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CONTROL OF ROTARY INVERTED PENDULUM 

SYSTEM WITH LEARNING FEEDBACK 

LINEARIZATION BASED STABLE ROBUST 

ADAPTIVE CONTROLLER 

ABSTRACT 

This thesis presents a learning feedback linearization (LFL) based stable robust 

adaptive controller design for a rotary inverted pendulum (ROTPEN) plant. The 

proposed adaptive controller design algorithm is based on a linear controller model 

and a feedback linearized plant model obtained from a nonlinear auto-regressive 

moving-average (NARMA) based LFL. The proposed algorithm is achieved by three 

progressive stages as follows; i) NARMA based LFL is used to obtain a feedback 

linearized model for a nonlinear plant by using the artificial neural network (ANN), ii) 

the NARMA-LFL based plant might be identified as an auto-regressive moving 

average (ARMA) plant model, and iii) the closed-loop control system providing Schur 

stability conditions is constituted by both ARMA plant and controller models. Once 

the training phase of ANN is fulfilled, the feedback linearized nonlinear plant might 

be identified as the ARMA model including the combination of the nonlinear plant 

and it’s learned LFL block. The proposed stable robust adaptive control algorithm is 

implemented via the ARMA models of both the plant and the controller provided the 

Schur stability conditions for the overall closed-loop system. Robustness properties of 

both the linearized plant model and the overall closed-loop system are employed with 

the 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) defined as the identification error of the 

linearized nonlinear plant and the tracking error, respectively. In conclusion, the 

proposed LFL-based-stable-adaptive-controller is applied for ROTPEN model and its 

physical experimental setup. The performance of the proposed controller is compared 

with the Proportional-Derivative controller in terms of mean square error for tracking 

error. 
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ÖĞRENEN GERİ BESLEMELİ DOĞRUSALLAŞTIRMA 

TABANLI KARARLI, GÜRBÜZ, UYARLANIR 

KONTROLÖR İLE DÖNEL TERS SARKAÇ 

SİSTEMİNİN KONTROLÜ 

ÖZET 

Bu tez, öğrenen geri beslemeli doğrusallaştırma (ÖGD) tabanlı kararlı, gürbüz, 

uyarlanır bir kontrolör tasarımını bir dönel ters sarkaç (DTS) sistemi için sunmaktadır. 

Önerilen uyarlanır kontrolör algoritması bir doğrusal kontrolör modeline ve bir 

doğrusal olmayan özyinelemeli kayan-ortalama (DÖKO) tabanlı ÖGD ile elde edilen 

geri beslemeli doğrusallaştırılmış sistem modeline dayanmaktadır. Önerilen algoritma 

3 aşamadan oluşmaktadır; i) DÖKO tabanlı ÖGD, bir yapay sinir ağı (YSA) 

yardımıyla doğrusal olmayan sistem için bir geri beslemeli doğrusallaştırılmış model 

elde etmede kullanılması, ii) DÖKO-ÖGD tabanlı sistemin bir özyinelemeli kayan 

ortalama (ÖKO) sistem modeli ile tanılanabilmesi ve iii) Schur kararlılık koşullarını 

sağlayan kapalı çevrim kontrol sistemini ÖKO sistem ve kontrolör modelleri 

tarafından oluşturulması. Bir kere YSA’nın eğitim aşaması yerine getirildiğinde, geri 

beslemeli doğrusallaştırılmış doğrusal olmayan sistem, doğrusal olmayan sistemin ve 

onun öğrenilmiş ÖGD bloğunun bir kombinasyonunu içeren bir ÖKO modeli olarak 

tanılanmaktadır. Önerilen kararlı, gürbüz, uyarlanır kontrol algoritması hem sistemin 

hem de tüm kapalı çevrim sistem için Schur kararlılık koşullarını sağlayan ÖKO 

modelleri aracılığıyla uygulanmaktadır. Hem doğrusallaştırılmış sistem modelinin 

hem de tüm kapalı çevrim sistemin gürbüzlük özellikleri için, sırasıyla 

doğrusallaştırılmış doğrusal olmayan sistemin tanılama hatası ve izleme hatası olarak 

tanımlanan 𝜀-duyarsızlık kayıp fonksiyonu ℓ1,𝜀(⋅,⋅) çalıştırılmaktadır. Sonuçta, 

önerilen ÖGD tabanlı kararlı, uyarlanır kontrolör DTS modeline ve fiziksel sistemine 

uygulanmaktadır. Önerilen kontrolörün performansı Oransal-Türev kontrolörle izleme 

hatası için ortalama karesel hata cinsinden karşılaştırılır.  
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1. INTRODUCTION 

The purpose of the controller design is to find out the appropriate control signal 

providing the desired behaves for the controlled plant possessing even inherently 

nonlinearity in a physical system. Control techniques of nonlinear systems has still 

been a very attractive research field in control systems [1-6]. One of them is a 

conventional method defined as a linearization method at an equilibrium point around 

for a nonlinear plant. However, this method cannot cope with the nonlinear system 

having more than one equilibrium point. Therefore, the feedback linearization method 

is a powerful technique providing a linear state model which is appropriate for all 

possible equilibrium points of the nonlinear system [1-11]. In 1989, the feedback 

linearization method was used on adaptive control of minimum phase systems which 

can be fully input-output linearized with state feedback [4]. A developed feedback 

linearization control technique was applied to underactuated mechanical systems such 

as underactuated robots where some parts of the nonlinear dynamics can be feedback 

linearized under a condition which is called as strong inertial coupling [12]. Doyle [13] 

showed that a nonlinear system might be transformed into an equivalent subsystem via 

input-output linearization by adding a state-dependent constraint to the control input 

of the subsystem [13]. In 2002, Fuh et al. [14] proposed a method about a feedback 

linearization of the discrete-time chaotic systems. In 2004, a type of nonlinear systems 

having time delay systems was addressed the input-output linearization problem 

solved by a compensator having state and output feedbacks [15]. Ho et al. [16] 

proposed a feedback linearization-based controller design for a nonlinear benchmark 

system known as ball and wheel. Herein, the full state feedback is used for 

transforming from nonlinear system to linear time invariant system with 

diffeomorphism conditions. Owing to this transformation, linear control techniques 

might be used for the feedback linearized system. Similarly, in 2010, Zhou et al. [17] 

developed a feedback linearization-based controller for a quadrotor model having both 

inner and outer loops. These loops are considered for control design of the attitude and 
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the trajectory tracking of the quadrotor. For a single flexible arm which can be moved 

against gravity, a feedback linearization-based controller is obtained. Controller has a 

double loop cascade form. Inner loop includes a controller for better tracking 

trajectories of motor and cancellation of coulomb friction. Outer loop includes, a 

linearized model which is formed by input-state linearization [18]. The dynamic model 

of a wheeled pendulum was analyzed for the controllability and the feedback 

linearization conditions. The controllability of the system and maximum relative 

degree are studied and partial feedback linearization is obtained [19,20]. Likewise, a 

partial feedback linearization technique-based controller was designed for a cart based 

inverted pendulum [21]. Türker et al. [22] proposed a Lyapunov’s direct technique for 

the stabilization of the inverted pendulum called as Furuta inverted pendulum. Another 

study on Furuta one, a new trajectory tracking controller was designed via the input-

output feedback linearization technique and provided uniformly ultimate bounded 

error term [23].  

In the literature, several studies of artificial neural network (ANN) based feedback 

linearization have been reported for the nonlinear systems such as nonlinear systems, 

and robot manipulators [25-33]. ANN is widely used for the feedback linearization 

technique because of learning behaviours of nonlinear dynamical systems and its 

generalization ability [24]. He and Unbehauen [28] developed a nonlinear state 

transformation providing an approximate feedback linearization conditions with a 

local diffeomorphism implemented via multilayer perceptron (MLP). Likewise, ANN 

based feedback linearization was proposed as a neuro-controller including fully or 

partially input–output linearization according to relative degree [29]. ANN based 

feedback linearization implementations were defined with two nonlinear functions as

)(f  and )(g  implemented by using two separate ANN blocks and the control input 

form was linearized for the feedback linearized system [24,26,30-33]. The two ANN 

blocks constitute the feedback linearization implementation so-called the ANN based 

feedback linearization controllers might be represented as a nonlinear auto regressive 

moving average (NARMA) model in terms of system input and output [30,31]. Some 

controllers of feedback linearization techniques were presented as NARMA based 

neuro controllers [26,32,33]. Şahin [25] proposed a learning feedback linearization 

method implemented via NARMA model with only one ANN block while the 
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previous studies used two ANN blocks for )(f  and )(g  nonlinear functions [24,26, 

30-33]. Direct adaptive neural controller design was proposed for feedback 

linearization based nonlinear multi-input multi-output systems [27]. 

As for stable robust adaptive controller design, it is still a hot topic study area because 

it produces efficient solutions for nonlinear plants [34-41]. In 2016, the proposed 

adaptive controller presented as an online controller type for linear time-varying 

systems and a nonlinear system. Its algorithm was based on a data-dependent Auto-

Regressive Moving-Average (ARMA) models for both the controller and the plant. 

The ARMA models were learned in a supervised learning way with data measured 

from input-output data pairs of both the plant model and the closed loop system. This 

NARMA based online robust adaptive controller design is defined as a system 

identification problem of a partially known the closed loop system. The data dependent 

adaptive controller parameters were found by minimizing the tracking error for the 

closed loop system. The stability of the closed loop system was provided by meeting 

the Schur stability criterion known as a method of solving Diophantine equation called 

also as Aryabhatta Equation or Bezout identity [34].  

This thesis presents an LFL based stable robust adaptive controller design by 

supervised learning from the data from a plant. The proposed controller is an extension 

method by exploiting the studies in [24,41] developed data dependent ARMA 

controller design ensuring the Schur stability conditions for the overall closed-loop 

system. The proposed algorithm is achieved as follows; i) NARMA based LFL is used 

to obtain a feedback linearized nonlinear plant by using the ANN, ii) the NARMA-

LFL based plant is identified as an ARMA plant model, and iii) the closed-loop control 

system having ARMA plant and controller models providing Schur stability of it. The 

training phase of ANN of NARMA based LFL is carried out with a supervised online 

learning way via both input-output and admissible corresponding states data of the 

nonlinear plant. Once the training phase of ANN is completed, the feedback linearized 

nonlinear plant might be defined as the ARMA model including the combination of 

the nonlinear plant and the LFL block. The proposed stable robust adaptive control 

algorithm is implemented via the ARMA models of both the plant and the controller. 

Robustness properties of both the linearized plant model and the overall closed-loop 

system are employed with the 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) defined as the 
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identification error of the linearized nonlinear plant and the tracking error, respectively 

[42,43]. Moreover, Schur stability imposed on the overall closed-loop system is 

guaranteed to determine the linear controller parameters by the linear inequality 

constraints of the minimization of the ℓ1,𝜀(⋅,⋅) tracking error [41]. The developed 

adaptive LFL based NARMA controller algorithm is tested on a simulated rotary 

inverted pendulum (ROTPEN) model and a physical ROTPEN experimental setup. 

The performance of the proposed adaptive controller is compared with Proportional 

Derivative (PD) [44,45] controllers. According to the simulation and experimental 

results, the LFL based NARMA controller performances shows better performances 

than the other controllers in terms of the Mean Square Error (MSE) for tracking and 

settling time. Moreover, the proposed adaptive controller based on LFL are analyzed 

in terms of the 𝜀-insensitiveness effects with MSE under with and w/o noise.  

This thesis is organized as follows. In Chapter 2, background on feedback 

linearization, system modelling and adaptive control. In Chapter 3, the proposed stable 

robust adaptive NARMA based LFL controller is explained. In Chapter 4, the 

simulation and experimental results are given. In Chapter 5, conclusion and future 

direction are presented.  
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2. BACKGROUND 

In this chapter, a background on feedback linearization, system modeling, ARMA and 

NARMA models, ANN based controllers (with inverse system approximation) and 

online learning controllers are introduced briefly.  

2.1 Feedback Linearization  

Let's define the discrete time nonlinear system as in Equation 2.1. 

𝐱𝑘+1 = 𝑓(𝐱𝑘, 𝑢𝑘);  𝑓(∘): 𝐑𝐧x1 → 𝐑𝐧  and 𝑢𝑘 ∈ 𝐑   (2.1)  

As a nonlinear method, input-state feedback linearization takes place in the related 

literature because that this type linearization transforms state equations to controllable 

canonical form [46]. Conventional linearization which includes Taylor expansion 

about the balance point or balance points is compared with this type linearization in 

Figure 2.1. Herein, 𝐴𝑍 and  𝑏𝑧 are defined as a controllable canonic structure. 

Conventional linearization around equilibrium points is combined with input-state 

feedback linearization [25].  A given system can have multiple equilibrium points, 

multiple local linear state models are obtained from the conventional linearization. A 

general linear state model is exposed by a feedback linearization and a nonlinear 

system linearization is applied all equilibrium points [3]. 

 

Figure 2.1. Difference between conventional linearization and input-state 

linearization by feedback 

         ,  )

Linearized around an equilibrium plant

state transformation

feedback linearization

      

     

        

          

        
 +     

          
 +     
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Assuming a discrete single-input single output system (SISO) system given in a form 

as 𝒙𝑘+1 = 𝑓(𝐱𝑘) + 𝑔(𝐱𝑘)𝑢𝑘, the input-state feedback linearization steps are given 

below:  

 The 𝑔(𝐱𝑘) ≠ 0 should be satisfied and the nonlinear system should be in 

Brunovsky form given in Equation 2.2.  

 Nonlinear transformation of states 𝐳𝑘 = φ(𝐱𝑘) forms the state feedback control 

law as 𝑢𝑘 = 𝛼(𝐱𝑘) + 𝛽(𝐱𝑘)𝑣𝑘 =
1

𝑔(𝐱𝑘)
[−𝑓(𝐱𝑘) + 𝑣𝑘] in Equation 2.2. 

 The new input can be defined as 𝑣𝑘. 

Considering the above steps are taken place, transformation might be named as input-

state linearization given in [46]. 

[
 
 
 
 
 
𝑥1
𝑘+1

.

.

.
𝑥𝑛−1
𝑘+1

𝑥𝑛
𝑘+1]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑥2
𝑘

.

.

.
𝑥𝑛
𝑘

𝑓(𝐱k) + 𝑔(𝐱k)𝑢𝑘]
 
 
 
 
 
 

      (2.2) 

where 𝑓(∘), 𝑔(∘) ∶ 𝑹𝒏 → 𝑹 and 𝑢(∘) ∶ 𝑹 → 𝑹 are defined. The static state 

feedback controller might be defined as 𝑣𝑘 = 𝜞𝒛𝑘 with 𝜞 = [𝛤1 𝛤2… 𝛤𝑛] defined 

as linear controller parameters in the linear feedback control loop after completing 

the feedback linearization steps (Figure 2.2). Therefore, the selection of the 

appropriate 𝜞 might be defined as pole-placement technique for the feedback 

linearized nonlinear system. Hence, it might be transformed into a linear system 

which is controllable one in Equation 2.3. The input state linearizable system 

sufficient conditions are given as follows: 

 



22 

 

 

Figure 2.2. Structure about input-output linearized by feedback 

Definition 2.1: Assume a SISO system 𝒙̇ = 𝒇(𝒙) + 𝒈(𝒙)𝑢 where 𝒇(𝒙) ∈ 𝑹𝒏 and 

𝒈(𝒙) ∈ 𝑹𝒏 with 𝒙 ∈  𝑹𝒏 are smooth vector fields can be said to be input-state 

linearizable if there exists in a region 𝜴 ⊆ 𝑹𝒏, a 𝐶𝑘 diffeomorphic state 

transformation 𝝋(∘): 𝑹𝒏 → 𝑹𝒏. The nonlinear static state feedback might be defined 

as 𝑢 = 𝛼(𝝋(𝒙)) + 𝛽(𝝋(𝒙))𝑣 and the transformation of the state equations with new 

state variables 𝒛 = 𝝋(𝒙) and the linear control input can be presented as 𝑣 =

𝑓(𝝋(𝒙)) + 𝑔(𝝋(𝒙))𝑢 =
1

𝛽(𝝋(𝒙))
(𝑢 − 𝛼(𝝋(𝒙))) which has the linear time-invariant 

system and internally feedback linearized system in Equation 2.3 [46]. 

𝐳̇ =

[
 
 
 
 
 
0 1 0 0
0 0 1 0
  .   .  .   .  
.   .  .   .
.   .  .   .
0 0 0 0 ]

 
 
 
 
 

𝐳 + [

0
0
0
1

] 𝑣 = 𝐀𝐙𝐳 + 𝐁𝐳𝑣    (2.3)  

Theorem 2.1: With the 𝒙 ∈  𝑹𝒏, 𝒇(𝒙) ∈ 𝑹𝒏 and 𝒈(𝒙) ∈ 𝑹𝒏 are smooth vector 

fields, the single input nonlinear system is defined as 𝒙̇ = 𝒇(𝒙) + 𝒈(𝒙)𝑢. If and 

only if a 𝜴 ⊆  𝑹𝒏 region which provide specified conditions below, system is 

input-output linearized [46]. 

 

 In a 𝜴 ⊆  𝑹𝒏 region, set of vector fields {𝒈, 𝑎𝑑𝒇𝒈,… , 𝑎𝑑𝒇
𝑛−1𝒈}  are linearly 

independent. 

𝛽( (𝐱𝑘)) =
1

𝑔( (𝐱𝑘))

𝛼( (𝐱𝑘)) =
𝑓( (𝐱𝑘))

𝑔( (𝐱𝑘))

Linear controller

𝜞

𝒛𝑘 = 𝝋 (𝒙𝑘)𝒙𝑘+1 = 𝑓(𝒙𝑘,𝑢𝑘)
𝒛𝑘

State transformation

𝑢𝑘+

-
 𝑘

Input transformation

Input-state linearization
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 Linearly independent vector fields set {𝒈, 𝑎𝑑𝒇𝒈,… , 𝑎𝑑𝒇
𝑛−2𝒈} should be 

involutiveness, that is to say, Lie bracket of any pair of vector fields in the set 

for vector fields with the linear combinations. The 𝑎𝑑𝐟𝐠 is defined as Lie 

bracket [𝒇, 𝒈] = (𝛻𝒈)𝒇 − (𝛻𝒇)𝒈 with gradient operator ∇ w.r.t 𝒙𝒌. 

The feedback linearized system results of both the discrete nonlinear system and the 

continuous nonlinear systems with suitable sampling period might be assumed as 

identically each other. Therefore, the sampled nonlinear continuous-time systems 

specify the linearized system results [1]. Sufficient conditions of the state 

transformation of LFL are defined for the local existence via 𝒛𝑘 = 𝝋(𝒙𝑘), and a 

defined control input with a new nonlinear function as 𝑢𝑘 = 𝛷(𝒛𝑘,  𝑘) 

under det (
𝜕𝜙

𝜕𝐯𝑘
) ≠ 0. Hence, it might be transformed into a linear system which is 

controllable one in Equation 2.3. The input state linearizable system sufficient 

conditions are satisfied and it is given in subchapter of LFL. 

2.2 System Modelling 

The expression of a nonlinear discrete time SISO system is given in Equation 2.4 

expanded from Equation 2.1. 

𝒙𝒌+𝟏 = 𝒇(𝒙𝒌, 𝑢𝑘);    𝑦𝑘 = 𝒈(𝒙𝒌)       (2.4) 

where 𝒇(∘): 𝑹𝒏𝒙𝟏 → 𝑹𝒏,  𝒈(∘): 𝑹𝒏𝒙𝟏 → 𝑹 and 𝑢𝑘 ∈ 𝑹. If 𝒇 and 𝒈 are not derived 

from the physical phenomena in a mathematical way, the system modeling can be 

defined as an identification problem so that the system model is the so-called black 

box that represents the input-output behavior of the process [47,48]. 

2.2.1 Blackbox representation 

The black box representation can be used as a general approximation for the inputs-

outputs of the MIMO system dynamics (Figure 2.3). This representation does not have 

to be related to the exact model of the considered system; in fact, it is actually focused 

on the input-output variables of the system. Once the input-output data of the system 

is obtained, the black-box model can be obtained easily without requiring a clear 

mathematical knowledge about it [48].  
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Figure 2.3. A Blackbox structure 

2.2.2 ARMA and NARMA models 

According to input-output of the considered system, it could be identified with ARMA 

or NARMA models. A typical ARMA model is given in Equation 2.5 where the first 

and the second summation parts stand for AR and MA parts [49-51]. 

 𝑦(𝑘) = ∑ 𝛼𝑖𝑦(𝑘 − 𝑖) + ∑ 𝛽𝑗𝑢
𝑀
𝑗=0

𝑁
𝑖=1 (𝑘 − 𝑗)   (2.5) 

where 𝛼𝑖 ∈ 𝑅 and 𝛽𝑗 ∈ 𝑅 stand for linear weights, 𝑁 and 𝑀 stand for the degrees of 

AR and MA parts, respectively. ARMA and NARMA models are used as plant models 

and as controller models in control systems identification and in control system design, 

respectively. These models employed in a plenty of time series analysis area such as 

signal processing, image processing, speech recognition, weather forecast, biomedical 

signal processing [31,52-58]. 

A corresponding NARMA model of Equation 2.4 can be transformed to Equation 2.6 

in which 𝑘 current time index, 𝑁 past outputs and 𝑀 past inputs with a nonlinear 

function as 𝐻(∘): 𝑹𝑁+𝑀+1 → 𝑹. The NARMA model of the SISO system given in 

Equation 2.6 can be represented as other forms given in Equation 2.7 and 2.8. These 

NARMA models having nonlinearities might be implemented by using ANN as an 

approximator. 

𝑦(𝑘) = 𝐻[𝑦(𝑘 − 1), 𝑦(𝑘 − 2),… , 𝑦(𝑘 − 𝑁); 𝑢(𝑘), … , 𝑢(𝑘 −𝑀)] (2.6) 

Blackbox

SystemInputs Outputs
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𝑦(𝑘) = 𝐹[∑ 𝛼𝑖𝑦(𝑘 − 𝑖)
𝑁
𝑖=1 ] + ∑ 𝛽𝑗𝑢

𝑀
𝑗=0 (𝑘 − 𝑗)    (2.7) 

𝑦(𝑘) = 𝐹[𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑁)] + 𝐺[𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑁)]𝑢(𝑘) (2.8) 

where 𝐺(∘):𝑹𝑀+1 → 𝑹 and 𝐹(∘):𝑹𝑁 → 𝑹.  

2.2.3 Artificial neural networks 

ANN has been used in control systems area since 1980s because ANN defining a 

nonlinear algebraic function overcome the nonlinearities and complexity of the control 

systems. ANN can be defined as a function approximators for any continuous function 

in a compact set [59]. ANNs have several abilities such as generalization, learning and 

paralleling and they are used for fault tolerant, supervised and unsupervised learning 

and optimization. As in the control systems related ANN literature, system 

identification and controller design are generally achieved by using Multi-Layer 

Perceptron (MLP) with efficient learning algorithms [60-65]. MLP possesses algebraic 

neural networks, multi-input and single-output with a sigmoidal activation function 

(Figure 2.4.).  

 

Figure 2.4. An architecture of a typical ANN  

A feature of ANN, which learns from the environment and increases its performance 

during learning phase, updates weights and bias values between neurons. At the end 

of each iteration, the system receives more information from the environment and 

improves system performance. MLP determines connection weights of the neurons 
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connections with error back-propagation (BP) algorithm which is based on a gradient 

descent technique. It finds generally local minimum of the squared error in Equation 

2.9 between the desired and actual outputs. The partial derivatives of the output error 

are calculated by BP where partial derivatives are found with respect to connection 

weights (Equation 2.10 and 2.11). 

𝐸 = 1/2(𝑟 − 𝜚)2                (2.9) 

𝜕𝐸

𝜕𝑠𝑖
=
𝜕𝐸

𝜕𝜚

𝜕𝜚

𝜕𝜎

𝜕𝜎

𝜕𝑠𝑖
= −(𝑟 − 𝜚)Υ′(𝜎)𝜚ℎ            (2.10) 

𝜕𝐸

𝜕𝑤𝑖
=
𝜕𝐸

𝜕𝜚

𝜕𝜚

𝜕𝜎

𝜕𝜎

𝜕𝜚ℎ
𝜕𝜚ℎ

𝜕𝜎ℎ
𝜕𝜎ℎ

𝜕𝑤𝑖
= −(𝑟 − 𝜚)Υ′(𝜎)𝑠Υ′(𝜎ℎ)𝑥          (2.11) 

where the derivative of the sigmoidal nonlinearity is denoted Υ′(∘) found as a 

sigmoidal function. In the opposite of the gradient direction, to update the connection 

weights (Equation 2.13), using a step size ζ which is sufficiently small and called as 

learning rate. 

𝑠(𝑘 + 1) = 𝑠(𝑘) − 𝜁 
𝜕𝐸

𝜕𝑠(𝑘)
= 𝑠(𝑘) + 𝜁(𝑟 − 𝑦)Υ′(𝜎)𝜚ℎ   (2.12) 

𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) − 𝜁 
𝜕𝐸

𝜕𝑤(𝑘)
= 𝑤(𝑘) + 𝜁(𝑟 − 𝜚)Υ′(𝜎)𝑠Υ′(𝜎ℎ)𝑥 (2.13) 

2.3 ANN Based System Identification 

The ability to approximate the nonlinear functions of the ANN allows for the use in 

system identification issues. There are two types of identification structure with ANN 

as parallel and series-parallel. In parallel mode, it is designed via system inputs and 

model outputs providing an ARMA model in the Equation 2.14 (Figure 2.5). In series-

parallel mode, ANN based identification is formed via inputs-outputs of the system 

providing an ARMA model in the Equation 2.15 (Figure 2.6). 

𝑦̂(𝑘) = ∑ 𝛼𝑖𝑦̂(𝑘 − 𝑖) + ∑ 𝛽𝑗𝑢
𝑀
𝑗=0

𝑁
𝑖=1 (𝑘 − 𝑗)    (2.14) 

𝑦̂(𝑘) = ∑ 𝛼𝑖𝑦(𝑘 − 𝑖) + ∑ 𝛽𝑗𝑢
𝑀
𝑗=0

𝑁
𝑖=1 (𝑘 − 𝑗)    (2.15) 
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Figure 2.5. Model of ANN based parallel identification 

 

Figure 2.6. Model of ANN based series-parallel identification 

2.4 ANN Based Controllers 

Werbos and Narendra did firstly report ANN based controllers via their learning 

capabilities, coping with nonlinearity, and their reactions to parameter changes [66, 

67]. ANN based controllers can be divided to two groups as follows: i) the feedforward 

ANN which is also called as algebraic ANN, and ii) the recurrent ANN which is also 

called as dynamical ANN [67,68]. As for the controller design strategies, the first 

strategy is that direct inverse control method provides identity system via mapping 

from the reference signal 𝑟(𝑘) to actual plant output 𝑦(𝑘). Herein, ANN is trained for 

inverse system and used as a controller (Figure 2.7).  
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Figure 2.7. ANN based direct inverse control strategy 

Likewise, the feed-forward inverse controller strategy having two different ANN 

blocks and trained with two phases. In the first phase, ANN of the system identification 

is completed with the control and the system output signals. The second phase, ANN 

based controller (i.e. inverse system block) is trained by using ANN based system 

identification block according to the closed loop system error minimization (Figure 

2.8). 

 

Figure 2.8. A structure of feed-forward inverse control 

2.5  Adaptive Control Methods 

The adaptive control methods are powerful algorithms for overcoming system 

uncertainties, its parameters changing and disturbances problems. The control 

parameters are updated in each iteration step in terms of online control applications 

[46,70-76]. One of the adaptive control method is self-tuning regulator (STR) finding 
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out the plant parameters via the stochastic estimation in an online way in 

simultaneously updating the controller parameters given in Figure 2.9 [34,46].  

 

Figure 2.9. STR controller method   

The other adaptive control method is well known structure is model reference adaptive 

control (MRAC) method having a stable reference model. This controller can eliminate 

disturbances, parameter variations, and system uncertainties given in Figure 2.10 [25, 

46,77,78]. 

 

Figure 2.10. MRAC method  
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2.6 Adaptive Controller Design of Partially Known Closed Loop 

System 

Partially known closed-loop control system has an identified or a known plant and the 

adaptive controller design unknown part in online mode. Plant is firstly identified and 

then the adaptive controller parameters are determined via tracking error minimization 

of the closed loop system [41]. It can be defined a combined method by using STR 

and MRAC. The adaptive controller structure which has two degrees of freedom is 

depicted in Figure 2.11. The algorithms of the plant identification and the adaptive 

controller are trained and updated in simultaneously by a supervised learning way.  

 

Figure 2.11. A control structure which has two degrees of freedom 

2.7  Closed Loop Stability and Robustness 

Schur stability criteria is related to absolute stability of the discrete time systems. If 

the roots of the system characteristic equation are in the unit disk, the system might be 

bounded-input bounded-output (BIBO) stable for linear time invariant systems. There 

exists a characteristic polynomial under it has not pole-zero cancellation, the 

polynomial might be defined as 𝑝(𝑧) =  µ𝑛𝑧
𝑛 ··· +µ2𝑧

2 + µ1𝑧 + µ0 

where  µ𝑖(𝑖 =  0,  1, … ,  𝑛) are the real numbers. Sufficient stability conditions of that 

system might be defined with linear inequality constraints as follows µ𝑛 >  ··

·  >  µ1 >  µ0 >  0  s for the Schur stability [79]. 

As for robustness issue of the closed-loop system, 𝜀 − insensitive loss functions might 

be used for robustness property given in detail in the following Chapter 3. 

 

Controller Plant𝑟𝑘
𝑢𝑘 𝑦𝑘
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𝑀(𝑦 − 𝑦̂) = ℓ1(|𝑦 − 𝑦̂|𝜀 )      (2.19) 

|𝑦 − 𝑦̂|𝜀 = { 
0  ,                                        𝑖𝑓(|𝑦 − 𝑦̂| ≤ 𝜀

|𝑦 − 𝑦̂| − 𝜀                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
 

The loss function might be described as absolute norm representing as ℓ1 norm. The 

loss is equal to 0 if the discrepancy between the predicted and the observed values is 

less than 𝜀 (Figure 2.12) [80]. 

 

Figure 2.12. 𝜀 − insensitive ℓ1 based loss function 
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3. PROPOSED LFL BASED ADAPTIVE CONTROLLER 

The proposed adaptive controller algorithm is based on a feedback linearized plant 

model with LFL obtained via ANN. The proposed stable robust adaptive algorithm is 

achieved by three progressive stages as follows (Figure 3.1); I) NARMA based LFL 

strategy is used to obtain a feedback linearized nonlinear plant by using ANN, ii) the 

NARMA-LFL based feedback linearized plant might be identified as an ARMA plant 

model with 𝜀-insensitive loss function for system identification, and iii) the overall 

closed-loop control system providing Schur stability conditions and 𝜀-insensitive loss 

function for tracking error is constituted by both ARMA plant and controller model. 

All three stages are shown in Figure 3.2. 

 

Figure 3.1. Stages of the proposed adaptive controller 

Proposed LFL 
based adaptive 

controller stages

i) LFL for 
nonlinear system

ii) Plant identification 
of LFL based system

via ARMA model

iii) Designing of the
stable closed-loop 

system
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Figure 3.2. The proposed LFL based stable adaptive controller  

3.1 LFL For Nonlinear Systems 

Although linear systems don’t need to be the feedback linearized inherently, for a 

better understanding of the LFL strategy is briefly explained with a linear SISO case 

in this Subchapter. So, first of all, let’s define a discrete time linear system as in 

Equation 3.1 where 𝑨 ∈ 𝑹𝑛𝑥𝑛, 𝑩 ∈ 𝑹𝑛𝑥𝑚 and 𝑢𝑘 ∈ 𝑹 is control input while 𝒙𝑘 ∈  𝑹𝑛 

is defined as state vector. 

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝑢𝑘       (3.1) 

Assuming that 𝒙𝑘+1 ≔  𝑘 in which  𝑘 stands for the feedback linearized input of the 

system obtained from the states of the system in Equation 3.1 might be transformed to 

Equation 3.2. 

𝑓(𝒙𝑘, 𝑢𝑘) ≔ 𝒙𝑘+1 = 𝑨𝒙𝑘 +𝑩𝑢𝑘     (3.2) 

where 𝑓(𝒙𝑘, 𝑢𝑘) is a vector field with  𝑓(∘) ∶ 𝑹𝑛𝑥𝑚. The control input of the linear 

system is rewritten as 𝑢𝑘 = 𝑩−𝟏[ 𝑘 − 𝑨𝒙𝑘], if and only if 𝑩−1exists. 

Likewise, as far as the nonlinear system case concerned, a discrete time nonlinear 

system is defined as in Equation 3.3. 
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𝒙𝑘+1 =  𝒇(𝒙𝑘, 𝑢𝑘)       (3.3) 

where 𝒇(∘): 𝑹𝑛𝑥𝑚 → 𝑹𝑛, 𝒙𝒌 ∈  𝑹𝒏 is defined as state vector, and 𝑢𝑘 ∈  𝑹 is the control 

input. Assuming that the feedback linearized input vector is considered as 𝐱k+1 ≔ 𝐯k, 

Equation 3.3 might be transformed to Equation 3.4. 

𝒇(𝒙𝑘, 𝑢𝑘) ≔  𝑘       (3.4) 

The control input of the nonlinear system might be written as Equation 3.5 represented 

a nonlinear function Φ(∘): 𝑹𝑛𝑥𝑚 → 𝑹 with states and feedback linearized inputs of the 

nonlinear system. 

𝑢𝑘 = 𝛷(𝒙𝑘,  𝑘)       (3.5) 

The nonlinear system is assumed as 𝐱𝑘+1 = 𝑓(𝐱𝑘) + 𝑔(𝐱𝑘)𝑢𝑘 as a type of a 

general nonlinear system representation of Equation 3.4. The control input of the 

nonlinear system is obtained in the following form as 𝑢𝑘 =
1

𝑔(𝐱𝑘)
[𝑣𝑘 − 𝑓(𝐱𝑘)]  if 

and only if 𝑔(𝐱𝑘) ≠ 0. 

As for implementation of LFL based algorithm with ANN, the LFL block might be 

formed with a suitable MLP-ANN possessing one hidden layer (Figure 3.3) where 

MLP based LFL block is trained with 𝑢𝑘 and {(𝒙𝑘,  𝑘)}𝑘=0
𝐾̿  as both output and inputs, 

respectively, and 𝐾̿ denotes finite natural number. According to desired output 𝑢𝑘 of 

the LFL block, the LFL training error is tried to minimize at each data sample 𝑘. 
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Figure 3.3. MLP-ANN Based LFL Block  

3.2 Plant Identification of the LFL Based System via ARMA Model 

Let’s define an ARMA model to be identified system model given as in Equation 3.6 

for a SISO nonlinear system.  

𝑦(𝑘) = ∑ 𝑎𝑛𝑦𝑎(𝑘 − 𝑛) + ∑ 𝑏𝑛
𝑀
𝑛=0

𝑁
𝑛=1 𝑣𝑙𝑐(𝑘 − 𝑛)   (3.6) 

where 𝑎𝑛 and 𝑏𝑛 stands for model parameters of the identified LFL based plant, 𝑦𝑎(𝑘) 

is the plant output and 𝑣𝑙𝑐(𝑘) is the linear controller output of the closed loop system 

called as the one input of LFL nonlinear system. The plant identification of the LFL 

based nonlinear plant system is depicted as block diagram in Figure 3.4 by using 

ARMA model.  
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Figure 3.4. ARMA plant identification of the LFL based nonlinear plant 

The system identification with ARMA modeling is achieved by minimizing the 

identification error defined with 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) given in Equation 

3.7 in terms of the time interval of [𝑘, 𝑘 − 𝐾 + 1] in an offline manner. Herein, the 𝐾 is 

sliding window length for ARMA plant identification. 

1

𝐾
∑ ℓ1,𝜀 (

𝑦𝑎(𝑘 − 𝑠), ∑ 𝑎𝑛𝑦(𝑘 − 𝑠 − 𝑛)
𝑁
𝑛=1

+∑ 𝑏𝑛𝑣𝑙𝑐(𝑘 − 𝑠 − 𝑛)𝑀
𝑛=0

)𝐾−1
𝑠=0 + 𝜆 ‖

𝑎
𝑏
‖
2 

2

   (3.7) 

where 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) in Equation 3.7 is a measurement of the 

distance between the (𝑘 − 𝑠)th actual output sample 𝑦𝑎(𝑠) of plant and the (𝑘 − 𝑠)th 

output sample 𝑦(𝑘 − 𝑠) = ∑ 𝑎𝑛𝑦(𝑘 − 𝑠 − 𝑛) + ∑ 𝑏𝑛𝑣
𝑙𝑐𝑀

𝑛=0
𝑁
𝑛=1 (𝑘 − 𝑠 − 𝑛) of plant 

model. Absolute norm 𝜀-insensitive loss function can be defined as 

ℓ1,𝜀(𝑦𝑎(𝑠), 𝑦(𝑠)) = |𝑦𝑎(𝑠) − 𝑦(𝑠)| if |𝑦𝑎(𝑠) − 𝑦(𝑠)| ≥ 𝜀 and ℓ1,𝜀(𝑦𝑎(𝑠), 𝑦(𝑠)) = 0 

if |𝑦𝑎(𝑠) − 𝑦(𝑠)| < 𝜀 [80]. Herein,  insensitiveness is represented for having 

robustness against measurement noise, disturbances, and small variations in the output 
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of the plant. ‖
𝑎
𝑏
‖
2

2

: = ∑ 𝑎𝑛
2𝑁

𝑛=1 + ∑ 𝑏𝑛
2𝑀

𝑛=0 , that is to say, the square of the Euclidean 

norm of the model parameters providing nonzero results, 𝜆 is the regularization term 

which provides a smooth model avoiding over-fitting which might be defined as more 

general model of the plant.  

3.3 Designing of The Stable Adaptive Closed-Loop System 

This sub-chapter describes the stable adaptive ARMA controller design stages of the 

closed-loop system. The ARMA controller is considered as a system identification 

problem in a closed-loop control system having a real/model plant and a controller 

blocks under unity feedback assumption. Indeed, the proposed adaptive controller 

design might also be noted as a closed-loop control system identification problem 

whose parameters are partially known after identification of the plant to be controlled 

[41]. Hence, after the plant identification stage, the second stage is that the proposed 

adaptive ARMA controller parameters with the known closed-loop input-output data 

can be found by solved by optimization techniques with linear constraints in a manner 

of the supervised learning algorithm (Figure 3.5).  

 

Figure 3.5. ARMA based closed-loop system with two degree of freedom design  

The ARMA controller model is defined as a SISO system in terms of 𝑣𝑙𝑐(𝑘) and 𝑟(𝑘) so 

that it might be given as a two degree-of-freedom structure in Equations 3.8 [34]. 

𝑣𝑙𝑐(𝑘) = {
∑ 𝑓𝑚𝑣

𝑙𝑐(𝑘−𝑚)𝑃
𝑚=1 + ∑ 𝑐𝑚𝑟(𝑘 −𝑚)

𝑅
𝑚=0

+∑ 𝑑𝑚𝑦(𝑘 −𝑚)
𝑄
𝑚=0

}    (3.8) 

      

  ,   

        ARMA Plant

  ,     ,   ,   

ARMA 
Controller
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where 𝑣𝑙𝑐(𝑘), 𝑟(𝑘) and 𝑦(𝑘) stands for the control input, the reference or desired 

output, and the closed-loop system output. Likewise, 𝑐𝑚, 𝑑𝑚 and 𝑓𝑚 stands for the 

adaptive controller parameters to be determined. As for overall the closed-loop system 

identification, the ARMA model might be found with the 𝛼𝑛, and 𝛽𝑛 parameters using 

the definitions 𝑁̂ =:𝑚𝑎𝑥{𝑃 + 𝑁,𝑀 + 𝑄} and 𝑀̂ =:𝑀 + 𝑅 in manner of optimization 

techniques with linear constraints in Equation 3.10. Herein, the algebraic equations 

might be obtained in Equations 3.7-3.9 solved by using Diophantine equations [34]. 

𝑦(𝑘) = ∑ 𝛼𝑛𝑦(𝑘 − 𝑛)
𝑁̂
𝑛=1 + ∑ 𝛽𝑛 𝑟(𝑘 − 𝑛)

𝑀̂
𝑛=0    (3.9) 

𝑎𝑜 ≔ 1 + 𝑎0 𝑓0-𝑏0 𝑑0       (3.10) 

𝑎𝑖 ≔ ∑ 𝑎𝑗𝑓𝑖−𝑗 − ∑ 𝑏𝑗𝑑𝑖−𝑗
𝑖
𝑗=0

𝑖
𝑗=0  for 𝑖 ∈  {1,2, … , 𝑁} 

𝑎𝑖 ≔ ∑ 𝑎𝑗𝑓𝑖−𝑗 − ∑ 𝑏𝑗𝑑𝑖−𝑗
𝑁
𝑗=𝑖−𝑁

𝑁
𝑗=𝑖−𝑁  for 𝑖 ∈  {𝑁 + 1,𝑁 + 2,… ,2𝑁}  

𝛽𝑖 ≔ −∑ 𝑏𝑗𝑐𝑖−𝑗
𝑖
𝑗=0  for 𝑖 ∈  {0,1,2, … ,𝑁} 

𝛽𝑖 ≔ −∑ 𝑏𝑗𝑐𝑖−𝑗
𝑁
𝑗=𝑖−𝑁  for 𝑖 ∈  {𝑁 + 1,𝑁 + 2,… ,2𝑁} 

Measured input-output data set of the system to be controlled and desired output-

reference input data set can be written as {𝑣𝑙𝑐[𝑘 − 𝑠, 𝑁], 𝑦𝑎[𝑘 − 𝑠, 𝑁]}𝑠=0
𝐾−1, {𝑟[𝑘 −

𝑠,𝑁], 𝑦𝑑[𝑘 − 𝑠, 𝑁]}𝑠=0
𝐿−1 respectively, to required fields of Equation 3.6, 3.8 and 3.9 

where 𝑦𝑎(𝑘), 𝑟(𝑘) and 𝑦𝑑(𝑘) stands for actual output, reference and desired output. In 

these data sets, the current and previous 𝑁 samples of any signal are represented as 

𝑥[𝑡, 𝑁] ∶= [𝑥(𝑡), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑁)].  

The closed-loop system identification with ARMA model is fulfilled by minimizing 

the tracking error defined with 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) given in Equation 

3.10 in terms of the time interval of [𝑘, 𝑘 − 𝐿 + 1] in an offline manner. Herein, 

the 𝐿 is sliding window length for ARMA model identification of the closed-loop 

system. 

1

𝐿
∑ ℓ1,𝜀 (

𝑦𝑑(𝑘 − 𝑠), ∑ 𝛼𝑛𝑦(𝑘 − 𝑠 − 𝑛)
𝑁̂
𝑛=0

+∑ 𝛽𝑛𝑟(𝑘 − 𝑠 − 𝑛)
𝑀̂
𝑛=0

)𝐿−1
𝑠=0 + 𝜆‖

𝛼
𝛽‖

2

2

  (3.11) 
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where 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) in Equation 3.10 is a measurement of the 

distance between the (𝑘 − 𝑠)th desired output sample 𝑦𝑑(𝑠) of plant and the (𝑘 − 𝑠)th 

output sample 𝑦(𝑘 − 𝑠) = ∑ 𝛼𝑛𝑦(𝑘 − 𝑠 − 𝑛) + ∑ 𝛽𝑛𝑟
𝑀̂
𝑛=0

𝑁̂
𝑛=0 (𝑘 − 𝑠 − 𝑛) of the 

closed-loop system model. Absolute norm 𝜀-insensitive loss function might be defined 

as ℓ1,𝜀(𝑦𝑑(𝑠), 𝑦(𝑠)) = |𝑦𝑑(𝑠) − 𝑦(𝑠)| if |𝑦𝑑(𝑠) − 𝑦(𝑠)| ≥ 𝜀 and ℓ1,𝜀(𝑦𝑑(𝑠), 𝑦(𝑠)) =

0 if |𝑦𝑑(𝑠) − 𝑦(𝑠)| < 𝜀. Herein,  insensitiveness is represented for having 

robustness against measurement noise, disturbances, and small variations in the output 

of the closed-loop system [80]. ‖
𝛼

𝛽‖2

2

: = ∑ 𝛼𝑛
2𝑁̂

𝑛=0 + ∑ 𝛽𝑛
2𝑀̂

𝑛=0 , that is to say, the square 

of the Euclidean norm of the closed-loop system model parameters providing nonzero 

results, 𝜆 is the regularization term which provides a smooth model avoiding over-

fitting which might be defined as more general model of the closed-loop system. 

Moreover, in order to ensure the stability of the closed loop system, constraints ∝0>

⋯ >∝2𝑁−1>∝2𝑁> 0 of Schur stability conditions are applied as linear constraint 

equations in minimizing tracking error of the closed-loop system given in Equation 

3.10 [79].  

During the learning phase of the controller and the identification of the system to be 

controlled, the proposed stable robust adaptive ARMA controller design can be 

performed in two training modes such as batch and sliding window. In the batch mode, 

the time interval constituting the entire data set is used and the parameters are not 

updated over time. However, in sliding window mode, ARMA models parameters of 

the plant, the closed-loop system and controller are updated in 𝐾 and 𝐿 window lengths. 
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4. SIMULATION AND EXPERIMENTAL 

RESULTS 

In this section, the ROTPEN which is also known as Furuta inverted pendulum model 

and the physical ROTPEN experimental setup are briefly described. The developed 

stable robust adaptive LFL based NARMA controller algorithm is tested on the 

ROTPEN model and its physical experimental setup. The performances of both the 

proposed adaptive and PD controllers are compared in terms of the settling time and 

MSE of tracking errors, and 𝜀-insensitiveness effects under with and w/o noise. 

4.1  ROTPEN Experimental Setup and Model  

The ROTPEN is one of the most popular benchmark experimental setup used in the 

field of nonlinear control applications. It is also an example of a well-known under-

actuated mechanical system [19-23, 44, 81]. Incompletely driven mechanical systems 

are widely used in the field of robotics, and the main feature of these systems is that 

they have fewer actuators than degrees of freedom [82]. The inverted pendulum 

possesses unstable and non-linear dynamical behaviors inherently. Another important 

feature that makes the rotary inverted pendulum more interesting is that it forms the 

basis of many new technologies such as seismometers, humanoid robots, unmanned 

air vehicles and rockets [83]. The ROTPEN system has one input and one output 

which might be chosen one of two states. The input of the ROTPEN is fed with the 

force, the output might be selected as either the pendulum angle or the angular 

position of the base. Therefore, the ROTPEN might be represented as a single-input 

multiple-output (SIMO) system) [84]. 

The ROTPEN experimental setup consists of mechanical design, data acquisition 

card, and software. The mechanical design of the pendulum is made by SolidWorks 
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software and is given in Figure 4.1a. A direct current motor is used to rotate the 

ROTPEN arm horizontally. The pendulum is connected to the pendulum arm by the 

pivot. Thus, the pendulum will be able to oscillate easily. AVAGO HEDM-5505-j06 

two-channel 1024 resolution encoder is located on the shaft. This encoder was used 

to measure the angle of the pendulum with the horizontal plane and to implement the 

control system. The end of the L-shaped pendulum arm is mounted on the shaft of the 

dc motor. Due to the circular rotation of the motor shaft, the pendulum arm can be 

moved clockwise and counterclockwise. The angle of the arm is calculated with the 

encoder mounted on the motor. A rotating arm in a horizontal axis and a rotating 

pendulum which is mounted on arm, in a vertical plane take part in the rotary inverted 

pendulum [81]. The final version of the successful ROTPEN setup is given in Figure 

4.1b. and Figure 4.2. In the software part, control algorithms designed in MATLAB 

environment are used in Simulink environment. 

 

  

(a) (b) 

 

Figure 4.1. (a) ROTPEN Solidworks design (b) designed ROTPEN setup. 
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Figure 4.2. V-DAQ data acquisition card and ROTPEN experimental setup. 

As for a typical ROTPEN modelling, the variables and parameters of the dynamical 

system model are given in Figure 4.3. Mathematical derivations results of the total 

kinetic energy with dynamical system equations of the ROTPEN system are denoted 

in Equation 4.1 where 𝜃 and 𝜙 stands for the pendulum angle and the rotating arm 

angle, respectively, 𝜏𝑜𝑢𝑡𝑝𝑢𝑡 =
𝐾𝑡(𝑉𝑚−𝐾𝑚(

𝑑

𝑑𝑡
𝜙(𝑡)))

𝑅𝑚
 is used for torque control equation of 

the dc motor. ROTPEN system parameters are borrowed from [11] (Table 4.1).  

 

 

Figure 4.3. ROTPEN solid model with variables. 

 

 

Arm

Pendulum

DC Motor

x

y
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𝑑2

𝑑𝑡2
𝜙(𝑡) =

𝑀𝑝
2𝑔𝑙𝑝

2𝑟 cos(𝜙(𝑡))𝜃(𝑡)

(𝑀𝑝𝑟2 sin(𝜙(𝑡))
2
−𝐽𝑒𝑞−𝑀𝑝𝑟2)𝐽𝑝−𝑀𝑝𝑙𝑝

2𝐽𝑒𝑞
−

𝐽𝑝𝑀𝑝𝑟
2 cos(𝜙(𝑡)) sin(𝜙(𝑡))(

𝑑

𝑑𝑡
𝜙(𝑡))

2

(𝑀𝑝𝑟2 sin(𝜙(𝑡))
2
−𝐽𝑒𝑞−𝑀𝑝𝑟2)𝐽𝑝−𝑀𝑝𝑙𝑝

2𝐽𝑒𝑞
−

𝐽𝑝𝜏𝑜𝑢𝑡𝑝𝑢𝑡+𝑀𝑝𝑙𝑝
2𝜏𝑜𝑢𝑡𝑝𝑢𝑡

(𝑀𝑝𝑟2 sin(𝜙(𝑡))
2
−𝐽𝑒𝑞−𝑀𝑝𝑟2)𝐽𝑝−𝑀𝑝𝑙𝑝

2𝐽𝑒𝑞
  (4.1) 

𝑑2

𝑑𝑡2
𝜃(𝑡) =

𝑙𝑝𝑀𝑝(−𝐽𝑒𝑞𝑔+𝑀𝑝𝑟
2 sin(𝜙(𝑡))

2
𝑔−𝑀𝑝𝑟

2𝑔)𝜃(𝑡)

(𝑀𝑝𝑟2 sin(𝜙(𝑡))
2
−𝐽𝑒𝑞−𝑀𝑝𝑟2)𝐽𝑝−𝑀𝑝𝑙𝑝

2𝐽𝑒𝑞
−

𝑙𝑝𝑀𝑝𝑟 sin(𝜙(𝑡))𝐽𝑒𝑞(
𝑑

𝑑𝑡
𝜙(𝑡))

2

 

(𝑀𝑝𝑟2 sin(𝜙(𝑡))
2
−𝐽𝑒𝑞−𝑀𝑝𝑟2)𝐽𝑝−𝑀𝑝𝑙𝑝

2𝐽𝑒𝑞
+

𝑙𝑝𝑀𝑝𝑟𝜏𝑜𝑢𝑡𝑝𝑢𝑡 cos(𝜙(𝑡))

(𝑀𝑝𝑟2 sin(𝜙(𝑡))
2
−𝐽𝑒𝑞−𝑀𝑝𝑟2)𝐽𝑝−𝑀𝑝𝑙𝑝

2𝐽𝑒𝑞
  

Table 4.1. Descriptions of ROTPEN system parameters and their values. 

Symbol Description (Unit) Value 

𝐾𝑚 Electromotive torque constant of the motor (𝑉/(𝑟𝑎𝑑/𝑠)) 0.0333 

𝑔 Gravity acceleration (𝑘𝑔.𝑚2) 9.81 

𝐵𝑒𝑞 Arm viscous damping (𝑁.𝑚. 𝑠/𝑟𝑎𝑑) 0 

𝐵𝑝 Pendulum viscous damping (𝑁.𝑚. 𝑠/𝑟𝑎𝑑) 0 

𝐾𝑡 Motor torque constant (𝑁.𝑚) 0.0333 

𝑅𝑚 Armature resistance of the motor (𝛺) 8.7 

𝑉𝑚 Motor input voltage (𝑉𝑜𝑙𝑡) 0-24 

𝑀𝑎𝑟𝑚 Mass of rotary arm (𝑘𝑔) 0.08 

𝑀𝑝 Mass of the pendulum “link and weight included” (𝑘𝑔) 0.027 

𝑟 Length of rotary arm (𝑚) 0.0826 

𝑙𝑝 Length of inverted pendulum (𝑚) 0.153 

𝐽𝑒𝑞 Inertia rotary of rotary arm (𝑘𝑔.𝑚2) 0.000368 

𝐽𝑝 Inertia rotary of inverted pendulum (𝑘𝑔.𝑚2) 0.000698 
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4.2. The Simulation Results of the Proposed Controller for ROTPEN 

Model 

The proposed adaptive controller is tested on simulated ROTPEN model on a 

MATLAB environment. The proposed algorithm is achieved by three progressive 

stages as follows; i) NARMA based LFL strategy is used to obtain a feedback 

linearized nonlinear plant by using ANN, ii) the NARMA-LFL based feedback 

linearized plant might be identified as an ARMA plant model with 𝜀-insensitive loss 

function for system identification, and iii) the overall closed-loop control system 

providing Schur stability conditions and 𝜀-insensitive loss function for tracking error 

is constituted by both ARMA plant and controller model. These stages of the 

simulation studies are explained in the following Subsections. 

4.2.1 LFL for ROTPEN model 

To achieve NARMA based LFL via MLP for the ROTPEN model, training data set is 

formed. The data set consists of the input and the states of the ROTPEN nonlinear 

plant model representing as 𝑢(𝑘) and 𝒙(𝑘), 𝒙(𝑘 + 1) respectively. Assuming that the 

feedback linearized input vector is considered as 𝒙𝑘+1 ≔  𝑘. The control input of the 

nonlinear system might be written as 𝑢𝑘: = 𝛷(𝒙𝑘,  𝑘) borrowed from Equation 3.5 

where a nonlinear function 𝛷(∘): 𝑹𝑛𝑥𝑚 → 𝑹 with states and feedback linearized inputs 

of the nonlinear system. 

As for implementation of LFL based algorithm with ANN, the LFL block might be 

formed with a suitable MLP-ANN possessing 2 hidden layers (Figure 4.4). Training 

set data of the LFL block is obtained by using 𝑢(𝑘) and 𝛳(𝑘) depicted in Figure 4.5 

with 0.001s sampling time. For training, inputs-output of the MLP are formed 

[𝒙𝑡𝑟𝑎𝑖𝑛  𝑡𝑟𝑎𝑖𝑛]
𝑇  and 𝑢𝑡𝑟𝑎𝑖𝑛, respectively (Figure 4.6). For testing the accuracy of the 

training of MLP, “goodnessOfFit” function is computed as 1 and it is used for test and 

test prediction data of the MLP output in terms of normalized MSE.   
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Figure 4.4. MLP feedforward network structure with “nntraintool”. 

 

 

 

(a)  (b) 

Figure 4.5. Training data set example 𝑢(𝑘) and 𝜃(𝑘). 

 

 

Figure 4.6. Training performance results.  
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As a result of LFL block training stage, it has got a nonlinear transformation providing 

an approximate feedback linearized system from input  (𝑘) to the state 𝒙(𝑘) in Fig. 

4.7. 

 

Figure 4.7. Feedback Linearized ROTPEN model with LFL. 

4.2.2 Plant identification of the LFL based ROTPEN model via 

ARMA model 

Choosing initial values of ARMA model parameters is a considerably complex issue 

for the online mode of the stable adaptive controller algorithm in terms of data-

depended controller design algorithms. Therefore, initial values of the ARMA plant 

model parameters standing for 𝑎𝑛 and 𝑏𝑛 are firstly computed in a batch mode where 

the input-output data pairs chosen as  𝑣𝑙𝑐(𝑘) and 𝑦(𝑘) which can be seen in Figure 

4.8. The plant identification ARMA model parameters are determined by minimizing 

the identification error defined with 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) given in 

Equation 4.2 with MATLAB optimization toolbox function “fmincon” in terms of the 

time interval of [𝑘, 𝑘 − 𝐾 + 1] for the LFL based ARMA plant model (Figure 4.8) 

which was also given in detail in Chapter 3.  

        ))

    

      

    

    

Nonlinear Plant
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Figure 4.8. The developed LFL based ARMA plant model parameters for 𝑎𝑛 and 𝑏𝑛. 

1

𝐾
∑ ℓ1,𝜀(𝑦𝑎(𝑘 − 𝑠),∑ 𝑎𝑛𝑦(𝑘 − 𝑠 − 𝑛) + ∑ 𝑏𝑛𝑣

𝑙𝑐(𝑘 − 𝑠 − 𝑛)𝑁
𝑛=0

𝑁
𝑛=1 )𝐾−1

𝑠=0 + 𝜆‖
𝑎
𝑏
‖
2 

2
 (4.2) 

where 𝑁 which stands for the degree of the ARMA plant parameters are to be 

determined in terms of the goodness of fit. Hence, ARX models of system 

identification toolbox of MATLAB environments are used for choosing appropriate 𝑁 

value with the simulated plant model and real plant data separately in terms of 𝑣𝑙𝑐(𝑘) 

and 𝑦(𝑘). The performances of the ARX model fitness are tested with Akaike's 

information criterion (AIC) values computed in Table 4.2. AIC provides a measure of 

model quality obtained by simulating the situation where the candidate models are 

tested on different ARX degree. According to Akaike's theory, the most accurate 

model might be selected with the smallest AIC value [85]. 

Table 4.2. Comparison model fitness and AIC results of ARX models. 

 For simulation 𝑦,  𝑣𝑙𝑐 For real system 𝑦,  𝑣𝑙𝑐 

ARX(nnk)* model Model fitness (%) AIC Model fitness 

(%) 

AIC 

arx000 -0.006636 -6.7234 -4.599 -6.3222 

arx110 68.36 -12.7926 16.02 -11.4805 

arx220 100 -78.2319 29.89 -11.5667 

arx330 100 -70.4859 33.65 -12.9639 

arx440 100 -74.2791 34.61 -12.9853 

arx550 100 -75.4244 34.51 -13.0960 

nnk*: Herein, first n denotes number of poles, the second n denotes number of zeros and k— Number 

of input samples that occur before the input affects the output, also called the dead time in the system. 

 

+

  ,   

Feedback Linearized Nonlinear Plant

        ))     

      

    

Nonlinear Plant
    

   

+
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In the light of Table 4.2 results, the fitness value of the arx220 model exactly matches 

the desired fitness value with the lowest AIC value for simulation environment 

whereas the fitness value of the arx550 model is acceptable value (when compared the 

other arx440 fitness result) with the nearly same AIC value for real plant. It is obvious 

that the simulation platform does not actually reflect the real system behaviors. 

However, according to evaluation of these results, the model degree of the ARMA 

plant model might be accepted as 𝑁 = 5 for considering the real system.  

As for online mode, determination of initial values of plant parameters is deduced with 

batch mode results for plant parameters 𝑎𝑛 and 𝑏𝑛 given in Table 4.3 where 𝜀 = 0 (𝜀-

insensitive effects are especially analyzed for the real ROTPEN system response given 

the following sub-chapter), 𝐾 = 25, 𝜆 = 0.1 which are chosen. Time evolutions of the 

developed LFL based NARMA controller for plant parameters both 𝑎𝑛 and 𝑏𝑛 are 

depicted in Figure 4.9. 

Table 4.3. Initial parameters values of both 𝑎𝑛 and 𝑏𝑛 for the online mode obtained 

from the batch mode. 

n 𝑎𝑛 𝑏𝑛 

1 8.28999730491958× 10−5 -0.00637237736981552 

2 6.26130046926439× 10−5 -0.00587480021640299 

3 4.12367167419285× 10−5 -0.00533346235614781 

4 1.88134342900327× 10−5 -0.00474868815420780 

5 -4.60320427712306× 10−6 -0.00412098420370303 

6  -0.00345104996739003 
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(a) (b) 

Figure 4.9: Time evolutions of the developed LFL based ARMA plant parameters 

for 𝑎𝑛 and 𝑏𝑛 in online mode. 

4.2.3 Designing of the stable adaptive closed-loop system 

To design the stable adaptive closed-loop system (Figure 4.10) in terms of finding 

appropriate the proposed controller in online mode, all the initial plant parameters and 

the closed-loop parameters of the ARMA models are determined in terms of 𝑎𝑛, 𝑏𝑛, 

𝛼𝑛, and 𝛽𝑛 providing 𝑐𝑚, and 𝑑𝑚 within 𝐿 = 477, 𝜆 = 0.075, and 𝑁 = 5 in a batch 

mode within 500 samples. The controller algorithm is minimized with the tracking 

error defined with 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) given in Equation 4.4 with 

MATLAB optimization toolbox function “fmincon” in terms of the time interval 

of [𝑘, 𝑘 − 𝐿 + 1] with sliding window as 𝐿. These equations are also given with 

mathematical derivations in detail in Chapter 3. The proposed adaptive controller 

parameters are calculated as 𝑐𝑚, 𝑑𝑚 and 𝑓𝑚 obtained from 𝑎𝑛, 𝑏𝑛 and 𝛼𝑛, 𝛽𝑛 computed 

parameters using Equation 4.2 and 4.3. The obtained results of the parameters 𝑐𝑚, 𝑑𝑚 

and 𝛼𝑛, 𝛽𝑛 are given in Table 4.4 and 4.5. 

1

𝐿
∑ ℓ1(𝑦𝑑(𝑘 − 𝑠), ∑ 𝛼𝑛𝑦(𝑘 − 𝑠 − 𝑛)

2𝑁
𝑛=0 + ∑ 𝛽𝑛𝑟(𝑘 − 𝑠 − 𝑛)

2𝑁
𝑛=0 )𝐿−1

𝑠=0 + 𝜆‖
𝛼
𝛽‖

2

2

 (4.3) 
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Figure 4.10: The proposed LFL based stable adaptive controller. 

Table 4.4. Initial parameters values of the closed loop system as 𝛼𝑛 and 𝛽𝑛 obtained 

from batch mode. 

n 𝛼𝑛 𝛽𝑛 

0 0.00268950092851661 -8.96283217244484× 10−9 

1 0.00203025231244229 8.96340233196545× 10−9 

2 0.00165474545606356 8.96282882966701× 10−9 

3 0.00137678890586581 -8.96283221210843× 10−9 

4 0.00114826982244472 8.96282883471866× 10−9 

5 0.000949299138505982 -2.50858268700706× 10−8 

6 0.000769566600862029 -8.96283018141788× 10−9 

7 0.000602916971868847 -8.96283214721067× 10−9 

8 0.000445277110813857 -8.96283016434725× 10−9 

9 0.000293711388901573 -8.96283021128627× 10−9 

10 0.000145929991107909 8.96340237060842× 10−9 

Table 4.5. Initial parameters values of the proposed adaptive controller as 𝑐𝑚, 𝑑𝑚 

and 𝑓𝑚 obtained from batch mode. 

m 𝑐𝑚 𝑑𝑚 𝑓𝑚 

0 4.29109670285765× 10−6 -0.470763708158013 -1 

1 3.35063399748403× 10−7 0.434036491043196  

2 3.90694941756246× 10−7 -0.00203614442239089  

3 4.52751673809511× 10−7 -0.00227096400042159  

4 5.21979941371609× 10−7 -0.00253315835465237  

5 5.99204649850424× 10−7 -0.00282565856410013  

Plant 

Model
    

          

      

      

      

    

+
+

    

  ,   

Controller

  ,   ,   

  ,   
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During the online mode, the sliding window length, the degree and the regularization 

parameter of the proposed adaptive controller are chosen as 𝐿 = 50, 𝑁 = 5, and 𝜆 =

0.1, respectively. The tracking error performance of the closed-loop system is obtained 

by minimizing the tracking error defined with 𝜀-insensitive loss function ℓ1,𝜀(⋅,⋅) given 

in Equation 4.3 in terms of the time interval of [𝑘, 𝑘 − 𝐿 + 1]. The ARMA controller 

parameters as 𝑐𝑚, and 𝑑𝑚 are calculated by using Equation 4.3, 4.4 and 4.5 according 

to Diophantine equations [34]. 

𝑣𝑙𝑐(𝑘) = ∑ 𝑓𝑚𝑣
𝑙𝑐(𝑘 −𝑚)𝑃

𝑚=1 + ∑ 𝑐𝑚𝑟(𝑘 − 𝑚)
𝑅
𝑚=0 + ∑ 𝑑𝑚𝑦(𝑘 −𝑚)

𝑄
𝑚=0  (4.4) 

𝑎𝑜 ≔ 1 + 𝑎0 𝑓0-𝑏0 𝑑0        (4.5) 

𝑎𝑖 ≔ ∑ 𝑎𝑗𝑓𝑖−𝑗 − ∑ 𝑏𝑗𝑑𝑖−𝑗
𝑖
𝑗=0

𝑖
𝑗=0  for 𝑖 ∈  {1,2, … , 𝑁} 

𝑎𝑖 ≔ ∑ 𝑎𝑗𝑓𝑖−𝑗 − ∑ 𝑏𝑗𝑑𝑖−𝑗
𝑁
𝑗=𝑖−𝑁

𝑁
𝑗=𝑖−𝑁  for 𝑖 ∈  {𝑁 + 1, 𝑁 + 2,… ,2𝑁} 

𝛽𝑖 ≔ −∑ 𝑏𝑗𝑐𝑖−𝑗
𝑖
𝑗=0  for 𝑖 ∈  {0,1,2, … ,𝑁} 

𝛽𝑖 ≔ −∑ 𝑏𝑗𝑐𝑖−𝑗
𝑁
𝑗=𝑖−𝑁  for 𝑖 ∈  {𝑁 + 1,𝑁 + 2,… ,2𝑁} 

Time evolutions of the developed LFL based adaptive controller for closed-loop 

parameters as 𝛼𝑛, 𝛽𝑛, the adaptive controller parameters as 𝑐𝑚, 𝑑𝑚 , the controller 

signal as 𝑣2
𝑙𝑐, and the rod angle of the ROTPEN as 𝑦 ≔ 𝜃 are depicted as in Figure 

4.11, 4.12 and 4.13, respectively.  

  

(a) (b) 

Figure 4.11: Time evolutions of the developed closed-loop system parameters a) 𝛼𝑛  
and b) 𝛽𝑛. 
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(a) (b) 

Figure 4.12: Time evolutions of the developed LFL based adaptive controller 

parameters a) 𝑑𝑚  and b) 𝑐𝑚. 

  

(a) (b) 

Figure 4.13: Time evolutions of the controller signal a) 𝑣2
𝑙𝑐  and the rod angle b) ≔ 𝜃 

. 

4.2.4 Simulation results comparisons of the PD controller and the 

proposed controller performances for ROTPEN 

The performances of both the proposed adaptive controller and the PD controller are 

compared each other. The PD controller design is represented in Equation 4.6 with the 

reference book of the experimental setup where the controller parameters 𝐾𝑝 and 𝐾𝑑 

are taken as 80 and 10.5, respectively from [44]. The analysis for designing a digital 

implementation of a PD controller in MATLAB/SIMULINK is implemented by 

according to the standard form of the PID controller to be discretized. Approximations 

for first-order derivatives are made by backward finite differences. The integral term 

is discretized, with a sampling time ∆𝑡, as follows: ∫ 𝑒(𝜏
𝑡𝑘
0

)𝑑𝜏 = ∑ 𝑒(𝑡𝑖)∆𝑡
𝑘
𝑖−1 . The 

derivative term is approximated as, 
𝑑𝑒(𝑡𝑘)

𝑑𝑡
=
𝑒(𝑡𝑘)− 𝑒(𝑡𝑘−1)

∆𝑡
. Thus, a velocity algorithm 
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for implementation of the discretized PID controller obtained by differentiating 𝑢(𝑡) 

using the numerical definitions of the first and second derivative and solving for 𝑢(𝑡𝑘) 

and finally obtaining:  

 𝑢(𝑡𝑘) =  𝑢(𝑡𝑘−1) + 𝐾𝑝 [(1 +
∆𝑡

𝑇𝑖
+
𝑇𝑑
∆𝑡
) 𝑒(𝑡𝑘) + (−1 −

2𝑇𝑑
∆𝑡
)  𝑒(𝑡𝑘−1) +

𝑇𝑑
∆𝑡
𝑒(𝑡𝑘−2)] 

 (4.6) 

where 𝑇𝑖 = 
𝐾𝑝

𝐾𝑖
  and 𝑇𝑖 = 

𝐾𝑑

𝐾𝑝
 [87]. The controller performances are depicted in Figure 

4.14 in terms of pendulum angle MSE. Performance evaluation criteria is used as MSE 

in Equation 4.7 where 𝑒(𝑘) stands for the closed-loop system tracking error and 𝑆 

stands for the number of samples. LFL based adaptive controller provides lower error 

according the MSE error in Table 4.6. As for the settling time evaluation, the settling 

time of the proposed controller is observed as 0.0467 seconds and it is less than PD 

controller’s settling time. The minimum overshoot percentage of the proposed 

controller is a good response value as 4% which significantly less than 25% level 

which might be acceptable value [86] in Table 4.7.  

𝑀𝑆𝐸 =
1

𝑆
∑ 𝑒2(𝑘)𝑆
𝑘=1         (4.7) 
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a) 

 

b) 

Figure 4.14: a) PD Plant Control Signal b) Performance comparison of the 

proposed LFL based adaptive controller and the PD controller. 

 

Table 4.6. Performance evaluation of PD and the proposed LFL based controller in 

terms of MSE. 

Controller MSE 

PD 8.59 × 10−4 

LFL Based Adaptive 4.29 × 10−5 

Table 4.7. Performance evaluation of PD and the proposed LFL based controller. 

Controller Settling Time (s) Percentage Overshoot 

(%) PD 0.4582 0 

LFL Based Adaptive 0.0467 4 
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4.2.5 The ε-insensitive and 𝝀-regularization parameters analysis of 

loss function  

The loss function of the closed-loop system identification is considered as 

𝜀 −insensitive ℓ1,𝜀(⋅,⋅) given in Equation 4.3. To test the robustness performance of 

the proposed LFL based robust adaptive controller, a white noise which has a 2 dB 

‘SNR’ is added to the plant control signal of the closed-loop system via MATLAB 

“AWGN” function (Figure 4.15). The minimization of tracking error is tested with 

different 𝜀 values and the MSE results of the loss function are given in Table 4.8 values 

with and w/o noise. Moreover, the different 𝜆 regularization parameters of the closed 

loop system tracking error called as loss function are tested for ℓ1,𝜀(⋅,⋅) given in 

Equation 4.3. The obtained tracking error MSE results of the proposed LFL based 

adaptive controller are represented in Table 4.9.  

 

Figure 4.15: The generated noise signal with AWGN function. 

Table 4.8. Performance evaluation of 𝜀 −insensitive with and w/o noise in Equation 

4.3 for the proposed LFL based adaptive controller. 

𝜀 MSE (With Noise) MSE (Without Noise) 

0 7.7448 × 10−5 4.2907 × 10−5 

0.0001 𝟕. 𝟕𝟑𝟗𝟓 × 𝟏𝟎−𝟓 4.2930 × 10−5 

0.001 7.7519 × 10−5 𝟒. 𝟐𝟖𝟖𝟎 × 𝟏𝟎−𝟓 

0.01 7.5844 × 10−5 4.2964 × 10−5 

0.1 7.5844 × 10−5 4.2964 × 10−5 
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Table 4.9. Performance evaluation of 𝜆 regularization in Equation 4.3 for the 

proposed LFL based adaptive controller. 

λ MSE 

0.05 4.2954 × 10−5 

0.075 4.2912 × 10−5 

0.1 𝟒. 𝟐𝟗 × 𝟏𝟎−𝟓 

0.35 4.2937 × 10−5 

0.6 4.2930 × 10−5 

4.3.  The Experimental Results of the Proposed Controller for 

ROTPEN  

The proposed adaptive controller is tested on physical ROTPEN plant via SIMULINK 

environment. The proposed algorithm is achieved by three progressive stages as 

follows; i) NARMA based LFL strategy is used to obtain a feedback linearized 

nonlinear plant by using ANN, ii) the NARMA-LFL based feedback linearized plant 

might be identified as an ARMA plant model with 𝜀-insensitive loss function for 

system identification, and iii) the overall closed-loop control system providing Schur 

stability conditions and 𝜀-insensitive loss function for tracking error is constituted by 

both ARMA plant and controller model. These stages of the experimental studies are 

explained in the following subsections. 

4.3.1 LFL for real ROTPEN system 

To achieve NARMA based LFL via MLP for the ROTPEN plant, training data set is 

formed. The data set consists of the input and the states of the ROTPEN nonlinear 

plant model representing as 𝑢(𝑘) and 𝒙(𝑘), 𝒙(𝑘 + 1) respectively. Assuming that the 

feedback linearized input vector is considered as 𝒙𝑘+1 ≔  𝑘. The control input of the 

nonlinear system might be written as 𝑢𝑘: = 𝛷(𝒙𝑘,  𝑘):= 𝛷(𝒙𝑘, 𝒙𝑘+1) borrowed from 

Equation 3.5 where a nonlinear function 𝛷(∘): 𝑹𝑛𝑥𝑚 → 𝑹 with states and feedback 

linearized inputs of the nonlinear system. 

As for implementation of LFL based algorithm with ANN, the LFL block might be 

formed with a suitable MLP-ANN possessing 2 hidden layers (Figure 4.4). Training 
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set data of the LFL block is obtained by using 𝑢(𝑘) and 𝛳(𝑘) depicted in Figure 4.16 

with 0.001s sampling time. For training, inputs-output of the MLP are formed 

[𝒙𝑡𝑟𝑎𝑖𝑛  𝑡𝑟𝑎𝑖𝑛]
𝑇  and 𝑢𝑡𝑟𝑎𝑖𝑛, respectively (Figure 4.17). For testing the accuracy of the 

training of MLP, “goodnessOfFit” function is computed as 1 and it is used for test and 

test prediction data of the MLP output in terms of normalized MSE. As a result of LFL 

block training stage, it has got a nonlinear transformation providing an approximate 

feedback linearized system from input  (𝑘) to the state 𝒙(𝑘) in Fig. 4.7. 

  

(a) (b) 

Figure 4.16: Training data set example 𝑢(𝑘) and 𝛳(𝑘). 

 

Figure 4.17: Training performance results.  
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4.3.2 Real plant identification of the LFL based ROTPEN system via 

ARMA model 

Initial values of the ARMA plant model parameters standing for 𝑎𝑛 and 𝑏𝑛 are firstly 

computed in a batch mode where the input-output data pairs chosen as  𝑣𝑙𝑐(𝑘) and 

𝑦(𝑘) which can be seen in Figure 4.7. The plant identification ARMA model 

parameters are determined by minimizing the identification error defined with 𝜀-

insensitive loss function ℓ1,𝜀(⋅,⋅) given in Equation 4.2 with “user defined gradient 

optimization” via SIMULINK in terms of the time interval of [𝑘, 𝑘 − 𝐾 + 1] for the 

LFL based ARMA plant model. As for online mode, determination of initial values of 

plant parameters is deduced with batch mode results for plant parameters 𝑎𝑛 and 𝑏𝑛 

given in Table 4.10 where  𝐾 = 377, 𝜆 = 0.075 and 𝑁 = 5  which are chosen. Time 

evolutions of the developed LFL based NARMA controller for plant parameters both 

𝑎𝑛 and 𝑏𝑛 are depicted in Figure 4.18. 

Table 4.10. Initial parameters values of both 𝑎𝑛 and 𝑏𝑛 for the online mode obtained 

from the batch mode. 

n 𝑎𝑛 𝑏𝑛 

1 6.80282031888859× 10−6 -0.000315314950195759 

2 6.80439378482749× 10−6 -0.000315386533787749 

3 6.80597087464735× 10−6 -0.000315458278908380 

4 6.80755152705512× 10−6 -0.000315530185998794 

5 6.80913564732295× 10−6 -0.000315602255297558 

6  -0.000315674487315689 
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(a) (b) 

Figure 4.18. Time evolutions of the developed LFL based ARMA plant parameters 

for 𝑎𝑛 and 𝑏𝑛 in online mode. 

4.3.3 Designing of the real plant based stable adaptive closed-loop 

system 

To design the stable adaptive closed-loop system (Figure 4.9) in terms of finding 

appropriate the proposed controller in online mode, all the initial plant parameters and 

the closed-loop parameters of the ARMA models are determined in terms of 𝑎𝑛, 𝑏𝑛, 

𝛼𝑛, and 𝛽𝑛 providing 𝑐𝑚, and 𝑑𝑚 within 𝐿 = 477, 𝜆 = 0.075, and 𝑁 = 5 in a batch 

mode. The controller algorithm is minimized with the tracking error defined with 𝜀-

insensitive loss function ℓ1,𝜀(⋅,⋅) given in Equation 4.3 with “user defined gradient 

optimization” via SIMULINK in terms of the time interval of [𝑘, 𝑘 − 𝐿 + 1] with 

sliding window as 𝐿. Herein, MATLAB optimization toolbox function “fmincon” 

could not be used because this function cannot be built by the MATLAB environment 

so the “user defined subgradient optimization” algorithm is coded with C program. 

The proposed adaptive controller parameters are calculated as 𝑐𝑚, 𝑑𝑚 and 𝑓𝑚 obtained 

from 𝑎𝑛, 𝑏𝑛 and 𝛼𝑛, 𝛽𝑛 computed parameters using Equation 4.4. The obtained results 

of the parameters 𝑐𝑚, 𝑑𝑚 and 𝛼𝑛, 𝛽𝑛 are given in Table 4.11 and 4.12. 
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Table 4.11. Initial parameters values of the closed loop system as 𝛼𝑛 and 𝛽𝑛 

obtained from batch mode. 

n 𝛼𝑛 𝛽𝑛 

0 0.00268950092851661 -8.96283217244484× 10−9 

1 0.00203025231244229 8.96340233196545× 10−9 

2 0.00165474545606356 8.96282882966701× 10−9 

3 0.00137678890586581 -8.96283221210843× 10−9 

4 0.00114826982244472 8.96282883471866× 10−9 

5 0.000949299138505982 -2.50858268700706× 10−8 

6 0.000769566600862029 -8.96283018141788× 10−9 

7 0.000602916971868847 -8.96283214721067× 10−9 

8 0.000445277110813857 -8.96283016434725× 10−9 

9 0.000293711388901573 -8.96283021128627× 10−9 

10 0.000145929991107909 8.96340237060842× 10−9 

Table 4.12. Initial parameters values of the proposed adaptive controller as 𝑐𝑚, 𝑑𝑚 

and 𝑓𝑚 obtained from batch mode. 

m 𝑐𝑚 𝑑𝑚 𝑓𝑚 

0 4.29109670285765× 10−6 -0.470763708158013 -1 

1 3.35063399748403× 10−7 0.434036491043196  

2 3.90694941756246× 10−7 -0.00203614442239089  

3 4.52751673809511× 10−7 -0.00227096400042159  

4 5.21979941371609× 10−7 -0.00253315835465237  

5 5.99204649850424× 10−7 -0.00282565856410013  

During the online mode, the sliding window length, the degree and the regularization 

parameter of the proposed adaptive controller are chosen as 𝐿 = 20, 𝑁 = 5, and 𝜆 =

0.075, respectively. The tracking error performance of the closed-loop system is 

obtained by minimizing the tracking error defined with 𝜀-insensitive loss function 

ℓ1,𝜀(⋅,⋅) given in Equation 4.3 in terms of the time interval of [𝑘, 𝑘 − 𝐿 + 1]. The 

ARMA controller parameters as 𝑐𝑚, and 𝑑𝑚 are calculated by using Equation 4.3, 4.4 

and 4.5 according to Diophantine equations [34]. Time evolutions of the developed 

LFL based adaptive controller for closed-loop parameters as 𝛼𝑛, 𝛽𝑛, the adaptive 

controller parameters as 𝑐𝑚, 𝑑𝑚 , the controller signal, and the rod angle of the 

ROTPEN as 𝑦 ≔ 𝜃 are depicted as in Figure 4.19, 4.20 and 4.21, respectively.  
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(a) (b) 

Figure 4.19. Time evolutions of the developed closed-loop system parameters a) 𝛼𝑛  
and b) 𝛽𝑛. 

  

(a) (b) 

Figure 4.20: Time evolutions of the developed LFL based adaptive controller 

parameters a) 𝑑𝑚  and b) 𝑐𝑚. 

  

(a) (b) 

Figure 4.21: The proposed controller’s a) performance and b) signal 
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4.3.4 Experimental results comparison of the PD controller and the 

proposed controller for ROTPEN 

The performances of both the proposed adaptive controller and the PD controller are 

compared for real ROTPEN system each other. The PD controller design is 

represented in Equation 4.6 with the reference book of the experimental setup where 

the controller parameters 𝐾𝑝 and 𝐾𝑑 are taken as 80 and 10.5, respectively from [44]. 

The controller performances and PD controller signal are depicted in Figure 4.22. LFL 

based adaptive controller provides lower error according the MSE error in Table 4.13. 

As for the settling time evaluation, the settling time of the proposed controller is 

observed as 0.091 seconds. The minimum overshoot percentage of the proposed 

controller is a good response value as 0.15% which significantly less than 25% level 

which might be acceptable value [86] in Table 4.14.  

   

(a) 

 

(b) 

Figure 4.22: a) PD control signal b) comparison of PD and the proposed controller. 
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Table 4.13. Performance evaluation of PD and the proposed LFL based controller in 

terms of MSE. 

Controller MSE 

PD   0.0018 

LFL Based 

NARMA 

   2.4801 × 10−5 

Table 4.14. Performance evaluation of PD and the proposed LFL based controller 

for real ROTPEN system. 

Controller Settling Time Percentage Overshoot 

(%) PD 0.05 0.7 

LFL Based NARMA 0.091 0.15 

 

The controller parameters 𝐾𝑝 and 𝐾𝑑 are taken as 80 and 2. PD plant control signal 

and the controller performances are depicted in Figure 4.23, Figure 4.24, respectively. 

LFL based adaptive controller provides lower error according the MSE error in Table 

4.15. As for the settling time evaluation, the settling time of the proposed controller is 

observed as 0.091 seconds and it is less than PD controller’s settling time. The 

minimum overshoot percentage of the proposed controller is a good response value as 

0.15% which significantly less than 25% level which might be acceptable value [86] 

in Table 4.16. 

 

Figure 4.23. PD control signal  
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Figure 4.24. Comparison of PD and the proposed controller. 

Table 4.15. Performance evaluation of PD and the proposed LFL based controller. 

Controller MSE 

PD    7.0587 × 10−5 

LFL Based 

NARMA 

   2.4801 × 10−5 

Table 4.16. Performance evaluation of PD and the proposed LFL based controller 

for real ROTPEN system. 

Controller Settling Time Percentage Overshoot 

(%) PD 0.5 1.3 

LFL Based NARMA 0.091 0.15 

4.3.5 The ε-insensitive and 𝝀-regularization parameters analysis of 

loss function 

The loss function of the closed-loop system identification is considered as 

𝜀 −insensitive ℓ1,𝜀(⋅,⋅) given in Equation 4.3. To test the robustness performance of 

the proposed LFL based robust adaptive controller, a white noise which has a 2 dB 

‘SNR’ is added to the plant control signal of the closed-loop system via SIMULINK’s 

“AWGN” block (Figure 4.25). The minimization of tracking error is tested with 

different 𝜀 values and the MSE results of the loss function are given in Table 4.17 

values with and w/o noise. Moreover, the different 𝜆 regularization parameters of the 

closed loop system tracking error called as loss function are tested for ℓ1,𝜀 given in 

Equation 4.3. The obtained tracking error MSE results of the proposed LFL based 

adaptive controller are represented in Table 4.18.  
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Figure 4.25. The generated noise signal with AWGN block. 

Table 4.17. Performance evaluation of 𝜀 −insensitive with and w/o noise in 

Equation 4.3 for the proposed LFL based adaptive controller applying to the real 

ROTPEN system. 

𝜀 MSE (With Noise) MSE (Without Noise) 

0 9.5764 × 10−4 2.4801 × 10−5 

0.0001 3.7541 × 10−4 9.7199 × 10−5 

0.001 3.6333𝑒 × 10−4 𝟐. 𝟏𝟓𝟗𝟓 × 𝟏𝟎−𝟓 

0.01 𝟐. 𝟕𝟒𝟖𝟐 × 𝟏𝟎−𝟓 8.4007 × 10−5 

0.1 2.9778 × 10−5 5.9850 × 10−4 

Table 4.18. Performance evaluation of 𝜆 regularization parameter in Equation 4.3 for 

the proposed LFL based adaptive controller applying to the real ROTPEN system. 

λ MSE 

0.025 1.1791× 10−4 

0.05 5.5302× 10−5 

0.075 𝟐. 𝟒𝟖𝟎𝟏 × 𝟏𝟎−𝟓 

0.1 6.3048 × 10−5 
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5. CONCLUSIONS 

In this thesis, the proposed algorithm which is LFL based stable adaptive NARMA 

controller is achieved for the ROTPEN. The proposed stable robust adaptive control 

algorithm is implemented via the ARMA models of both the plant and the controller 

The controller’s design scheme possesses three design stages ; i) NARMA based LFL 

is used to obtain a feedback linearized model for a nonlinear plant by using the artificial 

neural network (ANN), ii) the NARMA-LFL based plant might be identified as an 

auto-regressive moving average (ARMA) plant model, and iii) the closed-loop control 

system providing Schur stability conditions is constituted by both ARMA plant and 

controller models. After controller design, the overall closed-loop system is obtained 

as a linear dynamical system with possessing Schur stability. To provide robustness, 

ε-insensitive loss functions in the identification and controller design phases are used.  

The proposed adaptive controller design scheme is tested on a simulated ROTPEN for 

angular rod position and compared to PD controller in terms of MSE for tracking 

performance, the overshoot and settling time. MSE values of PD and LFL based 

adaptive controller are respectively computed as 8.59 × 10−4 and 4.29 × 10−5 in 

terms of tracking error of the closed loop system. LFL based adaptive controller 

settling time is observed as 0.0467s which is nearly 10% of the PD one. Furthermore, 

different 𝜀 −values are evaluated against with and without noise for ℓ1,𝜀(⋅,⋅) loss 

function of tracking error updating the adaptive controller parameters. According to 

the minimum MSE values, 𝜀 −values are determined as 0.0001 and 0.001 for with 

noise and without noise, respectively. 

When the proposed controller is tested on a real ROTPEN system for angular rod 

position and compared to PD controller in terms of MSE for tracking performance, the 

overshoot and settling time. MSE values of PD and LFL based adaptive controller are 
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respectively computed as   0.0018 and    2.4801 × 10−5 in terms of tracking error of 

the closed loop system. LFL based adaptive controller percentage overshoot is 

observed as 0.15 which is nearly 20% of the PD one. Moreover, different 𝜀 −values 

are evaluated against with and without noise for ℓ1,𝜀(⋅,⋅) loss function of tracking error 

updating the adaptive controller parameters. According to the minimum MSE values, 

𝜀 −values are determined as 0.01 and 0.001 for with noise and without noise, 

respectively. According to minimum MSE value, 𝜆 regularization parameter is 

determined as 0.075 for the proposed LFL based adaptive controller. 

The comparison of simulation and real system results shows the potential of the 

proposed LFL based stable adaptive NARMA controller. For future works, SISO 

ARMA modelling can be developed to MIMO ARMA modelling for the proposed 

controller 
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