾𝑖 coefficient chosen as 3.

After PID parameters of the inner loop controller was determined, outer loop controller

was tuned by starting with 𝐾𝑝 coefficient selection. 𝐾𝑝 coefficient was determined

such that position tracking error minimized. Position and velocity tracking results for

different 𝐾𝑝 coefficients are given in Figure 7.12 and Figure 7.13.

Figure 7.12 : Position tracking results of 𝐾𝑝 coefficient determination of outer loop

controller.

97

Figure 7.13 : Velocity tracking results of 𝐾𝑝 coefficient determination of outer loop

controller.

In Figure 7.12, minimum position tracking error was observed when 𝐾𝑝 was 5 and this

coefficient was chosen for outer loop controller.

Then in order to reduce velocity tracking error, 𝐾𝑑 coefficient was determined when

𝐾𝑝 was 5. In Figure 7.14 and Figure 7.15, effects of the 𝐾𝑑 coefficient on position and

velocity tracking are given.

Figure 7.14 : Position tracking results of 𝐾𝑑 coefficient determination of outer loop

controller.

98

Figure 7.15 : Velocity tracking results of 𝐾𝑑 coefficient determination of outer loop

controller.

According to the experiment results, 𝐾𝑑 coefficient was chosen as 1.

This tuning procedure was conducted for each module from farthest module to base

module and trajectory tracking results are given in sections 7.1.6.1 and 7.1.6.2.

7.1.6.1 2 DOF modular robot

For 2 DOF robot configuration, velocity-based joint trajectory controller was executed

with the pre-calculated joint space trajectories and the results were collected during

the time trajectories executed. Trajectory tracking performance of the controller is

shown in Figure 7.16 and Figure 7.17.

Figure 7.16 : Trajectory tracking results of the module 1.

99

Figure 7.17 : Trajectory tracking results of the module 2.

7.1.6.2 3 DOF modular robot

For 3 DOF robot configuration, velocity-based joint trajectory controller was executed

with the pre-calculated joint space trajectories and the trajectory tracking results are

observed as in Figure 7.18, Figure 7.19 and Figure 7.20.

Figure 7.18 : Trajectory tracking results of Module 1.

Figure 7.19 : Trajectory tracking results of Module 2.

100

Figure 7.20 : Trajectory tracking results of Module 3.

7.1.7 Pick and place task

In this section, a pick and place task which is performed with experimental setup is

discussed. Two separate points have been decided for pick and place application, one

for picking and one for placing. A rubber was chosen as picked object and the object

is fed from the fixed position at point A at each repetition. The position deviation

where the end-effector placed the object at point B was observed by performing a

repeated movement. This process is shown in the Figure 7.21.

Figure 7.21 : Pick and place task.

The position deviation at the point B was calculated as Euclidian distance error and

the result is given in the Figure 7.22.

101

Figure 7.22 : Pick and Place task repeatitability result.

According to the Euclidian distance error data obtained during repeated pick and place

task, maximum error was obtained as 2.5 mm as it is given in Figure 7.22.

102

103

8. CONCLUSION

In this thesis, new design of the modular robot manipulator was presented. Modularity

of the robot manipulator was ensured with reconfigurable twist angle. Experimental

setup was created with 3 active modules, 1 gripper module and 1 base module and the

experiments conducted with 2 DOF and 3 DOF robot configurations as it is given in

section 7.

Kinematics analyses were conducted for modular robot manipulator. In the inverse

kinematics analysis section, analytical and numerical kinematics solvers were

discussed and the results were given in section 7. Dynamics analyses of the modules

were performed by using MATLAB and SOLIDWORKS softwares. According to the

comparisons, small differences were observed between joint torque values obtained

from MATLAB and SOLIDWORKS. SOLIDWORKS takes into account to friction

when the material properties assigned to the parts however in the analysis conducted

in MATLAB, friction was not considered. This difference was thought as it is caused

by this friction effect. Maximum payloads for the 3 DOF, 4 DOF and 5 DOF modular

robot manipulators were studied with static analysis.

After dynamic analyses were validated, URDF model of the modular robot

manipulator was created and by using this model, simulated model of the modular

robot manipulator created in GAZEBO physic engine. URDF model of the modular

robot manipulator was validated by comparing joint torque values obtained from

MATLAB and GAZEBO softwares when the robot manipulator tracing an example

trajectory in section 7. URDF model of the modular robot manipulator enabled to

investigate motion planning algorithms both in MATLAB and ROS.

Controllers for the modules of the modular robot manipulator were implemented in

ROS. Joint trajectory controller was implemented on both simulation and experimental

setup. It was tested with the output trajectories of the motion planning package of

modular robot manipulator. Because that available controllers in the joint trajectory

controller support only SISO systems, MIMO controller support was implemented

with computed torque control method. Computed torque controller was created as joint

104

trajectory controller by using recursive inverse dynamic solver in the KDL library.

Computed torque controller was tested with simulated robot model in Gazebo and the

results were given in section 7. Because DYNAMIXEL MX64 servo motors does not

support direct current control for DYNAMIXEL protocol 1.0, this controller could not

implement on experimental setup. Direct current control was available for

DYNAMIXEL MX64 with protocol 2.0. It is planned to implement current control in

the inner controllers of the motors by updating software in the servo motor’s inner

controller to the DYNAMIXEL protocol 2.0 as a future work.

Motion planning implementation was conducted with MoveIt! package on ROS.

Collision free motion planning for different modular robot manipulator configurations

was realized. User interactions with the MoveIt! were eased with the developed GUI.

Jog control was enabled from GUI and it was allowed to teach points to the robot and

plan motions by using taught points. Database was created to store taught points. In

order to test the performance of the MoveIt! a pick and place task was conducted as it

is given in 7.1.7. Although point to point motion planning was returned with solutions,

in the cartesian path planning, solutions were not always found.

According to the pick and place experiments conducted on the experimental setup,

torque transmission problem was observed in the gripper module when high gripping

forces were required. It was determined that problem was caused by mechanical

connection between gripper servo motor and gripper finger. When high gripping forces

are demanded, servo shaft slips, and it cannot transmit its full power to the fingers.

This problem is considered to be one of the issues to be studied in the future.

105

REFERENCES

[1] Feczko, J., & Manka, M. (2015). Review of the modular self reconfigurable

robotic systems. 10th International Workshop on Robot Motion and Control

(RoMoCo), (pp. 182-187). Poznan. doi:10.1109/RoMoCo.2015.7219733

[2] Brunete, A., Ranganath, A., Segovia, S., Frutos, J. P., Hernando, M. & Gambao,

E. (2017). Current trends in reconfigurable modular robots design.

International Journal of Advanced Robotic Systems, 14, 1-21.

[3] Toshio, F., & Tsuyoshi, U. (1992). Concept of cellular robotic system (CEBOT)

and basic strategies for its realization. Computers & Electrical Engineering,

18(1), 11-39.

[4] Yim, M. (1995). Locomotion with Unit-Modular Reconfigurable Robot. Ph.D.

Dissertation. Stanford USA: Stanford University.

[5] Sanderson, G. J. (1997). TETROBOT: a modular approach to parallel robotics.

IEEE Robotics & Automation Magazine, 4(1), 42-50.

[6] Pfotzer, L., & Ruehl, S. (2014). KAIRO 3: A modular reconfigurable robot for

search and rescue field missions. IEEE International Conference on

Robotics and Biomimetics, 205-210. Bali.

[7] Yang, B., & Han, L. (2015). A modular amphibious snake-like robot: Design,

modeling and simulation. IEEE International Conference on Robotics and

Biomimetics, (pp. 1924-1929).

[8] Tan W., & Wei, H. (2018). SambotII: A New Self-Assembly Modular Robot

Platform Based on Sambot. Applied Sciences, 8(10).

[9] Pacheco, M., Fogh, R., Lund, H., & Christensen, D. J. (2015). Fable II: Design

of a modular robot for creative learning. IEEE International Conference on

Robotics and Automation (ICRA), 6134-6139. Seattle.

doi:10.1109/ICRA.2015.7140060

[10] Jia, X., Frenger, M., Chen, Z., Hamel, W. R., & Zhang, M. (2015). An alligator

inspired modular robot. IEEE International Conference on Robotics and

Automation (ICRA), 1949-1954. Seattle.

[11] Romanishin, J. W., Gilpin, K. & Rus, D. (2013). M-blocks: Momentum-driven,

magnetic modular robots. IEEE/RSJ International Conference on Intelligent

Robots and Systems, 4288-4295. Tokyo.

[12] Wright, C. et al. (2007). Design of a modular snake robot. IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2609-2614.

San Diego, CA, USA: IEEE. doi:10.1109/IROS.2007.4399617

[13] Yim, M., Roufas, K., Duff, D. et al. (2003). Modular Reconfigurable Robots in

Space Applications. Autonomous Robots, 14(2-3), 225-237.

[14] Tremblay, T., & Padir, T. (2013). Modular Robot Arm Design for Physical

Human-Robot Interaction. IEEE International Conference on Systems,

Man, and Cybernetics, 4482-4487. Manchester.

106

[15] Yim, M. et al. (2007). Modular self-reconfigurable robot systems. IEEE

Robotics & Automation Magazine, 14, 43-52.

[16] Acaccia, G., Bruzzone., L., & Razzoli, R. (2008). A modular robotic system for

industrial applications. Assembly Automation, 28(2), 151-162.

[17] Pan, X., Wang, H., & Jiang, Y. (2013). Research on the Kinematic Calibration

of a Modular. International Conference on Mechatronics and Automation.

Takamatsu.

[18] Giusti, A., & Althoff, M. (2015). Automatic centralized controller design for

modular and reconfigurable robot manipulators. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 3268-3275.

Hamburg. doi:10.1109/IROS.2015.7353831

[19] Valente, A. (2016). Reconfigurable industrial robots: A stochastic programming

approach for designing and assembling robotic arms. Robotics and

Computer-Integrated Manufacturing, 115-126.

[20] Quigley, M., Conley, K., Gerkey, B., Faust, J., Josh F., Foote, T., Leibs, J.,

Wheeler, R. (2009). ROS: an open-source Robot Operating System. ICRA

Workshop on Open Source Software, 3.

[21] Bihlmaier, A. B. et al. (2015, 01). ROS-Based Cognitive Surgical Robotics.

Studies in Computational Intelligence, 625. doi:10.1007/978-3-319-26054-

9_12

[22] McKenzie, R. M., Baraclough., W. T. & Stokes, A. A. (2017). A Hybrid Pick

and Place Arm. Frontiers in Robotics and AI, 4, 39.

doi:10.3389/frobt.2017.00039

[23] Jeong, H. B., & Kang, K. (2016). Improved drone reliability using a robot

operating system. Eighth International Conference on Ubiquitous and

Future Networks (ICUFN), 151-153.

[24] Kaushik, K., Sriram, K., & Manimozhi, M. (2016). Gesture Based Control

Using Windows Kinect. Sensors & Transducers, 196(1), 1-6.

[25] Hellmund, A., Wirges, Ö., Taş, Ş., Bandera, C. & Salscheider, N. O.. (2016).

Robot operating system: A modular software framework for automated

driving. IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), 1564-1570. doi:10.1109/ITSC.2016.7795766

[26] Cheng, H. H., & Ko, D. (2012). Programming reconfigurable modular robots.

Proceedings of 2012 IEEE/ASME 8th IEEE/ASME International

Conference on Mechatronic and Embedded Systems and Applications, 160-

165. doi:10.1109/MESA.2012.6275555

[27] Juan, H. S., & Mirats, T. J. M. (2006). Generic modular framework for robotic

arm applications. In A. f. Machinery (Ed.), International Conference on

Computer Systems and Technologies, 31-36.

[28] Craig, J. J. (2005). Introduction to Robotics Mechanics and Control. Pearson

Education International.

[29] Aristidou, A., & Lasenby, J. (2009). Inverse Kinematics: a review of existing

techniques and introduction of a new fast iterative solver.

[30] http://wiki.ros.org/ROS/Concepts, access date: 06.07.2019

[31] http://wiki.ros.org/urdf/XML/model, access date: 06.07.2019

[32] https://moveit.ros.org, access date: 06.02.2018

[33] http://www.orocos.org/kdl, access date: 06.02.2018

107

[34] http://wiki.ros.org/rviz, access date: 06.04.2018

[35] Zahid, A. (2015), Realization of dynamixel servo plant parameters to improve

admittance control for a compliant human-robot interaction. Theses. 263.

https://digitalcommons.njit.edu/theses/263

[36] http://emanual.robotis.com/docs/en/dxl/mx/mx-64-2, access date:10.08.2019.

[37] Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V., Tsouroukdissian,

A. T. et al.. (2017). ros_control: A generic and simple control framework

for ROS. The Journal of Open Source Software, 456 - 456.

[38] http://www.robotis.us/dynamixelsdk, access date: 06.02.2018

[39] https://moveit.ros.org/documentation/planners/ acces date: 06.07.2019

[40] Moll, M., & Kavraki, L. E. (2013). The Open Motion Planning Library - OMPL.

IEEE International Conference on Robotics and Automation (ICRA).

Karlsruhe, Germany.

[41] Noreen, I., Khan, A., & Habib, Z. (2016). Optimal Path Planning using RRT*

based Approaches: A Survey and Future Directions. International Journal

of Advanced Computer Science and Applications(IJACSA), 7(11).

108

109

APPENDIX

A - Graph View of the URDF Model of Modular Robot Manipulator

110

B - MoveIt! Configuration File for Modular Robot Manipulator

<?xml version="1.0" ?>
<robot name="modular_robot">
 <group name="manipulator">
 <joint name="joint1" />
 <joint name="joint3" />
 <joint name="joint5" />
 <chain base_link="base_link" tip_link="gripper_base_link" />
 </group>
 <passive_joint name="base_ll2_joint" />
 <passive_joint name="ll2_ll3_joint" />
 <passive_joint name="base_ll4_joint" />
 <passive_joint name="base_rl2_joint" />
 <passive_joint name="rl2_rl3_joint" />
 <passive_joint name="base_rl4_joint" />
 <disable_collisions link1="base_link" link2="link1" reason="Adjacent" />
 <disable_collisions link1="base_link" link2="link2" reason="Never" />
 <disable_collisions link1="gripper_base_link" link2="left_l2" reason="Adjacent" />
 <disable_collisions link1="gripper_base_link" link2="left_l3" reason="Never" />
 <disable_collisions link1="gripper_base_link" link2="left_l4" reason="Adjacent" />
 <disable_collisions link1="gripper_base_link" link2="link3" reason="Default" />
 <disable_collisions link1="gripper_base_link" link2="link4" reason="Default" />
 <disable_collisions link1="gripper_base_link" link2="link5" reason="Adjacent" />
 <disable_collisions link1="gripper_base_link" link2="right_l2" reason="Adjacent" />
 <disable_collisions link1="gripper_base_link" link2="right_l3" reason="Never" />
 <disable_collisions link1="gripper_base_link" link2="right_l4" reason="Adjacent" />
 <disable_collisions link1="left_l2" link2="left_l3" reason="Adjacent" />
 <disable_collisions link1="left_l2" link2="left_l4" reason="Never" />
 <disable_collisions link1="left_l2" link2="link3" reason="Default" />
 <disable_collisions link1="left_l2" link2="link4" reason="Never" />
 <disable_collisions link1="left_l2" link2="link5" reason="Never" />
 <disable_collisions link1="left_l2" link2="right_l2" reason="Default" />
 <disable_collisions link1="left_l2" link2="right_l3" reason="Never" />
 <disable_collisions link1="left_l2" link2="right_l4" reason="Never" />
 <disable_collisions link1="left_l3" link2="left_l4" reason="Never" />
 <disable_collisions link1="left_l3" link2="link2" reason="Default" />
 <disable_collisions link1="left_l3" link2="link3" reason="Default" />
 <disable_collisions link1="left_l3" link2="link4" reason="Never" />
 <disable_collisions link1="left_l3" link2="link5" reason="Never" />
 <disable_collisions link1="left_l3" link2="right_l2" reason="Never" />
 <disable_collisions link1="left_l3" link2="right_l3" reason="Never" />
 <disable_collisions link1="left_l3" link2="right_l4" reason="Never" />
 <disable_collisions link1="left_l4" link2="link3" reason="Never" />
 <disable_collisions link1="left_l4" link2="link4" reason="Never" />
 <disable_collisions link1="left_l4" link2="link5" reason="Never" />
 <disable_collisions link1="left_l4" link2="right_l2" reason="Never"

111

<disable_collisions link1="left_l3" link2="right_l3" reason="Never" />
 <disable_collisions link1="left_l3" link2="right_l4" reason="Never" />
 <disable_collisions link1="left_l4" link2="link3" reason="Never" />
 <disable_collisions link1="left_l4" link2="link4" reason="Never" />
 <disable_collisions link1="left_l4" link2="link5" reason="Never" />
 <disable_collisions link1="left_l4" link2="right_l2" reason="Never" />
 <disable_collisions link1="left_l4" link2="right_l3" reason="Never" />
 <disable_collisions link1="left_l4" link2="right_l4" reason="Never" />
 <disable_collisions link1="link1" link2="link2" reason="Adjacent" />
 <disable_collisions link1="link1" link2="link3" reason="Never" />
 <disable_collisions link1="link1" link2="link4" reason="Never" />
 <disable_collisions link1="link1" link2="link5" reason="Never" />
 <disable_collisions link1="link2" link2="link3" reason="Adjacent" />
 <disable_collisions link1="link2" link2="link4" reason="Never" />
 <disable_collisions link1="link2" link2="link5" reason="Never" />
 <disable_collisions link1="link2" link2="right_l3" reason="Never" />
 <disable_collisions link1="link2" link2="right_l4" reason="Never" />
 <disable_collisions link1="link3" link2="link4" reason="Adjacent" />
 <disable_collisions link1="link3" link2="link5" reason="Default" />
 <disable_collisions link1="link3" link2="right_l2" reason="Never" />
 <disable_collisions link1="link3" link2="right_l3" reason="Never" />
 <disable_collisions link1="link3" link2="right_l4" reason="Never" />
 <disable_collisions link1="link4" link2="link5" reason="Adjacent" />
 <disable_collisions link1="link4" link2="right_l2" reason="Never" />
 <disable_collisions link1="link4" link2="right_l3" reason="Never" />
 <disable_collisions link1="link4" link2="right_l4" reason="Never" />
 <disable_collisions link1="link5" link2="right_l2" reason="Never" />
 <disable_collisions link1="link5" link2="right_l3" reason="Never" />
 <disable_collisions link1="link5" link2="right_l4" reason="Never" />
 <disable_collisions link1="right_l2" link2="right_l3" reason="Adjacent" />
 <disable_collisions link1="right_l2" link2="right_l4" reason="Never" />
 <disable_collisions link1="right_l3" link2="right_l4" reason="Never" />
</robot>

112

C - Numerical Inverse Kinematic Test Program

KDL::Chain chain = urdf
fk = calculateFK()
for count < 1000:
 target = random(fk)
 ik_seed_state = getRandomJointPose()
 ik = calculateIK()
 if ik < 0 and num_try < 5:
 num_try++
 ik_seed_state = getRandomJointPose()
 ik = calculateIK()
KDL::Tree tree;
kdl_parser.treeFromUrdfModel(urdf, tree);
KDL::Chain chain
tree.getChain(base_link, end_effector, chain);
KDL::ChainFkSolverPose_recursive fk_solver(chain);
for count < 1000:
 KDL::JntArray q;
 q << randomJointsValues(n_dof);
 KDL::Frame target;
 fk_solver.JntToCart(q, target);
 ik_seed_state = getRandomJointPose();
 ik = calculateIK();
 if ik < 0 and num_try < 5:
 num_try++
 ik_seed_state = getRandomJointPose();
 ik = calculateIK();
 if ik < 0 and num_try < 5:
 num_try++
 ik_seed_state = getRandomJointPose();
 ik = calculateIK();

113

D - Determinant of the Matrix with Singular Value Decomposition Method in

MATLAB

Calculating determinant of the matrix using SVD method in MATLAB :

[r,c]=size(A);

[u,s,v]=svd(A);

if r==1 | c==1

s=s(1);

else

s = diag(s);

end

d=det(u)*prod(s)*det(v');

114

CURRICULUM VITAE

Personal Information

Name Surname: Aytaç KAHVECİ

Date of Birth: 13/10/1993

Place of Birth: Izmir (Turkey)

Education:

• 17/09/2011–13/06/2016 Bachelor's degree in Mechatronics Engineering

 Marmara University, Istanbul (Turkey)

Work Experience

• 24/07/2018–Present R&D Engineer

MND Izolasyon LTD. Manisa (Turkey)

Software development and control design for Automated

Guided Vehicles.

• 07/07/2017–24/07/2018 Researcher

 Izmir Katip Celebi University, Izmir (Turkey)

Programmable Working Space Untethered Electromagnetic

Actuator Design and Control. Visual servoing with KUKA

robot and system synchronization by using ROS.

• 10/11/2016–13/04/2017 Researcher

 Dokuz Eylül University, Izmir (Turkey)

Thermal conductivity measurement system for liquids. Full

stack web development in embedded Linux system.

Awards

 Second place in Mechatronic Engineering Department in bachelor’s degree.

115

List of Publications

• Design and Development of a Surgical Robotic Hand with Hybrid Structure

(TIPTEKNO18 - 05/12/2018)

• Electromagnet design for untethered actuation system mounted on robotic

manipulator (Sensors and Actuators A: Physical - 01/12/2018)

• Guided Motion Control Methodology for Microrobots (CEIT 2018 -

25/10/2018)

