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CONTROL OF ROTARY INVERTED PENDULUM
SYSTEM WITH LEARNING FEEDBACK
LINEARIZATION BASED STABLE ROBUST
ADAPTIVE CONTROLLER

ABSTRACT

This thesis presents a learning feedback linearization (LFL) based stable robust
adaptive controller design for a rotary inverted pendulum (ROTPEN) plant. The
proposed adaptive controller design algorithm is based on a linear controller model
and a feedback linearized plant model obtained from a nonlinear auto-regressive
moving-average (NARMA) based LFL. The proposed algorithm is achieved by three
progressive stages as follows; i) NARMA based LFL is used to obtain a feedback
linearized model for a nonlinear plant by using the artificial neural network (ANN), ii)
the NARMA-LFL based plant might be identified as an auto-regressive moving
average (ARMA) plant model, and iii) the closed-loop control system providing Schur
stability conditions is constituted by both ARMA plant and controller models. Once
the training phase of ANN is fulfilled, the feedback linearized nonlinear plant might
be identified as the ARMA model including the combination of the nonlinear plant
and it’s learned LFL block. The proposed stable robust adaptive control algorithm is
implemented via the ARMA models of both the plant and the controller provided the
Schur stability conditions for the overall closed-loop system. Robustness properties of
both the linearized plant model and the overall closed-loop system are employed with
the e-insensitive loss function ¢, .(-,-) defined as the identification error of the
linearized nonlinear plant and the tracking error, respectively. In conclusion, the
proposed LFL-based-stable-adaptive-controller is applied for ROTPEN model and its
physical experimental setup. The performance of the proposed controller is compared
with the Proportional-Derivative controller in terms of mean square error for tracking
error.
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OGRENEN GERIi BESLEMELI DOGRUSALLASTIRMA
TABANLI KARARLI, GURBUZ, UYARLANIR
KONTROLOR ILE DONEL TERS SARKAC
SISTEMININ KONTROLU

OZET

Bu tez, dgrenen geri beslemeli dogrusallastirma (OGD) tabanli kararli, giirbiiz,
uyarlanir bir kontrol6r tasarimini bir donel ters sarkag (DTS) sistemi igin sunmaktadir.
Onerilen uyarlanir kontrolér algoritmasi bir dogrusal kontrolér modeline ve bir
dogrusal olmayan 6zyinelemeli kayan-ortalama (DOKO) tabanli OGD ile elde edilen
geri beslemeli dogrusallastirilmis sistem modeline dayanmaktadir. Onerilen algoritma
3 asamadan olusmaktadir; i) DOKO tabanli OGD, bir yapay sinir ag1 (YSA)
yardimiyla dogrusal olmayan sistem i¢in bir geri beslemeli dogrusallastirilmis model
elde etmede kullanilmasi, ii) DOKO-OGD tabanli sistemin bir 6zyinelemeli kayan
ortalama (OKO) sistem modeli ile tanilanabilmesi ve iii) Schur kararlilik kosullarini
saglayan kapali ¢evrim kontrol sistemini OKO sistem ve kontrolér modelleri
tarafindan olusturulmasi. Bir kere YSA’nin egitim asamasi yerine getirildiginde, geri
beslemeli dogrusallastirilmis dogrusal olmayan sistem, dogrusal olmayan sistemin ve
onun dgrenilmis OGD blogunun bir kombinasyonunu igeren bir OKO modeli olarak
tamlanmaktadir. Onerilen kararl, giirbiiz, uyarlanir kontrol algoritmasi hem sistemin
hem de tiim kapali ¢evrim sistem igin Schur kararhilik kosullarmi saglayan OKO
modelleri araciligiyla uygulanmaktadir. Hem dogrusallagtirilmig sistem modelinin
hem de tim kapali c¢evrim sistemin gilirbilizlik o6zellikleri i¢in, sirasiyla
dogrusallastirilmis dogrusal olmayan sistemin tanilama hatasi ve izleme hatas1 olarak
tanimlanan e-duyarsizlik kayip fonksiyonu #;.(-,) calistirilmaktadir. Sonugta,
onerilen OGD tabanli kararli, uyarlanir kontrolér DTS modeline ve fiziksel sistemine
uygulanmaktadir. Onerilen kontroldriin performansi Oransal-TUrev kontrolorle izleme
hatasi i¢in ortalama karesel hata cinsinden karsilastirilir.
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1. INTRODUCTION

The purpose of the controller design is to find out the appropriate control signal
providing the desired behaves for the controlled plant possessing even inherently
nonlinearity in a physical system. Control techniques of nonlinear systems has still
been a very attractive research field in control systems [1-6]. One of them is a
conventional method defined as a linearization method at an equilibrium point around
for a nonlinear plant. However, this method cannot cope with the nonlinear system
having more than one equilibrium point. Therefore, the feedback linearization method
is a powerful technique providing a linear state model which is appropriate for all
possible equilibrium points of the nonlinear system [1-11]. In 1989, the feedback
linearization method was used on adaptive control of minimum phase systems which
can be fully input-output linearized with state feedback [4]. A developed feedback
linearization control technique was applied to underactuated mechanical systems such
as underactuated robots where some parts of the nonlinear dynamics can be feedback
linearized under a condition which is called as strong inertial coupling [12]. Doyle [13]
showed that a nonlinear system might be transformed into an equivalent subsystem via
input-output linearization by adding a state-dependent constraint to the control input
of the subsystem [13]. In 2002, Fuh et al. [14] proposed a method about a feedback
linearization of the discrete-time chaotic systems. In 2004, a type of nonlinear systems
having time delay systems was addressed the input-output linearization problem
solved by a compensator having state and output feedbacks [15]. Ho et al. [16]
proposed a feedback linearization-based controller design for a nonlinear benchmark
system known as ball and wheel. Herein, the full state feedback is used for
transforming from nonlinear system to linear time invariant system with
diffeomorphism conditions. Owing to this transformation, linear control techniques
might be used for the feedback linearized system. Similarly, in 2010, Zhou et al. [17]
developed a feedback linearization-based controller for a quadrotor model having both

inner and outer loops. These loops are considered for control design of the attitude and
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the trajectory tracking of the quadrotor. For a single flexible arm which can be moved
against gravity, a feedback linearization-based controller is obtained. Controller has a
double loop cascade form. Inner loop includes a controller for better tracking
trajectories of motor and cancellation of coulomb friction. Outer loop includes, a
linearized model which is formed by input-state linearization [18]. The dynamic model
of a wheeled pendulum was analyzed for the controllability and the feedback
linearization conditions. The controllability of the system and maximum relative
degree are studied and partial feedback linearization is obtained [19,20]. Likewise, a
partial feedback linearization technique-based controller was designed for a cart based
inverted pendulum [21]. Tiirker et al. [22] proposed a Lyapunov’s direct technique for
the stabilization of the inverted pendulum called as Furuta inverted pendulum. Another
study on Furuta one, a new trajectory tracking controller was designed via the input-
output feedback linearization technique and provided uniformly ultimate bounded
error term [23].

In the literature, several studies of artificial neural network (ANN) based feedback
linearization have been reported for the nonlinear systems such as nonlinear systems,
and robot manipulators [25-33]. ANN is widely used for the feedback linearization
technique because of learning behaviours of nonlinear dynamical systems and its
generalization ability [24]. He and Unbehauen [28] developed a nonlinear state
transformation providing an approximate feedback linearization conditions with a
local diffeomorphism implemented via multilayer perceptron (MLP). Likewise, ANN
based feedback linearization was proposed as a neuro-controller including fully or
partially input—output linearization according to relative degree [29]. ANN based
feedback linearization implementations were defined with two nonlinear functions as

f (o) andg(o) implemented by using two separate ANN blocks and the control input

form was linearized for the feedback linearized system [24,26,30-33]. The two ANN
blocks constitute the feedback linearization implementation so-called the ANN based
feedback linearization controllers might be represented as a nonlinear auto regressive
moving average (NARMA) model in terms of system input and output [30,31]. Some
controllers of feedback linearization techniques were presented as NARMA based
neuro controllers [26,32,33]. Sahin [25] proposed a learning feedback linearization
method implemented via NARMA model with only one ANN block while the
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previous studies used two ANN blocks for f (o) and g(o) nonlinear functions [24,26,

30-33]. Direct adaptive neural controller design was proposed for feedback

linearization based nonlinear multi-input multi-output systems [27].

As for stable robust adaptive controller design, it is still a hot topic study area because
it produces efficient solutions for nonlinear plants [34-41]. In 2016, the proposed
adaptive controller presented as an online controller type for linear time-varying
systems and a nonlinear system. Its algorithm was based on a data-dependent Auto-
Regressive Moving-Average (ARMA) models for both the controller and the plant.
The ARMA models were learned in a supervised learning way with data measured
from input-output data pairs of both the plant model and the closed loop system. This
NARMA based online robust adaptive controller design is defined as a system
identification problem of a partially known the closed loop system. The data dependent
adaptive controller parameters were found by minimizing the tracking error for the
closed loop system. The stability of the closed loop system was provided by meeting
the Schur stability criterion known as a method of solving Diophantine equation called
also as Aryabhatta Equation or Bezout identity [34].

This thesis presents an LFL based stable robust adaptive controller design by
supervised learning from the data from a plant. The proposed controller is an extension
method by exploiting the studies in [24,41] developed data dependent ARMA
controller design ensuring the Schur stability conditions for the overall closed-loop
system. The proposed algorithm is achieved as follows; i) NARMA based LFL is used
to obtain a feedback linearized nonlinear plant by using the ANN, ii) the NARMA-
LFL based plant is identified as an ARMA plant model, and iii) the closed-loop control
system having ARMA plant and controller models providing Schur stability of it. The
training phase of ANN of NARMA based LFL is carried out with a supervised online
learning way via both input-output and admissible corresponding states data of the
nonlinear plant. Once the training phase of ANN is completed, the feedback linearized
nonlinear plant might be defined as the ARMA model including the combination of
the nonlinear plant and the LFL block. The proposed stable robust adaptive control
algorithm is implemented via the ARMA models of both the plant and the controller.
Robustness properties of both the linearized plant model and the overall closed-loop

system are employed with the e-insensitive loss function £, .(-,-) defined as the
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identification error of the linearized nonlinear plant and the tracking error, respectively
[42,43]. Moreover, Schur stability imposed on the overall closed-loop system is
guaranteed to determine the linear controller parameters by the linear inequality
constraints of the minimization of the £, .(-,-) tracking error [41]. The developed
adaptive LFL based NARMA controller algorithm is tested on a simulated rotary
inverted pendulum (ROTPEN) model and a physical ROTPEN experimental setup.
The performance of the proposed adaptive controller is compared with Proportional
Derivative (PD) [44,45] controllers. According to the simulation and experimental
results, the LFL based NARMA controller performances shows better performances
than the other controllers in terms of the Mean Square Error (MSE) for tracking and
settling time. Moreover, the proposed adaptive controller based on LFL are analyzed

in terms of the e-insensitiveness effects with MSE under with and w/o noise.

This thesis is organized as follows. In Chapter 2, background on feedback
linearization, system modelling and adaptive control. In Chapter 3, the proposed stable
robust adaptive NARMA based LFL controller is explained. In Chapter 4, the
simulation and experimental results are given. In Chapter 5, conclusion and future

direction are presented.
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2.BACKGROUND

In this chapter, a background on feedback linearization, system modeling, ARMA and
NARMA models, ANN based controllers (with inverse system approximation) and

online learning controllers are introduced briefly.

2.1 Feedback Linearization

Let's define the discrete time nonlinear system as in Equation 2.1.
xt1 = £(x¥,uk); f(0): R™! > R" andu* € R (2.1)

As a nonlinear method, input-state feedback linearization takes place in the related
literature because that this type linearization transforms state equations to controllable
canonical form [46]. Conventional linearization which includes Taylor expansion
about the balance point or balance points is compared with this type linearization in
Figure 2.1. Herein, A, and b, are defined as a controllable canonic structure.
Conventional linearization around equilibrium points is combined with input-state
feedback linearization [25]. A given system can have multiple equilibrium points,
multiple local linear state models are obtained from the conventional linearization. A
general linear state model is exposed by a feedback linearization and a nonlinear

system linearization is applied all equilibrium points [3].

Xo, Ug
Linearized around an equilibrium plant
2K = Txk V] sxkt = A;85x%+ b;suk
state transformation
Xk = f(xkuk) N
z° = (x) N
< ) Z1 = A,z¢+ b, v¥
feedback linearization
xl = 71(2")

Figure 2.1. Difference between conventional linearization and input-state
linearization by feedback
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Assuming a discrete single-input single output system (SISO) system given in a form
as xf*1 = f(x*) + g(x*)uk, the input-state feedback linearization steps are given

below:

e The g(x¥) # 0 should be satisfied and the nonlinear system should be in
Brunovsky form given in Equation 2.2.

¢ Nonlinear transformation of states z* = ¢(x*) forms the state feedback control

1
9(x)

e The new input can be defined as v*.

law as u* = a(x*) + p(x*)vk = [—f(x¥) + v*] in Equation 2.2.

Considering the above steps are taken place, transformation might be named as input-

state linearization given in [46].

E2aa | xX

= (2.2)
XK+t x5
Lt LF(xK) + g(x)uk)

where f(o), g(c) : R® > R and u(c) : R - R are defined. The static state
feedback controller might be defined as v* = I'z® with ' = [I; I, ... I;,] defined
as linear controller parameters in the linear feedback control loop after completing
the feedback linearization steps (Figure 2.2). Therefore, the selection of the
appropriate I might be defined as pole-placement technique for the feedback
linearized nonlinear system. Hence, it might be transformed into a linear system
which is controllable one in Equation 2.3. The input state linearizable system

sufficient conditions are given as follows:
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Input transformation

Bl(x)) =

9(@(x9)) o State transformation

_ f@x)
FICIED)

Input-state linearization

r

Linear controller
Figure 2.2. Structure about input-output linearized by feedback

Definition 2.1: Assume a SISO system x = f(x) + g(x)u where f(x) € R™ and
g(x) € R™ with x € R™ are smooth vector fields can be said to be input-state
linearizable if there exists in a region 2 € R™, a C* diffeomorphic state
transformation ¢@(o): R™ — R™. The nonlinear static state feedback might be defined
asu = a(@(x)) + B(e(x))v and the transformation of the state equations with new

state variables z = ¢(x) and the linear control input can be presented as v =

1

flo) + g(e())u = e (u — a((p(x))) which has the linear time-invariant

system and internally feedback linearized system in Equation 2.3 [46].

101007
0010

Zz=|" """ |z+ v=A;z+B,v (2.3)

O OO

L0000 -
Theorem 2.1: With thex € R™, f(x) € R™ and g(x) € R™ are smooth vector
fields, the single input nonlinear system is defined as x = f(x) + g(x)u. If and

only if a 2 < R™ region which provide specified conditions below, system is

input-output linearized [46].

e Ina < R"region, set of vector fields {g, adrg, ...,ad}?‘lg} are linearly

independent.
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e Linearly independent vector fields set {g,ad;g,..,adf g} should be
involutiveness, that is to say, Lie bracket of any pair of vector fields in the set
for vector fields with the linear combinations. The adsg is defined as Lie

bracket [f, gl = (Vg)f — (Vf)g with gradient operator V w.r.t x*.

The feedback linearized system results of both the discrete nonlinear system and the
continuous nonlinear systems with suitable sampling period might be assumed as
identically each other. Therefore, the sampled nonlinear continuous-time systems
specify the linearized system results [1]. Sufficient conditions of the state
transformation of LFL are defined for the local existence via z® = @(x*), and a

defined control input with a new nonlinear function as u* = &(z*,v*)

under det (%) # 0. Hence, it might be transformed into a linear system which is

controllable one in Equation 2.3. The input state linearizable system sufficient

conditions are satisfied and it is given in subchapter of LFL.

2.2 System Modelling

The expression of a nonlinear discrete time SISO system is given in Equation 2.4

expanded from Equation 2.1.

xk+1 — f(xk, uk); yk — g(xk) (24)

where f(o): R™*1 - R* g(o): R™! - Rand u* € R. If f and g are not derived
from the physical phenomena in a mathematical way, the system modeling can be
defined as an identification problem so that the system model is the so-called black

box that represents the input-output behavior of the process [47,48].

2.2.1 Blackbox representation

The black box representation can be used as a general approximation for the inputs-
outputs of the MIMO system dynamics (Figure 2.3). This representation does not have
to be related to the exact model of the considered system; in fact, it is actually focused
on the input-output variables of the system. Once the input-output data of the system
is obtained, the black-box model can be obtained easily without requiring a clear

mathematical knowledge about it [48].
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Blackbox

Inputs > System »Qutputs

Figure 2.3. A Blackbox structure

2.2.2 ARMA and NARMA models

According to input-output of the considered system, it could be identified with ARMA
or NARMA models. A typical ARMA model is given in Equation 2.5 where the first
and the second summation parts stand for AR and MA parts [49-51].

y(k) = E  ay(k — ) + XiLo Bju (k — ) (2.5)

where a; € R and f5; € R stand for linear weights, N and M stand for the degrees of
AR and MA parts, respectively. ARMA and NARMA models are used as plant models
and as controller models in control systems identification and in control system design,
respectively. These models employed in a plenty of time series analysis area such as
signal processing, image processing, speech recognition, weather forecast, biomedical
signal processing [31,52-58].

A corresponding NARMA model of Equation 2.4 can be transformed to Equation 2.6
in which k current time index, N past outputs and M past inputs with a nonlinear
function as H(o): RN*M+1 — R. The NARMA model of the SISO system given in
Equation 2.6 can be represented as other forms given in Equation 2.7 and 2.8. These
NARMA models having nonlinearities might be implemented by using ANN as an

approximator.

y(k) =H[y(k —1),y(k — 2),...,y(k — N); u(k), ..., u(k — M)] (2.6)
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y(k) = F[ZN, aiy(k — D] + Xo Bju (k — ) (2.7)
y(k) =Fly(k—1),..,y(k—N)]+G[y(k —1),...,y(k — N)]Ju(k) (2.8)

where G(o): RM*1 > Rand F(o):RY - R.

2.2.3 Artificial neural networks

ANN has been used in control systems area since 1980s because ANN defining a
nonlinear algebraic function overcome the nonlinearities and complexity of the control
systems. ANN can be defined as a function approximators for any continuous function
in a compact set [59]. ANNs have several abilities such as generalization, learning and
paralleling and they are used for fault tolerant, supervised and unsupervised learning
and optimization. As in the control systems related ANN literature, system
identification and controller design are generally achieved by using Multi-Layer
Perceptron (MLP) with efficient learning algorithms [60-65]. MLP possesses algebraic
neural networks, multi-input and single-output with a sigmoidal activation function
(Figure 2.4.).

W g bi?cs
i i
X1 3 o" b
x ‘ Si activation function
2
o ok ok
a ) Y@
£
(©)
summation
@
@)
Input layer Hlddenlayer Output layer

Figure 2.4. An architecture of a typical ANN

A feature of ANN, which learns from the environment and increases its performance
during learning phase, updates weights and bias values between neurons. At the end
of each iteration, the system receives more information from the environment and

improves system performance. MLP determines connection weights of the neurons
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connections with error back-propagation (BP) algorithm which is based on a gradient
descent technique. It finds generally local minimum of the squared error in Equation
2.9 between the desired and actual outputs. The partial derivatives of the output error
are calculated by BP where partial derivatives are found with respect to connection
weights (Equation 2.10 and 2.11).

E=1/2(r —o)? (2.9)

dE 0Edg d ,
55 = 50509 =~ —QY'(@)e" (2.10)

dE  OE dp dc doh ach ' '
i = sgse e ogiow; = (0~ @ (@ o

where the derivative of the sigmoidal nonlinearity is denoted Y’(e) found as a
sigmoidal function. In the opposite of the gradient direction, to update the connection
weights (Equation 2.13), using a step size { which is sufficiently small and called as

learning rate.

stk +1) = 5(0) = ¢ 5205 = s() +(r = )Y (@)e" (212)
wik + 1) = wy(k) = j’fk) = w(k) + {(r — @)Y (0)sY (a™)x (2.13)

2.3 ANN Based System Identification

The ability to approximate the nonlinear functions of the ANN allows for the use in
system identification issues. There are two types of identification structure with ANN
as parallel and series-parallel. In parallel mode, it is designed via system inputs and
model outputs providing an ARMA model in the Equation 2.14 (Figure 2.5). In series-
parallel mode, ANN based identification is formed via inputs-outputs of the system
providing an ARMA model in the Equation 2.15 (Figure 2.6).

y(k) = Xy aiy(k — ) + o Bju (k — ) (2.14)

y(k) = XLy aiy(k — D) + X0 Bju (k — ) (2.15)
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Figure 2.5. Model of ANN based parallel identification

k k
(k) > System y(k) >
Lz | Model of ANN yk)
Identification o

Figure 2.6. Model of ANN based series-parallel identification

2.4 ANN Based Controllers

Werbos and Narendra did firstly report ANN based controllers via their learning
capabilities, coping with nonlinearity, and their reactions to parameter changes [66,
67]. ANN based controllers can be divided to two groups as follows: i) the feedforward
ANN which is also called as algebraic ANN, and ii) the recurrent ANN which is also
called as dynamical ANN [67,68]. As for the controller design strategies, the first
strategy is that direct inverse control method provides identity system via mapping
from the reference signal r (k) to actual plant output y (k). Herein, ANN is trained for

inverse system and used as a controller (Figure 2.7).
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Figure 2.7. ANN based direct inverse control strategy

Likewise, the feed-forward inverse controller strategy having two different ANN
blocks and trained with two phases. In the first phase, ANN of the system identification
is completed with the control and the system output signals. The second phase, ANN
based controller (i.e. inverse system block) is trained by using ANN based system
identification block according to the closed loop system error minimization (Figure
2.8).

r ANN controller |u* | Svst ek
(inverse system) ystem N
j;k
ANN
> (System

Identification)

Figure 2.8. A structure of feed-forward inverse control
2.5 Adaptive Control Methods

The adaptive control methods are powerful algorithms for overcoming system
uncertainties, its parameters changing and disturbances problems. The control
parameters are updated in each iteration step in terms of online control applications

[46,70-76]. One of the adaptive control method is self-tuning regulator (STR) finding
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out the plant parameters via the stochastic estimation in an online way in

simultaneously updating the controller parameters given in Figure 2.9 [34,46].

Specification
LAt ; _

Controller Estimator of plant

—>|
Parameters parameters
k k
k u
r Controller > Plant 4 >
—>

Figure 2.9. STR controller method

The other adaptive control method is well known structure is model reference adaptive
control (MRAC) method having a stable reference model. This controller can eliminate
disturbances, parameter variations, and system uncertainties given in Figure 2.10 [25,
46,77,78].

) Model Param_eters
Tuning
k k
rk A Controller u > Plant 4 >

Figure 2.10. MRAC method
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2.6 Adaptive Controller Design of Partially Known Closed Loop
System

Partially known closed-loop control system has an identified or a known plant and the
adaptive controller design unknown part in online mode. Plant is firstly identified and
then the adaptive controller parameters are determined via tracking error minimization
of the closed loop system [41]. It can be defined a combined method by using STR
and MRAC. The adaptive controller structure which has two degrees of freedom is
depicted in Figure 2.11. The algorithms of the plant identification and the adaptive

controller are trained and updated in simultaneously by a supervised learning way.

A 4

rk Controller Plant >

Figure 2.11. A control structure which has two degrees of freedom
2.7 Closed Loop Stability and Robustness

Schur stability criteria is related to absolute stability of the discrete time systems. If
the roots of the system characteristic equation are in the unit disk, the system might be
bounded-input bounded-output (BIBO) stable for linear time invariant systems. There
exists a characteristic polynomial under it has not pole-zero cancellation, the
polynomial might be defined as p(z) = p,z" - +uz? + w1z + o
where p;(i = 0, 1, ..., n) are the real numbers. Sufficient stability conditions of that
system might be defined with linear inequality constraints as follows u, >

© > Wy > Yo > 0 sforthe Schur stability [79].

As for robustness issue of the closed-loop system, € — insensitive loss functions might

be used for robustness property given in detail in the following Chapter 3.
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My =3) =4:1(Iy = 3le) (2.19)

L 0, if(ly-Jl<e
ly =9l = { ly— 9| —e otherwise

The loss function might be described as absolute norm representing as £, norm. The
loss is equal to O if the discrepancy between the predicted and the observed values is
less than & (Figure 2.12) [80].

Figure 2.12. ¢ — insensitive #; based loss function
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3. PROPOSED LFL BASED ADAPTIVE CONTROLLER

The proposed adaptive controller algorithm is based on a feedback linearized plant
model with LFL obtained via ANN. The proposed stable robust adaptive algorithm is
achieved by three progressive stages as follows (Figure 3.1); 1) NARMA based LFL
strategy is used to obtain a feedback linearized nonlinear plant by using ANN, ii) the
NARMA-LFL based feedback linearized plant might be identified as an ARMA plant
model with e-insensitive loss function for system identification, and iii) the overall
closed-loop control system providing Schur stability conditions and e-insensitive loss
function for tracking error is constituted by both ARMA plant and controller model.
All three stages are shown in Figure 3.2.

Proposed LFL
based adaptive
controller stages

ii) Plant identification
of LFL based system
via ARMA model

iii) Designing of the
stable closed-loop
system

Figure 3.1. Stages of the proposed adaptive controller
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Feedback Linearized
Nonlinear Plant
LFL based NARMA Controller an, by

y(),

Figure 3.2. The proposed LFL based stable adaptive controller
3.1 LFL For Nonlinear Systems

Although linear systems don’t need to be the feedback linearized inherently, for a
better understanding of the LFL strategy is briefly explained with a linear SISO case
in this Subchapter. So, first of all, let’s define a discrete time linear system as in
Equation 3.1 where A € R™", B € R™™ and u* € R is control input while x* € R™

is defined as state vector.
x**t1 = Ax* + Buk (3.1)

Assuming that x**1 := v* in which v* stands for the feedback linearized input of the
system obtained from the states of the system in Equation 3.1 might be transformed to

Equation 3.2.
f(xk,uk) == xk+1 = Ax* + Bu* (3.2)

where f(x*,u*) is a vector field with f(o) : R™™. The control input of the linear

system is rewritten as u* = B~1[v* — Ax*], if and only if B~ exists.

Likewise, as far as the nonlinear system case concerned, a discrete time nonlinear

system is defined as in Equation 3.3.
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xk+1 — f(xk,uk) (33)

where f(o): R™™ — R", xk € R™is defined as state vector, and u* € R isthe control
input. Assuming that the feedback linearized input vector is considered as x<** := v,

Equation 3.3 might be transformed to Equation 3.4.
[k, uk) = vk (3.4)

The control input of the nonlinear system might be written as Equation 3.5 represented
anonlinear function ®(o): R™™ — R with states and feedback linearized inputs of the

nonlinear system.
uk = o (xk, v¥) (3.5)

The nonlinear system is assumed as x**! = f(x*) + g(x*)u* as a type of a
general nonlinear system representation of Equation 3.4. The control input of the

[v — f(x)] if

1
gxk)

nonlinear system is obtained in the following form as u* =
and only if g(x*) # 0.

As for implementation of LFL based algorithm with ANN, the LFL block might be
formed with a suitable MLP-ANN possessing one hidden layer (Figure 3.3) where

MLP based LFL block is trained with u* and {(xk,vk)}fzo as both output and inputs,

respectively, and K denotes finite natural number. According to desired output u* of

the LFL block, the LFL training error is tried to minimize at each data sample k.

34



LFL Nonlinear Plant

xkt+1 = f(xk,uk) -

k+1

Nonlinear Plant

Input Layer ® Output Layer
Hidden Layer

(z7T
LFL Block

Figure 3.3. MLP-ANN Based LFL Block

3.2 Plant Identification of the LFL Based System via ARMA Model

Let’s define an ARMA model to be identified system model given as in Equation 3.6
for a SISO nonlinear system.

y(k) = Xn=1anYa(k — 1) + X3lo by v (k — n) (3.6)

where a,, and b,, stands for model parameters of the identified LFL based plant, y, (k)
is the plant output and v (k) is the linear controller output of the closed loop system
called as the one input of LFL nonlinear system. The plant identification of the LFL
based nonlinear plant system is depicted as block diagram in Figure 3.4 by using
ARMA model.
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Figure 3.4. ARMA plant identification of the LFL based nonlinear plant

The system identification with ARMA modeling is achieved by minimizing the
identification error defined with e-insensitive loss function ¢, .(-,-) given in Equation
3.7 interms of the time interval of [k, k — K + 1] inan offline manner. Herein, the K is

sliding window length for ARMA plant identification.

Lyk-1p (ya(k —5), Xn=1any(k —s — n)) 41 ”Z”z 3.7

K 2570 + XM bV (k — s —n)

where e-insensitive loss function £, .(+,-) in Equation 3.7 is a measurement of the
distance between the (k — s)" actual output sample y,(s) of plant and the (k — s)™
output sample y(k —s) = ¥N_, a,y(k —s —n) + X b,v" (k — s — n) of plant
model. Absolute norm e-insensitive loss function can be defined as
L1V (5),¥(5)) = |y (8) =y ()| if |ya(s) —y(s)| = e and £1 . (ya(5),¥(s)) =0
if |y,(s) —y(s)| < e [80]. Herein, ¢—insensitiveness is represented for having

robustness against measurement noise, disturbances, and small variations in the output
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2
of the plant. ”Z” :=YN_aZ +YM b2, that is to say, the square of the Euclidean
2

norm of the model parameters providing nonzero results, 4 is the regularization term
which provides a smooth model avoiding over-fitting which might be defined as more

general model of the plant.

3.3 Designing of The Stable Adaptive Closed-Loop System

This sub-chapter describes the stable adaptive ARMA controller design stages of the
closed-loop system. The ARMA controller is considered as a system identification
problem in a closed-loop control system having a real/model plant and a controller
blocks under unity feedback assumption. Indeed, the proposed adaptive controller
design might also be noted as a closed-loop control system identification problem
whose parameters are partially known after identification of the plant to be controlled
[41]. Hence, after the plant identification stage, the second stage is that the proposed
adaptive ARMA controller parameters with the known closed-loop input-output data
can be found by solved by optimization techniques with linear constraints in a manner

of the supervised learning algorithm (Figure 3.5).

aTLI ﬁn

ARMA Plant y (k)

lc(k5

le dml fm aTll bn

Figure 3.5. ARMA based closed-loop system with two degree of freedom design

The ARMA controller model is defined as a SISO system in terms of v'(k) and r (k) so

that it might be given as a two degree-of-freedom structure in Equations 3.8 [34].

P f, vtk —m) + IR o cpr(k —m)

lecky =
v +30_ duy(k —m)

(3.8)
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where v*“(k), (k) and y(k) stands for the control input, the reference or desired
output, and the closed-loop system output. Likewise, ¢,,,, d,, and f;, stands for the
adaptive controller parameters to be determined. As for overall the closed-loop system
identification, the ARMA model might be found with the «,,, and 8,, parameters using
the definitions N =:max{P + N,M + Q} and M =: M + R in manner of optimization
techniques with linear constraints in Equation 3.10. Herein, the algebraic equations
might be obtained in Equations 3.7-3.9 solved by using Diophantine equations [34].

y(k) = TR-1 any(k —n) + Xhlo B r(k — 1) (3.9)
a, =1+ ag fo-by do (3.10)
a; =Y oa;fio; — oo bydi_j fori € {1,2,..,N}

a; =X najfioj — XN _ybidi_jfori € (N+1,N +2,..,2N}

Bi ==X bjci_j fori € {0,1,2,..., N}

Bi = -2 _ybjci_jfori € {N+1,N+2,..,2N}

Measured input-output data set of the system to be controlled and desired output-
reference input data set can be written as {v¥[k — s, N, y,[k — s, N[}*2&, {r[k —
s,N],yqlk — s, NJ}:Zt respectively, to required fields of Equation 3.6, 3.8 and 3.9
where y, (k),r(k) and y, (k) stands for actual output, reference and desired output. In
these data sets, the current and previous N samples of any signal are represented as
x[t,N] :=[x(t),x(t — 1), ...,x(t — N)].

The closed-loop system identification with ARMA model is fulfilled by minimizing
the tracking error defined with e-insensitive loss function ¢4 .(-,-) given in Equation
3.10 in terms of the time interval of [k,k — L + 1] in an offline manner. Herein,
the L is sliding window length for ARMA model identification of the closed-loop

system.

2

1vL-1 ya(k — S),Zy::o any(k—s— n)) a
Lyis e( e RO ) (3.11)
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where e-insensitive loss function £, .(-,-) in Equation 3.10 is a measurement of the
distance between the (k — s)™ desired output sample y,(s) of plant and the (k — s)™
output sample y(k —s) = XN_qa,y(k —s —n) + XM 8 r(k —s—n) of the
closed-loop system model. Absolute norm e-insensitive loss function might be defined
as £1,:(Va(s), y(s)) = [ya(s) =y if [ya(s) —y(s)| = e and £ .(ya(s), ¥(s)) =
0 if|lys(s) —y(s)| <e. Herein, g—insensitiveness is represented for having

robustness against measurement noise, disturbances, and small variations in the output
ay? . = .
of the closed-loop system [80]. ”/3” = Yn-0 a4 + Xn—o B2, that is to say, the square

of the Euclidean norm of the closed-loop system model parameters providing nonzero
results, A is the regularization term which provides a smooth model avoiding over-
fitting which might be defined as more general model of the closed-loop system.
Moreover, in order to ensure the stability of the closed loop system, constraints o,>
e >,y >X,n> 0 0of Schur stability conditions are applied as linear constraint
equations in minimizing tracking error of the closed-loop system given in Equation
3.10[79].

During the learning phase of the controller and the identification of the system to be
controlled, the proposed stable robust adaptive ARMA controller design can be
performed in two training modes such as batch and sliding window. In the batch mode,
the time interval constituting the entire data set is used and the parameters are not
updated over time. However, in sliding window mode, ARMA models parameters of

the plant, the closed-loop system and controller are updated in K and L window lengths.
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4. SIMULATION AND EXPERIMENTAL
RESULTS

In this section, the ROTPEN which is also known as Furuta inverted pendulum model
and the physical ROTPEN experimental setup are briefly described. The developed
stable robust adaptive LFL based NARMA controller algorithm is tested on the
ROTPEN model and its physical experimental setup. The performances of both the
proposed adaptive and PD controllers are compared in terms of the settling time and

MSE of tracking errors, and e-insensitiveness effects under with and w/o noise.

4.1 ROTPEN Experimental Setup and Model

The ROTPEN is one of the most popular benchmark experimental setup used in the
field of nonlinear control applications. It is also an example of a well-known under-
actuated mechanical system [19-23, 44, 81]. Incompletely driven mechanical systems
are widely used in the field of robotics, and the main feature of these systems is that
they have fewer actuators than degrees of freedom [82]. The inverted pendulum
possesses unstable and non-linear dynamical behaviors inherently. Another important
feature that makes the rotary inverted pendulum more interesting is that it forms the
basis of many new technologies such as seismometers, humanoid robots, unmanned
air vehicles and rockets [83]. The ROTPEN system has one input and one output
which might be chosen one of two states. The input of the ROTPEN is fed with the
force, the output might be selected as either the pendulum angle or the angular
position of the base. Therefore, the ROTPEN might be represented as a single-input
multiple-output (SIMO) system) [84].

The ROTPEN experimental setup consists of mechanical design, data acquisition
card, and software. The mechanical design of the pendulum is made by SolidWorks
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software and is given in Figure 4.1a. A direct current motor is used to rotate the
ROTPEN arm horizontally. The pendulum is connected to the pendulum arm by the
pivot. Thus, the pendulum will be able to oscillate easily. AVAGO HEDM-5505-j06
two-channel 1024 resolution encoder is located on the shaft. This encoder was used
to measure the angle of the pendulum with the horizontal plane and to implement the
control system. The end of the L-shaped pendulum arm is mounted on the shaft of the
dc motor. Due to the circular rotation of the motor shaft, the pendulum arm can be
moved clockwise and counterclockwise. The angle of the arm is calculated with the
encoder mounted on the motor. A rotating arm in a horizontal axis and a rotating
pendulum which is mounted on arm, in a vertical plane take part in the rotary inverted
pendulum [81]. The final version of the successful ROTPEN setup is given in Figure
4.1b. and Figure 4.2. In the software part, control algorithms designed in MATLAB

environment are used in Simulink environment.

(@) (b)

Figure 4.1. (a) ROTPEN Solidworks design (b) designed ROTPEN setup.
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Figure 4.2. V-DAQ data acquisition card and ROTPEN experimental setup.

As for a typical ROTPEN modelling, the variables and parameters of the dynamical

system model are given in Figure 4.3. Mathematical derivations results of the total

kinetic energy with dynamical system equations of the ROTPEN system are denoted

in Equation 4.1 where 8 and ¢ stands for the pendulum angle and the rotating arm

Kt<vm—1<m(%¢(t))>
Rm

the dc motor. ROTPEN system parameters are borrowed from [11] (Table 4.1).

angle, respectively, Toyrpyur =

is used for torque control equation of

Pendulum

DC Motor

Figure 4.3. ROTPEN solid model with variables.
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dz M3 gl3r cos(¢(t))6(t)
—2¢(t) = - > . 3 —_
dt (Mpr sin(@())”" ~Jeq—Mpr )]p—Mplp]eq
2
]pMprz COS(¢(t)) Sln((b(t))(%d)(t)) JpToutput+Mp lzZJToutput

—_ 4.1
(Mpr2 sin(@(0))’ ~Jeq=Mpr?)[p=Mpl3Jeq  (Mpr? sin(@(D)*~Jeq=Mpr?)Jp=Mpl3Jeq (4.1)

L oy = oo TTeag iy sin(@(0)"g-yr)o)
dt? (Mpr2 sin(d)(t))z—]eq—MpTZ)]p_Mpl?J]eq

2
LyMp7 sin(¢(t))Jeq (%¢(t)) IpMpTToutput cos(¢ (1))

(Mpr2 sin(¢(t))2—]eq—MprZ)]p—Mplgjeq (Mpr2 sin(cp(t))z—]eq—MprZ)]p—Mplf,jeq

Table 4.1. Descriptions of ROTPEN system parameters and their values.

Symbol Description (Unit) Value
K Electromotive torque constant of the motor (V/(rad/s)) 0.0333
g Gravity acceleration (kg.m?) 9.81

Beq Arm viscous damping (N.m.s/rad) 0

By, Pendulum viscous damping (N.m.s/rad) 0

K; Motor torque constant (N.m) 0.0333
R, Armature resistance of the motor (£2) 8.7
|7 Motor input voltage (Volt) 0-24

7 p— Mass of rotary arm (kg) 0.08

M, Mass of the pendulum “link and weight included” (kg) 0.027

r Length of rotary arm (m) 0.0826
Ly Length of inverted pendulum (m) 0.153
Jeq Inertia rotary of rotary arm (kg.m?) 0.000368
In Inertia rotary of inverted pendulum (kg.m?) 0.000698
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4.2. The Simulation Results of the Proposed Controller for ROTPEN
Model

The proposed adaptive controller is tested on simulated ROTPEN model on a
MATLAB environment. The proposed algorithm is achieved by three progressive
stages as follows; i) NARMA based LFL strategy is used to obtain a feedback
linearized nonlinear plant by using ANN, ii) the NARMA-LFL based feedback
linearized plant might be identified as an ARMA plant model with e-insensitive loss
function for system identification, and iii) the overall closed-loop control system
providing Schur stability conditions and e-insensitive loss function for tracking error
is constituted by both ARMA plant and controller model. These stages of the

simulation studies are explained in the following Subsections.

4.2.1 LFL for ROTPEN model

To achieve NARMA based LFL via MLP for the ROTPEN model, training data set is
formed. The data set consists of the input and the states of the ROTPEN nonlinear
plant model representing as u(k) and x(k), x(k + 1) respectively. Assuming that the
feedback linearized input vector is considered as x*** := v*. The control input of the
nonlinear system might be written as u*: = @ (x*, v*) borrowed from Equation 3.5
where a nonlinear function @ (): R™™ — R with states and feedback linearized inputs

of the nonlinear system.

As for implementation of LFL based algorithm with ANN, the LFL block might be
formed with a suitable MLP-ANN possessing 2 hidden layers (Figure 4.4). Training
set data of the LFL block is obtained by using u(k) and 6 (k) depicted in Figure 4.5
with 0.001s sampling time. For training, inputs-output of the MLP are formed
[Xtrain Verain]! and Ugqin, respectively (Figure 4.6). For testing the accuracy of the
training of MLP, “goodnessOfFit” function is computed as 1 and it is used for test and

test prediction data of the MLP output in terms of normalized MSE.
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Figure 4.5. Training data set example u(k) and 6 (k).
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Figure 4.6. Training performance results.
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As aresult of LFL block training stage, it has got a nonlinear transformation providing
an approximate feedback linearized system from input v(k) to the state x(k) in Fig.
4.7.

x(k+1)
u(k)

v(k)
@ (x(k), v(k))

» Nonlinear Plant y(kg

\ 2B 4

x(k)

Figure 4.7. Feedback Linearized ROTPEN model with LFL.

4.2.2 Plant identification of the LFL based ROTPEN model via
ARMA model

Choosing initial values of ARMA model parameters is a considerably complex issue
for the online mode of the stable adaptive controller algorithm in terms of data-
depended controller design algorithms. Therefore, initial values of the ARMA plant
model parameters standing for a,, and b,, are firstly computed in a batch mode where
the input-output data pairs chosen as v'(k) and y(k) which can be seen in Figure
4.8. The plant identification ARMA model parameters are determined by minimizing
the identification error defined with e-insensitive loss function £ .(-,-) given in
Equation 4.2 with MATLAB optimization toolbox function “fmincon” in terms of the
time interval of [k, k — K + 1] for the LFL based ARMA plant model (Figure 4.8)

which was also given in detail in Chapter 3.
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where N which stands for the degree of the ARMA plant parameters are to be
determined in terms of the goodness of fit. Hence, ARX models of system
identification toolbox of MATLAB environments are used for choosing appropriate N
value with the simulated plant model and real plant data separately in terms of v (k)
and y(k). The performances of the ARX model fitness are tested with Akaike's
information criterion (AIC) values computed in Table 4.2. AIC provides a measure of
model quality obtained by simulating the situation where the candidate models are

tested on different ARX degree. According to Akaike's theory, the most accurate

model might be selected with the smallest AIC value [85].

Table 4.2. Comparison model fitness and AIC results of ARX models.

For simulation y, v'¢ For real system y, v'c
ARX(nnk)* model | Model fitness (%) AlC Model fitness AIC
arx000 -0.006636 -6.7234 -4.599 -6.3222
arx110 68.36 -12.7926 16.02 -11.4805
arx220 100 -78.2319 29.89 -11.5667
arx330 100 -70.4859 33.65 -12.9639
arx440 100 -74.2791 34.61 -12.9853
arx550 100 -75.4244 34.51 -13.0960

nnk*: Herein, first n denotes number of poles, the second n denotes number of zeros and k— Number
of input samples that occur before the input affects the output, also called the dead time in the system.
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In the light of Table 4.2 results, the fitness value of the arx220 model exactly matches
the desired fitness value with the lowest AIC value for simulation environment
whereas the fitness value of the arx550 model is acceptable value (when compared the
other arx440 fitness result) with the nearly same AIC value for real plant. It is obvious
that the simulation platform does not actually reflect the real system behaviors.
However, according to evaluation of these results, the model degree of the ARMA

plant model might be accepted as N = 5 for considering the real system.

As for online mode, determination of initial values of plant parameters is deduced with
batch mode results for plant parameters a,, and b,, given in Table 4.3 where ¢ = 0 (e-
insensitive effects are especially analyzed for the real ROTPEN system response given
the following sub-chapter), K = 25, 1 = 0.1 which are chosen. Time evolutions of the
developed LFL based NARMA controller for plant parameters both a,, and b,, are
depicted in Figure 4.9.

Table 4.3. Initial parameters values of both a,, and b,, for the online mode obtained
from the batch mode.

aTL bn
8.28999730491958% 107> -0.00637237736981552
6.26130046926439% 107> -0.00587480021640299
4.12367167419285% 107> -0.00533346235614781
1.88134342900327x 10~° -0.00474868815420780
-4.60320427712306x 10~° -0.00412098420370303
-0.00345104996739003

o Ol | W N | S
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Figure 4.9: Time evolutions of the developed LFL based ARMA plant parameters
for a,, and b,, in online mode.

4.2.3 Designing of the stable adaptive closed-loop system

To design the stable adaptive closed-loop system (Figure 4.10) in terms of finding
appropriate the proposed controller in online mode, all the initial plant parameters and
the closed-loop parameters of the ARMA models are determined in terms of a,,, b,
a,, and ,, providing c,,, and d,, within L = 477, A = 0.075, and N = 5 in a batch
mode within 500 samples. The controller algorithm is minimized with the tracking
error defined with e-insensitive loss function ¢, .(-,-) given in Equation 4.4 with
MATLAB optimization toolbox function “fmincon” in terms of the time interval
of [k, k — L + 1] with sliding window as L. These equations are also given with
mathematical derivations in detail in Chapter 3. The proposed adaptive controller
parameters are calculated as c,,, d,,, and f,,, obtained from a,,, b,, and a,,, 8,, computed
parameters using Equation 4.2 and 4.3. The obtained results of the parameters c,,, d,,

and a,,, 3, are given in Table 4.4 and 4.5.

2
TS 00tk =), S any (ke — s =) + Z2k ok —s —n) + 2| | @3
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Figure 4.10: The proposed LFL based stable adaptive controller.

Table 4.4. Initial parameters values of the closed loop system as a,, and £3,, obtained

from batch mode.

n a, :Bn

0 0.00268950092851661 | -8.96283217244484x 10~°
1 0.00203025231244229 8.96340233196545% 10~°
2 0.00165474545606356 8.96282882966701x 10~°
3 0.00137678890586581 | -8.96283221210843x 10~°
4 0.00114826982244472 8.96282883471866x 10~°
5 0.000949299138505982 | -2.50858268700706% 1078
6 0.000769566600862029 | -8.96283018141788% 10~°
7 0.000602916971868847 | -8.96283214721067% 10~°
8 0.000445277110813857 | -8.96283016434725%x 10~°
9 0.000293711388901573 | -8.96283021128627% 10~°
10 0.000145929991107909 | 8.96340237060842x 10~°

Table 4.5. Initial parameters values of the proposed adaptive controller as c,,, d,,
and f,,, obtained from batch mode.

0 4.29109670285765x 10~ -0.470763708158013 -1
1 3.35063399748403% 1077 0.434036491043196

2 3.90694941756246x 10~7 -0.00203614442239089

3 4.52751673809511x 1077 -0.00227096400042159

4 5.21979941371609% 107 -0.00253315835465237

5 5.99204649850424% 107 -0.00282565856410013
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During the online mode, the sliding window length, the degree and the regularization
parameter of the proposed adaptive controller are chosen as L = 50, N = 5,and 1 =
0.1, respectively. The tracking error performance of the closed-loop system is obtained
by minimizing the tracking error defined with e-insensitive loss function £; .(-,-) given
in Equation 4.3 in terms of the time interval of [k, k — L + 1]. The ARMA controller
parameters as c,,, and d,,, are calculated by using Equation 4.3, 4.4 and 4.5 according

to Diophantine equations [34].

Vi) = Thet fn0'€ (k —m) + TR g ek —m) + T2 dmy(k —m) (4.4)
a, =1+ ao fo-bo do (4.5)
a; = 23‘:0 ajfi_j — 2;":0 bid;_jfori € {1,2,..,N}

a; =YV najfioj =X _ybjdi_jfori € {N+1,N+2,..,2N}
Bi=—Y.objc;i_jfori € {0,1,2,...,N}

Bi=—Xi_nbjci_jfori € {N+1,N+2,...2N}

Time evolutions of the developed LFL based adaptive controller for closed-loop
parameters as a,, ., the adaptive controller parameters as c,,, d,, , the controller
signal as vi, and the rod angle of the ROTPEN as y := @ are depicted as in Figure
4.11, 4.12 and 4.13, respectively.

-3
3‘x10

n

g

o
n

S} N
8
Ve

N

Closed Loop Parameter
o
(4]

Closed Loop Parameter

Figure 4.11: Time evolutions of the developed closed-loop system parameters a) a,,
and b) g,,.
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Figure 4.12: Time evolutions of the developed LFL based adaptive controller
parameters a) d,,, and b) c,,.
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Figure 4.13: Time evolutions of the controller signal a) vi¢ and the rod angle b) := 6

4.2.4 Simulation results comparisons of the PD controller and the

proposed controller performances for ROTPEN

The performances of both the proposed adaptive controller and the PD controller are
compared each other. The PD controller design is represented in Equation 4.6 with the
reference book of the experimental setup where the controller parameters K, and K,
are taken as 80 and 10.5, respectively from [44]. The analysis for designing a digital
implementation of a PD controller in MATLAB/SIMULINK is implemented by
according to the standard form of the PID controller to be discretized. Approximations

for first-order derivatives are made by backward finite differences. The integral term
is discretized, with a sampling time At, as follows: fotke(‘c)d‘c =Yk le(t)At. The

de;zk) = e(tk)";(t"‘l). Thus, a velocity algorithm

derivative term is approximated as,
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for implementation of the discretized PID controller obtained by differentiating u(t)
using the numerical definitions of the first and second derivative and solving for u(t;)

and finally obtaining:

u(ty) = u(ty—1) + K, [(1 + %t + %) e(ty) + (—1 — %) e(ty_1) + Z_ie(t"‘Z)]

(4.6)

where T; = % and T; = % [87]. The controller performances are depicted in Figure
i (4

4.14 in terms of pendulum angle MSE. Performance evaluation criteria is used as MSE
in Equation 4.7 where e(k) stands for the closed-loop system tracking error and S
stands for the number of samples. LFL based adaptive controller provides lower error
according the MSE error in Table 4.6. As for the settling time evaluation, the settling
time of the proposed controller is observed as 0.0467 seconds and it is less than PD
controller’s settling time. The minimum overshoot percentage of the proposed
controller is a good response value as 4% which significantly less than 25% level

which might be acceptable value [86] in Table 4.7.

MSE = =¥i_, e?(k) (4.7)
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Figure 4.14: a) PD Plant Control Signal b) Performance comparison of the
proposed LFL based adaptive controller and the PD controller.

Table 4.6. Performance evaluation of PD and the proposed LFL based controller in

terms of MSE.
Controller MSE
PD 8.59 x 107*
LFL Based Adaptive 429 x 1075

Table 4.7. Performance evaluation of PD and the proposed LFL based controller.

Controller Settling Time (s) Percentage Overshoot
PD 0.4582 0
LFL Based Adaptive 0.0467 4
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4.2.5 The s-insensitive and A-regularization parameters analysis of

loss function

The loss function of the closed-loop system identification is considered as
e —insensitive £ .(+,-) given in Equation 4.3. To test the robustness performance of
the proposed LFL based robust adaptive controller, a white noise which has a 2 dB
‘SNR’ is added to the plant control signal of the closed-loop system via MATLAB
“AWGN” function (Figure 4.15). The minimization of tracking error is tested with
different € values and the MSE results of the loss function are given in Table 4.8 values
with and w/o noise. Moreover, the different A regularization parameters of the closed
loop system tracking error called as loss function are tested for £ .(-,-) given in
Equation 4.3. The obtained tracking error MSE results of the proposed LFL based

adaptive controller are represented in Table 4.9.

0.1

0.05

Noise (N.m)
r—

-0.05

-0.1

Figure 4.15: The generated noise signal with AWGN function.

Table 4.8. Performance evaluation of £ —insensitive with and w/o noise in Equation
4.3 for the proposed LFL based adaptive controller.

€ MSE (With Noise) MSE (Without Noise)
0 7.7448 x 107° 42907 x 107°
0.0001 7.7395 x 1075 42930 x 107°
0.001 7.7519 x 107° 4.2880 x 107°
0.01 7.5844 x 107° 42964 x 107°
0.1 7.5844 x 107° 42964 x 107°
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Table 4.9. Performance evaluation of A regularization in Equation 4.3 for the
proposed LFL based adaptive controller.

A MSE
0.05 42954 x 107°
0.075 42912 x 107°

0.1 4,29 x 1075
0.35 42937 x 107°
0.6 42930 x 10~°

4.3. The Experimental Results of the Proposed Controller for
ROTPEN

The proposed adaptive controller is tested on physical ROTPEN plant via SIMULINK
environment. The proposed algorithm is achieved by three progressive stages as
follows; i) NARMA based LFL strategy is used to obtain a feedback linearized
nonlinear plant by using ANN, ii) the NARMA-LFL based feedback linearized plant
might be identified as an ARMA plant model with e-insensitive loss function for
system identification, and iii) the overall closed-loop control system providing Schur
stability conditions and e-insensitive loss function for tracking error is constituted by
both ARMA plant and controller model. These stages of the experimental studies are
explained in the following subsections.

4.3.1 LFL for real ROTPEN system

To achieve NARMA based LFL via MLP for the ROTPEN plant, training data set is
formed. The data set consists of the input and the states of the ROTPEN nonlinear
plant model representing as u(k) and x(k), x(k + 1) respectively. Assuming that the
feedback linearized input vector is considered as x*** := v*. The control input of the
nonlinear system might be written as u*: = @ (x*, v*): = & (x*, x**1) borrowed from
Equation 3.5 where a nonlinear function @(e): R™™ — R with states and feedback

linearized inputs of the nonlinear system.

As for implementation of LFL based algorithm with ANN, the LFL block might be
formed with a suitable MLP-ANN possessing 2 hidden layers (Figure 4.4). Training
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set data of the LFL block is obtained by using u(k) and 6 (k) depicted in Figure 4.16
with 0.001s sampling time. For training, inputs-output of the MLP are formed
[Xtrain Verain]! and Ugrqin, respectively (Figure 4.17). For testing the accuracy of the
training of MLP, “goodness OfFit” function is computed as 1 and it is used for test and
test prediction data of the MLP output in terms of normalized MSE. As a result of LFL
block training stage, it has got a nonlinear transformation providing an approximate

feedback linearized system from input v(k) to the state x(k) in Fig. 4.7.
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Figure 4.16: Training data set example u(k) and 6 (k).
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Figure 4.17: Training performance results.
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4.3.2 Real plant identification of the LFL based ROTPEN system via
ARMA model

Initial values of the ARMA plant model parameters standing for a,, and b,, are firstly
computed in a batch mode where the input-output data pairs chosen as v“(k) and
y(k) which can be seen in Figure 4.7. The plant identification ARMA model
parameters are determined by minimizing the identification error defined with e-
insensitive loss function ¢, .(,-) given in Equation 4.2 with “user defined gradient
optimization” via SIMULINK in terms of the time interval of [k, k — K + 1] for the
LFL based ARMA plant model. As for online mode, determination of initial values of
plant parameters is deduced with batch mode results for plant parameters a,, and b,
given in Table 4.10 where K = 377,41 = 0.075 and N = 5 which are chosen. Time
evolutions of the developed LFL based NARMA controller for plant parameters both
a,, and b,, are depicted in Figure 4.18.

Table 4.10. Initial parameters values of both a,, and b,, for the online mode obtained
from the batch mode.

a?’l le
6.80282031888859x 10~° -0.000315314950195759
6.80439378482749x 10~° -0.000315386533787749
6.80597087464735% 107° -0.000315458278908380
6.80755152705512% 107° -0.000315530185998794
6.80913564732295% 107° -0.000315602255297558
-0.000315674487315689

OOl | W[N] S
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Figure 4.18. Time evolutions of the developed LFL based ARMA plant parameters
for a,, and b,, in online mode.

4.3.3 Designing of the real plant based stable adaptive closed-loop

system

To design the stable adaptive closed-loop system (Figure 4.9) in terms of finding
appropriate the proposed controller in online mode, all the initial plant parameters and
the closed-loop parameters of the ARMA models are determined in terms of a,,, b,
a,, and ,, providing c,,, and d,, within L = 477, A = 0.075, and N = 5 in a batch
mode. The controller algorithm is minimized with the tracking error defined with &-
insensitive loss function €, .(:,-) given in Equation 4.3 with “user defined gradient
optimization” via SIMULINK in terms of the time interval of [k, k — L + 1] with
sliding window as L. Herein, MATLAB optimization toolbox function “fmincon”
could not be used because this function cannot be built by the MATLAB environment
so the “user defined subgradient optimization” algorithm is coded with C program.
The proposed adaptive controller parameters are calculated as c¢,,,, d,,, and f,,, obtained
from a,,, b, and «,,, 3,, computed parameters using Equation 4.4. The obtained results

of the parameters c,,, d,, and «,,, B,, are given in Table 4.11 and 4.12.
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Table 4.11. Initial parameters values of the closed loop system as «,, and 3,
obtained from batch mode.

n aTL ﬁn

0 0.00268950092851661 -8.96283217244484x 10~°
1 0.00203025231244229 8.96340233196545x 10~°
2 0.00165474545606356 8.96282882966701x 10~°
3 0.00137678890586581 -8.96283221210843% 10~°
4 0.00114826982244472 8.96282883471866x 10~°
5 0.000949299138505982 -2.50858268700706x 108
6 0.000769566600862029 -8.96283018141788x 10~°
7 0.000602916971868847 -8.96283214721067x 10~°
8 0.000445277110813857 -8.96283016434725% 107°
9 0.000293711388901573 -8.96283021128627x 10~°
10 0.000145929991107909 8.96340237060842x 10~°

Table 4.12. Initial parameters values of the proposed adaptive controller as c¢,,, d,,
and f,,, obtained from batch mode.

0 4.29109670285765x% 10~° -0.470763708158013 -1
1 3.35063399748403% 1077 0.434036491043196

2 3.90694941756246x 1077 -0.00203614442239089

3 4.52751673809511x 1077 -0.00227096400042159

4 5.21979941371609% 10~7 -0.00253315835465237

5 5.99204649850424x 10~7 -0.00282565856410013

During the online mode, the sliding window length, the degree and the regularization
parameter of the proposed adaptive controller are chosen as L = 20, N = 5,and A =
0.075, respectively. The tracking error performance of the closed-loop system is
obtained by minimizing the tracking error defined with e-insensitive loss function
€1 ¢(-,-) given in Equation 4.3 in terms of the time interval of [k,k — L + 1]. The
ARMA controller parameters as c,,, and d,, are calculated by using Equation 4.3, 4.4
and 4.5 according to Diophantine equations [34]. Time evolutions of the developed
LFL based adaptive controller for closed-loop parameters as a,, [5,, the adaptive
controller parameters as c,,, d,,, the controller signal, and the rod angle of the
ROTPEN as y := 6 are depicted as in Figure 4.19, 4.20 and 4.21, respectively.
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Figure 4.20: Time evolutions of the developed LFL based adaptive controller
parameters a) d,,, and b) c,,.
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Figure 4.21: The proposed controller’s a) performance and b) signal
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4.3.4 Experimental results comparison of the PD controller and the

proposed controller for ROTPEN

The performances of both the proposed adaptive controller and the PD controller are
compared for real ROTPEN system each other. The PD controller design is
represented in Equation 4.6 with the reference book of the experimental setup where
the controller parameters K, and K, are taken as 80 and 10.5, respectively from [44].
The controller performances and PD controller signal are depicted in Figure 4.22. LFL
based adaptive controller provides lower error according the MSE error in Table 4.13.
As for the settling time evaluation, the settling time of the proposed controller is
observed as 0.091 seconds. The minimum overshoot percentage of the proposed
controller is a good response value as 0.15% which significantly less than 25% level

which might be acceptable value [86] in Table 4.14.
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Figure 4.22: a) PD control signal b) comparison of PD and the proposed controller.
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Table 4.13. Performance evaluation of PD and the proposed LFL based controller in

terms of MSE.
Controller MSE
PD 0.0018
LFL Based 2.4801 x 107>

Table 4.14. Performance evaluation of PD and the proposed LFL based controller
for real ROTPEN system.

Controller Settling Time Percentage Overshoot
PD 0.05 0.7
LFL Based NARMA 0.091 0.15

The controller parameters K,, and K are taken as 80 and 2. PD plant control signal
and the controller performances are depicted in Figure 4.23, Figure 4.24, respectively.
LFL based adaptive controller provides lower error according the MSE error in Table
4.15. As for the settling time evaluation, the settling time of the proposed controller is
observed as 0.091 seconds and it is less than PD controller’s settling time. The
minimum overshoot percentage of the proposed controller is a good response value as
0.15% which significantly less than 25% level which might be acceptable value [86]
in Table 4.16.

)

o
o
@

0.02 |

0.01

-0.01}

-0.02 |

PD Plant Control Signal (N.m

-0.03 " : : : :
0 1 2 3 4 5
Time (s)

Figure 4.23. PD control signal

63



0.1

—LFL
— Ref
—~ 0.05¢ PD |+
C
©
©
g 0 7oL —n—rn A
S v VA4 Vaduimin
Ie))
C
< 005"
-0.1 :
0 1 2 3 4 5
Time (s)

Figure 4.24. Comparison of PD and the proposed controller.

Table 4.15. Performance evaluation of PD and the proposed LFL based controller.

Controller MSE
PD 7.0587 x 1075
LFL Based 2.4801 x 1075

Table 4.16. Performance evaluation of PD and the proposed LFL based controller
for real ROTPEN system.

Controller Settling Time Percentage Overshoot
PD 0.5 1.3
LFL Based NARMA 0.091 0.15

4.3.5 The e-insensitive and A-regularization parameters analysis of

loss function

The loss function of the closed-loop system identification is considered as
€ —insensitive ¢, .(-,-) given in Equation 4.3. To test the robustness performance of
the proposed LFL based robust adaptive controller, a white noise which has a 2 dB
‘SNR’ is added to the plant control signal of the closed-loop system via SIMULINK’s
“AWGN” block (Figure 4.25). The minimization of tracking error is tested with
different ¢ values and the MSE results of the loss function are given in Table 4.17
values with and w/o noise. Moreover, the different A regularization parameters of the
closed loop system tracking error called as loss function are tested for £, . given in
Equation 4.3. The obtained tracking error MSE results of the proposed LFL based
adaptive controller are represented in Table 4.18.
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Figure 4.25. The generated noise signal with AWGN block.

Table 4.17. Performance evaluation of ¢ —insensitive with and w/o noise in
Equation 4.3 for the proposed LFL based adaptive controller applying to the real
ROTPEN system.

€ MSE (With Noise) MSE (Without Noise)
0 9.5764 x 10~* 2.4801 x 1075
0.0001 3.7541 x 10~* 9.7199 x 107>
0.001 3.6333e x 107* 2.1595 x 1075
0.01 2.7482 x 107° 8.4007 x 107>
0.1 2.9778 x 1075 5.9850 x 10~*

Table 4.18. Performance evaluation of A regularization parameter in Equation 4.3 for
the proposed LFL based adaptive controller applying to the real ROTPEN system.

A MSE
0.025 1.1791x 10~*
0.05 5.5302x 1073
0.075 2.4801 x 1075

0.1 6.3048 x 107°
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5. CONCLUSIONS

In this thesis, the proposed algorithm which is LFL based stable adaptive NARMA
controller is achieved for the ROTPEN. The proposed stable robust adaptive control
algorithm is implemented via the ARMA models of both the plant and the controller
The controller’s design scheme possesses three design stages ; i) NARMA based LFL
is used to obtain a feedback linearized model for a nonlinear plant by using the artificial
neural network (ANN), ii) the NARMA-LFL based plant might be identified as an
auto-regressive moving average (ARMA) plant model, and iii) the closed-loop control
system providing Schur stability conditions is constituted by both ARMA plant and
controller models. After controller design, the overall closed-loop system is obtained
as a linear dynamical system with possessing Schur stability. To provide robustness,

e-insensitive loss functions in the identification and controller design phases are used.

The proposed adaptive controller design scheme is tested on a simulated ROTPEN for
angular rod position and compared to PD controller in terms of MSE for tracking
performance, the overshoot and settling time. MSE values of PD and LFL based
adaptive controller are respectively computed as 8.59 x 10~* and 4.29 x 107 in
terms of tracking error of the closed loop system. LFL based adaptive controller
settling time is observed as 0.0467s which is nearly 10% of the PD one. Furthermore,
different ¢ —values are evaluated against with and without noise for ¢ .(-,-) loss
function of tracking error updating the adaptive controller parameters. According to
the minimum MSE values, ¢ —values are determined as 0.0001 and 0.001 for with

noise and without noise, respectively.

When the proposed controller is tested on a real ROTPEN system for angular rod
position and compared to PD controller in terms of MSE for tracking performance, the

overshoot and settling time. MSE values of PD and LFL based adaptive controller are
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respectively computed as 0.0018 and 2.4801 x 107" in terms of tracking error of
the closed loop system. LFL based adaptive controller percentage overshoot is
observed as 0.15 which is nearly 20% of the PD one. Moreover, different £ —values
are evaluated against with and without noise for ¢, .(-,-) loss function of tracking error
updating the adaptive controller parameters. According to the minimum MSE values,
€ —values are determined as 0.01 and 0.001 for with noise and without noise,
respectively. According to minimum MSE value, A regularization parameter is

determined as 0.075 for the proposed LFL based adaptive controller.

The comparison of simulation and real system results shows the potential of the
proposed LFL based stable adaptive NARMA controller. For future works, SISO
ARMA modelling can be developed to MIMO ARMA modelling for the proposed

controller
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