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Testing and Optimization of Manufacturing Procedures 

Using Regression Modeling  

Abstract 

With the developments in manufacturing methods over time, the need for precision 

manufacturing methods in sectors such as automotive and aerospace is increasing. In 

order to increase precision in manufacturing methods, product performance and 

minimize the margin of error in production, the relationship between the design 

parameters of the process and the process outputs is examined. 

Outputs such as surface roughness, cutting forces and tool wear are essential in 

manufacturing. Optimization methods have the most important role in the analysis of 

these outputs. 

In this thesis, a new design optimization strategy is proposed to improve the analytical 

performance of surface roughness, cutting forces, tool wear and tool life by 

considering structural and experimental parameters as design variables. In order to 

overcome inadequate approaches to modeling-design-optimization of data outputs, a 

detailed study has been carried out methodologically on multiple nonlinear neuro-

regression analysis. For this purpose, data set was selected from 12 different literature 

studies. A hybrid method was used to test the accuracy of the predictions of the 

proposed functional structures modeling the data. In order to reveal whether the model 

is realistic or not, the limitation of the candidate models was checked after calculating 

with 13 different models. Then, using four different optimization algorithms, suitable 

models were optimized for different optimization scenarios. This new optimization 

approach is also suitable for another modeling-design-optimization problem in 

analytical applications. 

 

Keywords: Optimization, Neuro-Regression Modeling, Stochastic Method, Surface 

Roughness, Cutting Forces, Tool Wear 
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Regresyon Modelleme Tekniklerinin Kullanıldığı İmal 

Usülleri Çalışmalarının Sınanması ve Optimizasyonu 

Öz 

Zaman içerisinde imalat yöntemlerinde sağlanan gelişmelerle birlikte otomotiv ve 

uzay gibi sektörlerde hassas imalat yöntemlerine ihtiyaç giderek artmaktadır. İmalat 

yöntemlerinde hassasiyeti arttırabilmek, ürün performansını arttırabilmek ve 

üretimdeki hata payını minimize edebilmek adına prosesin dizayn parametreleri ve 

proses çıktıları ile olan ilişkileri incelenmektedir.  

Yüzey pürüzlülüğü, kesme kuvvetleri ve takım aşınması gibi çıktılar imalatta önem 

teşkil etmektedir. Bu çıktıların incelemelerinde ise optimizasyon yöntemleri en önemli 

role sahiptir.  

Bu tez kapsamında, tasarım değişkenleri olarak yapısal ve deneysel parametreler 

dikkate alınarak yüzey pürüzlülüğünün, kesme kuvvetlerinin, takım aşınmasının ve 

takım ömrünün analitik performansını artırmak için yeni bir tasarım optimizasyon 

stratejisi önerilmiştir. Veri çıktılarının modellenmesi-tasarımı-optimizasyonu 

konusundaki yetersiz yaklaşımların üstesinden gelmek için metodolojik olarak çoklu 

doğrusal olmayan nöro-regresyon analizi üzerinde ayrıntılı bir çalışma yapılmıştır. Bu 

amaçla veriler 12 farklı literatür çalışmasından seçilmiştir. Verileri modellemek için 

önerilen fonksiyonel yapıların tahminlerinin doğruluğunu test etmek için hibrit bir 

yöntem kullanılmıştır. Modelin gerçekçi olup olmadığını ortaya çıkarmak için 13 

farklı model ile hesaplanmasından sonra aday modellerin sınırlılığı kontrol edilmiştir. 

Daha sonra dört farklı optimizasyon algoritması kullanılarak uygun modeller farklı 

optimizasyon senaryoları açısından optimize edilmiştir. Bu yeni optimizasyon 

yaklaşımı, analitik uygulamalarda başka bir modelleme-tasarım-optimizasyon 

problemi için de uygundur. 

 

Anahtar Kelimeler: Optimizasyon, Nöro-Regresyon Modelleme, Stokastik Metot, 

Yüzey Pürüzlülüğü, Kesme Kuvvetleri, Takım Aşınması 
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Chapter 1 

Introduction 

1.1 Literature Survey  

A great variety of machining methods have been introduced as the accuracy and 

precision required by the consumer has been increased in relation to the working 

condition of the workpieces, requiring high quality workpieces for industry. Demand 

for metalworking has gradually increased over the last few decades [1]. 

In the 1960s, the copying of work pieces was based on two distinct approaches. Via 

turning centers and machining centers, the work parts were machined. In order to 

conduct special processing operations, many instruments have been researched and 

the tool industry has thus expanded simultaneously. Owing to the high-cost 

investment budget, the devices have been extensively run in order to maximize 

efficiency. The need for high-speed centers has increased as a requirement of this [1].  

In these days’ industrial development and academic study, cutting tempered steels is 

a matter of excellent attention. In the aerospace, automotive, gear and bearing 

industry, they are commonly used. Grinding process has wide range use for 

strengthened steels. Nevertheless, grinding applications are time consuming and the 

geometry to be produced with this process is limited. Therefore, turning and milling 

are the technologies that give many possible advantages over grinding, which remains 

the traditional method of finishing vital hardened steel surfaces [2,3]. The material of 

the tool is usually chosen from high-speed steel, solid carbide or carbide inserts. 

Thermal properties of the material, machining parameters, cutting fluids and 

environmental conditions influence the surface quality of the work piece. [4]. 
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The Taguchi method has been studied for analyzing the effects of manufacturing 

factors on surface roughness in turning and milling operations. Taguchi method has 

been used in determining the optimal cutting parameters that match the minimum 

surface roughness. The tests have been performed using the coated carbide insert on 

hardened steel bars AISI 4140 [5]. Taguchi parameter design method has been used 

in turning process to reach the required extending the tool life and targeted surface 

roughness with the optimal machining parameters. Feed rate has a significant effect 

on surface roughness, while cutting speed has a lower effect [6]. Taguchi's robust 

design method has been used for optimizing the process parameters to get minimum 

surface roughness and resultant force values in end milling process for the material 

strengthened steel AISI H13. High cutting speed, low feed rate and low cutting depth 

contribute to improved surface texture and low cutting force [7]. To minimize surface 

roughness the machining parameters such as nose radius, cutting speed, feed rate, axial 

depth of cut and radial depth of cut are considered using Taguchi’s L50 orthogonal 

array. Improvement of surface roughness is 44.22% [8]. Mahapatra et al. used Taguchi 

method and Genetic Algorithm to find the ideal parametric composition that reach 

required quality of the manufactured good. As a result, the ideal outcome estimated 

by GA is unable to be reached in reality, due to nonbeing of the ideal parameter 

composition in the cutting mechanism. Therefore, in reality an arrangement must be 

made to choose the following potential feature composition; so near to the ideal [9]. 

In a further study, Taguchi method is utilized to reach the ideal cutting parameters to 

minimize surface roughness in turning. The vertical sequence, signal-to-noise ratio 

and analysis of variance (ANOVA) are used to examine the effects of the three cutting 

parameters: insert radius, feed rate and depth of cut, in turning processes of AISI 1030 

steel bars utilizing TiN covered tools [10]. In an alternative study based on ANOVA, 

a study on surface roughness in hard turning of AISI D2 tool steel with ceramic cutting 

tools using experimental and statistical techniques is performed. Turning tests are 

conducted by using cutting speed feed rate and time as main parameters and analysis 

was done based on the responses. ANOVA is used to see the influence of cutting 

parameters on flank wear, specific cutting force and surface roughness [11]. 

Design of experiment (DoE) is a branch of applied statistics which deals with 

preparation, behavior, analysis and interpretation of controlled tests in order to 

evaluate those parameter or parameter group factors that control their value. It is a 
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valuable instrument for the collection and analyze of data that can be used in different 

experimental circumstances. The design of experiments (DoE) is the most significant 

element of Response Surface Methodology (RSM). RSM is a commonly used 

approximation for modeling and analyzing mathematical and statistical processes 

where the interest response has an impact on different variables. The main purpose of 

this method is to optimize the response. RSM technique has been used to show 

coherence between experimental and predicted results. Some of the previous RSM  

based researches can be listed as given in the following paragraph. 

The study shows that there is a grateful coherence between results. In addition, the 

study observed that surface roughness is directly proportional with feed and inversely 

proportional with cutting speed [12]. Another study used RSM optimization technique 

to show effects of variables in drilling of Al-7075 alloy. The results clarified that 

cutting speed is less effective than feed rate on thrust force and cutting torque [13]. In 

order to show the influences of design variables (cutting speed, feed rate, radial depth 

and axial depth of cut) on cutting force in end milling process with RSM, first and 

second order models are built. The study showed that the most effective variable was 

feed rate and less was the cutting speed [14]. The RSM was also adopted by another 

study; they have examined that influences of Al2O3/TiC tool geometry on the surface 

roughness of AISI 1040 steel in turning process. To determine the geometry variables' 

ideal outcomes, the researchers also utilized an RSM second order model and the 

compound desirability measure [15]. In processing Hadfield steel, an experiment has 

been performed to simulate the assessment of formability using the Response Surface 

Methodology (RSM). On the flank wear and surface roughness, the connected impacts 

of cutting speed, feed rate, depth of cut, and tool corner radius has been examined. 

Ideal outcomes of machining parameters were determined using a second order RSM 

model and sequential approximation optimization (SAO) [16].  

Two of the most hopeful natural calculation approaches are the Artificial Neural 

Network (ANN) and the Genetic Algorithm (GA) in engineering. ANN has become a 

highly potential and effective approach for modeling extremely complicated non-

linear structures [17–21], and GA is used in a variety of study disciplines for parameter 

optimization in modern times [18,19,21,22]. Artificial neural network (ANN) and 

genetic algorithm (GA) are used in a recent study in order to identify the ideal cutting 
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parameters for end milling operations. The MATLAB ANN toolbox was used to 

construct ANN models depending on the feed-forward back-propagation method. It 

has been found that the combined ANN-GA technique decreased the time required to 

find an ideal result in comparison with the standard GA approach [23]. One other work 

used genetic algorithm (GA) with response surface methodology (RSM) for 

optimization of cutting parameters in high-speed ball-end milling with dry 

circumstances of Al12014-T6 [24]. A multi-objective optimization method depending 

on genetic algorithms is integrated into a recent study in order to use of design 

variables (cutting speed, feed rate and depth of cut) optimization in turning operation. 

Although tool life and operation time are contradictory parameters, they are optimized 

at the same time [25]. In order to achieve minimum tool wear, minimum surface 

roughness and optimal cutting parameters, a study performs combination of RSM, 

ANN and GA. Machining parameters are developed by using RSM and the 

optimization procedure has been performed by using GA-RSM and GA-ANN 

combination. The results show that GA-ANN combination is much better and precise 

method [26]. Another study aims to develop a predictive model to minimizing surface 

roughness by using ANN and GA combination. Minimum surface roughness value 

has been determined with the optimal design variables. The predicted surface 

roughness value determined by ANN-GA approach model is very close to the 

experimentally obtained value [27]. In addition to this, another study has an aim to 

minimize surface roughness by optimizing turning process design variables. To 

achieve the machining conditions for targeted surface finish, the response surface 

methodology (RSM) and genetic algorithm (GA) are combined and used [28]. In other 

published paper, a genetic algorithm with binary coding is utilized to optimize design 

variables. The method optimizes design variables that affect manufacturing cost, time, 

and product quality [29]. For predicting the surface roughness, on the basis of a back-

propagation learning method, an artificial neural network (ANN) model has built for 

the end milling process. As a result of the study, The two-hidden-layer ANN model 

estimates surface roughness more correctly and effectively than the one-hidden-layer 

model [30]. Another study is employed to show how ANN works on projection of 

surface roughness of 600 BHN steel, which is hard turned with minimal lubrication 

(MQL). 97,5% percent of the accuracy is achieved by the model that is depending on 

ANN [31]. 
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There are several engineering areas that use regression analysis to describe the 

connection between a response variable and one or more independently-varying 

variables. A statistical and mathematical method is used in combination with 

empirical research to create this modeling strategy. According to Subramanian et al., 

ideal end mill process design parameters were determined using a regression cutting 

force model combined with a genetic algorithm [32]. Using nonlinear regression 

analysis with logarithmic data conversion, Feng and Wang (2002) presented an 

analytical model for the prediction of surface roughness during finishing process. 

Also, they analyzed the influence of workpiece hardness, feed, tool angle, depth of 

cut, spindle speed and cutting time on the output [33]. In another study, the several 

coating and tool types and specific cutting parameter effects were investigated and 

optimized to get the minimum average roughness of the milling surfaces. Due to 

results, a general linear regression model has been used to predict the process with the 

determination coefficient of 0.90 [34].  

Multiple nonlinear neuro-regression approach can be performed to show the effects 

of nonlinear influences of the input parameters. This approach includes linear, 

quadratic, trigonometric, logarithmic, and their rational forms of the response values. 

A study has performed multiple nonlinear neuro-regression analysis to enhance the 

performance of a biosensor. The study aims enhance the performance of biosensor 

with overcome insufficient approaches by using neuro-regression approach and 

modeling-design-optimization studies. According to optimization results, 8,5% 

improvement of biosensor performance has been observed [35]. In another study, 

multiple nonlinear neuro-regression approach has been performed to study heat 

transfer optimization problem of a ground source heat exchanger. In the approach, the 

major aim is minimizing the error between objective function results and exact results. 

Optimization results show that heat transfer at a rate of reach 220 W per unit length 

in this problem. Also, it is reached its maximum value when all design variables 

(inputs) are maximum except borehole depth [36]. 

Hybrid optimization techniques are used to increase the search ability and to make the 

results more accurate. This new approach is based on the principle of simultaneously 

using stochastic optimization techniques such as differential evolution to bring 

solution to machining problems. Two authors conclude that the modeling of surface 
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performance in manufacturing operations has largely utilized Artificial Neural 

Networks and fuzzy set theory [37, 38]. Another author investigated the impact of 

manufacturing design variables integration to get high surface quality in turning 

process and to estimate the surface roughness values applied fuzzy modeling [39]. In 

another study, it is used a hybrid multi objective optimization technique, Fuzzy-

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to obtain 

optimal cutting parameters and their effect on Kerf Width (KW) together with 

Material Removal Rate (MRR) during processing AISI P20 tool steel [40]. 

The optimum machining parameters have been selected to minimize a machining cost 

by two stage Differential Evolution optimization method. With this method, better 

results have been obtained compared to single use of Differential Evolution. 

Significant results have been obtained that hybrid robust differential evolution can be 

used to optimize machining parameters [41]. Genetic algorithm and simulated 

annealing have been studied for multi-pass milling as a hybrid approach to minimize 

the production time which is the total time to produce a completed part from 

preparation to machining. For all four time periods mathematical equations were 

investigated. Five different constraints have been chosen for the machine and 

apparatus limits. Genetic simulated annealing algorithm have better results than 

genetic algorithm and geometric programming in milling operation for different 

objective functions [42]. 

Optimization methods are commonly used in several engineering problems to create 

or design complex systems to improve the performance of the structure in the field of 

aerospace, automotive, marine and chemical industries. Some of their applications are 

cost-friendly machining processes, high efficiency energy consumptions processes or 

lightweight product design. Even though most engineering design problems can be 

clarified using stochastic programming techniques like Differential Evaluation, 

Nelder-Mead, Random Search, Simulated Annealing which are most suitable [43]. 

1.2 Objectives and Motivation 

In this thesis, optimization study of surface roughness minimization, cutting forces 

minimization, tool wear and tool life (cutting time) minimizations have been 
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performed considering experimental results of twelve different literature studies. 

Optimization of turning and milling process design variables cutting speed, spindle 

speed, depth of cut, feed, cutting time and tool nose radius have been accomplished 

by four different stochastic algorithms, Differential Evolution (DE), Simulated 

Annealing (SA), Random Search (RS), and Nelder Mead (NM). 

The objectives of this study can be considered as follows; 

 ■ Defining the phenomenon and finding the coefficient of determination by 

 mathematical model in the best way 

 ■ The possibility of experimental parameters selected and commenting  

 behavior of machine for different machine parameters 

 ■ Determination of new objective function 

 ■ Investigating optimum surface roughness, cutting forces, tool wear and  

 tool life value for different machining parameters 

 ■ Comparison of four different stochastic optimization algorithms 

It should be noted that defining the best mathematical model is not simple for any 

machining parameters as well as another machining process turning, drilling etc. 

Because different disturbances dominate the system at different levels. Therefore, the 

mathematical model might be built according to other parameters such as material of 

cutting tool, cooling flowrate, workpiece material etc. However, if some of input 

values are selected to decrease the average roughness value, it would be more accurate 

to define the optimization problem. 

In the current study, the results of 12 different literature studies were examined, and 

optimization process studies were carried out in order to show the deficiencies in these 

studies, to report the problems and to make improvements in the results. If we briefly 

mention about why the results of these literature studies are examined and why these 

studies are carried out, the R2 value cannot be evaluated by using only one or two 

regression models as a decision criterion. It is not usually the case that a strong R2 

correlation equates to a fine match for acceptable structures. Determining the basic 
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actions of the phenomenon requires fresh modeling experiments using alternative 

regression techniques. Furthermore, the models established in the academic research 

have no limitedness control. For this reason, limitedness must be controlled if the 

engineering parameter ranges relate to the selected models. 

As a result of this goal, all of the response values as cutting forces, surface roughness, 

tool wear, and tool life (cutting life) has been examined using multiple nonlinear 

neuro-regression approach. After that, the limitedness of potential models was 

examined in order to provide accurate results. Eventually, the different direct search 

techniques, including stochastic optimization methods, were carefully implemented. 

In this present study, the experimental datas are taken from the studies of “Aouici, H., 

Fnides, B., Elbah, M., Benlahmidi, S., Bensouilah, H., & Yallese, M. (2016) [44]; 

Bouacha, K., Yallese, M. A., Khamel, S., & Belhadi, S. (2014) [45]; Davoodi, B., & 

Eskandari, B. (2015) [46]; Hanief, M., Wani, M. F., & Charoo, M. S. (2017) [47]; 

Jena, J., Panda, A., Behera, A. K., Jena, P. C., Das, S. R., & Dhupal, D. (2019) [48]; 

Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013) [49]; 

Meddour, I., Yallese, M. A., Bensouilah, H., Khellaf, A., & Elbah, M. (2018) [50]; 

Qu, S., Zhao, J., & Wang, T. (2017) [51]; Paturi, U. M. R., Devarasetti, H., & Narala, 

S. K. R. (2018) [52]; Sahoo, A. (2014) [53]; Sahoo, A., Rout, A., & Das, D. (2015) 

[54]; Subramanian, M., Sakthivel, M., Sooryaprakash, K., & Sudhakaran, R. (2013) 

[55]” is used for analysis and optimization processes. The names and numbers of case 

studies are listed in Table 1.1. These data sets have the cutting parameters as cutting 

speed, spindle speed, depth of cut, axial depth of cut, feed rate, feed per tooth, tool 

nose radius, cutting time and width of flank wear the corresponding values. First, the 

mathematical model predicting the data was investigated for the outputs by 

performing regression analysis. The accuracy of the model has also been verified by 

regression test methods. Then, cutting parameters were optimized for minimum 

surface roughness, minimum cutting forces, minimum tool wear and minimum tool 

life (cutting time) utilizing optimization methods. Table 1.2 contains the various 

optimization approaches to optimize various design variables of the literature studies 

of the present study. 
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Table 1.1: Number and names of the case studies 

Number of 

Case Study 
Name of Case Study 

1 
Aouici, H., Fnides, B., Elbah, M., Benlahmidi, S., Bensouilah, H., & Yallese, 

M. (2016) [44] 

2 Bouacha, K., Yallese, M. A., Khamel, S., & Belhadi, S. (2014) [45] 

3 Davoodi, B., & Eskandari, B. (2015) [46] 

4 Hanief, M., Wani, M. F., & Charoo, M. S. (2017) [47] 

5 
Jena, J., Panda, A., Behera, A. K., Jena, P. C., Das, S. R., & Dhupal, D. (2019) 

[48] 

6 
Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013) 

[49] 

7 
Meddour, I., Yallese, M. A., Bensouilah, H., Khellaf, A., & Elbah, M. (2018) 

[50] 

8 Qu, S., Zhao, J., & Wang, T. (2017) [51] 

9 Paturi, U. M. R., Devarasetti, H., & Narala, S. K. R. (2018) [52] 

10 Sahoo, A. (2014) [53] 

11 Sahoo, A., Rout, A., & Das, D. (2015) [54] 

12 
Subramanian, M., Sakthivel, M., Sooryaprakash, K., & Sudhakaran, R. (2013) 

[55] 
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Chapter 2 

Machining Process 

2.1 Milling  

Machining refers to any of many techniques that use a checked material-removal 

operation to cut a section of raw material into a desired eventual form and 

dimension. There are a lot of types of machining such as turning, milling, drilling 

etc.  

Milling process has a different technique from turning operation. Tools have 

multiple cutting profiles. These cutting edges move along the tool path in order to 

obtain flat or required surface profiles. The feed direction is vertical to the rotation 

of the center line of the tool [56].  

The cutting tool is made of harder material than the workpiece material. Relative 

motion is necessary to machine the workpiece. The first motion is achieved with a 

specific speed as called cutting speed. Besides the cutting speed, the tool also 

moves with the terms of feed. The remaining parameter is how far the tool travels 

into the workpiece called depth of cut. These three terms are completely known as 

cutting conditions. The machine tool holds the workpiece, orients the machine tool 

according to the work, and supplies the energy for the process at the given speed, 

feed, and depth [56].  

Early 1960s milling had been used for single purpose as obtaining flat surface. 

However, after machine center technology with desired accuracy and precision any 

desired tool path geometry is processed. Nowadays there are four types of milling 
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operations such as face milling, shoulder milling, peripherical milling (or known 

as flank milling), and ball end milling shown in Figure 2.1 and Figure 2.2 [57].  

For reaching the required geometry, the number of types of milling operations has 

increased for more specific machining such as profile milling, square shoulder 

milling, slot milling. In slot milling tool generates a tool path within slot by various 

types of end mill as shown in Figure 2.3 [57].  

Figure 2.1: Milling types (a) face milling (b) shoulder milling (Source: [57]) 

Figure 2.2: Milling types (a) peripheral (or flank) milling (b) ball-end milling 

(Source: [57]) 

With the increasing of machining technologies and processing speeds, the wear of 

the tool is increasing. Machine tools need to be renewed due to the reduced 

workpiece surface quality with the wear of the tools. This leads to increased tool 

costs. On the other hand, due to the reason that the surface quality values are 

desired, the effect of the tool wear on the surface quality is increasing. 
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Figure 2.3: Groove or slot milling operation with different types of end mill 

(Source: [58]). 

2.2 Turning  

Tool and workpiece must move relative to one other in order to execute machining 

processes. There are numerous fundamental parameters that combine to create this 

relative motion, including the primary as cutting speed and secondary as cutting 

feed. In conjunction with these actions, tool geometry and tool setup relative to the 

workpiece determines the form of the so many processed surfaces. 

Workpiece rotation and tool feed movement are the principal revolution motions 

during processes, which are referred to as turning. This motion conjunction is used 

to process outside and inside of the workpiece. Known as a lathe, this machine tool 

performs the basic turning motions necessary. It has taken centuries for the lathe 

to evolve. Through a computer-style menu-driven, CNC lathes are controlled 

electronically by a computer-based software that can be changed and shown on the 

machine, along with an imitated manufacturing view. 

Cylindrical surfaces are machined using the turning process. Figure 2.4 depicts the 

fundamental turning motions. These motions are:  
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 ■ The rotation of the workpiece on all sides of the turning centerline is the 

main move. 

■ The tool's translatory move, often called as the feed motion, is the 

subsidiary motion. 

 

Figure 2.4: Basic turning operations (Source: [56]). 

The orientation of the feed motion regarding the turning centerline and the form of 

the tool varies in fundamental turning activities depicted in Figure 2.4. The feed 

orientation is parallel to the turning centerline in parallel turning (also called 

longitudinal turning). The feed orientation is the vertical aline to the turning 

centerline while facing and parting. The feed orientation in tapering is at an angle 

to the turning centerline. On a contemporary CNC lathe, Figure 2.5 depicts a range 

of turning processes. 
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Figure 2.5: Basic motions in turning operations (Source: [56]). 

Boring is a type of internal turning that is applied to expand the interior diameter 

of an existing hole drilled with a drill or a cored hole in a casting. Boring follows 

exactly similar fundamental motions as turning, as seen in Figure 2.6. 

 

Figure 2.6: Fundamental motions in boring process (Source: [56]). 

Boring accomplish these essential goals: 

 ■ Dimensioning: In the process of boring, the hole is made the right 

dimension and the surface quality is improved. 
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 ■ Levelness: Boring rectifies a hole that has already been drilled or cast. 

 ■ Centering: Rotary holes are made coaxial by boring. 

Figure 2.7 indicates that many of the turning actions that occur during external 

turning also occur during boring. If the workpiece is turned externally, the tool 

overhang and tool holder dimension are not influenced by the workpiece's extent. 

On the other hand, when it comes to internal turning, or boring, the diameter and 

extent of the workpiece's hole severely limit the tool's option. 

 

Figure 2.7: Basic motions in boring operations (Source: [56]). 

2.3 Surface Roughness 

Surface roughness is defined as the average of surface levels throughout the 

surface. The vertical variations of an actual surface from its absolute shape are used 

to calculate it. The surface is rough if these variances are substantial; the surface is 

smooth if they are modest. Surface roughness has a significant impact on how a 

machine affects its surroundings. Rough surfaces tend to wear down faster than 

smooth surfaces, and their contact has greater friction coefficients. As a result, 

surface roughness is a common surface integrity characteristic given by the 

component drawing. Even though roughness is generally undesirable, reducing the 

roughness of a machined surface will almost always raise its performance and 

production costs enormously. 
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The arithmetic mean roughness is the most commonly used roughness parameter, 

and its brief description is Ra. The additional most used parameters are Rt and Rz. 

Rz is ten-point mean roughness and Rt is the highest point of the sample surface 

evaluated in accordance with Standard ISO 468:1982: Surface roughness – 

Parameters, their rates, and basic guidelines for establishing requirements. 

The cutting edge angles κr and κr1 have the greatest impact on the surface 

roughness of processed components (Shaw, 1984). Figure 2.8 shows the most 

understandable situation where the nose radius is zero to understand this effect. 

Surface roughness is depicted by triangle ABC as a result of tool progress owing 

to cutting feed f. Triangle having edges AC, BC, and AB. AC is exactly the same 

with the cutting feed per cycle, BC is aligned with the main cutting edge AD, AB 

is collinear with the subsidiary cutting edge AE. 

 

Figure 2.8: Roughness left on the machined surface (Source: [59]). 

According to the Figure 2.8, surface roughness is either theory-based or 

geometrical. κr and κr1 are cutting edge angles that affect roughness distance Rt 

and roughness profile (theory-based arising from feed markings). Using the highest 

peak-to-valley length, this roughness may be calculated for the tool without nose 

radius (Figure 2.9 (a)): 
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 𝑅𝑡 =
𝑓 sin κr sin κr1
sin(κr+κr1)

 (2.1) 

 

Figure 2.9: Various tool nose radius (Source: [59]). 

Determine the roughness while using an entirely-radius tool is implemented 

(Figure 2.9 (b)) may be as: 

 𝑅𝑡 ≈
𝑓2

8𝑟𝑛
 (2.2) 

2.4 Cutting Forces 

When a cutting tool is introduced into a substance, it causes the material to resist. 

This resistance is called as cutting force. Machining procedures for cutting such as 

turning, milling, and drilling are carried out on production using unlike force 

orientations and magnitudes. Although cutting processes change, standard 

finishing parameters remain for the material surface. Leading to this production 

trends are: considerable minimizing in production costs, shorter manufacturing 

times, better surface entireness, minimizing or eliminating the usage of 

ecologically hazardous cooling mediums, and heat treatment-induced component 

disfigurements [1–4].  
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A specific amount of force is exerted by the tool to the surface being taken, and 

therefore to the workpiece, during cutting it. According to the numerical control of 

machines (ISO 841) shown in Figure 2.10, this force is called as the resultant 

cutting force R, which is a 3D vector. All the time, the cutting edge is the initial 

point of this axis system. Z-axis is in line with the feed motion orientation and the 

y-axis is in line with the prime motion orientation. 

Cutting force is usually divided into three elements throughout the axis of the tool 

coordinate system for convenience's sake and Fc (may be called as tangential force) 

has its principal and strongest element throughout the y-axis. It's usually the most 

important element. In the z-axis, the force Ff is in line with the feed direction. Ff is 

called as feed force (may be called as axial force). Fp is called a radial element 

because it works throughout the workpiece's radial direction. As seen in Figure 

2.10, the workpiece exerts a response force R to the tool (b). Figure 2.10 shows 

how this force is broken down into three elements (b). Besides these, the element 

Fxz should be taken into account, which functions in the xz plane and is required to 

increase precision. 

 

Figure 2.10: Cutting force and its elements: (a) as exerted to the workpiece, (b) as 

exerted to the tool (Source: [59]). 
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Cutting force performance is also profoundly affected by the experimental 

variables such as cutting speed, spindle speed, feed rate, feed per tooth, tool nose 

radius, depth of cut, cutting time etc.  

2.5 Tool Wear 

A material removal process provides dimensional accuracy and excellence of 

material texture. The degree of surface quality is mostly connected with the surface 

profile of the cutting tool. Tools wear over time because of the mechanical, 

thermal, chemical and abrasive loads and thus tool change operations make an 

unproductive production due to cutting tool cost and set-up time which is an 

unavailable period to produce. These instabilities create different work areas for 

tool users and machine manufacturers. 

The tool wear is based on friction of metal cutting which is affected by the cutting 

power, process excellence, tool life and manufacturing cost. As tool wear reaches 

high, the surface quality decreases and dimension error starts appearing as seen in 

Figure 2.12. 

Determining the life of the cutting tool is beyond the measurements of flank or 

crater wear because the unknown inputs also play a role for tool wear in small and 

even large part. With high-speed cutting operations cutting loads on cutting tools 

increase in proportion to cutting speed. Figure 2.11 indicates that cutting speed 

ranges according to different materials [60]. 
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Figure 2.11: Cutting speeds in milling for different materials (Source: [60]) 

 
Figure 2.12: Comparison between the workpiece surfaces 

(a) new cutting tool and (b) worn cutting tool 

In end-mill cutters occurs mainly two different types of wear. One of them is flank 

wear where occurs at the cutting edges of tool. Another type is central wear where 
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occurs at the center of the tool. Figure 2.13 shows the wear mechanisms where is 

monitored by SEM and types of the wear. Comparing with the ordinary flank wear 

of the single point turning tool or twist drill, these types of wear are completely 

different [61]. 

Increased tool life reduces these repetitive processes at this stage. Therefore, 

choosing the optimal cutting parameters is a great importance for a milling process 

and also turning processes at the point of cost and quality. 

 
Figure 2.13: Central wear and flank wear at the cutting edges are monitored by 

SEM with original magnification 100 times (Source: [61]) 
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Chapter 3 

Regression Analysis 

Regression analysis is utilized to simulate the correlation of the input and output 

of the engineering systems as a mathematical function. Statistical measurements 

are increased to find the strength of the relationship between dependent and 

independent variables. This mathematical function is named as regression 

equation.  

Regression analysis offers a mathematical equation which is named regression 

equation. Gauss and Legendre used the least-squares methods which is the basic 

mathematical tool in order to calculate the length of the arc of the meridian from 

Dunkirk to Barcelona [29]. The first progress for regression is made by Francis 

Galton to investigate the relationship the height of children and their parents. He 

observed that the height of the children of short parents tended to be short and 

height of the children of long parents tended to be long. Also, he found that the 

height of his children tended to approach the mean of the mass average. This 

tendency is called “regression to mediocrity” by Galton. This study is the first 

regression analysis [30].  

3.1 Regression Models  

One of the basic elements of regression analysis is the regression model. A model 

is a mathematical function that describes the experimental system in which 

quantitative terms are studied. In general, a model is represented as;  

 𝑦 = 𝑓(𝑥; 𝑎) (3.1) 
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Generally, the models have three basic components: mathematical relationship or 

function (f), parameters (a) and variables (x). In the most common cases, they have 

only one or two independent variables, and are simple from real-valued continuous 

equations. These include exponential, hyperbolic and logistic functions. The same 

functions can also be used to model completely irrelevant events from existing 

physical processes.  

Depending on how the function is derived, the models can be classified into two 

groups. One of them is structured or mechanistic models and the another is 

unstructured or empirical models.  

Structured models can be obtained from the theoretical background of the 

mechanism. Unstructured models are chosen from empirical functions. Because 

they are useful in explaining measurements. A third group of semi-empirical 

models is classified between these two types, since they are derived from 

theoretical considerations and partly from observations.  

Another component of the models is parameters. When the function determines the 

type of curve, its actual shape, position and ratio are determined by the parameter 

values. In mechanical and semi-empirical models, the parameters are 

fundamentally important as they represent proportions or diffusion coefficients. In 

empirical models, the parameters are necessary to define the curve precisely and 

more efficiently, but do not represent any fundamental feature of the system.  

Depending on the mathematical expression of the parameters within the model 

function, we can classify the models in two categories as linear and nonlinear. This 

distinction is important. Since the methodology required for the operation of 

mathematical models generated by nonlinear functions is much more complex than 

linear models. Secondly, linear models are often easy to handle and understand, 

although they can be used to model only a few phenomenon in real life.  

The functions may also be linear or non-linear according to their independent 

variables. Any combination of linearity or non-linearity is available according to 

variables and parameters.  
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In the context of this thesis, due to the complexity of the problem, nonlinear 

regression models were preferred.  

3.2 Purpose of Regression Analysis  

Nonlinear regression can be used for three different purposes:  

• Testing the validity of the model (or comparing the hypothesis),  

• Characterize the model (in other words to estimate the parameters),  

• Estimating the behavior of the system (interpolation and calibration).  

Model validation or comparison is an important application of regression analysis. 

Reaching a well-fitting curve between model and experiment data for a system is 

one of the best indicators of the success of the mathematical model. But a good fit 

is not always a proof that the model is correct. At this stage, action of the researcher 

is significantly important to build meaningful work.  

The estimation of the parameters is a direct result of regression. Regression is 

useful for predicting behavior, i.e. interpolation (or prediction) and calibration (or 

inverse prediction). Interpolation and extrapolation can be used to predict the 

behavior of the system without having to perform real experiments.  

3.3 Non-Linear Regression Analysis  

Nonlinear regression is more flexible than linear regression. Since the function 

does not need to be linear or linearizable. For this reason, it provides a wide 

selection of nonlinear regression phenomena to fit the data. The only requirement 

for the function “f” is that it differs according to its elements. This can be calculated 

with the least squares method. Nonlinear regression may be more appropriate than 

the use of transformations and linear regression where the f function can be 

linearized.  

For nonlinear regression, mathematical modeling processes can be carried out 

systematically by taking into consideration the important features.  
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Nonlinear regression requires knowledge of the function “f” which requires a 

comprehensive understanding of the process under consideration (polynomial, 

trigonometric, exponential, etc.). The linear regression models are suitable for 

process estimations, which are roughly defined, but do not require precise clarity.  

The nonlinear regression model can be expressed as; 

 𝑦𝑖 = 𝑓(𝑦𝑖; 𝑥) + 𝜀𝑖 (3.2) 

It is assumed that the ε error term can be taken independently and is normally 

distributed. Since nonlinear regression models contain the most general 

mathematical expressions, it is not possible to write their functionalized 

generalized form. However, a few basic types of the function used in the field of 

engineering can be expressed as below:  

Polynomial type function; 

 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛 (3.3) 

Exponential type function;  

 𝑦 = 𝑎0 + 𝑎1𝑒
𝑥 + 𝑎2𝑒

𝑥2 +⋯+ 𝑎𝑛𝑒
𝑥𝑛 (3.4) 

Trigonometric type function;  

 𝑦 = 𝑎0 + 𝑎1𝑠𝑖𝑛𝑥 + 𝑎2𝑠𝑖𝑛𝑥
2 +⋯+ 𝑎𝑛𝑠𝑖𝑛𝑥

𝑛 (3.5) 

Logarithmic type function;  

 𝑦 = 𝑎0 + 𝑎1𝑙𝑛𝑥 + 𝑎2𝑙𝑛𝑥
2 +⋯+ 𝑎𝑛𝑙𝑛𝑥

𝑛 (3.5) 
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Rational type function;  

 𝑦 =
𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯+ 𝑎𝑛𝑥
𝑛

𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛
 (3.6) 

At this stage, the multivariate states of the above model types can be derived with 

similar logic with more than one input. Another important point is that, for 

example, special functions or different combinations of elementary functions can 

be selected as model structures by acquiring a broader understanding of the 

families of mathematical functions.  
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Chapter 4 

Neuroregression Approach 

This chapter surveys the fundamental mathematical instruments. Many researchers 

are going to be familiar with several of the topics presented here. The reader can 

evaluate which areas need to be studied further. The main aim of the chapter is to 

present the essential and modern approaches to the modeling and design of 

engineering structures in a concise manner. Figure 4.1 shows all these steps 

without breaking the order of the optimal design process for a system. 

4.1 Design of Experiments (DOE) 

Design of Experiments (DOE) is a helpful method to find new processes, try to 

learn more about the existing processes, and optimize them for an excellent 

performance. In this section, we present and discuss some DOE techniques. As 

mentioned before, this part's goal is to establish the issue by highlighting the key 

approaches utilized in practice. As a result, the lineup of methods considered has 

a great distance from exhaustive. It is crucial to choose adequate statistical tools to 

analyze the data available, since the results can be significantly affected by noise. 

Replication, randomization, and blocking are the fundamental principles of 

statistical methods in DOE. Replication is the experiment’s repetition to achieve a 

more accurate result and to reduce the experimental error. Randomization 

identifies the irregular array in which the experiments are to be carried out. 

Blocking is intended to insulate a known methodical bias influence and inhibit the 

main effects from being obscured [62, 63]. Due to the number of crunchers 

concerned and the use of complicated statistical jargon engineers generally do not 

like to employ DOE [63]. In manufacturing processes, experiments are being 

carried out to enhance our knowledge and understanding of them. The relationships 
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between the core factors of the inputs and the behaviors of the output can, 

therefore, be examined [63, 64]. One of the comprehensive strategies in 

engineering companies promoted by plenty of engineers is One-Variable-At-a-

Time (OVAT). In this approach, it is changed one parameter at a time, with all 

other factors fixed throughout the experiment. The results, however, are unreliable, 

wasteful, and may offer the processes a misleading conclusion. If a particular 

attribute of a component is affected by several factors, then the best choice is DOE 

[63, 64, 65]. An engineer frequently makes systematic changes in the input 

parameters and specifies how well the output performance varies. It is known that 

all parameters have not the same impact on the results. The aim of a deliberate 

design is, therefore, to realize which process parameters tend to affect the output 

more and then to identify the best levels for the factors [62, 63, 66]. This approach 

provides high process efficiency, more stable results, low manufacturing costs, and 

saves time for the researchers. 

 

Figure 4.1: Flow diagram of design process 

4.1.1 DOE Techniques 

The selection of a DOE approach relies on the experiment’s goals and the number 

of factors to be considered. In this section, the most widely used approaches have 

been listed and explained briefly. These approaches are Randomized Complete 

Block Design, Full Factorial, Fractional Factorial, Central Composite, Box-

Behnken, Taguchi, Latin Hypercube, and D-Optimal Design [62].  
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4.1.1.1 Randomized Complete Block Design 

The distribution of treatment for experimental components is not strictly limited. 

In practice, however, there are situations in which the experimental data varies 

relatively widely. In such situations, the design made in relation is called a 

Randomized Complete Block Design (RCBD). The main goal of blocking is to 

minimize the variability between experimental units within a block and to 

maximize the variation between blocks. 

Advantages of the RCBD 

1. It is possible to remove the treatments or replicates from the analysis. 

2. Several treatments can be more often replicated than the others. 

3. There is no strict limitation on the number of treatments or replicates. 

4. Even if the experimental error is not homogeneous, there can still be valid 

comparisons [63, 67]. 

Disadvantages of the RCBD 

1. There exists a smaller error on df for a small number of treatments. 

2. If the number of treatments is enormous and there is a considerable variation 

between experimental units, it is possible to obtain a significant error term. 

3. RCBD is not very good on the efficiency of the experiment when there is 

missing data. 

4.1.1.2 Full Factorial Design 

It is generally known that the DOE method most frequently used in production 

industries are full and fractional factorial designs at second and third levels. 

Factorial designs might allow a researcher to explore a response consistent on the 

impact of the variables. A factorial design may be separated as full or fractional 

factorials. An experimental design that every factor setting occurs with every other 

one is a full factorial design. If the amount of elements is five or higher, a full 

factorial design needs a significant amount of operations and is not very useful. In 

these cases, a fractional factorial design is a better choice [63, 64]. 
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4.1.1.3 Fractional Factorial Design 

Researchers usually cannot have sufficient time, money, and funding to conduct 

full factorial studies. If some higher-order relationships are not essential, the 

primary effects and second-order interplays can be acquired by operating only a 

section of the full factorial study. A fractional factorial design is defined as a form 

of orthogonal array layout that enables researchers to explore significant impacts 

and the required impacts of relationships with a minimum amount of exercises or 

experimental runs [63, 64, 67, 68]. 

4.1.1.4 Central Composite Design 

The highest degree important response surface design is a central composite 

design, which creates a factorial design. Five factorial levels are desired for a 

central composite design. Among the most critical advantages is that the corner 

points are checked, if it is shown that curvature is not substantial, then it is 

accomplished. If the curvature exists, the primary task is to generate the star runs 

[65].  

4.1.1.5 Box-Behnken Design 

Box-Behnken Design is based on the cube edge midpoints rather than the corner 

points, lead to fewer runs; however, apart from the Central Composite Design, all 

runs must also be done. It should be noted that only three-factor levels are 

appropriate in The Box-Behnken Design. It has advantages if the curvature stated 

in the screening experiment is likely necessary [63]. 

4.1.1.6 Taguchi Design 

Taguchi methods, or sometimes called robust design methods, are statistical 

methods. The primary purpose is to keep the output fluctuation minimal even in 

the appearance of noise. The technique significantly increases the efficiency of 

engineering. The Taguchi design helps to guarantee product quality by deliberately 

considering the noise factors and the amount of mistake in the area. This approach 
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centers on enhancing the primary function of the design process, thereby 

promoting flexible designs [63, 67]. 

Advantages 

1. It is simple and easy to use in several other engineering circumstances, enabling 

it as a robust yet straightforward tool. 

2. It underlines, within some qualification constraints, a mean production 

characteristic rate comparable with the final rate instead of just a rate, thus 

enhancing the quality of the product. 

3. Without an impractically large number of testings, it enables the investigation 

of many distinct variables. 

Disadvantages 

1. Precisely that the acquired findings are only comparative and do not specify 

which variable has the most significant impact on the characteristic value of the 

product. 

2. It can not be used in all interactions among all the parameters, since orthogonal 

arrays do not examine all parameter combinations. 

3. It is hard to account for parameter interactions. 

4. It is offline and hence improper for a procedure that changes dynamically, as in 

a computer simulation. 

4.1.1.7 Latin Hypercube Design 

It is a technique to produce an almost random specimen of data sets from a 

Multidimensional Distribution, as well as a generalization of the Latin Square 

Concept to a random set of measurements. In this approach the first step is, to 

identify how many sample points to get an address and through which row and 

column the sample point was drawn for each sample point. Latin Hypercube 
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method guarantees that collection of arbitrarily generated values represents the 

actual fluctuation, while standard arbitrary specimen selecting is only a set of 

random numbers with no ensures [62–64]. 

4.1.1.8 Optimal Design (D-Optimal) 

It is a computer-aided design that includes the finest portion amongst all feasible 

experiments. Software tools may also have distinct processes to generate D-

optimal designs because the final design may vary on the tool to be used [63, 68]. 

A selection method creates the finest design based on a chosen factor and a 

specified amount of test runs. This approach is especially helpful if classical design 

methods are not being used. These situations are: 

1. If supplies or factor configurations are restricted. 

2. If decreasing in the amount of design runs is required. 

3. When using the operation and mixing variables in the same design. 

4. When the experiments already carried out must be included. 

5. If the region of the experiments is unstable [63, 65, 66]. 

4.2 Mathematical Modeling 

When examining the literature, studies performed for the intent of engineering 

optimization, some inadequate approaches were recognized and listed below: 

i) Since, the interaction of all experimental and constructional variables must be 

taken into account while optimizing, updating in the one input with preserving 

the other constant is not a satisfying description, and this approach leads to 

disregarding the nonlinear influence of input variables. 

ii) For many test data generation investigations, the objective function is selected 

one or two traditional regression models. The key difficulty is to calculate the 

R2 value of the model for empirical research. The fact that R2 is high does not, 

by itself, reflect the entire process. It measures how well the applied model's 

solutions match those of the empirical data. In another saying, even if the R2 

value is so high for actual structure, it does not indicate a fine match all the time. 
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Besides, the model is limited to explaining the empirical data, but not the 

underlying reaction of events. The need for recently developed engineering 

modeling surveys, including a variety of regression configurations and 

approaches, is a result of this. 

iii) The engineering model function must also be constrained. The whole 

engineering design variables are recognized to be limited. In order to determine 

which models are also constrained by the engineering design variables ranges, 

it is necessary to determine which models are constrained prior to the 

optimization phase. 

iv) In certain cases, algorithms' dependability, sensibility, and stability are not 

considered in optimization investigations of engineering organizations. For the 

stochastic search techniques, anyway, it is vital. 

This is why a unique approximation is proposed to the modeling, design, and 

optimization operation for optimizing the design variables. As a first step, a 

comprehensive analysis of multiple nonlinear neuro-regressions is completed, 

comprising linear, quadratic, trigonometric and logarithmic, as well as their 

rational versions for the solution problem. For the second step, models are verified 

for their limits to ensure that they can supply useful results. It is then followed by 

a variety of direct search strategies (including stochastic ones). 

Optimization of engineering structures begins with defining model in 

mathematical way. Regression Analysis (RA), Response Surface Methodology 

(RSM), Finite Difference Technique (FDT) and Artificial Neural Networks (ANN) 

are used to identify mathematical models. An objective function of the 

optimization problem defined by the model is also derived. 

4.2.1 Coefficient of Determination  

The coefficient of determination (R2) is simply the proportion of observed y change 

which is examined by the simple linear regression model. R2 is a ratio and the 

higher this ratio indicates that the regression model explains the variability for the 

observed values better. If the value of R2 is so small, then another model is 
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established to explain the variation. Usually, this model is selected as a non-linear 

or multiple regression model containing multiple independent variables. Although 

this value is not a fixed value in the literature, it is expected to be above 0.90.  

The calculation of the R2 is given below [33].  

 𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 (4.1) 

where SSE is the summation of squares due to error and SST is the total summation 

of squares.  

The summation of squares owing to regression (SSR) is calculated by using the 

formula given in Equation 4.2. Summation of squares caused by error (SSE) is 

computed by Equation 4.3. The Total Summation of Squares (SST) is summation 

of SSR and SSE in Equation 4.4. In this notation the population mean is 𝑦 , 

prediction mean is 𝑦  and 𝑦 is the observation value.  

 𝑆𝑆𝑅 = ∑(ŷ −  y ) (4.2) 

 𝑆𝑆𝐸 = ∑(ŷ −  y )2 (4.3) 

 𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 = ∑(y −  y ) (4.4) 

SSR is the measure of explained variation, SSE (summation of the squared errors) 

is the measure of unexplained variation and SST (total summation of squares) is 

the compute of total change in y [34].  

4.2.2 Training and Testing  

The mathematical model should be trained with training data set. The purpose of 

training is to investigate the model for testing. Splitting a dataset into training and 

testing datasets is important for better prediction the phenomena. By comparing 
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the predictions to the actual response variable in the test data, it will be able to 

evaluate model’s accuracy.  

The gold standard for assessing the competence of mathematical model to estimate 

the phenomena is to use independent test set. The model has a probability to fit the 

data for selected training data set. However, model performance is determined by 

testing the model with an external test data which is chosen from data set [35].  

The data are separated into two groups randomly and 80% of the data is utilized 

for training, while 20% is utilized for testing. The test stage is then used to produce 

the estimated outcomes by reducing the influence of regression model 

discrepancies, which helps to find out candidate models' estimative skills. To 

illustrate if the model is logical, it is also necessary to evaluate the limits of the 

candidate models for given values. After collecting the appropriate models in terms 

of R2
training and R2

testing, the maximum and minimum values of the models at the 

given interval for each model variable are calculated. 
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Chapter 5 

Optimization Process 

5.1 Introduction  

Finding an approximation of an optimal solution for a function which is defined 

on a subset of finite-dimensional space is one of the most common problems in 

applied mathematics. In combinatorial optimization problems which are crucial for 

most machine learning approaches, there are some objective functions that are 

supposed to be optimized to find an approximation of an optimal solution. Fifty 

years ago, there were a lot of numerical optimization procedures for these 

optimization problems; most of them were deterministic (traditional optimization 

techniques). However, with the development of computer technology, stochastic 

methods (non-traditional optimization techniques) have become the essential tools 

for areas such as engineering, science, business, and statistics. These methods are 

relatively the latest available and popular because of the particular characteristics 

that aren't present in the unarbitrary algorithm [67, 68]. For instance, stochastic 

methods always include probability, such as according to the random distribution 

of rainfall and water usage, in a reservoir, predicting the water level periodically 

or forecasting the various of wasted interactions for a channel of interaction 

depending upon to the random variables appropriate steady bandwidth. On the 

contrary, unarbitrary methods include possibility under no circumstances; and 

outcomes take place based on exact input values [69].  

Random-variable stochastic optimization is the method of reducing or increasing 

the evaluation of a statistical or mathematical function. Noise in calculations or 

Monte Carlo randomization in the detection method, or both, might introduce 

unpredictability [70, 71].  



 

 

39 

In the information technology field and message processing as well as in 

geography, aerospace and finance, stochastic systems may be used to model a wide 

range of industrial, economic, biological and technical challenges. In these 

systems, stochastic optimization is appropriate in order to solve decision-making 

problems, and many researchers have considered stochastic optimization methods 

in solving these problems. For instance, Yan et al. [73] suggested a qualitative and 

quantitative combined modeling specification depending on a progressively model 

configuration framework which consists of the meta-meta model, the meta-model, 

and the top-degree model. The results of the study showed that the suggested 

technique could comprehensively describe the complicated structure. Li and Zhang 

[74] studied the problem of uncertain probabilistic linear-quadratic optimum 

management under the unequal constraints for the final form. In this study, they 

proved the Karush-Kuhn-Tucker (KTT) argument with hybrid constraints, and 

then they obtained new types of Riccati equations. This equation provides the 

necessary conditions for an optimum linear form control process management 

existence which is produced by KKT argument. The development of a dynamic 

programming algorithm was achieved in order to solve the uncertain constrained 

stochastic linear quadratic subject. Aydın et al. [75] studied on the modeling of 

geometrically steady multilayered composites by the use of the efficient global 

optimization method (EGO). The optimization problem of a composite plate under 

good rigidity and poor thermal and poor humidity dilatation coefficients was 

solved. The proposed optimization algorithm in this study is experimentally 

verified. After the design and optimization processes were completed, failure 

analysis of the optimized polymers has been made using Tsai–Hill, Hoffman, Tsai–

Wu and Hashin–Rotem norm. Generic steps of stochastic optimizations for 

renewable energy applications were extensively examined by Zakaria et al. [76]. 

Furthermore, the positive and negative sides of the stochastic optimization were 

emphasized. Significant optimization methods belong to the stochastic 

optimization stages are emphasized.  

In their study, Niamsup and Rajchakit [77] introduced the latest improvements and 

significant stochastic optimization methods. It is claimed that the stochastic 

optimization methods are always more efficient than the deterministic optimization 
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techniques for social, economic, technical aspects of renewable energy systems. 

Niamsup and Rajchakit examined polytopic discretely timed stochastic functions 

in the period time-variant delays applying the parametric dependent Lyapunov-

Krasovskii functional coupled with linear matrix inequality methods and fresh 

form for the strong stableness of the stochastic structure were proposed. 

Maggioni et al. [78] studied the problem which was encountered by a bike-sharing 

service provider who needed to control a group of bicycles over a series of bicycle 

terminals, every single having a defined volume and stochastic requirement that 

changes over time. Multi-phase stochastic optimization methods are presented to 

determine the best number of bicycles to assign to each terminal at the start of the 

operation for unidirectional bicycle distribution systems. Finally, managerial 

insights are provided comparing the solution supplied in the real system with the 

solutions obtained by using the two-stage and the multi-stage models.  

Gutierrez et al. [79] studied on how to cope with the problem of indefinite case in 

the optimal management of the hydrogen network of a petroleum refinery. A two-

stage stochastic optimization method was used to analyze the effect of raw changes 

in the operation of the network, and they were analyzed on how to solve the 

hydrogen network problem to obtain feasible solutions with stochastic and 

deterministic solutions by using real plant data.  

Khayyam et al. [80] proposed a stochastic optimization model for carbon fiber 

production in the carbonizing technique in order to minimize the amount of energy 

used in a proper interval of fundamental structural characteristics. They developed 

procedure operations, and fifty samples of fiber were analyzed for each set of 

operations, their tensile strength, and modulus. During the manufacturing of the 

specimens, the energy consumption was controlled on the procedure material, and 

the five distribution functions were analyzed in order to evaluate distribution 

functions that could the most accurate define the mechanical properties distribution 

of fibers. The Kolmogorov–Smirnov test was performed in order to confirm the 

dispersion goodness of fit and correlational statistics. The result of the study 

showed that the production quality could be predicted using the stochastic 
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optimization models in the given range, and this method minimized the amount of 

energy used of the procedure.  

Tifkitsis et al. [81] produced a stochastic multi-objective cure optimization 

methodology and performed it on the thick epoxy/ carbon fiber laminates. Kriging 

method, which substitutes into Finite Element (FE) simulation, was used to 

construct a surrogate model for computational efficiency. Surrogate model and 

Monte Carlo were coupled and incorporated into a stochastic multi-objective 

optimization frame depend on Genetic Algorithms. The outcomes indicated that 

there exists a substantial decrease of 40% in the temperature exceeding and curing 

time in comparison to regular cure characteristics.  

Genetic Algorithm (GA), Simulated Annealing (SA), Differential Evolution (DE), 

Nelder-Mead (NM), Random Search (RS), Particle Swarm Optimization (PSO), 

Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Markov Chain 

Monte Carlo (MCMC), Tabu Search (TS), Harmony Search (HS), Grenade 

Explosion Method (GEM), Covariance Matrix Adaption (CMA) are the examples 

of stochastic optimization methods [70–73]. Researchers continue to improve, and 

to add new stochastic methods or both to the literature. In the following 

subsections, some commonly used stochastic optimization methods are briefly 

overviewed.  

5.2 Simulated Annealing 

Simulation annealing (SA) method, which is one of the most effective and general 

optimization algorithms of stochastic algorithms, is quite useful to get the lowest 

limit of a function of a considerable number of independent variables. Besides, the 

SA method includes the analogy between the physical annealing process and 

finding the minimum function value in mixed-integer, discrete, or continuous 

minimization problems. In condensed matter physics, the physical tempering 

procedure is known as a thermal procedure in order to obtain the low energy states 

of a solid in a heat bath. Random search with regards to a Markov chain is the basis 

of the SA algorithm, which allows modifications that advance the objective 

function but also retains some non-ideal modifications. 
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At each iteration in the SA algorithm, a fresh random point is produced, and when 

any stoppage requirements are met, the process stops (Figure 5.1). The distance 

between the new and existing position or the scope of the search is on the strength 

of Boltzmann distribution with a scale in proportion to the temperature. Boltzmann 

Probability Distribution [71, 82–84] is defined as 

P(E) = 𝑒−𝐸/𝑘𝑇 

where, 

P(E) :  The Probability of Achieving the Energy Level (E), 

k :  The Constant of Boltzmann, 

T :  Temperature. 

 

Figure 5.1: Flowchart of Simulated Annealing algorithm [82]. 
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5.3 Differential Evolution 

Differential Evolution (DE) is a search technique that was developed by Storn and 

Price in 1996 for optimization problems over continuous domains. DE is among 

the most effective techniques for real-parameter optimization methods at present. 

This algorithm comprises four basic stages: selection, crossover, mutation, and 

initialization. There exist three real management elements in this algorithm: (i) 

differentiation/mutation constant, (ii) crossover constant and (iii) population size. 

The differential evolution performance relies on the manipulation of target and 

difference vector to obtain a trial vector. The other control parameters in DE 

algorithm are (i) problem dimension that scales the difficulty of the optimization 

case, and (ii) the maximum number of generations known as a stopping condition, 

and (iii) boundary constraints [71, 84]. A flowchart summarizing the process of 

DE algorithm is shown in Figure 5.2. 

 

Figure 5.2: Flowchart of Differential Evolution algorithm [85]. 
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The differential evolution algorithm is a population-based algorithm like GA that 

uses similar operators. The primary difference between these algorithms is that GA 

relies on a crossover, which is a mechanism of useful and probabilistic exchange 

of information among solutions in order to find better solutions. However, DE 

relies on mutation operation as the primary search mechanism. This main operation 

is based on the differences among randomly sampled pairs of solutions in the 

population. Even though this method is numerically uneconomical, DE is strong 

and efficient enough to find an optimum global value and to prevent the local 

minimum irrespective of initial points [86]. 

5.4 Nelder-Mead 

Nelder-Mead (NM) is a traditional local search technique that was first introduced 

by Nelder and Mead in 1965 for unconstrained optimization problems. Besides 

that, modified versions of the Nelder-Mead method can be used for the 

optimization problems which contains continuous design variables, non-linear 

constraints and mixed integers. Even though Nelder-Mead is not a global 

optimization method, it is ideal for problems with a limited number of local 

minimums [89]. A flowchart summarizing the process of Nelder-Mead algorithm 

is shown in Figure 5.3. 
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Figure 5.3: Flowchart of Nelder-Mead algorithm [89]. 

5.5 Random Search 

The Random Search, also known as the Monte-Carlo method, is a stochastic 

algorithm that differs from the highest deterministic search algorithms such as 

Branch and Bound, Interval Analysis, and Tunneling. The RS algorithm’s solution 

procedure has certain benefits. For example, while small step approaches can 

locate only the top of a local peak, some type of true search strategy should be 

combined when a search for the absolute maximum of a multimodal function is 

desired. There are several common methods and programs based on random 

number generator in the stochastic process. In order to get approximation to any 

desired distribution, the resultant data must be scaled and modified. The major 

benefit for the proper utilization of Random Search methods is that the method 
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may achieve the global optimum for non-convex, non-differentiable objective 

functions containing continuous, discrete regions. Another benefit of the RS 

technique is that it is very simple to apply for complicated problems. Generally, 

RS methods perform without failures and are known as robust as a consequence of 

quick answers for insufficiently structured global optimization problems [89]. A 

flowchart summarizing the process of Random Search algorithm is shown in 

Figure 5.4. 

 

Figure 5.4: Flowchart of Random Search algorithm [89]. 
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Chapter 6 

Mathematica Implementation 

6.1 Global and Local Optimization by Mathematica 

The Mathematica software has a collection of commands which make exact-

numeric optimization to solve linear-nonlinear and unconstrained-constrained 

problems. In this respect, NMinimize and NMaximize commands are used in 

numeric global optimization methods while Minimize and Maximize commands 

are only appropriate for exact global optimization. Numeric local optimization is 

carried out by using the FindMinimum command. The abovementioned 

commands could all be utilized for linear-nonlinear and constrained-unconstrained 

optimization problems [90]. Detail explanations about commands, algorithms, and 

which types of problems they are used to solve are given in Table 6.1 and Figure 

6.1. 

Numerical global optimization strategies for restricted nonlinear problems may be 

widely classified as gradient-based techniques and direct search techniques. 

Gradient-based methods make apply of first or second derivatives of objective 

function and constraints for calculation, while Direct search methods have a 

probabilistic process and do not need derivative information. 

When the objective function and all constraints are linear functions of optimization 

variables, the problem is known as linear programming (LP) problem. An 

optimization issue can be solved using nonlinear programming (NLP) when certain 

constraints or objective functions are nonlinear. Maximum, minimum or stationary 

points are calculated for an objective function over unknown real variables in the 

presence of congruent and noncongruent, together termed constraints [90].   
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All four methods — Minimize, Maximize, NMinimize and NMaximize — are 

applicable when a global optimization is required. For the type of optimization 

problems comprising random multinomial issues, Minimize and Maximize could 

discover global optimum that are accurate. Questions involving global 

optimization can be handled computationally utilizing NMinimize or precisely 

utilizing Minimize. In addition to this, due to their asymptotic complicatedness, 

the methods utilized are just acceptable for situations with a limited number of 

variables. If the question requires a local optimum, or it can be solved utilizing 

only one or a few distinct points of departure, FindMinimum is the right tool. It 

simply tries to identify a local minimum. It could be worthwhile to use NMinimize 

for minor issues, also for local optimal solution. NMinimize utilizes only one of 

four direct search methods (Nelder–Mead, differential evolution, simulated 

annealing and random search). A mix of KKT solution, inner point, and penalty 

technique is utilized to perfect the solution. NMinimize must be stronger than 

FindMinimum if efficiency is not a concern, besides being a global optimal solver. 

In contrast, when the efficiency is significant, FindMinimum may be utilized if a 

local minimum is required, or an excellent point of departure is required, or the 

situation has just one lower point (e.g., convex), or the situation is big-budget. The 

similar challenge with seven parameters is answered with utilizing FindMinimum 

and NMinimize. The computation of the limitations is rather costly. [90]. 

In this chapter, the Mathematica instructions (FindMinimum, NMaximize, 

Nminimize, RandomSearch, SimulatedAnnealing, NelderMead, 

DifferentialEvolution) are explained and the capability of the algorithms are 

utilized to determine the global lower limit for distinct test functions. 



 

 

49 

 

Figure 6.1: Mathematica optimization process [90]. 

Table 6.1: Optimization methods and instructions [90]. 

Optimization Types Optimization Methods/Algorithms 
Mathematica 

Commands 

• Numerical Local 

Optimization 

• Linear Programming Methods 

• Nonlinear Interior Point Algorithms 

FindMinimum 

FindMaximum 

• Numerical Global 

Optimization 

• Linear Programming Methods 

• Differential Evolution 

• Nelder-Mead 

• Simulated Annealing 

• Random Search 

NMinimize 

NMaximize 

• Exact Global 

Optimization 

• Linear Programming Methods, 

• Cylindrical Algebraic Decomposition 

• Lagrange Multipliers 

• Integer Linear Programming 

Minimize 

Maximize 

• Linear 

Optimization 

• Linear Programming Methods 

(simplex, revised simplex, interior point) 
LinearProgramming 

6.1.1 FindMinimum 

The FindMinimum command is utilized to determine the global lower limit 

function for unconstrained and constrained optimization problems [90]. 
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The options of the FindMinimum command are Method, MaxIterations, 

WorkingPrecision, PrecisionGoal, and AccuracyGoal. 

The Method option ventilates that the FindMinimum command selects which 

method solves problems. Hereof, unconstrained optimization problems; (i) 

Newton utilizes the exact Hessian or a finite difference approximation, (ii) 

QuasiNewton uses the quasi-Newton BFGS approximation which was composed 

by updates based on past steps, (iii) the LevenbergMarquardt method also known 

as the damped least- squares (DLS) method, is employed to solve non-linear least-

squares problems, (iv) the ConjugateGradient method is appropriate for solving 

linear systems, (v) the PrincipalAxis method does not need derivatives and it 

requires two starting conditions in each variable. In constrained optimization 

problems, only InteriorPoint can be selected as a method. 

The MaxIterations option indicates the maximum number of iterations which 

ought to be utilized. In the restricted optimization problems, the standard 

“MaxIterations->500” is utilized. 

WorkingPrecision, PrecisionGoal, and AccuracyGoal are options specifying the 

number of digits of precision.  The former controls the internal computations while 

the latter checks the final result. By default, WorkingPrecision->prec is equal to 

MachinePrecision but If prec>MachinePrecision a constant prec value which is 

used during the calculation. When AccuracyGoal and PrecisionGoal cases are 

selected as Automatic, the standard values are set to WorkingPrecision/3 and 

Infinity, respectively [90]. 

Carrom table function, which is a non-separable and multimodal function, and has 

many local minima has taken as a test function, and the FindMinimum command 

and the effect of its options in finding the local minima are investigated [92]. 

In[1]:=  f[x1_,x2_]:=-(Cos[x1]Cos[x2] 
Exp[Abs[1-((x1^2+x2^2)^0.5)/Pi]])^2/30 

In[2]:=  Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}, 
AxesLabel->{x1,x2,y}] 

In[3]:=  FindMinimum[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2}] 
Out[3]=  {-24.1568,{x1->9.64617,x2->9.64617}} 
In[4]:=  FindMinimum[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 

{x1,x2},Method->“InteriorPoint”] 
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Out[4]=  {-0.246302, {x1 -> -1.22418*10^-14, 
x2 -> -1.29143*10^-14}} 

In[5]:=  Do[Print[FindMinimum[{f[x1,x2],-10≤x1≤10, 
-10≤x2≤10},{x1,x2},Method->”InteriorPoint”, 
“MaxIterations”->i]], 
{i,{1,10,100,500,1000,2000,4000,8000}}] 

 {-0.0105322,{x1->0.969586,x2->0.969586}} 
{-0.246302,{x1->-8.74067*10^-8,x2->-8.74067*10^-8}} 
{-0.246302,{x1->-8.37899*10^-15,x2->-8.38925*10^-15}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 

In[6]:=  Table[Print[FindMinimum[{f[x1,x2],-10≤x1≤10, 
-10≤x2≤10},{{x1,RandomReal[{-10,10}]}, 
{x2,RandomReal[{-10,10}]}},Method-> 
“InteriorPoint”]],{10}] 

 {-0.0368271,{x1->0.000019185,x2->-3.44978}} 
{-1.42781,{x1->6.50458,x2->-6.50458}} 
{-6.7549,{x1->9.68366,x2->-6.45799}} 
{-0.272117,{x1->3.63079*10^-7,x2->-6.59135}} 
{-1.42781,{x1->6.50458,x2->-6.50458}} 
{-2.01069,{x1->-1.67999*10^-7,x2->9.73295}} 
{-1.42781,{x1->-6.50458,x2->-6.50458}} 
{-0.436543,{x1->6.56051,x2->3.28309}} 
{-0.0843916,{x1->-3.36299,x2->3.36298}} 
{-2.78243,{x1->-9.71802,x2->3.24199}} 

6.1.2 NMinimize and NMaximize Functions 

By utilizing search methods, these Mathematica functions allow us to reach 

optimal solution difficult issues in science and engineering and their particular 

characteristics. They are effective at discovering global optimum solutions, but 

even without restrictions and boundary conditions, it may be challenging to get 

optimized results. The best way to cope with this situation might be optimizing 

given functions with different initial conditions. The following examples are 

obtained again using the initial test functions; Ackley function of f (x1, x2) and 

Holder Table 1 function of g(x3, x4), respectively. 

In[15]:=  NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}] 

Out[15]=  {0.8740,{x1→-0.9984,x2→-2.9952}}  

In[4]:= NMaximize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}]  

Out[4]=  {12.3202,{x1→34.5137,x2→34.51377}} 

In[7]:= NMinimize[{g[x3,x4],-10≤x3≤10,-10≤x4≤10},{x3,x4}]  
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Out[7]=  {-26.9203,{x3→9.6461,x4→9.6461}}  

In[8]:= NMaximize[{g[x3,x4],-10≤x3≤10,-10≤x4≤10},{x3,x4}] 

Out[8]=  {-2.5326×〖10〗^(-13),{x3→-4.7498,x4→-4.7123}} 

According to initial results, global minima and maximal values of Ackley Function 

might be achieved. However, it is seen that it was not valid for Holder Table 1 

function. Adjustment of the parameters or changing the restriction region might be 

effective towards obtaining global values.  

Limitations can be the shape of lists and/or logical mixtures of alternatives, 

equalities and inequities inside the domain. To exemplify, z ∈ Integers, should be 

added in line if it is necessary to describe outcomes as integers. Due to this 

limitation, the only solutions that are feasible are integers. To start optimal 

solution, the NMinimize instruction also requires a quadrilateral beginning area. 

There should be upper and lower boundaries for every parameter in the provided 

function. Utilizing the Method selection allow us to establish various types of 

search methods is a procedure to get unautomated set results as seen previous parts 

of this chapter performed using SA and RS algorithms. Here, it can be said that if 

the function being minimized or maximized (called as an objective function) and 

constraints are linear, the LinearProgramming method is the default setting in the 

solving process. If the central part of the objective function is not numerical and 

also the variables are in integer form, DE is the algorithm as default. In other 

situations, NM is the search algorithm to be used. If NelderMead does not provide 

desirable solutions, it switches with DE to obtain optimum values [90]. 

6.2 Random Search 

The Random Search (RS) method implemented by Mathematica has a stochastic 

approach. In the working process, the algorithm composes population, including 

random starting points, and then the algorithm evaluates the convergence behavior 

of the points of departure to the local lowest limit utilizing the FindMinimum local 

search method. During this process, the options: (i) SearchPoints determines the 

number of starting points as per “min(10 f,100)” expression, where f is the total 

amount of variables, (ii) RandomSeed adjusts the starting value for random 
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number producer, (iii) Method is defined by which method to use for minimizing 

the objective function by FindMinimum. In here, for unconstrained optimization 

problems, FindMinimum command uses Quasi-Newton as search method which 

does not need the second derivatives (Hessians matrix) to be calculated; instead, 

the Hessian is revised by examining consecutive gradient vectors. In the event that 

the constrained optimization problem, the nonlinear interior point is selected as a 

search method by the FindMinimum command, (iv) PostProcess option can be 

selected as Karush–Kuhn–Tucker (KKT) conditions or FindMinimum. At the end 

of these processes, the finest local lower limit is selected as result. 

Mathematica automatically controls the options InitialPoints, Method, 

PenaltyFunction, PostProcess, and SearchPoints used in random search 

algorithm, and appropriate values of options are selected according to optimization 

problems [90]. The RS algorithm follows the procedure given in Figure 6.2. 

In order to verify the effectiveness capacity of the Random Search algorithm in 

finding the global minimum, separable and non-separable multimodal test 

functions having more than one, few or many local minima are used. This kind of 

global optimization problems are quite hard when an algorithm is not designed 

appropriately, and it can be inserted into the local minima without finding the 

global minimums or not all global minimums. In this respect, the first selected test 

function, which has global minima is located at f (0,0) = 0 is Ackley [92]. The 

following commands give the Mathematica syntax for the definition of Ackley 

function and its 3D plot in an interval. 

In[1]:= f[x1_,x2_]:=-20Exp[(-0.02Sqrt[0.5(x1^2+x2^2)])] 
-Exp[(0.5(Cos[2Pix1]+Cos[2Pix2]))]+20+Exp[1]; 

In[2]= Plot3D[f[x1,x2],{x1,-35,35},{x2,-35,35}, 
AxesLabel->{x1,x2,y}] 
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It is noted that the RandomSearch command may not find a global minimum 

without working any alteration of its options.  

In[3]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->“RandomSearch”] 

Out[3]= {2.83635, {x1->-5.99749,x2->8.99623}} 

Sometimes changing the search point option that specifies the number of points to 

start searches can be effective in finding a global minimum. 

In[4]:=  Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”,“SearchPoints”->i}]], 
{i,500,3000,500}] 
{0.39531,{x1->0.996345,x2->0.996345}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{1.2012*10^-9,{x1->-8.42728*10^- 
10,x2->-4.16243*10^-9}} 

 

The effect of the RandomSeed option, which constitutes starting value for the 

random number generator, can be investigated below. In the previous example, 

while the “Searchpoints”->500 is not sufficient to reach the global minimum, in 

the following example a global minimum can be obtained by setting the values of 

the SearchPoints and the RandomSeed to 500 and 5, respectively. 

In[5]:=  Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”,“SearchPoints”->500, 
“RandomSeed”->i}]],{i,5}] 
{0.280127,{x1->-7.38323*10^-25,x2->0.9948}} 
{7.40815*10^-10,{x1->6.89861*10^-10, 
x2->-2.52669*10^-9}} 
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{0.280127,{x1->5.59478*10^-24,x2->0.9948}} 
{0.39531,{x1->0.996345,x2->0.996345}} 
{1.37499*10^-9,{x1->-3.64123*10^-9, 
x2->-3.22083*10^-9}} 

 

In here, points are produced on a matrix to utilize as starting points. If the 

approximate solution range of the problem can be estimated, assigning the starting 

point makes it easier to get the solution. 

In[6]:=  Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”,“InitialPoints”- 
>Flatten[Table[{i,j},{i,-35,35,5},{j,-35,35,5}],1]}]]  

Out[6]=  {-4.44089*10^-16,{x1->-1.52703*10^-15, x2->-
1.52703*10^-15}}  

 

PostProcess option is not of primary importance for this problem. PostProcess 

methods KKT and FindMinimum give the same results. 

In[7]:=  Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”, “SearchPoints”->3000, 
“PostProcess”->KKT}]] 

Out[7]=  {1.2012*10^-9,{x1->-8.42726*10^-10, 
x2->-4.16243*10^-9}} 

In[8]:=  Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”, “SearchPoints”->3000, 
“PostProcess”->FindMinimum}]] 

Out[8]=  {1.2012*10^-9,{x1->-8.42728*10^-10, 
x2->-4.16243*10^-9}} 

 

Another test function Holder Table 1, which is separable and multimodal, is used 

to evaluate the capability of RandomSearch command in finding the global 

minimum. This test function has global minima in located at f (±9.646168, 

±9.6461680) = –26.920336. The followings are Mathematica syntax for the 

definition of the “Holder Table 1” function and its 3D plot. 

Clear[f];  

In[9]:=  f[x1_,x2_]:=-Abs[Cos[x1]Cos[x2]Exp 
[Abs[1-((x1^2+x2^2)^0.5)/Pi]]]; 

In[10]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}] 
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The RS algorithm finds one of the global minimum points without working any 

alteration of its options for this problem. 

 
In[11]:=  NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 

{x1,x2},Method->“RandomSearch”] 
Out[11]=  {-26.9203, {x1 -> -9.64617, x2 -> -9.64617}} 
In[12]:=  Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 

{x1,x2},Method->{“RandomSearch”, “RandomSeed”->i}]], 
{i,{1,6,7}}] 
{-26.9203,{x1->-9.64617,x2->9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->9.64617,x2->9.64617}} 

6.3 Simulated Annealing 

The Simulated Annealing (SA) algorithm implemented by Mathematica is a 

stochastic approach having a working process based on the physical annealing 

procedure of solids. The SA is designed to find the largest or smallest values of 

functions having many variables and the smallest values of nonlinear functions 

having many local minimums. The algorithm is named Simulated Annealing 

because it exemplifies the perfect arrangement of atoms of solid bodies and 

minimizing the potential energy during the cooling process. The algorithm enables 

the system to depart from the local minimum and to investigate and to find an 

improved global minimum [93]. 

In the working process for each iteration; firstly, the startup solution “Z” is 

produced, Secondly, “Znew” is generated in the vicinity of the present point, “Z” 

and then Zbest is defined. 
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If f(Znew) ≤ f(Zbest), Znew replaces Zbest and Z. Otherwise, Znew replaces with Z. In 

this loop, options InitialPoints, SearchPoints, and RandomSeed are capable of 

determining the initial guess and its number and starting value, respectively. In the 

SA algorithm, random movements in the search space are performed based on the 

Boltzmann probability distribution 𝑒𝐷(𝑘,   ∆𝑓, 𝑓0).  In the equation, 𝐷 is the function 

explained by option Boltzmann Exponent, 𝑘 is the present iteration, ∆𝑓 is the 

variance in the objective function. In the Mathematica, if the user does not select 

manually, B is defined as 
−∆𝑓𝑙𝑜𝑔(𝑘+1)

10
 by BoltzmannExponent. 

For all starting points, the working process introduced above is returned by the 

time either the algorithm converges to a spot, or the algorithm remains at the 

identical point as a result of the number of iterations assigned by the option 

LevelIterations [94]. The SA algorithm follows the procedure given in Figure 6.3. 

“Ackley” and “Holder Table 1” is used to evaluate the performance capacity of the 

SimulatedAnnealing command to find the global minimum. 

In[1]:=  f[x1_,x2_]:=-20 Exp[(-0.02 Sqrt[0.5 (x1^2+x2^2)])]- 
Exp[(0.5 (Cos[2 Pi x1]+Cos[2 Pi x2]))]+20+Exp[1]; 

In[2]=  Plot3D[f[x1,x2],{x1,-35,35},{x2,-35,35}, 
AxesLabel->{x1,x2,y}]  

 

The SA algorithm may not find a global minimum by using the default value of 

its options. 

 
In[3]:=  NMinimize[{f[x1,x2], -35≤x1≤35,-35≤x2≤35}, 

{x1,x2},Method->{“SimulatedAnnealing”}]  
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Out[3]=  {2.37578, {x1 -> 7.99584, x2 -> 3.99792}}  

 

BoltzmannExponent includes a function which determines a new point at each 

iteration; thus, the BoltzmannExponent is a significant option that shows the way 

to achieve a global minimum. If this function is utilized without a default value, 

the obtained result can be changed. However, in the following problem, changing 

this option alone has not been enough to determine the global lower limit. 

 
In[4]:=  NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}, 

Method->{“SimulatedAnnealing”, “BoltzmannExponent” 
->Function[{i,df,f0},-df/(Exp[i/10])]}] 

Out[4]=  {0.830095, {x1 -> -2.99495, x2 -> 6.41153*10^-9}}  

 

For this problem, although the PerturbationScale alters the result, changing this 

option alone has not been enough to find the global minimum. The algorithm 

attaints to local minimum points. 

In[5]:=  Do[Print[NMinimize[{f[x1, x2], -35 ≤ x1 ≤ 35, -35 ≤ x2 
≤ 35}, {x1, x2}, Method -> {“SimulatedAnnealing”, 
“PerturbationScale” -> i}]], {i, 15}] 

 {2.37578,{x1->7.99584,x2->3.99792}} 
{2.40345,{x1->0.999488,x2->8.99539}} 
{1.0993,{x1->-1.04986*10^-9,x2->3.99502}} 
{3.8527,{x1->-1.99944,x2->14.9958}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{4.50046,{x1->14.9966,x2->-9.99773}} 
{4.26698,{x1->11.9971,x2->-11.9971}} 
{4.27353,{x1->7.99805,x2->-14.9963}} 
{2.63697,{x1->5.99725,x2->-7.99634}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}}  

 

Using many more SearchPoints, a global minimum can be obtained. 

 
In[6]:=  Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 

{x1,x2},Method-> {“SimulatedAnnealing”, 
“SearchPoints”->i}]],{i,100,500,100}] 

 {0.830095,{x1->-2.99495,x2->7.32049*10^-10}} 
{0.62186,{x1->1.99543,x2->-0.997715}} 
{0.280127,{x1->-1.64485*10^-9,x2->-0.9948}} 
{0.280127,{x1->0.9948,x2->5.25186*10^-12}} 
{1.937*10^-9,{x1->-2.31279*10^-9,x2->-6.44598*10^-9}} 
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As previously seen, while changing the search points alone is sufficient to 

determine the global lower limit., in the case of conducting a search utilizing the 

RandomSeed, PerturbationScale, and BoltzmannExponent, the algorithm 

seizes the local minimums. 

In[7]:=  Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35, 
-35≤x2≤35},{x1,x2},Method-> 
{“SimulatedAnnealing”,“RandomSeed”->i}]],{i,0,10}] 

 {2.37578,{x1->7.99584,x2->3.99792}} 
{0.557056,{x1->-4.99634*10^-9,x2->1.99487}} 
{2.15456,{x1->7.99533,x2->-0.999416}} 
{0.39531,{x1->0.996345,x2->0.996345}} 
{3.46466,{x1->-8.99708,x2->9.99676}} 
{0.993567,{x1->2.99583,x2->1.99722}} 
{1.58244,{x1->-2.9975,x2->-4.99584}} 
{1.22508,{x1->-3.99557,x2->1.99779}} 
{1.46596,{x1->1.99819,x2->-4.99546}} 
{0.39531,{x1->-0.996345,x2->0.996345}} 
{2.29034,{x1->4.99729,x2->6.9962}} 

 
In[8]:=  Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 

{x1,x2},Method-> {“SimulatedAnnealing”, 
“PerturbationScale”->3,“SearchPoints”->500, 
“RandomSeed”->i}]], {i, 0, 10, 1}] 

 {-4.44089*10^-16,{x1->-1.62365*10^-15, 
x2->2.19073*10^-16}} 
{0.39531,{x1->-0.996345,x2->0.996345}} 
{0.557056,{x1->1.99487,x2->-1.44602*10^-11}} 
{1.16405,{x1->-2.99649,x2->-2.99649}} 
{0.557056,{x1->-1.99487,x2->-6.2523*10^-11}} 
{0.62186,{x1->-1.99543,x2->-0.997715}} 
{0.557056,{x1->1.99487,x2->7.97744*10^-12}} 
{0.39531,{x1->0.996345,x2->0.996345}} 
{0.280127,{x1->0.9948,x2->-6.58993*10^-9}} 
{2.09443*10^-9,{x1->-7.39447*10^-9, 
x2->-3.93044*10^-10}} 
{0.993567,{x1->-1.99722,x2->-2.99583}} 

 

Clear[f] 
In[9]:= f[x1_,x2_]:=-Abs[Cos[x1]Cos[x2] 
Exp[Abs[1-((x1^2+x2^2)^0.5)/Pi]]]; 
In[10]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}] 
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The Simulated Annealing algorithm finds one of the global minimum points 

without working any alteration of its options for this problem. 

 
In[11]:=  NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2}, 

Method->“SimulatedAnnealing”]  

Out[11]=  {-26.9203, {x1 -> 9.64617, x2 -> 9.64617}}  

Unlike the Random Search algorithm, four distinct global minimum points can be 

found by using the Simulated Annealing algorithm. 

In[12]:=  Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10, 
-10≤x2≤10},{x1,x2},Method-> 
{“SimulatedAnnealing”,“RandomSeed”->i}]], 
{i,{1,2,3,11}}] 

 {-26.9203,{x1->9.64617,x2->9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->9.64617}} 
{-26.9203,{x1->9.64617,x2->-9.64617}} 

6.4 Differential Evolution 

Differential evolution (DE) is among the most regular stochastic search methods 

in the optimization and solution of complicated and challenging design problems. 

The algorithm is built on four main steps which are initialization, mutation, 

crossover, and selection. Although DE is an efficient search algorithm thanks to 

covering a population of solutions   in iterations rather than a single solution, it 

computationally requires more process time which makes it an expensive method. 

DE is a robust and reliable algorithm to obtain global optimum. However, there is 
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uncertainty finding global optimum points as also valid for other types of search 

methods [96]. 

In iterations, a fresh group of k points is produced. Then, the jth fresh point is 

produced by taking three arbitrary points such as z1, z2, and z3 from the previously 

generated group. Then it builds the new formation by zs = z3 + s(z1 – z2) that s is 

the actual scaling coefficient. A new point znew is generated from zj and zs by 

picking the ith coordinate or another coordinate of jth from zs with the probability 

of p. Then, znew changes with zj, if the function of h(znew) is smaller than the 

function of h(zj) [90]. 

None of the modification parameters in the DifferentialEvolution command which 

are CrossProbability (Ρ), InitialPoints, PenaltyFunction, PostProcess, 

RandomSeed, ScalingFactor, SearchPoints, and Tolerance warranties the 

discovery of global optimum. The algorithm's procedure workflow is depicted in 

Figure 6.4 [99]. 

As performed with previous search algorithms, the same test functions of Ackley 

and Holder Table 1 are used to evaluate the capacity of the DE algorithm to 

determine the global lower limit. 

In[3]:=  NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}, 
Method->“DifferentialEvolution”] 

Out[3]=  {2.2587*10^-9, {x1 -> -1.63413*10^-9, x2 -> -
7.81672*10^-9}}  

Changing ScalingFactor from default value of 0.6 to 0.7 obtained better results 

considering global optima. 

 
In[5]:=  NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, {x1,x2}, 

Method->{“DifferentialEvolution”, 
“ScalingFactor”-> 0.7}] 

Out[5]=  {3.74914*10^-10, {x1 -> 8.68579*10^-10, x2 -> -
1.00129*10^-9}} 

Here, adjusting ScalingFactor, RandomSead, CrossProbabilty or SearchPoints 

didn’t produce better global optima. Therefore they were kept at a default. 

The global minima of other test function Holder Table 1 were tried to find by the 

algorithm. Initial steps are same with previously used algorithms.  
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In[10]:=  NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2},- 

Method->“DifferentialEvolution”] 
Out[10]=  {-26.9203, {[x1 -> 9.64617, x2 -> -9.64617}} 

In this example of function, all of the parameters being different than their 

default values did not obtain neither different results nor better global minima. 

6.5 Nelder-Mead 

Nelder-Mead (NM) or Simplex is one of the derivative-free optimization methods 

among other traditional local search algorithms. It was firstly designed for 

unconstrained optimization problems [97]. In m-dimensional space and given a 

function of m variables, this method keeps a group of m+1 points generating the 

vertices of a polytope. It should be noted that the simplex approach for linear 

programming should not be mistaken with this technique. Iterations have 

performed by forming m+1 points as y1, y2, y3,…, ym+1. These points form the 

functions are ordered as h(y1) ≤ h(y2) ≤ h(y3) ≤ …h(ym+1). After the fresh point is 

constructed to improve with the previous the lowest point ym+1. A polytope can 

be defined in terms of its centroid (c = Sm
i-1

  yi) being the average position of all 

the points of an object. Here, a trial point should be defined (yt). It is produced by 

reflecting the worst point until centroid, yt = c+∝(c – y m + 1 ) where ∝ is a variable 

being larger than 0. In this part, the new point need not be a new worst point or a 

new best point. Hence, h(y1) ≤ h(yt) ≤ h(ym), yt replace with ym+1. After obtaining 

a fresh point being greater than the initial highest point, it means that reflection is 

successfully obtained. Further, it can be continued with ye = c + β(yt - r) where β 

being larger than 1 is a parameter to largen polytope. If h(ye) is obtained as smaller 

than h(yt), it means that the expansion process is achieved. Therefore, ye changes 

with y m + 1 . Alternatively, else, yt changes as y m + 1 . Another certain step for the 

algorithm process is that if the fresh point yt underperforms to the second-lowest 

point, h(yt) ≤ h(ym), the polytope is thought as very large and it is required to be 

constricted. 

Hence, a fresh test point is obtained using the following expressions [98]. 
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where γ is a parameter ranging between 0 to 1. If contraction is achieved, it means 

that h(yc) is smaller than Min[h(ym+1), h(yt)]. Reversely, more process is required 

to obtain strong contraction. 

Nelder-Mead has specific flexible options similar to other algorithms which are 

ContractRatio, ExpandRatio, InitialPoints, PenaltyFunction, PostProcess, 

RandomSeed, ReflectRatio, ShrinkRatio, and Tolerance. Even though this 

algorithm does not provide complete specifications that an accurate global 

optimization method should require, it tends to work well for the problem having 

less local minima. As previous algorithms, Nelder-Mead is used to obtain optimum 

global values for Ackley and Holder Table 1 test functions [90]. 

 
In[5]:=  NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}, 

Method->“NelderMead”] 

Out[5]=  {0.87404, {x1 -> -0.998405, x2 -> -2.99522}} 

 

It can be seen that results of the first trial are outperformed by DE while it gives 

better global optima compared to Random Search and Simulated Annealing 

solutions for Ackley function with the default set. 

RandomSeed, which is referred to as one of the critical adjustment parameters of 

NM might directly affect the performance of the NM finding global minima. 

 
In[6]:=  Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 

{x1,x2},Method->{“NelderMead”, 
“RandomSeed”->i}]],{i,5}] 

Out[6]=  {0.557056,{x1->8.15872*10^-25,x2->-1.99487}} 
{0.280127,{x1->0.9948,x2->-6.32493*10^-9}} 
{7.12481,{x1->-20.9977,x2->-22.9975}} 
{2.32486*10^-10,{x1->4.63269*10^-10, 
x2->-6.78982*10^-10}} 
{1.3908,{x1->-4.99519,x2->-0.999038}} 

Adjusting RandomSeed parameters provided a better minimum value of 

2.32486x10–10, compared to trial performed with default set. 

In this algorithm, other possible useful adjustment parameters are referred to as 

ShrinkRatio, ContractRatio, and ReflectRatio. However, it did not obtain global 
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minima in Ackley function, as indicated the following. 

 
In[7]:=  Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 

{x1,x2},Method->{“NelderMead”, “ShrinkRatio”->0.95, 
“ContractRatio”->0.95,“ReflectRatio”->2, 
“RandomSeed”->i}]],{i,5}] 

Out[7]=  {0.39531,{x1->-0.996345,x2->-0.996345}} 
{0.783523,{x1->-1.99642,x2->1.99642}} 
{7.37952,{x1->-5.99939,x2->-31.9967}} 
{0.39531,{x1->-0.996345,x2->0.996345}} 
{2.40704*10^-9,{x1->-2.92841*10^-9, 
x2->-7.99045*10^-9}} 

Another test function Holder Table 1 was minimized using the NMinimize 

command. As seen below, the global minima with default values were –26.9203. 

 
In[12]:=  NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2},- 

Method->“NelderMead”]  

Out[12]=  {-26.9203, {x1 -> 9.64617, x2 -> 9.64617}} 

As applied for previous test function, firstly RandomSeed have been adjusted to 

find global minima. 

 
In[13]:=  Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 

{x1,x2},Method->{“NelderMead”, 
“RandomSeed”->i}]],{i,5}] 

Out[13]=  {-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-9.13635,{x1->3.24199,x2->-9.71802}} 
{-26.9203,{x1->9.64617,x2->-9.64617}} 
{-7.76664,{x1->2.08542*10^-8,x2->9.73295}} 
{-7.76664,{x1->-7.64705*10^-9,x2->-9.73295}} 

Outputs of this trial showed that adjustment of RandomSeed as is was not 

sufficient to reach minimum value. Lastly, other possibly useful parameters 

concerning literature for NelderMead were adjusted to obtain global minima. 

 
In[14]:=  Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 

{x1,x2},Method->{“NelderMead”, “ShrinkRatio”->0.95, 
“ContractRatio”->0.95,“ReflectRatio”->2, 
“RandomSeed”->i}]],{i,5}] 

Out[14]=  {-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 

In this example, it was seen that none of the parameters could assure that a global 

minimum is different from the value obtained using the default settings. 
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Chapter 7 

Case Studies 

In this chapter, an attempt is made to determine if the answer to a few optimization 

issues found in the previous papers may be improved by applying advanced 

optimization methods to them. Twelve different literature studies, like the 

optimization of surface roughness, cutting forces, tool life, and tool wear are 

examined for research. The decided problems were answered by using 13 different 

linear and non-linear structurally different regression models. To evaluate these 

literature studies other advanced optimization techniques are used such as MDE 

(Modified Differential Evolution), MSA (Modified Simulated Annealing), MRS 

(Modified Random Search) and MNM (Modified Nelder-Mead).  

7.1 Mathematical Models 

In this part of the thesis, it is aimed to build a mathematical model for optimum 

outputs as a function of the input parameters. A mathematical model of the 

operation was built to determine the minimum or maximum values of outputs. 

Non-linear multivariable regression has been used for this purpose. Then, the 

mathematical model obtained from analysis will be used to obtain optimum 

solution of the process and to determine the influence of the design variables on 

the outputs.  

The main purpose of these analysis and optimization processes is to show whether 

the classical R2 optimization studies in research studies do not provide the desired 

results in the full sense and whether more consistent and more optimum results can 

be obtained by using the same parameters. 
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The regression models to be used in the analysis and optimization process are listed 

in Table 7.1. 

In order to make the model names in each study more understandable and 

distinctive, a coding in the form of CSX-OY-Z has been developed. Here CS; case 

study, X; number of case study, O; output, Y; number of outputs of that case study 

and Z; indicates the nomenclature of the model. If it is necessary to give an 

example; CS3-O4-SON; It refers to the SON model for the 4th output in the 3rd 

case study. Explicit expressions of these abbreviated models are given in the 

Appendix A section. 

Table 7.1: Multiple regression model names, numbers, nomenclatures and 

formulas 

Model 

Name 

Model 

Number 
Nomenclature Formula 

Multiple linear 1 L 𝑌 =∑(𝑎𝑖𝑥𝑖) + 𝑐

𝑡

𝑖=1

 

Multiple linear 

rational 
2 LR 𝑌 =

∑ (𝑎𝑖𝑥𝑖)
𝑡
𝑖=1 + 𝑐1

∑ (𝛽𝑗𝑥𝑗)
𝑡

𝑗=1

+ 𝑐2 

Second order 
multiple 

nonlinear 

3 SON 𝑌 = ∑∑(𝑎𝑗𝑥𝑗𝑥𝑘) +∑(𝑎𝑖𝑥𝑖) + 

𝑡

𝑖=1

 

𝑡

𝑗=1

𝑡

𝑘=1

𝑐 

Second order 

multiple 

nonlinear 
rational 

4 SONR 𝑌 =
∑ ∑ (𝑎𝑗𝑥𝑗𝑥𝑘) + ∑ (𝑎𝑖𝑥𝑖) + 𝑐1

𝑡
𝑖=1  𝑡

𝑗=1
𝑡
𝑘=1

∑ ∑ (𝛽𝑚𝑥𝑚𝑥𝑙) + ∑ (𝛽𝑛𝑥𝑛)
𝑡
𝑛=1  𝑡

𝑚=1
𝑡
𝑙=1

+ 𝑐2 

Third order 
multiple 

nonlinear 

5 TON 𝑌 = ∑∑ ∑(𝛽𝑙𝑥𝑙𝑥𝑚𝑥𝑝)

𝑡

𝑝=1

+∑∑(𝑎𝑗𝑥𝑗𝑥𝑘)

𝑡

𝑗=1

+∑(𝑎𝑖𝑥𝑖)

𝑡

𝑖=1

+ 𝑐 

𝑡

𝑘=1

𝑡

𝑚=1

𝑡

𝑙=1

 

First order 

trigonometric 

multiple 
nonlinear 

6 FOTN 𝑌 =∑(𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

𝑡

𝑖=1

+ 𝑐 

First order 

trigonometric 
multiple 

nonlinear 

rational 

7 FOTNR 𝑌 =
∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

𝑡

𝑖=1
+ 𝑐1

∑ (𝛽𝑗𝑆𝑖𝑛[𝑥𝑗] + 𝛾𝑗𝐶𝑜𝑠[𝑥𝑗])
𝑡

𝑗=1

+ 𝑐2 

Second order 

trigonometric 
multiple 

nonlinear 

8 SOTN 
𝑌 =∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

𝑡

𝑖=1
+∑ (𝛽𝑗𝑆𝑖𝑛

2[𝑥𝑗] +
𝑡

𝑗=1

𝛾𝑗𝐶𝑜𝑠
2[𝑥𝑗]) + 𝑐  
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Table 7.1: Multiple regression model names, numbers, nomenclatures and 

formulas (continued) 

Second order 
trigonometric 

multiple 

nonlinear 
rational 

9 SOTNR 𝑌 =
∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖]+𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

𝑡

𝑖=1 +∑ (𝛽𝑗𝑆𝑖𝑛
2[𝑥𝑗]+𝛾𝑗𝐶𝑜𝑠

2[𝑥𝑗])
𝑡

𝑗=1
+𝑐1

∑ (𝜃𝑖𝑆𝑖𝑛[𝑥𝑘]+𝜃𝑖𝐶𝑜𝑠[𝑥𝑘])
𝑡

𝑘=1
+∑ (𝛿𝑗𝑆𝑖𝑛

2[𝑥𝑙]+𝛿𝑗𝐶𝑜𝑠
2[𝑥𝑙])

𝑡

𝑙=1

+ 𝑐2  

First order 

logarithmic 

multiple 
nonlinear 

10 FOLN 𝑌 =∑(𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

𝑡

𝑖=1

+ 𝑐 

First order 

logarithmic 
multiple 

nonlinear 

rational 

11 FOLNR 𝑌 =
∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

𝑡

𝑖=1
+ 𝑐1

∑ (𝛽𝑗𝐿𝑜𝑔[𝑥𝑗])
𝑡

𝑗=1

+ 𝑐2 

Second order 
logarithmic 

multiple 

nonlinear 

12 SOLN 𝑌 =∑∑(𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])

𝑡

𝑗=1

𝑡

𝑘=1

+∑(𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

𝑡

𝑖=1

+ 𝑐 

Second order 

logarithmic 

multiple 
nonlinear 

rational 

13 SOLNR 𝑌 =
∑ ∑ (𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])

𝑡

𝑗=1
𝑡
𝑘=1 +∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

𝑡

𝑖=1
+ 𝑐1

∑ ∑ (𝑎𝑙𝐿𝑜𝑔[𝑥𝑙𝑥𝑚])
𝑡

𝑙=1
𝑡
𝑚=1 +∑ (𝑎𝑛𝐿𝑜𝑔[𝑥𝑛])

𝑡

𝑛=1

+ 𝑐2 

7.2 Case Study #1 

The first literature study which optimization process was studied taken from 

Aouici et al [44]. In the study, surface roughness comparison between cubic boron 

nitride (CBN7020) and ceramics was studied. The machining part was AISI H11 

hot work steel which treated at 50 HRC. Taguchi’s L18 (21×32) orthogonal matrix 

was used to design the study. To verify the validity of multiple linear regression 

model and evaluate the outcomes of machine settings and cutting parameters called 

as cutting speed, feed rate and depth of cut, on Ra and Rt, the response surface 

methodology (RSM) and analysis of variance (ANOVA) was used. As a 

consequence of the study, the importance of the influences of design variables on 

surface roughness was listed as feed rate, cutting speed and depth of cut, 

respectively. In the cutting tool results, CBN7020 had a better performance than 

ceramics. To minimize the surface roughness, conjunction of poor feed rate and 

strong cutting speed is required. The main purpose of our analysis and optimization 

processes is to show whether the classical R2 optimization studies in research 

studies do not provide the desired results in the full sense and whether more 
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consistent and more optimum results can be obtained by using the same 

parameters. 

As depicted in Table 7.2, the changes in values of these input parameters provided 

the obtaining of different results for the arithmetic mean roughness (RaCC670, 

RaCC650 and RaCBN7020) (μm) and total roughness (RtCC670, RtCC650 and RtCBN7020) 

(μm). 

Therefore, these obtaining results depending on the change in these input 

parameter values are sufficient to develop an optimization strategy. Moreover, it is 

impossible to determine a proportional connection between measured roughness 

values and input parameters (cutting speed, feed rate and depth of cut), as 

understood from Table 7.2. Therefore, it is necessary to optimize these parameters 

to minimize both arithmetic mean roughness and total roughness. 
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The behavior of the system was explained by the multiple linear regression models 

given below [44]; 

𝑅𝑎𝐶𝐶670 
= 0.0975 + 0.00115𝑉𝑐 + 4.6875𝑓 − 0.31388𝑎𝑝 − 0.01667𝑉𝑐𝑓

+ 0.00037𝑉𝑐𝑎𝑝 + 1.875𝑓𝑎𝑝 
(7.5) 

𝑅𝑡𝐶𝐶670 
= 0.11806 + 3.379610−3𝑉𝑐 + 31.0625𝑓 − 0.39167𝑝 − 0.0521𝑉𝑐𝑓

+ 3.518510−3𝑉𝑐𝑎𝑝 + 3.5416𝑓𝑎𝑝 
(7.6) 

𝑅𝑎𝐶𝐶650 
= 0.27722 − 0.001259𝑉𝑐 + 1.70833𝑓 + 0.3𝑎𝑝 + 0.0694𝑉𝑐𝑓 −

0.00092𝑉𝑐𝑎𝑝 + 2.657710−15𝑓𝑎𝑝  
(7.7) 

𝑅𝑡𝐶𝐶650 
= 2.9592 − 3.00910−3𝑉𝑐 + 7.4792𝑓 − 1.675𝑎𝑝 − 3.4722𝑉𝑐𝑓

+ 3.703710−4𝑉𝑐𝑎𝑝 + 15.625𝑓𝑎𝑝 
(7.8) 

𝑅𝑎𝐶𝐵𝑁7020 
= 0.62194 − 0.00337𝑉𝑐 + 0.02083𝑓 + 0.06944𝑎𝑝 + 0.01597𝑉𝑐𝑓

− 0.002315𝑉𝑐𝑎𝑝 + 2.2916𝑓𝑎𝑝 
(7.9) 

𝑅𝑡𝐶𝐵𝑁7020 
= 1.3555 − 7.592510−3𝑉𝑐 + 28.3333𝑓 − 2.487310−14𝑎𝑝 −

0.0486𝑉𝑐𝑓 + 9.259210−4𝑉𝑐𝑎𝑝 − 8.3333𝑓𝑎𝑝  
(7.10) 

The experimental data was represented by these regression models with 

determination coefficients (R2) of 0.9375, 0.9326, 0.9955, 0.9160, 0.9274 and 

0.8889, respectively. 

Aouici et al. [44] figured out this limited optimization issue by defining all the 

input parameters as discrete and proceeded in the modeling process only according 

to the standard R2 results and listed the models. The R2 values Aouici et al [44] 

found vary between 89% and 99%. Aouici et al [44] does not mention the R2
training 

and R2
testing distinction in the modeling process and does not mention determining 

models according to different scenarios. It is seen that smaller surface roughness 

may be calculated with the variables as a consequence of optimization. 

7.2.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) are as in 

the following form; 
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 120 ≤ Cutting Speed ≤ 180 ,    (m/min) 

 0.08 ≤ Feed Rate ≤ 0.16 ,    (mm/rev) 

 0.15 ≤ Depth of Cut ≤ 0.45 ,    (mm) 

7.2.1.1 Scenario 1 

Arithmetic mean roughness and total roughness are explained by the objective 

functions in this optimal solution problem. There are no constraints about the input 

parameters so they can be real numbers, and the computation domain is continuous. 

The primary goal is to minimize arithmetic surface roughness and total roughness. 

It is also technically possible to see these theory-based boundaries of the objective 

function this way. 

7.2.1.2 Scenario 2 

Scenario 1 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of 

surface roughness for this application. Input parameters are also restricted with 

integers. 

7.2.1.3 Scenario 3 

As dissimilar from scenario 1, nonlinear constraints are added for the optimization 

problem. Total roughness must be smaller than 2.8 µm for arithmetic surface 

roughness and arithmetic surface roughness must be smaller than 0.41 µm for the 

total roughness. Problem solving will be more complex and difficult in this instance 

than in scenarios 1 and 2. 

7.2.1.4 Scenario 4 

In the constructed of scenario 4, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the surface roughness. Unlike Scenario 2, 

in scenario 4 parameters can only take the values in the data table. 
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7.2.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data tables of arithmetic mean roughness (RaCC670, RaCC650 and 

RaCBN7020) (μm) and total roughness (RtCC670, RtCC650 and RtCBN7020) listed as Table 

7.3, 7.4, 7.5, 7.6, 7.7 and 7.8 can be seen below. Therefore, it is necessary to 

optimize these parameters to minimize both arithmetic mean roughness and total 

roughness. 

Table 7.3: Results of the Neuro-regression models for the arithmetic mean 

roughness for RaCC670 

Models R
2

training R
2

testing 
Max (µm) Min (µm) 

CS1-O1-L 0.92 0.81 0.659 0.392 

CS1-O1-LR 0.99 0.71 0.769 0.406 

CS1-O1-SON 0.98 0.91 0.716 0.406 

CS1-O1-SONR 0.95 0.88 0.698 0.399 

CS1-O1-TON 1.00 0.42 0.820 0.418 

CS1-O1-FOTN 0.95 0.84 12.772 -16.113 

CS1-O1-FOTNR 0.99 -53.02 2.285x107 -432472. 

CS1-O1-SOTN 1.00 0.76 12.287 -1029.2 

CS1-O1-SOTNR 0.98 0.58 0.706 0.328 

CS1-O1-FOLN 0.87 0.79 0.648 0.391 

CS1-O1-FOLNR 0.98 0.79 0.748 0.408 

CS1-O1-SOLN 0.98 0.91 0.699 0.414 

CS1-O1-SOLNR 0.96 0.81 0.687 0.419 

 

 

 



 

 

73 

Table 7.4: Results of the Neuro-regression models for the total roughness for 

RtCC670 

Models R
2

training R
2

testing 
Max (µm) Min (µm) 

CS1-O2-L 0.92 0.94 4.621 2.529 

CS1-O2-LR 0.99 0.99 4.997 2.693 

CS1-O2-SON 0.99 0.99 4.951 2.705 

CS1-O2-SONR 0.02 -0.13 3.583 3.497 

CS1-O2-TON 1.00 0.97 5.095 2.585 

CS1-O2-FOTN 0.99 0.99 148.760 -193.804 

CS1-O2-FOTNR 0.99 0.97 1.844x107 -6.450x1010 

CS1-O2-SOTN 1.00 0.97 960.515 -8.924 

CS1-O2-SOTNR 0.99 0.90 4.935 2.172 

CS1-O2-FOLN 0.86 0.88 4.505 2.516 

CS1-O2-FOLNR 0.99 0.99 4.946 2.691 

CS1-O2-SOLN 0.99 0.99 4.923 2.637 

CS1-O2-SOLNR 0.95 0.96 4.736 2.545 

 

 

Table 7.5: Results of the Neuro-regression models for the arithmetic mean 

roughness for RaCC650 

Models R
2

training R
2

testing 
Max (µm) Min (µm) 

CS1-O3-L 0.99 0.99 0.621 0.310 

CS1-O3-LR 0.99 0.97 0.602 0.304 

CS1-O3-SON 0.99 0.99 0.602 0.301 

CS1-O3-SONR 0.99 0.99 0.604 0.302 

CS1-O3-TON 1.00 0.99 0.620 0.300 

CS1-O3-FOTN 0.99 0.99 2.165 -0.820 

CS1-O3-FOTNR 0.99 0.99 1.768x108 -1.242x1011 

CS1-O3-SOTN 1.00 0.99 2.495 -207.403 

CS1-O3-SOTNR 1.00 0.98 0.623 0.292 

CS1-O3-FOLN 0.98 0.99 0.610 0.305 

CS1-O3-FOLNR 0.99 0.97 0.595 0.301 

CS1-O3-SOLN 0.99 0.99 0.603 0.301 

CS1-O3-SOLNR 1.00 0.98 0.615 0.300 
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Table 7.6: Results of the Neuro-regression models for the total roughness for 

RtCC650 

Models R
2

training R
2

testing 
Max (µm) Min (µm) 

CS1-O4-L 0.93 0.54 4.008 2.764 

CS1-O4-LR 0.97 -0.18 3.954 2.626 

CS1-O4-SON 0.97 0.24 4.109 2.749 

CS1-O4-SONR 0.04 -0.71 3.401 3.339 

CS1-O4-TON 1.00 -1.04 4.262 2.669 

CS1-O4-FOTN 0.96 0.40 68.297 -44.407 

CS1-O4-FOTNR 0.99 0.26 1.239x108 -7.533x106 

CS1-O4-SOTN 1.00 -0.22 5515.130 -55.930 

CS1-O4-SOTNR 1.00 -29.05 1.399x1012 -2.928x109 

CS1-O4-FOLN 0.95 0.44 3.965 2.738 

CS1-O4-FOLNR 0.97 0.10 3.980 2.715 

CS1-O4-SOLN 0.97 0.22 4.093 2.741 

CS1-O4-SOLNR 0.99 -7.56 3.902 1.388 

 

 

Table 7.7: Results of the Neuro-regression models for the arithmetic mean 

roughness for RaCBN7020 

Models R
2

training R
2

testing 
Max (µm) Min (µm) 

CS1-O5-L 0.91 0.84 0.606 0.218 

CS1-O5-LR 0.96 0.70 0.634 0.159 

CS1-O5-SON 0.96 0.72 0.620 0.166 

CS1-O5-SONR 0.96 0.70 0.632 0.159 

CS1-O5-TON 1.00 -0.47 0.773 0.18 

CS1-O5-FOTN 0.92 0.75 14.344 -9.852 

CS1-O5-FOTNR 0.99 0.88 54311.4 -6.139x107 

CS1-O5-SOTN 1.00 -0.27 23.244 -1712.8 

CS1-O5-SOTNR 1.00 0.73 1.050x1011 -11465.1 

CS1-O5-FOLN 0.92 0.79 0.596 0.212 

CS1-O5-FOLNR 0.95 0.74 0.619 0.167 

CS1-O5-SOLN 0.95 0.74 0.610 0.171 

CS1-O5-SOLNR 0.96 0.68 0.603 0.234 
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Table 7.8: Results of the Neuro-regression models for the total roughness for 

RtCBN7020 

Models R
2

training R
2
testing 

Max (µm) Min (µm) 

CS1-O6-L 0.96 -0.28 3.909 1.297 

CS1-O6-LR 0.98 -1.23 4.286 1.216 

CS1-O6-SON 0.98 -0.92 4.046 1.189 

CS1-O6-SONR 0.03 -0.25 2.576 2.523 

CS1-O6-TON 1.00 -5.24 4.675 1.164 

CS1-O6-FOTN 0.97 -0.67 10.546 -3.485 

CS1-O6-FOTNR 0.98 -1.09 2.356x106 -1.762x1010 

CS1-O6-SOTN 0.99 0.97 18.922 -7.911 

CS1-O6-SOTNR 0.97 -1.66 4.693 1.375 

CS1-O6-FOLN 0.95 -0.19 3.831 1.284 

CS1-O6-FOLNR 0.98 -1.09 4.246 1.258 

CS1-O6-SOLN 0.98 -0.84 4.043 1.605 

CS1-O6-SOLNR 0.93 -0.64 4.032 1.641 

For the first output of the study (RaCC670, Aouici et al. [44]), results show that if the 

R2 value was the key element considered in decided the model, we may conclude 

that all models accurately describe the process. Because R2
training results are nearly 

all close to 1. 

The initial assumption would be that models 2, 3, 4 and 12 are suitable if the 

selection had just been based on R2
training and R2

testing. Based on this argument, 

utilizing a method that considers the desired models' capacity to provide realistic 

values, it is determined that only models 3 and 12 are suitable. As a result, 

misleading findings are unavoidable if the model building-optimum result finding 

analyses are not addressed as outlined in this article. 

As can be seen in Table 7.4, estimation capacity (R2
testing) of model 3 (SON) and 

model 12 (SOLN) are the same while model 3 was achieved lower arithmetic mean 

roughness than the model 12. With this approach, the obtained second order 

multiple nonlinear model 3 (CS1-O1-SON) was chosen as the objective function 

required in analyses to get optimum results of RaCC670.  
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Table 7.9 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 0.406 µm, which correspond 

to CS1-O1-SON. The suggested (optimum) designs are; cutting speed: 180 

(m/min), feed rate: 0.08 (mm/rev) and depth of cut: 0.45 (mm). 0.406 µm is a 

realistic result by compared with the results of experiment [0.40, 0.70]. We could 

say that the minimum experimental results and the optimization results are really 

close to each other. 

In scenario 2, feed rate and depth of cut have been handled as continuous 

parameters, whereas the cutting speed is discontinuous (integers). In this case, the 

minimum surface roughness results for the SON model were same as the scenario 

1.  

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the total roughness value smaller than 2.8 for CC670, which 

is the same material. The lowest surface roughness found as 0.443 µm. The 

suggested (optimal) designs are; the cutting speed: 180 (m/min), the feed rate: 0.08 

(mm/rev) and depth of cut: 0.167533 (mm). 0.443 µm is a realistic result by 

compared with the results of experiment [0.40, 0.70]. We could say that the 

minimum outcomes of experiment and the optimization results of the third scenario 

are really close to each other. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 
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Furthermore, utilizing the SON model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the optimal surface roughness was found to be 0.406 µm. 

For the second output of the study (RtCC670, Aouici et al. [44]), the initial 

assumption would be that models 2, 3, 11 and 12 are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 2 (LR) is suitable. As a 

result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 2 (CS1-O2-LR) was chosen as the objective function required in analyses to 

get optimum results of RtCC670. Outcomes of the selected model can be spotted in 

Table 7.5. 

Table 7.10 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 2.692 µm, which correspond 

to CS1-O2-LR. The suggested (optimum) designs are; cutting speed: 180 (m/min), 

feed rate: 0.08 (mm/rev) and depth of cut: 0.15 (mm). 2.692 µm is a realistic result 

by compared with the results of experiment [2.69, 4.90]. We could say that the 

minimum experimental results and the optimization results are really close to each 

other. 

In scenario 2, feed rate and depth of cut have been handled as continuous 

parameters, whereas the cutting speed is discontinuous (integers). In this case, the 

minimum surface roughness results for the LR model were same as the scenario 1.  

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the arithmetic mean roughness value smaller than 0.41 for 

CC670, which is the same material. The minimum surface roughness found as 

2.783 µm. The suggested (optimum) designs are; the cutting speed: 180 (m/min), 

the feed rate: 0.08 (mm/rev) and depth of cut: 0.167533 (mm). 2.783 µm is a 

realistic result by compared with the results of experiment [2.69, 4.90]. We could 
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say that the minimum outcomes of experiment and the optimization results of the 

third scenario are really close to each other. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the LR model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the optimal surface roughness was found to be 2.692 µm. 

For the third output of the study (RaCC650, Aouici et al. [44]), the initial assumption 

would be that lots of models are suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

simplicity of the models and the desired models' capacity to provide realistic 

values, it is determined that only model 3 (SON) is suitable. As a result, misleading 

findings are unavoidable if the model building-optimum result finding analyses are 

not addressed as outlined in this article. Thus, the obtained model 3 (CS1-O3-SON) 

was chosen as the objective function required in analyses to get optimum results of 

RaCC650. Outcomes of the selected model can be spotted in Table 7.6. 

Table 7.11 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 0.301 µm, which correspond 

to SON. The suggested (optimum) designs are; the cutting speed: 180 (m/min), the 

feed rate: 0.08 (mm/rev) and depth of cut: 0.15 (mm). 0.301 µm is a realistic result 

by compared with the results of experiment [0.30, 0.59]. We could say that the 
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minimum experimental results and the optimization results are really close to each 

other. 

In scenario 2, feed rate and depth of cut have been handled as continuous 

parameters, whereas the cutting speed is discontinuous (integers). In this case, the 

minimum surface roughness results for the SON model were same as the scenario 

1.  

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the total roughness value smaller than 2.8 for CC650, which 

is the same material. The results are the same with scenario 1 and 2. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1, 2 and 3. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the SON model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the optimal surface roughness was found to be 0.301 µm. 

For the fourth output of the study (RtCC650, Aouici et al. [44]), the initial assumption 

would be that models 1 and 10 are suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

simplicity of the models and the desired models' capacity to provide realistic 

values, it is determined that only model 1 (L) is suitable. As a result, misleading 

findings are unavoidable if the model building-optimum result finding analyses are 

not addressed as outlined in this article. Thus, the obtained model 1 (CS1-O4-L) 

was chosen as the objective function required in analyses to get optimum results of 

RtCC650. Outcomes of the selected model can be spotted in Table 7.7. 
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Table 7.12 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 2.764 µm, which correspond 

to L. The suggested (optimum) designs are; the cutting speed: 180 (m/min), the 

feed rate: 0.08 (mm/rev) and depth of cut: 0.15 (mm). 2.764 µm is a realistic result 

by compared with the results of experiment [2.67, 4.16]. We could say that the 

minimum experimental results and the optimization results are really close to each 

other. 

In scenario 2, feed rate and depth of cut have been handled as continuous 

parameters, whereas the cutting speed is discontinuous (integers). In this case, the 

minimum surface roughness results for the L model were same as the scenario 1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the total roughness value smaller than 0.41 for CC650, which 

is the same material. The results are the same with scenario 1 and 2. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the L model to solve the optimization issue for scenarios 1, 

2, 3 and 4, the optimal surface roughness was found to be 2.764 µm. 

For the fifth output of the study (RaCBN7020, Aouici et al. [44]), results show that if 

the R2 value was the key element considered in decided the model, we may 

conclude that all models accurately describe the process. Because R2
training results 

are nearly all close to 1. 
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The initial assumption would be that models 1, 2, 3, and 4 are suitable if the 

selection had just been based on R2
training and R2

testing. Based on this argument, 

utilizing a method that considers the desired models' capacity to provide realistic 

values, it is determined that only models 3 and 12 are suitable. As a result, 

misleading findings are unavoidable if the model building-optimum result finding 

analyses are not addressed as outlined in this article. 

As can be seen in Table 7.8, estimation capacity (R2
testing) of model 2 (L) and model 

4 (SONR) are the same while model 2 was achieved lower arithmetic mean 

roughness than the model 4. With this approach, the obtained second order multiple 

nonlinear model 2 (CS1-O5-LR) was chosen as the objective function required in 

analyses to get optimum results of RaCBN7020.  

Table 7.13 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 0.159 µm, which correspond 

to LR. The suggested (optimum) designs are; the cutting speed: 180 (m/min), the 

feed rate: 0.08 (mm/rev) and depth of cut: 0.45 (mm). 0.159 µm is a realistic result 

by compared with the results of experiment [0.180, 0.565]. We could say that the 

optimization results have reached smaller values than the minimum experimental 

results.  

In scenario 2, feed rate and depth of cut have been handled as continuous 

parameters, whereas the cutting speed is discontinuous (integers). In this case, the 

minimum surface roughness results for the LR model were same as the scenario 1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the total roughness value smaller than 1 for CBN7020, which 

is the same material. The minimum surface roughness found as 0.159 µm. The 

suggested (optimum) designs are; cutting speed: 179.974 (m/min), feed rate: 0.08 

(mm/rev) and depth of cut: 0.45 (mm). 0.159 µm is a realistic result by compared 

with the results of experiment [0.180, 0.565]. We could say that the optimization 

results have reached smaller values than the minimum experimental results. 
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For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the LR model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the optimal surface roughness was found to be 0.15887 µm. 

For the sixth output of the study (RtCBN7020, Aouici et al. [44]), the initial 

assumption would be that lots of models are suitable if the selection had just been 

based on R2
training and R2

testing. Based on this argument, utilizing a method that 

considers the simplicity of the models and the desired models' capacity to provide 

realistic values, it is determined that only model 8 (SOTN) is suitable. As a result, 

misleading findings are unavoidable if the model building-optimum result finding 

analyses are not addressed as outlined in this article. Thus, the obtained model 8 

(CS1-O6-SOTN) was chosen as the objective function required in analyses to get 

optimum results of RtCBN7020. Outcomes of the selected model can be spotted in 

Table 7.9. 

Table 7.14 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. There are four different results for four 

different optimization algorithms. The minimum surface roughness results were 

approximate values to zero. Thus, for the optimization scenario 1, minimum 

surface roughness can be taken as zero. But it is not a realistic solution. 

In scenario 2, feed rate and depth of cut have been handled as continuous 

parameters, whereas the cutting speed is discontinuous (integers). While zero 

values can not be taken as realistic solution, there are two different realistic result. 
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In this case, the minimum surface values for the SOTN model were 0.372 µm and 

0.819 µm. The suggested (optimum) designs for 0.372 µm; cutting speed: 145 

(m/min), feed rate: 0.0920285 (mm/rev) and depth of cut: 0.395611 (mm), for 

0.819 µm; cutting speed: 136 (m/min), feed rate: 0.08 (mm/rev) and depth of cut: 

0.312207 (mm). 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the arithmetic mean roughness value smaller than 0.25 for 

CBN7020, which is the same material. There are four different results for four 

different optimization algorithms. The minimum surface roughness results were 

approximate values to zero. Thus, for the optimization scenario 3, minimum 

surface roughness can be taken as zero. But it is not a realistic solution. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum surface roughness had found as 1.187 µm. The suggested (optimum) 

designs are; cutting speed: 180 (m/min), feed rate: 0.08 (mm/rev) and depth of cut: 

0.3 (mm). 1.187 µm is a realistic and better result in comparison with the 

experimental values [1.20, 4.15]. 

From the point of stability, gaining identical outcomes for only scenario 4, whose 

phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum.  Other 

scenarios’ outcomes are not realistic. Furthermore, utilizing the SOTN model to 

solve the optimization issue for scenarios 1, 2, 3 and 4, the optimal surface 

roughness was found to be 1.187 µm. 
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Consequently, i) The regression models used for modeling have to be tested 

through both R2
training and R2

testing values. The model's operational restriction 

(boundedness) has also to be checked by calculating the maximum and minimum 

values generated by the respective model is realistic or not. ii) In our approach, the 

data generated by the model stay within the realistic boundaries different from the 

interval produced by the model given in the reference study. iii) This reveals that 

the prediction capability of the process was better and more accurate than the 

classical approach. 

7.3 Case Study #2 

The second literature study which optimization process was studied taken from 

Bouacha et al. [45]. The present work concerns an experimental study of hard 

turning of AISI 52100 bearing steel, with CBN tool. The combined effects of 

process parameters (cutting speed, feed rate, depth of cut and cutting time) on 

response parameters (tool wear, surface roughness, cutting forces and metal 

volume removed) are investigated using ANOVA analysis. The relationship 

between process parameters and performance characteristics through the response 

surface methodology (RSM) are modeled. Also, Grey-Taguchi technique, 

composite desirability function, and genetic algorithm are also utilized as multi-

objective optimization methodologies to discover the response parameters that 

optimize both performance and efficiency. Tool wear is most influenced by cutting 

speed, according to the outcomes of the study. The cutting forces are substantially 

influenced by the depth of cut, while the surface roughness is only minimally 

influenced. On all performance metrics, the cutting time has a significant influence. 

GA appears to be the most beneficial option, despite the fact that the outcomes 

anticipated by the other optimization methods were very comparable. Eventually, 

the suggested experimental and embedded techniques provide valid methodology 

for building model, finding optimum results, and developing the process of hard 

turning. 

Researchers report an operational investigation of hard turning of AISI 52100 using 

a CBN tool. Through the use of ANOVA analysis, the cumulative impacts of 
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design variables (cutting speed, feed rate, depth of cut, and cutting duration) are 

studied. Response surface methodology (RSM) is used to model the connection 

between design variables and system outcomes. 

As depicted in Table 7.15, the changes in values of these input parameters provided 

the obtaining of different results for tool wear, surface roughness and cutting forces 

(Fa, Fc, Fp). 

Therefore, these obtaining results depending on the change in these design 

variables are sufficient to develop an optimization strategy. Moreover, it is 

impossible to determine a proportional connection between measured roughness 

values and four input parameters (cutting speed, feed rate, depth of cut and cutting 

time), as understood from Table 7.15. Therefore, it is necessary to optimize these 

parameters to minimize both tool wear, surface roughness and cutting forces. 
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The behavior of the system was explained by the multiple linear regression models 

given below [45]; 

𝑉𝐵 = −0.06932 + 0.000382 × 𝑉𝑐 + 0.83611 × 𝑓 + 0.083611 × 𝑎𝑝 (7.7) 

 −0.005104 × 𝑡 + 0.000072 × 𝑉𝑐 × 𝑡  

𝑅𝑎 = 0.4393 − 0.001610 × 𝑉𝑐 + 1.9583 × 𝑓 + 0.06944 × 𝑎𝑝 (7.8) 

 0.000146 × 𝑡 + 0.00007 × 𝑉𝑐 × 𝑡  

𝐹𝑎 = −55.44 − 0.23895 × 𝑉𝑐 + 1024.4 × 𝑓 + 433.69 × 𝑎𝑝 (7.9) 

 +5.4559 × 𝑡 − 1560.1 × 𝑓 × 𝑎𝑝  

𝐹𝑐 = −76.34 − 0.36381 × 𝑉𝑐 + 1671.6 × 𝑓 + 681.42 × 𝑎𝑝 (7.10) 

 +6.5242 × 𝑡 − 2603.7 × 𝑓 × 𝑎𝑝  

𝐹𝑝 = −43.15 − 0.33442 × 𝑉𝑐 + 1622.6 × 𝑓 + 736.57 × 𝑎𝑝 (7.11) 

 +8.8774 × 𝑡 − 2579.4 × 𝑓 × 𝑎𝑝  

The experimental data was represented by these regression models with 

determination coefficients (R2) of 0.992, 0.978, 0.980, 0.973 and 0.992, 

respectively. 

Bouacha et al. [45] figured out this limited optimization issue by defining all the 

input parameters as discrete and proceeded in the modeling process only according 

to the standard R2 results and listed the models. The R2 values Bouacha et al [45] 

found vary between 97% and 99%. Bouacha et al [45] does not mention the R2
training 

and R2
testing distinction in the modeling process and does not mention determining 

models according to different scenarios. As can be clearly seen, it is seen that 

smaller response parameters may be calculated with the variables as a consequence 

of optimization. 

7.3.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) are as 

in the following form; 

 130 ≤ Cutting speed ≤ 260 ,    (m/min) 

 0.08 ≤ Feed rate ≤ 0.16 ,    (mm/rev) 

 0.02 ≤ Depth of cut ≤ 0.06 ,    (mm) 

 2 ≤ Cutting Time ≤ 16 ,    (min) 

 

 



 

 
94 

7.3.1.1 Scenario 1 

Tool wear, surface roughness and cutting forces are explained by the objective 

functions in this optimal solution problem. There are no constraints about the input 

parameters so they can be real numbers,and the computation area is continuous. 

The primary goal is to minimize the tool wear, surface roughness and cutting 

forces. It is also technically possible to see these theory-based boundaries of the 

objective function this way. 

7.3.1.2 Scenario 2 

Scenario 1 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 

7.3.1.3 Scenario 3 

As different from scenario 1, non-linear constraints are added for the optimization 

problem. Surface roughness must be smaller than 0.25 µm for tool wear. Tool wear 

must be smaller than 0.1 mm for surface roughness. Fc and Fp must be smaller than 

100 N and 150 N for Fa, respectively. Fa and Fp must be smaller than 50 N and 

150 N for Fc, respectively. Fa and Fc must be smaller than 50 N and 100 N for Fp, 

respectively. Problem solving will be more complex and difficult in this instance 

than in scenarios 1 and 2. 

7.3.1.4 Scenario 4 

In the constructed of scenario 4, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 4 parameters can only take the values in the data table. 

7.3.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 
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approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data tables of tool wear, surface roughness and cutting forces (Fa, Fc, 

Fp) listed as Table 7.16, 7.17, 7.18, 7.19 and 7.20 can be seen below. Therefore, it 

is necessary to optimize these parameters to minimize of all the response values. 

Table 7.16: Results of the Neuro-regression models for the tool wear (VB) 

Models R
2
training R

2
testing 

Max (mm) Min (mm) 

CS2-O1-L 0.94 0.76 0.396 0.046 

CS2-O1-LR 0.99 0.93 0.420 0.075 

CS2-O1-SON 0.99 0.98 0.433 0.081 

CS2-O1-SONR 0.15 0.10 0.270 0.180 

CS2-O1-TON 1.00 0.90 0.428 0.080 

CS2-O1-FOTN 0.95 0.64 1.248 -0.034 

CS2-O1-FOTNR 0.99 0.92 5.466x1011 -4.704x108 

CS2-O1-SOTN 1.00 0.87 1.191 -0.590 

CS2-O1-SOTNR 0.99 0.95 1.676 0.027 

CS2-O1-FOLN 0.90 0.64 0.371 0.039 

CS2-O1-FOLNR 0.99 0.97 0.414 0.077 

CS2-O1-SOLN 0.99 0.99 0.431 0.082 

CS2-O1-SOLNR 0.94 0.55 0.442 0.076 
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Table 7.17: Results of the Neuro-regression models for the surface roughness 

(Ra) 

Models R
2
training R

2
testing 

Max (µm) Min (µm) 

CS2-O2-L 0.94 0.96 0.759 0.269 

CS2-O2-LR 0.96 0.96 0.749 0.256 

CS2-O2-SON 0.99 0.99 0.735 0.231 

CS2-O2-SONR 0.91 0.96 0.702 0.253 

CS2-O2-TON 1.00 0.95 0.869 0.214 

CS2-O2-FOTN 0.96 0.94 1.462 0.159 

CS2-O2-FOTNR 0.99 0.78 5.756x107 -3.526x1010 

CS2-O2-SOTN 1.00 0.64 3.811 -0.783 

CS2-O2-SOTNR 0.99 0.98 1.627 0.170 

CS2-O2-FOLN 0.88 0.90 0.722 0.273 

CS2-O2-FOLNR 0.92 0.87 0.760 0.284 

CS2-O2-SOLN 0.98 0.99 0.752 0.233 

CS2-O2-SOLNR 0.97 0.98 0.788 0.243 

 

 

Table 7.18: Results of the Neuro-regression models for the cutting force (Fa) 

Models R
2
training R

2
testing 

Max (N) Min (N) 

CS2-O3-L 0.95 0.98 290.413 49.476 

CS2-O3-LR 0.96 0.99 280.451 46.899 

CS2-O3-SON 0.98 0.99 284.13 47.433 

CS2-O3-SONR 0.99 0.53 1.995x1012 -11901. 

CS2-O3-TON 1.00 0.94 338.949 32.708 

CS2-O3-FOTN 0.96 0.95 613.636 -57.965 

CS2-O3-FOTNR 0.98 0.48 9.497x1011 -3.790x108 

CS2-O3-SOTN 1.00 0.54 454.233 -1806.61 

CS2-O3-SOTNR 1.00 -1.19 8.338x109 -5.650x1015 

CS2-O3-FOLN 0.85 0.96 271.593 48.450 

CS2-O3-FOLNR 0.88 0.96 271.04 56.222 

CS2-O3-SOLN 0.98 0.99 282.323 38.127 

CS2-O3-SOLNR -3.91   -44.21 2.479x1012 -1.050x1010 
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Table 7.19: Results of the Neuro-regression models for the cutting force (Fc) 

Models R
2
training R

2
testing 

Max (N) Min (N) 

CS2-O4-L 0.93 0.95 433.037 91.025 

CS2-O4-LR 0.95 0.99 404.862 67.539 

CS2-O4-SON 0.99 0.81 444.091 100.076 

CS2-O4-SONR 0.99 0.89 428.228 89.300 

CS2-O4-TON 1.00 0.86 446.199 81.372 

CS2-O4-FOTN 0.97 0.80 987.856 -197.359 

CS2-O4-FOTNR 0.99 0.82 5.239x1013 -8.396x1012 

CS2-O4-SOTN 1.00 0.60 620.481 -761.287 

CS2-O4-SOTNR 0.91 -18.06 1.478x109 -7.947x1013 

CS2-O4-FOLN 0.88 0.97 410.467 85.999 

CS2-O4-FOLNR 0.90 0.97 392.783 87.970 

CS2-O4-SOLN 0.99 0.85 439.141 91.759 

CS2-O4-SOLNR  0.93 0.55 1.029x108 -2.286x109 

 

Table 7.20: Results of the Neuro-regression models for the cutting force (Fp) 

Models R
2
training R

2
testing 

Max (N) Min (N) 

CS2-O5-L 0.97 0.96 536.395 143.841 

CS2-O5-LR 0.98 0.99 506.387 107.657 

CS2-O5-SON 0.99 0.96 522.032 119.698 

CS2-O5-SONR 1.00 0.94 574.984 150.046 

CS2-O5-TON 1.00 0.97 500.764 133.973 

CS2-O5-FOTN 0.98 0.92 1167.33 -50.001 

CS2-O5-FOTNR 0.99 -17.80 9.871x109 -5.742x1010 

CS2-O5-SOTN 1.00 0.90 548.906 -354.309 

CS2-O5-SOTNR -12.89 -6.13 3.144x108 0.441 

CS2-O5-FOLN 0.93 0.97 508.646 136.646 

CS2-O5-FOLNR 0.94  0.98 491.851 126.219 

CS2-O5-SOLN 0.99 0.97 515.215 108.11 

CS2-O5-SOLNR 1.00 0.93 522.290 151.331 

For the first output of the study (VB, Bouacha et al. [45]), the initial assumption 

would be that models 2, 3, 9, 11 and 12 are suitable if the selection had just been 

based on R2
training and R2

testing. Based on this argument, utilizing a method that 

considers the simplicity of the models and the desired models' capacity to provide 
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realistic values, it is determined that only model 2 (LR) is suitable. As a result, 

misleading findings are unavoidable if the model building-optimum result finding 

analyses are not addressed as outlined in this article. Thus, the obtained model 2 

(CS2-O1-LR) was chosen as the objective function required in analyses to get 

optimum results of tool wear. Outcomes of the selected model can be spotted in 

Table 7.16. 

Table 7.21 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum tool wear outcomes, depending 

on all of the optimization techniques, were 0.075 mm, which correspond to LR. 

The suggested (optimum) designs are; cutting speed: 130 (m/min), feed rate: 0.08 

(mm/rev), depth of cut: 0.08 (mm) and cutting time: 2 (min). 0.075 mm is a realistic 

result by compared with the results of experiment [0.084, 0.415]. We could say that 

the optimization results have reached smaller values than the minimum 

experimental results. 

In scenario 2, feed rate and depth of cut have been handled as continuous 

parameters, whereas the cutting speed and cutting time are discontinuous 

(integers). Although there are three different results, the minimum tool wear values 

for the LR model were same as the scenario 1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the surface roughness value smaller than 0.25 for tool wear. 

The minimum tool wear found as 0.117 mm. The suggested (optimum) designs are; 

cutting speed: 238.276 (m/min), feed rate: 0.08 (mm/rev), depth of cut: 0.2 (mm) 

and cutting time: 2 (min). 0.117 mm is a realistic result by compared with the 

results of experiment. We could say that the minimum experimental results and the 

optimization results of the third scenario are quite close to each other. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 
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From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the LR model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the optimal tool wear was found to be 0.075 mm. 

For the second output of the study (Ra, Bouacha et al. [45]), results show that if the 

R2 value was the key element considered in decided the model, we may conclude 

that all models accurately describe the process. Because R2
training results are nearly 

all close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 3 (SON) is suitable. As a 

result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 3 (CS2-O2-SON) was chosen as the objective function required in analyses 

to get optimum results of surface roughness. Outcomes of the selected model can 

be spotted in Table 7.17. 

Table 7.22 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 0.230 µm, which correspond 

to SON. The suggested (optimum) designs are; cutting speed: 260 (m/min), feed 

rate: 0.08 (mm/rev), depth of cut: 0.2 (mm) and cutting time: 2 (min). 0.230 µm is 

a realistic result by compared with the results of experiment [0.24, 0.72]. We could 

say that the optimization results reach lower surface roughness than experimental 

results. 
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In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed and cutting time are discrete (integers). Although there are 

three different results, the minimum surface roughness results for the SON model 

were same as the scenario 1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the tool wear smaller than 0.1 for surface roughness. The 

minimum surface roughness found as 0.289 µm. The suggested (optimum) designs 

are; cutting speed: 207.446 (m/min), feed rate: 0.08 (mm/rev), depth of cut: 0.2 

(mm) and cutting time: 2 (min). 0.289 µm is a realistic result by compared with the 

results of experiment. We could say that the minimum experimental results and the 

optimization results of the third scenario are really close to each other. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the SON model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the optimal surface roughness was found to be 0.230 µm. 

For the third output of the study (Fa, Bouacha et al. [45]), results show that if the 

R2 value was the key element considered in decided the model, we may conclude 

that all models accurately describe the process. Because R2
training results are nearly 

all close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 1 (L) is suitable. As a 
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result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 1 (CS2-O3-L) was chosen as the objective function required in analyses to 

get optimum results of cutting force (Fa). Outcomes of the selected model can be 

spotted in Table 7.18. 

Table 7.23 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum cutting force (Fa) outcomes, 

depending on all of the optimization techniques, were 49.476 N, which correspond 

to L. The suggested (optimum) designs are; cutting speed: 260 (m/min), feed rate: 

0.08 (mm/rev), depth of cut: 0.2 (mm) and cutting time: 2 (min). 49.476 N is a 

realistic result by compared with the results of experiment [70.918, 276.241]. We 

could say that the optimization results reach lower cutting force than experimental 

results. 

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed and cutting time are discrete (integers). The minimum 

cutting force results for the L model were same as the scenario 1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the tangential cutting force (Fc) smaller than 100 N and thrust 

force (Fp) smaller than 150 N for feed force (Fa). The results are the same with 

scenario 1 and 2. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 
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Furthermore, utilizing the L model to solve the optimization issue for scenarios 1, 

2, 3 and 4, the optimal cutting force was found to be 49.4757 N. We could say that 

the optimization results reach lower cutting force than experimental results. 

For the fourth output of the first study (Fc, Bouacha et al. [45]), results show that 

if the R2 value was the key element considered in decided the model, we may 

conclude that all models accurately describe the process. Because R2
training results 

are nearly all close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 4 (SONR) is suitable. As 

a result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 4 (CS2-O4-SONR) was chosen as the objective function required in 

analyses to get optimum results of tangential cutting force (Fc). Outcomes of the 

selected model can be spotted in Table 7.19. 

Table 7.24 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum tangential cutting force (Fc) 

outcomes, depending on all of the optimization techniques, were 89.301 N, which 

correspond to SONR. The suggested (optimum) designs are; cutting speed: 260 

(m/min), feed rate: 0.08 (mm/rev), depth of cut: 0.2 (mm) and cutting time: 2 (min). 

89.301 N is a realistic result by compared with the results of experiment [108.529, 

384.466]. We could say that the scenario 1 results reach lower cutting force than 

experimental results. 

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed and cutting time are discrete (integers). Although, there are 

three different results but the minimum tangential cutting force results for the 

SONR model were same as the scenario 1. 
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In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the feed force (Fa) smaller than 50 N and thrust force (Fp) 

smaller than 150 N for tangential cutting force (Fc). The results are the same with 

scenario 1 and 2. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the SONR model to solve the optimization issue for 

scenarios 1, 2, 3 and 4, the optimal tangential cutting force was found to be 89.301 

N. We could say that the optimization results reach lower cutting force than 

experimental results. 

For the fifth output of the first study (Fp, Bouacha et al. [45]), results show that if 

the R2 value was the key element considered in decided the model, we may 

conclude that all models accurately describe the process. Because R2
training results 

are nearly all close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 3 (SON) is suitable. As a 

result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 3 (CS2-O5-SON) was chosen as the objective function required in analyses 

to get optimum results of thrust cutting force (Fp). Outcomes of the selected model 

can be spotted in Table 7.20. 
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Table 7.25 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum thrust force (Fp) outcomes, 

depending on all of the optimization techniques, were 119.698 N, which 

correspond to SON. The suggested (optimum) designs are; cutting speed: 260 

(m/min), feed rate: 0.08 (mm/rev), depth of cut: 0.2 (mm) and cutting time: 2 (min). 

119.698 N is a realistic result by compared with the results of experiment [161.465, 

189.182].  

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed and cutting time are discrete (integers). The minimum 

thrust force values for the SON model were same as the scenario 1.  

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the feed force (Fa) smaller than 50 N and tangential force (Fc) 

smaller than 100 N for thrust force (Fp). The results are the same with scenario 1 

and 2. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the SON model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the optimal thrust force was found to be 119.698 N.  We could say 

that the optimization results reach lower cutting force than experimental results. 
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Consequently, i) The regression models used for modeling have to be tested 

through both R2
training and R2

testing values. The model's operational restriction 

(boundedness) has also to be checked by calculating the maximum and minimum 

values generated by the respective model is realistic or not. ii) In our approach, the 

data generated by the model stay within the realistic boundaries different from the 

interval produced by the model given in the reference study. iii) This reveals that 

the prediction capability of the process was better and more accurate than the 

classical approach. 

7.4 Case Study #3 

The third literature study which optimization process was studied taken from 

Davoodi et al. [46]. On N-155, an iron-nickel-base superalloy, are examined the 

influences of cutting settings on tool life for PVD TiAlN-coated carbide tools and 

on the volume of machining process extracted during machining. Each of the 

design parameters, cutting speed and feed rate, was set at five levels. In order to 

simulate the connections between design variables and response parameters, 

response surface approach was applied (RSM). ANOVA was used to determine the 

suitability of the mathematical model and its associated variables. Models used to 

estimate tool life and material removal yielded successful outcomes. Cutting tool 

inserts were inspected under a scanning electron microscope and wear processes 

were investigated at different cutting speeds, as well. Desirability function-based 

optimization was used to evaluate optimal results of tool life and material removal 

in order to reach the highest possible level of production efficiency. 

As depicted in Table 7.26, the changes in values of these input parameters provided 

the obtaining of different results for the tool life (cutting time) (min) and volume 

removed (mm3). 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to establish a proportional connection between measured tool life, volume removed 

values and two design variables (cutting speed and feed rate) as understood from 
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Table 7.26. Therefore, it is necessary to optimize these parameters to achieve 

maximum amount of material volume removed (mm3) in minimum tool life 

(cutting time) (min). 

Table 7.26: Experimental results of tool life and volume removed with different 

experimental conditions [46] 

Exp No Cutting speed 

(Vc, m/min) 

Feed rate 

(f, mm/rev) 

Tool life 

(T, min) 

Volume Removed 

(V, mm3) 

1 70 0.200 5.20 78162.5 

2 80 0.175 4.30 80119.4 

3 70 0.150 7.60 74003.9 

4 70 0.150 7.43 74007.5 

5 70 0.150 7.50 74011.6 

6 70 0.100 10.50 73537.4 

7 80 0.125 7.36 74001.3 

8 60 0.125 12.20 77841.6 

9 70 0.150 7.52 74015.3 

10 70 0.150 7.51 74020.1 

11 90 0.150 6.40 81032.3 

12 60 0.175 8.40 78953.5 

13 50 0.150 13.50 86933.6 

The behavior of the system was explained by the multiple linear regression models 

given below [46]; 

𝑇 = 70.172 − 1.153 × 𝑉𝑐 − 149.393 × 𝑓 + 0.006 × 𝑉𝑐2 (7.12) 

 +131.310 × 𝑓2 +  0.740 × 𝑉𝑐 × 𝑓  

𝑉 = 266806 − 4379.98 × 𝑉𝑐 − 522422 × 𝑓 + 25.06 × 𝑉𝑐2 (7.13) 

 + 756408 × 𝑓2 + 5006.20 × 𝑉𝑐 × 𝑓  

The experimental data was represented by these regression models with 

determination coefficients (R2) of 0.9773 and 0.9772, respectively. 

Davoodi et al. [46] figured out this limited optimization issue by defining all the 

input parameters as discrete and proceeded in the modeling process only according 

to the standard R2 results and listed the models. The R2 values Davoodi et al [46] 

found as 97.73% and 97.72%. Davoodi et al [46] does not mention the R2
training and 

R2
testing distinction in the modeling process and does not mention determining 
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models according to different scenarios. As can be clearly seen, it is seen that 

smaller tool life (cutting time) may be calculated with the variables as a 

consequence of optimization. For the volume removed, the given regression model 

does not work properly and correctly. The results are very different when compared 

with the experimental results. 

7.4.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 50 ≤ Cutting speed ≤ 90 ,    (m/min) 

 0.125 ≤ Feed rate ≤ 0.2 ,    (mm/rev) 

7.4.1.1 Scenario 1 

Tool life is explained by the objective function in this optimal solution problem. 

There are no constraints about the input parameters so they can be real numbers, 

and the computation area is continuous. The primary goal is to minimize the tool 

life (cutting time). It is also technically possible to see these theory-based 

boundaries of the objective function this way. 

7.4.1.2 Scenario 2 

Scenario 2 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 

7.4.1.3 Scenario 3 

In the constructed of scenario 3, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 3 parameters can only take the values in the data table. 
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7.4.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data tables of tool life and volume removed listed as Table 7.27 and 

7.28 can be seen below. As can be seen in Table 7.28, there are no realistic and 

logical results for the volume removed. Also, a realistic connection between design 

parameters and volume removed could not be established. Thus, optimization 

process has been studied only for tool life. 

 

Table 7.27: Results of the Neuro-regression models for the tool life (cutting time) 

Models R
2
training R

2
testing 

Max (min) Min (min) 

CS3-O1-L 0.86 0.80 13.469 1.4379 

CS3-O1-LR 0.97 0.45 15.625 2.661 

CS3-O1-SON 0.99 0.04 15.528 2.180 

CS3-O1-SONR 0.17 -3.00 9.315 8.189 

CS3-O1-TON 0.99 0.88 15.675 2.835 

CS3-O1-FOTN 0.59 -42.79 14.919 -5.167 

CS3-O1-FOTNR 0.99 -22.99 3.681x1011 -2.615x1013 

CS3-O1-SOTN 0.99 0.24 14.909 0.422 

CS3-O1-SOTNR 0.99 -0.68 19.049 3.989 

CS3-O1-FOLN 0.90 0.86 13.967 2.261 

CS3-O1-FOLNR 0.97 0.12 14.815 1.986 

CS3-O1-SOLN 0.99 -0.06 15.560 1.976 

CS3-O1-SOLNR 0.97 0.64 15.211 2.929 
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Table 7.28: Results of the Neuro-regression models for the volume removed 

Models R
2

training R
2
testing 

Max (mm3) Min (mm3) 

CS3-O2-L 0.19 -0.88 83506.1 73352.3 

CS3-O2-LR 0.86 -0.27 ∞ −∞ 

CS3-O2-SON 0.99 -0.76 15.528 2.180 

CS3-O2-SONR -301.17 -1451.2 9.315 8.189 

CS3-O2-TON 1.00 0.30 15.675 2.835 

CS3-O2-FOTN 0.45 -17.85 14.919 -5.167 

CS3-O2-FOTNR 1.00 -3.02 3.681x1011 -2.615x1013 

CS3-O2-SOTN 1.00 -1.75 14.909 0.422 

CS3-O2-SOTNR -311.59 -1482.1 19.049 3.989 

CS3-O2-FOLN 0.25 -0.43 13.967 2.261 

CS3-O2-FOLNR 0.73 -10.02 14.815 1.986 

CS3-O2-SOLN 0.99 0.11 15.560 1.976 

CS3-O2-SOLNR -299.10 -1483.67 15.211 2.929 

For the output of the study (T, Davoodi et al. [46]), results show that if the R2 value 

was the key element considered in decided the model, we may conclude that all 

models accurately describe the process. Because R2
training results are nearly all close 

to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 5 (TON) is suitable. As a 

result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 5 (CS3-O1-TON) was chosen as the objective function required in analyses 

to get optimum results of tool life. Outcomes of the selected model can be spotted 

in Table 7.27. 

Table 7.29 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum tool life (cutting time) 

outcomes, depending on all of the optimization techniques, were 2.834 min, which 
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correspond to TON. The suggested (optimum) designs are; cutting speed: 83.8916 

(m/min) and feed rate: 0.2 (mm/rev). 2.834 min is a realistic result by compared 

with the results of experiment [4.30 13.50]. We could say that the optimization 

results reach lower tool life (cutting time) than experimental results. 

In scenario 2, feed rate has been treated as continuous variables while the cutting 

speed is discrete (integers). The minimum tool life (cutting time) found as 2.835 

min for the TON model. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2 and 3 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the TON model to solve the optimization issue for scenarios 

1, 2 and 3 the optimal tool life (cutting time) was found to be 2.83436 min.  We 

could say that the optimization results reach lower cutting force than experimental 

results. 
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Consequently, i) The regression models used for modeling have to be tested 

through both R2
training and R2

testing values. The model's operational restriction 

(boundedness) has also to be checked by calculating the maximum and minimum 

values generated by the respective model is realistic or not. ii) In our approach, the 

data generated by the model stay within the realistic boundaries different from the 

interval produced by the model given in the reference study. iii) This reveals that 

the prediction capability of the process was better and more accurate than the 

classical approach. 

7.5 Case Study #4 

The third literature study which optimization process was studied taken from 

Hanief et al [47]. The pressures applied on a cutting tool during a cutting process 

have a significant impact on its lifespan. In terms of complexity, the machining 

procedure is rather difficult. Developing a complete model that incorporates all 

factors is quite challenging. With the use of a high-speed steel (HSS) machining 

tool, this study intends to create a model to explore the impacts of design variables 

(speed, depth, and feed rate) on cutting forces during process. A full factorial 

design was used to enhance the data's dependability and reliability degree. On the 

basis of design variables, artificial neural networks and multiple regression 

techniques were utilized to simulate cutting forces. Analysis of variance (ANOVA) 

was performed to test the regression model's suitability. The ANOVA showed that 

the regression model could determine the cutting forces. The ANN model, on the 

other hand, was shown to be more precise than the regression model. 

As depicted in Table 7.30, the changes in values of these input parameters provided 

the obtaining of different results for the resultant force. 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to determine a proportional connection of measured cutting force values and three 

input parameters (cutting speed, feed rate and depth of cut) as understood from 

Table 7.30. Therefore, it is necessary to optimize these parameters to achieve 

minimum cutting force (N). 
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Table 7.30: Experimental results of resultant force with different experimental 

conditions [47] 

Exp No Cutting speed 

(v, m/min) 

Feed rate                     

(f, mm/rev) 

Depth of cut 

(d, mm) 

Resultant Force 

(fR, N) 

1 840 0.40 0.10 5.1266 

2 840 0.40 0.13 5.8563 

3 840 0.40 0.16 7.3708 

4 1280 0.40 0.10 6.2632 

5 1280 0.40 0.13 7.8619 

6 1280 0.40 0.16 9.0650 

7 1000 0.40 0.10 6.6832 

8 1000 0.40 0.13 6.9717 

9 1000 0.40 0.16 7.7756 

10 840 0.80 0.10 8.0678 

11 840 0.80 0.13 8.4087 

12 840 0.80 0.16 10.0298 

13 1280 0.80 0.10 8.5716 

14 1280 0.80 0.13 8.5161 

15 1280 0.80 0.16 9.9617 

16 1000 0.80 0.10 8.9073 

17 1000 0.80 0.13 8.9073 

18 1000 0.80 0.16 8.2918 

19 840 0.12 0.10 4.0710 

20 840 0.12 0.13 3.3434 

21 840 0.12 0.16 4.0590 

22 1280 0.12 0.10 5.3841 

23 1280 0.12 0.13 2.4105 

24 1280 0.12 0.16 4.8550 

25 1000 0.12 0.10 3.9355 

26 1000 0.12 0.13 3.9558 

27 1000 0.12 0.16 5.3155 

The behavior of the system was explained by the multiple linear regression models 

given below [47]; 

𝑓𝑅  = 3.9093 × 𝑣0.2226 × 𝑓0.4145 × 𝑑0.3008  (7.14) 
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Hanief et al. [47] figured out this limited optimization issue by defining all the 

input parameters as discrete and proceeded in the modeling process only according 

to the standard R2 results and listed the models. Hanief et al. [47] does not mention 

the R2
training and R2

testing distinction in the modeling process and does not mention 

determining models according to different scenarios. As can be clearly seen, it is 

seen that smaller cutting force (resultant force) may be calculated with the variables 

as a consequence of optimization. 

7.5.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 840 ≤ Cutting speed ≤ 1280 ,    (m/min) 

 0.12 ≤ Feed rate ≤ 0.8 ,    (mm/rev) 

 0.1 ≤ Depth of cut ≤ 0.16 ,    (mm) 

7.5.1.1 Scenario 1 

Cutting force is explained by the objective function in this optimal solution 

problem. There are no constraints about the input parameters so they can be real 

numbers, and the computation area is continuous. The primary goal is to minimize 

the cutting force. It is also technically possible to see these theory-based boundaries 

of the objective function this way. 

7.5.1.2 Scenario 2 

Scenario 2 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 

7.5.1.3 Scenario 3 

In the constructed of scenario 3, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 3 parameters can only take the values in the data table. 
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7.5.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data table of cutting force (resultant force) listed as Table 7.31 can be 

seen below.  

Table 7.31: Results of the Neuro-regression models for the cutting force 

Models R
2

training R
2
testing 

Max (N) Min (N) 

CS4-O-L 0.84 0.79 9.629 3.965 

CS4-O-LR 0.89 0.91 9.738 3.859 

CS4-O-SON 0.91 0.82 9.689 3.537 

CS4-O-SONR 0.99 0.61 1.832x109 1.552 

CS4-O-TON 0.97 0.64 9.995 2.981 

CS4-O-FOTN 0.91 0.82 11.134 1.386 

CS4-O-FOTNR 0.96 0.69 5.013x108 -1.483x1010 

CS4-O-SOTN 0.99 0.23 24702.1 -9583.14 

CS4-O-SOTNR 0.99 -0.86 1.057x109 -7.058x1011 

CS4-O-FOLN 0.87 0.85 9.354 3.539 

CS4-O-FOLNR 0.88 0.86 9.576 3.777 

CS4-O-SOLN 0.91 0.83 9.744 3.511 

CS4-O-SOLNR 0.99 0.54 7.097x109 -0.117 

For the fourth study (fR, Hanief et al [47]) the initial assumption would be that 

models 2, 3, 6 and 12 are suitable if the selection had just been based on R2
training 

and R2
testing. Based on this argument, utilizing a method that considers the 

simplicity of the models and the desired models' capacity to provide realistic 

values, it is determined that only model 6 (FOTN) is suitable. Because model 6 has 

lower value than the other models. As a result, misleading findings are unavoidable 
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if the model building-optimum result finding analyses are not addressed as outlined 

in this article. Thus, the obtained model 6 (CS4-O-FOTN) was chosen as the 

objective function required in analyses to get optimum results of cutting force. 

Outcomes of the selected model can be spotted in Table 7.31. 

Table 7.32 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum cutting force outcomes, 

depending on all of the optimization techniques, were 1.384 N, which correspond 

to FOTN. The suggested (optimum) design variables are change with optimization 

algorithms so there are four different cutting speed values. However, feed rate: 0.12 

(mm/rev) and depth of cut: 0.121838 (mm). 1.384 N is a realistic result by 

compared with the results of experiment [2.4105, 10.0298]. We could say that the 

optimization results reach lower cutting force than experimental results, but it 

should be noted that the design parameters are not equal the experimental ones. 

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed is discrete (integers). Although, there are 4 dissimilar 

outcomes but the minimum cutting force found as 1.384 N for the FOTN model. 

The suggested (optimum) design variables are; cutting speed: 1008 (m/min), feed 

rate: 0.12 (mm/rev) and depth of cut: 0.121838 (mm). 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum cutting force had found as 3.551 N. The suggested (optimum) design 

variables are; cutting speed: 840 (m/min), feed rate: 0.12 (mm/rev) and depth of 

cut: 0.13 (mm). 3.55051 N is a realistic result. We could say that as a result of the 

optimization process a better and lower cutting force result was obtained. As can 

be seen from the results, the FOTN model chosen for the optimization process has 

achieved lower results in scenarios 1 and 2 than the experimental results. However, 

in scenario 3, when design variables are accepted as experimental values, bigger 

result has been obtained than experimental results. 
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7.6 Case Study #5 

The fifth literature study which optimization process was studied taken from Jena 

et al [48]. The goal is creating an avenue, beneficial for machining industries’ point 

of view to achieve their goals. Thus, this work focuses on create a regression model 

and reach optimal outcomes of response (here, surface roughness) in FDHT of AISI 

grade 4340 steel cut by coated ceramic tool using statistical approaches such as 

response surface methodology followed by desirability function analysis. 

As depicted in Table 7.33, the changes in values of these input parameters provided 

the obtaining of different results for the surface roughness. 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to determine a proportional connection of measured surface roughness and three 

input parameters (cutting speed, axial feed and depth of cut) as understood from 

Table 7.33. Therefore, it is necessary to optimize these parameters to achieve 

minimum surface roughness. 
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Table 7.33: Experimental results of resultant force with different experimental 

conditions [48] 

Exp 

No 

Cutting speed 

(v, m/min) 

Axial feed                     

(f, mm/rev) 

Depth of cut 

(d, mm) 

Surface Roughness 

(Ra, μm) 

1 110 0.06 0.2 0.41 

2 110 0.10 0.3 0.55 

3 110 0.14 0.4 0.77 

4 110 0.18 0.5 0.96 

5 160 0.06 0.3 0.38 

6 160 0.10 0.2 0.52 

7 160 0.14 0.5 0.61 

8 160 0.18 0.4 0.74 

9 210 0.06 0.4 0.34 

10 210 0.10 0.5 0.49 

11 210 0.14 0.2 0.56 

12 210 0.18 0.3 0.65 

13 260 0.06 0.5 0.38 

14 260 0.10 0.4 0.46 

15 260 0.14 0.3 0.66 

16 260 0.18 0.2 0.72 

The behavior of the system was explained by the multiple linear regression models 

given below [48]; 

𝑅𝑎 = 0.41829 − 0.00319 × 𝑣 + 4.175 × 𝑓 + 0.26773 × 𝑑 (7.15) 

 +0.00002 × 𝑣2 −  1.5625 × 𝑓2 + 0.625 × 𝑑2 − 0.01068 × 𝑣 × 𝑓  

 −0.00541 × 𝑣 × 𝑑 +  2.44318 × 𝑓 × 𝑑  

The experimental data was represented by this regression model with 

determination coefficient (R2) of 0.978. 

Jena et al. [48] figured out this limited optimization issue by defining all the input 

parameters as discrete and proceeded in the modeling process only according to 

the standard R2 results and listed the models. The R2 value Jena et al [48] found as 

97.8%. Jena et al [48] ] does not mention the R2
training and R2

testing distinction in the 

modeling process and does not mention determining models according to different 

scenarios. As can be clearly seen, it is seen that smaller surface roughness may be 

calculated with the variables as a consequence of optimization. 
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7.6.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 110 ≤ Cutting speed ≤ 260 ,    (m/min) 

 0.06 ≤ Axial feed ≤ 0.18 ,    (mm/rev) 

 0.2 ≤ Depth of cut ≤ 0.5 ,    (mm) 

7.6.1.1 Scenario 1 

Surface roughness is explained by the objective function in this optimal solution 

problem. There are no constraints about the input parameters so they can be real 

numbers, and the computation area is continuous. The primary goal is to minimize 

the surface roughness. It is also technically possible to see these theory-based 

boundaries of the objective function this way. 

7.6.1.2 Scenario 2 

Scenario 2 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 

7.6.1.3 Scenario 3 

In the constructed of scenario 3, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 3 parameters can only take the values in the data table. 

7.6.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 
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Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data table of surface roughness listed as Table 7.34 can be seen 

below.  

Table 7.34: Results of the Neuro-regression models for the surface roughness 

Models R
2

training R
2
testing 

Max (μm) Min (μm) 

CS5-O-L 0.89 0.86 0.885 0.267 

CS5-O-LR 0.94 0.95 0.962 -0.110 

CS5-O-SON 0.97 0.96 0.725 0.321 

CS5-O-SONR 0.50 0.44 0.896 0.452 

CS5-O-TON 1.00 0.96 1.026 0.293 

CS5-O-FOTN 0.96 0.74 3.719 0.320 

CS5-O-FOTNR 0.97 0.94 1.259x109 -2.653x1012 

CS5-O-SOTN 1.00 0.25 17.509 -1.142 

CS5-O-SOTNR 0.98 0.95 6.311x109 -5.528x1012 

CS5-O-FOLN 0.88 0.86 0.860 0.241 

CS5-O-FOLNR 0.95 0.95 0.963 0.270 

CS5-O-SOLN 0.98 0.80 0.720 0.292 

CS5-O-SOLNR 0.93 0.85 0.930 0.292 

For the fifth study (Ra, Jena et al [48]), results show that if the R2 value was the 

key element considered in decided the model, we may conclude that all models 

accurately describe the process. Because R2
training results are nearly all close to 1. 

The initial assumption would be that models 3 and 5 are suitable if the selection 

had just been based on R2
training and R2

testing. Based on this argument, utilizing a 

method that considers the simplicity of the models and the desired models' capacity 

to provide realistic values, it is determined that only model 3 (SON) is suitable. As 

a result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 3 (CS5-O-SON) was chosen as the objective function required in analyses 

to get optimum results of surface roughness. Outcomes of the selected model can 

be spotted in Table 7.34. 
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Table 7.35 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 0.321 µm, which correspond 

to SON. The suggested (optimum) design variables are change with optimization 

algorithms so there are four different surface roughness values. However, cutting 

speed: 216 (m/min), feed rate: 0.06 (mm/rev) and depth of cut: 0.5 (mm). 0.321 

µm is a realistic result by compared with the results of experiment [0.34, 0.96]. We 

could say that the optimization results reach lower surface roughness than 

experimental results. 

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed is discrete (integers). Although, there are 3 dissimilar 

outcomes but the minimum surface roughness for the SON model were same as the 

scenario 1. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum surface roughness had found as 0.321 µm. The suggested (optimum) 

design variables are; cutting speed: 210 (m/min), feed rate: 0.06 (mm/rev) and 

depth of cut: 0.5 (mm). 0.321 µm is a realistic result.  We could say that the 

optimization results reach lower surface roughness than experimental results. 

In this study, the results of scenario 3 had lower surface roughness than the 

experimental results, even if the greater surface roughness value had reached in 

scenario 3 compared to scenarios 1 and 2. It can be seen clearly understood that the 

optimization work had been carried out in a healthy way and its purpose has been 

achieved.  
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7.7 Case Study #6 

The sixth literature study which optimization process was studied taken from 

Kovac et al [49]. Surface quality in face milling is examined as a function of 

machining settings in this research. This study describes a new technique to 

simulating surface roughness that makes use of artificial intelligence technologies. 

An experimental model is developed utilizing fuzzy logic and regression analysis 

in this study. After that, the surface roughness values estimated from those models 

are compared to the actual surface roughness. In comparison to standard 

techniques, such as regression analysis, the findings revealed that the suggested 

system could considerably improve the performance of product profiles. Surface 

roughness may be accurately predicted by using fuzzy logic modeling, depending 

on the outcomes. 

As depicted in Table 7.36, the changes in values of these input parameters provided 

the obtaining of different results for the surface roughness. 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to determine a proportional connection between measured surface roughness and 

four input parameters (cutting speed, feed per tooth, depth of cut and flank wear 

land) as understood from Table 7.36. Therefore, it is necessary to optimize these 

parameters to achieve minimum surface roughness. 
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Table 7.36: Experimental results of resultant force with different experimental 

conditions [49] 

Exp 

No 

Cutting speed 

(v, m/s) 

Feed per tooth                     

(f, mm/tooth) 

Depth of cut 

(a, mm) 

Width of flank wear 

(VB, mm) 

Surface Roughness 

(Ra, μm) 

1 2.32 0.178 1 0.12 2 

2 3.67 0.178 1 0.12 1.45 

3 2.32 0.280 1 0.12 2 

4 3.67 0.280 1 0.12 1.3 

5 2.32 0.178 2.25 0.12 2.1 

6 3.67 0.178 2.25 0.12 1.4 

7 2.32 0.280 2.25 0.12 2 

8 3.67 0.280 2.25 0.28 1.45 

9 2.32 0.178 1 0.28 3.05 

10 3.67 0.178 1 0.28 2.2 

11 2.32 0.280 1 0.28 3.1 

12 3.67 0.280 1 0.28 2.7 

13 2.32 0.178 2.25 0.28 3.5 

14 3.67 0.178 2.25 0.28 2.45 

15 2.32 0.280 2.25 0.28 2.4 

16 3.67 0.280 2.25 0.28 1.75 

17 2.95 0.223 1.5 0.18 1.6 

18 2.95 0.223 1.5 0.18 1.6 

19 2.95 0.223 1.5 0.18 2.2 

20 2.95 0.223 1.5 0.18 1.85 

21 2.95 0.223 1.5 0.18 2.3 

22 2.95 0.223 1.5 0.18 2.7 

23 1.83 0.223 1.5 0.18 3.3 

24 4.65 0.223 1.5 0.18 1.05 

25 2.95 0.142 1.5 0.18 2.1 

26 2.95 0.351 1.5 0.18 2.5 

27 2.95 0.223 0.67 0.18 2 

28 2.95 0.223 3.37 0.18 2.2 

29 2.95 0.223 1.5 0.08 1.45 

30 2.95 0.223 1.5 0.40 2.6 

The behavior of the system was explained by the multiple linear regression models 

given below [49]; 

𝑅𝑎  = 10.9163 × 𝑣−0.8945 × 𝑓−0.0462 × 𝑎−0.0151 × 𝑉𝐵0.4556  (7.16) 
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Kovac et al. [49] figured out this limited optimization issue by defining all the input 

parameters as discrete and proceeded in the modeling process only according to 

the standard R2 results and listed the models. Kovac et al [49] does not mention the 

R2
training and R2

testing distinction in the modeling process and does not mention 

determining models according to different scenarios. As can be clearly seen, it is 

seen that smaller surface roughness may be calculated with the variables as a 

consequence of optimization. 

7.7.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 1.83 ≤ Cutting speed ≤ 4.65 ,    (m/s) 

 0.142 ≤ Feed per tooth ≤ 0.351 ,    (mm/t) 

 0.67 ≤ Depth of cut ≤ 3.37 ,    (mm) 

 0.08 ≤ Width of flank wear land ≤ 0.40 ,    (mm) 

Since there is no input value that can be integer and there is no other output which 

can restrict the system, some of the scenarios can not be applied. 

7.7.1.1 Scenario 1 

Surface roughness is explained by the objective function in this optimal solution 

problem. There are no constraints about the input parameters so they can be real 

numbers, and the computation area is continuous. The primary goal is to minimize 

the surface roughness. It is also technically possible to see these theory-based 

boundaries of the objective function this way. 

7.7.1.2 Scenario 2 

In the constructed of scenario 2, more viable and more limited issue situations 

should be included to scenario 1. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 1, in 

scenario 2 parameters can only take the values in the data table. 
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7.7.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data table of surface roughness listed as Table 7.37 can be seen 

below.  

Table 7.37: Results of the Neuro-regression models for the surface roughness 

Models R
2
training R

2
testing 

Max (μm) Min (μm) 

CS6-O-L 0.62 0.69 4.269 0.176 

CS6-O-LR 0.72 -17.72 ∞ -∞ 

CS6-O-SON 0.83 -0.45 6.263 0.489 

CS6-O-SONR 0.79 -0.46 3.014x1012 0.182 

CS6-O-TON 0.88 -1.22 7.419 -3.362 

CS6-O-FOTN 0.67 0.45 3.881 0.797 

CS6-O-FOTNR 0.75 -29.64 1.291x1011 -7.849x106 

CS6-O-SOTN 0.85 -0.39 6.002 -2.926 

CS6-O-SOTNR 0.79 -0.75 20.596 0.393 

CS6-O-FOLN 0.65 0.85 4.026 0.276 

CS6-O-FOLNR 0.71 0.33 4.542x107 -1.412x107 

CS6-O-SOLN 0.81 0.07 6.727 -0.159 

CS6-O-SOLNR 0.86 0.85 5.559 -2.879x107 

For the sixth study (Ra, Kovac et al [49]), the initial assumption would be that only 

one model is suitable if the selection had just been based on R2
training and R2

testing. 

Based on this argument, utilizing a method that considers the desired models' 

capacity to provide realistic values, it is determined that only model 13 (SOLNR) 

is suitable. Model 13 appears having a negative minimum result. As it is a very 

small amount that result can be taken as zero. As a result, misleading findings are 
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unavoidable if the model building-optimum result finding analyses are not 

addressed as outlined in this article. Thus, the obtained model 13 (CS6-O-SOLNR) 

was chosen as the objective function required in analyses to get optimum results of 

surface roughness. Outcomes of the selected model can be spotted in Table 7.37. 

Table 7.38 shows the outcomes of two specific optimization scenarios for the 

chosen model. Optimization scenario 2 is not applicable for this study, because 

there are not any design variable that can be integer. In the optimization scenarios, 

minimum surface roughness had found as 0.188 µm with the following parameters; 

cutting speed: 4.65 (m/s), feed: 0.351 (mm/tooth), depth of cut: 1 (mm) and flank 

wear: 0.4 (mm). 0.188 µm is a better result in comparison with the experimental 

values [1.05, 3.5]. We could say that as a result of the optimization process better 

and lower surface roughness result was obtained. One of the most important 

reasons to reach this minimum result is that the design of experiment has not been 

done systematically. If we look at the experimental table, there is only an 

experiment where the cutting speed is 4.65 m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

134 

 



 

 

135 

Regarding of these facts, by using our proposed approach, for surface roughness 

the design variables were fitted to the given multiple linear rational function with 

R2
training = 0.86 and R2

testing = 0.85 values: (0.876953 + 0.515023 Log[x1] + 

0.502096 Log[x1]^2 + 0.767089 Log[x2] + 1.93999 Log[x1] Log[x2] + 1.89879 

Log[x2]^2 + 0.326182 Log[x3] + 0.759354 Log[x1] Log[x3] + 1.00894 Log[x2] 

Log[x3] + 1.7903 Log[x3]^2 + 0.160736 Log[x4] + 1.80025 Log[x1] Log[x4] + 

0.9205 Log[x2] Log[x4] + 1.55392 Log[x3] Log[x4] + 0.864499 Log[x4]^2) / 

(1.51101 + 1.3603 Log[x1] - 1.00906 Log[x1]^2 + 0.942904 Log[x2] - 0.420822 

Log[x1] Log[x2] + 0.323479 Log[x2]^2 + 2.08135 Log[x3] + 0.341663 Log[x1] 

Log[x3] + 1.48955 Log[x2] Log[x3] + 0.90751 Log[x3]^2 + 3.1366 Log[x4] + 

0.523403 Log[x1] Log[x4] + 1.12312 Log[x2] Log[x4] + 1.03579 Log[x3] 

Log[x4] + 1.11833 Log[x4]^2). According to scenario 1, minimum surface 

roughness can be taken as zero. In scenario 2, minimum surface roughness has 

found as 0.188122 with the following conditions; cutting speed: 4.65m/s, feed per 

tooth: 0.351mm/tooth, depth of cut: 1mm and and width of flank wear land: 0.4mm. 

0.188 μm could be a realistic and better result in comparison with the experimental 

results [1.05, 3.5]. Both optimization results and the experimental results have 

minimum surface roughness value at the highest cutting speed (4.65m/s). One of 

the reasons why smaller values could not be obtained in the experimental results, 

single experiment was made with a cutting speed value of 4.65 can be showed. 

7.8 Case Study #7 

The seventh literature study which optimization process was studied taken from 

Meddour et al [50]. To simulate the surface roughness and cutting force in the 

finish turning of AISI 4140 hard materials using a ceramic tool, this work is 

presented in this article. Artificial Neural Networks (ANN) are being utilitized to 

enhance estimation in this case. According to the response surface methodology 

(RSM), cutting speed, depth of cut and feed rate affect the response parameters. 

Increased cutting speed reduces the undesirable effects of feed rate. Bigger nose 

radius processing provides surfaces with higher physical qualities. Various multi-

objective optimization tasks can be accomplished utilitizing the Desirability 

Function Approach (DF) and the Non-dominated Sorting Genetic Algorithm 
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(NSGA-II) combined with ANN models. This approach is shown to be 

significantly successful than DF technique and to give a variety of non-dominated 

solutions that meets the demands of components condition, productivity, and 

cutting force, all of which lead to improved productivity and increased profitability. 

A further benefit of using the NSGA-II and ANN models together was the ability 

to forecast a low degree of surface roughness well below the measured result. 

As depicted in Table 7.38, the changes in values of these input parameters provided 

the obtaining of different results for the surface roughness and cutting forces. 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to establish a proportional connection between measured response values and four 

design variables (cutting speed, feed per tooth, depth of cut and flank wear land) 

as understood from Table 7.38. Therefore, it is necessary to optimize these 

parameters to achieve minimum response values. 

 

 

 

 

 

 

 

 

 

 



 

 

137 

 



 

 
138 

The behavior of the system was explained by the multiple linear regression models 

given below [50]; 

𝑅𝑎 = 0.6548 + 2.246 𝐸 − 004 × 𝑉𝑐 − 0.3015 × 𝑎𝑝 + 2.774 × 𝑓 (7.17) 

 −0.7968 × 𝑟 − 1.2096 𝐸003 × 𝑉𝑐 × 𝑎𝑝 − 0.01747 × 𝑉𝑐 × 𝑓  

 −1.61295𝐸 − 003 × 𝑉𝑐 × 𝑟 + 1.666 × 𝑎𝑝 × 𝑓 + 0.3125 × 𝑎𝑝 × 𝑟  

 +1.8749 × 𝑓 × 𝑟 + 1.0275𝐸 − 005 × 𝑉𝑐2 + 0.199 × 𝑎𝑝2  

 −3.333 × 𝑓2 + 0.2781 × 𝑟2  

𝐹𝑥 = 144.83 − 0.380 × 𝑉𝑐 + 112 × 𝑎𝑝 − 1328.135 × 𝑓 − 48.178 × 𝑓 (7.18) 

 −48.178 × 𝑟 − 0.277 × 𝑉𝑐 × 𝑎𝑝 + 2.337 × 𝑉𝑐 × 𝑓  

 +5.443𝐸 − 003 × 𝑉𝑐 × 𝑟 + 345.833 × 𝑎𝑝 × 𝑓 − 24.0625 × 𝑎𝑝 × 𝑟  

 +443.958 × 𝑓 × 𝑟 + 5.421𝐸 − 004 × 𝑉𝑐2 + 248.016 × 𝑎𝑝2  

 +1615.462 × 𝑓2 − 1.983 × 𝑟2  

𝐹𝑦 = 261.238 − 0.563 × 𝑉𝑐 + 301.383 × 𝑎𝑝 − 2346.382 × 𝑓 (7.19) 

 −115.136 × 𝑟 − 1.673 × 𝑉𝑐 × 𝑎𝑝 + 4.993 × 𝑉𝑐 × 𝑓 + 0.411 × 𝑉𝑐 × 𝑟  

 +476.666 × 𝑎𝑝 × 𝑓 + 106.187 × 𝑎𝑝 × 𝑟 + 306.249 × 𝑓 × 𝑟  

 −2.106𝐸 − 004 × 𝑉𝑐2 + 315.85 × 𝑎𝑝2 + 6323.333 × 𝑓2 − 1.454 × 𝑟2  

𝐹𝑧 = 197.822 − 0.727 × 𝑉𝑐 + 21.201 × 𝑎𝑝 − 2004.187 × 𝑓 + 8.317 × 𝑟 (7.20) 

 −0.445 × 𝑉𝑐 × 𝑎𝑝 + 6.571 × 𝑉𝑐 × 𝑓 − 0.026 × 𝑉𝑐 × 𝑟  

 +3380.833 × 𝑎𝑝 × 𝑓 − 62 × 𝑎𝑝 × 𝑟 − 105.208 × 𝑓 × 𝑟  

 +1.1251𝐸 − 004 × 𝑉𝑐2 + 232.375 × 𝑎𝑝2 + 3361.111 × 𝑓2  

 +13.570 × 𝑟2  

The experimental data was represented by these regression models with 

determination coefficients (R2) of 0.91, 0.90, 0.89 and 0.97, respectively. 

Meddour et al. [50] figured out this limited optimization issue by defining all the 

input parameters as discrete and proceeded in the modeling process only according 

to the standard R2 results and listed the models. The R2 values Meddour et al [50] 

found vary between 89% and 97%. Meddour et al [50] does not mention the 

R2
training and R2

testing distinction in the modeling process and does not mention 

determining models according to different scenarios. As can be clearly seen that 

the smaller surface roughness and cutting forces may be calculated with the 

variables as a consequence of optimization. 

7.8.1 Optimization Scenarios  

For all scenarios, the limit values for the system inputs (design parameters) as in 

the following form; 
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 120 ≤ Cutting speed ≤ 244 ,    (m/min) 

 0.1 ≤ Depth of cut ≤ 0.3 ,    (mm) 

 0.08 ≤ Feed rate ≤ 0.14 ,    (mm/rev) 

 0.8 ≤ Tool nose radius ≤ 1.6 ,    (mm) 

7.8.1.1 Scenario 1 

Surface roughness and cutting forces are explained by the objective functions in 

this optimal solution problem. There are no constraints about the input parameters 

so they can be real numbers, and the computation area is continuous. The primary 

goal is to minimize the response parameters. It is also technically possible to see 

these theory-based boundaries of the objective function this way. 

7.8.1.2 Scenario 2 

Scenario 1 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 

There is only one design variable that can be integer number. 

7.8.1.3 Scenario 3 

As different from scenario 1, non-linear constraints are added for the optimization 

problem. For the first output, surface roughness (Ra) there is no scenario 3. For 

feed force (Fx), thrust force should be smaller than 70 and tangential force should 

be smaller than 50. For thrust force (Fy), feed force should be smaller than 25 and 

tangential force should be smaller than 50. For tangential force (Fz), feed force 

should be smaller than 25 and thrust force should be smaller than 70. Problem 

solving will be more complex and difficult in this instance than in scenarios 1 and 

2. 

7.8.1.4 Scenario 4 

In the constructed of scenario 4, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 4 parameters can only take the values in the data table. 
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7.8.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data tables of surface roughness and cutting forces (Fx, Fy and Fz) 

listed as Table 7.39, 7.40, 7.41 and 7.42 can be seen below. Therefore, it is 

necessary to optimize these parameters to minimize of all the response values. 

Table 7.40: Results of the Neuro-regression models for the surface roughness 

Models R
2

training R
2
testing 

Max (μm) Min (μm) 

CS7-O1-L 0.70 -6.64 0.468 0.2075 

CS7-O1-LR 0.80 -15.12 ∞ −∞ 

CS7-O1-SON 0.94 -2.63 0.528 0.201 

CS7-O1-SONR 0.09 -2.72 0.360 0.317 

CS7-O1-TON 0.99 -1.17 0.561 0.172 

CS7-O1-FOTN 0.82 -1.48 0.707 0.219 

CS7-O1-FOTNR 0.95 -6.67 6.584x106 -1.691x108 

CS7-O1-SOTN 1.00 1.00 5.097 5.006x10-9 

CS7-O1-SOTNR 0.99 -6614.43 2.941x106 -3.895x1010 

CS7-O1-FOLN 0.74 -4.91 0.478 0.202 

CS7-O1-FOLNR 0.79 -12.71 61.498 -47.059 

CS7-O1-SOLN 0.93 -1.66 0.512 0.218 

CS7-O1-SOLNR 0.99 -289.99 1.392x108 -7.738x106 
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Table 7.41: Results of the Neuro-regression models for the cutting force (Fx, feed 

force) 

Models R
2

training R
2
testing 

Max (N) Min (N) 

CS7-O2-L 0.82 0.85 62.035 16.921 

CS7-O2-LR 0.82 0.83 65.780 19.325 

CS7-O2-SON 0.93 0.50 70.161 10.967 

CS7-O2-SONR 0.27 -0.54 62.829 30.254 

CS7-O2-TON 0.98 -0.13 81.747 5.688 

CS7-O2-FOTN 0.85 0.78 84.849 17.181 

CS7-O2-FOTNR 0.96 0.33 2.249x108 -3.906x108 

CS7-O2-SOTN 0.98 -17.49 831.029 -1301.14 

CS7-O2-SOTNR 0.99 -1.38 3.035x108 -4.811x108 

CS7-O2-FOLN 0.77 0.68 57.449 17.036 

CS7-O2-FOLNR 0.53 -0.02 1.304x109 -6.991x107 

CS7-O2-SOLN 0.92 0.67 67.663 11.978 

CS7-O2-SOLNR 0.95 0.12 60.889 16.646 

 

Table 7.42: Results of the Neuro-regression models for the cutting force (Fy, 

thrust force) 

Models R
2

training R
2
testing 

Max (N) Min (N) 

CS7-O3-L 0.82 0.49 169.773 57.808 

CS7-O3-LR 0.55 -0.55 ∞ −∞ 

CS7-O3-SON 0.89 0.77 198.564 58.642 

CS7-O3-SONR 0.37 0.09 160.96 89.796 

CS7-O3-TON 0.96 0.83 191.548 63.564 

CS7-O3-FOTN 0.84 0.43 195.57 65.208 

CS7-O3-FOTNR 0.81 0.00 5.004x108 -43652 

CS7-O3-SOTN 0.96 -14.05 1377.85 -2113.1 

CS7-O3-SOTNR -0.18 -11.92 2.341x109 -1.089x109 

CS7-O3-FOLN 0.78 0.46 159.616 54.773 

CS7-O3-FOLNR 0.77 -0.46 5.666x108 -1.314x107 

CS7-O3-SOLN 0.89 0.66 195.288 53.231 

CS7-O3-SOLNR 0.94 0.60 1.131x1010 64.048 
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Table 7.43: Results of the Neuro-regression models for the cutting force (Fz, 

tangential force) 

Models R
2

training R
2
testing 

Max (N) Min (N) 

CS7-O4-L 0.92 0.73 147.559 37.711 

CS7-O4-LR 0.96 0.72 155.604 47.253 

CS7-O4-SON 0.97 0.89 156.69 43.897 

CS7-O4-SONR 0.23 0.16 119.894 77.882 

CS7-O4-TON 0.99 0.69 180.635 43.216 

CS7-O4-FOTN 0.94 0.68 168.588 43.83 

CS7-O4-FOTNR 0.98 0.43 4.016x1010 -8.648x107 

CS7-O4-SOTN 0.99 0.61 161.902 -268.552 

CS7-O4-SOTNR 0.99 0.32 2.729x109 -1.545x1016 

CS7-O4-FOLN 0.89 0.66 139.254 33.988 

CS7-O4-FOLNR 0.28 -0.79 1.641x108 -3.363x107 

CS7-O4-SOLN 0.98 0.90 158.211 43.985 

CS7-O4-SOLNR 0.99 0.60 208.708 -4.534x108 

For the first output of the study (Ra, Meddour et al [50]), the initial assumption 

would be that only one model is suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

desired models' capacity to provide realistic values, it is determined that only model 

8 (SOTN) is suitable. As a result, misleading findings are unavoidable if the model 

building-optimum result finding analyses are not addressed as outlined in this 

article. Thus, the obtained model 8 (CS7-O1-SOTN) was chosen as the objective 

function required in analyses to get optimum results of surface roughness. 

Outcomes of the selected model can be spotted in Table 7.39. 

Table 7.43 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. There are four different results for the four 

different optimization algorithms but the minimum surface roughness results can 

be taken as zero. But, it could not be a realistic result. 

In scenario 2, feed rate, depth of cut and tool nose radius have been handled as 

continuous parameters, whereas the cutting speed is discontinuous (integers). In 

this case, there are 4 different reults but the minimum surface roughness value for 
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the SON model can be taken as 0.108668 µm. That is the only realistic result of the 

scenario 2. 

There is no scenario 3 for surface roughness. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum surface roughness had found as 0.155 µm. The suggested (optimum) 

design variables are; cutting speed: 244 (m/min), depth of cut: 0.1 (mm/rev), feed 

rate: 0.08 (mm) and tool nose radius: 1.6 (mm). 0.155 µm is a realistic and better 

result by compared with the results of experiment [0.24, 0.5]. We could say that as 

a result of the optimization process a better and lower surface roughness result was 

obtained. 

For the second output of the study (Fx, Meddour et al [50]), the initial assumption 

would be that models 1 and 2 are suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

desired models' capacity to provide realistic values, it is determined that only 

models 1 and 2 are suitable. As a result, misleading findings are unavoidable if the 

model building-optimum result finding analyses are not addressed as outlined in 

this article. As can be seen in Table 7.40, estimation capacity (R2testing) of model 

1 (L) and model 2 (LR) are the same while model 1 was achieved lower cutting 

force than the model 2. With this approach, the obtained model 1 (L) is appropriate. 

Because model 1 has lower value than the model 2. Thus, the obtained model 1 

(CS7-O2-L) was chosen as the objective function required in analyses to get 

optimum results of Fx.  

Table 7.44 shows the outcomes of four specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum cutting force (Fx) outcomes, 

depending on all of the optimization techniques, were 16.921 N, which correspond 

to L. The suggested (optimum) designs are; cutting speed: 120 (m/min), depth of 

cut: 0.1 (mm), feed rate: 0.08 (mm/rev) and tool nose radius: 1.6 (mm). 16.921 N 

is a realistic result by compared with the results of experiment [17.94, 60.10]. We 
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could say that the optimization scenario 1 reach lower cutting force than 

experimental results. 

In scenario 2, feed rate, depth of cut and tool nose radius have been handled as 

continuous parameters, whereas the cutting speed is discontinuous (integers). In 

this case, there are 3 different results but the minimum cutting force value for the 

L model were same as the scenario 1.  

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the thrust force (Fy) smaller than 70 N and tangential force 

(Fz) smaller than 50 N for feed force (Fx). The minimum cutting force has found 

as 21.688 N based on all optimization algorithms. The suggested (optimum) design 

variables are; cutting speed: 244 (m/min), depth of cut: 0.1 (mm), feed rate: 0.08 

(mm/rev) and tool nose radius: 1.28994 (mm). 21.688 N is a realistic result by 

compared with the results of experiment. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values.  The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the L model to solve the optimization issue for scenarios 1, 

2, 3 and 4, the best cutting force was found to be 16.9207 N. 

For the third output of the study (Fy, Meddour et al [50]), the initial assumption 

would be that only one model is suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

desired models' capacity to provide realistic values, it is determined that only model 

5 (TON) is suitable. As a result, misleading findings are unavoidable if the model 

building-optimum result finding analyses are not addressed as outlined in this 
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article. Thus, the obtained model 5 (CS7-O3-TON) was chosen as the objective 

function required in analyses to get optimum results of Fy. Outcomes of the 

selected model can be spotted in Table 7.41. 

Table 7.45 shows the outcomes of four specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. There are three different results for the 

scenario 1. The minimum cutting force (Fy) outcomes, depending only the MRS 

algorithm, were 60.120 N, which correspond to TON. The suggested (optimum) 

designs are; cutting speed: 244 (m/min), depth of cut: 0.3 (mm), feed rate: 0.08 

(mm/rev) and tool nose radius: 0.8 (mm). 60.120 N is a realistic result by compared 

with the results of experiment [67.63, 171.31]. We could say that the optimization 

scenario 1 reach lower cutting force than experimental results. 

In scenario 2, feed rate, depth of cut and tool nose radius have been treated as 

continuous variables while the cutting speed is discrete (integers). In this case, there 

are 4 different results, but the minimum cutting force value based on the MSA 

optimization algorithm for the TON model can be taken as 61.129 N. The 

suggested (optimum) design variables for 61.129 N are; cutting speed: 243 

(m/min), depth of cut: 0.3 (mm), feed rate: 0.08 (mm/rev) and tool nose radius: 0.8 

(mm). As in the optimization scenario 1, results are smaller than experimental 

results in scenario 2. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the feed force (Fx) smaller than 25 N and tangential force (Fz) 

smaller than 50 N for thrust force (Fy). The results are the same with scenario 1 

and 2. The minimum cutting force has found as 66.190 N based on all optimization 

algorithms. The suggested (optimum) design variables are; cutting speed: 244 

(m/min), depth of cut: 0.1 (mm), feed rate: 0.08 (mm/rev) and tool nose radius: 

1.28994 (mm). 66.190 N is a realistic and better result in comparison with the 

experimental values. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values.  The 
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minimum cutting force results are the same with scenario 1. Minimum cutting force 

for all the optimization algorithms had found as 61.129 N. 

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the TON model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the best cutting force can be taken as 61.129 N. 

For the fourth output of the study (Fz, Meddour et al [50]), the initial assumption 

would be that models 3 and 12 are suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

simplicity of the model and the desired models' capacity to provide realistic values, 

it is determined that only models 3 and 12 are suitable. As a result, misleading 

findings are unavoidable if the model building-optimum result finding analyses are 

not addressed as outlined in this article. As can be seen in Table 7.42, simplicity of 

model 3 is better than model 12. With this approach, the obtained model 3 (SON) 

is appropriate. Thus, the obtained model 3 (CS7-O4-SON) was chosen as the 

objective function required in analyses to get optimum results of Fz.  

Table 7.46 shows the outcomes of four specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. There are three different results for the 

scenario 1. The minimum cutting force (Fz) outcomes were 43.8962 N, which 

correspond to SON. The suggested (optimum) designs are; cutting speed: 244 

(m/min), depth of cut: 0.1 (mm), feed rate: 0.08 (mm/rev) and tool nose radius: 0.8 

(mm). 43.896 N is a realistic result by compared with the results of experiment 

[50.33, 153.56]. We could say that the optimization scenario 1 reach lower cutting 

force than experimental results. 
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In scenario 2, feed rate, depth of cut and tool nose radius have been handled as 

continuous parameters, whereas the cutting speed is discontinuous (integers). The 

minimum cutting force for the SON model was same as the scenario 1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the feed force (Fx) smaller than 25 N and thrust force (Fy) 

smaller than 70 N for tangential force (Fz). The results are the same with scenario 

1 and 2. The minimum cutting force has found as 47.576 N based on all 

optimization algorithms. The suggested (optimum) design variables are; cutting 

speed: 244 (m/min), depth of cut: 0.1 (mm), feed rate: 0.08 (mm/rev) and tool nose 

radius: 1.14716 (mm). 47.576 N is a realistic and better result in comparison with 

the experimental values. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum cutting force results are the same with scenarios 1 and 2.  

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 2 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the SON model to solve the optimization issue for scenarios 

1, 2, 3 and 4, the best cutting force can be taken as 43.896 N. Due to the 

optimization results, the model chosen for the optimization procedure has achieved 

lower results than the experimental results. 
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For first output surface roughness (Ra) the design variables were fitted to the model 

with R2
training = 1.00 and R2

testing = 1.00 values: Abs[-0.428198 - 0.789724 Cos[x1] 

+ 0.419809 Cos[x1]2 - 1.14756 Cos[x2] - 4.20092 Cos[x1] Cos[x2] + 0.973106 

Cos[x2]2 + 0.0618098 Cos[x3] + 2.21932 Cos[x1] Cos[x3] + 2.36543 Cos[x2] 

Cos[x3] + 1.51433 Cos[x3]2 - 4.12479 Cos[x4] + 0.44785 Cos[x1] Cos[x4] + 

9.40322 Cos[x2] Cos[x4] - 4.77729 Cos[x3] Cos[x4] - 1.13648 Cos[x4]2 - 1.67836 

Sin[x1] - 1.36064 Cos[x1] Sin[x1] + 7.30472 Cos[x2] Sin[x1] - 4.48619 Cos[x3] 

Sin[x1] + 0.0744336 Cos[x4] Sin[x1] - 0.596695 Sin[x1]2 - 1.1232 Sin[x2] - 

1.25851 Cos[x1] Sin[x2] + 0.453946 Cos[x2] Sin[x2] + 0.0018139 Cos[x3] 

Sin[x2] + 3.0389 Cos[x4] Sin[x2] + 1.46066 Sin[x1] Sin[x2] - 1.18069 Sin[x2]2 - 

4.25857 Sin[x3] + 3.10668 Cos[x1] Sin[x3] - 4.48172 Cos[x2] Sin[x3] - 3.1809 

Cos[x3] Sin[x3] + 4.6226 Cos[x4] Sin[x3] - 2.62635 Sin[x1] Sin[x3] - 2.70701 

Sin[x2] Sin[x3] - 1.97363 Sin[x3]2 - 1.21038 Sin[x4] + 0.295984 Cos[x1] Sin[x4] 

- 1.8804 Cos[x2] Sin[x4] + 1.26921 Cos[x3] Sin[x4] - 1.45892 Cos[x4] Sin[x4] - 

0.0163039 Sin[x1] Sin[x4] + 1.62642 Sin[x2] Sin[x4] + 8.03857 Sin[x3] Sin[x4] 

+ 0.431409 Sin[x4]2. According to scenarios, minimum surface roughness has 

found as 0.155 µm. The suggested (optimum) design variables are; cutting speed: 

244 (m/min), depth of cut: 0.1 (mm/rev), feed rate: 0.08 (mm) and tool nose radius: 

1.6 (mm). 0.155 µm could be a realistic and better result in comparison with the 

experimental results [0.24, 0.5]. 

For second output feed force (Fx) the design variables were fitted to the model with 

R2
training = 0.82 and R2

testing = 0.85 values: 6.85614 + 0.0180162 [x1] + 164.894 [x2] 

+ 56.0767 [x3] - 8.17055 [x4]. According to scenarios, minimum feed force has 

found as 16.921 N with the following conditions; cutting speed: 120m/min, depth 

of cut: 0.1mm, feed rate: 0.08mm/rev and and tool nose radius: 1.6mm. 16.921 N 

could be a realistic and better result in comparison with the experimental results 

[17.94, 61.93]. 

For third output thrust force (Fy) the design variables were fitted to the model with 

R2
training = 0.96 and R2

testing = 0.83 values: 122.983 - 0.0806463 [x1] - 0.00110289 

[x1]2 + 1.91791x10-6 [x1]3 + 388.008 [x2] + 5.61377 [x1] [x2] - 0.0126331 [x1]2 

[x2] + 453.431 [x2]2 - 19.6677 [x1] [x2]2 - 2267.35 [x2]3 + 319.979 [x3] - 13.1523 
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[x1] [x3] + 0.0249281 [x1]2 [x3] - 1650.55 [x2] [x3] - 23.5131 [x1] [x2] [x3] + 

12889.3 [x2]2 [x3] - 3494.05 [x3]2 + 40.8215 [x1] [x3]2 + 26539.5 [x2] [x3]2 - 

70469.4 [x3]3 - 79.7281 [x4] + 0.571859 [x1] [x4] - 0.000449922 [x1]2 [x4] - 

943.099 [x2] [x4] + 6.23819 [x1] [x2] [x4] + 2869.03 [x2]2 [x4] + 778.269 [x3] 

[x4] + 3.38332 [x1] [x3] [x4] - 3823.16 [x2] [x3] [x4] + 17924.8 [x3]2 [x4] - 

17.0813 [x4]2 - 0.644103 [x1] [x4]2 - 316.453 [x2] [x4]2 - 1777.75 [x3] [x4]2 + 

109.793 [x4]3. According to scenarios, minimum thrust force has found as 60.120 

N with the following conditions; cutting speed: 244m/min, depth of cut: 0.3mm, 

feed rate: 0.08mm/rev and and tool nose radius: 0.8mm. 60.120 N could be a 

realistic and better result in comparison with the experimental results [67.63, 

171.31]. 

For forth output tangential force (Fz) the design variables were fitted to the model 

with R2
training = 0.97 and R2

testing = 0.89 values: 185.476 - 0.631289 [x1] + 

0.000535502 [x1]2 - 39.8502 [x2] - 0.294205 [x1] [x2] + 235.804 [x2]2 - 1871.6 

[x3] + 4.52075 [x1] [x3] + 3380.83 [x2] [x3] + 4262.12 [x3]2 + 9.79693 [x4] - 

0.0542013 [x1] [x4] - 28.9436 [x2] [x4] - 105.208 [x3] [x4] + 13.0136 [x4]2. 

According to scenarios, minimum tangential force has found as 43.896 N with the 

following conditions; cutting speed: 244m/min, depth of cut: 0.1mm, feed rate: 

0.08mm/rev and and tool nose radius: 0.8mm. 43.896 N could be a realistic and 

better result in comparison with the experimental results [50.33, 153.56]. 

7.9 Case Study #8 

The eighth literature study which optimization process was studied taken from Qu 

et al [51]. Deflection, quality, and productivity of formed parts are affected by the 

machining parameters selected when milling thin-walled plates. To find and 

evaluate the optimal design variables for thin-walled plates, this study proposes an 

optimization technique. Based on the experimental data, regression models for 

cutting force and surface roughness have been constructed as objective functions. 

It is also examined how design variables impact response parameters. In this work, 

cutting force, surface roughness, and material removal rate are investigated under 

constraint-induced restrictions. 
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As depicted in Table 7.47, the changes in values of these input parameters provided 

the obtaining of different outcomes for the surface roughness and cutting force. 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to establish a proportional connection between measured surface roughness, 

cutting forces values and three input variables (spindle speed, feed per tooth and 

axial depth of cut) as understood from Table 7.47. Therefore, it is necessary to 

optimize these parameters to reach minimum response parameters.  
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Table 7.48: Experimental results of surface roughness and cutting force with 

different experimental conditions [51] 

Exp 

No 

Spindle 

speed 

(n, r/min) 

Feed per 

tooth                     

(f, mm) 

Axial depth of 

cut 

(ap, mm) 

Cutting Force 

(Fa, N) 

Surface 

Roughness 

(Ra, μm) 

1 1600 0.15 0.4 27.3 0.532 

2 1600 0.15 0.55 42.7 0.853 

3 1600 0.15 0.7 58.5 1.215 

4 1600 0.2 0.4 33.2 0.587 

5 1600 0.2 0.55 52.8 0.912 

6 1600 0.2 0.7 70.2 1.316 

7 1600 0.25 0.4 39.2 0.671 

8 1600 0.25 0.55 54.6 1.030 

9 1600 0.25 0.7 69.8 1.487 

10 2100 0.15 0.4 35.3 0.498 

11 2100 0.15 0.55 49.6 0.834 

12 2100 0.15 0.7 68.5 1.042 

13 2100 0.2 0.4 39.7 0.566 

14 2100 0.2 0.55 56.5 0.878 

15 2100 0.2 0.7 73.4 1.195 

16 2100 0.25 0.4 43.9 0.627 

17 2100 0.25 0.55 58.3 0.902 

18 2100 0.25 0.7 73.6 1.268 

19 2600 0.15 0.4 38.5 0.468 

20 2600 0.15 0.55 52.7 0.815 

21 2600 0.15 0.7 72.3 0.926 

22 2600 0.2 0.4 43.6 0.487 

23 2600 0.2 0.55 61.3 0.773 

24 2600 0.2 0.7 82.3 1.026 

25 2600 0.25 0.4 48.9 0.568 

26 2600 0.25 0.55 71.4 0.869 

27 2600 0.25 0.7 85.6 1.056 

The behavior of the system was explained by the regression models given below 

[51]; 

𝐹𝑎 = −52.07 − 0.006 × 𝑛 + 381.01 × 𝑓 + 80.35 × 𝑎𝑝 + 0.0243 × 𝑛 × 𝑓 (7.21) 

 −13.333 × 𝑓 × 𝑎𝑝 + 0.0116 × 𝑛 × 𝑎𝑝 − 784.44 × 𝑓2 + 9.8765 × 𝑎𝑝2  

𝑅𝑎 = −1.2445 + 0.0005 × 𝑛 + 0.3691 × 𝑓 + 3.738 × 𝑎𝑝 − 0.01 × 𝑛 × 𝑓 (7.22) 

 +2.8889 × 𝑓 × 𝑎𝑝 − 0.0008 × 𝑛 × 𝑎𝑝 + 4.0222 × 𝑓2 − 0.4864 × 𝑎𝑝2  
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The experimental data was represented by these regression models with 

determination coefficients (R2) of 0.9864 and 0.9882, respectively. 

Qu et al. [51] figured out this limited optimization issue by defining all the input 

parameters as discrete and proceeded in the modeling process only according to 

the standard R2 results and listed the models. The R2 values Qu et al. [51] found 

about 98%. Qu et al. [51] does not mention the R2
training and R2

testing distinction in 

the modeling process and does not mention determining models according to 

different scenarios. As can be clearly seen that smaller surface roughness and 

cutting forces may be calculated with the variables as a consequence of 

optimization. 

7.9.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 1600 ≤ Spindle speed ≤ 2600 ,    (r/min) 

 0.15 ≤ Feed per tooth ≤ 0.25 ,    (mm) 

 0.4 ≤ Axial depth of cut ≤ 0.7 ,    (mm) 

7.9.1.1 Scenario 1 

Surface roughness and cutting forces are explained by the objective functions in 

this optimal solution problem. There are no constraints about the input parameters 

so they can be real numbers, and the computation area is continuous. The primary 

goal is to minimize the response parameters. It is also technically possible to see 

these theory-based boundaries of the objective function this way. 

7.9.1.2 Scenario 2 

Scenario 1 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 
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7.9.1.3 Scenario 3 

As different from scenario 1, non-linear constraints are added for the optimization 

problem. For cutting force, surface roughness should be smaller than 20 N and for 

surface roughness, cutting force should be smaller than 0.43 μm. Problem solving 

will be more complex and difficult in this instance than in scenarios 1 and 2. 

7.9.1.4 Scenario 4 

In the constructed of scenario 4, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 4 parameters can only take the values in the data table. 

7.9.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data tables of surface roughness and cutting forces listed as Table 

7.48 and 7.49 can be seen below. Therefore, it is necessary to optimize these 

parameters to minimize of all the response values. 
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Table 7.49: Results of the Neuro-regression models for the cutting force 

Models R
2
training R

2
testing 

Max (N) Min (N) 

CS8-O1-L 0.98 0.98 84.199 26.822 

CS8-O1-LR 0.98 0.96 86.012 28.958 

CS8-O1-SON 0.99 0.97 85.413 28.870 

CS8-O1-SONR 1.00 0.87 85.616 -2.782x1010 

CS8-O1-TON 1.00 0.97 86.582 27.845 

CS8-O1-FOTN 0.98 0.99 90.391 19.691 

CS8-O1-FOTNR 0.99 0.97 94.896 26.314 

CS8-O1-SOTN 1.00 0.97 5520.05 -999.647 

CS8-O1-SOTNR 1.00 0.37 2.327x1010 -6.118x109 

CS8-O1-FOLN 0.97 0.98 82.658 25.645 

CS8-O1-FOLNR 0.98 0.96 85.101 28.813 

CS8-O1-SOLN 0.99 0.97 85.153 28.914 

CS8-O1-SOLNR 1.00 0.92 85.623 -2.546x1011 

 

Table 7.50: Results of the Neuro-regression models for the surface roughness 

Models R
2
training R

2
testing 

Max (μm) Min (μm) 

CS8-O2-L 0.96 0.95 1.328 0.414 

CS8-O2-LR 0.99 0.98 1.468 0.495 

CS8-O2-SON 0.99 0.98 1.445 0.498 

CS8-O2-SONR 1.00 0.91 1.508 0.460 

CS8-O2-TON 1.00 0.97 1.494 0.465 

CS8-O2-FOTN 0.96 0.95 1.421 0.419 

CS8-O2-FOTNR 0.99 0.94 0.509 -2.173x107 

CS8-O2-SOTN 1.00 0.97 547.542 -117.88 

CS8-O2-SOTNR 0.99 0.91 1.943x108 -1.797x1014 

CS8-O2-FOLN 0.95 0.96 1.310 0.399 

CS8-O2-FOLNR 0.98 0.98 1.475 0.492 

CS8-O2-SOLN 0.98 0.97 1.438 0.497 

CS8-O2-SOLNR 1.00 0.99 8.75x109 0.459 

For the first output of the study (Fa, Qu et al. [51]), results show that if the R2 value 

was the key element considered in decided the model, we may conclude that all 

models accurately describe the process. Because R2
training results are nearly all close 

to 1. 
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The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 6 (FOTN) is suitable. As 

a result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 6 (CS8-O1-FOTN) was chosen as the objective function required in analyses 

to get optimum results of cutting force. Outcomes of the selected model can be 

spotted in Table 7.48. 

Table 7.50 shows the outcomes of four specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum cutting force outcomes, 

depending on all of the optimization techniques, were 19.693 N, which correspond 

to FOTN. The suggested (optimum) design variables are change with optimization 

algorithms so there are four different spindle speed values. However, feed per 

tooth: 0.15 (mm) and axial depth of cut: 0.4 (mm).  19.693 N is a realistic and better 

result by compared with the results of experiment [27.3, 85.6]. We could say that 

the optimization scenario 1 reach lower cutting force than experimental results. 

In the second optimization scenario, feed per tooth and axial depth of cut have been 

treated as continuous parameters while the spindle speed is discrete (integers). In 

this case, there are three different results but the minimum cutting force value for 

the FOTN model can be taken as 19.695 N. The suggested (optimum) design 

variables are; spindle speed: 2378 (r/min), feed per tooth: 0.15 (mm) and axial 

depth of cut: 0.4 (mm). In the scenario 2, minimum cutting force results are smaller 

than experimental results as in scenario 1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the surface roughness (Ra) smaller than 0.43 μm for the 

cutting force (Fa). The results are the same with scenario 1 and 2. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 
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minimum cutting force had found as 26.813 N. The suggested (optimum) design 

variables are; spindle speed: 1600 (r/min), feed per tooth: 0.15 (mm) and axial 

depth of cut: 0.4 (mm). Optimization scenario 4 results are better by compared with 

the results of experiment. 

Although the outcomes of scenario 4 are bigger compared to scenarios 1, 2 and 3, 

it can be seen that it shows better results when compared to the reference study. It 

is clearly stated that the created model according to the reference study and 

optimization process provides efficient and robust results. 

For the second output of the study (Ra, Qu et al [51]), results show that if the R2 

value was the key element considered in decided the model, we may conclude that 

all models accurately describe the process. Because R2
training results are nearly all 

close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 1 (L) is suitable. As a 

result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 1 (CS8-O2-L) was chosen as the objective function required in analyses to 

get optimum results of surface roughness. Outcomes of the selected model can be 

spotted in Table 7.49. 

Table 7.51 shows the outcomes of four specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum cutting force outcomes, 

depending on all of the optimization techniques, were 0.414 µm, which correspond 

to FOTN. The suggested (optimum) design variables are; cutting speed: 2600 

(r/min), feed per tooth: 0.15 (mm/rev) and axial depth of cut: 0.4 (mm). 0.414 µm 

is a realistic and better result by compared with the results of experiment [0.468, 

1.487]. We could say that the optimization scenario 1 reach lower cutting force 

than experimental results. 
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In the second optimization scenario, feed per tooth and axial depth of cut have been 

treated as continuous variables while the cutting speed is discrete (integers). The 

minimum surface roughness outcomes for the L model were same as the scenario 

1. 

In the third optimization scenario, the only limitation condition in the optimization 

process was taken as the cutting force (Fa) smaller than 20 N for the surface 

roughness (Ra). Although there are three different results, the minimum surface 

roughness is 0.414 µm. 

For the fourth optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2.  

From the point of stability, gaining identical outcomes for scenarios 1, 2, 3, and 4, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. Besides 

that, utilizing various methods for scenario 3 produces dissimilar outcomes, 

although they are identical. This situation is critical for optimization issues 

comprising restriction types that are similar to those in scenarios 2 and 3. 

Furthermore, utilizing the L model to solve the optimization issue for scenarios 1, 

2, 3 and 4, the best surface roughness can be taken as 0.414 µm. Due to the 

optimization results, the model chosen for the optimization procedure has achieved 

lower results than the experimental results. 

 

 

 

 

 

 



 

 
162 

 

  



 

 
163 

 

 



 

 
164 

Regarding of these facts, by using our proposed approach, for cutting force the 

design variables were fitted to the model with R2
training = 0.98 and R2

testing = 0.99 

values: -1375.27 + 12.9017 Cos[x1] + 1393.95 Cos[x2] - 69.4043 Cos[x3] - 

2.18913 Sin[x1] + 395.32 Sin[x2] + 88.8538 Sin[x3]. Minimum cutting force has 

found as 19.693 N according to scenarios 1, 2 and 3. In scenario 4, minimum 

cutting force has found as 26.813 N with the following conditions; spindle speed: 

1600r/min, feed per tooth: 0.15m and axial depth of cut: 0.4mm. 26.813 N is a 

realistic and better result in comparison with the experimental results [27.3, 85.6].  

For surface roughness the design variables were fitted to the model with R2
training = 

0.96 and R2
testing = 0.95 values: -0.161913 - 0.000169284 [x1] + 1.33365 [x2] + 

2.03907 [x3]. According to scenarios, minimum surface roughness has found as 

0.414 μm with the following conditions; spindle speed: 2600r/min, feed per tooth: 

0.15m and axial depth of cut: 0.4mm. 0.414 μm is a realistic and better result in 

comparison with the experimental results [0.468, 1.316].  

7.10 Case Study #9 

The ninth literature study which optimization process was studied taken from 

Paturi et al. [52]. This study provides a regression analysis and artificial neural 

network (ANN) technique for forecasting surface roughness during hard turning of 

AISI 52100. Real-time Taguchi L27 orthogonal array tests provided the surface 

roughness data necessary to develop and assess RA and ANN models. Design 

variables such as cutting speed, feed rate, and depth of cut were evaluated as inputs 

in the construction of RA and ANN models. The accuracy of the RA model was 

checked using the analysis of variance (ANOVA), Anderson–Darling test, and 

standard normal plots. In order to practice and validate the neural network model, 

the MATLAB tool was used. Models RA and ANN were used to estimate surface 

roughness degree. There is a correlation both projected and empirical values when 

employing RA or ANN models. 

As depicted in Table 7.52, the changes in values of these input parameters provided 

the obtaining of different results for the surface roughness. 
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Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to establish a proportional connection between measured surface roughness and 

three deign variables (cutting speed, feed and depth of cut) as understood from 

Table 7.52. Therefore, it is necessary to optimize these parameters to achieve 

minimum surface roughness.  

Table 7.53: Experimental results of surface roughness with different experimental 

conditions [52] 

Exp No Cutting speed 

(Vc, m/min) 

Feed 

(f, mm/rev) 

Depth of cut 

(ap, mm) 

Surface Roughness 

(Ra, μm) 

1 100 0.1 0.05 3.25 

2 100 0.1 0.10 3.5 

3 100 0.1 0.15 3.83 

4 100 0.2 0.05 4.81 

5 100 0.2 0.10 5.36 

6 100 0.2 0.15 5.52 

7 100 0.3 0.05 6.77 

8 100 0.3 0.10 7.11 

9 100 0.3 0.15 7.39 

10 150 0.1 0.05 2.47 

11 150 0.1 0.10 2.85 

12 150 0.1 0.15 3.23 

13 150 0.2 0.05 4.06 

14 150 0.2 0.10 4.45 

15 150 0.2 0.15 5.02 

16 150 0.3 0.05 6.39 

17 150 0.3 0.10 7.08 

18 150 0.3 0.15 7.53 

19 200 0.1 0.05 1.95 

20 200 0.1 0.10 2.38 

21 200 0.1 0.15 2.95 

22 200 0.2 0.05 3.38 

23 200 0.2 0.10 4.03 

24 200 0.2 0.15 4.37 

25 200 0.3 0.05 5.51 

26 200 0.3 0.10 5.89 

27 200 0.3 0.15 6.51 
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The behavior of the system was explained by the regression models given below 

[52]; 

𝑅𝑎 = 2.5422 − 0.0041 × 𝑉𝑐 + 8.0111 × 𝑓 + 3.4222 × 𝑎𝑝 + 25.5 × 𝑓2 (7.23) 

 −8 × 𝑎𝑝2 − 0.001 × 𝑉𝑐 × 𝑓 + 0.036 × 𝑉𝑐 × 𝑎𝑝 + 7 × 𝑓 × 𝑎𝑝  

The experimental data was represented by these regression model with 

determination coefficient (R2) of 0.978. 

Paturi et al. [52] figured out this limited optimization issue by defining all the input 

parameters as discrete and proceeded in the modeling process only according to 

the standard R2 results and listed the models. The R2 value Paturi et al [52] found 

about 97.8%. Paturi et al. [52] does not mention the R2
training and R2

testing distinction 

in the modeling process and does not mention determining model according to 

different scenarios. As can be clearly seen that smaller surface roughness may be 

calculated with the variables as a consequence of optimization. 

7.10.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 100 ≤ Cutting speed ≤ 200 ,    (m/min) 

 0.1 ≤ Feed ≤ 0.3 ,    (mm/rev) 

 0.05 ≤ Depth of cut ≤ 0.15 ,    (mm) 

7.10.1.1 Scenario 1 

Surface roughness is explained by the objective function in this optimal solution 

problem. There are no constraints about the input parameters so they can be real 

numbers, and the computation area is continuous. The primary goal is to minimize 

the surface roughness. It is also technically possible to see these theory-based 

boundaries of the objective function this way. 

7.10.1.2 Scenario 2 

Scenario 2 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 
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responses for this application. Input parameters are also restricted with integers. 

There is only one design variable that can be integer number. 

7.10.1.3 Scenario 3 

In the constructed of scenario 3, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 3 parameters can only take the values in the data table. 

7.10.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data table of surface roughness listed as Table 7.53 can be seen 

below.  
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Table 7.54: Results of the Neuro-regression models for the surface roughness 

Models R
2

training R
2
testing 

Max (μm) Min (μm) 

CS9-O-L 0.98 0.97 7.617 1.871 

CS9-O-LR 0.99 0.99 7.639 1.917 

CS9-O-SON 0.99 0.98 7.588 1.812 

CS9-O-SONR 0.99 -3.36 8.524x109 1.935 

CS9-O-TON 0.99 0.97 7.592 1.978 

CS9-O-FOTN 0.99 0.98 7.984 -3.127 

CS9-O-FOTNR 0.99 0.96 7.565 1.997 

CS9-O-SOTN 0.99 0.97 18036. 1.943 

CS9-O-SOTNR 0.99 0.99 9.301x1011 -2.714x1011 

CS9-O-FOLN 0.95 0.88 7.418 1.734 

CS9-O-FOLNR 0.99 0.96 7.582 1.928 

CS9-O-SOLN 0.99 0.97 7.581 1.809 

CS9-O-SOLNR 0.99 -2.34 7.389 1.959 

For the ninth study (Ra, Paturi et al. [52]), results show that if the R2 value was the 

key element considered in decided the model, we may conclude that all models 

accurately describe the process. Because R2
training results are nearly all close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 1 (L) is suitable. As a 

result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 1 (CS9-O-L) was chosen as the objective function required in analyses to 

get optimum results of surface roughness. Outcomes of the selected model can be 

spotted in Table 7.53. 

Table 7.54 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 1.871 µm, which correspond 

to L. The suggested (optimum) design variables are; cutting speed: 200 (m/min), 
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feed rate: 0.1 (mm/rev) and depth of cut: 0.05 (mm). 1.871 µm is a realistic result 

by compared with the results of experiment [1.95, 7.53]. We could say that the 

optimization results reach lower surface roughness than experimental results. 

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed is discrete (integers). The minimum surface roughness 

outcomes for the L model were same as scenario 1. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2 and 3, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. This 

situation is critical for optimization issues comprising restriction types that are 

similar to those in scenarios 1, 2 and 3. Furthermore, utilizing the L model to solve 

the optimization issue for scenarios 1, 2 and 3, the best surface roughness can be 

taken as 1.87138 µm. Due to the optimization results, the model chosen for the 

optimization procedure has achieved lower results than the experimental results. 
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Regarding of these facts, by using our proposed approach, for surface roughness 

the design variables were fitted to the model with R2
training = 0.98 and R2

testing = 0.97 

values: 1.87061 - 0.0114886 [x1] + 18.6868 [x2] + 8.59617 [x3]. According to 

scenarios, minimum surface roughness has found as 1.871 μm with the following 

conditions; cutting speed: 200m/min, feed: 0.1mm/rev and depth of cut: 0.05mm. 

1.871 μm is a realistic and better result in comparison with the experimental results 

[1.95, 7.53].  

As a consequence, it can be seen that when feed value rises, the grade of surface 

finish on the workpiece improves dramatically in the operation. With an increment 

in cutting speed, surface roughness tends to decrease. Smaller cutting forces and 

reduced heat transfer to the workpiece during the operation lead to reduced surface 

roughness or greater surface finish on the machined workpiece. 

7.11 Case Study #10 

The tenth literature study which optimization process was studied taken from 

Sahoo et al [53]. In this work, the Taguchi design of experiments is used to monitor 

the effectiveness of a multilayer-coated carbide cutting tool in the processing of 

toughened AISI D2 steel. To estimate surface roughness, an orthogonal Taguchi 

L27 array was used in the investigation. Analysis is performed on the S/N ratio and 

the optimal parametric situation. Besides, a variance analysis was performed in 

order to identify the major components that impact surface roughness. For surface 

roughness, feed is the greatest influential variable depending on Taguchi S/N ratio 

and ANOVA while the depth of cut is the poorest component. The outcomes show 

that the model explains 98 percent of the total variations. 

As depicted in Table 7.55, the changes in values of these input parameters provided 

the obtaining of different results for the surface roughness. 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to establish a proportional connection between measured surface roughness and 

three deign variables (cutting speed, feed and depth of cut) as understood from 
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Table 7.55. Therefore, it is necessary to optimize these parameters to achieve 

minimum surface roughness.  

Table 7.56: Experimental results of surface roughness with different experimental 

conditions [53] 

Exp No Cutting speed 

(v, m/min) 

Feed 

(f, mm/rev) 

Depth of cut 

(t, mm) 

Surface Roughness 

(Ra, μm) 

1 80 0.05 0.1 0.55 

2 80 0.05 0.2 0.58 

3 80 0.05 0.3 0.62 

4 80 0.1 0.1 0.81 

5 80 0.1 0.2 0.85 

6 80 0.1 0.3 0.88 

7 80 0.15 0.1 1.17 

8 80 0.15 0.2 1.22 

9 80 0.15 0.3 1.29 

10 150 0.05 0.1 0.44 

11 150 0.05 0.2 0.48 

12 150 0.05 0.3 0.51 

13 150 0.1 0.1 0.72 

14 150 0.1 0.2 0.76 

15 150 0.1 0.3 0.8 

16 150 0.15 0.1 1.1 

17 150 0.15 0.2 1.15 

18 150 0.15 0.3 1.21 

19 220 0.05 0.1 0.31 

20 220 0.05 0.2 0.38 

21 220 0.05 0.3 0.42 

22 220 0.1 0.1 0.6 

23 220 0.1 0.2 0.64 

24 220 0.1 0.3 0.68 

25 220 0.15 0.1 0.97 

26 220 0.15 0.2 1.05 

27 220 0.15 0.3 1.11 

The behavior of the system was explained by the regression models given below 

[53]; 

𝑅𝑎  = 0.2454 − 0.0014 × 𝑣 + 6.6444 × 𝑓 + 0.4722 × 𝑡  (7.24) 
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The experimental data was represented by these regression model with 

determination coefficient (R2) of 0.98. 

Sahoo et al. 2013 [53] figured out this limited optimization issue by defining all 

the input parameters as discrete and proceeded in the modeling process only 

according to the standard R2 results and listed the models. The R2 value Sahoo et 

al. 2013 [53] found as 98%. Sahoo et al. 2013 [53] does not mention the R2
training 

and R2
testing distinction in the modeling process and does not mention determining 

model according to different scenarios. As can be clearly seen that smaller surface 

roughness may be calculated with the variables as a consequence of optimization. 

7.11.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 80 ≤ Cutting speed ≤ 220 ,    (m/min) 

 0.05 ≤ Feed ≤ 0.15 ,    (mm/rev) 

 0.1 ≤ Depth of cut ≤ 0.3 ,    (mm) 

7.11.1.1 Scenario 1 

Surface roughness is explained by the objective function in this optimal solution 

problem. There are no constraints about the input parameters so they can be real 

numbers, and the computation area is continuous. The primary goal is to minimize 

the surface roughness. It is also technically possible to see these theory-based 

boundaries of the objective function this way. 

7.11.1.2 Scenario 2 

Scenario 2 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 

There is only one design variable that can be integer number. 
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7.11.1.3 Scenario 3 

In the constructed of scenario 3, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 3 parameters can only take the values in the data table. 

7.11.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data table of surface roughness listed as Table 7.56 can be seen 

below. 

Table 7.57: Results of the Neuro-regression models for the surface roughness 

Models R
2
training R

2
testing 

Max (μm) Min (μm) 

CS10-O-L 0.99 0.99 1.260 0.309 

CS10-O-LR 0.99 0.99 1.278 0.325 

CS10-O-SON 0.99 0.99 1.272 0.317 

CS10-O-SONR 0.99 0.99 1.260 -4.631x108 

CS10-O-TON 0.99 0.99 1.279 0.315 

CS10-O-FOTN 0.99 0.99 1.279 0.247 

CS10-O-FOTNR 0.99 0.99 1.269 0.284 

CS10-O-SOTN 0.99 0.99 4.762 -339.17 

CS10-O-SOTNR 0.99 0.99 1.270 0.317 

CS10-O-FOLN 0.93 0.96 1.211 0.309 

CS10-O-FOLNR 0.99 0.99 1.250 0.340 

CS10-O-SOLN 0.99 0.99 1.265 0.315 

CS10-O-SOLNR 0.99 0.99 1.262 0.214 
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For the tenth study (Ra, Sahoo et al [53]), results show that if the R2 value was the 

key element considered in decided the model, we may conclude that all models 

accurately describe the process. Because R2
training results are nearly all close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 1 (L) is suitable. As a 

result, misleading findings are unavoidable if the model building-optimum result 

finding analyses are not addressed as outlined in this article. Thus, the obtained 

model 1 (CS10-O-L) was chosen as the objective function required in analyses to 

get optimum results of surface roughness. Outcomes of the selected model can be 

spotted in Table 7.56. 

Table 7.57 shows the outcomes of three specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 0.309 µm, which correspond 

to L. The suggested (optimum) design variables are; cutting speed: 220 (m/min), 

feed rate: 0.05 (mm/rev) and depth of cut: 0.1 (mm). 0.309 µm is a realistic result 

by compared with the results of experiment [0.31, 1.29]. We could say that the 

optimization results reach lower surface roughness than experimental results. 

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed is discrete (integers). The minimum surface roughness 

outcomes for the L model were same as the scenario 1. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

results are the same with scenario 1 and 2. 

From the point of stability, gaining identical outcomes for scenarios 1, 2 and 3, 

whose phenomenological foundation is addressed using four distinct direct search 

methods, enhances the chance that acquired results are global optimum. This 

situation is critical for optimization issues comprising restriction types that are 
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similar to those in scenarios 1, 2 and 3. Furthermore, utilizing the L model to solve 

the optimization issue for scenarios 1, 2 and 3, the best surface roughness can be 

taken as 0.308738 µm. Due to the optimization results, the model chosen for the 

optimization procedure has achieved lower results than the experimental results. 
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Regarding of these facts, by using our proposed approach, for surface roughness 

the design variables were fitted to the model with R2
training = 0.99 and R2

testing = 0.99 

values: 0.251182 - 0.00144178 [x1] + 6.62437 [x2] + 0.435294 [x3]. According to 

scenarios, minimum surface roughness has found as 0.309 μm with the following 

conditions; cutting speed: 220m/min, feed: 0.05mm/rev and depth of cut: 0.1mm. 

0.309 μm is a realistic and better result in comparison with the experimental results 

[0.31, 1.29]. 

As a consequence, at greater cutting speeds, surface roughness is minimal on 

average, whereas it is quite high at lower cutting speeds, according to the results of 

the experiment. Low feed results in lower surface roughness than other feed levels. 

The outcomes of the operations demonstrate that the average surface roughness 

increases with cutting depth and decreases with cutting depth. Surface quality 

worsened due to the greater feed rate. This raises chatter and causes unfinished 

processing of the workpiece, which results in higher surface roughness as a result 

of the increased feed rate. The findings show that feed has a significant impact on 

the roughness of the workpiece. 

7.12 Case Study #11 

The eleventh literature study which optimization process was studied taken from 

Sahoo et al. [54]. A response surface methodology and artificial neural network are 

used to build a prediction model, which is then optimized using a 3D surface plot. 

AISI 1040 steel was machined using coated carbide. The RSM model has a high 

coefficient of determination (R2 = 0.99, which is near to unity). It suggests that the 

model fits well and that it is highly significant. According to the RSM model, the 

error percentage ranges from -2.63 to 2.47. Operational and ANN model error 

ranges from -1.27 to 0.02 percent, which is substantially smaller than the RSM 

model. As a result, both the RSM and ANN statistical methods are able to properly 

forecast surface roughness. In contrast, the ANN predictive algorithm appears to 

perform better than the RSM model. 

As depicted in Table 7.58, the changes in values of these input parameters provided 

the obtaining of different results for the surface roughness. 



 

 
179 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 

to establish a proportional connection between measured surface roughness and 

three deign variables (cutting speed, feed and depth of cut) as understood from 

Table 7.58. Therefore, it is necessary to optimize these parameters to achieve 

minimum surface roughness.  

Table 7.59: Experimental results of surface roughness with different experimental 

conditions [54] 

Exp No Cutting speed 

(v, m/min) 

Feed 

(f, mm/rev) 

Depth of cut 

(d, mm) 

Surface Roughness 

(Ra, μm) 

1 60 0.04 0.1 1.40 

2 60 0.04 0.3 1.57 

3 60 0.04 0.5 1.75 

4 60 0.08 0.1 1.80 

5 60 0.08 0.3 1.98 

6 60 0.08 0.5 2.10 

7 60 0.12 0.1 2.30 

8 60 0.12 0.3 2.35 

9 60 0.12 0.5 2.42 

10 160 0.04 0.1 1.44 

11 160 0.04 0.3 1.61 

12 160 0.04 0.5 1.65 

13 160 0.08 0.1 1.85 

14 160 0.08 0.3 1.89 

15 160 0.08 0.5 1.92 

16 160 0.12 0.1 2.23 

17 160 0.12 0.3 2.28 

18 160 0.12 0.5 2.33 

19 260 0.04 0.1 1.46 

20 260 0.04 0.3 1.52 

21 260 0.04 0.5 1.55 

22 260 0.08 0.1 1.73 

23 260 0.08 0.3 1.78 

24 260 0.08 0.5 1.81 

25 260 0.12 0.1 2.05 

26 260 0.12 0.3 2.18 

27 260 0.12 0.5 2.10 
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The behavior of the system was explained by the regression models given below 

[54]; 

𝑅𝑎  = 0.8498 + 0.0018 × 𝑣 + 9.1458 × 𝑓 + 1.4222 × 𝑑  (7.25) 

 +16.3194 × 𝑓2 − 0.5972 × 𝑑2 − 0.0115 × 𝑣 × 𝑓   

 −0.0023 × 𝑣 × 𝑑 − 3.9583 × 𝑓 × 𝑑  

The experimental data was represented by these regression model with 

determination coefficient (R2) of 0.992. 

Sahoo et al. 2014 [54] figured out this limited optimization issue by defining all 

the input parameters as discrete and proceeded in the modeling process only 

according to the standard R2 results and listed the models. The R2 value Sahoo et 

al. 2014 [54] found as 98%. Sahoo et al. 2014 [54] does not mention the R2
training 

and R2
testing distinction in the modeling process and does not mention determining 

model according to different scenarios. As can be clearly seen that smaller surface 

roughness may be calculated with the variables as a consequence of optimization. 

7.12.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 60 ≤ Cutting speed ≤ 260 ,    (m/min) 

 0.04 ≤ Feed ≤ 0.12 ,    (mm/rev) 

 0.1 ≤ Depth of cut ≤ 0.5 ,    (mm) 

7.12.1.1 Scenario 1 

Surface roughness is explained by the objective function in this optimal solution 

problem. There are no constraints about the input parameters so they can be real 

numbers, and the computation area is continuous. The primary goal is to minimize 

the surface roughness. It is also technically possible to see these theory-based 

boundaries of the objective function this way. 
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7.12.1.2 Scenario 2 

Scenario 2 should include additional realistic situations in addition to knowledge-

based ones. A novel optimal solution is provided that implies the reduction of the 

responses for this application. Input parameters are also restricted with integers. 

There is only one design variable that can be integer number. 

7.12.1.3 Scenario 3 

In the constructed of scenario 3, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 2, in 

scenario 3 parameters can only take the values in the data table. 

7.12.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data table of surface roughness listed as Table 7.59 can be seen 

below. 
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Table 7.60: Results of the Neuro-regression models for the surface roughness 

Models R
2

training R
2
testing 

Max (μm) Min (μm) 

CS11-O-L 0.95 0.97 2.406 1.379 

CS11-O-LR 0.97 0.99 2.426 1.419 

CS11-O-SON 0.99 0.95 2.445 1.411 

CS11-O-SONR 0.99 -5.57 1.505x1012 -5.170x108 

CS11-O-TON 0.99 0.96 2.434 1.404 

CS11-O-FOTN 0.96 0.95 2.394 0.759 

CS11-O-FOTNR 0.99 0.98 2.417 1.284 

CS11-O-SOTN 0.99 0.81 10.867 -2671.01 

CS11-O-SOTNR 0.99 0.90 4.698x108 -6.088x1011 

CS11-O-FOLN 0.92 0.94 2.376 1.350 

CS11-O-FOLNR 0.96 0.99 2.402 1.423 

CS11-O-SOLN 0.99 0.95 2.452 1.437 

CS11-O-SOLNR 0.99 0.47 2.177 1.400 

For the eleventh study (Ra, Sahoo et al. [54]), results show that if the R2 value was 

the key element considered in decided the model, we may conclude that all models 

accurately describe the process. Because R2
training results are nearly all close to 1. 

The initial assumption would be that lots of models are suitable if the selection had 

just been based on R2
training and R2

testing. Based on this argument, utilizing a method 

that considers the simplicity of the models and the desired models' capacity to 

provide realistic values, it is determined that only model 7 (FOTNR) is suitable. 

As a result, misleading findings are unavoidable if the model building-optimum 

result finding analyses are not addressed as outlined in this article. Thus, the 

obtained model 7 (CS11-O-FOTNR) was chosen as the objective function required 

in analyses to get optimum results of surface roughness. Outcomes of the selected 

model can be spotted in Table 7.59. 

Table 7.60 shows the outcomes ofthree specific optimization scenarios for the 

chosen model. In scenario 1, all of the variables were utilized with their upper and 

lower limits in a continuous interval. The minimum surface roughness outcomes, 

depending on all of the optimization techniques, were 1.294 µm, which correspond 

to FOTNR. The suggested (optimum) design variables show change. 1.294 µm is 

a realistic result by compared with the results of experiment [1.40, 2.42]. We could 
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say that the optimization scenario 1 results reach lower surface roughness than 

experimental results. 

In scenario 2, feed rate and depth of cut have been treated as continuous variables 

while the cutting speed is discrete (integers). In this case, there are four different 

results for four different optimization algorithms. The minimum surface roughness 

of the scenario 2 for the MDE algorithm is 1.294 µm. The suggested (optimum) 

designs are; cutting speed: 224 (m/min), feed: 0.0413488 (mm/rev) and depth of 

cut: 0.1 (mm). We could say that the optimization scenario 2 results reach lower 

surface roughness than experimental results. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum surface roughness value of the scenario 3 for the FOTNR model is 1.407 

µm. The suggested (optimum) designs are; cutting speed: 60 (m/min), feed: 0.04 

(mm/rev) and depth of cut: 0.1 (mm). We could say that the optimization scenario 

3 results are incredibly close with experimental results. 

As a consequence of optimization process, if we take scenarios 1 and 2 as a 

reference, it can be said that the optimization process works efficiently. 
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Regarding of these facts, by using our proposed approach, for surface roughness 

the design variables were fitted to the model with R2
training = 0.99 and R2

testing = 0.98 

values: (120.894 + 0.162011 Cos[x1] - 120.665 Cos[x2] + 0.0701416 Cos[x3] + 

0.0798184 Sin[x1] - 3.94732 Sin[x2] - 0.0678742 Sin[x3]) / (39.5546 + 0.117583 

Cos[x1] - 39.3533 Cos[x2] - 0.0279373 Cos[x3] + 0.0499025 Sin[x1] - 0.820916 

Sin[x2] - 0.079732 Sin[x3]). Minimum surface roughness has found as 1.29441 

µm according to scneario 1. In scenario 3, minimum surface roughness has found 

as 1.40704 µm while input parameters can only take the values in the data table. 

But in scenario 1, minimum surface roughness has found as 1.294 µm with four 

different conditions. 1.294 µm could be a realistic and better result in comparison 

with the experimental results [1.40, 2.42]. 

The experimental results show the findings demonstrate that the surface roughness 

increases with cutting depth and decreases with cutting depth. 

7.13 Case Study #12 

The twelfth literature study which optimization process was studied taken from 

Subramanian et al. [55]. To estimate cutting force from design variables such as 

speed, feed rate, and axial depth, this study will construct a predictive method. 

Experiments were conducted utilizing response surface methodology. Al 7075-T6 

was used for the procedure, and the tool was a shoulder mill with two carbide 

inserts. Three-axis tool dynamometer was utilized to evaluate cutting forces. For 

the estimation of cutting force, a second-degree mathematical model based on 

design variables was created. Analysis of variance was used to assess the prediction 

models' suitability and found them to be sufficient. To achieve the lowest cutting 

force, the shoulder mill design variables were optimized using genetic algorithms 

(GA). 

As depicted in Table 7.61, the changes in values of these input parameters provided 

the obtaining of different results for the cutting forces. 

Therefore, these obtaining results depending on the change in these input parameter 

values are sufficient to develop an optimization strategy. Moreover, it is impossible 
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to establish a proportional connection between measured cutting forces values and 

three input parameters (cutting speed, cutting feed and depth of cut) as understood 

from Table 7.61. Therefore, it is necessary to optimize these parameters to achieve 

minimum cutting forces.  
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The behavior of the system was explained by the multiple linear regression models 

given below [55]; 

𝐹𝑥 = 464.959 − 91.705 × 𝑉𝑐 + 70.461 × 𝑓𝑧 + 111.256 × 𝑎𝑝 (7.26) 

 −28.759 × 𝑓𝑧
2 − 37.006 × 𝑎𝑝

2 − 47.58 × 𝑉𝑐 × 𝑓𝑧 + 67.011 × 𝑓𝑧 × 𝑎𝑝  

𝐹𝑦 = 646.517 − 76.674 × 𝑉𝑐 + 149.781 × 𝑓𝑧 + 195.58 × 𝑎𝑝 (7.27) 

 −62.23 × 𝑉𝑐 × 𝑓𝑧 + 69.63 × 𝑓𝑧 × 𝑎𝑝  

𝐹𝑧 = 43.5316 − 16.6556 × 𝑉𝑐 + 2.7161 × 𝑎𝑝 + 6.2074 × 𝑉𝑐
2 (7.28) 

 +482717 × 𝑓𝑧
2 − 6.131 × 𝑉𝑐 × 𝑓𝑧 − 6.3813 × 𝑉𝑐 × 𝑎𝑝  

Subramanian et al. [55] figured out this limited optimization issue by defining all 

the input parameters as discrete and proceeded in the modeling process only 

according to the standard R2 results and listed the models. Subramanian et al [55] 

does not mention the R2
training and R2

testing distinction in the modeling process and 

does not mention determining models according to different scenarios. As can be 

clearly seen that smaller cutting forces may be calculated with the variables as a 

consequence of optimization. 

7.13.1 Optimization Scenarios  

For all scenarios, the limitations for the system inputs (design parameters) as in the 

following form; 

 -1.682 ≤ Cutting speed ≤ 1.682 ,    (m/min) 

 -1.682 ≤ Cutting feed ≤ 1.682 ,    (mm) 

 -1.682 ≤ Depth of cut ≤ 1.682 ,    (mm/rev) 

7.13.1.1 Scenario 1 

Cutting forces are explained by the objective function in this optimal solution 

problem. There are no constraints about the input parameters so they can be real 

numbers, and the computation area is continuous. The primary goal is to minimize 

the surface roughness. It is also technically possible to see these theory-based 

boundaries of the objective function this way. 

7.13.1.2 Scenario 2 

In scenario 2, nonlinear constraints are added for the optimization problem. For 

infeed force, crossfeed force should be smaller than 300 N and thrust force should 
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be smaller than 30 N. For crossfeed force, infeed force should be smaller than 100 

N and thrust force should be smaller than 30 N. For thrust force, infeed force should 

be smaller than 100 N and crossfeed force should be smaller than 300 N. The 

method will be harder in this situation than in first scenario. 

7.13.1.3 Scenario 3 

In the constructed of scenario 3, more viable and more limited issue situations 

should be included to scenario 2. For that reason, there is a new optimum solution 

problem created to the minimization of the response values. Unlike Scenario 1, in 

scenario 3 parameters can only take the values in the data table. 

7.13.2 Results and Discussion 

In our approach, different from the classical ones, various regression models are 

first tested utilizing both R2
training and R2

testing values (not only R2 as in the classical 

approach) to reveal what is the degree of performance of the model can explain the 

method. Besides, the model's operational restriction (boundedness) is also checked 

by calculating the highest and lowest values that the related model creates. 

Therefore, our proposed design strategy provides producing realistic values. Also, 

it is necessary to check the limitedness of decided models, whether producing 

realistic results. Regarding of these facts, by using our proposed approach, the 

experimental data tables of cutting forces (Fx as infeed force, Fy as crossfeed force 

and Fz as thrust force) listed as Table 7.62, 7.63 and 7.64 can be seen below. 
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Table 7.63: Results of the Neuro-regression models for the cutting force (Fx, 

infeed force) 

Models R
2

training R
2

testing 
Max (N) Min (N) 

CS12-O1-L 0.38 0.06 801.365 102.557 

CS12-O1-LR 0.94 0.65 1035.39 -207.37 

CS12-O1-SON 0.99 0.91 1057.89 -203.121 

CS12-O1-SONR 0.99 0.99 2.198x1013 -6.391x1010 

CS12-O1-TON 0.99 0.22 1245.02 -650.707 

CS12-O1-FOTN 0.92 0.20 729.262 82.710 

CS12-O1-FOTNR 0.99 0.65 1.580x1012 -4556.32 

CS12-O1-SOTN 0.99 0.99 725.351 37.320 

CS12-O1-SOTNR -2.57 -2.05 1.137x1014 -4.605x1012 

CS12-O1-FOLN 0.91 0.41 845.708 -38.273 

CS12-O1-FOLNR 0.95 0.75 969.735 -231.734 

CS12-O1-SOLN 0.99 0.97 988.815 -210.743 

CS12-O1-SOLNR 0.99 0.65 3.140x1012 -6.115x1010 

 

Table 7.64: Results of the Neuro-regression models for the cutting force (Fy, 

crossfeed force) 

Models R
2

training R
2

testing 
Max (N) Min (N) 

CS12-O2-L 0.96 0.74 1377.01 -66.225 

CS12-O2-LR 0.69 -0.85 ∞ -∞ 

CS12-O2-SON 0.99 0.97 1692.7 124.779 

CS12-O2-SONR 0.74 -8.21 1.549x1013 -1.424x1010 

CS12-O2-TON 0.99 0.76 2559.83 -593.452 

CS12-O2-FOTN 0.95 0.39 1207.05 118.73 

CS12-O2-FOTNR 0.99 0.29 4.372x1013 -558.639 

CS12-O2-SOTN 0.99 0.12 1216.06 193.252 

CS12-O2-SOTNR -2.75 -8.19 4.357x1010 -2.588x1012 

CS12-O2-FOLN 0.94 0.74 1245.03 -144.354 

CS12-O2-FOLNR 0.99 0.83 2170.14 174.458 

CS12-O2-SOLN 0.99 0.98 1655.88 104.878 

CS12-O2-SOLNR -3.93 -10.25 1.794x1012 -1.776x1014 
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Table 7.65: Results of the Neuro-regression models for the cutting force (Fz, 

thrust force) 

Models R
2

training R
2

testing 
Max (N) Min (N) 

CS12-O3-L 0.70 0.63 90.882 10.447 

CS12-O3-LR 0.61 -0.03 ∞ -∞ 

CS12-O3-SON 0.99 0.78 147.735 17.989 

CS12-O3-SONR 0.99 -0.42 120.459 26.200 

CS12-O3-TON 0.99 0.89 184.51 21.055 

CS12-O3-FOTN 0.84 0.66 98.398 28.313 

CS12-O3-FOTNR 0.99 -2.80 84.420 -8.937x1011 

CS12-O3-SOTN 0.99 -0.32 103.914 5.550 

CS12-O3-SOTNR -0.13 -11.22 1.793x1010 -5.757x1013 

CS12-O3-FOLN 0.75 0.92 95.7248 18.348 

CS12-O3-FOLNR 0.90 0.77 832.771 6.825 

CS12-O3-SOLN 0.98 -0.18 148.759 -12.492 

CS12-O3-SOLNR 0.96 -0.23 3.277x1014 26.711 

For the first output of the study (Fx, Subramanian et al. [55]), the initial assumption 

would be that only one model is suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

desired models' capacity to provide realistic values, it is determined that only model 

8 (SOTN) is suitable. As a result, misleading findings are unavoidable if the model 

building-optimum result finding analyses are not addressed as outlined in this 

article. Thus, the obtained model 8 (CS12-O1-SOTN) was chosen as the objective 

function required in analyses to get optimum results of Fx. Outcomes of the 

selected model can be spotted in Table 7.62. 

There is no design variable that can be integer. Thus, Table 7.65 shows the 

outcomes of three specific optimization scenarios for the chosen model. In scenario 

1, all of the variables were utilized with their upper and lower limits in a continuous 

interval. The minimum cutting force (Fx) found as 37.321 N, which correspond to 

SOTN. The suggested (optimum) designs are; cutting speed: 1.682 (220 m/min), 

cutting feed: 0.93889 and depth of cut: -1.682 (0.5 mm). 37.321 N is a realistic 

result by compared with the results of experiment [161.19, 794.61]. We could say 

that the optimization scenario 1 reach lower cutting force than experimental results. 
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In the second optimization scenario, the only limitation condition in the 

optimization process was taken as the crossfeed force (Fy) smaller than 300 N and 

thrust force (Fz) smaller than 30 N for the infeed force (Fx). The minimum infeed 

force had found as 60.6562 N. We could say that the optimization scenario 2 reach 

lower cutting force than experimental results. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum cutting force had found as 37.896 N. The suggested (optimum) design 

variables are; cutting speed: 1.682 (220 m/min), cutting feed: 1 (0.09 mm/tooth) 

and depth of cut: -1.682 (0.5 mm).  37.896 N is a better result in comparison with 

the experimental values [161.19, 794.61]. 

We could say that the optimization scenarios results can be realistic. The main 

reason for the difference between the optimized results and the outcomes of the 

experiment is that the experimental data set is not designed in such a way that the 

results can be followed in a healthy and proportional way. As a result of the 

optimization process a better and lower cutting force value was obtained. 

For the second output of the study (Fy, Subramanian et al. [55]), the initial 

assumption would be that models 3 and 12 are suitable if the selection had just been 

based on R2
training and R2

testing. Based on this argument, utilizing a method that 

considers the simplicity of the models and the desired models' capacity to provide 

realistic values, it is determined that only model 3 (SON) is suitable. As a result, 

misleading findings are unavoidable if the model building-optimum result finding 

analyses are not addressed as outlined in this article. Thus, the obtained model 3 

(CS12-O2-SON) was chosen as the objective function required in analyses to get 

optimum results of Fy. Outcomes of the selected model can be spotted in Table 

7.63. 

There is no design variable that can be integer. Thus, Table 7.66 shows the 

outcomes of three specific optimization scenarios for the chosen model. In scenario 

1, all of the variables were utilized with their upper and lower limits in a continuous 

interval. The minimum cutting force (Fy) found as 124.779 N, which correspond 
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to SOTN. The suggested (optimum) designs are; cutting speed: 1.682 (220 m/min), 

cutting feed: 1.682 (0.1 mm/tooth) and depth of cut: -1.682 (0.5 mm). 124.779 N 

is a realistic result by compared with the results of experiment [307.01, 1187]. We 

could say that the optimization scenario 1 reach lower cutting force than 

experimental results. 

In the second optimization scenario, the only limitation condition in the 

optimization process was taken as the infeed force (Fx) smaller than 100 N and 

thrust force (Fz) smaller than 30 N for the crossfeed force (Fy). The minimum 

crossfeed force had found as 129.23 N. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum cutting force had found as same as in the scenario 1. 

We could say that the optimization scenarios results can be realistic. The main 

reason for the difference between the optimized results and the outcomes of the 

experiment is that the experimental data set is not designed in such a way that the 

results can be followed in a healthy and proportional way. As a result of the 

optimization process a better and lower cutting force value was obtained. 

For the third output of the study (Fz, Subramanian et al. [55]) the initial assumption 

would be that models 3 and 5 are suitable if the selection had just been based on 

R2
training and R2

testing. Based on this argument, utilizing a method that considers the 

simplicity of the models and the desired models' capacity to provide realistic 

values, it is determined that only model 3 (SON) is suitable. As a result, misleading 

findings are unavoidable if the model building-optimum result finding analyses are 

not addressed as outlined in this article. Thus, the obtained model 3 (CS12-O3-

SON) was chosen as the objective function required in analyses to get optimum 

results of Fz. Outcomes of the selected model can be spotted in Table 7.64. 

There is no design variable that can be integer. Thus, Table 7.67 shows the 

outcomes of three specific optimization scenarios for the chosen model. In scenario 

1, all of the variables were utilized with their upper and lower limits in a continuous 

interval. The minimum cutting force (Fz) found as 17.989 N which correspond to 
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SON. The suggested (optimum) designs are; cutting speed: 1.682 (220 m/min), 

cutting feed: 1.682 (0.1 mm/tooth) and depth of cut: -1.682 (0.5 mm). 17.989 N is 

a realistic result by compared with the results of experiment [29.43, 88.29]. We 

could say that the optimization scenario 1 reach lower cutting force than 

experimental results. 

In the second optimization scenario, the only limitation condition in the 

optimization process was taken as the infeed force (Fx) smaller than 100 N and 

crossfeed force (Fy) smaller than 300 N for the thrust force (Fz). The minimum 

thrust force had found as 18.298 N. 

For the third optimization scenario, all of the input parameters are supposed to be 

real numbers and the design variables can only take the experimental values. The 

minimum cutting force had found as same as in the scenario 1. For the third output 

of the fifth study, it can be said clearly that as a result of the optimization process 

a better and smaller Fz values had obtained. 

We could say that the optimization scenarios results can be realistic. The main 

reason for the difference between the optimized results and the outcomes of the 

experiment is that the experimental data set is not designed in such a way that the 

results can be followed in a healthy and proportional way. As a result of the 

optimization process a better and lower cutting force value was obtained. 
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Regarding of these facts, by using our proposed approach, for infeed force (Fx) the 

design variables were fitted to the model with R2
training = 0.99 and R2

testing = 0.99 

values: 60.7754 + 37.3454 Cos[x1] + 51.0848 Cos[x1]2 + 64.9164 Cos[x2] + 

11.897 Cos[x1] Cos[x2] + 76.9012 Cos[x2]^2 + 58.4406 Cos[x3] - 5.73472 

Cos[x1] Cos[x3] + 39.2186 Cos[x2] Cos[x3] + 72.6253 Cos[x3]2 - 34.1501 Sin[x1] 

+ 10.269 Cos[x1] Sin[x1] - 63.7706 Cos[x2] Sin[x1] - 63.7706 Cos[x3] Sin[x1] + 

108.402 Sin[x1]2 + 21.9792 Sin[x2] + 79.0787 Cos[x1] Sin[x2] - 79.3105 Cos[x2] 

Sin[x2] + 79.0787 Cos[x3] Sin[x2] - 50.874 Sin[x1] Sin[x2] + 60.4866 Sin[x2]2 + 

41.8277 Sin[x3] + 76.7693 Cos[x1] Sin[x3] + 76.7693 Cos[x2] Sin[x3] - 7.75658 

Cos[x3] Sin[x3] + 10.922 Sin[x1] Sin[x3] + 78.304 Sin[x2] Sin[x3] + 71.4314 

Sin[x3]2. Minimum infeed force has found as 37.896 N in scenario 3 with the 

following conditions; cutting speed: 1.682, cutting feed: 1 and depth of cut: -1.682. 

37.896 N could be a realistic and better result in comparison with the experimental 

results because the experiment had not done in full combination of all input 

parameters. 

For second output crossfeed force (Fy) the design variables were fitted to the model 

with R2
training = 0.99 and R2

testing = 0.97 values: 645.983 - 82.5137 [x1] + 6.60931 

[x1]2 + 145.528 [x2] - 52.7183 [x1] [x2] - 6.41306 [x2]2 + 193.784 [x3] - 10.7642 

[x1] [x3] + 60.1183 [x2] [x3] - 4.60535 [x3]2. Minimum crossfeed force has found 

as 129.23 N in scenario 2. According to scenarios 1 and 3, minimum crossfeed 

force has found as 124.779 N with the following conditions; cutting speed: 1.682, 

cutting feed: 1.682 and depth of cut: -1.682. 124.779 N could be a realistic and 

better result in comparison with the experimental results because the experiment 

had not done in full combination of all input parameters. 

For third output thrust force (Fz) the design variables were fitted to the model with 

R2
training = 0.99 and R2

testing = 0.97 values: 43.74 - 16.5126 [x1] + 5.92969 [x1]2 + 

0.857342 [x2] - 8.4844 [x1] [x2] + 4.49432 [x2]2 + 1.84508 [x3] - 4.0281 [x1] [x3] 

+ 3.5319 [x2] [x3] - 1.13342 [x3]2. Minimum thrust force has found as 18.298 N 

in scenario 2. According to scenarios 1 and 3, minimum thrust force has found as 

17.989 N with the following conditions; cutting speed: 1.682, cutting feed: 1.682 

and depth of cut: -1.682. 17.989 N could be a realistic and better result in 
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comparison with the experimental results because the experiment had not done in 

full combination of all input parameters. 
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Chapter 8 

Conclusion 

Surface roughness is crucial when it comes to how a machine reacts with its 

surroundings. The friction coefficients of rough surfaces are greater than those of 

smooth surfaces, thus they tend to wear down faster. Hence, surface roughness is a 

frequent surface quality criterion. However, reducing a machined surface's 

roughness will increase its production costs enormously. Sometimes, the 

production costs of a product is sacrificed for its effectiveness in use. The industry 

places a high value on reducing surface roughness. 

Cutting force is the resistance of the workpiece against the intrusion of the cutting 

tool. These forces determine the manufacturing requirements and loads. The high 

amount of cutting forces cause high temperatures, vibrations, fails the structure of 

workpiece-tool. Measured forces may be used to determine the machinability of 

the workpiece, especially limited material resources and time. Therefore, detecting 

and minimizing cutting forces is critical in terms of material resources, 

manufacturing cost and time. 

Machine effectiveness and expenses are heavily influenced by tool performance. 

In addition to the roughness left on the workpiece surface, tool performance may 

be evaluated by the forces produced throughout the procedure. When surfaces are 

processed, tensions and temperatures are generated as a result of processing forces. 

Tension and temperatures along tool-chip and tool-work contacts are also 

influenced by these factors. If the operating circumstances are not appropriately 

set, all of these factors contribute to a deterioration of the surface integrity. There 

are a number of processing factors that must be understood in order to get the best 
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surface qualities while minimizing the cutting pressures, tool wear, and tool life 

(cutting life). 

The design factors (structural and empirical variables) must be tuned in order to 

achieve this. Inadequate techniques include (I) using traditional optimization 

strategies, (ii) changing one input while holding the others constant, (iii) using one 

or two regression models as the objective function, (iv) failing to verify the 

limitedness of the selected models, and (v) excluding some candidates from 

consideration. Mathematical optimization issues cannot be solved using these 

design processes. 

For that reason, a unique modeling-designing-optimizing approach has been 

developed to reduce surface roughness, cutting forces, tool wear, and tool life 

(cutting life). In the process of deciding on these outcomes; literature review has 

been made and the determined 12 studies has been selected in order to carry out the 

proposed approach. Evaluations and comparisons of the outcomes has been made 

according to the results of the optimization technique carried out on these studies.  

This study began with an in-depth examination of the use of nonlinear multiple 

regression analysis. It also included logical versions for linear and quadratic 

equations, as well as trigonometric and logarithmic problems. Furthermore, it was 

determined if potential models were limited in order to provide accurate values. A 

final direct search strategy was employed throughout the optimization stage, which 

included stochastic techniques. Applying more than one stochastic technique with 

distinct phenomenological bases increases the robustness of the solution of the 

optimization problem. In order to solve the optimization problem, four different 

optimization algorithms (MDE, MNM, MSA, MRS) have been utilized. 

Results of this investigation include:  

(1) R2
training is compatible with all 13 models. A meaningful operational structure 

cannot be obtained if models are not evaluated for stability. By verifying each 

potential model's durability, the optimization step has been conducted with 

functions that generate value only within the technical constraints, in an effort to 
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address this disadvantage. A model with high R2 values and a limitedness 

characteristic was sought. 

(2) When the optimization issue becomes complex, the choice of objective function 

and restrictions for input parameters becomes important. 

(3) When the models selected for 12 different studies were examined in the 

optimization study, it was observed that response values (surface roughness, cutting 

forces, tool wear and tool life (cutting time)) were reached lower or very close than 

the results of the studies. 

(4) In spite of the fact that the innovative modeling-design-optimization technique 

proposed in this work was only utilized to minimize outputs, it may be utilized to 

optimize other variables in the manufacturing industry by changing objective 

functions, input parameters, and restrictions of the issue. 

(5) This study is shown that the importance of R2
testing calculation, to show the 

deficiencies of the approaches that are used only R2 calculated optimization 

problems and to improve existing regression models. 
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Appendix A 

Explicit Model Expressions of the 

Case Studies  

NOTATION CS1-O1 

CS1-O1-L 0.205985 - 0.000764479 [x1] + 2.72297 [x2] + 0.158559 [x3] 

CS1-O1-LN (70760.7 - 379.413 [x1] + 488635. [x2] + 14283.8 [x3]) / (236253. - 556.769 [x1] + 127446. [x2] - 16376.1 [x3]) 

CS1-O1-SON 
0.170931 + 3.21796*10^-6 [x1] - 5.83797*10^-6 [x1]^2 + 1.8119 [x2] + 0.00979476 [x1] [x2] - 2.2425 [x2]^2 + 0.448936 [x3] - 

0.00037037 [x1] [x3] - 0.107995 [x2] [x3] - 0.393295 [x3]^2 

CS1-O1-SONR 

(54262.9 + 3.90678*10^6 [x1] - 23374. [x1]^2 - 1.80442*10^7 [x2] + 3.82892*10^7 [x1] [x2] + 7.9117*10^6 [x2]^2 + 

4.62388*10^8 [x3] + 441040. [x1] [x3] + 8.61705*10^7 [x2] [x3] - 4.89955*10^8 [x3]^2) / (241183. + 1.73649*10^7 [x1] - 43601. 

[x1]^2 - 1.5465*10^7 [x2] + 1.26744*10^7 [x1] [x2] - 1.00757*10^7 [x2]^2 - 2.39816*10^8 [x3] + 710906. [x1] [x3] - 

4.88481*10^7 [x2] [x3] + 1.92096*10^8 [x3]^2) 

CS1-O1-TON 

0.199737 + 0.000260806 [x1] - 3.95103*10^-6 [x1]^2 - 4.74001*10^-8 [x1]^3 + 0.631643 [x2] + 0.0129166 [x1] [x2] + 

0.000123611 [x1]^2 [x2] + 3.81757 [x2]^2 - 0.15625 [x1] [x2]^2 + 50.1595 [x2]^3 + 0.250407 [x3] + 0.000842471 [x1] [x3] + 

8.95468*10^-7 [x1]^2 [x3] - 0.833333 [x2] [x3] - 0.0138889 [x1] [x2] [x3] + 2.49363*10^-14 [x2]^2 [x3] - 0.0321549 [x3]^2 + 

4.29556*10^-16 [x1] [x3]^2 + 5.55556 [x2] [x3]^2 - 0.951927 [x3]^3 

CS1-O1-FOTN -4.40062 - 0.934211 Cos[x1] + 4.27282 Cos[x2] + 0.381275 Cos[x3] + 0.986819 Sin[x1] + 3.26834 Sin[x2] + 0.285077 Sin[x3] 

CS1-O1-FOTNR 
(49060.3 + 15085. Cos[x1] - 52677.8 Cos[x2] + 261.804 Cos[x3] - 15388.9 Sin[x1] + 897.173 Sin[x2] - 5.77293 Sin[x3]) / 

(7684.95 + 10180.4 Cos[x1] - 8839.52 Cos[x2] - 1102.36 Cos[x3] - 10386.9 Sin[x1] + 8988.05 Sin[x2] - 838.893 Sin[x3]) 

CS1-O1-SOTN 

62.4619 + 18.0849 Cos[x1] + 114.239 Cos[x1]^2 + 63.4121 Cos[x2] + 9.30835 Cos[x1] Cos[x2] + 64.3788 Cos[x2]^2 + 70.8335 

Cos[x3] + 15.4348 Cos[x1] Cos[x3] - 526.712 Cos[x2] Cos[x3] + 79.3187 Cos[x3]^2 - 9.0846 Sin[x1] + 131.139 Cos[x1] Sin[x1] - 

18.4556 Cos[x2] Sin[x1] - 15.479 Cos[x3] Sin[x1] + 114.288 Sin[x1]^2 + 39.7925 Sin[x2] + 7.89244 Cos[x1] Sin[x2] + 38.6217 

Cos[x2] Sin[x2] - 74.2252 Cos[x3] Sin[x2] - 9.51127 Sin[x1] Sin[x2] - 176.29 Sin[x2]^2 + 67.5611 Sin[x3] + 14.637 Cos[x1] 

Sin[x3] - 162.931 Cos[x2] Sin[x3] + 94.0363 Cos[x3] Sin[x3] - 14.8457 Sin[x1] Sin[x3] - 22.9606 Sin[x2] Sin[x3] - 139.695 

Sin[x3]^2 

CS1-O1-SOTNR 

(-2.17216 - 1.66863 Cos[x1] - 1.12133 Cos[x1]^2 - 4.77665 Cos[x2] - 6.06832 Cos[x1] Cos[x2] - 7.31485 Cos[x2]^2 + 4.36681 

Cos[x3] + 8.96984 Cos[x1] Cos[x3] + 2.48865 Cos[x2] Cos[x3] + 9.03569 Cos[x3]^2 - 0.925832 Sin[x1] - 0.499141 Cos[x1] 

Sin[x1] - 4.66738 Cos[x2] Sin[x1] + 8.06917 Cos[x3] Sin[x1] -  0.0508293 Sin[x1]^2 + 15.0671 Sin[x2] - 0.053991 Cos[x1] 

Sin[x2] + 14.4313 Cos[x2] Sin[x2] + 6.93308 Cos[x3] Sin[x2] - 3.06626 Sin[x1] Sin[x2] + 6.1427 Sin[x2]^2 + 3.29695 Sin[x3] + 

2.80989 Cos[x1] Sin[x3] + 3.30338 Cos[x2] Sin[x3] + 9.01951 Cos[x3] Sin[x3] + 2.27471 Sin[x1] Sin[x3] + 7.23901 Sin[x2] 

Sin[x3] - 10.2078 Sin[x3]^2) / (-5.76623 - 2.9194 Cos[x1] - 3.14237 Cos[x1]^2 - 5.05442 Cos[x2] + 1.09716 Cos[x1] Cos[x2] - 

4.36441 Cos[x2]^2 + 7.35466 Cos[x3] + 7.2169 Cos[x1] Cos[x3] + 7.70531 Cos[x2] Cos[x3] + 16.7301 Cos[x3]^2 - 1.37376 

Sin[x1] - 2.20613 Cos[x1] Sin[x1] + 2.40142 Cos[x2] Sin[x1] + 5.70984 Cos[x3] Sin[x1] - 1.62385 Sin[x1]^2 - 2.05518 Sin[x2] - 

17.4883 Cos[x1] Sin[x2] - 1.8595 Cos[x2] Sin[x2] + 2.95296 Cos[x3] Sin[x2] - 16.4249 Sin[x1] Sin[x2] - 0.401815 Sin[x2]^2 + 

5.42742 Sin[x3] + 0.707276 Cos[x1] Sin[x3] + 4.96443 Cos[x2] Sin[x3] + 16.8935 Cos[x3] Sin[x3] - 0.241646 Sin[x1] Sin[x3] + 

1.66535 Sin[x2] Sin[x3] - 21.4963 Sin[x3]^2) 

CS1-O1-FOLN 1.70676 - 0.102586 Log[x1] + 0.311766 Log[x2] + 0.0431853 Log[x3] 

CS1-O1-FOLNR 
(12.0558 - 1.72039 Log[x1] + 0.615334 Log[x2] + 0.2016 Log[x3]) / (15.0451 - 2.7507 Log[x1] - 1.35073 Log[x2] + 0.124604 

Log[x3]) 

CS1-O1-SOLN 
0.855693 + 0.117369 Log[x1] + 0.0126861 Log[x1]^2 + 0.0168698 Log[x2] + 0.168778 Log[x1] Log[x2] + 0.126137 Log[x2]^2 + 

0.077547 Log[x3] - 0.014333 Log[x1] Log[x3] - 0.00230302 Log[x2] Log[x3] - 0.0105161 Log[x3]^2 

CS1-O1-SOLNR 

(21.1549 + 53.1589 Log[x1] + 20.4941 Log[x1]^2 + 39.0589 Log[x2] + 85.9191 Log[x1] Log[x2] + 71.2468 Log[x2]^2 - 22.6562 

Log[x3] + 9.61074 Log[x1] Log[x3] + 14.8128 Log[x2] Log[x3] - 11.6124 Log[x3]^2) / (-25.9122 - 62.8707 Log[x1] + 32.6127 

Log[x1]^2 - 34.15 Log[x2] + 25.9693 Log[x1] Log[x2] - 7.63437 Log[x2]^2 - 175.408 Log[x3] + 22.5698 Log[x1] Log[x3] - 

9.07876 Log[x2] Log[x3] - 28.6993 Log[x3]^2) 

NOTATION CS1-O2  

CS1-O2-L 2.13887 - 0.00232891 [x1] + 12.2965 [x2] + 0.402477 [x3] 

CS1-O2-LN (-44106.2 + 161.167 [x1] + 475389. [x2] + 6962.7 [x3]) / (-9453.29 + 55.5901 [x1] + 102063. [x2] + 443.234 [x3]) 

CS1-O2-SON 
0.107458 + 0.00160045 [x1] + 0.0000141818 [x1]^2 + 41.2631 [x2] - 0.0451778 [x1] [x2] - 94.6869 [x2]^2 + 0.516312 [x3] - 

0.00925926 [x1] [x3] + 2.66602 [x2] [x3] + 1.8285 [x3]^2 

CS1-O2-SONR 

(3.99212*10^7 + 2.8967*10^9 [x1] + 6.71317*10^9 [x1]^2 + 1.54814*10^7 [x2] + 1.85527*10^9 [x1] [x2] + 3.10133*10^6 [x2]^2 

+ 5.64172*10^6 [x3] + 2.03271*10^8 [x1] [x3] + 3.82976*10^6 [x2] [x3] + 754334. [x3]^2) / (-1.32595*10^8 - 9.53993*10^9 [x1] 

+ 2.07199*10^9 [x1]^2 - 5.16935*10^7 [x2] - 6.19382*10^9 [x1] [x2] - 1.03645*10^7 [x2]^2 - 1.86136*10^7 [x3] - 6.39768*10^8 

[x1] [x3] - 1.2783*10^7 [x2] [x3] - 2.44609*10^6 [x3]^2) 

CS1-O2-TON 

0.728697 + 0.00443636 [x1] + 0.0000245059 [x1]^2 + 1.28585*10^-7 [x1]^3 + 20.4222 [x2] - 0.0651536 [x1] [x2] - 0.00145643 

[x1]^2 [x2] + 40.452 [x2]^2 + 1.74479 [x1] [x2]^2 - 1240.84 [x2]^3 - 5.02437 [x3] + 0.00181493 [x1] [x3] + 0.000189321 [x1]^2 

[x3] + 86.6667 [x2] [x3] + 0.368056 [x1] [x2] [x3] + 93.75 [x2]^2 [x3] + 2.34274 [x3]^2 - 0.172222 [x1] [x3]^2 - 286.111 [x2] 

[x3]^2 + 57.5204 [x3]^3 

CS1-O2-FOTN -180.813 - 38.979 Cos[x1] + 192.071 Cos[x2] - 2.0574 Cos[x3] + 39.9406 Sin[x1] + 35.3577 Sin[x2] - 0.224169 Sin[x3] 

CS1-O2-FOTNR 
(-11.7978 - 10.7541 Cos[x1] + 14.2786 Cos[x2] - 0.226774 Cos[x3] + 10.9901 Sin[x1] + 2.27668 Sin[x2] - 0.085881 Sin[x3]) / (-

3.84049 - 3.42829 Cos[x1] + 4.64217 Cos[x2] - 0.080072 Cos[x3] + 3.50337 Sin[x1] + 0.699556 Sin[x2] - 0.0304874 Sin[x3]) 

CS1-O2-SOTN 

-1657.32 - 378.974 Cos[x1] - 2992. Cos[x1]^2 - 1682.51 Cos[x2] - 347.656 Cos[x1] Cos[x2] - 1708.13 Cos[x2]^2 - 1879.75 

Cos[x3] - 416.695 Cos[x1] Cos[x3] + 13981.4 Cos[x2] Cos[x3] - 2105.64 Cos[x3]^2 + 343.961 Sin[x1] - 3480.63 Cos[x1] Sin[x1] 

+ 387.005 Cos[x2] Sin[x1] + 403.526 Cos[x3] Sin[x1] - 3074.72 Sin[x1]^2 - 1126.96 Sin[x2] - 242.017 Cos[x1] Sin[x2] - 1098.1 

Cos[x2] Sin[x2] + 2236.55 Cos[x3] Sin[x2] + 250.048 Sin[x1] Sin[x2] + 4483.22 Sin[x2]^2 - 1714.07 Sin[x3] - 373.287 Cos[x1] 

Sin[x3] + 4128.86 Cos[x2] Sin[x3] - 2394.95 Cos[x3] Sin[x3] + 374.7 Sin[x1] Sin[x3] + 672.172 Sin[x2] Sin[x3] + 3762.82 

Sin[x3]^2 

CS1-O2-SOTNR 
(2.30952 + 1.38988 Cos[x1] + 1.72217 Cos[x1]^2 + 2.83679 Cos[x2] + 1.4597 Cos[x1] Cos[x2] + 3.30231 Cos[x2]^2 - 2.91764 

Cos[x3] - 4.64941 Cos[x1] Cos[x3] - 2.47755 Cos[x2] Cos[x3] - 6.7996 Cos[x3]^2 + 1.0988 Sin[x1] + 1.62226 Cos[x1] Sin[x1] + 
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1.05332 Cos[x2] Sin[x1] - 3.6806 Cos[x3] Sin[x1] + 1.58734 Sin[x1]^2 + 12.6702 Sin[x2] - 10.8974 Cos[x1] Sin[x2] + 13.0956 

Cos[x2] Sin[x2] + 12.0752 Cos[x3] Sin[x2] - 13.1554 Sin[x1] Sin[x2] + 0.0072061 Sin[x2]^2 + 2.15353 Sin[x3] + 2.40983 Cos[x1] 

Sin[x3] + 1.77518 Cos[x2] Sin[x3] - 2.07671 Cos[x3] Sin[x3] + 2.13011 Sin[x1] Sin[x3] + 8.8285 Sin[x2] Sin[x3] + 10.1091 

Sin[x3]^2) / (4.89263 - 2.57427 Cos[x1] + 2.12566 Cos[x1]^2 - 1.28182 Cos[x2] + 2.65103 Cos[x1] Cos[x2] - 7.19292 Cos[x2]^2 + 

2.26898 Cos[x3] - 0.390924 Cos[x1] Cos[x3] - 3.11705 Cos[x2] Cos[x3] + 0.34224 Cos[x3]^2 - 3.33607 Sin[x1] + 2.87228 

Cos[x1] Sin[x1] + 3.10729 Cos[x2] Sin[x1] - 0.634333 Cos[x3] Sin[x1] + 3.76697 Sin[x1]^2 + 2.97978 Sin[x2] - 1.02764 Cos[x1] 

Sin[x2] + 0.821684 Cos[x2] Sin[x2] - 0.589061 Cos[x3] Sin[x2] - 1.41051 Sin[x1] Sin[x2] + 13.0855 Sin[x2]^2 + 1.42047 Sin[x3] 

+ 0.864041 Cos[x1] Sin[x3] + 1.31179 Cos[x2] Sin[x3] - 0.749579 Cos[x3] Sin[x3] + 0.776287 Sin[x1] Sin[x3] - 11.7364 Sin[x2] 

Sin[x3] + 5.55039 Sin[x3]^2) 

CS1-O2-FOLN 8.11724 - 0.30341 Log[x1] + 1.42728 Log[x2] + 0.104747 Log[x3] 

CS1-O2-FOLNR 
(2.02273 + 1.43 Log[x1] + 2.82437 Log[x2] + 0.0429613 Log[x3]) / (-0.63111 + 0.504732 Log[x1] + 0.481796 Log[x2] - 

0.0214248 Log[x3]) 

CS1-O2-SOLN 
10.1707 + 0.304156 Log[x1] - 0.282847 Log[x1]^2 + 3.05101 Log[x2] - 0.795428 Log[x1] Log[x2] - 0.563741 Log[x2]^2 + 

2.66424 Log[x3] - 0.347423 Log[x1] Log[x3] + 0.0724472 Log[x2] Log[x3] + 0.232699 Log[x3]^2 

CS1-O2-SOLNR 

(4.43134*10^8 + 1.75383*10^9 Log[x1] + 6.48712*10^9 Log[x1]^2 + 1.10296*10^9 Log[x2] + 7.59694*10^9 Log[x1] Log[x2] - 

7.02112*10^9 Log[x2]^2 + 1.47786*10^9 Log[x3] + 3.47159*10^8 Log[x1] Log[x3] - 6.3174*10^9 Log[x2] Log[x3] + 

5.26674*10^9 Log[x3]^2) / (-9.88651*10^8 - 2.32388*10^9 Log[x1] + 1.38571*10^9 Log[x1]^2 + 2.08989*10^9 Log[x2] - 

2.32992*10^9 Log[x1] Log[x2] - 5.78296*10^9 Log[x2]^2 - 3.46984*10^9 Log[x3] + 6.57709*10^8 Log[x1] Log[x3] - 

2.45876*10^9 Log[x2] Log[x3] + 1.69758*10^9 Log[x3]^2) 

NOTATION CS1-O3  

CS1-O3-L 0.276419 - 0.000471847 [x1] + 2.79561 [x2] - 0.0509009 [x3] 

CS1-O3-LN (431298. + 589.142 [x1] - 1.16197*10^6 [x2] - 320915. [x3]) / (1.09975*10^6 + 1732.53 [x1] - 5.15022*10^6 [x2] - 578679. [x3]) 

CS1-O3-SON 
0.505895 + 0.00144745 [x1] - 1.21908*10^-6 [x1]^2 - 2.37814 [x2] - 0.0151784 [x1] [x2] + 27.714 [x2]^2 - 0.614421 [x3] + 

9.91831*10^-18 [x1] [x3] + 2.93843 [x2] [x3] + 0.399312 [x3]^2 

CS1-O3-SONR 

(199883. + 1.43922*10^7 [x1] + 194551. [x1]^2 + 1.23473*10^6 [x2] + 2.09211*10^8 [x1] [x2] + 570421. [x2]^2 - 19763.6 [x3] - 

3.70988*10^7 [x1] [x3] + 614532. [x2] [x3] - 310473. [x3]^2) / (1.14267*10^6 + 8.22735*10^7 [x1] + 485430. [x1]^2 - 

1.33807*10^6 [x2] - 2.04815*10^8 [x1] [x2] - 482936. [x2]^2 + 26421.6 [x3] - 6.58176*10^7 [x1] [x3] - 586839. [x2] [x3] + 

60560. [x3]^2) 

CS1-O3-TON 

0.389272 + 0.000438874 [x1] - 8.47553*10^-6 [x1]^2 - 9.83852*10^-8 [x1]^3 - 0.115387 [x2] + 0.02773 [x1] [x2] + 0.000317289 

[x1]^2 [x2] + 5.37926 [x2]^2 - 0.520833 [x1] [x2]^2 + 202.071 [x2]^3 + 0.259891 [x3] + 0.00523494 [x1] [x3] + 0.0000492169 

[x1]^2 [x3] - 22.5 [x2] [x3] - 0.0694444 [x1] [x2] [x3] + 104.167 [x2]^2 [x3] + 0.233836 [x3]^2 - 0.0222222 [x1] [x3]^2 + 22.2222 

[x2] [x3]^2 + 1.46858 [x3]^3 

CS1-O3-FOTN 46.402 + 10.0261 Cos[x1] - 48.4258 Cos[x2] + 0.32668 Cos[x3] - 10.2266 Sin[x1] - 2.9802 Sin[x2] + 0.0499277 Sin[x3] 

CS1-O3-FOTNR 
(146.33 + 795.703 Cos[x1] - 318.015 Cos[x2] + 0.0863525 Cos[x3] - 813.549 Sin[x1] - 47.4211 Sin[x2] - 0.715777 

Sin[x3])/(1119.79 - 1548.76 Cos[x1] - 771.981 Cos[x2] + 3.18282 Cos[x3] + 1583.2 Sin[x1] - 116.753 Sin[x2] - 0.360149 Sin[x3]) 

CS1-O3-SOTN 

305.471 + 79.5052 Cos[x1] + 555.217 Cos[x1]^2 + 310.117 Cos[x2] + 55.8749 Cos[x1] Cos[x2] + 314.844 Cos[x2]^2 + 346.138 

Cos[x3] + 74.5443 Cos[x1] Cos[x3] - 2573.35 Cos[x2] Cos[x3] + 386.869 Cos[x3]^2 - 53.548 Sin[x1] + 641.431 Cos[x1] Sin[x1] - 

79.6991 Cos[x2] Sin[x1] - 76.5394 Cos[x3] Sin[x1] + 562.673 Sin[x1]^2 + 184.194 Sin[x2] + 38.9314 Cos[x1] Sin[x2] + 178.029 

Cos[x2] Sin[x2] - 354.148 Cos[x3] Sin[x2] - 41.521 Sin[x1] Sin[x2] - 856.653 Sin[x2]^2 + 416.647 Sin[x3] + 89.8926 Cos[x1] 

Sin[x3] - 1013.8 Cos[x2] Sin[x3] + 570.333 Cos[x3] Sin[x3] - 91.9272 Sin[x1] Sin[x3] - 132.28 Sin[x2] Sin[x3] - 627.266 

Sin[x3]^2 

CS1-O3-SOTNR 

(1.74862*10^8 + 1.17576*10^8 Cos[x1] + 1.10566*10^8 Cos[x1]^2 - 7.47712*10^7 Cos[x2] + 5.12317*10^7 Cos[x1] Cos[x2] - 

3.14707*10^8 Cos[x2]^2 + 2.76831*10^8 Cos[x3] - 3.22329*10^8 Cos[x1] Cos[x3] + 4.69195*10^7 Cos[x2] Cos[x3] + 

3.5154*10^8 Cos[x3]^2 + 7.72757*10^7 Sin[x1] + 8.27793*10^7 Cos[x1] Sin[x1] + 6.62455*10^7 Cos[x2] Sin[x1] - 

3.75016*10^8 Cos[x3] Sin[x1] + 6.42958*10^7 Sin[x1]^2 + 3.65561*10^8 Sin[x2] - 1.92369*10^7 Cos[x1] Sin[x2] + 

2.84141*10^8 Cos[x2] Sin[x2] + 3.24638*10^8 Cos[x3] Sin[x2] - 9.7695*10^7 Sin[x1] Sin[x2] + 4.89569*10^8 Sin[x2]^2 + 

1.6612*10^7 Sin[x3] + 4.79062*10^8 Cos[x1] Sin[x3] - 8.16931*10^7 Cos[x2] Sin[x3] + 1.0169*10^8 Cos[x3] Sin[x3] + 

4.65006*10^8 Sin[x1] Sin[x3] + 2.08513*10^8 Sin[x2] Sin[x3] - 1.76678*10^8 Sin[x3]^2)/(1.30315*10^8 - 6.18732*10^7 Cos[x1] 

+ 5.01494*10^7 Cos[x1]^2 + 4.12405*10^8 Cos[x2] + 3.6563*10^7 Cos[x1] Cos[x2] + 6.86987*10^8 Cos[x2]^2 + 1.32768*10^8 

Cos[x3] - 2.67172*10^8 Cos[x1] Cos[x3] + 3.94386*10^8 Cos[x2] Cos[x3] + 1.43453*10^8 Cos[x3]^2 - 8.86394*10^7 Sin[x1] + 

6.24038*10^7 Cos[x1] Sin[x1] - 5.32224*10^7 Cos[x2] Sin[x1] - 2.8998*10^8 Cos[x3] Sin[x1] + 8.01659*10^7 Sin[x1]^2 - 

1.43362*10^9 Sin[x2] - 4.97145*10^8 Cos[x1] Sin[x2] - 1.36275*10^9 Cos[x2] Sin[x2] - 1.32431*10^9 Cos[x3] Sin[x2] - 

1.76941*10^8 Sin[x1] Sin[x2] - 5.56671*10^8 Sin[x2]^2 - 1.72278*10^8 Sin[x3] + 1.01469*10^9 Cos[x1] Sin[x3] - 6.72675*10^7 

Cos[x2] Sin[x3] - 1.90615*10^8 Cos[x3] Sin[x3] + 1.02969*10^9 Sin[x1] Sin[x3] - 5.63845*10^8 Sin[x2] Sin[x3] - 1.31378*10^7 

Sin[x3]^2) 

CS1-O3-FOLN 1.5087 - 0.0662141 Log[x1] + 0.310579 Log[x2] - 0.0134232 Log[x3] 

CS1-O3-FOLNR 
(-16.2488 + 1.09984 Log[x1] - 7.33263 Log[x2] - 2.22268 Log[x3]) / (-61.9348 + 4.35639 Log[x1] - 23.8121 Log[x2] - 3.87638 

Log[x3]) 

CS1-O3-SOLN 
4.69245 + 0.265614 Log[x1] - 0.0806943 Log[x1]^2 + 3.86249 Log[x2] - 0.214465 Log[x1] Log[x2] + 0.541419 Log[x2]^2 + 

0.106279 Log[x3] + 0.0205994 Log[x1] Log[x3] + 0.0794431 Log[x2] Log[x3] + 0.0173299 Log[x3]^2 

CS1-O3-SOLNR 

(2.70427*10^9 + 6.5892*10^9 Log[x1] - 1.46827*10^9 Log[x1]^2 - 2.1006*10^9 Log[x2] + 2.34314*10^8 Log[x1] Log[x2] + 

4.33787*10^9 Log[x2]^2 - 2.51516*10^9 Log[x3] + 1.4802*10^8 Log[x1] Log[x3] + 2.22393*10^9 Log[x2] Log[x3] - 

1.37097*10^9 Log[x3]^2)  /  (-2.0947*10^9 - 5.42603*10^9 Log[x1] - 2.07748*10^9 Log[x1]^2 - 2.17506*10^8 Log[x2] - 

9.38828*10^9 Log[x1] Log[x2] + 6.4813*10^9 Log[x2]^2 + 1.79616*10^9 Log[x3] - 2.65637*10^8 Log[x1] Log[x3] + 

1.32813*10^9 Log[x2] Log[x3] + 6.52281*10^8 Log[x3]^2) 

NOTATION CS1-O4  

CS1-O4-L 0.642225 - 0.000554778 [x1] + 23.9248 [x2] + 0.482658 [x3] 

CS1-O4-LN (87808.6 + 43.4881 [x1] - 343658. [x2] + 15194.3 [x3])  /  (39145.6 + 18.3972 [x1] - 206732. [x2] + 1568.12 [x3]) 

CS1-O4-SON 
3.70994 + 0.00953964 [x1] - 0.0000209468 [x1]^2 - 39.8474 [x2] - 0.0517798 [x1] [x2] + 293.508 [x2]^2 - 1.02482 [x3] + 

0.00314815 [x1] [x3] + 5.2579 [x2] [x3] + 0.823125 [x3]^2 

CS1-O4-SONR 

(770625. + 5.59562*10^7 [x1] + 1.41378*10^8 [x1]^2 + 577201. [x2] + 7.45149*10^7 [x1] [[x2]] + 131218. [x2]^2 - 219405. [x3] 

- 3.21532*10^7 [x1] [x3] + 112504. [x2] [x3] - 187346. [x3]^2) / (-2.68203*10^6 - 1.92969*10^8 [x1] + 4.14151*10^7 [x1]^2 - 

2.01935*10^6 [x2] - 2.60732*10^8 [x1] [x2] - 459258. [x2]^2 + 768310. [x3] + 1.12821*10^8 [x1] [x3] - 393840. [x2] [x3] + 

654367. [x3]^2) 

CS1-O4-TON 

1.34314 + 0.00491253 [x1] + 8.70909*10^-6 [x1]^2 - 4.54472*10^-8 [x1]^3 + 1.6216 [x2] + 0.0295456 [x1] [x2] + 0.000276515 

[x1]^2 [x2] + 44.7452 [x2]^2 - 0.911458 [x1] [x2]^2 + 926.055 [x2]^3 + 6.16785 [x3] + 0.00162949 [x1] [x3] - 0.000189691 

[x1]^2 [x3] - 113.333 [x2] [x3] + 0.0625 [x1] [x2] [x3] + 156.25 [x2]^2 [x3] + 2.864 [x3]^2 + 0.0759259 [x1] [x3]^2 + 119.444 

[x2] [x3]^2 - 28.4909 [x3]^3 

CS1-O4-FOTN 551.546 + 119.068 Cos[x1] - 574.535 Cos[x2] + 1.03946 Cos[x3] - 121.662 Sin[x1] - 44.7449 Sin[x2] + 0.852445 Sin[x3] 

CS1-O4-FOTNR 
(-35.504 + 9.99726 Cos[x1] + 32.1197 Cos[x2] + 1.40632 Cos[x3] - 10.2441 Sin[x1] + 2.59855 Sin[x2] + 0.486 Sin[x3])/(-14.2187 

+ 4.13999 Cos[x1] + 12.9764 Cos[x2] + 0.457618 Cos[x3] - 4.24116 Sin[x1] + 0.528454 Sin[x2] + 0.136421 Sin[x3]) 

CS1-O4-SOTN 

-295.067 - 24.2663 Cos[x1] - 515.927 Cos[x1]^2 - 299.59 Cos[x2] - 113.264 Cos[x1] Cos[x2] - 304.197 Cos[x2]^2 - 334.866 

Cos[x3] - 69.8771 Cos[x1] Cos[x3] + 2495.61 Cos[x2] Cos[x3] - 375.979 Cos[x3]^2 + 105.317 Sin[x1] - 620.15 Cos[x1] Sin[x1] + 

16.532 Cos[x2] Sin[x1] + 76.3357 Cos[x3] Sin[x1] - 565.523 Sin[x1]^2 - 58.8462 Sin[x2] - 16.6423 Cos[x1] Sin[x2] - 49.0159 

Cos[x2] Sin[x2] + 68.4365 Cos[x3] Sin[x2] + 8.87313 Sin[x1] Sin[x2] + 1099.36 Sin[x2]^2 - 184.991 Sin[x3] - 39.1204 Cos[x1] 

Sin[x3] + 445.069 Cos[x2] Sin[x3] - 270.851 Cos[x3] Sin[x3] + 41.6108 Sin[x1] Sin[x3] - 10.7508 Sin[x2] Sin[x3] + 728.777 

Sin[x3]^2 

CS1-O4-SOTNR 

(7.85242*10^8 - 2.40636*10^7 Cos[x1] + 3.77422*10^8 Cos[x1]^2 + 7.88958*10^8 Cos[x2] + 1.05469*10^7 Cos[x1] Cos[x2] + 

7.98479*10^8 Cos[x2]^2 + 6.41976*10^8 Cos[x3] - 8.66233*10^8 Cos[x1] Cos[x3] + 6.43384*10^8 Cos[x2] Cos[x3] + 

4.8465*10^8 Cos[x3]^2 - 1.92972*10^8 Sin[x1] + 3.74365*10^8 Cos[x1] Sin[x1] - 1.5992*10^8 Cos[x2] Sin[x1] - 9.8582*10^8 

Cos[x3] Sin[x1] + 4.0782*10^8 Sin[x1]^2 - 1.75687*10^9 Sin[x2] - 5.83536*10^8 Cos[x1] Sin[x2] - 1.79211*10^9 Cos[x2] 

Sin[x2] - 1.64889*10^9 Cos[x3] Sin[x2] - 1.91695*10^8 Sin[x1] Sin[x2] - 1.32374*10^7 Sin[x2]^2 + 1.15353*10^9 Sin[x3] + 

2.54871*10^9 Cos[x1] Sin[x3] + 1.16098*10^9 Cos[x2] Sin[x3] + 1.15591*10^9 Cos[x3] Sin[x3] + 2.2441*10^9 Sin[x1] Sin[x3] - 

5.33446*10^8 Sin[x2] Sin[x3] + 3.00592*10^8 Sin[x3]^2) / (-4.61499*10^7 - 1.28907*10^8 Cos[x1] - 5.02948*10^7 Cos[x1]^2 + 

1.10543*10^9 Cos[x2] - 2.58444*10^7 Cos[x1] Cos[x2] + 2.21842*10^9 Cos[x2]^2 - 4.43372*10^8 Cos[x3] - 1.86015*10^8 

Cos[x1] Cos[x3] + 6.58876*10^8 Cos[x2] Cos[x3] - 7.30382*10^8 Cos[x3]^2 - 1.16132*10^8 Sin[x1] - 2.13807*10^7 Cos[x1] 

Sin[x1] - 2.63803*10^8 Cos[x2] Sin[x1] - 8.62814*10^7 Cos[x3] Sin[x1] + 4.14485*10^6 Sin[x1]^2 - 3.49311*10^9 Sin[x2] + 
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1.77132*10^8 Cos[x1] Sin[x2] - 3.15506*10^9 Cos[x2] Sin[x2] - 3.43973*10^9 Cos[x3] Sin[x2] + 9.2698*10^8 Sin[x1] Sin[x2] - 

2.26457*10^9 Sin[x2]^2 - 9.08375*10^7 Sin[x3] + 7.41999*10^8 Cos[x1] Sin[x3] + 2.11956*10^8 Cos[x2] Sin[x3] - 

4.30888*10^8 Cos[x3] Sin[x3] + 7.45381*10^8 Sin[x1] Sin[x3] - 6.75657*10^8 Sin[x2] Sin[x3] + 6.84233*10^8 Sin[x3]^2) 

CS1-O4-FOLN 9.59269 - 0.0280409 Log[x1] + 2.64562 Log[x2] + 0.131064 Log[x3] 

CS1-O4-FOLNR 
(-1028.95 + 39.7301 Log[x1] - 705.372 Log[x2] + 58.8942 Log[x3]) / (-623.22 + 19.2536 Log[x1] - 338.646 Log[x2] + 9.11852 

Log[x3]) 

CS1-O4-SOLN 
34.3476 + 2.38373 Log[x1] - 0.41596 Log[x1]^2 + 30.6077 Log[x2] - 0.77785 Log[x1] Log[x2] + 5.4429 Log[x2]^2 + 0.034653 

Log[x3] + 0.151129 Log[x1] Log[x3] + 0.146375 Log[x2] Log[x3] + 0.119439 Log[x3]^2 

CS1-O4-SOLNR 

(4.23633*10^10 + 1.19603*10^11 Log[x1] + 1.40488*10^11 Log[x1]^2 - 4.97878*10^10 Log[x2] - 6.18295*10^10 Log[x1] 

Log[x2] + 4.45798*10^10 Log[x2]^2 - 3.07053*10^10 Log[x3] - 1.30064*10^10 Log[x1] Log[x3] - 3.91387*10^9 Log[x2] 

Log[x3] - 8.95827*10^9 Log[x3]^2) / (-1.4109*10^11 - 3.47319*10^11 Log[x1] + 4.12717*10^10 Log[x1]^2 + 1.04533*10^11 

Log[x2] - 1.88844*10^11 Log[x1] Log[x2] + 1.10015*10^11 Log[x2]^2 + 1.12436*10^11 Log[x3] + 6.37761*10^8 Log[x1] 

Log[x3] + 6.30689*10^10 Log[x2] Log[x3] + 1.79725*10^10 Log[x3]^2) 

NOTATION CS1-O5  

CS1-O5-L 0.326204 - 0.0020508 [x1] + 3.21664 [x2] + 0.0248874 [x3] 

CS1-O5-LN (441.159 - 6.46636 [x1] + 42219.7 [x2] - 4221.31 [x3]) / (2249.69 + 21.4004 [x1] + 45758.5 [x2] - 11130.8 [x3]) 

CS1-O5-SON 
0.175096 - 0.000230645 [x1] - 8.59298*10^-6 [x1]^2 + 3.63794 [x2] + 0.0142811 [x1] [x2] - 15.1354 [x2]^2 + 0.140544 [x3] - 

0.00314815 [x1] [x3] + 3.64442 [x2] [x3] - 0.13905 [x3]^2 

CS1-O5-SONR 

(154070. + 1.10924*10^7 [x1] - 189887. [x1]^2 - 3.92605*10^8 [x2] + 1.24604*10^9 [x1] [x2] - 9.65328*10^7 [x2]^2 - 

6.55578*10^8 [x3] - 1.15658*10^8 [x1] [x3] - 1.00498*10^8 [x2] [x3] - 8.99939*10^8 [x3]^2) / (766007. + 5.51546*10^7 [x1] + 

653946. [x1]^2 + 2.58973*10^8 [x2] + 1.37963*10^9 [x1] [x2] + 7.22644*10^7 [x2]^2 - 2.67665*10^8 [x3] - 3.24609*10^8 [x1] 

[x3] - 2.39358*10^6 [x2] [x3] - 1.69525*10^8 [x3]^2) 

CS1-O5-TON 

-0.246232 - 0.000273955 [x1] + 5.40196*10^-6 [x1]^2 + 6.25492*10^-8 [x1]^3 + 6.2779 [x2] + 0.00208604 [x1] [x2] - 

0.000197926 [x1]^2 [x2] + 28.6872 [x2]^2 + 0.325521 [x1] [x2]^2 - 231.596 [x2]^3 + 2.7713 [x3] - 0.000301715 [x1] [x3] - 

0.0000966795 [x1]^2 [x3] - 45. [x2] [x3] - 0.114583 [x1] [x2] [x3] - 5.20833 [x2]^2 [x3] + 0.323757 [x3]^2 + 0.0601852 [x1] 

[x3]^2 + 115.278 [x2] [x3]^2 - 22.8906 [x3]^3 

CS1-O5-FOTN -38.7599 - 8.32383 Cos[x1] + 39.8297 Cos[x2] + 0.506567 Cos[x3] + 8.59434 Sin[x1] + 8.03129 Sin[x2] + 0.182172 Sin[x3] 

CS1-O5-FOTNR 
(301.734 + 95.5493 Cos[x1] - 321.506 Cos[x2] + 0.0905315 Cos[x3] - 97.7192 Sin[x1] - 29.684 Sin[x2] - 0.0922322 Sin[x3]) / 

(413.356 + 633.956 Cos[x1] - 551.363 Cos[x2] + 0.583618 Cos[x3] - 648.29 Sin[x1] - 50.1215 Sin[x2] - 0.186675 Sin[x3]) 

CS1-O5-SOTN 

513.544 + 83.2737 Cos[x1] + 913.858 Cos[x1]^2 + 521.356 Cos[x2] + 144.374 Cos[x1] Cos[x2] + 529.3 Cos[x2]^2 + 582.436 

Cos[x3] + 129.35 Cos[x1] Cos[x3] - 4332.44 Cos[x2] Cos[x3] + 652.279 Cos[x3]^2 - 141.427 Sin[x1] + 1078.89 Cos[x1] Sin[x1] - 

82.547 Cos[x2] Sin[x1] - 124.788 Cos[x3] Sin[x1] + 967.056 Sin[x1]^2 + 383.692 Sin[x2] + 86.9121 Cos[x1] Sin[x2] + 376.296 

Cos[x2] Sin[x2] - 745.417 Cos[x3] Sin[x2] - 80.4177 Sin[x1] Sin[x2] - 1434.02 Sin[x2]^2 + 551.779 Sin[x3] + 120.359 Cos[x1] 

Sin[x3] - 1329.6 Cos[x2] Sin[x3] + 768.863 Cos[x3] Sin[x3] - 120.426 Sin[x1] Sin[x3] - 226.883 Sin[x2] Sin[x3] - 1156.19 

Sin[x3]^2 

CS1-O5-SOTNR 

(0.53409 - 4.59787 Cos[x1] - 0.434595 Cos[x1]^2 - 3.05597 Cos[x2] - 2.83025 Cos[x1] Cos[x2] - 6.52608 Cos[x2]^2 + 3.33747 

Cos[x3] + 6.70137 Cos[x1] Cos[x3] - 1.60527 Cos[x2] Cos[x3] + 5.51382 Cos[x3]^2 - 4.37498 Sin[x1] + 0.804635 Cos[x1] Sin[x1] 

- 1.87136 Cos[x2] Sin[x1] + 6.07239 Cos[x3] Sin[x1] + 1.96868 Sin[x1]^2 + 11.9858 Sin[x2] - 8.40844 Cos[x1] Sin[x2] + 10.9343 

Cos[x2] Sin[x2] + 16.6257 Cos[x3] Sin[x2] - 10.5732 Sin[x1] Sin[x2] + 8.06017 Sin[x2]^2 - 1.55236 Sin[x3] + 2.77483 Cos[x1] 

Sin[x3] + 4.14558 Cos[x2] Sin[x3] + 0.498677 Cos[x3] Sin[x3] + 3.28677 Sin[x1] Sin[x3] - 25.271 Sin[x2] Sin[x3] - 3.97973 

Sin[x3]^2) / (-3.3156 - 2.50183 Cos[x1] - 1.85822 Cos[x1]^2 - 2.68036 Cos[x2] - 4.53466 Cos[x1] Cos[x2] - 2.08151 Cos[x2]^2 + 

4.32726 Cos[x3] - 0.103821 Cos[x1] Cos[x3] + 6.24063 Cos[x2] Cos[x3] + 10.0382 Cos[x3]^2 - 1.4941 Sin[x1] - 1.04014 Cos[x1] 

Sin[x1] - 3.61956 Cos[x2] Sin[x1] - 0.79763 Cos[x3] Sin[x1] - 0.457386 Sin[x1]^2 + 3.42359 Sin[x2] + 14.9415 Cos[x1] Sin[x2] + 

3.70236 Cos[x2] Sin[x2] - 4.13786 Cos[x3] Sin[x2] + 14.1138 Sin[x1] Sin[x2] - 0.234089 Sin[x2]^2 - 1.62688 Sin[x3] + 2.69989 

Cos[x1] Sin[x3] - 6.81887 Cos[x2] Sin[x3] + 4.47513 Cos[x3] Sin[x3] + 3.22954 Sin[x1] Sin[x3] + 35.5966 Sin[x2] Sin[x3] - 

12.3538 Sin[x3]^2) 

CS1-O5-FOLN 2.695 - 0.295039 Log[x1] + 0.371295 Log[x2] + 0.00714925 Log[x3] 

CS1-O5-FOLNR 
(66.1281 - 8.72996 Log[x1] + 8.12545 Log[x2] - 2.74204 Log[x3]) / (47.6673 - 6.41947 Log[x1] + 2.03775 Log[x2] - 7.00973 

Log[x3]) 

CS1-O5-SOLN 
0.962995 + 0.0904384 Log[x1] - 0.00227843 Log[x1]^2 - 0.80895 Log[x2] + 0.238105 Log[x1] Log[x2] - 0.0284825 Log[x2]^2 + 

0.758175 Log[x3] - 0.112872 Log[x1] Log[x3] + 0.102049 Log[x2] Log[x3] - 0.0110022 Log[x3]^2 

CS1-O5-SOLNR 

(3.10754*10^8 + 7.79913*10^8 Log[x1] + 5.81593*10^7 Log[x1]^2 - 3.94321*10^8 Log[x2] + 6.7881*10^8 Log[x1] Log[x2] + 

2.38227*10^8 Log[x2]^2 - 3.0252*10^8 Log[x3] - 1.51125*10^8 Log[x1] Log[x3] + 5.13562*10^7 Log[x2] Log[x3] - 

3.15315*10^8 Log[x3]^2) / (-6.65847*10^7 - 1.46758*10^8 Log[x1] + 1.90667*10^8 Log[x1]^2 + 2.20028*10^8 Log[x2] + 

4.68906*10^7 Log[x1] Log[x2] - 4.09414*10^8 Log[x2]^2 - 7.78554*10^7 Log[x3] - 3.65458*10^8 Log[x1] Log[x3] + 

1.00446*10^8 Log[x2] Log[x3] - 4.72071*10^8 Log[x3]^2) 

NOTATION CS1-O6  

CS1-O6-L 2.15278 - 0.0125286 [x1] + 20.9502 [x2] - 0.615991 [x3] 

CS1-O6-LN (133423. - 308.042 [x1] + 1.02942*10^6 [x2] - 202684. [x3]) / (61490.3 + 180.01 [x1] - 79692.9 [x2] - 68196. [x3]) 

CS1-O6-SON 
0.303561 + 0.000303947 [x1] - 7.03705*10^-6 [x1]^2 + 22.9969 [x2] - 0.0499006 [x1] [x2] + 12.089 [x2]^2 + 4.4078 [x3] - 

0.0148148 [x1] [x3] + 12.1051 [x2] [x3] - 6.7118 [x3]^2 

CS1-O6-SONR 

(3.72094*10^8 + 2.68919*10^10 [x1] + 3.03346*10^10 [x1]^2 + 9.3461*10^7 [x2] + 1.0078*10^10 [x1] [x2] + 1.7329*10^7 

[x2]^2 + 4.16184*10^7 [x3] - 9.69093*10^8 [x1] [x3] + 1.9105*10^7 [x2] [x3] - 6.07307*10^6 [x3]^2) / (-9.41096*10^8 - 

6.77174*10^10 [x1] + 1.24627*10^10 [x1]^2 - 2.36859*10^8 [x2] - 2.5528*10^10 [x1] [x2] - 4.3942*10^7 [x2]^2 - 1.04645*10^8 

[x3] + 2.62078*10^9 [x1] [x3] - 4.8376*10^7 [x2] [x3] + 1.57344*10^7 [x3]^2) 

CS1-O6-TON 

8.72843 + 0.0142374 [x1] - 0.000140937 [x1]^2 - 1.82563*10^-6 [x1]^3 - 69.5614 [x2] + 0.162163 [x1] [x2] + 0.00428584 [x1]^2 

[x2] - 352.312 [x2]^2 - 3.77604 [x1] [x2]^2 + 3539.41 [x2]^3 - 31.3412 [x3] + 0.0176722 [x1] [x3] + 0.00125128 [x1]^2 [x3] + 

600. [x2] [x3] - 1.77083 [x1] [x2] [x3] - 781.25 [x2]^2 [x3] - 41.0327 [x3]^2 - 0.305556 [x1] [x3]^2 - 152.778 [x2] [x3]^2 + 

115.345 [x3]^3 

CS1-O6-FOTN -19.4244 - 3.94655 Cos[x1] + 3.35143 Cos[x2] + 16.5439 Cos[x3] + 4.53649 Sin[x1] + 21.9988 Sin[x2] + 4.49749 Sin[x3] 

CS1-O6-FOTNR 
(406.041 - 2669.85 Cos[x1] + 184.761 Cos[x2] - 4.75205 Cos[x3] + 2729.12 Sin[x1] + 67.879 Sin[x2] - 4.25165 Sin[x3]) / (-

485.556 + 1057.92 Cos[x1] + 253.59 Cos[x2] - 2.87077 Cos[x3] - 1081.95 Sin[x1] + 40.2756 Sin[x2] - 1.89254 Sin[x3]) 

CS1-O6-SOTN 

0.492401 - 151.692 Cos[x1] - 9.57279 Cos[x1]^2 - 4.55098 Cos[x2] + 127.39 Cos[x1] Cos[x2] + 0.924079 Cos[x2]^2 + 5.90507 

Cos[x3] + 25.5555 Cos[x1] Cos[x3] + 8.27464 Cos[x2] Cos[x3] - 8.13858 Cos[x3]^2 - 146.326 Sin[x1] - 7.00083 Cos[x1] Sin[x1] 

+ 123.499 Cos[x2] Sin[x1] + 22.5273 Cos[x3] Sin[x1] + 9.46867 Sin[x1]^2 + 49.3571 Sin[x2] + 19.5253 Cos[x1] Sin[x2] + 

55.7936 Cos[x2] Sin[x2] - 77.6803 Cos[x3] Sin[x2] + 12.5283 Sin[x1] Sin[x2] - 5.52318 Sin[x2]^2 - 33.9938 Sin[x3] + 4.00579 

Cos[x1] Sin[x3] + 56.2516 Cos[x2] Sin[x3] - 16.9261 Cos[x3] Sin[x3] + 10.7168 Sin[x1] Sin[x3] - 31.2229 Sin[x2] Sin[x3] - 

12.1494 Sin[x3]^2 

CS1-O6-SOTNR 

(4.7149*10^9 + 1.1797*10^9 Cos[x1] + 2.55184*10^9 Cos[x1]^2 + 2.9888*10^9 Cos[x2] + 1.37356*10^9 Cos[x1] Cos[x2] + 

1.28585*10^9 Cos[x2]^2 + 7.76666*10^9 Cos[x3] + 3.64943*10^9 Cos[x1] Cos[x3] + 6.15448*10^9 Cos[x2] Cos[x3] + 

1.03704*10^10 Cos[x3]^2 + 1.36562*10^8 Sin[x1] + 2.24152*10^9 Cos[x1] Sin[x1] + 6.98637*10^8 Cos[x2] Sin[x1] + 

1.89382*10^9 Cos[x3] Sin[x1] + 2.16306*10^9 Sin[x1]^2 + 1.58334*10^10 Sin[x2] - 1.34628*10^9 Cos[x1] Sin[x2] + 

1.55402*10^10 Cos[x2] Sin[x2] + 1.49593*10^10 Cos[x3] Sin[x2] - 4.73329*10^9 Sin[x1] Sin[x2] + 3.42905*10^9 Sin[x2]^2 - 

7.16513*10^9 Sin[x3] - 4.15045*10^9 Cos[x1] Sin[x3] - 7.76711*10^9 Cos[x2] Sin[x3] - 5.46835*10^9 Cos[x3] Sin[x3] - 

2.51369*10^9 Sin[x1] Sin[x3] + 5.05052*10^9 Sin[x2] Sin[x3] - 5.65551*10^9 Sin[x3]^2) / (3.00164*10^9 + 1.1627*10^9 

Cos[x1] + 1.71338*10^9 Cos[x1]^2 + 6.34182*10^9 Cos[x2] + 9.52832*10^8 Cos[x1] Cos[x2] + 9.6383*10^9 Cos[x2]^2 + 

1.62333*10^9 Cos[x3] - 1.16919*10^9 Cos[x1] Cos[x3] + 4.68214*10^9 Cos[x2] Cos[x3] + 7.966*10^8 Cos[x3]^2 + 4.8961*10^8 

Sin[x1] + 1.42505*10^9 Cos[x1] Sin[x1] - 4.36392*10^8 Cos[x2] Sin[x1] - 1.49391*10^9 Cos[x3] Sin[x1] + 1.28826*10^9 

Sin[x1]^2 - 3.04677*10^10 Sin[x2] + 1.02232*10^9 Cos[x1] Sin[x2] - 2.99059*10^10 Cos[x2] Sin[x2] - 2.79962*10^10 Cos[x3] 

Sin[x2] + 7.57411*10^9 Sin[x1] Sin[x2] - 6.63666*10^9 Sin[x2]^2 - 3.53306*10^9 Sin[x3] - 3.04209*10^9 Cos[x1] Sin[x3] - 

2.11032*10^9 Cos[x2] Sin[x3] - 5.10015*10^9 Cos[x3] Sin[x3] - 2.21326*10^9 Sin[x1] Sin[x3] - 1.29998*10^10 Sin[x2] Sin[x3] 

+ 2.20504*10^9 Sin[x3]^2) 

CS1-O6-FOLN 16.6472 - 1.82421 Log[x1] + 2.37774 Log[x2] - 0.144824 Log[x3] 

CS1-O6-FOLNR 
(22.4245 - 3.25033 Log[x1] + 1.70781 Log[x2] - 1.81553 Log[x3])/(-2.34502 + 0.182617 Log[x1] - 1.20708 Log[x2] - 0.600333 

Log[x3]) 

CS1-O6-SOLN 
22.8828 + 0.986701 Log[x1] - 0.516166 Log[x1]^2 + 13.2071 Log[x2] - 0.755969 Log[x1] Log[x2] + 1.46694 Log[x2]^2 + 

1.90529 Log[x3] - 0.55362 Log[x1] Log[x3] + 0.393908 Log[x2] Log[x3] - 0.590491 Log[x3]^2 
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CS1-O6-SOLNR 

(1.74261*10^9 + 4.47539*10^9 Log[x1] + 1.34295*10^9 Log[x1]^2 - 1.55776*10^9 Log[x2] + 1.12216*10^9 Log[x1] Log[x2] - 

1.47239*10^9 Log[x2]^2 - 1.47723*10^9 Log[x3] - 1.64705*10^9 Log[x1] Log[x3] + 3.71575*10^8 Log[x2] Log[x3] - 

6.35387*10^7 Log[x3]^2) / (-4.43895*10^9 - 1.08226*10^10 Log[x1] + 2.34325*10^9 Log[x1]^2 + 4.28296*10^9 Log[x2] - 

1.96566*10^9 Log[x1] Log[x2] + 2.21892*10^9 Log[x2]^2 + 3.163*10^9 Log[x3] - 7.91529*10^6 Log[x1] Log[x3] - 

1.23052*10^8 Log[x2] Log[x3] + 2.18054*10^9 Log[x3]^2) 

NOTATION CS2-O1  

CS2-O1-L -0.183893 + 0.00105277 [x1] + 0.773401 [x2] + 0.0686068 [x3] + 0.00883792 [[x4]] 

CS2-O1-LN 
(-207.933 - 0.484284 [x1] + 8014.88 [x2] + 797.351 [x3] + 34.6674 [x4]) / (10716.1 - 30.6456 [x1] + 13783.6 [x2] + 1471.9 [x3] - 

70.196 [x4]) 

CS2-O1-SON 

0.0845922 - 0.000905821 [x1] + 2.96677*10^-6 [x1]^2 + 0.408622 [x2] + 0.000768021 [x1] [x2] + 1.3977 [x2]^2 - 0.0108546 [x3] 

+ 0.00011509 [x1] [x3] - 0.0475026 [x2] [x3] + 0.0993455 [x3]^2 - 0.0035025 [x4] + 0.0000720227 [x1] [x4] - 0.00668952 [x2] 

[x4] - 0.000918482 [x3] [x4] - 0.0000387693 [x4]^2 

CS2-O1-SONR 

(-1.19882*10^9 - 1.06311*10^11 [x1] + 6.74774*10^9 [x1]^2 - 1.0978*10^8 [x2] - 7.42699*10^9 [x1] [x2] - 1.04977*10^7 [x2]^2 

- 4.33448*10^8 [x3] - 3.57692*10^10 [x1] [x3] - 3.73276*10^7 [x2] [x3] - 1.93822*10^8 [x3]^2 - 5.81317*10^9 [x4] + 

3.9762*10^10 [x1] [x4] - 4.79075*10^8 [x2] [x4] - 2.23296*10^9 [x3] [x4] - 4.47476*10^10 [x4]^2)/(2.67546*10^8 + 

2.37638*10^10 [x1] + 3.48292*10^10 [x1]^2 + 2.47689*10^7 [x2] + 1.71031*10^9 [x1] [x2] + 2.4142*10^6 [x2]^2 + 9.7964*10^7 

[x3] + 8.15878*10^9 [x1] [x3] + 8.45817*10^6 [x2] [x3] + 4.42961*10^7 [x3]^2 + 1.48719*10^9 [x4] + 1.77256*10^10 [x1] [x4] 

+ 1.28372*10^8 [x2] [x4] + 5.85132*10^8 [x3] [x4] + 1.32567*10^10 [x4]^2) 

CS2-O1-TON 

0.029852 + 0.000087258 [x1] + 4.52704*10^-7 [x1]^2 + 2.86079*10^-9 [x1]^3 + 0.431188 [x2] - 0.000172987 [x1] [x2] - 

3.67469*10^-6 [x1]^2 [x2] + 1.8543 [x2]^2 + 0.00363942 [x1] [x2]^2 - 4.85637 [x2]^3 - 0.126444 [x3] + 0.0000178814 [x1] [x3] - 

2.38869*10^-7 [x1]^2 [x3] + 0.206417 [x2] [x3] + 0.00275623 [x1] [x2] [x3] - 4.26737 [x2]^2 [x3] - 0.079225 [x3]^2 - 

0.000757864 [x1] [x3]^2 + 1.52931 [x2] [x3]^2 + 0.38018 [x3]^3 - 0.00176941 [x4] + 0.00001586 [x1] [x4] + 9.23659*10^-8 

[x1]^2 [x4] - 0.0432765 [x2] [x4] + 0.0000644144 [x1] [x2] [x4] + 0.24402 [x2]^2 [x4] + 0.0294389 [x3] [x4] + 0.0000453353 [x1] 

[x3] [x4] - 0.084651 [x2] [x3] [x4] - 0.0267302 [x3]^2 [x4] - 6.21219*10^-6 [x4]^2 - 4.01228*10^-7 [x1] [x4]^2 - 0.000174642 

[x2] [x4]^2 - 0.000415714 [x3] [x4]^2 + 6.81741*10^-6 [x4]^3 

CS2-O1-FOTN 
-12.0483 + 0.230635 Cos[x1] + 12.7926 Cos[x2] - 0.317999 Cos[x3] + 0.250328 Cos[x4] + 0.136795 Sin[x1] + 2.31615 Sin[x2] - 

0.0652909 Sin[x3] - 0.214575 Sin[x4] 

CS2-O1-FOTNR 

(-0.386738 + 0.396512 Cos[x1] + 2.30943 Cos[x2] - 1.57883 Cos[x3] + 0.0558798 Cos[x4] + 0.050419 Sin[x1] + 4.39469 Sin[x2] - 

0.24221 Sin[x3] - 0.113801 Sin[x4])  /  (-54.4657 + 0.223911 Cos[x1] + 59.1247 Cos[x2] - 5.74641 Cos[x3] - 3.2137 Cos[x4] - 

1.20913 Sin[x1] + 15.5224 Sin[x2] - 1.7243 Sin[x3] + 2.25147 Sin[x4]) 

CS2-O1-SOTN 

0.0157512 - 0.00593974 Cos[x1] - 0.0123339 Cos[x1]^2 + 0.0158292 Cos[x2] - 0.0047374 Cos[x1] Cos[x2] + 0.0159031 

Cos[x2]^2 + 0.0160358 Cos[x3] + 0.12561 Cos[x1] Cos[x3] + 0.0159036 Cos[x2] Cos[x3] + 0.0151482 Cos[x3]^2 - 0.0520612 

Cos[x4] + 0.117321 Cos[x1] Cos[x4] - 0.0437815 Cos[x2] Cos[x4] + 0.18064 Cos[x3] Cos[x4] + 0.0846731 Cos[x4]^2 + 

0.0223067 Sin[x1] - 0.0484857 Cos[x1] Sin[x1] + 0.0320584 Cos[x2] Sin[x1] + 0.199263 Cos[x3] Sin[x1] + 0.209076 Cos[x4] 

Sin[x1] + 0.0625409 Sin[x1]^2 + 0.217166 Sin[x2] + 1.21346 Cos[x1] Sin[x2] + 0.22126 Cos[x2] Sin[x2] + 0.299218 Cos[x3] 

Sin[x2] - 0.968639 Cos[x4] Sin[x2] + 0.343576 Sin[x1] Sin[x2] + 1.11987 Sin[x2]^2 + 0.0794924 Sin[x3] + 0.0527824 Cos[x1] 

Sin[x3] + 0.0835951 Cos[x2] Sin[x3] + 0.103397 Cos[x3] Sin[x3] + 0.275553 Cos[x4] Sin[x3] + 0.0918246 Sin[x1] Sin[x3] - 

0.548222 Sin[x2] Sin[x3] + 0.117911 Sin[x3]^2 - 0.0346595 Sin[x4] - 0.178977 Cos[x1] Sin[x4] - 0.0351477 Cos[x2] Sin[x4] + 

0.020551 Cos[x3] Sin[x4] + 0.254286 Cos[x4] Sin[x4] - 0.195718 Sin[x1] Sin[x4] + 0.691313 Sin[x2] Sin[x4] - 0.0870805 Sin[x3] 

Sin[x4] - 0.0136081 Sin[x4]^2 

CS2-O1-SOTNR 

(1.32923 + 0.784048 Cos[x1] + 1.08715 Cos[x1]^2 + 0.918194 Cos[x2] + 1.02085 Cos[x1] Cos[x2] + 0.513729 Cos[x2]^2 + 

0.697562 Cos[x3] + 1.18916 Cos[x1] Cos[x3] + 0.322659 Cos[x2] Cos[x3] + 0.390265 Cos[x3]^2 + 0.725108 Cos[x4] - 0.530004 

Cos[x1] Cos[x4] + 0.890794 Cos[x2] Cos[x4] + 0.815914 Cos[x3] Cos[x4] + 1.70669 Cos[x4]^2 + 1.77049 Sin[x1] + 0.552361 

Cos[x1] Sin[x1] + 1.7916 Cos[x2] Sin[x1] + 1.87712 Cos[x3] Sin[x1] + 3.62943 Cos[x4] Sin[x1] + 1.24208 Sin[x1]^2 + 4.42088 

Sin[x2] - 0.929813 Cos[x1] Sin[x2] + 4.34449 Cos[x2] Sin[x2] + 4.06889 Cos[x3] Sin[x2] - 0.343603 Cos[x4] Sin[x2] + 0.816057 

Sin[x1] Sin[x2] + 1.8155 Sin[x2]^2 + 0.707911 Sin[x3] + 1.03977 Cos[x1] Sin[x3] + 0.566736 Cos[x2] Sin[x3] - 0.010076 Cos[x3] 

Sin[x3] + 0.976918 Cos[x4] Sin[x3] + 0.829435 Sin[x1] Sin[x3] + 2.19861 Sin[x2] Sin[x3] + 1.93897 Sin[x3]^2 - 0.0907169 

Sin[x4] - 0.0653061 Cos[x1] Sin[x4] - 0.393655 Cos[x2] Sin[x4] - 0.783297 Cos[x3] Sin[x4] + 2.21742 Cos[x4] Sin[x4] - 2.40278 

Sin[x1] Sin[x4] + 3.53845 Sin[x2] Sin[x4] + 0.0709478 Sin[x3] Sin[x4] + 0.622539 Sin[x4]^2) / (2.22166 - 0.130365 Cos[x1] + 

2.21535 Cos[x1]^2 + 2.29025 Cos[x2] - 0.166862 Cos[x1] Cos[x2] + 2.35768 Cos[x2]^2 + 2.27987 Cos[x3] - 0.188376 Cos[x1] 

Cos[x3] + 2.34212 Cos[x2] Cos[x3] + 2.28449 Cos[x3]^2 - 0.203042 Cos[x4] + 2.30913 Cos[x1] Cos[x4] - 0.224914 Cos[x2] 

Cos[x4] - 0.243835 Cos[x3] Cos[x4] + 1.78642 Cos[x4]^2 - 0.320064 Sin[x1] + 1.509 Cos[x1] Sin[x1] - 0.309165 Cos[x2] Sin[x1] 

- 0.135324 Cos[x3] Sin[x1] + 1.19436 Cos[x4] Sin[x1] + 1.0063 Sin[x1]^2 + 0.504044 Sin[x2] + 1.22901 Cos[x1] Sin[x2] + 

0.517365 Cos[x2] Sin[x2] + 0.563242 Cos[x3] Sin[x2] + 1.10436 Cos[x4] Sin[x2] + 0.841879 Sin[x1] Sin[x2] + 0.863973 

Sin[x2]^2 + 1.39188 Sin[x3] + 0.755207 Cos[x1] Sin[x3] + 1.4159 Cos[x2] Sin[x3] + 1.50026 Cos[x3] Sin[x3] + 0.861828 Cos[x4] 

Sin[x3] + 0.41527 Sin[x1] Sin[x3] + 0.81467 Sin[x2] Sin[x3] + 0.937164 Sin[x3]^2 + 1.46983 Sin[x4] + 0.975465 Cos[x1] Sin[x4] 

+ 1.52603 Cos[x2] Sin[x4] + 1.42764 Cos[x3] Sin[x4] + 0.407702 Cos[x4] Sin[x4] + 1.07403 Sin[x1] Sin[x4] + 0.546363 Sin[x2] 

Sin[x4] + 1.61397 Sin[x3] Sin[x4] + 1.43523 Sin[x4]^2) 

CS2-O1-FOLN -0.738238 + 0.199067 Log[x1] + 0.0796313 Log[x2] + 0.018771 Log[x3] + 0.0567917 Log[x4] 

CS2-O1-FOLNR 
(5.58984 + 0.212759 Log[x1] + 1.71731 Log[x2] + 0.609255 Log[x3] - 0.0565823 Log[x4]) / (69.6447 - 8.29019 Log[x1] + 

3.28113 Log[x2] + 1.34878 Log[x3] - 3.32055 Log[x4]) 

CS2-O1-SOLN 

5.70788 - 1.89803 Log[x1] + 0.185923 Log[x1]^2 + 0.464449 Log[x2] + 0.00336089 Log[x1] Log[x2] + 0.0809967 Log[x2]^2 + 

0.0743047 Log[x3] + 0.00938062 Log[x1] Log[x3] + 0.0194823 Log[x2] Log[x3] + 0.0241822 Log[x3]^2 - 0.513616 Log[x4] + 

0.0877114 Log[x1] Log[x4] - 0.00624825 Log[x2] Log[x4] - 0.000171744 Log[x3] Log[x4] + 0.0288352 Log[x4]^2 

CS2-O1-SOLNR 

(-68.6687 - 176.77 Log[x1] + 46.7864 Log[x1]^2 + 75.8876 Log[x2] - 6.41293 Log[x1] Log[x2] + 3.41952 Log[x2]^2 + 34.1657 

Log[x3] - 8.7705 Log[x1] Log[x3] + 29.5824 Log[x2] Log[x3] - 10.8057 Log[x3]^2 - 78.4473 Log[x4] + 33.589 Log[x1] Log[x4] 

+ 34.7366 Log[x2] Log[x4] + 19.2674 Log[x3] Log[x4] + 15.2392 Log[x4]^2) / (20.1259 + 53.8335 Log[x1] + 30.8437 Log[x1]^2 

- 24.9286 Log[x2] - 35.4348 Log[x1] Log[x2] + 24.9343 Log[x2]^2 - 13.5202 Log[x3] - 28.7896 Log[x1] Log[x3] + 12.9807 

Log[x2] Log[x3] + 17.0419 Log[x3]^2 + 16.6879 Log[x4] - 30.5952 Log[x1] Log[x4] - 2.55745 Log[x2] Log[x4] - 8.79176 

Log[x3] Log[x4] - 20.5788 Log[x4]^2) 

NOTATION CS2-O2  

CS2-O2-L 0.336175 - 0.000970039 [x1] + 1.83652 [x2] + 0.0519202 [x3] + 0.0139923 [x4] 

CS2-O2-LN 
(8705.16 - 26.1522 [x1] + 5728.7 [x2] - 349.986 [x3] + 163.88 [x4]) / (21014.3 - 31.289 [x1] - 28079.9 [x2] - 2141.15 [x3] + 22.738 

[x4]) 

CS2-O2-SON 

0.778767 - 0.00458809 [x1] + 6.76248*10^-6 [x1]^2 + 1.0233 [x2] + 0.00165332 [x1] [x2] + 2.38618 [x2]^2 + 0.0894347 [x3] + 

0.000227986 [x1] [x3] - 0.100069 [x2] [x3] - 0.0440976 [x3]^2 - 0.00429524 [x4] + 0.0000717317 [x1] [x4] + 0.00554415 [x2] 

[x4] - 0.00237944 [x3] [x4] + 0.000240068 [x4]^2 

CS2-O2-SONR 

(1.00042 + 0.509983 [x1] - 0.00145637 [x1]^2 + 1.03645 [x2] + 7.61163 [x1] [x2] + 1.00864 [x2]^2 + 1.00652 [x3] + 0.889895 

[x1] [x3] + 1.01662 [x2] [x3] + 1.01178 [x3]^2 + 0.656177 [x4] + 0.0732689 [x1] [x4] + 1.27161 [x2] [x4] + 0.701786 [x3] [x4] + 

0.706079 [x4]^2) / (1.01062 + 2.33516 [x1] + 0.00690492 [x1]^2 + 0.982407 [x2] - 2.14356 [x1] [x2] + 0.995681 [x2]^2 + 1.00006 

[x3] + 1.32653 [x1] [x3] + 0.991843 [x2] [x3] + 0.995313 [x3]^2 + 1.19853 [x4] + 0.0225593 [x1] [x4] + 0.845968 [x2] [x4] + 

1.18462 [x3] [x4] + 1.30399 [x4]^2) 

CS2-O2-TON 

0.388935 - 0.000622981 [x1] - 4.73937*10^-6 [x1]^2 - 5.24016*10^-9 [x1]^3 + 2.79176 [x2] - 0.0025846 [x1] [x2] + 

0.0000331875 [x1]^2 [x2] + 7.54858 [x2]^2 - 0.0252336 [x1] [x2]^2 - 57.1083 [x2]^3 - 0.117675 [x3] - 0.000261919 [x1] [x3] + 

8.17044*10^-6 [x1]^2 [x3] - 1.22871 [x2] [x3] - 0.0116726 [x1] [x2] [x3] + 19.8828 [x2]^2 [x3] - 0.252142 [x3]^2 + 0.000492497 

[x1] [x3]^2 - 1.30391 [x2] [x3]^2 + 0.648678 [x3]^3 + 0.00653039 [x4] - 0.00004739 [x1] [x4] + 6.94998*10^-7 [x1]^2 [x4] - 

0.121123 [x2] [x4] - 0.000389687 [x1] [x2] [x4] + 0.227748 [x2]^2 [x4] + 0.0707932 [x3] [x4] - 0.000280667 [x1] [x3] [x4] + 

0.0420322 [x2] [x3] [x4] - 0.0650911 [x3]^2 [x4] - 0.000370967 [x4]^2 - 8.23422*10^-7 [x1] [x4]^2 + 0.0101422 [x2] [x4]^2 + 

0.00184249 [x3] [x4]^2 - 0.0000437656 [x4]^3 

CS2-O2-FOTN 
-10.8123 - 0.0568194 Cos[x1] + 11.2993 Cos[x2] + 0.00240194 Cos[x3] + 0.334645 Cos[x4] - 0.0936539 Sin[x1] + 3.26354 

Sin[x2] + 0.0556643 Sin[x3] - 0.310466 Sin[x4] 

CS2-O2-FOTNR 

(-27.1288 - 0.124366 Cos[x1] + 30.196 Cos[x2] - 2.84838 Cos[x3] + 0.0856684 Cos[x4] - 0.0566939 Sin[x1] + 3.70066 Sin[x2] - 

1.26574 Sin[x3] - 0.115184 Sin[x4]) / (-31.1975 - 0.232991 Cos[x1] + 37.4685 Cos[x2] - 5.74509 Cos[x3] - 0.0315811 Cos[x4] - 

0.0565618 Sin[x1] + 3.48279 Sin[x2] - 2.56308 Sin[x3] - 0.0321899 Sin[x4]) 

CS2-O2-SOTN 

0.0426917 - 0.00599215 Cos[x1] + 0.0212705 Cos[x1]^2 + 0.0433473 Cos[x2] + 0.00981929 Cos[x1] Cos[x2] + 0.0440079 

Cos[x2]^2 + 0.041287 Cos[x3] - 0.0351535 Cos[x1] Cos[x3] + 0.0403354 Cos[x2] Cos[x3] + 0.0412422 Cos[x3]^2 + 0.1433 

Cos[x4] + 0.741439 Cos[x1] Cos[x4] + 0.199815 Cos[x2] Cos[x4] - 0.112885 Cos[x3] Cos[x4] - 0.120209 Cos[x4]^2 - 0.541308 

Sin[x1] + 0.805841 Cos[x1] Sin[x1] - 0.579977 Cos[x2] Sin[x1] + 1.40974 Cos[x3] Sin[x1] + 0.273313 Cos[x4] Sin[x1] + 
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0.109114 Sin[x1]^2 + 0.15448 Sin[x2] + 2.59277 Cos[x1] Sin[x2] + 0.158687 Cos[x2] Sin[x2] + 2.79419 Cos[x3] Sin[x2] + 

0.425849 Cos[x4] Sin[x2] + 1.01882 Sin[x1] Sin[x2] - 0.0429299 Sin[x2]^2 + 0.0670345 Sin[x3] + 0.718875 Cos[x1] Sin[x3] + 

0.0299422 Cos[x2] Sin[x3] + 0.0311294 Cos[x3] Sin[x3] - 0.120708 Cos[x4] Sin[x3] + 0.806552 Sin[x1] Sin[x3] + 1.89561 

Sin[x2] Sin[x3] + 0.316726 Sin[x3]^2 + 0.0996636 Sin[x4] - 0.727978 Cos[x1] Sin[x4] + 0.134521 Cos[x2] Sin[x4] - 0.650117 

Cos[x3] Sin[x4] + 0.4866 Cos[x4] Sin[x4] - 0.264627 Sin[x1] Sin[x4] - 0.161743 Sin[x2] Sin[x4] - 0.109077 Sin[x3] Sin[x4] + 

0.133828 Sin[x4]^2 

CS2-O2-SOTNR 

(1.38059 + 0.212403 Cos[x1] + 2.07611 Cos[x1]^2 + 0.770806 Cos[x2] + 0.613143 Cos[x1] Cos[x2] + 0.170566 Cos[x2]^2 + 

1.13159 Cos[x3] + 0.099207 Cos[x1] Cos[x3] + 0.578432 Cos[x2] Cos[x3] + 1.00333 Cos[x3]^2 + 0.968378 Cos[x4] + 0.0975409 

Cos[x1] Cos[x4] + 1.28017 Cos[x2] Cos[x4] + 1.05676 Cos[x3] Cos[x4] + 1.66834 Cos[x4]^2 + 0.190842 Sin[x1] + 1.3629 

Cos[x1] Sin[x1] + 0.0977381 Cos[x2] Sin[x1] + 0.668509 Cos[x3] Sin[x1] + 1.95371 Cos[x4] Sin[x1] + 0.304474 Sin[x1]^2 + 

6.13191 Sin[x2] - 2.39019 Cos[x1] Sin[x2] + 6.01983 Cos[x2] Sin[x2] + 5.64594 Cos[x3] Sin[x2] - 1.58754 Cos[x4] Sin[x2] + 

1.70603 Sin[x1] Sin[x2] + 2.21002 Sin[x2]^2 + 0.979602 Sin[x3] + 1.29812 Cos[x1] Sin[x3] + 0.742764 Cos[x2] Sin[x3] + 

0.708977 Cos[x3] Sin[x3] + 0.543821 Cos[x4] Sin[x3] + 0.573992 Sin[x1] Sin[x3] + 2.98172 Sin[x2] Sin[x3] + 1.37726 Sin[x3]^2 

- 0.204813 Sin[x4] - 0.615403 Cos[x1] Sin[x4] - 0.513757 Cos[x2] Sin[x4] - 0.456466 Cos[x3] Sin[x4] + 2.68618 Cos[x4] Sin[x4] - 

1.38414 Sin[x1] Sin[x4] + 3.58019 Sin[x2] Sin[x4] - 0.12737 Sin[x3] Sin[x4] + 0.712245 Sin[x4]^2) / (1.62722 + 0.237599 

Cos[x1] + 1.89568 Cos[x1]^2 + 1.92735 Cos[x2] + 0.0517225 Cos[x1] Cos[x2] + 2.22271 Cos[x2]^2 + 1.68665 Cos[x3] + 0.36899 

Cos[x1] Cos[x3] + 1.95882 Cos[x2] Cos[x3] + 1.70807 Cos[x3]^2 + 0.35175 Cos[x4] + 2.22854 Cos[x1] Cos[x4] + 0.189176 

Cos[x2] Cos[x4] + 0.436869 Cos[x3] Cos[x4] + 1.44204 Cos[x4]^2 + 0.367444 Sin[x1] + 1.23681 Cos[x1] Sin[x1] + 0.395856 

Cos[x2] Sin[x1] + 0.201076 Cos[x3] Sin[x1] + 1.23168 Cos[x4] Sin[x1] + 0.731542 Sin[x1]^2 - 1.46866 Sin[x2] + 2.50135 

Cos[x1] Sin[x2] - 1.41293 Cos[x2] Sin[x2] - 1.23357 Cos[x3] Sin[x2] + 2.30551 Cos[x4] Sin[x2] + 0.74821 Sin[x1] Sin[x2] + 

0.404517 Sin[x2]^2 + 1.17423 Sin[x3] + 0.57438 Cos[x1] Sin[x3] + 1.29177 Cos[x2] Sin[x3] + 1.25575 Cos[x3] Sin[x3] + 0.90892 

Cos[x4] Sin[x3] + 0.717964 Sin[x1] Sin[x3] + 0.0310416 Sin[x2] Sin[x3] + 0.91915 Sin[x3]^2 + 1.18243 Sin[x4] + 1.90151 

Cos[x1] Sin[x4] + 1.31524 Cos[x2] Sin[x4] + 1.45154 Cos[x3] Sin[x4] + 0.723288 Cos[x4] Sin[x4] + 1.32933 Sin[x1] Sin[x4] - 

0.127172 Sin[x2] Sin[x4] + 1.10176 Sin[x3] Sin[x4] + 1.18519 Sin[x4]^2) 

CS2-O2-FOLN 1.72358 - 0.179595 Log[x1] + 0.196795 Log[x2] + 0.00885818 Log[x3] + 0.0857633 Log[x4] 

CS2-O2-FOLNR 
(49.042 - 7.26401 Log[x1] + 1.64912 Log[x2] - 1.53796 Log[x3] - 0.589898 Log[x4]) / (61.6048 - 8.90007 Log[x1] - 2.4697 

Log[x2] - 3.24573 Log[x3] - 4.16443 Log[x4]) 

CS2-O2-SOLN 

6.57267 - 1.56969 Log[x1] + 0.124082 Log[x1]^2 + 0.802593 Log[x2] + 0.0235149 Log[x1] Log[x2] + 0.155847 Log[x2]^2 - 

0.028019 Log[x3] + 0.0218385 Log[x1] Log[x3] + 0.0223285 Log[x2] Log[x3] + 0.00251999 Log[x3]^2 - 0.543118 Log[x4] + 

0.0812462 Log[x1] Log[x4] + 0.000782164 Log[x2] Log[x4] - 0.0039059 Log[x3] Log[x4] + 0.0602361 Log[x4]^2 

CS2-O2-SOLNR 

(2.43678 + 4.58279 Log[x1] - 0.459043 Log[x1]^2 - 0.660744 Log[x2] + 1.44509 Log[x1] Log[x2] + 1.51737 Log[x2]^2 + 

0.419429 Log[x3] + 0.485504 Log[x1] Log[x3] + 1.3906 Log[x2] Log[x3] + 1.21484 Log[x3]^2 + 1.43258 Log[x4] + 0.264659 

Log[x1] Log[x4] + 2.49872 Log[x2] Log[x4] + 0.168634 Log[x3] Log[x4] + 3.49259 Log[x4]^2) / (0.449488 - 0.495529 Log[x1] + 

0.139511 Log[x1]^2 + 1.44929 Log[x2] + 0.0917736 Log[x1] Log[x2] + 1.55266 Log[x2]^2 + 0.935742 Log[x3] - 0.0955383 

Log[x1] Log[x3] + 1.47406 Log[x2] Log[x3] + 1.77212 Log[x3]^2 + 1.01743 Log[x4] + 1.79782 Log[x1] Log[x4] - 0.579677 

Log[x2] Log[x4] + 0.267749 Log[x3] Log[x4] + 0.313012 Log[x4]^2) 

NOTATION CS2-O3  

CS2-O3-L 23.495 - 0.253089 [x1] + 393.366 [x2] + 245.636 [x3] + 5.5937 [x4] 

CS2-O3-LN 
(-240208. - 1053.44 [x1] + 5.48568*10^6 [x2] + 1.47183*10^6 [x3] + 22832.9 [x4]) / (3643.19 + 2.17204 [x1] + 18598.3 [x2] + 

265.061 [x3] - 51.5007 [x4]) 

CS2-O3-SON 

18.7905 + 0.0425227 [x1] - 0.000825846 [x1]^2 - 183.221 [x2] + 1.28148 [x1] [x2] + 3278.29 [x2]^2 + 308.51 [x3] - 0.273606 [x1] 

[x3] - 1311.84 [x2] [x3] + 182.451 [x3]^2 + 2.25959 [x4] + 0.000699861 [x1] [x4] + 7.63464 [x2] [x4] + 0.2026 [x3] [x4] + 

0.116777 [x4]^2 

CS2-O3-SONR 

(-99.1586 + 877.052 [x1] - 1.88525 [x1]^2 - 10.274 [x2] + 4196. [x1] [x2] + 4.70316 [x2]^2 + 253.587 [x3] - 1385.93 [x1] [x3] + 

7.20955 [x2] [x3] + 161.65 [x3]^2 - 4699.6 [x4] + 3.55688 [x1] [x4] - 1463.6 [x2] [x4] + 1347.44 [x3] [x4] + 149.247 [x4]^2) / 

(1014.48 + 7.27704 [x1] - 0.0120169 [x1]^2 - 923.631 [x2] + 23.0952 [x1] [x2] - 834.954 [x2]^2 - 3621.27 [x3] - 10.3712 [x1] [x3] 

+ 2358.91 [x2] [x3] + 2881.59 [x3]^2 - 70.4991 [x4] + 0.0261176 [x1] [x4] - 91.6616 [x2] [x4] + 85.8505 [x3] [x4] + 1.08185 

[x4]^2) 

CS2-O3-TON 

-10.2819 + 0.0431226 [x1] - 0.000702422 [x1]^2 - 8.76071*10^-6 [x1]^3 + 594.248 [x2] + 1.38006 [x1] [x2] + 0.0256762 [x1]^2 

[x2] + 2000.72 [x2]^2 - 5.46497 [x1] [x2]^2 - 28120.7 [x2]^3 + 86.0859 [x3] + 0.98158 [x1] [x3] - 0.00150101 [x1]^2 [x3] + 

118.362 [x2] [x3] - 13.4605 [x1] [x2] [x3] + 2931.58 [x2]^2 [x3] + 57.2705 [x3]^2 + 1.71091 [x1] [x3]^2 + 739.3 [x2] [x3]^2 - 

220.285 [x3]^3 - 0.655941 [x4] - 0.0115659 [x1] [x4] + 0.000278799 [x1]^2 [x4] - 53.7733 [x2] [x4] - 0.544133 [x1] [x2] [x4] + 

696.802 [x2]^2 [x4] + 30.8943 [x3] [x4] - 0.0776189 [x1] [x3] [x4] - 14.1185 [x2] [x3] [x4] - 16.0989 [x3]^2 [x4] + 0.0386871 

[x4]^2 - 0.000684531 [x1] [x4]^2 + 1.05077 [x2] [x4]^2 + 0.126591 [x3] [x4]^2 + 0.00590462 [x4]^3 

CS2-O3-FOTN 
10744.2 - 63.8367 Cos[x1] - 10053.8 Cos[x2] - 468.908 Cos[x3] + 147.574 Cos[x4] - 33.5963 Sin[x1] - 814.414 Sin[x2] + 72.8834 

Sin[x3] - 132.384 Sin[x4] 

CS2-O3-FOTNR 

(-231.42 + 5.94595 Cos[x1] + 117.089 Cos[x2] + 104.327 Cos[x3] - 5.20524 Cos[x4] + 0.478435 Sin[x1] + 42.0054 Sin[x2] + 

39.5273 Sin[x3] + 1.42083 Sin[x4]) / (-1.51596 + 0.0286113 Cos[x1] + 0.929204 Cos[x2] + 0.533172 Cos[x3] - 0.0211013 Cos[x4] 

+ 0.0015522 Sin[x1] + 0.255887 Sin[x2] + 0.209668 Sin[x3] + 0.0032783 Sin[x4]) 

CS2-O3-SOTN 

-49.9315 + 119.078 Cos[x1] - 239.005 Cos[x1]^2 - 51.0666 Cos[x2] + 91.5707 Cos[x1] Cos[x2] - 52.2101 Cos[x2]^2 - 76.3785 

Cos[x3] - 710.696 Cos[x1] Cos[x3] - 77.8508 Cos[x2] Cos[x3] - 99.4257 Cos[x3]^2 + 393.662 Cos[x4] + 275.761 Cos[x1] Cos[x4] 

+ 350.194 Cos[x2] Cos[x4] - 1030.35 Cos[x3] Cos[x4] - 389.701 Cos[x4]^2 + 376.542 Sin[x1] - 540.945 Cos[x1] Sin[x1] + 

340.968 Cos[x2] Sin[x1] - 912.007 Cos[x3] Sin[x1] + 146.21 Cos[x4] Sin[x1] + 108.806 Sin[x1]^2 - 31.5844 Sin[x2] + 1298.3 

Cos[x1] Sin[x2] - 39.2884 Cos[x2] Sin[x2] + 113.821 Cos[x3] Sin[x2] - 102.722 Cos[x4] Sin[x2] + 223.431 Sin[x1] Sin[x2] + 

2565.4 Sin[x2]^2 - 95.2304 Sin[x3] - 143.573 Cos[x1] Sin[x3] - 104.688 Cos[x2] Sin[x3] - 245.707 Cos[x3] Sin[x3] - 613.426 

Cos[x4] Sin[x3] - 400.214 Sin[x1] Sin[x3] + 1393.81 Sin[x2] Sin[x3] + 419.876 Sin[x3]^2 + 103.559 Sin[x4] - 237.345 Cos[x1] 

Sin[x4] + 97.7519 Cos[x2] Sin[x4] - 148.154 Cos[x3] Sin[x4] + 495.867 Cos[x4] Sin[x4] - 73.5666 Sin[x1] Sin[x4] - 261.922 

Sin[x2] Sin[x4] - 33.5657 Sin[x3] Sin[x4] + 102.345 Sin[x4]^2 

CS2-O3-SOTNR 

(-3.01833 + 9.82447 Cos[x1] - 9.0092 Cos[x1]^2 - 2.96168 Cos[x2] + 9.73881 Cos[x1] Cos[x2] - 2.9058 Cos[x2]^2 - 2.60872 

Cos[x3] + 9.08346 Cos[x1] Cos[x3] - 2.56042 Cos[x2] Cos[x3] - 2.28793 Cos[x3]^2 + 18.7299 Cos[x4] - 17.4659 Cos[x1] Cos[x4] 

+ 18.6053 Cos[x2] Cos[x4] + 17.1764 Cos[x3] Cos[x4] - 20.6315 Cos[x4]^2 - 13.0298 Sin[x1] + 8.90258 Cos[x1] Sin[x1] - 12.866 

Cos[x2] Sin[x1] - 11.6562 Cos[x3] Sin[x1] + 21.4535 Cos[x4] Sin[x1] + 6.99087 Sin[x1]^2 + 0.323367 Sin[x2] + 2.17554 Cos[x1] 

Sin[x2] + 0.33269 Cos[x2] Sin[x2] + 0.414898 Cos[x3] Sin[x2] + 3.03286 Cos[x4] Sin[x2] - 1.16157 Sin[x1] Sin[x2] + 0.887471 

Sin[x2]^2 - 0.368271 Sin[x3] + 3.94969 Cos[x1] Sin[x3] - 0.336947 Cos[x2] Sin[x3] - 0.112637 Cos[x3] Sin[x3] + 7.68457 

Cos[x4] Sin[x3] - 4.22694 Sin[x1] Sin[x3] + 0.670142 Sin[x2] Sin[x3] + 0.269598 Sin[x3]^2 + 30.1956 Sin[x4] - 22.1023 Cos[x1] 

Sin[x4] + 30.0376 Cos[x2] Sin[x4] + 27.7626 Cos[x3] Sin[x4] - 14.0041 Cos[x4] Sin[x4] + 20.4351 Sin[x1] Sin[x4] + 3.98913 

Sin[x2] Sin[x4] + 12.3957 Sin[x3] Sin[x4] + 18.6132 Sin[x4]^2) / (1.09848 - 0.0589657 Cos[x1] + 2.77529 Cos[x1]^2 - 0.592397 

Cos[x2] + 1.39455 Cos[x1] Cos[x2] - 2.21068 Cos[x2]^2 + 1.44061 Cos[x3] + 3.62234 Cos[x1] Cos[x3] - 0.278169 Cos[x2] 

Cos[x3] + 1.59863 Cos[x3]^2 - 0.759447 Cos[x4] - 0.55272 Cos[x1] Cos[x4] - 0.478119 Cos[x2] Cos[x4] + 1.76491 Cos[x3] 

Cos[x4] + 1.5507 Cos[x4]^2 - 1.34114 Sin[x1] + 2.19695 Cos[x1] Sin[x1] - 1.29149 Cos[x2] Sin[x1] + 3.30651 Cos[x3] Sin[x1] + 

0.240158 Cos[x4] Sin[x1] - 0.676802 Sin[x1]^2 + 1.35881 Sin[x2] + 0.45624 Cos[x1] Sin[x2] + 0.764782 Cos[x2] Sin[x2] + 

3.06514 Cos[x3] Sin[x2] + 4.47796 Cos[x4] Sin[x2] + 0.804535 Sin[x1] Sin[x2] + 4.30917 Sin[x2]^2 + 1.26769 Sin[x3] + 

0.248243 Cos[x1] Sin[x3] + 0.917765 Cos[x2] Sin[x3] + 1.67115 Cos[x3] Sin[x3] + 2.76428 Cos[x4] Sin[x3] + 1.85773 Sin[x1] 

Sin[x3] - 1.90989 Sin[x2] Sin[x3] + 0.499851 Sin[x3]^2 + 1.59873 Sin[x4] + 0.938841 Cos[x1] Sin[x4] + 0.890028 Cos[x2] 

Sin[x4] - 0.598242 Cos[x3] Sin[x4] - 1.62798 Cos[x4] Sin[x4] + 0.216816 Sin[x1] Sin[x4] - 4.2562 Sin[x2] Sin[x4] - 2.96625 

Sin[x3] Sin[x4] + 0.547786 Sin[x4]^2) 

CS2-O3-FOLN 525.934 - 47.7582 Log[x1] + 39.8252 Log[x2] + 83.7567 Log[x3] + 33.8643 Log[x4] 

CS2-O3-FOLNR 
(-106603. + 6395.98 Log[x1] - 21534.6 Log[x2] - 5883.82 Log[x3] - 3979.56 Log[x4]) / (-317.148 - 1.23188 Log[x1] - 88.5193 

Log[x2] + 50.1676 Log[x3] + 6.42092 Log[x4]) 

CS2-O3-SOLN 

-600.018 + 486.673 Log[x1] - 48.3636 Log[x1]^2 + 172.524 Log[x2] + 25.7164 Log[x1] Log[x2] + 75.0644 Log[x2]^2 + 189.003 

Log[x3] - 13.6977 Log[x1] Log[x3] - 56.8657 Log[x2] Log[x3] + 70.3403 Log[x3]^2 - 83.3071 Log[x4] + 8.3474 Log[x1] Log[x4] 

+ 5.063 Log[x2] Log[x4] - 0.30211 Log[x3] Log[x4] + 25.2066 Log[x4]^2 

CS2-O3-SOLNR 

(7.1911*10^7 + 3.47723*10^8 Log[x1] + 1.68071*10^9 Log[x1]^2 - 1.35587*10^8 Log[x2] - 6.42149*10^8 Log[x1] Log[x2] + 

2.5302*10^8 Log[x2]^2 - 4.40072*10^7 Log[x3] - 1.99192*10^8 Log[x1] Log[x3] + 7.44692*10^7 Log[x2] Log[x3] + 

4.07276*10^7 Log[x3]^2 + 2.43394*10^8 Log[x4] + 1.2282*10^9 Log[x1] Log[x4] - 4.99092*10^8 Log[x2] Log[x4] - 

2.05972*10^8 Log[x3] Log[x4] + 6.37746*10^8 Log[x4]^2) / (1.57925*10^8 + 5.00737*10^8 Log[x1] + 9.19609*10^7 Log[x1]^2 

- 1.85127*10^8 Log[x2] + 2.52156*10^8 Log[x1] Log[x2] - 3.09248*10^8 Log[x2]^2 + 1.8948*10^8 Log[x3] + 3.06056*10^8 
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Log[x1] Log[x3] - 1.74921*10^8 Log[x2] Log[x3] - 4.10674*10^8 Log[x3]^2 - 5.53009*10^8 Log[x4] - 1.8855*10^8 Log[x1] 

Log[x4] - 1.098*10^9 Log[x2] Log[x4] - 1.27304*10^9 Log[x3] Log[x4] - 5.25958*10^8 Log[x4]^2) 

NOTATION CS2-O4  

CS2-O4-L 40.9741 - 0.349263 [x1] + 658.549 [x2] + 373.301 [x3] + 6.75743 [x4] 

CS2-O4-LN 
(-31978.3 - 109.463 [x1] + 573066. [x2] + 152997. [x3] + 2206.38 [x4]) / (171.677 + 0.044399 [x1] + 1309.43 [x2] + 75.4822 [x3] - 

0.37337 [x4]) 

CS2-O4-SON 

-207.812 + 2.81629 [x1] - 0.00725276 [x1]^2 - 42.055 [x2] - 0.25065 [x1] [x2] + 3923.14 [x2]^2 + 347.539 [x3] - 0.526574 [x1] 

[x3] - 1331.45 [x2] [x3] + 328.488 [x3]^2 + 5.47319 [x4] - 0.00268231 [x1] [x4] + 34.0286 [x2] [x4] + 2.85144 [x3] [x4] - 

0.172817 [x4]^2 

CS2-O4-SONR 

(-2.19422*10^7 + 6.37827*10^6 [x1] - 73574.8 [x1]^2 - 1.11745*10^7 [x2] + 2.1146*10^8 [x1] [x2] - 535939. [x2]^2 + 

3.42376*10^7 [x3] + 3.30265*10^7 [x1] [x3] + 682261. [x2] [x3] + 2.5958*10^7 [x3]^2 - 7.74834*10^7 [x4] + 128346. [x1] [x4] + 

1.31179*10^6 [x2] [x4] + 1.1886*10^7 [x3] [x4] + 9.98765*10^6 [x4]^2) / (2.79548*10^7 - 112848. [x1] + 317.555 [x1]^2 + 

2.84436*10^7 [x2] + 727256. [x1] [x2] - 3.6052*10^8 [x2]^2 - 3.24308*10^7 [x3] + 45554.8 [x1] [x3] + 1.13406*10^8 [x2] [x3] - 

1.02332*10^6 [x3]^2 - 309970. [x4] - 2310.85 [x1] [x4] - 3.54363*10^6 [x2] [x4] + 133568. [x3] [x4] + 52502.1 [x4]^2) 

CS2-O4-TON 

-7.19318 + 0.379441 [x1] + 0.000324199 [x1]^2 - 0.0000101954 [x1]^3 - 542.9 [x2] + 3.40225 [x1] [x2] + 0.0101908 [x1]^2 [x2] - 

1630.01 [x2]^2 - 6.77425 [x1] [x2]^2 + 24928.4 [x2]^3 + 371.202 [x3] + 0.484418 [x1] [x3] - 0.00326387 [x1]^2 [x3] + 433.651 

[x2] [x3] - 5.85897 [x1] [x2] [x3] + 1961.63 [x2]^2 [x3] + 394.132 [x3]^2 + 0.813177 [x1] [x3]^2 - 2419.35 [x2] [x3]^2 - 313.716 

[x3]^3 + 1.92498 [x4] + 0.0248292 [x1] [x4] + 0.0000205882 [x1]^2 [x4] + 90.242 [x2] [x4] - 0.172346 [x1] [x2] [x4] - 220.058 

[x2]^2 [x4] - 38.0867 [x3] [x4] + 0.0606024 [x1] [x3] [x4] + 127.189 [x2] [x3] [x4] + 33.6505 [x3]^2 [x4] + 0.30598 [x4]^2 - 

0.00256001 [x1] [x4]^2 - 2.06751 [x2] [x4]^2 - 0.748956 [x3] [x4]^2 + 0.0257708 [x4]^3 

CS2-O4-FOTN 
13068.7 - 160.778 Cos[x1] - 12096.1 Cos[x2] - 684.854 Cos[x3] + 253.946 Cos[x4] - 60.3033 Sin[x1] - 847.939 Sin[x2] + 119.725 

Sin[x3] - 197.587 Sin[x4] 

CS2-O4-FOTNR 

(1666.57 - 5.09364 Cos[x1] - 1582.32 Cos[x2] - 70.228 Cos[x3] + 4.23689 Cos[x4] - 0.804445 Sin[x1] - 180.182 Sin[x2] - 12.2187 

Sin[x3] - 1.96195 Sin[x4]) / (5.46074 - 0.00398739 Cos[x1] - 5.26852 Cos[x2] - 0.146426 Cos[x3] - 0.0127423 Cos[x4] + 

0.00272598 Sin[x1] - 0.650568 Sin[x2] - 0.0346884 Sin[x3] + 0.0133909 Sin[x4]) 

CS2-O4-SOTN 

-4.1437 - 3.45006 Cos[x1] - 19.875 Cos[x1]^2 - 5.2401 Cos[x2] - 15.5548 Cos[x1] Cos[x2] - 6.33664 Cos[x2]^2 - 20.4003 Cos[x3] 

- 115.185 Cos[x1] Cos[x3] - 21.2664 Cos[x2] Cos[x3] - 34.4976 Cos[x3]^2 + 6.06102 Cos[x4] + 153.109 Cos[x1] Cos[x4] - 

23.7311 Cos[x2] Cos[x4] + 19.1117 Cos[x3] Cos[x4] + 24.1432 Cos[x4]^2 + 261.241 Sin[x1] - 403.278 Cos[x1] Sin[x1] + 275.387 

Cos[x2] Sin[x1] - 646.675 Cos[x3] Sin[x1] + 111.339 Cos[x4] Sin[x1] + 9.07434 Sin[x1]^2 + 260.381 Sin[x2] + 323.129 Cos[x1] 

Sin[x2] + 246.416 Cos[x2] Sin[x2] - 566.335 Cos[x3] Sin[x2] + 742.113 Cos[x4] Sin[x2] - 114.287 Sin[x1] Sin[x2] + 7031.52 

Sin[x2]^2 + 5.68712 Sin[x3] - 44.3514 Cos[x1] Sin[x3] + 14.3959 Cos[x2] Sin[x3] - 90.315 Cos[x3] Sin[x3] - 87.7639 Cos[x4] 

Sin[x3] - 341.185 Sin[x1] Sin[x3] + 199.726 Sin[x2] Sin[x3] + 440.064 Sin[x3]^2 - 33.5993 Sin[x4] - 89.6251 Cos[x1] Sin[x4] - 

48.0407 Cos[x2] Sin[x4] + 253.596 Cos[x3] Sin[x4] + 277.918 Cos[x4] Sin[x4] - 47.2021 Sin[x1] Sin[x4] - 995.228 Sin[x2] 

Sin[x4] + 61.2597 Sin[x3] Sin[x4] - 19.0795 Sin[x4]^2 

CS2-O4-SOTNR 

(-3.80428*10^10 + 2.12301*10^10 Cos[x1] + 3.4779*10^9 Cos[x1]^2 - 3.87679*10^10 Cos[x2] + 2.20193*10^10 Cos[x1] Cos[x2] 

- 3.94835*10^10 Cos[x2]^2 - 5.19562*10^10 Cos[x3] + 2.78744*10^10 Cos[x1] Cos[x3] - 5.26116*10^10 Cos[x2] Cos[x3] - 

6.3663*10^10 Cos[x3]^2 + 1.36871*10^11 Cos[x4] - 1.10344*10^11 Cos[x1] Cos[x4] + 1.36656*10^11 Cos[x2] Cos[x4] + 

1.43527*10^11 Cos[x3] Cos[x4] - 1.60784*10^11 Cos[x4]^2 - 1.73035*10^11 Sin[x1] + 9.53609*10^10 Cos[x1] Sin[x1] - 

1.72776*10^11 Cos[x2] Sin[x1] - 1.5641*10^11 Cos[x3] Sin[x1] + 1.94084*10^11 Cos[x4] Sin[x1] - 4.15207*10^10 Sin[x1]^2 + 

5.0825*10^9 Sin[x2] - 6.19568*10^9 Cos[x1] Sin[x2] + 4.95738*10^9 Cos[x2] Sin[x2] + 3.6311*10^9 Cos[x3] Sin[x2] + 

8.88824*10^9 Cos[x4] Sin[x2] - 1.13143*10^10 Sin[x1] Sin[x2] + 1.44068*10^9 Sin[x2]^2 + 3.28828*10^10 Sin[x3] - 

1.70434*10^10 Cos[x1] Sin[x3] + 3.25711*10^10 Cos[x2] Sin[x3] + 2.51021*10^10 Cos[x3] Sin[x3] + 3.64978*10^9 Cos[x4] 

Sin[x3] - 6.406*10^10 Sin[x1] Sin[x3] + 4.85387*10^9 Sin[x2] Sin[x3] + 2.56202*10^10 Sin[x3]^2 + 2.04503*10^11 Sin[x4] - 

1.82196*10^11 Cos[x1] Sin[x4] + 2.02802*10^11 Cos[x2] Sin[x4] + 1.95885*10^11 Cos[x3] Sin[x4] - 1.00939*10^11 Cos[x4] 

Sin[x4] + 1.01838*10^11 Sin[x1] Sin[x4] + 2.62862*10^10 Sin[x2] Sin[x4] + 5.70801*10^10 Sin[x3] Sin[x4] + 1.22741*10^11 

Sin[x4]^2) / (6.97192*10^9 - 2.46207*10^8 Cos[x1] - 2.27965*10^9 Cos[x1]^2 - 4.85611*10^9 Cos[x2] + 6.99352*10^9 Cos[x1] 

Cos[x2] - 1.62258*10^10 Cos[x2]^2 - 1.44165*10^9 Cos[x3] - 2.272*10^10 Cos[x1] Cos[x3] - 1.1608*10^10 Cos[x2] Cos[x3] - 

6.19994*10^9 Cos[x3]^2 - 1.49555*10^9 Cos[x4] + 8.86821*10^9 Cos[x1] Cos[x4] - 6.72799*10^9 Cos[x2] Cos[x4] + 

1.05055*10^9 Cos[x3] Cos[x4] + 2.12677*10^9 Cos[x4]^2 - 9.54693*10^9 Sin[x1] + 3.98634*10^9 Cos[x1] Sin[x1] - 

1.01882*10^10 Cos[x2] Sin[x1] + 1.53099*10^10 Cos[x3] Sin[x1] + 4.99606*10^9 Cos[x4] Sin[x1] + 9.25157*10^9 Sin[x1]^2 + 

1.75926*10^10 Sin[x2] - 1.108*10^10 Cos[x1] Sin[x2] + 1.37413*10^10 Cos[x2] Sin[x2] + 1.5857*10^10 Cos[x3] Sin[x2] + 

5.01757*10^10 Cos[x4] Sin[x2] + 1.0544*10^10 Sin[x1] Sin[x2] + 2.31977*10^10 Sin[x2]^2 + 2.44826*10^9 Sin[x3] - 

1.14161*10^10 Cos[x1] Sin[x3] - 5.66721*10^9 Cos[x2] Sin[x3] - 6.01111*10^9 Cos[x3] Sin[x3] + 8.61851*10^9 Cos[x4] Sin[x3] 

+ 1.0694*10^10 Sin[x1] Sin[x3] + 2.44855*10^10 Sin[x2] Sin[x3] + 1.31719*10^10 Sin[x3]^2 + 2.72578*10^9 Sin[x4] + 

4.89946*10^9 Cos[x1] Sin[x4] - 3.4799*10^8 Cos[x2] Sin[x4] + 1.94428*10^10 Cos[x3] Sin[x4] + 2.94413*10^9 Cos[x4] Sin[x4] 

+ 5.77428*10^8 Sin[x1] Sin[x4] - 6.7738*10^10 Sin[x2] Sin[x4] - 7.49599*10^9 Sin[x3] Sin[x4] + 4.84515*10^9 Sin[x4]^2) 

CS2-O4-FOLN 800.176 - 64.3818 Log[x1] + 70.1943 Log[x2] + 129.549 Log[x3] + 42.7343 Log[x4] 

CS2-O4-FOLNR 
(682.656 - 39.6231 Log[x1] + 134.195 Log[x2] + 49.5497 Log[x3] + 26.8548 Log[x4]) / (1.28547 - 0.00325363 Log[x1] + 

0.332541 Log[x2] - 0.174628 Log[x3] - 0.00123955 Log[x4]) 

CS2-O4-SOLN 

-5743.16 + 2594.85 Log[x1] - 258.081 Log[x1]^2 + 338.321 Log[x2] - 1.3871 Log[x1] Log[x2] + 85.5284 Log[x2]^2 + 382.614 

Log[x3] - 31.1345 Log[x1] Log[x3] - 65.851 Log[x2] Log[x3] + 110.772 Log[x3]^2 + 24.9408 Log[x4] + 4.73501 Log[x1] Log[x4] 

+ 25.4227 Log[x2] Log[x4] + 5.20716 Log[x3] Log[x4] + 16.7191 Log[x4]^2 

CS2-O4-SOLNR 

(1.40617*10^10 + 8.27366*10^10 Log[x1] + 4.34122*10^11 Log[x1]^2 + 1.42317*10^9 Log[x2] - 6.87779*10^10 Log[x1] 

Log[x2] - 1.2685*10^11 Log[x2]^2 + 2.35158*10^11 Log[x3] + 1.24793*10^12 Log[x1] Log[x3] - 5.14853*10^11 Log[x2] 

Log[x3] - 5.18161*10^11 Log[x3]^2 - 6.99879*10^10 Log[x4] - 2.92016*10^11 Log[x1] Log[x4] + 4.98272*10^10 Log[x2] 

Log[x4] + 4.14611*10^11 Log[x3] Log[x4] - 4.50227*10^11 Log[x4]^2) / (6.12704*10^10 - 4.1039*10^10 Log[x1] + 

4.88949*10^9 Log[x1]^2 + 1.56519*10^10 Log[x2] - 1.17178*10^10 Log[x1] Log[x2] - 8.18723*10^9 Log[x2]^2 - 

8.05385*10^10 Log[x3] + 7.75726*10^9 Log[x1] Log[x3] - 1.54765*10^10 Log[x2] Log[x3] - 2.25162*10^10 Log[x3]^2 + 

3.37421*10^10 Log[x4] - 9.35357*10^9 Log[x1] Log[x4] + 1.35654*10^9 Log[x2] Log[x4] + 1.75223*10^9 Log[x3] Log[x4] + 

1.86101*10^9 Log[x4]^2) 

NOTATION CS2-O5  

CS2-O5-L 77.7775 - 0.331437 [x1] + 597.933 [x2] + 429.188 [x3] + 9.28267 [x4] 

CS2-O5-LN 
(-39871. - 488.523 [x1] + 1.54303*10^6 [x2] + 593616. [x3] + 7237.07 [x4]) / (646.453 - 0.44235 [x1] + 2770.59 [x2] + 461.597 

[x3] - 5.86192 [x4]) 

CS2-O5-SON 

-24.7911 + 0.354084 [x1] - 0.00207788 [x1]^2 + 510.881 [x2] + 0.15584 [x1] [x2] + 3207.58 [x2]^2 + 689.506 [x3] + 0.0513194 

[x1] [x3] - 2130.31 [x2] [x3] - 3.1741 [x3]^2 + 6.97633 [x4] + 0.011017 [x1] [x4] + 15.2474 [x2] [x4] + 0.15584 [x3] [x4] - 

0.0725023 [x4]^2 

CS2-O5-SONR 

(-43.2719 + 20.5572 [x1] - 0.0658603 [x1]^2 - 34.0625 [x2] + 91.5096 [x1] [x2] - 4.04695 [x2]^2 + 40.1843 [x3] + 18.2179 [x1] 

[x3] + 1.47771 [x2] [x3] + 16.4379 [x3]^2 + 12.9752 [x4] + 0.154069 [x1] [x4] + 440.238 [x2] [x4] - 319.978 [x3] [x4] - 5.23875 

[x4]^2) / (14.1571 + 0.0758793 [x1] - 0.0000608926 [x1]^2 - 3.45939 [x2] + 0.226469 [x1] [x2] - 168.437 [x2]^2 - 36.1652 [x3] - 

0.0110439 [x1] [x3] + 74.4876 [x2] [x3] + 15.807 [x3]^2 - 0.727701 [x4] - 0.00223607 [x1] [x4] + 1.25248 [x2] [x4] + 0.312573 

[x3] [x4] + 0.00862536 [x4]^2) 

CS2-O5-TON 

55.691 + 0.093647 [x1] - 0.000231862 [x1]^2 - 2.68834*10^-6 [x1]^3 + 135.633 [x2] + 0.368702 [x1] [x2] - 0.00165559 [x1]^2 

[x2] + 602.204 [x2]^2 + 3.19393 [x1] [x2]^2 + 9921.92 [x2]^3 + 294.336 [x3] + 0.384248 [x1] [x3] - 0.000658954 [x1]^2 [x3] + 

751.301 [x2] [x3] - 3.40615 [x1] [x2] [x3] - 2616.51 [x2]^2 [x3] + 320.123 [x3]^2 - 0.0913195 [x1] [x3]^2 - 884.203 [x2] [x3]^2 - 

59.7945 [x3]^3 + 4.15044 [x4] + 0.00972063 [x1] [x4] - 0.0000294032 [x1]^2 [x4] + 18.9223 [x2] [x4] + 0.0713014 [x1] [x2] [x4] 

+ 22.0465 [x2]^2 [x4] + 10.27 [x3] [x4] + 0.0405527 [x1] [x3] [x4] - 81.8883 [x2] [x3] [x4] - 12.372 [x3]^2 [x4] + 0.0917715 

[x4]^2 - 0.000688457 [x1] [x4]^2 + 0.10392 [x2] [x4]^2 + 0.0163552 [x3] [x4]^2 - 0.00181328 [x4]^3 

CS2-O5-FOTN 
8693.38 - 100.394 Cos[x1] - 8009.07 Cos[x2] - 303.982 Cos[x3] + 300.193 Cos[x4] - 47.9383 Sin[x1] - 382.422 Sin[x2] + 342.07 

Sin[x3] - 246.049 Sin[x4] 

CS2-O5-FOTNR 

(3045.77 - 14.3631 Cos[x1] - 2598.14 Cos[x2] - 405.78 Cos[x3] + 10.8134 Cos[x4] - 1.1542 Sin[x1] - 343.732 Sin[x2] - 119.533 

Sin[x3] - 2.09255 Sin[x4]) / (9.19309 - 0.0281607 Cos[x1] - 8.12752 Cos[x2] - 0.962011 Cos[x3] - 0.0187463 Cos[x4] + 0.0026635 

Sin[x1] - 1.11306 Sin[x2] - 0.317976 Sin[x3] + 0.0299941 Sin[x4]) 

CS2-O5-SOTN 

4.12489 + 3.18527 Cos[x1] - 21.3518 Cos[x1]^2 + 3.40528 Cos[x2] + 0.0728196 Cos[x1] Cos[x2] + 2.70245 Cos[x2]^2 - 4.96757 

Cos[x3] - 169. Cos[x1] Cos[x3] - 6.25769 Cos[x2] Cos[x3] - 15.2431 Cos[x3]^2 + 101.414 Cos[x4] + 20.086 Cos[x1] Cos[x4] + 

96.0381 Cos[x2] Cos[x4] - 198.907 Cos[x3] Cos[x4] - 86.4413 Cos[x4]^2 + 65.852 Sin[x1] - 106.059 Cos[x1] Sin[x1] + 56.7401 

Cos[x2] Sin[x1] - 140.444 Cos[x3] Sin[x1] + 77.5427 Cos[x4] Sin[x1] + 36.3868 Sin[x1]^2 - 88.2755 Sin[x2] - 50.2981 Cos[x1] 

Sin[x2] - 110.72 Cos[x2] Sin[x2] + 151.119 Cos[x3] Sin[x2] - 83.3622 Cos[x4] Sin[x2] - 130.846 Sin[x1] Sin[x2] + 5268.84 
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Sin[x2]^2 + 104.103 Sin[x3] - 60.3578 Cos[x1] Sin[x3] + 104.82 Cos[x2] Sin[x3] + 99.3177 Cos[x3] Sin[x3] - 240.428 Cos[x4] 

Sin[x3] - 72.8001 Sin[x1] Sin[x3] - 1374.08 Sin[x2] Sin[x3] + 327.462 Sin[x3]^2 + 35.9587 Sin[x4] - 7.05566 Cos[x1] Sin[x4] + 

35.5736 Cos[x2] Sin[x4] - 51.8578 Cos[x3] Sin[x4] + 285.669 Cos[x4] Sin[x4] - 43.09 Sin[x1] Sin[x4] - 266.558 Sin[x2] Sin[x4] + 

24.8241 Sin[x3] Sin[x4] + 49.4576 Sin[x4]^2 

CS2-O5-SOTNR 

(-1.37251*10^12 + 1.28244*10^12 Cos[x1] - 1.25286*10^12 Cos[x1]^2 - 1.36099*10^12 Cos[x2] + 1.27152*10^12 Cos[x1] 

Cos[x2] - 1.3496*10^12 Cos[x2]^2 - 1.22318*10^12 Cos[x3] + 1.14304*10^12 Cos[x1] Cos[x3] - 1.21296*10^12 Cos[x2] Cos[x3] 

- 1.09464*10^12 Cos[x3]^2 + 6.05071*10^11 Cos[x4] - 5.67785*10^11 Cos[x1] Cos[x4] + 6.01147*10^11 Cos[x2] Cos[x4] + 

5.41101*10^11 Cos[x3] Cos[x4] - 2.15973*10^11 Cos[x4]^2 + 8.54699*10^10 Sin[x1] + 1.54555*10^11 Cos[x1] Sin[x1] + 

8.48597*10^10 Cos[x2] Sin[x1] + 6.49139*10^10 Cos[x3] Sin[x1] + 3.55243*10^11 Cos[x4] Sin[x1] - 1.1965*10^11 Sin[x1]^2 - 

1.68637*10^11 Sin[x2] + 1.59326*10^11 Cos[x1] Sin[x2] - 1.66958*10^11 Cos[x2] Sin[x2] - 1.49522*10^11 Cos[x3] Sin[x2] + 

6.58306*10^10 Cos[x4] Sin[x2] + 1.33509*10^10 Sin[x1] Sin[x2] - 2.29053*10^10 Sin[x2]^2 - 5.92796*10^11 Sin[x3] + 

5.53911*10^11 Cos[x1] Sin[x3] - 5.87736*10^11 Cos[x2] Sin[x3] - 5.18499*10^11 Cos[x3] Sin[x3] + 2.62333*10^11 Cos[x4] 

Sin[x3] + 5.97992*10^10 Sin[x1] Sin[x3] - 7.41673*10^10 Sin[x2] Sin[x3] - 2.77869*10^11 Sin[x3]^2 - 1.33409*10^12 Sin[x4] + 

1.16506*10^12 Cos[x1] Sin[x4] - 1.32289*10^12 Cos[x2] Sin[x4] - 1.19317*10^12 Cos[x3] Sin[x4] + 6.52825*10^11 Cos[x4] 

Sin[x4] + 4.46704*10^11 Sin[x1] Sin[x4] - 1.63406*10^11 Sin[x2] Sin[x4] - 5.60663*10^11 Sin[x3] Sin[x4] - 1.15653*10^12 

Sin[x4]^2) / (-7.97646*10^11 + 2.49942*10^11 Cos[x1] + 4.72687*10^10 Cos[x1]^2 - 1.03968*10^12 Cos[x2] + 4.27846*10^11 

Cos[x1] Cos[x2] - 1.27831*10^12 Cos[x2]^2 - 8.26633*10^11 Cos[x3] + 4.30442*10^11 Cos[x1] Cos[x3] - 1.02603*10^12 

Cos[x2] Cos[x3] - 8.69531*10^11 Cos[x3]^2 + 7.99997*10^11 Cos[x4] - 7.88596*10^11 Cos[x1] Cos[x4] + 8.70652*10^11 

Cos[x2] Cos[x4] + 1.18959*10^12 Cos[x3] Cos[x4] - 1.29042*10^12 Cos[x4]^2 - 2.1094*10^11 Sin[x1] + 2.22457*10^11 Cos[x1] 

Sin[x1] - 3.73472*10^11 Cos[x2] Sin[x1] - 3.08407*10^10 Cos[x3] Sin[x1] - 1.08768*10^12 Cos[x4] Sin[x1] - 8.44915*10^11 

Sin[x1]^2 + 2.10964*10^12 Sin[x2] - 1.57701*10^12 Cos[x1] Sin[x2] + 2.06736*10^12 Cos[x2] Sin[x2] + 1.73821*10^12 Cos[x3] 

Sin[x2] - 5.56318*10^11 Cos[x4] Sin[x2] + 1.42536*10^12 Sin[x1] Sin[x2] + 4.80659*10^11 Sin[x2]^2 + 1.50062*10^11 Sin[x3] 

- 5.0678*10^11 Cos[x1] Sin[x3] + 9.36293*10^9 Cos[x2] Sin[x3] + 1.62601*10^11 Cos[x3] Sin[x3] - 6.4459*10^11 Cos[x4] 

Sin[x3] - 2.75199*10^11 Sin[x1] Sin[x3] + 1.24024*10^12 Sin[x2] Sin[x3] + 7.18852*10^10 Sin[x3]^2 + 1.51033*10^12 Sin[x4] - 

1.43807*10^12 Cos[x1] Sin[x4] + 1.26596*10^12 Cos[x2] Sin[x4] + 1.39833*10^12 Cos[x3] Sin[x4] - 1.56418*10^12 Cos[x4] 

Sin[x4] - 8.20188*10^10 Sin[x1] Sin[x4] + 2.25782*10^12 Sin[x2] Sin[x4] + 7.8398*10^11 Sin[x3] Sin[x4] + 4.92777*10^11 

Sin[x4]^2) 

CS2-O5-FOLN 843.201 - 63.2653 Log[x1] + 61.4462 Log[x2] + 149.19 Log[x3] + 58.5033 Log[x4] 

CS2-O5-FOLNR 
(3368.01 - 253.045 Log[x1] + 472.296 Log[x2] + 325.724 Log[x3] + 117.077 Log[x4]) / (6.14916 - 0.284535 Log[x1] + 0.912987 

Log[x2] - 0.242831 Log[x3] - 0.111715 Log[x4]) 

CS2-O5-SOLN 

-1359.83 + 957.468 Log[x1] - 101.579 Log[x1]^2 + 366.788 Log[x2] - 1.55764 Log[x1] Log[x2] + 91.7247 Log[x2]^2 + 82.5432 

Log[x3] + 9.45717 Log[x1] Log[x3] - 91.718 Log[x2] Log[x3] + 78.3405 Log[x3]^2 - 148.863 Log[x4] + 24.9328 Log[x1] Log[x4] 

+ 10.2482 Log[x2] Log[x4] - 2.21353 Log[x3] Log[x4] + 29.2169 Log[x4]^2 

CS2-O5-SOLNR 

(151.416 + 406.726 Log[x1] + 30.9867 Log[x1]^2 - 196.967 Log[x2] + 166.498 Log[x1] Log[x2] - 53.4479 Log[x2]^2 - 36.7738 

Log[x3] + 27.0893 Log[x1] Log[x3] + 76.8438 Log[x2] Log[x3] - 114.397 Log[x3]^2 - 64.3553 Log[x4] - 106.866 Log[x1] 

Log[x4] - 148.696 Log[x2] Log[x4] + 25.971 Log[x3] Log[x4] + 71.3355 Log[x4]^2) / (22.4875 - 10.7713 Log[x1] + 1.29278 

Log[x1]^2 - 4.54229 Log[x2] + 0.207554 Log[x1] Log[x2] - 1.40103 Log[x2]^2 - 0.11864 Log[x3] - 0.392069 Log[x1] Log[x3] + 

0.736343 Log[x2] Log[x3] - 0.858699 Log[x3]^2 + 2.7437 Log[x4] - 0.862574 Log[x1] Log[x4] - 0.490239 Log[x2] Log[x4] + 

0.585385 Log[x3] Log[x4] + 0.116352 Log[x4]^2) 

NOTATION CS3-O1  

CS3-O1-L 30.3668 - 0.189234 [x1] - 59.4892 [x2] 

CS3-O1-LN (1292.63 + 0.18814 [x1] - 5477.86 [x2]) / (-6.12838 + 1.35424 [x1] - 176.612 [x2]) 

CS3-O1-SON 58.549 - 1.0675 [x1] + 0.00609375 [x1]^2 - 22.1667 [x2] + 0.175 [x1] [x2] - 205. [x2]^2 

CS3-O1-SONR 

(4.97963*10^7 + 1.64719*10^9 [x1] + 7.98453*10^9 [x1]^2 + 5.64053*10^6 [[x2]] + 1.21709*10^8 [x1] [x2] + 607832. [x2]^2) / 

(-4.02954*10^8 - 1.28427*10^10 [x1] + 1.12123*10^9 [x1]^2 - 4.49194*10^7 [x2] - 8.61375*10^8 [x1] [x2] - 4.7134*10^6 

[x2]^2) 

CS3-O1-TON 
35.16 + 0.00550599 [x1] - 0.0145795 [x1]^2 + 0.0000883764 [x1]^3 + 32.4328 [x2] + 4.54374 [x1] [x2] + 0.0140946 [x1]^2 [x2] - 

1920.05 [x2]^2 - 20.1738 [x1] [x2]^2 + 7447.27 [x2]^3 

CS3-O1-FOTN -3877.21 + 0.364141 Cos[x1] + 3865.2 Cos[x2] - 2.70456 Sin[x1] + 435.999 Sin[x2] 

CS3-O1-FOTNR 
(-4.67358 + 0.0353674 Cos[x1] + 12.5494 Cos[x2] - 0.407401 Sin[x1] - 47.7044 Sin[x2]) / (0.330978 + 0.00459497 Cos[x1] + 

0.379639 Cos[x2] - 0.0117023 Sin[x1] - 4.40662 Sin[x2]) 

CS3-O1-SOTN 

3.25849 - 0.214342 Cos[x1] + 8.27462 Cos[x1]^2 + 3.38253 Cos[x2] - 0.264635 Cos[x1] Cos[x2] + 3.50901 Cos[x2]^2 + 0.271854 

Sin[x1] - 1.68262 Cos[x1] Sin[x1] + 0.299523 Cos[x2] Sin[x1] + 1.4002 Sin[x1]^2 - 6.09749 Sin[x2] + 10.2907 Cos[x1] Sin[x2] - 

5.65877 Cos[x2] Sin[x2] - 8.58448 Sin[x1] Sin[x2] - 189.233 Sin[x2]^2 

CS3-O1-SOTNR 

(2.83056 + 0.127232 Cos[x1] + 2.16187 Cos[x1]^2 + 2.85304 Cos[x2] + 1.34935 Cos[x1] Cos[x2] + 2.87497 Cos[x2]^2 + 

0.745468 Sin[x1] + 1.24278 Cos[x1] Sin[x1] + 0.766071 Cos[x2] Sin[x1] + 1.66869 Sin[x1]^2 + 0.949802 Sin[x2] + 1.01644 

Cos[x1] Sin[x2] + 0.955376 Cos[x2] Sin[x2] + 0.816638 Sin[x1] Sin[x2] + 0.955587 Sin[x2]^2) / (0.256359 + 0.127232 Cos[x1] + 

0.0525958 Cos[x1]^2 - 0.151432 Cos[x2] - 0.200073 Cos[x1] Cos[x2] - 0.551367 Cos[x2]^2 - 0.0349057 Sin[x1] + 0.317735 

Cos[x1] Sin[x1] - 0.155819 Cos[x2] Sin[x1] + 1.20376 Sin[x1]^2 + 3.96625 Sin[x2] + 0.954938 Cos[x1] Sin[x2] + 3.88238 

Cos[x2] Sin[x2] + 1.97487 Sin[x1] Sin[x2] + 1.80773 Sin[x2]^2) 

CS3-O1-FOLN 50.1892 - 13.5141 Log[x1] - 8.00441 Log[x2] 

CS3-O1-FOLNR (-11.5029 - 2.23817 Log[x1] - 14.4088 Log[x2]) / (-4.36534 + 0.878534 Log[x1] - 0.761502 Log[x2]) 

CS3-O1-SOLN 376.552 - 188.471 Log[x1] + 20.7385 Log[x1]^2 - 47.2561 Log[x2] - 0.4629 Log[x1] Log[x2] - 9.96759 Log[x2]^2 

CS3-O1-SOLNR 

(1.66002*10^7 - 5.30954*10^7 Log[x1] - 9.3724*10^7 Log[x1]^2 - 8.11363*10^7 Log[x2] - 3.42678*10^8 Log[x1] Log[x2] + 

1.09504*10^8 Log[x2]^2) / (-5.53193*10^7 - 5.10264*10^7 Log[x1] + 5.66958*10^7 Log[x1]^2 + 1.70728*10^8 Log[x2] + 

1.01345*10^8 Log[x1] Log[x2] + 1.58492*10^8 Log[x2]^2) 

NOTATION CS3-O2 

CS3-O2-L 74658. - 116.354 [x1] + 73329.3 [x2] 

CS3-O2-LN (1.68718*10^6 + 1129.86 [x1] - 1.17339*10^7 [x2]) / (21.7821 + 0.0136152 [x1] - 151.011 [x2]) 

CS3-O2-SON 299882. - 4664.24 [x1] + 24.9334 [x1]^2 - 860690. [x2] + 6913.51 [x1] [x2] + 1.55062*10^6 [x2]^2 

CS3-O2-SONR 
(1.00023 + 1.01507 [x1] + 2.01273 [x1]^2 + 1.00003 [x2] + 1.00223 [x1] [x2] + 1.00001 [x2]^2) / (0.99977 + 0.984925 [x1] - 

0.0127263 [x1]^2 + 0.999966 [x2] + 0.997774 [x1] [x2] + 0.999995 [x2]^2) 

CS3-O2-TON 
174267. - 1411.34 [x1] + 7.07087 [x1]^2 + 0.046628 [x1]^3 + 97368.4 [x2] - 20395.5 [x1] [x2] + 53.8045 [x1]^2 [x2] + 

1.97214*10^6 [x2]^2 + 66632.2 [x1] [x2]^2 - 1.22733*10^7 [x2]^3 

CS3-O2-FOTN -4.69669*10^6 + 331.54 Cos[x1] + 4.72999*10^6 Cos[x2] - 4852.39 Sin[x1] + 666048. Sin[x2] 

CS3-O2-FOTNR 
(-2.46462*10^6 + 345517. Cos[x1] + 1.39386*10^6 Cos[x2] + 650662. Sin[x1] + 4.34658*10^6 Sin[x2]) / (-11.3097 + 4.59612 

Cos[x1] - 2.50146 Cos[x2] + 8.23695 Sin[x1] + 55.9117 Sin[x2]) 

CS3-O2-SOTN 

16100.7 - 132.04 Cos[x1] + 26037.6 Cos[x1]^2 + 16502.1 Cos[x2] - 201.823 Cos[x1] Cos[x2] + 16910.6 Cos[x2]^2 + 1659.26 

Sin[x1] - 10787.1 Cos[x1] Sin[x1] + 1807.59 Cos[x2] Sin[x1] + 21453.4 Sin[x1]^2 + 35969.2 Sin[x2] + 11073.5 Cos[x1] Sin[x2] + 

37664.6 Cos[x2] Sin[x2] - 36218.4 Sin[x1] Sin[x2] - 143438. Sin[x2]^2 

CS3-O2-SOTNR 

(3.31183 + 1. Cos[x1] + 2.29142 Cos[x1]^2 + 3.28447 Cos[x2] + 0.485638 Cos[x1] Cos[x2] + 3.25746 Cos[x2]^2 + 0.813468 

Sin[x1] + 1.46962 Cos[x1] Sin[x1] + 0.817972 Cos[x2] Sin[x1] + 2.02042 Sin[x1]^2 + 1.3509 Sin[x2] + 0.917552 Cos[x1] Sin[x2] 

+ 1.34658 Cos[x2] Sin[x2] + 0.957 Sin[x1] Sin[x2] + 1.05437 Sin[x2]^2) / (-1.31183 + 1. Cos[x1] - 0.291416 Cos[x1]^2 - 1.28447 

Cos[x2] + 1.51436 Cos[x1] Cos[x2] - 1.25746 Cos[x2]^2 + 1.18653 Sin[x1] + 0.530378 Cos[x1] Sin[x1] + 1.18203 Cos[x2] 

Sin[x1] - 0.020418 Sin[x1]^2 + 0.649103 Sin[x2] + 1.08245 Cos[x1] Sin[x2] + 0.653419 Cos[x2] Sin[x2] + 1.043 Sin[x1] Sin[x2] + 

0.94563 Sin[x2]^2) 

CS3-O2-FOLN 139559. - 10220.2 Log[x1] + 9848.3 Log[x2] 

CS3-O2-FOLNR (-225379. + 55301.2 Log[x1] + 5419.82 Log[x2]) / (-2.76137 + 0.680709 Log[x1] + 0.0739391 Log[x2]) 

CS3-O2-SOLN 1.70087*10^6 - 819893. Log[x1] + 111010. Log[x1]^2 - 139336. Log[x2] + 65857.2 Log[x1] Log[x2] + 33166. Log[x2]^2 

CS3-O2-SOLNR 
(1.03961 + 1.16666 Log[x1] + 1.70232 Log[x1]^2 + 0.923774 Log[x2] + 0.679294 Log[x1] Log[x2] + 1.14763 Log[x2]^2) / 

(0.960394 + 0.833338 Log[x1] + 0.297676 Log[x1]^2 + 1.07623 Log[x2] + 1.32071 Log[x1] Log[x2] + 0.852371 Log[x2]^2) 

NOTATION CS4-O  

CS4-O-L 1.21719 + 0.00066308 [[x1]] + 6.67456 [x2] + 13.8992 [[x3]] 

CS4-O-LN (14104.4 - 3.33154 [x1] + 57411.5 [x2] - 59538.5 [x3])  /  (5424.52 - 1.0734 [x1] + 4701.81 [x2] - 19146.5 [x3]) 

CS4-O-SON 
11.0962 + 0.00628107 [x1] - 2.11334*10^-6 [x1]^2 + 12.2932 [x2] + 0.000280782 [x1] [x2] - 8.06027 [x2]^2 - 200.66 [x3] - 

0.00877092 [x1] [x3] + 11.5402 [x2] [x3] + 838.512 [x3]^2 
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CS4-O-SONR 

(1.19171*10^6 + 9007.12 [x1] - 3.90591 [x1]^2 + 2.26926*10^6 [x2] + 2207.11 [x1] [x2] - 1.08533*10^7 [x2]^2 - 6.19286*10^7 

[x3] - 15280.3 [x1] [x3] + 3.62137*10^7 [x2] [x3] + 1.94542*10^8 [x3]^2) / (698854. + 895.606 [x1] - 0.478325 [x1]^2 - 411380. 

[x2] + 527.968 [x1] [x2] - 1.36318*10^6 [x2]^2 - 9.55882*10^6 [x3] - 1869.75 [x1] [x3] + 7.32745*10^6 [x2] [x3] + 

2.25245*10^7 [x3]^2) 

CS4-O-TON 

-50.6114 + 0.103749 [x1] + 0.0000669003 [x1]^2 - 6.33707*10^-8 [x1]^3 - 27.6247 [x2] - 0.0711413 [x1] [x2] + 0.0000498592 

[x1]^2 [x2] + 16.1684 [x2]^2 - 0.0420459 [x1] [x2]^2 + 52.8303 [x2]^3 + 417.594 [x3] - 2.10435 [x1] [x3] + 0.000761538 [x1]^2 

[x3] + 884.22 [x2] [x3] + 0.0320913 [x1] [x2] [x3] - 374.657 [x2]^2 [x3] + 3062.11 [x3]^2 + 1.77798 [x1] [x3]^2 - 2081.83 [x2] 

[x3]^2 - 7769.72 [x3]^3 

CS4-O-FOTN 1685.06 + 1.79729 Cos[x1] + 12.1346 Cos[x2] - 1682.8 Cos[x3] - 0.843848 Sin[x1] + 13.6131 Sin[x2] - 206.049 Sin[x3] 

CS4-O-FOTNR 

(-21.227 - 0.0898775 Cos[x1] - 2.42298 Cos[x2] + 23.6419 Cos[x3] + 0.0463529 Sin[x1] - 0.137339 Sin[x2] + 1.78044 Sin[x3]) / 

(-4.00391 - 0.0293574 Cos[x1] - 0.209761 Cos[x2] + 4.21632 Cos[x3] + 0.0147841 Sin[x1] + 0.0160416 Sin[x2] + 0.283404 

Sin[x3]) 

CS4-O-SOTN 

-6977.17 - 3206.98 Cos[x1] - 14186.2 Cos[x1]^2 - 9891.8 Cos[x2] + 190.625 Cos[x1] Cos[x2] - 12084.6 Cos[x2]^2 - 7103.87 

Cos[x3] - 8405.51 Cos[x1] Cos[x3] + 59788.6 Cos[x2] Cos[x3] - 7233.49 Cos[x3]^2 + 4228.29 Sin[x1] - 12305. Cos[x1] Sin[x1] - 

90.02 Cos[x2] Sin[x1] + 3328.04 Cos[x3] Sin[x1] - 8905.55 Sin[x1]^2 - 9434.57 Sin[x2] + 95.0115 Cos[x1] Sin[x2] - 23232.4 

Cos[x2] Sin[x2] + 34279.6 Cos[x3] Sin[x2] - 46.8915 Sin[x1] Sin[x2] + 5413.03 Sin[x2]^2 - 4840.79 Sin[x3] - 1195.76 Cos[x1] 

Sin[x3] + 8559.92 Cos[x2] Sin[x3] - 4717.21 Cos[x3] Sin[x3] + 457.87 Sin[x1] Sin[x3] + 4892.1 Sin[x2] Sin[x3] + 22550.5 

Sin[x3]^2 

CS4-O-SOTNR 

(4.24255*10^8 - 3.12831*10^8 Cos[x1] + 2.58637*10^8 Cos[x1]^2 - 1.91428*10^8 Cos[x2] - 3.34875*10^8 Cos[x1] Cos[x2] - 

4.96575*10^8 Cos[x2]^2 + 4.81297*10^8 Cos[x3] - 3.99593*10^8 Cos[x1] Cos[x3] - 1.46351*10^8 Cos[x2] Cos[x3] + 

5.43801*10^8 Cos[x3]^2 - 2.40536*10^7 Sin[x1] + 4.30742*10^8 Cos[x1] Sin[x1] + 1.9125*10^8 Cos[x2] Sin[x1] - 

2.34405*10^8 Cos[x3] Sin[x1] + 1.65618*10^8 Sin[x1]^2 + 3.53918*10^8 Sin[x2] + 1.19922*10^7 Cos[x1] Sin[x2] - 

2.63945*10^8 Cos[x2] Sin[x2] + 3.34825*10^8 Cos[x3] Sin[x2] + 8.39236*10^8 Sin[x1] Sin[x2] + 9.2083*10^8 Sin[x2]^2 - 

1.92282*10^9 Sin[x3] + 8.30417*10^8 Cos[x1] Sin[x3] - 1.82305*10^9 Cos[x2] Sin[x3] - 1.94831*10^9 Cos[x3] Sin[x3] + 

2.6785*10^9 Sin[x1] Sin[x3] - 6.93195*10^7 Sin[x2] Sin[x3] - 1.19546*10^8 Sin[x3]^2) / (-5.25718*10^8 - 1.83619*10^8 

Cos[x1] + 3.20827*10^7 Cos[x1]^2 - 4.18315*10^8 Cos[x2] + 2.76447*10^8 Cos[x1] Cos[x2] - 3.63752*10^8 Cos[x2]^2 + 

2.90275*10^8 Cos[x3] - 3.06785*10^8 Cos[x1] Cos[x3] + 5.60152*10^8 Cos[x2] Cos[x3] + 1.06369*10^9 Cos[x3]^2 + 

2.84574*10^8 Sin[x1] + 3.64224*10^6 Cos[x1] Sin[x1] - 5.19612*10^7 Cos[x2] Sin[x1] - 2.93941*10^8 Cos[x3] Sin[x1] - 

5.578*10^8 Sin[x1]^2 - 1.11938*10^8 Sin[x2] + 5.4896*10^8 Cos[x1] Sin[x2] - 6.62867*10^6 Cos[x2] Sin[x2] + 3.37911*10^7 

Cos[x3] Sin[x2] - 1.16989*10^8 Sin[x1] Sin[x2] - 1.61965*10^8 Sin[x2]^2 + 2.66626*10^8 Sin[x3] + 2.89703*10^8 Cos[x1] 

Sin[x3] - 1.35021*10^9 Cos[x2] Sin[x3] + 5.87417*10^8 Cos[x3] Sin[x3] + 3.44164*10^8 Sin[x1] Sin[x3] + 2.2236*10^8 Sin[x2] 

Sin[x3] - 1.5894*10^9 Sin[x3]^2) 

CS4-O-FOLN 6.48267 + 0.898279 Log[x1] + 2.45972 Log[x2] + 1.64048 Log[x3] 

CS4-O-FOLNR 
(-1371.49 + 561.472 Log[x1] + 725.851 Log[x2] - 263.659 Log[x3]) / (-162.487 + 34.1357 Log[x1] - 20.2213 Log[x2] - 121.989 

Log[x3]) 

CS4-O-SOLN 
-32.4248 + 32.8416 Log[x1] - 2.46385 Log[x1]^2 + 3.25024 Log[x2] + 0.178855 Log[x1] Log[x2] + 0.138893 Log[x2]^2 + 

71.363 Log[x3] - 1.19079 Log[x1] Log[x3] + 0.861838 Log[x2] Log[x3] + 14.6295 Log[x3]^2 

CS4-O-SOLNR 

(-987.96 + 345.98 Log[x1] - 25.4476 Log[x1]^2 - 28.0785 Log[x2] + 4.02031 Log[x1] Log[x2] - 5.01345 Log[x2]^2 + 210.026 

Log[x3] - 6.87319 Log[x1] Log[x3] + 7.37762 Log[x2] Log[x3] + 32.7372 Log[x3]^2) / (-148.999 + 50.6345 Log[x1] - 3.7753 

Log[x1]^2 - 4.91914 Log[x2] + 0.560567 Log[x1] Log[x2] - 0.506154 Log[x2]^2 + 26.6787 Log[x3] - 1.28271 Log[x1] Log[x3] + 

0.347832 Log[x2] Log[x3] + 3.57015 Log[x3]^2) 

NOTATION CS5-O  

CS5-O-L 0.266001 - 0.000944892 [x1] + 3.56356 [x2] + 0.163355 [x3] 

CS5-O-LN (-1188.43 + 14.954 [x1] + 21013.6 [x2] - 3693.17 [x3]) / (-298.01 + 31.1019 [x1] + 10922. [x2] - 5201.78 [x3]) 

CS5-O-SON 
0.638954 - 0.0039915 [x1] + 0.000016325 [x1]^2 + 2.67406 [x2] - 0.006625 [x1] [x2] - 1.28906 [x2]^2 - 0.0955 [x3] - 0.005325 

[x1] [x3] + 4.25 [x2] [x3] + 0.83125 [x3]^2 

CS5-O-SONR 

(5.16715*10^7 - 1.08413*10^9 [x1] + 6.67759*10^7 [x1]^2 + 7.61179*10^7 [x2] + 1.03926*10^10 [x1] [x2] + 1.84809*10^7 

[x2]^2 + 9.82933*10^7 [x3] + 5.28271*10^9 [x1] [x3] + 3.91731*10^7 [x2] [x3] + 7.19583*10^7 [x3]^2) / (-6.73736*10^7 - 

2.24511*10^9 [x1] + 1.67567*10^8 [x1]^2 - 5.30761*10^7 [x2] - 6.76463*10^9 [x1] [x2] - 1.25389*10^7 [x2]^2 - 8.45582*10^7 

[x3] - 5.87897*10^9 [x1] [x3] - 2.8222*10^7 [x2] [x3] - 5.77872*10^7 [x3]^2) 

CS5-O-TON 

0.462598 + 0.00736519 [x1] - 0.0000127843 [x1]^2 + 1.26892*10^-8 [x1]^3 + 1.59219 [x2] - 0.0969112 [x1] [x2] + 0.000300162 

[x1]^2 [x2] + 0.272799 [x2]^2 - 0.113776 [x1] [x2]^2 + 31.6255 [x2]^3 - 4.4517 [x3] - 0.00572297 [x1] [x3] - 0.0000423135 

[x1]^2 [x3] + 58.7409 [x2] [x3] + 0.00173282 [x1] [x2] [x3] + 29.1331 [x2]^2 [x3] + 4.02726 [x3]^2 + 0.0222752 [x1] [x3]^2 - 

87.4595 [x2] [x3]^2 + 2.8228 [x3]^3 

CS5-O-FOTN 16.8452 + 1.33016 Cos[x1] - 11.3431 Cos[x2] - 3.61925 Cos[x3] - 0.676265 Sin[x1] + 1.56093 Sin[x2] - 1.17092 Sin[x3] 

CS5-O-FOTNR 
(15.2478 + 12.418 Cos[x1] + 9.11218 Cos[x2] + 1.80602 Cos[x3] - 6.86865 Sin[x1] + 60.0568 Sin[x2] - 14.4095 Sin[x3]) / (-

4.30733 - 27.8217 Cos[x1] - 0.362341 Cos[x2] + 15.5677 Cos[x3] + 11.8851 Sin[x1] - 36.1481 Sin[x2] - 24.3313 Sin[x3]) 

CS5-O-SOTN 

-0.0639075 - 0.133391 Cos[x1] - 0.0121638 Cos[x1]^2 - 0.0619371 Cos[x2] - 0.242969 Cos[x1] Cos[x2] - 0.0609355 Cos[x2]^2 - 

0.0791639 Cos[x3] - 0.278073 Cos[x1] Cos[x3] - 0.0978803 Cos[x2] Cos[x3] - 0.0841373 Cos[x3]^2 - 0.297637 Sin[x1] - 2.92607 

Cos[x1] Sin[x1] - 0.137322 Cos[x2] Sin[x1] - 1.17536 Cos[x3] Sin[x1] - 0.846473 Sin[x1]^2 + 11.5555 Sin[x2] + 40.6608 Cos[x1] 

Sin[x2] + 12.182 Cos[x2] Sin[x2] + 21.1941 Cos[x3] Sin[x2] - 15.0403 Sin[x1] Sin[x2] - 12.9987 Sin[x2]^2 - 0.00555919 Sin[x3] 

+ 1.03838 Cos[x1] Sin[x3] + 0.075458 Cos[x2] Sin[x3] - 0.143923 Cos[x3] Sin[x3] - 0.368789 Sin[x1] Sin[x3] + 15.7945 Sin[x2] 

Sin[x3] + 0.0525024 Sin[x3]^2 

CS5-O-SOTNR 

(2.66419 + 0.11749 Cos[x1] + 3.6649 Cos[x1]^2 + 2.42171 Cos[x2] + 0.19882 Cos[x1] Cos[x2] + 2.15358 Cos[x2]^2 + 0.0437481 

Cos[x3] + 3.13608 Cos[x1] Cos[x3] - 0.134358 Cos[x2] Cos[x3] - 1.38325 Cos[x3]^2 + 1.83297 Sin[x1] + 3.47455 Cos[x1] 

Sin[x1] + 1.94353 Cos[x2] Sin[x1] + 2.51155 Cos[x3] Sin[x1] - 0.000712622 Sin[x1]^2 + 10.9933 Sin[x2] - 6.61426 Cos[x1] 

Sin[x2] + 11.1184 Cos[x2] Sin[x2] + 9.84026 Cos[x3] Sin[x2] + 3.72506 Sin[x1] Sin[x2] + 1.51062 Sin[x2]^2 - 1.69653 Sin[x3] + 

2.45319 Cos[x1] Sin[x3] - 1.94304 Cos[x2] Sin[x3] - 4.64931 Cos[x3] Sin[x3] - 3.73884 Sin[x1] Sin[x3] + 5.48351 Sin[x2] 

Sin[x3] + 5.04744 Sin[x3]^2) / (-0.144303 - 2.06368 Cos[x1] + 5.17821 Cos[x1]^2 - 0.48438 Cos[x2] - 1.68901 Cos[x1] Cos[x2] - 

0.799847 Cos[x2]^2 + 1.48598 Cos[x3] - 3.61044 Cos[x1] Cos[x3] + 1.14025 Cos[x2] Cos[x3] + 2.74814 Cos[x3]^2 + 2.8736 

Sin[x1] - 6.30231 Cos[x1] Sin[x1] + 2.52581 Cos[x2] Sin[x1] + 2.4041 Cos[x3] Sin[x1] - 4.32251 Sin[x1]^2 - 0.868 Sin[x2] + 

1.74149 Cos[x1] Sin[x2] - 1.03863 Cos[x2] Sin[x2] - 0.461525 Cos[x3] Sin[x2] + 1.9567 Sin[x1] Sin[x2] + 1.65554 Sin[x2]^2 - 

1.5867 Sin[x3] + 2.46356 Cos[x1] Sin[x3] - 1.58172 Cos[x2] Sin[x3] - 0.440501 Cos[x3] Sin[x3] + 3.08948 Sin[x1] Sin[x3] - 

0.676131 Sin[x2] Sin[x3] - 1.89244 Sin[x3]^2) 

CS5-O-FOLN 2.37577 - 0.17412 Log[x1] + 0.387459 Log[x2] + 0.0477195 Log[x3] 

CS5-O-FOLNR 
(-969.309 + 355.901 Log[x1] + 210.975 Log[x2] - 110.673 Log[x3])  /  (-3810.49 + 798.526 Log[x1] - 234.831 Log[x2] - 128.103 

Log[x3]) 

CS5-O-SOLN 
19.4923 - 5.88271 Log[x1] + 0.512939 Log[x1]^2 + 1.7057 Log[x2] - 0.0820015 Log[x1] Log[x2] + 0.139854 Log[x2]^2 + 

2.75883 Log[x3] - 0.332141 Log[x1] Log[x3] + 0.343461 Log[x2] Log[x3] + 0.127371 Log[x3]^2 

CS5-O-SOLNR 

(12656.1 + 29859.9 Log[x1] - 1773.52 Log[x1]^2 - 11133.5 Log[x2] + 6136.07 Log[x1] Log[x2] - 2950.61 Log[x2]^2 - 5294.2 

Log[x3] - 7937.57 Log[x1] Log[x3] + 1951.53 Log[x2] Log[x3] - 2051.13 Log[x3]^2) / (-10634.5 - 25038.6 Log[x1] + 5084.5 

Log[x1]^2 + 8398.73 Log[x2] - 9571.46 Log[x1] Log[x2] + 7855. Log[x2]^2 + 1413.13 Log[x3] - 10640.7 Log[x1] Log[x3] + 

5669.09 Log[x2] Log[x3] + 6785.5 Log[x3]^2) 

NOTATION CS6-O  

CS6-O-L 3.29144 - 0.645897 [x1] - 0.993714 [x2] - 0.0689516 [x3] + 5.8672 [x4] 

CS6-O-LN 
(-1340.35 + 157.426 [x1] + 4083.11 [x2] + 184.659 [x3] + 1162.39 [x4]) / (-698.717 + 130.805 [x1] + 1962.14 [x2] + 93.1946 [x3] 

- 78.2296 [x4]) 

CS6-O-SON 
3.33016 - 3.57571 [x1] + 0.493052 [x1]^2 - 2.38689 [x2] + 4.44193 [x1] [x2] + 17.188 [x2]^2 + 1.71293 [x3] - 0.15681 [x1] [x3] - 

5.81525 [x2] [x3] + 0.0699914 [x3]^2 + 34.5991 [x4] - 2.96164 [x1] [x4] - 49.7241 [x2] [x4] - 1.5198 [x3] [x4] - 18.4565 [x4]^2 

CS6-O-SONR 

(-2.69866 + 2.49186 [x1] + 0.911059 [x1]^2 + 5.47291 [x2] + 15.8316 [x1] [x2] + 5.44027 [x2]^2 - 1.67789 [x3] - 9.14077 [x1] 

[x3] - 2.62593 [x2] [x3] + 12.2386 [x3]^2 + 3.28291 [x4] + 3.06258 [x1] [x4] - 0.227766 [x2] [x4] + 2.97087 [x3] [x4] - 1.10392 

[x4]^2) / (1.43031 + 4.61876 [x1] + 0.00862041 [x1]^2 + 0.798422 [x2] - 4.05178 [x1] [x2] - 3.24333 [x2]^2 - 12.0464 [x3] - 

2.17372 [x1] [x3] + 24.5034 [x2] [x3] + 6.37539 [x3]^2 - 3.13246 [x4] + 1.90158 [x1] [x4] + 6.83817 [x2] [x4] - 10.8392 [x3] [x4] 

+ 6.16376 [x4]^2) 

CS6-O-TON 

2.88997 - 0.895935 [x1] - 0.203344 [x1]^2 + 0.0437755 [x1]^3 + 1.60703 [x2] - 1.00073 [x1] [x2] + 1.04422 [x1]^2 [x2] - 48.0132 

[x2]^2 + 8.21629 [x1] [x2]^2 - 44.6298 [x2]^3 + 0.748038 [x3] - 0.163726 [x1] [x3] + 0.0678032 [x1]^2 [x3] + 7.54783 [x2] [x3] - 

1.84589 [x1] [x2] [x3] + 25.5231 [x2]^2 [x3] - 0.734529 [x3]^2 + 0.0104098 [x1] [x3]^2 - 2.88398 [x2] [x3]^2 + 0.191167 [x3]^3 
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+ 7.27838 [x4] - 4.22226 [x1] [x4] + 0.0688295 [x1]^2 [x4] + 38.5532 [x2] [x4] - 14.7777 [x1] [x2] [x4] + 190.703 [x2]^2 [x4] + 

8.45577 [x3] [x4] - 0.304727 [x1] [x3] [x4] - 53.0528 [x2] [x3] [x4] + 1.53305 [x3]^2 [x4] + 28.6278 [x4]^2 + 13.7642 [x1] [x4]^2 

- 83.7919 [x2] [x4]^2 - 3.4411 [x3] [x4]^2 - 118.788 [x4]^3 

CS6-O-FOTN 
3.51756 + 0.825705 Cos[x1] - 49.2935 Cos[x2] + 0.120483 Cos[x3] + 48.2858 Cos[x4] + 0.525366 Sin[x1] - 12.8594 Sin[x2] - 

0.0907293 Sin[x3] + 15.2808 Sin[x4] 

CS6-O-FOTNR 

(222.997 + 5.5982 Cos[x1] - 120.556 Cos[x2] - 8.67136 Cos[x3] + 74.1852 Cos[x4] - 5.14218 Sin[x1] + 493.767 Sin[x2] - 242.027 

Sin[x3] - 122.195 Sin[x4]) / (-154.925 + 5.54337 Cos[x1] + 353.011 Cos[x2] - 5.12501 Cos[x3] - 103.314 Cos[x4] - 9.12216 

Sin[x1] + 317.801 Sin[x2] - 115.988 Sin[x3] - 147.714 Sin[x4]) 

CS6-O-SOTN 

0.176082 + 0.0514894 Cos[x1] + 0.229238 Cos[x1]^2 + 0.149695 Cos[x2] + 0.21369 Cos[x1] Cos[x2] + 0.133418 Cos[x2]^2 - 

0.453523 Cos[x3] + 0.347676 Cos[x1] Cos[x3] - 0.591507 Cos[x2] Cos[x3] + 0.315949 Cos[x3]^2 + 0.179092 Cos[x4] + 

0.0588002 Cos[x1] Cos[x4] + 0.146787 Cos[x2] Cos[x4] - 0.484302 Cos[x3] Cos[x4] + 0.181228 Cos[x4]^2 + 0.398747 Sin[x1] + 

1.85692 Cos[x1] Sin[x1] + 0.41894 Cos[x2] Sin[x1] - 0.352291 Cos[x3] Sin[x1] + 0.417607 Cos[x4] Sin[x1] + 0.299911 

Sin[x1]^2 - 2.28472 Sin[x2] - 4.81942 Cos[x1] Sin[x2] - 3.23076 Cos[x2] Sin[x2] + 6.59279 Cos[x3] Sin[x2] - 1.9446 Cos[x4] 

Sin[x2] - 2.44162 Sin[x1] Sin[x2] + 17.3393 Sin[x2]^2 - 0.07451 Sin[x3] + 0.644516 Cos[x1] Sin[x3] - 0.214531 Cos[x2] Sin[x3] 

+ 0.453743 Cos[x3] Sin[x3] - 0.0813581 Cos[x4] Sin[x3] + 0.986536 Sin[x1] Sin[x3] + 2.98252 Sin[x2] Sin[x3] + 0.226598 

Sin[x3]^2 + 2.60629 Sin[x4] - 2.54052 Cos[x1] Sin[x4] + 3.02723 Cos[x2] Sin[x4] + 0.862086 Cos[x3] Sin[x4] + 2.81305 Cos[x4] 

Sin[x4] + 2.78504 Sin[x1] Sin[x4] - 38.2714 Sin[x2] Sin[x4] + 2.42438 Sin[x3] Sin[x4] + 4.01779 Sin[x4]^2 

CS6-O-SOTNR 

(5.59916 - 2.85727 Cos[x1] + 8.47811 Cos[x1]^2 + 4.69487 Cos[x2] - 1.29782 Cos[x1] Cos[x2] + 3.92256 Cos[x2]^2 + 0.133742 

Cos[x3] - 0.770413 Cos[x1] Cos[x3] - 3.92577 Cos[x2] Cos[x3] + 3.52842 Cos[x3]^2 + 4.62631 Cos[x4] - 1.94913 Cos[x1] 

Cos[x4] + 3.69079 Cos[x2] Cos[x4] - 0.683182 Cos[x3] Cos[x4] + 3.67659 Cos[x4]^2 + 5.82862 Sin[x1] + 0.431351 Cos[x1] 

Sin[x1] + 6.48594 Cos[x2] Sin[x1] - 0.735967 Cos[x3] Sin[x1] + 5.98474 Cos[x4] Sin[x1] - 1.87895 Sin[x1]^2 + 3.10006 Sin[x2] 

- 3.81947 Cos[x1] Sin[x2] + 2.57668 Cos[x2] Sin[x2] + 18.2146 Cos[x3] Sin[x2] + 3.16194 Cos[x4] Sin[x2] - 1.6713 Sin[x1] 

Sin[x2] + 2.67661 Sin[x2]^2 + 1.65003 Sin[x3] + 2.4261 Cos[x1] Sin[x3] + 0.173826 Cos[x2] Sin[x3] - 0.0164027 Cos[x3] 

Sin[x3] + 0.780663 Cos[x4] Sin[x3] + 6.03817 Sin[x1] Sin[x3] + 5.07324 Sin[x2] Sin[x3] + 3.07075 Sin[x3]^2 + 8.03881 Sin[x4] 

- 5.48412 Cos[x1] Sin[x4] + 8.02115 Cos[x2] Sin[x4] + 5.23382 Cos[x3] Sin[x4] + 7.82206 Cos[x4] Sin[x4] + 1.13805 Sin[x1] 

Sin[x4] + 1.45636 Sin[x2] Sin[x4] + 7.04505 Sin[x3] Sin[x4] + 2.92257 Sin[x4]^2) / (0.802142 - 3.23979 Cos[x1] - 3.22289 

Cos[x1]^2 + 0.853633 Cos[x2] - 5.16315 Cos[x1] Cos[x2] + 0.734179 Cos[x2]^2 + 0.287937 Cos[x3] + 5.73139 Cos[x1] Cos[x3] 

+ 10.1475 Cos[x2] Cos[x3] + 4.78421 Cos[x3]^2 + 2.76107 Cos[x4] - 4.9509 Cos[x1] Cos[x4] + 2.93288 Cos[x2] Cos[x4] + 

1.74357 Cos[x3] Cos[x4] + 4.66772 Cos[x4]^2 - 0.152487 Sin[x1] - 9.22323 Cos[x1] Sin[x1] - 3.72476 Cos[x2] Sin[x1] + 1.45625 

Cos[x3] Sin[x1] - 0.530268 Cos[x4] Sin[x1] + 5.02503 Sin[x1]^2 + 5.21235 Sin[x2] + 4.26717 Cos[x1] Sin[x2] + 5.67068 Cos[x2] 

Sin[x2] - 41.1748 Cos[x3] Sin[x2] + 4.84278 Cos[x4] Sin[x2] + 16.89 Sin[x1] Sin[x2] + 1.06796 Sin[x2]^2 + 1.53499 Sin[x3] - 

7.65639 Cos[x1] Sin[x3] + 3.29447 Cos[x2] Sin[x3] + 3.67344 Cos[x3] Sin[x3] + 3.33921 Cos[x4] Sin[x3] - 4.85271 Sin[x1] 

Sin[x3] - 1.96561 Sin[x2] Sin[x3] - 2.98207 Sin[x3]^2 - 12.085 Sin[x4] + 12.0315 Cos[x1] Sin[x4] - 12.4901 Cos[x2] Sin[x4] - 

6.78271 Cos[x3] Sin[x4] - 11.6233 Cos[x4] Sin[x4] + 1.69573 Sin[x1] Sin[x4] + 2.07072 Sin[x2] Sin[x4] - 11.0358 Sin[x3] 

Sin[x4] - 2.86558 Sin[x4]^2) 

CS6-O-FOLN 5.59397 - 1.81246 Log[x1] - 0.230811 Log[x2] - 0.0991312 Log[x3] + 1.0505 Log[x4] 

CS6-O-FOLNR 
(2.6275 - 0.0224973 Log[x1] + 2.18575 Log[x2] + 1.24909 Log[x3] - 0.0385969 Log[x4]) / (1.3596 - 0.0395996 Log[x1] + 1.065 

Log[x2] + 0.607601 Log[x3] + 0.0075985 Log[x4]) 

CS6-O-SOLN 

4.05695 - 5.25 Log[x1] + 2.78293 Log[x1]^2 - 3.33985 Log[x2] + 3.0976 Log[x1] Log[x2] + 0.951662 Log[x2]^2 - 3.07582 

Log[x3] - 0.688445 Log[x1] Log[x3] - 1.95477 Log[x2] Log[x3] - 0.00596054 Log[x3]^2 - 0.48802 Log[x4] - 1.76772 Log[x1] 

Log[x4] - 2.19534 Log[x2] Log[x4] - 0.426249 Log[x3] Log[x4] - 0.0283658 Log[x4]^2 

CS6-O-SOLNR 

(0.876953 + 0.515023 Log[x1] + 0.502096 Log[x1]^2 + 0.767089 Log[x2] + 1.93999 Log[x1] Log[x2] + 1.89879 Log[x2]^2 + 

0.326182 Log[x3] + 0.759354 Log[x1] Log[x3] + 1.00894 Log[x2] Log[x3] + 1.7903 Log[x3]^2 + 0.160736 Log[x4] + 1.80025 

Log[x1] Log[x4] + 0.9205 Log[x2] Log[x4] + 1.55392 Log[x3] Log[x4] + 0.864499 Log[x4]^2) / (1.51101 + 1.3603 Log[x1] - 

1.00906 Log[x1]^2 + 0.942904 Log[x2] - 0.420822 Log[x1] Log[x2] + 0.323479 Log[x2]^2 + 2.08135 Log[x3] + 0.341663 

Log[x1] Log[x3] + 1.48955 Log[x2] Log[x3] + 0.90751 Log[x3]^2 + 3.1366 Log[x4] + 0.523403 Log[x1] Log[x4] + 1.12312 

Log[x2] Log[x4] + 1.03579 Log[x3] Log[x4] + 1.11833 Log[x4]^2) 

NOTATION CS7-O1  

CS7-O1-L 0.376918 - 0.0000284699 [x1] + 0.0899108 [x2] + 1.52794 [x3] - 0.183538 [x4] 

CS7-O1-LN 
(-5120.24 + 57.6129 [x1] + 121050. [x2] + 15154.4 [x3] + 2380.12 [x4]) / (564.199 + 1.13363 [x1] - 534.76 [x2] - 653.847 [x3] + 

240.326 [x4]) 

CS7-O1-SON 

0.591623 - 0.000245477 [x1] + 0.0000130693 [x1]^2 - 0.624861 [x2] + 0.000986062 [x1] [x2] + 0.247123 [x2]^2 + 3.91429 [x3] - 

0.0202152 [x1] [x3] + 1.66667 [x2] [x3] - 6.50313 [x3]^2 - 0.684944 [x4] - 0.00216004 [x1] [x4] + 0.265869 [x2] [x4] + 1.875 

[x3] [x4] + 0.280931 [x4]^2 

CS7-O1-SONR 

(5.72803*10^7 + 3.47232*10^9 [x1] + 1.94466*10^9 [x1]^2 + 2.07448*10^7 [x2] + 2.32538*10^9 [x1] [x2] + 5.95239*10^6 

[x2]^2 + 1.69434*10^7 [x3] + 1.95292*10^9 [x1] [x3] + 4.44012*10^6 [x2] [x3] + 2.95826*10^6 [x3]^2 - 7.744*10^7 [x4] - 

2.17366*10^10 [x1] [x4] - 3.03341*10^6 [x2] [x4] + 4.78648*10^6 [x3] [x4] - 2.43818*10^8 [x4]^2) / (-1.98127*10^7 - 

1.1842*10^9 [x1] + 5.23134*10^9 [x1]^2 - 7.17336*10^6 [x2] - 8.00317*10^8 [x1] [x2] - 2.05906*10^6 [x2]^2 - 5.86915*10^6 

[x3] - 6.74436*10^8 [x1] [x3] - 1.5373*10^6 [x2] [x3] - 1.02509*10^6 [x3]^2 + 2.66479*10^7 [x4] + 7.50797*10^9 [x1] [x4] + 

1.02415*10^6 [x2] [x4] - 1.68151*10^6 [x3] [x4] + 8.40408*10^7 [x4]^2) 

CS7-O1-TON 

0.365638 - 0.000217673 [x1] + 5.65001*10^-7 [x1]^2 + 5.1423*10^-8 [x1]^3 - 0.240295 [x2] + 0.00988436 [x1] [x2] - 

0.0000306403 [x1]^2 [x2] + 1.91598 [x2]^2 - 0.056559 [x1] [x2]^2 + 36.535 [x2]^3 + 3.5215 [x3] - 0.0338682 [x1] [x3] - 

0.0000158736 [x1]^2 [x3] + 20.9403 [x2] [x3] + 0.0376238 [x1] [x2] [x3] - 103.88 [x2]^2 [x3] + 4.81175 [x3]^2 + 0.070922 [x1] 

[x3]^2 + 128.658 [x2] [x3]^2 - 289.526 [x3]^3 - 0.152246 [x4] + 0.0024161 [x1] [x4] - 8.56533*10^-6 [x1]^2 [x4] - 4.0295 [x2] 

[x4] + 0.013994 [x1] [x2] [x4] - 2.20918 [x2]^2 [x4] - 0.525514 [x3] [x4] - 0.00221421 [x1] [x3] [x4] - 10.7284 [x2] [x3] [x4] + 

42.187 [x3]^2 [x4] - 0.0852983 [x4]^2 - 0.00159797 [x1] [x4]^2 + 1.56595 [x2] [x4]^2 - 1.80498 [x3] [x4]^2 + 0.154501 [x4]^3 

CS7-O1-FOTN 
-8.87775 - 0.114486 Cos[x1] - 0.817506 Cos[x2] + 10.3724 Cos[x3] - 0.017746 Cos[x4] + 0.0325899 Sin[x1] - 0.0468017 Sin[x2] 

+ 2.68554 Sin[x3] - 0.519744 Sin[x4] 

CS7-O1-FOTNR 

(-915.704 + 11.6921 Cos[x1] + 203.412 Cos[x2] + 734.211 Cos[x3] + 5.31635 Cos[x4] - 2.78431 Sin[x1] + 51.3661 Sin[x2] + 

30.8749 Sin[x3] - 36.634 Sin[x4]) / (232.46 + 40.0029 Cos[x1] + 746.851 Cos[x2] - 966.308 Cos[x3] + 31.9794 Cos[x4] - 9.50266 

Sin[x1] + 177.35 Sin[x2] - 327.124 Sin[x3] - 36.1954 Sin[x4]) 

CS7-O1-SOTN 

Abs[-0.428198 - 0.789724 Cos[x1] + 0.419809 Cos[x1]^2 - 1.14756 Cos[x2] - 4.20092 Cos[x1] Cos[x2] + 0.973106 Cos[x2]^2 + 

0.0618098 Cos[x3] + 2.21932 Cos[x1] Cos[x3] + 2.36543 Cos[x2] Cos[x3] + 1.51433 Cos[x3]^2 - 4.12479 Cos[x4] + 0.44785 

Cos[x1] Cos[x4] + 9.40322 Cos[x2] Cos[x4] - 4.77729 Cos[x3] Cos[x4] - 1.13648 Cos[x4]^2 - 1.67836 Sin[x1] - 1.36064 Cos[x1] 

Sin[x1] + 7.30472 Cos[x2] Sin[x1] - 4.48619 Cos[x3] Sin[x1] + 0.0744336 Cos[x4] Sin[x1] - 0.596695 Sin[x1]^2 - 1.1232 Sin[x2] 

- 1.25851 Cos[x1] Sin[x2] + 0.453946 Cos[x2] Sin[x2] + 0.0018139 Cos[x3] Sin[x2] + 3.0389 Cos[x4] Sin[x2] + 1.46066 Sin[x1] 

Sin[x2] - 1.18069 Sin[x2]^2 - 4.25857 Sin[x3] + 3.10668 Cos[x1] Sin[x3] - 4.48172 Cos[x2] Sin[x3] - 3.1809 Cos[x3] Sin[x3] + 

4.6226 Cos[x4] Sin[x3] - 2.62635 Sin[x1] Sin[x3] - 2.70701 Sin[x2] Sin[x3] - 1.97363 Sin[x3]^2 - 1.21038 Sin[x4] + 0.295984 

Cos[x1] Sin[x4] - 1.8804 Cos[x2] Sin[x4] +  1.26921 Cos[x3] Sin[x4] - 1.45892 Cos[x4] Sin[x4] - 0.0163039 Sin[x1] Sin[x4] + 

1.62642 Sin[x2] Sin[x4] + 8.03857 Sin[x3] Sin[x4] + 0.431409 Sin[x4]^2] 

CS7-O1-SOTNR 

(-21.0006 - 13.3024 Cos[x1] - 8.78266 Cos[x1]^2 - 11.2099 Cos[x2] - 2.70142 Cos[x1] Cos[x2] - 2.53452 Cos[x2]^2 + 3.37456 

Cos[x3] + 11.782 Cos[x1] Cos[x3] + 12.5127 Cos[x2] Cos[x3] + 26.8073 Cos[x3]^2 + 11.2785 Cos[x4] - 7.4413 Cos[x1] Cos[x4] 

- 28.533 Cos[x2] Cos[x4] + 23.3259 Cos[x3] Cos[x4] - 9.81214 Cos[x4]^2 + 4.01335 Sin[x1] + 0.398258 Cos[x1] Sin[x1] + 

3.32662 Cos[x2] Sin[x1] - 3.50251 Cos[x3] Sin[x1] - 14.9324 Cos[x4] Sin[x1] - 11.2179 Sin[x1]^2 - 5.78824 Sin[x2] - 11.8168 

Cos[x1] Sin[x2] - 0.41009 Cos[x2] Sin[x2] - 1.48041 Cos[x3] Sin[x2] - 21.5182 Cos[x4] Sin[x2] - 7.53805 Sin[x1] Sin[x2] - 

17.4661 Sin[x2]^2 + 20.5088 Sin[x3] + 9.72364 Cos[x1] Sin[x3] + 21.6136 Cos[x2] Sin[x3] + 28.8247 Cos[x3] Sin[x3] + 18.5487 

Cos[x4] Sin[x3] + 19.531 Sin[x1] Sin[x3] + 9.06954 Sin[x2] Sin[x3] - 46.8079 Sin[x3]^2 - 13.5937 Sin[x4] - 5.98883 Cos[x1] 

Sin[x4] + 22.0764 Cos[x2] Sin[x4] + 8.96384 Cos[x3] Sin[x4] + 19.399 Cos[x4] Sin[x4] - 6.84935 Sin[x1] Sin[x4] + 17.3045 

Sin[x2] Sin[x4] - 4.02606 Sin[x3] Sin[x4] - 10.1884 Sin[x4]^2) / (-7.08261 - 7.16899 Cos[x1] - 6.73974 Cos[x1]^2 + 5.36201 

Cos[x2] + 4.59392 Cos[x1] Cos[x2] + 16.4533 Cos[x2]^2 - 18.5307 Cos[x3] - 18.8114 Cos[x1] Cos[x3] - 5.87064 Cos[x2] 

Cos[x3] - 29.6103 Cos[x3]^2 + 7.96765 Cos[x4] + 11.3419 Cos[x1] Cos[x4] + 32.3905 Cos[x2] Cos[x4] + 2.10279 Cos[x3] 

Cos[x4] - 30.7114 Cos[x4]^2 - 5.25934 Sin[x1] - 3.12295 Cos[x1] Sin[x1] - 8.31908 Cos[x2] Sin[x1] - 1.9957 Cos[x3] Sin[x1] - 

4.92172 Cos[x4] Sin[x1] + 0.657128 Sin[x1]^2 - 10.82 Sin[x2] - 7.74348 Cos[x1] Sin[x2] - 4.20835 Cos[x2] Sin[x2] - 12.9398 

Cos[x3] Sin[x2] - 4.12261 Cos[x4] Sin[x2] + 5.03403 Sin[x1] Sin[x2] - 22.5359 Sin[x2]^2 + 19.6468 Sin[x3] + 23.0379 Cos[x1] 

Sin[x3] + 20.2574 Cos[x2] Sin[x3] + 16.238 Cos[x3] Sin[x3] + 8.04066 Cos[x4] Sin[x3] - 11.321 Sin[x1] Sin[x3] + 2.7818 Sin[x2] 

Sin[x3] + 23.5277 Sin[x3]^2 + 13.7215 Sin[x4] + 14.3627 Cos[x1] Sin[x4] + 12.1859 Cos[x2] Sin[x4] + 3.37101 Cos[x3] Sin[x4] 

+ 28.7 Cos[x4] Sin[x4] - 3.27066 Sin[x1] Sin[x4] - 5.39626 Sin[x2] Sin[x4] + 26.6586 Sin[x3] Sin[x4] + 24.6288 Sin[x4]^2) 

CS7-O1-FOLN 0.892318 - 0.0216239 Log[x1] + 0.0181013 Log[x2] + 0.170684 Log[x3] - 0.209127 Log[x4] 
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CS7-O1-FOLNR 
(63722.2 - 7301.54 Log[x1] - 414.569 Log[x2] + 9331.36 Log[x3] + 3212.03 Log[x4]) / (157598. - 19647.2 Log[x1] - 1861.37 

Log[x2] + 19227.4 Log[x3] + 18398.6 Log[x4]) 

CS7-O1-SOLN 

15.3302 - 4.78979 Log[x1] + 0.38863 Log[x1]^2 + 0.0929459 Log[x2] + 0.0206937 Log[x1] Log[x2] + 0.0142898 Log[x2]^2 + 

2.28649 Log[x3] - 0.390855 Log[x1] Log[x3] + 0.0592874 Log[x2] Log[x3] + 0.00940776 Log[x3]^2 + 2.20848 Log[x4] - 

0.380807 Log[x1] Log[x4] + 0.0360404 Log[x2] Log[x4] + 0.188339 Log[x3] Log[x4] + 0.289678 Log[x4]^2 

CS7-O1-SOLNR 

(7.16416 - 4.60073 Log[x1] + 0.925216 Log[x1]^2 + 0.311962 Log[x2] + 0.818827 Log[x1] Log[x2] + 2.11508 Log[x2]^2 - 3.949 

Log[x3] + 1.36591 Log[x1] Log[x3] - 0.985498 Log[x2] Log[x3] + 0.932753 Log[x3]^2 + 4.0493 Log[x4] - 1.98205 Log[x1] 

Log[x4] + 2.22104 Log[x2] Log[x4] - 3.26118 Log[x3] Log[x4] + 2.86624 Log[x4]^2) / (-1.7651 + 3.30072 Log[x1] + 0.910701 

Log[x1]^2 + 3.27111 Log[x2] + 1.69126 Log[x1] Log[x2] + 6.07158 Log[x2]^2 + 4.36868 Log[x3] + 4.03968 Log[x1] Log[x3] - 

3.30177 Log[x2] Log[x3] + 6.68117 Log[x3]^2 - 1.21383 Log[x4] - 2.75161 Log[x1] Log[x4] + 5.33047 Log[x2] Log[x4] - 

8.35853 Log[x3] Log[x4] + 4.41779 Log[x4]^2) 

NOTATION CS7-O2  

CS7-O2-L 6.85614 + 0.0180162 [x1] + 164.894 [x2] + 56.0767 [x3] - 8.17055 [x4] 

CS7-O2-LN 
(-5120.24 + 57.6129 [x1] + 121050. [x2] + 15154.4 [x3] + 2380.12 [x4]) / (564.199 + 1.13363 [x1] - 534.76 [x2] - 653.847 [x3] + 

240.326 [x4]) 

CS7-O2-SON 

126.294 - 0.475251 [x1] + 0.000793595 [x1]^2 + 277.171 [x2] - 0.311186 [x1] [x2] + 117.332 [x2]^2 - 1475.07 [x3] + 3.12035 

[x1] [x3] + 345.833 [x2] [x3] + 1709.16 [x3]^2 - 12.0307 [x4] - 0.074154 [x1] [x4] - 124.796 [x2] [x4] + 443.958 [x3] [x4] - 

3.32805 [x4]^2 

CS7-O2-SONR 

(800042. + 6.24114*10^7 [x1] + 9.99557*10^8 [x1]^2 + 762527. [x2] + 1.09376*10^8 [x1] [x2] + 276661. [x2]^2 + 97075.6 [x3] 

+ 9.34216*10^6 [x1] [x3] + 86055.5 [x2] [x3] + 12047.9 [x3]^2 + 479630. [x4] - 9.32005*10^6 [x1] [x4] + 784235. [x2] [x4] + 

71449.9 [x3] [x4] - 18890.4 [x4]^2) / (-2.6796*10^7 - 1.98627*10^9 [x1] + 3.77268*10^7 [x1]^2 - 2.81261*10^7 [x2] - 

4.08432*10^9 [x1] [x2] - 1.02935*10^7 [x2]^2 - 3.28879*10^6 [x3] - 3.1216*10^8 [x1] [x3] - 3.17561*10^6 [x2] [x3] - 412969. 

[x3]^2 - 1.41276*10^7 [x4] + 7.98758*10^8 [x1] [x4] - 2.87229*10^7 [x2] [x4] - 2.26756*10^6 [x3] [x4] + 5.33211*10^6 [x4]^2) 

CS7-O2-TON 

50.9898 - 0.0881894 [x1] - 0.000556629 [x1]^2 + 2.5417*10^-6 [x1]^3 + 222.171 [x2] + 4.92697 [x1] [x2] - 0.00729742 [x1]^2 

[x2] + 561.297 [x2]^2 - 16.8931 [x1] [x2]^2 + 581.459 [x2]^3 - 86.0516 [x3] - 7.77996 [x1] [x3] + 0.00405426 [x1]^2 [x3] - 

1666.63 [x2] [x3] + 0.264718 [x1] [x2] [x3] + 10995.2 [x2]^2 [x3] - 3035.31 [x3]^2 + 30.9947 [x1] [x3]^2 + 6356.49 [x2] [x3]^2 - 

28501. [x3]^3 - 20.4969 [x4] + 0.17538 [x1] [x4] + 0.000675846 [x1]^2 [x4] - 610.044 [x2] [x4] + 2.87181 [x1] [x2] [x4] + 713.29 

[x2]^2 [x4] + 791.616 [x3] [x4] + 0.96809 [x1] [x3] [x4] - 3193.52 [x2] [x3] [x4] + 7809.43 [x3]^2 [x4] + 0.11329 [x4]^2 - 

0.477248 [x1] [x4]^2 - 1.00928 [x2] [x4]^2 - 668.009 [x3] [x4]^2 + 42.9845 [x4]^3 

CS7-O2-FOTN 
4549.36 - 11.9657 Cos[x1] - 422.715 Cos[x2] - 4093.54 Cos[x3] + 11.8685 Cos[x4] + 0.0700483 Sin[x1] + 84.6656 Sin[x2] - 

406.382 Sin[x3] + 5.95449 Sin[x4] 

CS7-O2-FOTNR 

(719.601 - 0.230675 Cos[x1] - 296.47 Cos[x2] - 414.176 Cos[x3] + 0.496492 Cos[x4] - 0.305701 Sin[x1] - 68.3702 Sin[x2] - 

49.7893 Sin[x3] + 1.65748 Sin[x4])  /  (19.9595 - 0.00602815 Cos[x1] - 10.8388 Cos[x2] - 8.78003 Cos[x3] + 0.00734544 Cos[x4] 

- 0.00702344 Sin[x1] - 2.62222 Sin[x2] - 1.08536 Sin[x3] + 0.0309919 Sin[x4]) 

CS7-O2-SOTN 

1.02001 + 26.9023 Cos[x1] + 38.1478 Cos[x1]^2 + 0.483021 Cos[x2] + 204.017 Cos[x1] Cos[x2] + 0.0382832 Cos[x2]^2 + 

0.800524 Cos[x3] + 12.9007 Cos[x1] Cos[x3] + 0.542383 Cos[x2] Cos[x3] + 0.601487 Cos[x3]^2 - 240.817 Cos[x4] - 171.952 

Cos[x1] Cos[x4] + 1163.26 Cos[x2] Cos[x4] - 370.642 Cos[x3] Cos[x4] - 229.771 Cos[x4]^2 + 539.522 Sin[x1] + 762.825 

Cos[x1] Sin[x1] - 2348.04 Cos[x2] Sin[x1] + 805.999 Cos[x3] Sin[x1] + 279.869 Cos[x4] Sin[x1] - 197.059 Sin[x1]^2 - 100.421 

Sin[x2] + 578.817 Cos[x1] Sin[x2] - 120.519 Cos[x2] Sin[x2] - 107.957 Cos[x3] Sin[x2] + 246.058 Cos[x4] Sin[x2] - 327.639 

Sin[x1] Sin[x2] + 441.009 Sin[x2]^2 - 517.712 Sin[x3] - 1524.23 Cos[x1] Sin[x3] - 731.981 Cos[x2] Sin[x3] - 540.462 Cos[x3] 

Sin[x3] + 517.42 Cos[x4] Sin[x3] - 477.931 Sin[x1] Sin[x3] + 195.343 Sin[x2] Sin[x3] + 2363.08 Sin[x3]^2 + 11.9178 Sin[x4] - 

36.049 Cos[x1] Sin[x4] - 215.965 Cos[x2] Sin[x4] + 27.0229 Cos[x3] Sin[x4] - 348.311 Cos[x4] Sin[x4] + 456.316 Sin[x1] 

Sin[x4] - 296.579 Sin[x2] Sin[x4] + 2705.49 Sin[x3] Sin[x4] + 25.9728 Sin[x4]^2 

CS7-O2-SOTNR 

(15.5646 - 0.578215 Cos[x1] - 11.0622 Cos[x1]^2 + 15.6218 Cos[x2] - 0.68586 Cos[x1] Cos[x2] + 15.6331 Cos[x2]^2 + 14.5114 

Cos[x3] - 1.59223 Cos[x1] Cos[x3] + 14.5331 Cos[x2] Cos[x3] + 13.4591 Cos[x3]^2 - 36.4241 Cos[x4] - 42.3399 Cos[x1] 

Cos[x4] - 35.0283 Cos[x2] Cos[x4] - 36.7201 Cos[x3] Cos[x4] - 22.0794 Cos[x4]^2 + 27.4901 Sin[x1] + 28.6445 Cos[x1] Sin[x1] 

+ 28.8686 Cos[x2] Sin[x1] + 27.953 Cos[x3] Sin[x1] + 18.7672 Cos[x4] Sin[x1] + 27.6268 Sin[x1]^2 + 4.52872 Sin[x2] + 6.67319 

Cos[x1] Sin[x2] + 4.70579 Cos[x2] Sin[x2] + 4.72815 Cos[x3] Sin[x2] - 9.89926 Cos[x4] Sin[x2] - 17.6148 Sin[x1] Sin[x2] + 

0.931419 Sin[x2]^2 + 16.0685 Sin[x3] + 14.283 Cos[x1] Sin[x3] + 16.2993 Cos[x2] Sin[x3] + 15.9789 Cos[x3] Sin[x3] + 3.70099 

Cos[x4] Sin[x3] - 0.581251 Sin[x1] Sin[x3] + 0.264823 Sin[x2] Sin[x3] + 3.10548 Sin[x3]^2 + 28.9043 Sin[x4] + 14.1757 Cos[x1] 

Sin[x4] + 28.688 Cos[x2] Sin[x4] + 27.5452 Cos[x3] Sin[x4] - 27.3868 Cos[x4] Sin[x4] + 23.177 Sin[x1] Sin[x4] + 7.17654 

Sin[x2] Sin[x4] + 19.1664 Sin[x3] Sin[x4] + 38.6439 Sin[x4]^2) / (16.2608 + 9.7636 Cos[x1] + 7.09585 Cos[x1]^2 + 10.3467 

Cos[x2] - 15.5139 Cos[x1] Cos[x2] + 5.3472 Cos[x2]^2 - 4.14587 Cos[x3] - 7.63937 Cos[x1] Cos[x3] - 8.81856 Cos[x2] Cos[x3] - 

23.8556 Cos[x3]^2 - 0.320913 Cos[x4] + 6.75418 Cos[x1] Cos[x4] - 7.95355 Cos[x2] Cos[x4] - 6.06921 Cos[x3] Cos[x4] + 

10.2395 Cos[x4]^2 - 23.1079 Sin[x1] - 14.3605 Cos[x1] Sin[x1] + 77.5809 Cos[x2] Sin[x1] - 31.4746 Cos[x3] Sin[x1] - 6.40251 

Cos[x4] Sin[x1] + 10.1649 Sin[x1]^2 - 11.18 Sin[x2] - 16.9628 Cos[x1] Sin[x2] - 15.2896 Cos[x2] Sin[x2] - 22.9365 Cos[x3] 

Sin[x2] + 41.6317 Cos[x4] Sin[x2] - 3.48707 Sin[x1] Sin[x2] + 11.9136 Sin[x2]^2 + 19.9729 Sin[x3] + 12.4549 Cos[x1] Sin[x3] + 

12.6283 Cos[x2] Sin[x3] + 13.6294 Cos[x3] Sin[x3] - 10.5336 Cos[x4] Sin[x3] + 30.9158 Sin[x1] Sin[x3] + 71.4241 Sin[x2] 

Sin[x3] + 41.1163 Sin[x3]^2 + 10.2476 Sin[x4] + 6.83289 Cos[x1] Sin[x4] - 0.700106 Cos[x2] Sin[x4] + 3.96596 Cos[x3] Sin[x4] 

- 6.19734 Cos[x4] Sin[x4] - 8.67069 Sin[x1] Sin[x4] + 19.3857 Sin[x2] Sin[x4] - 97.4617 Sin[x3] Sin[x4] + 7.02127 Sin[x4]^2) 

CS7-O2-FOLN 94.8219 + 0.975369 Log[x1] + 27.7705 Log[x2] + 5.71478 Log[x3] - 8.67569 Log[x4] 

CS7-O2-FOLNR 
(-576.942 - 281.272 Log[x1] - 25.8397 Log[x2] + 48.8377 Log[x3] + 9286.96 Log[x4]) / (-9.86873 - 5.46892 Log[x1] + 6.859 

Log[x2] + 3.23311 Log[x3] + 253.623 Log[x4]) 

CS7-O2-SOLN 

477.902 - 179.687 Log[x1] + 27.1699 Log[x1]^2 + 135.004 Log[x2] - 3.65816 Log[x1] Log[x2] + 21.1135 Log[x2]^2 - 135.212 

Log[x3] + 46.0311 Log[x1] Log[x3] + 4.01305 Log[x2] Log[x3] + 22.1493 Log[x3]^2 + 126.8 Log[x4] - 7.46425 Log[x1] Log[x4] 

- 23.4369 Log[x2] Log[x4] + 60.8721 Log[x3] Log[x4] - 10.3375 Log[x4]^2 

CS7-O2-SOLNR 

(-8.35098*10^6 - 1.58747*10^7 Log[x1] + 1.71499*10^8 Log[x1]^2 - 1.42876*10^7 Log[x2] - 1.89417*10^8 Log[x1] Log[x2] + 

1.5735*10^8 Log[x2]^2 - 2.25778*10^7 Log[x3] - 1.34168*10^8 Log[x1] Log[x3] + 1.06709*10^8 Log[x2] Log[x3] + 

9.79455*10^7 Log[x3]^2 + 3.2159*10^7 Log[x4] + 1.23662*10^8 Log[x1] Log[x4] - 8.6465*10^7 Log[x2] Log[x4] - 

5.07652*10^7 Log[x3] Log[x4] + 6.26476*10^6 Log[x4]^2) / (-1.69177*10^8 + 1.07582*10^8 Log[x1] - 3.19056*10^7 

Log[x1]^2 - 7.50926*10^8 Log[x2] + 2.06438*10^8 Log[x1] Log[x2] + 9.65616*10^7 Log[x2]^2 + 7.34966*10^8 Log[x3] - 

2.66498*10^8 Log[x1] Log[x3] + 1.11981*10^8 Log[x2] Log[x3] - 1.78144*10^8 Log[x3]^2 - 4.0934*10^8 Log[x4] - 

9.23484*10^7 Log[x1] Log[x4] + 5.89721*10^7 Log[x2] Log[x4] - 4.79194*10^8 Log[x3] Log[x4] + 2.06166*10^8 Log[x4]^2) 

NOTATION CS7-O3  

CS7-O3-L -29.0391 + 0.0886171 [[x1]] + 324.678 [x2] + 385.258 [x3] + 16.1563 [x4] 

CS7-O3-LN 
(1.09058*10^6 - 5575.18 [x1] + 7103.93 [x2] + 8470. [x3] - 25609.7 [x4]) / (10289.9 - 50.1624 [x1] - 1194.99 [x2] - 987.313 [x3] - 

311.248 [x4]) 

CS7-O3-SON 

296.223 - 0.728934 [x1] + 0.000153748 [x1]^2 + 49.0626 [x2] - 1.15737 [x1] [x2] + 539.127 [x2]^2 - 2128.8 [x3] + 5.09599 [x1] 

[x3] + 476.667 [x2] [x3] + 5259.02 [x3]^2 - 136.122 [x4] + 0.352764 [x1] [x4] + 180.961 [x2] [x4] + 306.25 [x3] [x4] + 7.03021 

[x4]^2 

CS7-O3-SONR 

(263.164 + 56189.3 [x1] + 1.40537*10^7 [x1]^2 + 1849.53 [x2] + 291211. [x1] [x2] + 727.988 [x2]^2 + 220.858 [x3] + 39787.8 

[x1] [x3] + 243.35 [x2] [x3] + 47.5716 [x3]^2 + 592.171 [x4] + 151062. [x1] [x4] + 2237.28 [x2] [x4] + 303.324 [x3] [x4] + 

962.949 [x4]^2) / (53098.9 + 5.01517*10^6 [x1] + 159887. [x1]^2 - 185696. [x2] - 2.96904*10^7 [x1] [x2] - 75834.7 [x2]^2 - 

15194. [x3] - 3.16071*10^6 [x1] [x3] - 24725.4 [x2] [x3] - 4102.06 [x3]^2 + 33785.7 [x4] - 2.73246*10^6 [x1] [x4] - 224863. [x2] 

[x4] - 22418.2 [x3] [x4] + 17183.1 [x4]^2) 

CS7-O3-TON 

122.983 - 0.0806463 [x1] - 0.00110289 [x1]^2 + 1.91791*10^-6 [x1]^3 + 388.008 [x2] + 5.61377 [x1] [x2] - 0.0126331 [x1]^2 

[x2] + 453.431 [x2]^2 - 19.6677 [x1] [x2]^2 - 2267.35 [x2]^3 + 319.979 [x3] - 13.1523 [x1] [x3] + 0.0249281 [x1]^2 [x3] - 

1650.55 [x2] [x3] - 23.5131 [x1] [x2] [x3] + 12889.3 [x2]^2 [x3] - 3494.05 [x3]^2 + 40.8215 [x1] [x3]^2 + 26539.5 [x2] [x3]^2 - 

70469.4 [x3]^3 - 79.7281 [x4] + 0.571859 [x1] [x4] - 0.000449922 [x1]^2 [x4] - 943.099 [x2] [x4] + 6.23819 [x1] [x2] [x4] + 

2869.03 [x2]^2 [x4] + 778.269 [x3] [x4] + 3.38332 [x1] [x3] [x4] - 3823.16 [x2] [x3] [x4] + 17924.8 [x3]^2 [x4] - 17.0813 [x4]^2 - 

0.644103 [x1] [x4]^2 - 316.453 [x2] [x4]^2 - 1777.75 [x3] [x4]^2 + 109.793 [x4]^3 

CS7-O3-FOTN 
13533.5 - 14.2805 Cos[x1] - 948.935 Cos[x2] - 12476.5 Cos[x3] - 14.2927 Cos[x4] - 5.91801 Sin[x1] + 140.709 Sin[x2] - 1004.18 

Sin[x3] + 5.68351 Sin[x4] 

CS7-O3-FOTNR 

(-66.5007 + 154.903 Cos[x1] - 6.30243 Cos[x2] - 70.9691 Cos[x3] - 0.147477 Cos[x4] + 32.0143 Sin[x1] - 1.27757 Sin[x2] - 

7.83822 Sin[x3] - 0.379332 Sin[x4]) / (-0.527083 + 1.3426 Cos[x1] - 0.0586003 Cos[x2] - 0.65987 Cos[x3] - 0.00137123 Cos[x4] 

+ 0.277505 Sin[x1] - 0.011879 Sin[x2] - 0.0728798 Sin[x3] - 0.00352702 Sin[x4]) 

CS7-O3-SOTN 
11.3843 + 53.19 Cos[x1] + 71.0222 Cos[x1]^2 + 10.6134 Cos[x2] + 332.086 Cos[x1] Cos[x2] + 10.3315 Cos[x2]^2 + 10.7604 

Cos[x3] + 29.5016 Cos[x1] Cos[x3] + 10.6961 Cos[x2] Cos[x3] + 10.19 Cos[x3]^2 - 409.788 Cos[x4] - 313.824 Cos[x1] Cos[x4] 
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+ 1913.9 Cos[x2] Cos[x4] - 628.492 Cos[x3] Cos[x4] - 216.8 Cos[x4]^2 + 857.271 Sin[x1] + 1215.28 Cos[x1] Sin[x1] - 3761.12 

Cos[x2] Sin[x1] + 1284.68 Cos[x3] Sin[x1] + 505.181 Cos[x4] Sin[x1] - 289.799 Sin[x1]^2 - 642.465 Sin[x2] + 1032.49 Cos[x1] 

Sin[x2] - 735.256 Cos[x2] Sin[x2] - 678.633 Cos[x3] Sin[x2] + 662.492 Cos[x4] Sin[x2] - 500.072 Sin[x1] Sin[x2] + 832.226 

Sin[x2]^2 - 1238.63 Sin[x3] - 2417.74 Cos[x1] Sin[x3] - 1715.93 Cos[x2] Sin[x3] - 1298.99 Cos[x3] Sin[x3] + 1506.79 Cos[x4] 

Sin[x3] - 725.227 Sin[x1] Sin[x3] + 67.1806 Sin[x2] Sin[x3] + 7912.69 Sin[x3]^2 + 22.3293 Sin[x4] - 60.0119 Cos[x1] Sin[x4] - 

369.344 Cos[x2] Sin[x4] + 45.3027 Cos[x3] Sin[x4] - 651.915 Cos[x4] Sin[x4] + 705.632 Sin[x1] Sin[x4] + 1010.47 Sin[x2] 

Sin[x4] + 4932.77 Sin[x3] Sin[x4] + 40.0795 Sin[x4]^2 

CS7-O3-SOTNR 

(5.26591*10^11 + 4.08554*10^11 Cos[x1] + 3.6531*10^11 Cos[x1]^2 + 5.12392*10^11 Cos[x2] + 3.9668*10^11 Cos[x1] 

Cos[x2] + 4.98639*10^11 Cos[x2]^2 + 5.22781*10^11 Cos[x3] + 4.05692*10^11 Cos[x1] Cos[x3] + 5.08678*10^11 Cos[x2] 

Cos[x3] + 5.19007*10^11 Cos[x3]^2 + 3.66145*10^10 Cos[x4] + 3.53341*10^9 Cos[x1] Cos[x4] + 3.5311*10^10 Cos[x2] 

Cos[x4] + 3.62625*10^10 Cos[x3] Cos[x4] - 2.8198*10^10 Cos[x4]^2 - 6.42714*10^11 Sin[x1] - 4.46898*10^11 Cos[x1] Sin[x1] 

- 6.29846*10^11 Cos[x2] Sin[x1] - 6.38391*10^11 Cos[x3] Sin[x1] - 3.25199*10^11 Cos[x4] Sin[x1] + 1.61281*10^11 Sin[x1]^2 

+ 1.19323*10^11 Sin[x2] + 9.63699*10^10 Cos[x1] Sin[x2] + 1.15866*10^11 Cos[x2] Sin[x2] + 1.1851*10^11 Cos[x3] Sin[x2] + 

1.06098*10^10 Cos[x4] Sin[x2] - 1.26457*10^11 Sin[x1] Sin[x2] + 2.79518*10^10 Sin[x2]^2 + 6.06127*10^10 Sin[x3] + 

4.5857*10^10 Cos[x1] Sin[x3] + 5.90563*10^10 Cos[x2] Sin[x3] + 6.01076*10^10 Cos[x3] Sin[x3] + 4.09657*10^9 Cos[x4] 

Sin[x3] - 7.36855*10^10 Sin[x1] Sin[x3] + 1.32368*10^10 Sin[x2] Sin[x3] + 7.58395*10^9 Sin[x3]^2 + 5.47137*10^11 Sin[x4] + 

4.36095*10^11 Cos[x1] Sin[x4] + 5.32136*10^11 Cos[x2] Sin[x4] + 5.43165*10^11 Cos[x3] Sin[x4] + 6.1997*10^10 Cos[x4] 

Sin[x4] - 5.24939*10^11 Sin[x1] Sin[x4] + 1.24692*10^11 Sin[x2] Sin[x4] + 6.35528*10^10 Sin[x3] Sin[x4] + 5.54789*10^11 

Sin[x4]^2) / (2.90776*10^10 + 4.33135*10^10 Cos[x1] + 5.67005*10^10 Cos[x1]^2 - 9.63384*10^9 Cos[x2] - 7.19833*10^9 

Cos[x1] Cos[x2] - 4.33118*10^10 Cos[x2]^2 + 3.6196*10^10 Cos[x3] + 5.28352*10^10 Cos[x1] Cos[x3] - 2.34029*10^9 Cos[x2] 

Cos[x3] + 4.31399*10^10 Cos[x3]^2 - 4.40786*10^11 Cos[x4] + 1.62915*10^12 Cos[x1] Cos[x4] - 5.45841*10^11 Cos[x2] 

Cos[x4] - 4.49693*10^11 Cos[x3] Cos[x4] - 2.72459*10^11 Cos[x4]^2 - 1.22936*10^11 Sin[x1] - 1.01152*10^11 Cos[x1] Sin[x1] 

- 1.47229*10^11 Cos[x2] Sin[x1] - 1.23816*10^11 Cos[x3] Sin[x1] - 1.11991*10^12 Cos[x4] Sin[x1] - 2.76229*10^10 Sin[x1]^2 

- 1.90662*10^10 Sin[x2] + 1.01318*10^11 Cos[x1] Sin[x2] - 4.25775*10^10 Cos[x2] Sin[x2] - 1.93194*10^10 Cos[x3] Sin[x2] + 

1.26082*10^10 Cos[x4] Sin[x2] + 4.07536*10^10 Sin[x1] Sin[x2] + 7.23894*10^10 Sin[x2]^2 - 3.17416*10^10 Sin[x3] - 

4.83222*10^10 Cos[x1] Sin[x3] - 3.90555*10^10 Cos[x2] Sin[x3] - 2.99885*10^10 Cos[x3] Sin[x3] + 1.03819*10^11 Cos[x4] 

Sin[x3] - 1.60499*10^10 Sin[x1] Sin[x3] + 2.05953*10^10 Sin[x2] Sin[x3] - 1.40623*10^10 Sin[x3]^2 + 1.86403*10^11 Sin[x4] - 

8.97728*10^11 Cos[x1] Sin[x4] + 2.51997*10^11 Cos[x2] Sin[x4] + 2.00988*10^11 Cos[x3] Sin[x4] - 3.34633*10^11 Cos[x4] 

Sin[x4] + 9.1372*10^11 Sin[x1] Sin[x4] - 3.25031*10^11 Sin[x2] Sin[x4] - 1.06285*10^11 Sin[x3] Sin[x4] + 3.01536*10^11 

Sin[x4]^2) 

CS7-O3-FOLN 221.771 + 13.2967 Log[x1] + 54.8639 Log[x2] + 39.6562 Log[x3] + 18.6689 Log[x4] 

CS7-O3-FOLNR 
(-20973.9 + 454.123 Log[x1] - 166.801 Log[x2] + 493.49 Log[x3] + 112375. Log[x4]) / (-199.098 + 1.67924 Log[x1] - 7.25009 

Log[x2] + 0.391617 Log[x3] + 1035.13 Log[x4]) 

CS7-O3-SOLN 

1034.22 - 157.236 Log[x1] + 24.8797 Log[x1]^2 + 349.653 Log[x2] - 22.3943 Log[x1] Log[x2] + 50.8858 Log[x2]^2 + 140.587 

Log[x3] + 59.3118 Log[x1] Log[x3] + 0.115295 Log[x2] Log[x3] + 92.1476 Log[x3]^2 - 289.108 Log[x4] + 90.3136 Log[x1] 

Log[x4] + 29.2882 Log[x2] Log[x4] + 52.5423 Log[x3] Log[x4] + 5.52687 Log[x4]^2 

CS7-O3-SOLNR 

(-2.38864*10^8 - 7.84263*10^8 Log[x1] - 2.00031*10^9 Log[x1]^2 - 3.3241*10^8 Log[x2] - 1.99944*10^9 Log[x1] Log[x2] + 

1.18602*10^9 Log[x2]^2 - 2.11821*10^8 Log[x3] - 2.31906*10^9 Log[x1] Log[x3] + 8.70587*10^8 Log[x2] Log[x3] + 

1.88254*10^9 Log[x3]^2 + 8.52436*10^8 Log[x4] + 4.5209*10^9 Log[x1] Log[x4] - 2.09749*10^9 Log[x2] Log[x4] - 

2.01797*10^9 Log[x3] Log[x4] + 9.72*10^8 Log[x4]^2) / (2.82823*10^8 + 6.58068*10^7 Log[x1] + 4.12761*10^6 Log[x1]^2 + 

7.73791*10^7 Log[x2] + 8.71225*10^7 Log[x1] Log[x2] + 7.50179*10^7 Log[x2]^2 + 3.71028*10^8 Log[x3] + 4.41599*10^7 

Log[x1] Log[x3] + 2.06689*10^8 Log[x2] Log[x3] + 1.08116*10^8 Log[x3]^2 - 3.08887*10^8 Log[x4] + 4.09485*10^7 Log[x1] 

Log[x4] - 1.32523*10^8 Log[x2] Log[x4] - 8.68155*10^7 Log[x3] Log[x4] - 7.70466*10^7 Log[x4]^2) 

NOTATION CS7-O4  

CS7-O4-L -30.6415 - 0.0416669 [x1] + 343.929 [x2] + 411.51 [x3] + 14.0065 [x4] 

CS7-O4-LN 
(1.39859*10^7 - 16349. [x1] + 8.08612*10^7 [x2] - 1.21548*10^8 [x3] + 8.58197*10^6 [x4]) / (493331. - 104.06 [x1] - 64135.1 

[x2] - 2.45258*10^6 [x3] + 62113.7 [x4]) 

CS7-O4-SON 

185.476 - 0.631289 [x1] + 0.000535502 [x1]^2 - 39.8502 [x2] - 0.294205 [x1] [x2] + 235.804 [x2]^2 - 1871.6 [x3] + 4.52075 [x1] 

[x3] + 3380.83 [x2] [x3] + 4262.12 [x3]^2 + 9.79693 [x4] - 0.0542013 [x1] [x4] - 28.9436 [x2] [x4] - 105.208 [x3] [x4] + 13.0136 

[x4]^2 

CS7-O4-SONR 

(87356.2 + 1.03231*10^7 [x1] + 1.26779*10^9 [x1]^2 + 114327. [x2] + 1.74521*10^7 [x1] [x2] + 41971.6 [x2]^2 + 19290.7 [x3] 

+ 2.90857*10^6 [x1] [x3] + 14806.5 [x2] [x3] + 3357.9 [x3]^2 + 102779. [x4] + 1.13624*10^7 [x1] [x4] + 133047. [x2] [x4] + 

22831.3 [x3] [x4] + 112677. [x4]^2) / (-3.71145*10^6 - 2.40597*10^8 [x1] + 1.84131*10^7 [x1]^2 - 9.49525*10^6 [x2] - 

1.43373*10^9 [x1] [x2] - 3.6102*10^6 [x2]^2 - 1.27777*10^6 [x3] - 1.85392*10^8 [x1] [x3] - 1.24524*10^6 [x2] [x3] - 249362. 

[x3]^2 - 4.17886*10^6 [x4] - 1.52168*10^8 [x1] [x4] - 1.10395*10^7 [x2] [x4] - 1.49915*10^6 [x3] [x4] - 3.63441*10^6 [x4]^2) 

CS7-O4-TON 

69.6149 - 0.0904271 [x1] - 0.000582866 [x1]^2 + 4.0113*10^-6 [x1]^3 + 218.988 [x2] - 2.42505 [x1] [x2] + 0.00222651 [x1]^2 

[x2] - 220.427 [x2]^2 + 9.82682 [x1] [x2]^2 - 5368.12 [x2]^3 - 387.395 [x3] + 5.02725 [x1] [x3] - 0.0163158 [x1]^2 [x3] - 

1533.37 [x2] [x3] + 16.6419 [x1] [x2] [x3] + 8334.96 [x2]^2 [x3] - 1694.34 [x3]^2 + 5.31044 [x1] [x3]^2 - 7582.95 [x2] [x3]^2 + 

53578.7 [x3]^3 + 57.8693 [x4] - 0.504978 [x1] [x4] + 0.000484384 [x1]^2 [x4] + 387.597 [x2] [x4] - 3.2465 [x1] [x2] [x4] + 

955.69 [x2]^2 [x4] - 725.118 [x3] [x4] + 0.341593 [x1] [x3] [x4] + 183.034 [x2] [x3] [x4] - 9995.96 [x3]^2 [x4] + 2.58097 [x4]^2 

+ 0.361992 [x1] [x4]^2 - 68.1976 [x2] [x4]^2 + 1133.43 [x3] [x4]^2 - 45.7669 [x4]^3 

CS7-O4-FOTN 
11404.2 - 9.58609 Cos[x1] - 543.189 Cos[x2] - 10787.1 Cos[x3] - 17.5084 Cos[x4] + 4.86905 Sin[x1] + 240.609 Sin[x2] - 788.465 

Sin[x3] - 7.48081 Sin[x4] 

CS7-O4-FOTNR 

(89.286 - 0.470082 Cos[x1] + 105.349 Cos[x2] - 195.085 Cos[x3] - 0.730505 Cos[x4] + 0.0422696 Sin[x1] + 32.4091 Sin[x2] - 

27.9325 Sin[x3] - 1.72774 Sin[x4]) / (0.574088 - 0.00507038 Cos[x1] + 2.31519 Cos[x2] - 2.92252 Cos[x3] - 0.00872547 Cos[x4] 

+ 0.000416657 Sin[x1] + 0.643575 Sin[x2] - 0.386777 Sin[x3] - 0.0207799 Sin[x4]) 

CS7-O4-SOTN 

12.0104 + 9.74583 Cos[x1] + 6.35322 Cos[x1]^2 + 12.3361 Cos[x2] + 28.8058 Cos[x1] Cos[x2] + 12.923 Cos[x2]^2 + 11.4575 

Cos[x3] + 5.47576 Cos[x1] Cos[x3] + 11.9034 Cos[x2] Cos[x3] + 10.9277 Cos[x3]^2 - 50.7521 Cos[x4] - 8.35961 Cos[x1] 

Cos[x4] + 180.461 Cos[x2] Cos[x4] - 74.7475 Cos[x3] Cos[x4] - 22.3749 Cos[x4]^2 + 49.7959 Sin[x1] + 95.74 Cos[x1] Sin[x1] - 

312.814 Cos[x2] Sin[x1] + 84.1933 Cos[x3] Sin[x1] + 75.3578 Cos[x4] Sin[x1] + 63.3979 Sin[x1]^2 - 359.46 Sin[x2] + 154.046 

Cos[x1] Sin[x2] - 404.145 Cos[x2] Sin[x2] - 384.092 Cos[x3] Sin[x2] + 520.488 Cos[x4] Sin[x2] - 33.0409 Sin[x1] Sin[x2] + 

42.5234 Sin[x2]^2 - 363.903 Sin[x3] + 476.406 Cos[x1] Sin[x3] - 421.111 Cos[x2] Sin[x3] - 394.408 Cos[x3] Sin[x3] - 353.606 

Cos[x4] Sin[x3] - 394.772 Sin[x1] Sin[x3] + 3348.83 Sin[x2] Sin[x3] + 7406.27 Sin[x3]^2 + 15.7928 Sin[x4] + 17.9726 Cos[x1] 

Sin[x4] - 30.5845 Cos[x2] Sin[x4] + 19.4147 Cos[x3] Sin[x4] - 81.8803 Cos[x4] Sin[x4] + 137.445 Sin[x1] Sin[x4] + 834.427 

Sin[x2] Sin[x4] - 1186.24 Sin[x3] Sin[x4] + 20.3274 Sin[x4]^2 

CS7-O4-SOTNR 

(48.0074 + 242.591 Cos[x1] + 344.357 Cos[x1]^2 + 46.9746 Cos[x2] + 238.615 Cos[x1] Cos[x2] + 46.056 Cos[x2]^2 + 49.6996 

Cos[x3] + 242.639 Cos[x1] Cos[x3] + 48.6849 Cos[x2] Cos[x3] + 51.3928 Cos[x3]^2 - 282.189 Cos[x4] - 202.218 Cos[x1] 

Cos[x4] - 278.33 Cos[x2] Cos[x4] - 279.408 Cos[x3] Cos[x4] - 158.494 Cos[x4]^2 + 83.2665 Sin[x1] - 46.5772 Cos[x1] Sin[x1] + 

80.7571 Cos[x2] Sin[x1] + 81.5161 Cos[x3] Sin[x1] + 95.6204 Cos[x4] Sin[x1] - 295.35 Sin[x1]^2 + 4.63432 Sin[x2] + 33.8028 

Cos[x1] Sin[x2] + 4.09298 Cos[x2] Sin[x2] + 4.51878 Cos[x3] Sin[x2] - 40.8348 Cos[x4] Sin[x2] + 41.0959 Sin[x1] Sin[x2] + 

2.95141 Sin[x2]^2 - 21.3657 Sin[x3] + 4.48221 Cos[x1] Sin[x3] - 21.3783 Cos[x2] Sin[x3] - 21.2321 Cos[x3] Sin[x3] - 43.3378 

Cos[x4] Sin[x3] + 20.0717 Sin[x1] Sin[x3] + 0.399869 Sin[x2] Sin[x3] - 2.38538 Sin[x3]^2 + 139.062 Sin[x4] + 316.822 Cos[x1] 

Sin[x4] + 136.296 Cos[x2] Sin[x4] + 140.613 Cos[x3] Sin[x4] - 223.545 Cos[x4] Sin[x4] + 57.1888 Sin[x1] Sin[x4] + 19.4634 

Sin[x2] Sin[x4] - 14.2544 Sin[x3] Sin[x4] + 207.502 Sin[x4]^2) / (-37.6597 - 17.3885 Cos[x1] - 9.57813 Cos[x1]^2 - 80.1226 

Cos[x2] + 26.291 Cos[x1] Cos[x2] - 117.805 Cos[x2]^2 + 63.6727 Cos[x3] + 82.9791 Cos[x1] Cos[x3] + 19.3904 Cos[x2] Cos[x3] 

+ 161.521 Cos[x3]^2 + 14.8947 Cos[x4] - 23.1574 Cos[x1] Cos[x4] - 78.9037 Cos[x2] Cos[x4] + 32.0844 Cos[x3] Cos[x4] - 

17.2771 Cos[x4]^2 + 82.8488 Sin[x1] + 53.3192 Cos[x1] Sin[x1] - 227.047 Cos[x2] Sin[x1] + 88.148 Cos[x3] Sin[x1] + 15.7198 

Cos[x4] Sin[x1] - 27.0815 Sin[x1]^2 + 26.2613 Sin[x2] - 88.4534 Cos[x1] Sin[x2] + 3.09839 Cos[x2] Sin[x2] + 62.5915 Cos[x3] 

Sin[x2] - 54.8352 Cos[x4] Sin[x2] - 61.1949 Sin[x1] Sin[x2] + 81.1452 Sin[x2]^2 - 82.8222 Sin[x3] - 139.692 Cos[x1] Sin[x3] - 

89.6145 Cos[x2] Sin[x3] - 51.1636 Cos[x3] Sin[x3] + 223.493 Cos[x4] Sin[x3] + 50.917 Sin[x1] Sin[x3] - 149.662 Sin[x2] Sin[x3] 

- 198.181 Sin[x3]^2 - 25.2907 Sin[x4] - 24.618 Cos[x1] Sin[x4] + 17.9789 Cos[x2] Sin[x4] + 14.9605 Cos[x3] Sin[x4] + 28.1112 

Cos[x4] Sin[x4] + 16.7019 Sin[x1] Sin[x4] - 146.914 Sin[x2] Sin[x4] + 375.615 Sin[x3] Sin[x4] - 19.3825 Sin[x4]^2) 

CS7-O4-FOLN 327.053 - 8.74788 Log[x1] + 58.6878 Log[x2] + 42.0835 Log[x3] + 15.916 Log[x4] 

CS7-O4-FOLNR 
(-4669.91 - 3130.83 Log[x1] - 2090.08 Log[x2] - 3800.93 Log[x3] + 48024.1 Log[x4]) / (-56.9238 - 34.3138 Log[x1] - 23.3934 

Log[x2] - 42.131 Log[x3] + 548.843 Log[x4]) 

CS7-O4-SOLN 

224.488 + 95.7997 Log[x1] + 10.194 Log[x1]^2 + 386.68 Log[x2] - 7.48795 Log[x1] Log[x2] + 41.7608 Log[x2]^2 - 61.0096 

Log[x3] + 100.028 Log[x1] Log[x3] + 62.3673 Log[x2] Log[x3] + 67.7425 Log[x3]^2 + 55.9507 Log[x4] - 15.384 Log[x1] 

Log[x4] - 5.25805 Log[x2] Log[x4] - 10.9839 Log[x3] Log[x4] + 29.3582 Log[x4]^2 



 

 
226 

CS7-O4-SOLNR 

(-1.59095*10^7 + 1.75785*10^8 Log[x1] - 1.28025*10^9 Log[x1]^2 - 3.89794*10^8 Log[x2] - 1.97373*10^9 Log[x1] Log[x2] + 

1.41657*10^9 Log[x2]^2 - 1.00393*10^7 Log[x3] - 5.5339*10^8 Log[x1] Log[x3] + 1.82864*10^9 Log[x2] Log[x3] - 

8.48438*10^8 Log[x3]^2 + 2.28789*10^8 Log[x4] + 1.09314*10^9 Log[x1] Log[x4] - 4.4472*10^9 Log[x2] Log[x4] + 

3.10116*10^8 Log[x3] Log[x4] + 4.80376*10^9 Log[x4]^2) / (1.78803*10^8 + 1.97885*10^8 Log[x1] - 2.02103*10^7 Log[x1]^2 

+ 5.47717*10^8 Log[x2] + 2.16755*10^7 Log[x1] Log[x2] + 1.82896*10^8 Log[x2]^2 + 1.77967*10^8 Log[x3] + 2.20619*10^7 

Log[x1] Log[x3] + 1.20904*10^8 Log[x2] Log[x3] + 2.00366*10^7 Log[x3]^2 - 4.01268*10^8 Log[x4] + 3.43039*10^7 Log[x1] 

Log[x4] - 9.5291*10^7 Log[x2] Log[x4] - 9.48432*10^7 Log[x3] Log[x4] + 3.6973*10^7 Log[x4]^2) 

NOTATION CS8-O1  

CS8-O1-L -54.9044 + 0.0126924 [[x1]] + 110.385 [x2] + 112.152 [x3] 

CS8-O1-LN (-3215.51 + 0.180968 [x1] + 14213.7 [x2] + 9181.29 [x3]) / (123.248 - 0.0178031 [x1] + 77.4951 [x2] - 17.4485 [x3]) 

CS8-O1-SON 
-41.748 - 0.00861179 [x1] + 1.3402*10^-6 [x1]^2 + 363.464 [x2] + 0.0182704 [x1] [x2] - 681.286 [x2]^2 + 60.009 [x3] + 

0.0213713 [x1] [x3] - 36.4502 [x2] [x3] + 11.8511 [x3]^2 

CS8-O1-SONR 

(-3.34635*10^8 + 67236.5 [x1] - 14.468 [x1]^2 + 7.26487*10^8 [x2] - 348769. [x1] [x2] - 2.04232*10^9 [x2]^2 + 8.37234*10^8 

[x3] + 55656.9 [x1] [x3] + 1.55003*10^9 [x2] [x3] - 1.05179*10^9 [x3]^2) / (-4.1996*10^6 - 61.9614 [x1] - 0.166786 [x1]^2 + 

5.65691*10^6 [x2] - 4998.6 [x1] [x2] - 2.51451*10^7 [x2]^2 + 1.69691*10^7 [x3] + 1969.77 [x1] [x3] + 2.62236*10^7 [x2] [x3] - 

2.2464*10^7 [x3]^2) 

CS8-O1-TON 

-102.263 + 0.101074 [x1] + 0.0000326033 [x1]^2 - 1.32129*10^-8 [x1]^3 + 686.167 [x2] - 1.69116 [x1] [x2] + 0.000276816 

[x1]^2 [x2] + 2716.61 [x2]^2 + 1.2192 [x1] [x2]^2 - 7356.17 [x2]^3 - 143.511 [x3] - 0.0126298 [x1] [x3] - 5.03831*10^-7 [x1]^2 

[x3] + 2883.2 [x2] [x3] + 0.118927 [x1] [x2] [x3] - 3197.7 [x2]^2 [x3] - 68.4451 [x3]^2 + 0.00595785 [x1] [x3]^2 - 1652.55 [x2] 

[x3]^2 + 233.957 [x3]^3 

CS8-O1-FOTN -1375.27 + 12.9017 Cos[x1] + 1393.95 Cos[x2] - 69.4043 Cos[x3] - 2.18913 Sin[x1] + 395.32 Sin[x2] + 88.8538 Sin[x3] 

CS8-O1-FOTNR 
(-24421.5 + 91.0349 Cos[x1] + 38330.7 Cos[x2] - 13331.9 Cos[x3] + 89.9866 Sin[x1] + 11414.8 Sin[x2] - 5101.26 Sin[x3]) / 

(167.925 - 4.09915 Cos[x1] + 101.566 Cos[x2] - 210.074 Cos[x3] + 2.38993 Sin[x1] + 33.8889 Sin[x2] - 135.191 Sin[x3]) 

CS8-O1-SOTN 

5474.21 + 4778.91 Cos[x1] + 11516.2 Cos[x1]^2 + 5725.02 Cos[x2] - 3329.92 Cos[x1] Cos[x2] + 5987.71 Cos[x2]^2 + 8276.19 

Cos[x3] - 7.76545 Cos[x1] Cos[x3] - 44156.3 Cos[x2] Cos[x3] + 11099.3 Cos[x3]^2 - 0.0769973 Sin[x1] + 64.2828 Cos[x1] 

Sin[x1] + 299.84 Cos[x2] Sin[x1] + 7.41486 Cos[x3] Sin[x1] + 6836.25 Sin[x1]^2 + 3411.25 Sin[x2] - 658.597 Cos[x1] Sin[x2] + 

3512.04 Cos[x2] Sin[x2] - 5957.66 Cos[x3] Sin[x2] + 22.0273 Sin[x1] Sin[x2] - 16553.2 Sin[x2]^2 + 6636.33 Sin[x3] + 16.9182 

Cos[x1] Sin[x3] - 21152. Cos[x2] Sin[x3] + 14290.1 Cos[x3] Sin[x3] + 0.401215 Sin[x1] Sin[x3] - 2430.51 Sin[x2] Sin[x3] - 

3399.73 Sin[x3]^2 

CS8-O1-SOTNR 

(5.61809 - 4.89851 Cos[x1] + 3.35654 Cos[x1]^2 + 4.56512 Cos[x2] + 1.33823 Cos[x1] Cos[x2] + 3.59182 Cos[x2]^2 - 15.9506 

Cos[x3] + 29.0657 Cos[x1] Cos[x3] - 16.1078 Cos[x2] Cos[x3] - 29.9305 Cos[x3]^2 + 0.0112405 Sin[x1] + 6.25136 Cos[x1] 

Sin[x1] + 4.27691 Cos[x2] Sin[x1] - 26.5073 Cos[x3] Sin[x1] + 3.26155 Sin[x1]^2 + 4.24964 Sin[x2] - 42.4631 Cos[x1] Sin[x2] + 

3.80504 Cos[x2] Sin[x2] - 2.71585 Cos[x3] Sin[x2] + 9.59915 Sin[x1] Sin[x2] + 3.02627 Sin[x2]^2 + 34.1665 Sin[x3] - 80.6674 

Cos[x1] Sin[x3] + 32.7964 Cos[x2] Sin[x3] + 16.6412 Cos[x3] Sin[x3] + 40.1578 Sin[x1] Sin[x3] + 12.2129 Sin[x2] Sin[x3] + 

36.5486 Sin[x3]^2) / (2.03067 - 31.0368 Cos[x1] + 10.5803 Cos[x1]^2 - 2.06543 Cos[x2] + 58.6839 Cos[x1] Cos[x2] - 5.82386 

Cos[x2]^2 + 1.15014 Cos[x3] - 1.89377 Cos[x1] Cos[x3] + 5.57631 Cos[x2] Cos[x3] - 0.392916 Cos[x3]^2 - 4.5638 Sin[x1] + 

26.6791 Cos[x1] Sin[x1] - 2.31314 Cos[x2] Sin[x1] + 2.83204 Cos[x3] Sin[x1] - 7.54967 Sin[x1]^2 + 10.6327 Sin[x2] + 12.9086 

Cos[x1] Sin[x2] + 8.79435 Cos[x2] Sin[x2] - 20.4759 Cos[x3] Sin[x2] - 0.352126 Sin[x1] Sin[x2] + 8.85453 Sin[x2]^2 + 5.99362 

Sin[x3] - 1.77241 Cos[x1] Sin[x3] - 6.50825 Cos[x2] Sin[x3] + 6.35969 Cos[x3] Sin[x3] + 2.71826 Sin[x1] Sin[x3] - 15.6222 

Sin[x2] Sin[x3] + 3.42359 Sin[x3]^2) 

CS8-O1-FOLN -69.0858 + 25.8706 Log[x1] + 22.0159 Log[x2] + 59.3364 Log[x3] 

CS8-O1-FOLNR 
(20881.7 + 3320.68 Log[x1] + 13107.1 Log[x2] + 9800.06 Log[x3]) / (1140.28 - 97.7874 Log[x1] + 102.726 Log[x2] - 192.526 

Log[x3]) 

CS8-O1-SOLN 
861.546 - 249.435 Log[x1] + 19.5013 Log[x1]^2 - 72.9782 Log[x2] + 5.24073 Log[x1] Log[x2] - 16.2545 Log[x2]^2 - 69.5473 

Log[x3] + 22.0348 Log[x1] Log[x3] - 1.59238 Log[x2] Log[x3] + 32.8321 Log[x3]^2 

CS8-O1-SOLNR 

(-1600.31 + 608.411 Log[x1] - 53.4357 Log[x1]^2 + 690.544 Log[x2] - 106.579 Log[x1] Log[x2] - 56.7454 Log[x2]^2 - 382.359 

Log[x3] + 48.189 Log[x1] Log[x3] + 104.791 Log[x2] Log[x3] - 183.62 Log[x3]^2)  /  (-17.174 + 6.59564 Log[x1] - 0.587407 

Log[x1]^2 + 9.31083 Log[x2] - 1.39029 Log[x1] Log[x2] - 0.698194 Log[x2]^2 - 16.0809 Log[x3] + 1.90223 Log[x1] Log[x3] + 

1.85584 Log[x2] Log[x3] - 4.21193 Log[x3]^2) 

NOTATION CS8-O2  

CS8-O2-L -0.161913 - 0.000169284 [x1] + 1.33365 [x2] + 2.03907 [x3] 

CS8-O2-LN (-9099.52 + 2.42355 [x1] + 480.522 [x2] + 31463.2 [x3]) / (8374.93 + 5.87661 [x1] - 23371.2 [x2] - 576.207 [x3]) 

CS8-O2-SON 
-1.06474 + 0.000368836 [x1] + 3.1887*10^-8 [x1]^2 - 0.697321 [x2] - 0.00121531 [x1] [x2] + 7.90143 [x2]^2 + 3.88423 [x3] - 

0.000779298 [x1] [x3] + 2.58773 [x2] [x3] - 0.601544 [x3]^2 

CS8-O2-SONR 

(5.47974*10^6 - 1276.66 [x1] + 0.0902109 [x1]^2 - 2.59031*10^7 [x2] - 1105.55 [x1] [x2] + 9.66269*10^7 [x2]^2 - 

4.23768*10^6 [x3] + 1883.88 [x1] [x3] + 7.75058*10^6 [x2] [x3] - 2.61702*10^6 [x3]^2) / (1.13371*10^7 - 2176.35 [x1] + 

0.113614 [x1]^2 - 1.18305*10^7 [x2] + 2948.63 [x1] [x2] + 7.76606*10^7 [x2]^2 - 2.23725*10^7 [x3] + 2302.11 [x1] [x3] - 

1.92947*10^7 [x2] [x3] + 1.34367*10^7 [x3]^2) 

CS8-O2-TON 

0.748471 - 0.000497874 [x1] - 2.15117*10^-7 [x1]^2 + 2.08581*10^-11 [x1]^3 - 3.20839 [x2] - 0.00106559 [x1] [x2] + 

3.26141*10^-7 [x1]^2 [x2] - 7.41009 [x2]^2 + 0.00146437 [x1] [x2]^2 + 111.478 [x2]^3 - 2.08714 [x3] + 0.00446856 [x1] [x3] + 

9.03065*10^-8 [x1]^2 [x3] + 20.5139 [x2] [x3] - 0.00346656 [x1] [x2] [x3] - 103.993 [x2]^2 [x3] - 2.65454 [x3]^2 - 0.00462583 

[x1] [x3]^2 + 28.5218 [x2] [x3]^2 + 3.67474 [x3]^3 

CS8-O2-FOTN 18.7608 - 0.172815 Cos[x1] - 18.5391 Cos[x2] - 0.443039 Cos[x3] + 0.0238901 Sin[x1] - 2.41475 Sin[x2] + 2.15031 Sin[x3] 

CS8-O2-FOTNR 
(12.3052 + 30.2998 Cos[x1] - 18.9099 Cos[x2] + 0.00245014 Cos[x3] - 30.9792 Sin[x1] - 1.7451 Sin[x2] - 0.00608492 Sin[x3]) / 

(33.4234 - 4.5816 Cos[x1] - 32.3015 Cos[x2] + 0.0288057 Cos[x3] + 4.6736 Sin[x1] - 2.92552 Sin[x2] - 0.0114868 Sin[x3]) 

CS8-O2-SOTN 

346.113 + 206.382 Cos[x1] + 826.643 Cos[x1]^2 + 361.963 Cos[x2] - 11.5092 Cos[x1] Cos[x2] + 378.477 Cos[x2]^2 + 522.896 

Cos[x3] + 10.2185 Cos[x1] Cos[x3] - 2799.72 Cos[x2] Cos[x3] + 692.371 Cos[x3]^2 - 1.79344 Sin[x1] + 112.065 Cos[x1] Sin[x1] 

+ 11.9158 Cos[x2] Sin[x1] - 1.45843 Cos[x3] Sin[x1] + 426.103 Sin[x1]^2 + 342.337 Sin[x2] - 3.2989 Cos[x1] Sin[x2] + 362.439 

Cos[x2] Sin[x2] - 622.12 Cos[x3] Sin[x2] + 2.4493 Sin[x1] Sin[x2] - 998.513 Sin[x2]^2 + 476.843 Sin[x3] + 5.06658 Cos[x1] 

Sin[x3] - 1524.83 Cos[x2] Sin[x3] + 1012.13 Cos[x3] Sin[x3] - 0.717988 Sin[x1] Sin[x3] - 338.147 Sin[x2] Sin[x3] - 161.489 

Sin[x3]^2 

CS8-O2-SOTNR 

(6.15373*10^6 - 873368. Cos[x1] + 2.55917*10^6 Cos[x1]^2 - 1.91004*10^6 Cos[x2] - 2.68963*10^6 Cos[x1] Cos[x2] - 

8.9804*10^6 Cos[x2]^2 + 3.56523*10^6 Cos[x3] + 210469. Cos[x1] Cos[x3] - 5.10549*10^6 Cos[x2] Cos[x3] + 2.49582*10^6 

Cos[x3]^2 - 2.18875*10^7 Sin[x1] - 2.16294*10^6 Cos[x1] Sin[x1] + 3.10375*10^7 Cos[x2] Sin[x1] - 7.86481*10^6 Cos[x3] 

Sin[x1] + 3.59456*10^6 Sin[x1]^2 - 2.03594*10^6 Sin[x2] + 1.06371*10^6 Cos[x1] Sin[x2] - 6.84992*10^6 Cos[x2] Sin[x2] + 

2.33335*10^6 Cos[x3] Sin[x2] + 3.67331*10^6 Sin[x1] Sin[x2] + 1.51341*10^7 Sin[x2]^2 + 2.89357*10^6 Sin[x3] - 

3.47287*10^6 Cos[x1] Sin[x3] + 2.4948*10^6 Cos[x2] Sin[x3] + 173589. Cos[x3] Sin[x3] - 8.81812*10^6 Sin[x1] Sin[x3] - 

1.20848*10^7 Sin[x2] Sin[x3] + 3.65791*10^6 Sin[x3]^2) / (-2.83161*10^6 + 19406.3 Cos[x1] - 1.43141*10^6 Cos[x1]^2 + 

417494. Cos[x2] - 2.63245*10^6 Cos[x1] Cos[x2] + 3.30312*10^6 Cos[x2]^2 - 920977. Cos[x3] - 3.67434*10^6 Cos[x1] Cos[x3] 

+ 2.46097*10^6 Cos[x2] Cos[x3] - 823027. Cos[x3]^2 + 1.54071*10^7 Sin[x1] + 2.18986*10^6 Cos[x1] Sin[x1] - 2.64996*10^7 

Cos[x2] Sin[x1] + 5.77591*10^6 Cos[x3] Sin[x1] - 1.40019*10^6 Sin[x1]^2 - 1.58901*10^6 Sin[x2] + 1.1351*10^7 Cos[x1] 

Sin[x2] + 216492. Cos[x2] Sin[x2] - 775614. Cos[x3] Sin[x2] - 5.83601*10^6 Sin[x1] Sin[x2] - 6.13472*10^6 Sin[x2]^2 + 

668247. Sin[x3] + 4.82631*10^6 Cos[x1] Sin[x3] + 652703. Cos[x2] Sin[x3] + 3.45586*10^6 Cos[x3] Sin[x3] + 6.9781*10^6 

Sin[x1] Sin[x3] + 2.31405*10^6 Sin[x2] Sin[x3] - 2.00858*10^6 Sin[x3]^2) 

CS8-O2-FOLN 4.6161 - 0.347544 Log[x1] + 0.253734 Log[x2] + 1.09447 Log[x3] 

CS8-O2-FOLNR 
(-0.0787832 + 0.0513044 Log[x1] + 0.0112032 Log[x2] + 0.162951 Log[x3]) / (-1.05078 + 0.147808 Log[x1] - 0.053971 Log[x2] 

- 0.108558 Log[x3]) 

CS8-O2-SOLN 
14.0524 - 1.07758 Log[x1] - 0.0387908 Log[x1]^2 + 5.71676 Log[x2] - 0.502417 Log[x1] Log[x2] + 0.449427 Log[x2]^2 + 

8.21411 Log[x3] - 0.809514 Log[x1] Log[x3] + 0.237863 Log[x2] Log[x3] + 0.408757 Log[x3]^2 

CS8-O2-SOLNR 

(-1.0964*10^6 + 311793. Log[x1] - 22028.8 Log[x1]^2 + 75836.7 Log[x2] - 5098.39 Log[x1] Log[x2] + 10272. Log[x2]^2 - 

24379.1 Log[x3] - 10870. Log[x1] Log[x3] - 5615.6 Log[x2] Log[x3] - 52010.1 Log[x3]^2)  /  (-1.451*10^6 + 398931. Log[x1] - 

27320.5 Log[x1]^2 + 14203.9 Log[x2] + 1266.51 Log[x1] Log[x2] + 5372.02 Log[x2]^2 + 90882.1 Log[x3] - 18638.5 Log[x1] 

Log[x3] + 1207.75 Log[x2] Log[x3] - 2711.44 Log[x3]^2) 

NOTATION CS9-O  

CS9-O-L 1.87061 - 0.0114886 [x1] + 18.6868 [x2] + 8.59617 [x3] 

CS9-O-LN (1025.43 - 4.62856 [x1] + 3190.93 [x2] + 2843.28 [x3]) / (388.229 - 0.307063 [x1] - 396.992 [x2] + 109.113 [x3]) 
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CS9-O-SON 
2.45847 - 0.00189348 [x1] - 0.0000472941 [x1]^2 + 6.83888 [x2] - 0.00445045 [x1] [x2] + 26.9872 [x2]^2 + 5.36516 [x3] + 

0.0504367 [x1] [x3] + 14.1845 [x2] [x3] - 33.5635 [x3]^2 

CS9-O-SONR 

(-4.83879*10^7 + 334703. [x1] - 970.747 [x1]^2 + 4.31651*10^8 [x2] + 173035. [x1] [x2] - 1.3449*10^9 [x2]^2 - 2.481*10^8 

[x3] + 1.68804*10^6 [x1] [x3] + 3.16572*10^8 [x2] [x3] - 3.47965*10^8 [x3]^2) / (-1.34979*10^7 + 116309. [x1] - 59.305 [x1]^2 

+ 9.65931*10^7 [x2] - 254863. [x1] [x2] - 2.28429*10^8 [x2]^2 - 5.53139*10^7 [x3] + 190145. [x1] [x3] + 1.32223*10^8 [x2] 

[x3] - 4.64206*10^7 [x3]^2) 

CS9-O-TON 

5.00377 - 0.0297535 [x1] - 0.000125448 [x1]^2 + 8.46711*10^-7 [x1]^3 - 5.28511 [x2] + 0.317552 [x1] [x2] - 0.001358 [x1]^2 

[x2] - 24.4649 [x2]^2 + 0.148298 [x1] [x2]^2 + 40.943 [x2]^3 - 3.66636 [x3] + 0.120226 [x1] [x3] - 0.000284089 [x1]^2 [x3] + 

44.1969 [x2] [x3] + 0.216464 [x1] [x2] [x3] + 23.4036 [x2]^2 [x3] - 50.0952 [x3]^2 - 0.089525 [x1] [x3]^2 - 348.211 [x2] [x3]^2 

+ 371.271 [x3]^3 

CS9-O-FOTN 33.6794 + 3.25945 Cos[x1] - 53.0319 Cos[x2] + 17.9063 Cos[x3] - 0.235264 Sin[x1] + 8.38796 Sin[x2] + 10.1466 Sin[x3] 

CS9-O-FOTNR 
(-2.74413 - 1.11619 Cos[x1] + 9.37171 Cos[x2] - 4.33852 Cos[x3] + 1.86827 Sin[x1] + 1.39322 Sin[x2] + 1.19265 Sin[x3]) / 

(2.25733 - 0.234437 Cos[x1] - 0.888403 Cos[x2] - 0.778967 Cos[x3] + 0.32135 Sin[x1] - 0.694225 Sin[x2] + 0.0858866 Sin[x3]) 

CS9-O-SOTN 

-3057. - 2533.53 Cos[x1] - 5313.11 Cos[x1]^2 - 3210.44 Cos[x2] - 979.447 Cos[x1] Cos[x2] - 3367.12 Cos[x2]^2 - 3096.24 

Cos[x3] - 2690.49 Cos[x1] Cos[x3] + 27771. Cos[x2] Cos[x3] - 3135.89 Cos[x3]^2 + 2551.31 Sin[x1] - 4579.93 Cos[x1] Sin[x1] + 

1124.17 Cos[x2] Sin[x1] + 2824.07 Cos[x3] Sin[x1] - 5099.13 Sin[x1]^2 - 2728.05 Sin[x2] - 114.567 Cos[x1] Sin[x2] - 3039.53 

Cos[x2] Sin[x2] + 5914.08 Cos[x3] Sin[x2] + 142.708 Sin[x1] Sin[x2] + 8106.65 Sin[x2]^2 - 1376.24 Sin[x3] - 283.03 Cos[x1] 

Sin[x3] + 3062.18 Cos[x2] Sin[x3] - 1345.98 Cos[x3] Sin[x3] + 285.278 Sin[x1] Sin[x3] + 651.119 Sin[x2] Sin[x3] + 7533.46 

Sin[x3]^2 

CS9-O-SOTNR 

(-3.92521*10^8 + 1.53157*10^8 Cos[x1] - 1.60347*10^8 Cos[x1]^2 + 4.97553*10^8 Cos[x2] + 9.78375*10^8 Cos[x1] Cos[x2] + 

1.27289*10^9 Cos[x2]^2 - 7.29921*10^8 Cos[x3] + 2.16472*10^8 Cos[x1] Cos[x3] + 1.36872*10^8 Cos[x2] Cos[x3] - 

1.05888*10^9 Cos[x3]^2 - 7.41999*10^7 Sin[x1] - 8.90709*10^8 Cos[x1] Sin[x1] - 2.76628*10^8 Cos[x2] Sin[x1] + 

4.66975*10^8 Cos[x3] Sin[x1] - 2.32174*10^8 Sin[x1]^2 + 3.8723*10^8 Sin[x2] - 2.17496*10^9 Cos[x1] Sin[x2] + 9.24341*10^8 

Cos[x2] Sin[x2] + 6.21756*10^8 Cos[x3] Sin[x2] - 1.89656*10^9 Sin[x1] Sin[x2] - 1.66541*10^9 Sin[x2]^2 + 1.08192*10^9 

Sin[x3] - 1.76775*10^9 Cos[x1] Sin[x3] + 1.3593*10^9 Cos[x2] Sin[x3] + 9.96431*10^8 Cos[x3] Sin[x3] - 2.33182*10^9 Sin[x1] 

Sin[x3] - 1.93759*10^9 Sin[x2] Sin[x3] + 6.66359*10^8 Sin[x3]^2) / (4.97674*10^8 + 6.31884*10^8 Cos[x1] + 9.12452*10^8 

Cos[x1]^2 - 5.02313*10^8 Cos[x2] + 3.9769*10^8 Cos[x1] Cos[x2] - 1.4037*10^9 Cos[x2]^2 + 2.10347*10^8 Cos[x3] - 

5.98445*10^7 Cos[x1] Cos[x3] - 9.15476*10^8 Cos[x2] Cos[x3] - 6.83767*10^7 Cos[x3]^2 + 3.2723*10^8 Sin[x1] + 

3.05938*10^8 Cos[x1] Sin[x1] - 2.64988*10^9 Cos[x2] Sin[x1] - 6.40091*10^8 Cos[x3] Sin[x1] - 4.14778*10^8 Sin[x1]^2 + 

1.63137*10^9 Sin[x2] - 4.88708*10^9 Cos[x1] Sin[x2] + 1.13633*10^9 Cos[x2] Sin[x2] + 1.55664*10^9 Cos[x3] Sin[x2] + 

4.86541*10^9 Sin[x1] Sin[x2] + 1.90137*10^9 Sin[x2]^2 + 1.8855*10^8 Sin[x3] - 9.29985*10^8 Cos[x1] Sin[x3] + 

8.39588*10^8 Cos[x2] Sin[x3] + 1.05482*10^8 Cos[x3] Sin[x3] + 7.34043*10^8 Sin[x1] Sin[x3] + 6.72778*10^8 Sin[x2] Sin[x3] 

+ 5.66051*10^8 Sin[x3]^2) 

CS9-O-FOLN 20.8118 - 1.71118 Log[x1] + 3.25274 Log[x2] + 0.841874 Log[x3] 

CS9-O-FOLNR 
(5713.73 - 820.72 Log[x1] - 7.52008 Log[x2] + 274.444 Log[x3]) / (417.637 - 85.7276 Log[x1] - 167.258 Log[x2] + 19.295 

Log[x3]) 

CS9-O-SOLN 
-22.0274 + 18.0308 Log[x1] - 1.85005 Log[x1]^2 + 13.6973 Log[x2] - 0.0907937 Log[x1] Log[x2] + 2.66101 Log[x2]^2 - 

1.45112 Log[x3] + 0.665054 Log[x1] Log[x3] + 0.237988 Log[x2] Log[x3] + 0.125756 Log[x3]^2 

CS9-O-SOLNR 

(9226.03 - 3068.42 Log[x1] + 229.836 Log[x1]^2 + 1259.4 Log[x2] - 248.645 Log[x1] Log[x2] - 114.064 Log[x2]^2 - 291.941 

Log[x3] + 2.48311 Log[x1] Log[x3] + 101.66 Log[x2] Log[x3] - 70.4194 Log[x3]^2) / (390.008 - 163.437 Log[x1] + 14.3741 

Log[x1]^2 - 202.621 Log[x2] + 28.5322 Log[x1] Log[x2] - 55.3072 Log[x2]^2 - 61.227 Log[x3] + 8.64552 Log[x1] Log[x3] + 

31.1755 Log[x2] Log[x3] - 9.8847 Log[x3]^2) 

NOTATION CS10-O  

CS10-O-L 0.251182 - 0.00144178 [x1] + 6.62437 [x2] + 0.435294 [x3] 

CS10-O-LN (21657.7 - 78.8542 [x1] + 123533. [x2] + 12662.4 [x3]) / (50907.5 - 39.4659 [x1] - 116947. [x2] - 2428.04 [x3]) 

CS10-O-SON 
0.453663 - 0.000881992 [x1] - 3.16061*10^-6 [x1]^2 + 1.3658 [x2] + 0.00275818 [x1] [x2] + 22.4719 [x2]^2 + 0.400263 [x3] + 

0.000512137 [x1] [x3] + 1.84199 [x2] [x3] - 0.548697 [x3]^2 

CS10-O-SONR 

(-1.51743*10^6 - 4313.8 [x1] + 25.0776 [x1]^2 + 6.13139*10^7 [x2] - 164735. [x1] [x2] - 3.98271*10^7 [x2]^2 + 145643. [x3] - 

7244.03 [x1] [x3] + 1.92314*10^7 [x2] [x3] - 365824. [x3]^2) / (-1.69699*10^6 - 14057.4 [x1] + 14.9905 [x1]^2 + 9.96623*10^7 

[x2] - 45528.1 [x1] [x2] - 3.36541*10^8 [x2]^2 - 144811. [x3] - 3484.54 [x1] [x3] + 5.82639*10^6 [x2] [x3] - 177545. [x3]^2) 

CS10-O-TON 

0.342304 - 0.000712382 [x1] - 4.30783*10^-6 [x1]^2 + 5.43672*10^-9 [x1]^3 + 3.70106 [x2] + 0.00404573 [x1] [x2] - 

0.0000303288 [x1]^2 [x2] + 14.208 [x2]^2 + 0.0289683 [x1] [x2]^2 - 18.2639 [x2]^3 + 0.849465 [x3] - 0.00041336 [x1] [x3] + 

9.92063*10^-6 [x1]^2 [x3] - 13.3843 [x2] [x3] + 0.00833333 [x1] [x2] [x3] + 49.4444 [x2]^2 [x3] + 0.869112 [x3]^2 - 0.00704365 

[x1] [x3]^2 + 10.1389 [x2] [x3]^2 - 2.0873 [x3]^3 

CS10-O-FOTN 41.916 - 0.0584334 Cos[x1] - 43.2762 Cos[x2] + 1.50779 Cos[x3] - 0.126368 Sin[x1] + 2.32259 Sin[x2] + 0.765818 Sin[x3] 

CS10-O-FOTNR 
(-12467.5 - 33.6798 Cos[x1] + 11945. Cos[x2] + 540.7 Cos[x3] - 26.4287 Sin[x1] + 1519.46 Sin[x2] + 193.773 Sin[x3]) / (-

9530.12 - 23.0435 Cos[x1] + 9256.82 Cos[x2] + 490.338 Cos[x3] - 13.5252 Sin[x1] - 24.3464 Sin[x2] + 115.817 Sin[x3]) 

CS10-O-SOTN 

132.913 + 121.111 Cos[x1] + 166.77 Cos[x1]^2 + 134.487 Cos[x2] - 0.912689 Cos[x1] Cos[x2] + 136.076 Cos[x2]^2 + 139.074 

Cos[x3] - 2.13561 Cos[x1] Cos[x3] - 970.6 Cos[x2] Cos[x3] + 145.362 Cos[x3]^2 - 122.236 Sin[x1] + 103.888 Cos[x1] Sin[x1] - 

4.3683 Cos[x2] Sin[x1] + 4.49655 Cos[x3] Sin[x1] + 163.193 Sin[x1]^2 + 59.2229 Sin[x2] + 0.397924 Cos[x1] Sin[x2] + 57.3592 

Cos[x2] Sin[x2] - 111.862 Cos[x3] Sin[x2] - 0.643514 Sin[x1] Sin[x2] - 272.449 Sin[x2]^2 + 136.657 Sin[x3] - 0.464571 Cos[x1] 

Sin[x3] - 285.077 Cos[x2] Sin[x3] + 149.187 Cos[x3] Sin[x3] + 1.01049 Sin[x1] Sin[x3] - 29.7852 Sin[x2] Sin[x3] - 256.588 

Sin[x3]^2 

CS10-O-SOTNR 

(1.65154 - 0.200336 Cos[x1] - 0.247817 Cos[x1]^2 - 0.513085 Cos[x2] - 1.26013 Cos[x1] Cos[x2] - 2.64677 Cos[x2]^2 + 2.16864 

Cos[x3] + 0.447981 Cos[x1] Cos[x3] + 0.0471976 Cos[x2] Cos[x3] + 2.59939 Cos[x3]^2 - 1.29838 Sin[x1] + 0.460317 Cos[x1] 

Sin[x1] + 0.0531127 Cos[x2] Sin[x1] - 1.21455 Cos[x3] Sin[x1] + 2.89936 Sin[x1]^2 + 20.4875 Sin[x2] + 10.4561 Cos[x1] 

Sin[x2] + 20.1084 Cos[x2] Sin[x2] + 20.1454 Cos[x3] Sin[x2] - 11.5998 Sin[x1] Sin[x2] + 5.29832 Sin[x2]^2 + 2.61784 Sin[x3] + 

1.05522 Cos[x1] Sin[x3] + 2.18985 Cos[x2] Sin[x3] + 3.00055 Cos[x3] Sin[x3] + 0.0247163 Sin[x1] Sin[x3] + 4.81525 Sin[x2] 

Sin[x3] + 0.0521569 Sin[x3]^2) / (2.2813 + 0.576247 Cos[x1] + 0.488278 Cos[x1]^2 + 4.23255 Cos[x2] + 1.49316 Cos[x1] 

Cos[x2] + 6.15625 Cos[x2]^2 + 1.88422 Cos[x3] + 0.36157 Cos[x1] Cos[x3] + 3.7926 Cos[x2] Cos[x3] + 1.55397 Cos[x3]^2 - 

1.14143 Sin[x1] + 0.461044 Cos[x1] Sin[x1] - 2.35283 Cos[x2] Sin[x1] - 1.0289 Cos[x3] Sin[x1] + 2.79302 Sin[x1]^2 - 16.686 

Sin[x2] - 7.38075 Cos[x1] Sin[x2] - 16.3467 Cos[x2] Sin[x2] - 16.327 Cos[x3] Sin[x2] + 12.1179 Sin[x1] Sin[x2] - 2.87495 

Sin[x2]^2 - 0.171404 Sin[x3] - 0.221273 Cos[x1] Sin[x3] + 0.236108 Cos[x2] Sin[x3] - 0.466636 Cos[x3] Sin[x3] + 0.831807 

Sin[x1] Sin[x3] - 2.70476 Sin[x2] Sin[x3] + 1.72732 Sin[x3]^2) 

CS10-O-FOLN 3.22177 - 0.188847 Log[x1] + 0.577315 Log[x2] + 0.0729146 Log[x3] 

CS10-O-FOLNR 
(12313.7 - 1781.66 Log[x1] + 13.799 Log[x2] + 387.706 Log[x3]) / (2911.64 - 1229.97 Log[x1] - 3084.04 Log[x2] + 134.397 

Log[x3]) 

CS10-O-SOLN 
1.8152 + 1.57951 Log[x1] - 0.17023 Log[x1]^2 + 2.93379 Log[x2] + 0.0371877 Log[x1] Log[x2] + 0.505582 Log[x2]^2 + 

0.118748 Log[x3] + 0.0162065 Log[x1] Log[x3] + 0.0239209 Log[x2] Log[x3] + 0.0179176 Log[x3]^2 

CS10-O-SOLNR 

(31.3262 + 1.1301 Log[x1] - 0.351823 Log[x1]^2 + 20.5004 Log[x2] - 0.721451 Log[x1] Log[x2] + 2.80885 Log[x2]^2 + 4.67867 

Log[x3] - 0.62241 Log[x1] Log[x3] - 0.0360212 Log[x2] Log[x3] + 0.153038 Log[x3]^2) / (29.6691 - 6.97013 Log[x1] + 

0.395307 Log[x1]^2 + 7.42315 Log[x2] - 1.41839 Log[x1] Log[x2] + 0.103803 Log[x2]^2 + 0.830043 Log[x3] - 0.615859 

Log[x1] Log[x3] - 1.49745 Log[x2] Log[x3] - 0.016376 Log[x3]^2) 

NOTATION CS11-O  

CS11-O-L 1.20594 - 0.000842242 [x1] + 8.84648 [x2] + 0.377371 [x3] 

CS11-O-LN (11512.2 + 28.1025 [x1] + 111732. [x2] + 20233.4 [x3])  /  (12214.6 + 21.3522 [x1] - 16048.8 [x2] + 7136.86 [x3]) 

CS11-O-SON 
0.860886 + 0.00189385 [x1] - 3.49112*10^-6 [x1]^2 + 8.64863 [x2] - 0.00890827 [x1] [x2] + 19.4497 [x2]^2 + 1.31281 [x3] - 

0.00273723 [x1] [x3] - 4.85873 [x2] [x3] - 0.213422 [x3]^2 

CS11-O-SONR 

(-278216. + 2533.55 [x1] - 2.7704 [x1]^2 + 6.62198*10^6 [x2] - 4176.86 [x1] [x2] - 5.99393*10^7 [x2]^2 - 5960.26 [x3] + 

205.525 [x1] [x3] - 361857. [x2] [x3] - 88239.9 [x3]^2) / (-126615. + 1614.71 [x1] - 1.03956 [x1]^2 + 2.59297*10^6 [x2] - 

6407.37 [x1] [x2] - 2.32609*10^7 [x2]^2 - 31090.2 [x3] - 9.36626 [x1] [x3] + 226784. [x2] [x3] - 33059.4 [x3]^2) 

CS11-O-TON 

0.863228 + 0.00237367 [x1] + 1.45859*10^-6 [x1]^2 - 1.53188*10^-8 [x1]^3 + 8.5126 [x2] - 0.0341579 [x1] [x2] + 2.67996*10^-

6 [x1]^2 [x2] + 35.1865 [x2]^2 + 0.108444 [x1] [x2]^2 - 68.9457 [x2]^3 + 0.886979 [x3] - 0.00256499 [x1] [x3] + 6.15732*10^-6 

[x1]^2 [x3] + 0.300029 [x2] [x3] + 0.0184408 [x1] [x2] [x3] - 52.4859 [x2]^2 [x3] + 0.520234 [x3]^2 - 0.00578699 [x1] [x3]^2 + 

1.53804 [x2] [x3]^2 - 0.0381871 [x3]^3 

CS11-O-FOTN 31.9759 - 0.383414 Cos[x1] - 31.2254 Cos[x2] + 0.0823114 Cos[x3] - 0.0819917 Sin[x1] + 6.29993 Sin[x2] + 0.417234 Sin[x3] 



 

 
228 

CS11-O-FOTNR 

(120.894 + 0.162011 Cos[x1] - 120.665 Cos[x2] + 0.0701416 Cos[x3] + 0.0798184 Sin[x1] - 3.94732 Sin[x2] - 0.0678742 Sin[x3])  

/  (39.5546 + 0.117583 Cos[x1] - 39.3533 Cos[x2] - 0.0279373 Cos[x3] + 0.0499025 Sin[x1] - 0.820916 Sin[x2] - 0.079732 

Sin[x3]) 

CS11-O-SOTN 

589.179 - 661.849 Cos[x1] + 714.284 Cos[x1]^2 + 593.843 Cos[x2] - 666.271 Cos[x1] Cos[x2] + 598.537 Cos[x2]^2 + 686.922 

Cos[x3] + 3.29596 Cos[x1] Cos[x3] - 5294.32 Cos[x2] Cos[x3] + 783.506 Cos[x3]^2 + 18.1328 Sin[x1] + 144.658 Cos[x1] 

Sin[x1] + 119.493 Cos[x2] Sin[x1] + 3.93067 Cos[x3] Sin[x1] + 1433.31 Sin[x1]^2 + 212.959 Sin[x2] - 56.3309 Cos[x1] Sin[x2] + 

204.527 Cos[x2] Sin[x2] - 451.477 Cos[x3] Sin[x2] + 7.98157 Sin[x1] Sin[x2] - 1477.92 Sin[x2]^2 + 563.878 Sin[x3] + 0.201012 

Cos[x1] Sin[x3] - 1442.89 Cos[x2] Sin[x3] + 895.133 Cos[x3] Sin[x3] + 0.812013 Sin[x1] Sin[x3] - 129.737 Sin[x2] Sin[x3] - 

1468.38 Sin[x3]^2 

CS11-O-SOTNR 

(4.02378*10^6 - 1.56609*10^7 Cos[x1] + 2.45883*10^7 Cos[x1]^2 + 9.07528*10^6 Cos[x2] - 1.95503*10^7 Cos[x1] Cos[x2] + 

1.40521*10^7 Cos[x2]^2 - 1.39366*10^7 Cos[x3] - 4.0127*10^7 Cos[x1] Cos[x3] - 1.30813*10^7 Cos[x2] Cos[x3] - 

3.15744*10^7 Cos[x3]^2 + 6.01959*10^7 Sin[x1] - 6.34565*10^7 Cos[x1] Sin[x1] + 3.74733*10^7 Cos[x2] Sin[x1] - 

9.02454*10^6 Cos[x3] Sin[x1] - 2.05645*10^7 Sin[x1]^2 - 2.70613*10^7 Sin[x2] - 8.76674*10^7 Cos[x1] Sin[x2] - 

2.60929*10^7 Cos[x2] Sin[x2] - 3.94473*10^7 Cos[x3] Sin[x2] - 1.87729*10^8 Sin[x1] Sin[x2] - 1.00283*10^7 Sin[x2]^2 + 

1.01335*10^8 Sin[x3] + 3.21045*10^8 Cos[x1] Sin[x3] + 1.09962*10^8 Cos[x2] Sin[x3] + 9.68718*10^7 Cos[x3] Sin[x3] - 

4.43289*10^6 Sin[x1] Sin[x3] + 4.73597*10^7 Sin[x2] Sin[x3] + 3.55981*10^7 Sin[x3]^2) / (1.05062*10^7 + 1.31488*10^7 

Cos[x1] - 3.0226*10^7 Cos[x1]^2 - 5.71932*10^6 Cos[x2] + 3.7197*10^7 Cos[x1] Cos[x2] - 2.16036*10^7 Cos[x2]^2 - 

2.87474*10^7 Cos[x3] - 2.68331*10^8 Cos[x1] Cos[x3] - 3.146*10^7 Cos[x2] Cos[x3] - 5.96274*10^7 Cos[x3]^2 + 1.2184*10^7 

Sin[x1] + 2.71347*10^6 Cos[x1] Sin[x1] + 1.15813*10^8 Cos[x2] Sin[x1] - 2.05096*10^7 Cos[x3] Sin[x1] + 4.07322*10^7 

Sin[x1]^2 - 1.85471*10^7 Sin[x2] + 9.15744*10^7 Cos[x1] Sin[x2] - 2.25835*10^7 Cos[x2] Sin[x2] - 5.23251*10^7 Cos[x3] 

Sin[x2] - 3.83656*10^8 Sin[x1] Sin[x2] + 3.21098*10^7 Sin[x2]^2 + 5.38876*10^7 Sin[x3] + 1.15605*10^8 Cos[x1] Sin[x3] + 

2.37438*10^7 Cos[x2] Sin[x3] + 2.68331*10^7 Cos[x3] Sin[x3] - 9.32161*10^6 Sin[x1] Sin[x3] + 2.82455*10^7 Sin[x2] Sin[x3] 

+ 7.01337*10^7 Sin[x3]^2) 

CS11-O-FOLN 4.25238 - 0.114716 Log[x1] + 0.630051 Log[x2] + 0.102734 Log[x3] 

CS11-O-FOLNR 
(4015.87 + 321.938 Log[x1] - 1676.71 Log[x2] + 1573.97 Log[x3]) / (-2702.3 + 346.217 Log[x1] - 2340.15 Log[x2] + 620.524 

Log[x3]) 

CS11-O-SOLN 
5.89864 + 0.762761 Log[x1] - 0.126814 Log[x1]^2 + 3.34653 Log[x2] - 0.0902669 Log[x1] Log[x2] + 0.442772 Log[x2]^2 + 

0.38678 Log[x3] - 0.0855129 Log[x1] Log[x3] - 0.0745112 Log[x2] Log[x3] + 0.0253648 Log[x3]^2 

CS11-O-SOLNR 

(-7405.89 + 1485.56 Log[x1] - 183.686 Log[x1]^2 - 2212.49 Log[x2] - 203.088 Log[x1] Log[x2] - 505.449 Log[x2]^2 + 43.0452 

Log[x3] + 0.303946 Log[x1] Log[x3] - 6.02522 Log[x2] Log[x3] + 22.4723 Log[x3]^2) / (-2280.91 + 462.786 Log[x1] - 79.0686 

Log[x1]^2 - 482.679 Log[x2] - 167.886 Log[x1] Log[x2] - 190.77 Log[x2]^2 + 65.4047 Log[x3] - 3.00364 Log[x1] Log[x3] + 

11.3626 Log[x2] Log[x3] + 10.1023 Log[x3]^2) 

NOTATION CS12-O1  

CS12-O1-L 451.961 - 111.656 [x1] - 15.5536 [x2] + 80.5217 [x3] 

CS12-O1-LN (1600.97 - 117.493 [x1] - 320.795 [x2] + 723.95 [x3])  /  (3.68603 + 0.485964 [x1] - 0.973039 [x2] + 0.689693 [x3]) 

CS12-O1-SON 
467.721 - 98.1342 [x1] + 1.54016 [x1]^2 + 57.4265 [x2] - 37.5645 [x1] [x2] - 21.7474 [x2]^2 + 117.685 [x3] - 9.70768 [x1] [x3] + 

56.987 [x2] [x3] - 37.8996 [x3]^2 

CS12-O1-SONR 

(5.4976 + 68.419 [x1] - 147.207 [x1]^2 - 4.78413 [x2] + 25.0111 [x1] [x2] - 17.8943 [x2]^2 + 74.4273 [x3] + 32.2713 [x1] [x3] - 

9.00437 [x2] [x3] - 38.5109 [x3]^2) / (0.0117603 - 0.0349209 [x1] - 0.316558 [x1]^2 + 0.0292642 [x2] - 0.0495718 [x1] [x2] - 

0.0584004 [x2]^2 + 0.413368 [x3] + 0.159041 [x1] [x3] + 0.0581923 [x2] [x3] - 0.23618 [x3]^2) 

CS12-O1-TON 

467.47 - 39.5951 [x1] + 2.92493 [x1]^2 - 20.0114 [x1]^3 + 14.4604 [x2] - 6.0832 [x1] [x2] - 1.64961 [x1]^2 [x2] - 15.7949 [x2]^2 

- 25.4768 [x1] [x2]^2 + 13.242 [x2]^3 + 47.3894 [x3] - 20.7727 [x1] [x3] + 29.1811 [x1]^2 [x3] + 25.5057 [x2] [x3] + 29.9393 

[x1] [x2] [x3] + 29.1811 [x2]^2 [x3] - 36.5148 [x3]^2 - 25.4768 [x1] [x3]^2 - 1.64961 [x2] [x3]^2 + 24.2311 [x3]^3 

CS12-O1-FOTN 365.718 - 0.0958139 Cos[x1] + 3.0546 Cos[x2] + 100.339 Cos[x3] - 139.028 Sin[x1] + 31.4459 Sin[x2] + 164.776 Sin[x3] 

CS12-O1-FOTNR 

(-157.756 + 429.993 Cos[x1] + 85.439 Cos[x2] + 776.737 Cos[x3] - 81.8429 Sin[x1] - 292.042 Sin[x2] - 16.2092 Sin[x3]) / 

(0.373035 + 0.838453 Cos[x1] + 0.00162818 Cos[x2] + 1.21359 Cos[x3] + 0.339726 Sin[x1] - 0.962061 Sin[x2] - 0.625617 

Sin[x3]) 

CS12-O1-SOTN 

60.7754 + 37.3454 Cos[x1] + 51.0848 Cos[x1]^2 + 64.9164 Cos[x2] + 11.897 Cos[x1] Cos[x2] + 76.9012 Cos[x2]^2 + 58.4406 

Cos[x3] - 5.73472 Cos[x1] Cos[x3] + 39.2186 Cos[x2] Cos[x3] + 72.6253 Cos[x3]^2 - 34.1501 Sin[x1] + 10.269 Cos[x1] Sin[x1] - 

63.7706 Cos[x2] Sin[x1] - 63.7706 Cos[x3] Sin[x1] + 108.402 Sin[x1]^2 + 21.9792 Sin[x2] + 79.0787 Cos[x1] Sin[x2] - 79.3105 

Cos[x2] Sin[x2] + 79.0787 Cos[x3] Sin[x2] - 50.874 Sin[x1] Sin[x2] + 60.4866 Sin[x2]^2 + 41.8277 Sin[x3] + 76.7693 Cos[x1] 

Sin[x3] + 76.7693 Cos[x2] Sin[x3] - 7.75658 Cos[x3] Sin[x3] + 10.922 Sin[x1] Sin[x3] + 78.304 Sin[x2] Sin[x3] + 71.4314 

Sin[x3]^2 

CS12-O1-SOTNR 

(-1.98123*10^8 + 9.54733*10^7 Cos[x1] + 1.16627*10^8 Cos[x1]^2 - 8.90454*10^7 Cos[x2] + 1.66622*10^8 Cos[x1] Cos[x2] - 

4.7415*10^7 Cos[x2]^2 - 2.74532*10^8 Cos[x3] - 1.88647*10^7 Cos[x1] Cos[x3] - 2.03383*10^8 Cos[x2] Cos[x3] - 

2.12318*10^8 Cos[x3]^2 - 3.50207*10^8 Sin[x1] - 7.01659*10^7 Cos[x1] Sin[x1] - 2.73249*10^8 Cos[x2] Sin[x1] - 

2.73249*10^8 Cos[x3] Sin[x1] - 3.14749*10^8 Sin[x1]^2 + 3.16105*10^8 Sin[x2] + 1.59866*10^8 Cos[x1] Sin[x2] + 

1.86272*10^8 Cos[x2] Sin[x2] + 1.59866*10^8 Cos[x3] Sin[x2] + 3.24737*10^8 Sin[x1] Sin[x2] - 1.50708*10^8 Sin[x2]^2 - 

1.48771*10^8 Sin[x3] - 2.96306*10^6 Cos[x1] Sin[x3] - 2.96306*10^6 Cos[x2] Sin[x3] - 1.90064*10^8 Cos[x3] Sin[x3] - 

2.53116*10^8 Sin[x1] Sin[x3] + 1.41468*10^8 Sin[x2] Sin[x3] + 1.41949*10^7 Sin[x3]^2) / (-1.54263*10^8 + 3.5483*10^7 

Cos[x1] + 3.75423*10^7 Cos[x1]^2 - 5.66071*10^7 Cos[x2] + 1.16823*10^8 Cos[x1] Cos[x2] - 4.43281*10^7 Cos[x2]^2 - 

5.06138*10^7 Cos[x3] + 1.22816*10^8 Cos[x1] Cos[x3] + 3.07261*10^7 Cos[x2] Cos[x3] - 3.9*10^7 Cos[x3]^2 + 8.6064*10^7 

Sin[x1] + 7.03123*10^7 Cos[x1] Sin[x1] + 2.96933*10^7 Cos[x2] Sin[x1] + 2.96933*10^7 Cos[x3] Sin[x1] - 1.91806*10^8 

Sin[x1]^2 + 1.10563*10^8 Sin[x2] + 3.41746*10^7 Cos[x1] Sin[x2] + 9.59532*10^7 Cos[x2] Sin[x2] + 3.41746*10^7 Cos[x3] 

Sin[x2] + 1.72127*10^8 Sin[x1] Sin[x2] - 1.09935*10^8 Sin[x2]^2 + 8.54593*10^7 Sin[x3] + 5.52421*10^7 Cos[x1] Sin[x3] + 

5.52421*10^7 Cos[x2] Sin[x3] + 3.33264*10^7 Cos[x3] Sin[x3] - 1.02545*10^8 Sin[x1] Sin[x3] - 9.14107*10^7 Sin[x2] Sin[x3] - 

1.15263*10^8 Sin[x3]^2) 

CS12-O1-FOLN 250.413 - 264.44 Log[3 + x1] + 99.9729 Log[3 + x2] + 332.948 Log[3 + x3] 

CS12-O1-FOLNR 
(334.318 - 161.656 Log[3 + x1] - 121.833 Log[3 + x2] + 170.947 Log[3 + x3]) / (0.983758 - 0.0741898 Log[3 + x1] - 0.41197 

Log[3 + x2] + 0.0321328 Log[3 + x3]) 

CS12-O1-SOLN 
-58.3689 + 308.898 Log[3 + x1] - 109.724 Log[3 + x1]^2 + 480.845 Log[3 + x2] - 320.946 Log[3 + x1] Log[3 + x2] - 224.92 

Log[3 + x2]^2 - 12.308 Log[3 + x3] - 6.40404 Log[3 + x1] Log[3 + x3] + 478.35 Log[3 + x2] Log[3 + x3] - 91.247 Log[3 + x3]^2 

CS12-O1-SOLNR 

(5598.15 + 2619.97 Log[3 + x1] + 5264.89 Log[3 + x1]^2 + 1844.11 Log[3 + x2] + 703.164 Log[3 + x1] Log[3 + x2] - 8307.52 

Log[3 + x2]^2 - 975.686 Log[3 + x3] + 1977.01 Log[3 + x1] Log[3 + x3] - 3639.2 Log[3 + x2] Log[3 + x3] - 835.166 Log[3 + 

x3]^2) / (35.4919 + 44.4286 Log[3 + x1] + 37.799 Log[3 + x1]^2 - 57.184 Log[3 + x2] - 18.3575 Log[3 + x1] Log[3 + x2] + 

10.9463 Log[3 + x2]^2 - 17.8365 Log[3 + x3] - 48.8357 Log[3 + x1] Log[3 + x3] + 1.13301 Log[3 + x2] Log[3 + x3] + 22.1222 

Log[3 + x3]^2) 

NOTATION CS12-O2 

CS12-O2-L 655.39 - 85.8367 [x1] + 144.037 [x2] + 199.148 [x3] 

CS12-O2-LN (-82276.3 + 160666. [x1] - 9569.6 [[x2]] + 135256. [x3]) / (-132.622 + 220.396 [x1] + 8.54386 [x2] + 247.275 [x3]) 

CS12-O2-SON 
645.983 - 82.5137 [x1] + 6.60931 [x1]^2 + 145.528 [x2] - 52.7183 [x1] [x2] - 6.41306 [x2]^2 + 193.784 [x3] - 10.7642 [x1] [x3] + 

60.1183 [x2] [x3] - 4.60535 [x3]^2 

CS12-O2-SONR 

(1.35779*10^8 + 2.70948*10^6 [x1] - 1.35101*10^7 [x1]^2 - 2.62912*10^8 [x2] + 9.17382*10^7 [x1] [x2] - 1.11117*10^7 [x2]^2 

- 1.93878*10^8 [x3] - 1.23997*10^7 [x1] [x3] + 1.25305*10^8 [x2] [x3] + 2.89203*10^8 [x3]^2) / (207925. + 5.31325*10^7 [x1] 

+ 3.15617*10^7 [x1]^2 - 627529. [x2] - 4.35706*10^7 [x1] [x2] + 162689. [x2]^2 - 5.36299*10^7 [x3] - 9.46748*10^6 [x1] [x3] + 

4.40811*10^7 [x2] [x3] - 2.16728*10^7 [x3]^2) 

CS12-O2-TON 

645.983 - 17.9656 [x1] + 30.8338 [x1]^2 - 8.41339 [x1]^3 + 59.6104 [x2] - 38.4745 [x1] [x2] + 36.7616 [x1]^2 [x2] - 6.41306 

[x2]^2 - 18.9309 [x1] [x2]^2 + 30.4681 [x2]^3 + 62.3999 [x3] - 25.008 [x1] [x3] + 36.3025 [x1]^2 [x3] + 45.8745 [x2] [x3] - 

18.4718 [x1] [x2] [x3] + 36.3025 [x2]^2 [x3] - 14.5861 [x3]^2 - 18.9309 [x1] [x3]^2 + 36.7616 [x2] [x3]^2 + 40.5059 [x3]^3 

CS12-O2-FOTN 365.718 - 0.0958139 Cos[x1] + 3.0546 Cos[x2] + 100.339 Cos[x3] - 139.028 Sin[x1] + 31.4459 Sin[x2] + 164.776 Sin[x3] 

CS12-O2-FOTNR 
(6549.68 - 5487.8 Cos[x1] + 15876.6 Cos[x2] + 12261.6 Cos[x3] + 862.824 Sin[x1] + 343.805 Sin[x2] + 5782.2 Sin[x3]) / 

(13.6318 - 2.15514 Cos[x1] + 21.3531 Cos[x2] + 12.3728 Cos[x3] + 4.76292 Sin[x1] - 7.8951 Sin[x2] - 0.56944 Sin[x3]) 

CS12-O2-SOTN 

84.5859 + 72.6917 Cos[x1] + 69.9171 Cos[x1]^2 + 59.3903 Cos[x2] + 18.188 Cos[x1] Cos[x2] + 57.049 Cos[x2]^2 + 90.5128 

Cos[x3] + 62.201 Cos[x1] Cos[x3] + 43.6009 Cos[x2] Cos[x3] + 87.8466 Cos[x3]^2 - 31.5962 Sin[x1] + 65.0846 Cos[x1] Sin[x1] 

- 94.266 Cos[x2] Sin[x1] - 94.266 Cos[x3] Sin[x1] + 172.793 Sin[x1]^2 + 57.1509 Sin[x2] + 96.0011 Cos[x1] Sin[x2] + 21.4356 

Cos[x2] Sin[x2] + 96.0011 Cos[x3] Sin[x2] - 73.7799 Sin[x1] Sin[x2] + 174.985 Sin[x2]^2 + 62.6994 Sin[x3] + 60.8804 Cos[x1] 
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Sin[x3] + 60.8804 Cos[x2] Sin[x3] + 188.859 Cos[x3] Sin[x3] - 15.8753 Sin[x1] Sin[x3] + 84.2308 Sin[x2] Sin[x3] + 129.985 

Sin[x3]^2 

CS12-O2-SOTNR 

(-3.14704*10^8 - 1.23524*10^8 Cos[x1] - 6.80297*10^7 Cos[x1]^2 - 1.43514*10^8 Cos[x2] - 6.48024*10^6 Cos[x1] Cos[x2] - 

8.58012*10^7 Cos[x2]^2 - 1.61641*10^8 Cos[x3] - 2.46072*10^7 Cos[x1] Cos[x3] - 4.4597*10^7 Cos[x2] Cos[x3] - 

1.01917*10^8 Cos[x3]^2 + 4.54692*10^8 Sin[x1] + 2.02911*10^8 Cos[x1] Sin[x1] + 2.75853*10^8 Cos[x2] Sin[x1] + 

2.75853*10^8 Cos[x3] Sin[x1] - 2.46675*10^8 Sin[x1]^2 - 4.72325*10^7 Sin[x2] - 744339. Cos[x1] Sin[x2] - 6.06205*10^7 

Cos[x2] Sin[x2] - 744339. Cos[x3] Sin[x2] + 3.65654*10^8 Sin[x1] Sin[x2] - 2.28903*10^8 Sin[x2]^2 - 6.36203*10^6 Sin[x3] + 

1.10696*10^7 Cos[x1] Sin[x3] + 1.10696*10^7 Cos[x2] Sin[x3] - 2.39902*10^7 Cos[x3] Sin[x3] + 2.74778*10^8 Sin[x1] Sin[x3] 

- 9.05486*10^7 Sin[x2] Sin[x3] - 2.12788*10^8 Sin[x3]^2) / (-1.66261*10^8 - 3.04755*10^7 Cos[x1] - 1.57382*10^7 Cos[x1]^2 - 

4.73918*10^6 Cos[x2] + 1.10008*10^8 Cos[x1] Cos[x2] + 7.14201*10^6 Cos[x2]^2 - 4.32485*10^7 Cos[x3] + 7.1499*10^7 

Cos[x1] Cos[x3] + 9.72353*10^7 Cos[x2] Cos[x3] - 2.70937*10^7 Cos[x3]^2 + 7.74442*10^7 Sin[x1] - 1.06025*10^7 Cos[x1] 

Sin[x1] + 7.88617*10^7 Cos[x2] Sin[x1] + 7.88617*10^7 Cos[x3] Sin[x1] - 1.50523*10^8 Sin[x1]^2 + 9.48581*10^7 Sin[x2] + 

1.50736*10^8 Cos[x1] Sin[x2] - 8.96919*10^7 Cos[x2] Sin[x2] + 1.50736*10^8 Cos[x3] Sin[x2] - 9.45945*10^7 Sin[x1] Sin[x2] 

- 1.73403*10^8 Sin[x2]^2 + 2.10841*10^8 Sin[x3] + 1.45683*10^8 Cos[x1] Sin[x3] + 1.45683*10^8 Cos[x2] Sin[x3] + 

6.89134*10^7 Cos[x3] Sin[x3] - 1.13284*10^7 Sin[x1] Sin[x3] - 1.53759*10^8 Sin[x2] Sin[x3] - 1.39168*10^8 Sin[x3]^2) 

CS12-O2-FOLN -96.0311 - 192.853 Log[3 + x1] + 406.479 Log[3 + x2] + 496.73 Log[3 + x3] 

CS12-O2-FOLNR 
(78.0083 + 53.3557 Log[3 + x1] + 102.699 Log[3 + x2] + 221.217 Log[3 + x3]) / (1.13834 + 0.267557 Log[3 + x1] - 0.359047 

Log[3 + x2] - 0.249265 Log[3 + x3]) 

CS12-O2-SOLN 

163.04 + 540.035 Log[3 + x1] - 110.002 Log[3 + x1]^2 + 47.4836 Log[3 + x2] - 485.091 Log[3 + x1] Log[3 + x2] + 148.158 

Log[3 + x2]^2 - 485.988 Log[3 + x3] - 42.9964 Log[3 + x1] Log[3 + x3] + 547.569 Log[3 + x2] Log[3 + x3] + 250.164 Log[3 + 

x3]^2 

CS12-O2-SOLNR 

(3.87025*10^11 + 4.23851*10^11 Log[3 + x1] + 5.25064*10^11 Log[3 + x1]^2 + 2.51079*10^11 Log[3 + x2] + 2.77671*10^11 

Log[3 + x1] Log[3 + x2] + 1.78823*10^11 Log[3 + x2]^2 + 3.37261*10^11 Log[3 + x3] + 3.70373*10^11 Log[3 + x1] Log[3 + 

x3] + 2.0055*10^11 Log[3 + x2] Log[3 + x3] + 3.87217*10^11 Log[3 + x3]^2) / (-1.75823*10^11 + 1.43995*10^11 Log[3 + x1] - 

5.71238*10^10 Log[3 + x1]^2 + 2.05856*10^11 Log[3 + x2] - 2.71849*10^10 Log[3 + x1] Log[3 + x2] - 8.30011*10^10 Log[3 + 

x2]^2 - 2.03781*10^10 Log[3 + x3] - 2.0405*10^10 Log[3 + x1] Log[3 + x3] + 2.2224*10^10 Log[3 + x2] Log[3 + x3] + 

2.25747*10^10 Log[3 + x3]^2) 

NOTATION CS12-O3 

CS12-O3-L 50.6645 - 19.2266 [x1] - 0.0812922 [x2] + 4.60251 [x3] 

CS12-O3-LN (3243.63 + 7281.16 [x1] + 28.439 [x2] + 1039.5 [x3]) / (73.4957 + 128.53 [x1] + 0.435249 [x2] + 21.742 [x3]) 

CS12-O3-SON 
43.74 - 16.5126 [x1] + 5.92969 [x1]^2 + 0.857342 [x2] - 8.4844 [x1] [x2] + 4.49432 [x2]^2 + 1.84508 [x3] - 4.0281 [x1] [x3] + 

3.5319 [x2] [x3] - 1.13342 [x3]^2 

CS12-O3-SONR 

(7.34529 - 3.21108 [x1] + 6.35982 [x1]^2 - 1.9949 [x2] - 2.92642 [x1] [x2] + 10.0896 [x2]^2 + 0.235389 [x3] + 5.12158 [x1] [x3] 

- 3.84886 [x2] [x3] + 3.83959 [x3]^2) / (0.167931 + 0.0823192 [x1] + 0.112646 [x1]^2 - 0.0515308 [x2] + 0.0338567 [x1] [x2] + 

0.166656 [x2]^2 + 0.062387 [x3] + 0.110284 [x1] [x3] - 0.116589 [x2] [x3] + 0.145939 [x3]^2) 

CS12-O3-TON 

43.74 - 5.70345 [x1] + 5.81405 [x1]^2 - 3.88941 [x1]^3 + 0.595432 [x2] - 7.22599 [x1] [x2] + 0.411133 [x1]^2 [x2] + 4.49432 

[x2]^2 - 2.82975 [x1] [x2]^2 + 0.294937 [x2]^3 + 0.963195 [x3] - 5.28651 [x1] [x3] - 0.75348 [x1]^2 [x3] + 2.27349 [x2] [x3] - 

1.66514 [x1] [x2] [x3] - 0.75348 [x2]^2 [x3] + 0.240629 [x3]^2 - 2.82975 [x1] [x3]^2 + 0.411133 [x2] [x3]^2 + 1.12863 [x3]^3 

CS12-O3-FOTN 70.6744 - 21.1499 Cos[x1] - 10.7875 Cos[x2] + 5.12185 Cos[x3] - 19.8337 Sin[x1] + 1.02756 Sin[x2] + 1.97377 Sin[x3] 

CS12-O3-FOTNR 
(-4426.9 + 1211.27 Cos[x1] - 7058.62 Cos[x2] - 5279.61 Cos[x3] - 6794.99 Sin[x1] + 4893.12 Sin[x2] + 6773.08 Sin[x3]) / (-

85.871 - 71.4512 Cos[x1] - 193.587 Cos[x2] - 4.68836 Cos[x3] - 162.297 Sin[x1] + 92.6967 Sin[x2] + 88.8338 Sin[x3]) 

CS12-O3-SOTN 

7.55219 + 5.36792 Cos[x1] + 5.74776 Cos[x1]^2 + 3.33793 Cos[x2] - 3.08531 Cos[x1] Cos[x2] + 3.79634 Cos[x2]^2 + 8.09002 

Cos[x3] + 3.65031 Cos[x1] Cos[x3] + 0.796415 Cos[x2] Cos[x3] + 8.48642 Cos[x3]^2 - 6.28251 Sin[x1] + 7.92129 Cos[x1] 

Sin[x1] - 16.7518 Cos[x2] Sin[x1] - 16.7518 Cos[x3] Sin[x1] + 16.6089 Sin[x1]^2 + 0.203156 Sin[x2] + 0.984117 Cos[x1] Sin[x2] 

- 2.23976 Cos[x2] Sin[x2] + 0.984117 Cos[x3] Sin[x2] - 10.8707 Sin[x1] Sin[x2] + 17.8499 Sin[x2]^2 + 0.480891 Sin[x3] - 

2.7552 Cos[x1] Sin[x3] - 2.7552 Cos[x2] Sin[x3] + 9.56924 Cos[x3] Sin[x3] - 6.80051 Sin[x1] Sin[x3] + 3.87635 Sin[x2] Sin[x3] 

+ 10.0701 Sin[x3]^2 

CS12-O3-SOTNR 

(-3.95553*10^9 + 4.70515*10^9 Cos[x1] + 1.13343*10^10 Cos[x1]^2 - 7.58998*10^9 Cos[x2] - 4.28678*10^9 Cos[x1] Cos[x2] + 

4.03579*10^8 Cos[x2]^2 + 2.66512*10^9 Cos[x3] + 5.96831*10^9 Cos[x1] Cos[x3] - 6.32681*10^9 Cos[x2] Cos[x3] + 

9.52062*10^9 Cos[x3]^2 - 1.83263*10^10 Sin[x1] - 8.15762*10^9 Cos[x1] Sin[x1] - 1.11328*10^10 Cos[x2] Sin[x1] - 

1.11328*10^10 Cos[x3] Sin[x1] - 1.52898*10^10 Sin[x1]^2 + 1.91589*10^10 Sin[x2] + 5.59424*10^9 Cos[x1] Sin[x2] + 

1.70916*10^10 Cos[x2] Sin[x2] + 5.59424*10^9 Cos[x3] Sin[x2] + 9.73234*10^9 Sin[x1] Sin[x2] - 4.35911*10^9 Sin[x2]^2 + 

2.55602*10^10 Sin[x3] + 1.17402*10^10 Cos[x1] Sin[x3] + 1.17402*10^10 Cos[x2] Sin[x3] + 1.67429*10^10 Cos[x3] Sin[x3] + 

1.73721*10^10 Sin[x1] Sin[x3] - 2.5591*10^10 Sin[x2] Sin[x3] - 1.34761*10^10 Sin[x3]^2) / (3.72646*10^8 - 1.52909*10^9 

Cos[x1] + 3.61182*10^9 Cos[x1]^2 - 2.45515*10^7 Cos[x2] - 5.40598*10^9 Cos[x1] Cos[x2] + 4.94939*10^9 Cos[x2]^2 + 

6.68079*10^8 Cos[x3] - 4.71335*10^9 Cos[x1] Cos[x3] - 3.20881*10^9 Cos[x2] Cos[x3] + 5.56515*10^9 Cos[x3]^2 + 

7.27201*10^9 Sin[x1] + 9.44704*10^9 Cos[x1] Sin[x1] + 3.42802*10^7 Cos[x2] Sin[x1] + 3.42802*10^7 Cos[x3] Sin[x1] - 

3.23917*10^9 Sin[x1]^2 + 1.08733*10^10 Sin[x2] - 4.08593*10^9 Cos[x1] Sin[x2] + 1.99869*10^10 Cos[x2] Sin[x2] - 

4.08593*10^9 Cos[x3] Sin[x2] - 7.57416*10^9 Sin[x1] Sin[x2] - 4.57674*10^9 Sin[x2]^2 + 2.85648*10^9 Sin[x3] - 

1.44791*10^9 Cos[x1] Sin[x3] - 1.44791*10^9 Cos[x2] Sin[x3] + 5.78125*10^9 Cos[x3] Sin[x3] - 7.04587*10^9 Sin[x1] Sin[x3] 

- 1.21876*10^10 Sin[x2] Sin[x3] - 5.19251*10^9 Sin[x3]^2) 

CS12-O3-FOLN 94.9346 - 50.0312 Log[3 + x1] - 1.31431 Log[3 + x2] + 9.69568 Log[3 + x3] 

CS12-O3-FOLNR 
(2460.73 - 425.199 Log[3 + x1] - 985.267 Log[3 + x2] - 160.022 Log[3 + x3]) / (41.0678 + 3.65351 Log[3 + x1] - 22.0109 Log[3 + 

x2] - 4.79815 Log[3 + x3]) 

CS12-O3-SOLN 

66.1866 + 53.2899 Log[3 + x1] + 3.92426 Log[3 + x1]^2 - 13.3013 Log[3 + x2] - 95.9268 Log[3 + x1] Log[3 + x2] + 28.9572 

Log[3 + x2]^2 - 44.1087 Log[3 + x3] - 6.29202 Log[3 + x1] Log[3 + x3] + 58.6023 Log[3 + x2] Log[3 + x3] - 3.73752 Log[3 + 

x3]^2 

CS12-O3-SOLNR 

(5.96755*10^9 + 7.69851*10^9 Log[3 + x1] + 9.12399*10^9 Log[3 + x1]^2 + 5.69235*10^9 Log[3 + x2] + 5.02216*10^9 Log[3 

+ x1] Log[3 + x2] + 4.80552*10^9 Log[3 + x2]^2 + 6.0077*10^9 Log[3 + x3] + 8.7341*10^9 Log[3 + x1] Log[3 + x3] + 

2.8382*10^9 Log[3 + x2] Log[3 + x3] + 7.64914*10^9 Log[3 + x3]^2) / (1.35754*10^9 - 3.61339*10^9 Log[3 + x1] + 

1.09847*10^9 Log[3 + x1]^2 + 1.82407*10^9 Log[3 + x2] + 1.53903*10^9 Log[3 + x1] Log[3 + x2] - 8.44337*10^8 Log[3 + 

x2]^2 - 1.44095*10^9 Log[3 + x3] + 1.68755*10^9 Log[3 + x1] Log[3 + x3] - 1.42948*10^9 Log[3 + x2] Log[3 + x3] + 

1.15164*10^9 Log[3 + x3]^2) 

 

 

 



 

 
230 

 

Curriculum Vitae 

Name Surname : Emre Görkem ÖZTÜRK 

 

Education: 

2012 – 2017 B.Sc. / Izmir Katip Celebi University, Dept. of Mechanical Eng.  

2018 – 2021 MSc. / Izmir Katip Celebi University, Dept. of Mechanical Eng.  

 

Work Experience: 

2017 – 2018 Oerlikon Kaynak Elektrodları A.S. – Project Engineer 

2019 – 2021 Ed-Van Vantilator San. Tic. Ltd. Sti. – Sales Engineer 

2021 – Cont. Bonfiglioli Turkey – Application Engineer 

 


