## <u>İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

## 1100 SERİSİ ALÜMİNYUM MALZEMELERDE TIG KAYNAĞI İLE OLUŞAN KAYNAK DİKİŞ GEOMETRİSİNİN OPTİMİZASYONU.

YÜKSEK LİSANS TEZİ

Fatih TURHAN

Makine Mühendisliği Anabilim Dalı

Tez Danışmanı: Yrd. Doç. Dr. Levent AYDIN

**AĞUSTOS 2017** 

## <u>İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

## 1100 SERİSİ ALÜMİNYUM MALZEMELERDE TIG KAYNAĞI İLE OLUŞAN KAYNAK DİKİŞ GEOMETRİSİNİN OPTİMİZASYONU.

YÜKSEK LİSANS TEZİ

Fatih TURHAN (600913004)

Makine Mühendisliği Anabilim Dalı

Tez Danışmanı: Yard. Doç. Dr. Levent AYDIN

**AĞUSTOS 2017** 

İKÇÜ, Fen Bilimleri Enstitüsü'nün 600913004 numaralı Yüksek Lisans Öğrencisi Fatih TURHAN, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "1100 SERİSİ ALÜMİNYUM MALZEMELERDE TIG KAYNAĞI İLE OLUŞAN KAYNAK DİKİŞ GEOMETRİSİNİN OPTİMİZASYONU" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmustur.

# Tez Danışmanı :Yard. Doç. Dr. Levent AYDINİzmir Katip Çelebi Üniversitesi

## Jüri Üyeleri : Yard.Doç. Dr. Aydın ÜLKER İzmir Katip Çelebi Üniversitesi

### **Yard.Doç. Dr. Mehmet SARIKANAT** Ege Üniversitesi

Teslim Tarihi: 08 Eylül 2017Savunma Tarihi: 08 Ağustos 2017

## ÖNSÖZ

Optimizasyon konusunu kendisinden aldığım ders, proje ve tezler ile bana sevdiren, bu konuda yüksek lisans yapmamı sağlayan ve son olarak da çeşitli endüstri dallarında pek çok uygulamaları olan bu yaygın ve güncel konuda tez çalışması yapmamı sağlayan sayın hocam Yard. Doç. Dr. Levent AYDIN'a sonsuz teşekkürlerimi sunarım.

Son olarak, geleceğe umutla bakmamı sağlayan ve çalışmalarım süresince desteğini hiçbir zaman benden esirgemeyen motivasyon kaynağım sevgili eşim L.Ceyda TURHAN'a teşekkür ederim.

Ağustos 2017

Fatih Turhan

## İÇİNDEKİLER

## <u>Sayfa</u>

| ÖNSÖZ                                             | .iv  |
|---------------------------------------------------|------|
| İÇİNDEKİLER                                       | v    |
| KISALTMALAR                                       | viii |
| SEMBOLLER                                         | .ix  |
| ÇİZELGE LİSTESİ                                   | X    |
| ŞEKİL LİSTESİ                                     | . xi |
| ÖZET                                              | xiii |
| SUMMARY                                           | xiv  |
| 1. GİRİŞ                                          | 16   |
| 1.1 Problemin Tanımı                              | 17   |
| 1.2 Araştırmanın Motivasyon Kaynağı ve Amaçları   | 18   |
| 1.3 Tez Çalışmasının Referans Aldığı Çalışmalar   | 19   |
| 1.4 Literatür Araştırması                         | 20   |
| 2. TIG KAYNAĞİ VE ÖZELLİKLERİ                     | 24   |
| 2.1 TIG Kaynağı                                   | 24   |
| 2.2 TIG Kaynağının Avantajları ve Dezavantajları  | 27   |
| 2.3 TIG Kaynağında Kullanılan Ekipmanlar          | 28   |
| 2.3.1 Güç kaynağı                                 | 28   |
| 2.3.2 TIG kaynak torcu                            | 30   |
| 2.3.3 TIG kaynak elektrodu                        | 32   |
| 2.3.4 Dolgu malzemesi                             | 34   |
| 2.3.5 Tel sürme sistemleri                        | 34   |
| 3. REGRESYON ANALİZİ                              | 36   |
| 3.1 Modeller                                      | 36   |
| 3.2 Regresyon Analizinin Amacı ve Kullanımı       | 38   |
| 3.3 Genel Uygunluk Denklemi                       | 39   |
| 3.4 Nonlineer Regresyon Analizi                   | 40   |
| 4. MATEMATİKSEL MODEL                             | 42   |
| 5. OPTİMİZASYON                                   | 49   |
| 5.1 Tek Amaçlı Optimizasyon                       | 50   |
| 5.2 Çok Amaçlı Optimizasyon                       | 50   |
| 5.3 Stokastik Optimizasyon Algoritmaları          | 51   |
| 5.3.1 Nelder-Mead Algoritması                     | 51   |
| 5.3.2 Random Search Algoritması                   | 53   |
| 5.3.3 Simulated Annealing Algoritmas1             | 54   |
| 5.3.4 Differential Evolution Algoritması          | 56   |
| 5.4 Wolfram Mathmematica ve Optimizasyon Araçları | 57   |
| 5.4.1 NMinimize ve NMaximize Çözücüleri           | 58   |
| 6. SONUÇLAR VE TARTIŞMA                           | 60   |

| 6.1 Kaynak Parametrelerinin Doğrudan Etkileri                                                  | . 60              |
|------------------------------------------------------------------------------------------------|-------------------|
| 6.1.1 Kaynak hızı                                                                              | . 60              |
| 6.1.1.1 Kaynak hızının Kaynak Dikişi Kesit Geometrisinin Üst Genişliğine                       | )                 |
| Etkisi                                                                                         | . 61              |
| 6.1.1.2 Kaynak hızının Kaynak Dikişi Kesit Geometrisinin Üst Yüksekliği                        | ne                |
| Etkisi                                                                                         | . 62              |
| 6.1.1.3 Kaynak Hızının Kaynak Dikişi Kesit Geometrisinin Alt Genişliğine                       | e                 |
| Etkisi                                                                                         | . 64              |
| 6.1.1.4 Kaynak Hızının Kaynak Dikişi Kesit Geometrisinin Alt Yüksekliği                        | ne                |
| Etkisi                                                                                         | . 65              |
| 6.1.2 Kaynak Akımı                                                                             | . 67              |
| 6.1.2.1 Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Üst                                  |                   |
| Genişliğine Etkisi                                                                             | . 67              |
| 6.1.2.2 Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Üst                                  |                   |
| Yüksekliğine Etkisi                                                                            | . 68              |
| 6.1.2.3 Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Alt Genişliğ                         | ine               |
| Etkisi                                                                                         | . 69              |
| 6.1.2.4 Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Alt                                  |                   |
| Yüksekliğine Etkisi                                                                            | . 69              |
| 6.1.3 Gaz Temizlik Yüzdesi                                                                     | . 70              |
| 6.1.3.1 Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit                                   |                   |
| Geometrisinin Üst Genişliğine Etkisi                                                           | .71               |
| 6.1.3.2 Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit                                   |                   |
| Geometrisinin Ust Yüksekliğine Etkisi                                                          | . 72              |
| 6.1.3.3 Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit                                   |                   |
| Geometrisinin Alt Genişliğine Etkisi                                                           | .74               |
| 6.1.3.4 Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit                                   |                   |
| Geometrisinin Alt Yüksekliğine Etkisi                                                          | .75               |
| 6.1.4 Ark Mesafesi                                                                             | .76               |
| 6.1.4.1 Ark Mesafesinin Kaynak Dikişi Kesit Geometrisinin Ust Genişliğin                       | ne                |
| Etkisi                                                                                         | .76               |
| 6.1.4.2 Ark Mesafesinin Kaynak Dıkışı Kesit Geometrisinin Ust                                  |                   |
| Yüksekliğine Etkisi                                                                            | . 78              |
| 6.1.4.3 Ark Mesafesinin Kaynak Dikişi Kesit Geometrisinin Alt Genişliğir                       | ie<br>70          |
|                                                                                                | . 79              |
| 6.1.4.4 Ark Mesafesinin Kaynak Dikişi Kesit Geometrisinin Alt Yukseklig                        | ;e                |
|                                                                                                | .81               |
| 6.1.5  Kaynak Dolgu Teli                                                                       | . 82              |
| 6.1.5.1 Kaynak Dolgu Teli Hizinin Kaynak Dikişi Kesit Geometrisinin Usi                        | 1                 |
| Genișligine Etkisi                                                                             | . 82              |
| 6.1.5.2 Kaynak Dolgu Teli Hizinin Kaynak Dikişi Kesit Geometrisinin Usi                        | [<br>01           |
| i uksekiigine Eukisi                                                                           | . 04              |
| 0.1.5.5 Kaynak Dorgu Ten Hizmin Kaynak Dikişi Kesit Geometrisinin Alt                          | 05                |
| 6 1 5 4 Kaymak Dalay Tali Hizinin Kaymak Dikisi Kasit Gaomatrisinin Alt                        | . 03              |
| 0.1.3.4 Kaynak Dorgu Ten filzinin Kaynak Dikişi Kesit Geometrisinin Alt<br>Vüksakliğina Etkişi | 07                |
| 1 UKSCKIIGIIIC EIKISI                                                                          | 01.<br>00         |
| 6.3 TIG Kaynak Parametrelerinin ve Kaynak Dikis Alanının Ontimizasyonu                         | 00.<br>08         |
| 7 CELECEKTERI CALISMALAR                                                                       | 07<br>07          |
|                                                                                                | <u>مر</u> .<br>01 |
| 11/1 1 1/2 11/2/11/                                                                            | • /4              |

| EKLER    |  |
|----------|--|
| ÖZGEÇMİŞ |  |

## KISALTMALAR

| TIG   | : Tungsten Inert Gas                      |
|-------|-------------------------------------------|
| FH    | : Üst Yükseklik                           |
| FW    | : Üst Genişlik                            |
| BH    | : Alt Yükseklik                           |
| BW    | : Alt Genişlik                            |
| RSM   | : Response Surface Methodology            |
| GA    | : Genetic Algorithm                       |
| SA    | : Simulated Annealing                     |
| aBPNN | : Advance Back-Propagation Neural Network |
| GA-NN | : Genetic Algorithms and Neural Network   |
| NN    | : Neural Network                          |
| SCR   | : Silicon Controlled Rectifer             |
| DC    | : Doğru Akım                              |
| AC    | : Alternatif Akım                         |
| DE    | : Differantial Evolution                  |
| NM    | : Nelder-Mead                             |
| ACO   | : Ant Colony Optimization                 |
| MA    | : Memetic Algorithms                      |
| PSO   | : Particle Swarm Optimization             |
| HD    | : Hesaplanmış Değer                       |
| ÖD    | : Ölçülmüş Değer                          |
| NP    | : Nüfus Büyüklüğü                         |
| WTPF  | : Kaynak Tekniği Performans Faktörü       |
|       |                                           |

## SEMBOLLER

| °C               | : Santigrat Derece     |
|------------------|------------------------|
| CO <sub>2</sub>  | : Karbondioksit        |
| W                | : Tungsten             |
| ThO <sub>2</sub> | : Toryum Oksit         |
| ZrO <sub>2</sub> | : Zirkonyum Oksit      |
| CeO <sub>2</sub> | : Seryum Oksit         |
| X                | : Girdi Değişkenleri   |
| У                | : Yanıt Fonksiyonu     |
| R <sup>2</sup>   | : Korelasyon Katsayısı |
| Η                | : Isı Miktarı          |
| Ι                | : Akım                 |
| $\mathbf{V}$     | : Volt                 |

## ÇİZELGE LİSTESİ

## <u>Sayfa</u>

| Tablo 1.1 | : Optimizasyon problemleri için, kullanılan kısıtlar,tasarım değişkenleri                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------|
| Tablo 2.1 | ve kullanılan optimizasyon metodları                                                                                      |
| Tablo 2.2 | : Tungsten elektrotların bileşim ve çaplarına göre akım yüklenebilme kapasiteleri                                         |
| Tablo 4.1 | : İnce alüminyum levhaların TIG kaynağı için çalışma datası                                                               |
| Tablo 4.2 | : İnce alüminyum levhaların TIG kaynağı için doğrulama datası 46                                                          |
| Tablo 4.3 | : Fonksiyon modellerine göre kaynak geometrisi ölçülerinin R <sup>2</sup> değerleri                                       |
| Tablo 5.1 | : Dört optimizasyon metoduna ait Wolfram Mathematica v.11 programı<br>ayarları                                            |
| Tablo 6.1 | : Kaynak dikişi kesit geometrisine ait ölçülerin optimizasyon değerleri                                                   |
| Tablo 6.2 | : Farklı alt yükseklik (BH) kısıtları için heseplanan minimum kaynak dikişi kesit geometrisi alanı optimizasyon sonuçları |
| Tablo A.1 | : Çalışma datası değerlerine göre kaynak giriş değişkenleri ve katsayıları                                                |
| Tablo A.2 | : Çalışma datasına göre BH ve BW için ölçülmüş ve hesaplanmış değerler 110                                                |
| Tablo A.3 | : Çalışma datasına göre FH ve FW için ölçülmüş ve hesaplanmış değerler 112                                                |
| Tablo A.4 | : Kontrol datasına göre BH ve BW için ölçülmüş ve hesaplanmış değerler 114                                                |
| Tablo A.5 | : Kontrol datasına göre FH ve FW için ölçülmüş ve hesaplanmış değerler                                                    |

## ŞEKİL LİSTESİ

## <u>Sayfa</u>

| Sekil 1.1 : Kavnak dikisi kesit geometrisi                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------|
| Sekil 2.1 : Kavnak vönteminin sematik gösterimi                                                                               |
| Sekil 2.2 : Soğuk tel ile TIG kavnağı                                                                                         |
| Sekil 2.3 : Sıcak tel ile TIG kaynağı                                                                                         |
| <b>Şekil 2.4 :</b> Kaynak Güç Ünitesi : (a)İnvertör kontrollü ünite, (b) Tristör kontrollü                                    |
| ünite                                                                                                                         |
| Şekil 2.5 : Bir TIG kaynak torcunun parçaları.         30                                                                     |
| Şekil 2.6 : Su soğutmalı bir TIG kaynak torcunun kesiti                                                                       |
| Şekil 5.1 : Nelder-Mead akış şeması.52                                                                                        |
| Şekil 5.2 : Random Search akış şeması.53                                                                                      |
| <b>Şekil 5.3 :</b> Simulated Annealing akış şeması.55                                                                         |
| Şekil 5.4 : Differential Evolution akış şeması.56                                                                             |
| Şekil 6.1 : Kaynak hızının farklı giriş paremetleri ile üst genişliğe etkisi 61                                               |
| Şekil 6.2 : Kaynak hızının farklı giriş paremetleri ile üst yüksekliğe etkisi                                                 |
| Şekil 6.3 :Artan kaynak hızı ile üst yükseklik ve alt yükseklik arasındaki                                                    |
| ilişki <b>64</b>                                                                                                              |
| Şekil 6.4 : Kaynak hızının farklı giriş paremetleri ile alt genişliğe etkisi 64                                               |
| Şekil 6.5 : Kaynak hızının farklı giriş paremetleri ile alt yüksekliğe etkisi 66                                              |
| Şekil 6.6 : Kaynak akımının farklı giriş paremetleri ile üst genişliiğe etkisi                                                |
| Şekil 6.7 : Kaynak akımının farklı kaynak hızlarında üst genişliğe etkisi                                                     |
| Şekil 6.8 : Kaynak akımının farklı kaynak hızlarında alt genişliğe etkisi 69                                                  |
| Şekil 6.9 : Kaynak akımının farklı kaynak hızlarında alt yüksekliğe etkisi70                                                  |
| Şekil 6.10 :Koruyucu gaz temizlik yüzdesinin farklı akım değerlerinde üst genişliğe                                           |
| etkisi                                                                                                                        |
| Şekil6.11 :Koruyucu gaz temizlik yüzdesinin farklı akım değerlerinde üst                                                      |
| yüksekliğe etkisi                                                                                                             |
| Şekil 6.12 :Koruyucu gaz temizlik yüzdesinin farklı akım değerlerinde alt genişliğe                                           |
| etkisi                                                                                                                        |
| Şekil 6.13 :Koruyucu gaz temizlik yüzdesinin farklı akım değerlerinde alt yüksekliğe                                          |
| $etk_{151} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ |
| <b>Sekil 6.14 :</b> Ark mesafesinin farkli akim degerlerinde ust genişlige etkisi                                             |
| <b>Sekil 6.15 :</b> Ark mesafesinin farkli akim degerlerinde ust yukseklige etkisi                                            |
| Sekil 0.10 : Ark mesaresinin farkli akim degerlerinde alt genişlige etkisi                                                    |
| Sekil 6.17: Ark mesaresinin farkli akim degerierinde ait yuksekilge etkisi                                                    |
| <b>Sekii 0.10 :</b> Dolgu tel nizinin iarkii akim degerlerinde ust genişlige etkisi                                           |
| Sekil 6.19 : Dolgu tel nizinin farkli akim degerlerinde ust yukseklige etkisi                                                 |
| Sekil 6.20 : Dolgu tel nizinin iarkii akim degerlerinde alt genişlige etkisi                                                  |
| <b>Sekil (22 - WTDE</b> <sup>2</sup> ain aiffuring ethici                                                                     |
| Şekil 0.22 : w IPF nin nutuziyete etkisi   89                                                                                 |

| Şekil | 6.23 | : | Kaynak   | dikişi  | kesit | geometrisi | ölçülerinin, | kaynak | dikişi | kesit | alanına |
|-------|------|---|----------|---------|-------|------------|--------------|--------|--------|-------|---------|
|       |      |   | göre değ | ģişimi. |       |            |              |        |        |       | 91      |

## 1100 SERİSİ ALÜMİNYUM MALZEMELERDE TIG KAYNAĞI İLE OLUŞAN KAYNAK DİKİŞ GEOMETRİSİNİN OPTİMİZASYONU.

## ÖZET

Mühendislik spektrumu kapsamında kaynak, tamamlayıcı parçalar, montaj işlemi ve makine parçaları üretiminde kullanılan temel bir işlemdir. TIG kaynağı, gıda endüstrisinde, gemilerde, köprülerde, paslanmaz çelik kaynağında vb. yerlerde en sık kullanılan ve en iyi bilinen kaynak yöntemidir. Temel olarak TIG kaynağı kaynak kalitesi, üst yükseklik (FH), üst genişlik (FW), alt yükseklik (BH), alt genişlik (BW) ve kaynak dikiş kesit geometrisi alanı gibi kalite ölçütlerine sahip kaynak dikişi kesit geometrisi tarafından nitelendirilmiştir. Kaynak dikişi kesit geometrisi, kaynağın mekanik özelliklerini belirlemede önemli bir rol oynar. Bu yüzden kaynak parametrelerinin seçimi, en uygun kaynak dikişi kesit geometrisinin elde edilmesinde oldukça önemlidir. Bu çalışmada TIG kaynağı parametrelerinin (kaynak hızı, kaynak akımı, gaz temizlik yüzdesinin, kaynak dolgu teli hızı ve ark mesafesi) kaynak dikişi kesit geometrisi şekli ve kalite ölçütlerine etkisi araştırılmıştır. Kaynak dikişi kesit geometrisinin tahmini ve optimizasyonu için matematiksel modeller geliştirilmiştir. Ayrıca, TIG kaynağında kaynak dikişi kesit geometrisi ve kaynak parametreleri arasındaki ilişkileri yapılandırmak için nonlineer regresyon analizi uygulanmış, matematiksel hesaplamalar için de "Wolfram Mathematica v.11" programı kullanılmıştır.

İlk olarak kaynak dikişinin kesit geometirisini tahmin eddebilmek için bir matematik modeli geliştirilmiştir. Daha sonra TIG kaynak fenomenini tahmin etmek için oluşturulan matematik modelin, nonlineer regresyon analizleri sonucunda prosesi doğru bir şekilde tahmin edebildiği görülmüştür. Kaynak dikişinin optimizasyon çalışmalarnda da "*Differential Evolution*", "*Nelder-Mead*", "*Simuated Annealing*" ve "*Random Search*" metodları kullanılmıştır. Yapılan çalışmalar sonucunda kaynak dikişi geometrisine ait alan için ulaşılabilecek en düşük değere, mümkün olan en yüksek nüfuziyet miktarı koşulu altında optimizasyon işlemleri yapılmıştır.

#### OPTIMIZATION OF WELD BEAD GEOMETRY FOR TIG WELDING OF 1100 SERIES ALUMINUM

#### **SUMMARY**

Across the engineering spectrum, welding is an essential process in the manufacturing of components, assemblies or complete machines. Tungsten inert gas (TIG) welding is the best known and most frequently used method of welding process in food industry, ships, bridges and welding of stainless steels. Basically, TIG weld quality is strongly characterized by the weld pool geometry which has several quality responses such as front height (FH), front width (FW), back height (BH), back width (BW) and area of penetration. Weld pool geometry plays an important role in determining the mechanical properties of the weld. Therefore, it is very important to select the welding process parameters for obtaining an optimal weld pool geometry. In this study, the effect of TIG welding process parameters (welding speed, welding current, gas flow rate, wire speed and gap distance) on the weld pool shape and the quality responses were investigated. The mathematical models were developed for optimization and prediction of the weld pool geometry. Also, a non-linear regression analysis was applied to construct the relationships between welding process parameters and weld pool geometry in TIG welding. Mathematical calculations was used in the Wolfram Mathematica v.11 and Differential Evolution is used in the optimization study.

First, a mathematical model was developed to predict the section geometry of the weld beam. Later, the mathematical model for estimating the TIG welding phenomenon was found to be able to accurately predict the process as a result of nonlinear regression analysis. In the optimization works of welding beam,

"*Differential Evolution*", "*Nelder-Mead*", "*Simulated Annealing*" and "Random *Search*" methods are used. As a result of the work done, the optimization process is carried out under the condition of the lowest possible value for the area of the weld bead geometry, the highest possible penetration amount.

## BÖLÜM 1

## GİRİŞ

Kaynak mekanik özelliklerinin belirlenmesinde, kaynak dikişi kesit geometrisi çok önemli bir rol oynamaktadır. Bu nedenle, optimum kaynak dikişi kesit geometrisini elde etmek için kaynak işlem parametrelerini seçmek çok önemlidir. Genellikle, arzulanan kaynak işlemi parametreleri deneyimle veya bir el kitabı temel alınarak belirlenir. Bununla birlikte, bu, seçilen kaynak işlem parametrelerinin, o özel kaynak makinesi ve çevre için en uygun veya en yakın kaynak dikişi kesit geometrisini üretebileceğinden emin olunamaz.

Günümüzde, TIG kaynağı birçok ekipman için vazgeçilmez bir araç haline gelmiştir, çünkü yüksek kaliteli kaynaklar düşük ekipman maliyetleriyle üretilmektedir. İşlem basınç uygulanmadan koruyucu gaz kullanır. Buna ek olarak, dolgu metalinin eklenmesiyle veya eklenmeden de kullanılabilir. TIG kaynağı, elektrot katot ve iş parçası anot veya tam tersi şeklinde kaynak yapılabilme imkanı tanımaktadır. Öncelikle inert gaz atomlarının iyonlaşmasıyla elde edilen ve negatif elektrot tarafından yayılan elektronlar ark akımını taşırlar. Elektronlar, birleştirilecek iki malzemenin iş parçası kenarlarını eritmek için gerekli ısıyı ürettikleri pozitif iş parçasına doğru çekilir. Böylece, sıvı malzeme içeren bir kaynaklama füzyon bölgesi oluşturulur ve çoğunlukla kaynak dikişi olarak belirtilir.

#### Tezin çalışmasının organizasyonu aşağıdaki şekilde gerçekleştirmiştir;

Yapılan bu çalışma 7 bölümden oluşmaktadır. **Bölüm 1**'de TIG kaynağı ve kaynak dikişi kesit geometrisinin önemi, çalışmayı yapmamızdaki amaçlarımız ve bu konu ile ilgili yapılmış literaturde yer almış çalışmalar anlatılmıştır. **Bölüm 2**'de, kaynaklı birleştirme yöntemlerinde biri olan TIG kaynağı ile kaynak işleminde kullanılan ekipmanlar anlatılmıştır. **Bölüm 3**'te, regresyon analizinin sunumu. **Bölüm 4**'te, mühendislik problemimiz için oluşturulan fonksiyonlar ve bu fonksiyonlar ile yapılan regresyon analizlerinin sonuçları anlatılmaktadır. **Bölüm 5**'te, optimizasyon

hakkında genel bilgilendirme ve genel optimizasyon metodları olan "*Nelder-Mead*", "*Simuated Annealing*" ve "*Random Search*" ile tez çalışmamızda daha yoğun olarak kullanılan "*Differential Evolution*" yöntemi anlatılmıştır. Daha sonra da optimizasyon yapılacak amaç fonksiyonlarımız hakkında bilgilendirme gerçekleştirilmiştir. **Bölüm** 6'da, yapılan çalışmalar sonucunda elde edilen veriler irdelenmiştir. Kaynak giriş parametrelerinin amaç fonksiyonları üzerindeki etkileri incelenmiştir. **Bölüm 7**'de ise konu ile ilgili gelecekte yapılabilecek çalışmalara yer verilmiştir.

#### 1.1.Problemin Tanımı

Temel olarak, TIG kaynak kalitesi, şekil 1.1'de gösterildiği gibi çeşitli kalite özelliklerine sahip kaynak dikişi kesit geometrisi ile güçlü bir şekilde karakterizedir. Bunlar;

- Üst genişlik (FW),
- Üst yükseklik (FH),
- Alt genişlik (BW),
- Alt yükseklik (BH),
- Nüfuziyet'tir (BH+t).



Şekil 1.1. Kaynak Dikişi Kesit Geometrisi

Yapılan bu çalışmada maksimum nüfuziyet koşulu altında minimum kaynak dikişi kesit geometrisine ait alan hesaplanmıştır. Bu problemlerin çözümünde kaynak dikişi kesit geometrisine ait her bir amaç fonksiyonu için ve kesiti oluşturan alan için de bir

amaç fonksiyonu oluşturulmuştur. Dolayısı ile bu tez kapsamında beş farklı optimizasyon problemi çözülmüştür. Bu problemler Tablo 1.1'de belirtilmiştir.

Optimizasyon problemlerinin çözümü yapılırken üst genişlik (FW) amaç fonksiyonu için dört farklı metot kullanılmıştır. Çıkan sonuçların her metot için aynı olmasından dolayı bundan sonraki optimizasyon problemlerinde çalışma mantığının en iyi olduğunu düşündüğümüz "*Differential Evolution*" (DE) metotu ile devam edilmiştir.

| Problem<br>No | Amaç                                          | Kısıtlar                                                                                                                                                                                                                                                                | Tasarım Değişkenleri                                                                                            | Optimizasyon<br>Algoritması                                                                                |  |  |
|---------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| 1             | Üst Genişlik (FW)<br>Minimizasyonu            | <ul> <li>•FH&lt;1+0.1 FW, (ISO 5817:2014)</li> <li>•Kaynak hızı (a)€ {24, 35, 46};</li> <li>•Dolgu teli sürme hızı (b) € {1.5, 2, 2.5};</li> <li>•Korunuşu gaz tomizlik vürdeşi (c) € {20</li> </ul>                                                                    |                                                                                                                 | Simulated Annealing<br>(SA),<br>Differential Evolution<br>(DE),<br>Random Search (RS),<br>Nelder-Mead (NM) |  |  |
| 2             | Üst Yükseklik (FH)<br>Minimizasyonu           | <ul> <li>•Koruyucu gaz temizik yuzuesi (c) € {30, 70};</li> <li>•Ark mesafesi (d) € {2.4, 3.2};</li> <li>•Kaynak akımı (e) € {80, 95, 110}.</li> </ul>                                                                                                                  |                                                                                                                 |                                                                                                            |  |  |
| 3             | Alt Genişlik (BW)<br>Minimizasyonu            | <ul> <li>BH&lt;1+0.1 BW, (ISO 5817:2014)</li> <li>Kaynak hızı (a)∈ {24, 35, 46};</li> <li>Dolgu teli sürme hızı (b) ∈ {1.5, 2, 2.5};</li> <li>Korunuşu gaz temizlik üşatçı (a) ∈ {20</li> </ul>                                                                         | •Kaynak hızı (a)<br>•Dolgu teli sürme hızı<br>(b)<br>•Koruyucu gaz temizlik<br>yüzdesi (c)<br>•Ark mesafesi (d) |                                                                                                            |  |  |
| 4             | Alt Yükseklik (BH)<br>Maksimizasyonu          | •Koruyucu gaz ternizik yuzuesi (c) € {30,<br>70};<br>•Ark mesafesi (d) € {2.4, 3.2};<br>•Kaynak akımı (e) € {80, 95, 110}.                                                                                                                                              | •Kaynak akımı (e)                                                                                               | Differential Evolution<br>(DE)                                                                             |  |  |
| 5             | Kaynak Dikişi Kesit<br>Alanı<br>Minimizasyonu | <ul> <li>BH&gt;0.1-0.7</li> <li>Kaynak hızı (a)∈ {24, 35, 46};</li> <li>Dolgu teli sürme hızı (b) ∈ {1.5, 2, 2.5};</li> <li>Koruyucu gaz temizlik yüzdesi (c) ∈ {30, 70};</li> <li>Ark mesafesi (d) ∈ {2.4, 3.2};</li> <li>Kaynak akımı (e) ∈ {80, 95, 110}.</li> </ul> |                                                                                                                 |                                                                                                            |  |  |

**Tablo 1.1:** Optimizasyon problemleri için, kullanılan kısıtlar,tasarım değişkenleri veoptimizasyon metodları

## 1.2.Araştırmanın Motivasyon Kaynağı ve Amaçları

Bu tez çalışmasını yapmak seçme motivasyonumuz aşağıdaki gibi özetlenir;

• Ark kaynağı işlemi, yüksek sıcaklıklara sahip ve ciddi bozulmalar ile kalıcı gerilmelere neden olan son derece karmaşık bir fenomendir.

- Isı tipi kaynak olan TIG kaynağı, demiryolu, denizcilik, köprüler, inşaat sektörü, otomotiv, havacılık ve nükleer reaktörler gibi yüksek hassasiyet gerektiren geniş bir uygulama yelpazesi ile en önemli üretim operasyonlarından biridir.
- Kaynak dikişi kesit geometrisi, kaynağın mekanik özelliklerinin belirlenmesinde önemli rol oynamaktadır. Bu nedenle, optimum kaynak dikişi kesit geometrisini elde etmek için kaynak işlem parametrelerini seçmek çok önemlidir.
- Birçok mühendislik uygulamasının asıl amacı mekanik özelliklerden ödün vermeden maliyet ve ağırlığı azaltmaktır.
- Optimizasyonun, mühendislik yapılarında olduğu kadar karşımıza çıkabilecek karmaşık tüm sistemlerin tasarımında çok önemli bir rolü vardır.

Bu tez çalışmasını yaparken ulaşmak istediğimiz hedefler;

- TIG kaynak giriş parametreleri ve bunlara bağlı olarak kaynak dikişi geometrisinin matematiksel olarak modelini oluşturmak.
- Optimum kaynak giriş parametreleri ile minimum kaynak dikişi kesit alanı ve maksimum penetrasyonu elde etmek.
- TIG kaynak giriş parametrelerinin, kaynak dikişi üzerindeki etkilerinin araştırılması.

## 1.3.Tez Çalışmasının Referans Aldığı Çalışmalar

Bu çalışma kapsamında aşağıda bulunan referanslar temel alınarak tez çalışması organize edilmiştir. Regresyon modelinin oluşturulması için gerekli olan kaynak proses datası Tarng ve diğ. (1999) çalışmasından, kaynak giriş parametrelerinin kaynak dikişi kesit geometrisi üzerindeki etkilerinin incelenmesi Eşme (2006) çalışmasından, kaynak dikişi kesit geometrisi için fonksiyonunun oluşturulması ve optimizasyonun yapılması Arpith (2017) çalışmasından, kaynak giriş parametrelerine bağlı olarak kaynak tekniği performans faktörü hesabı Gunuraj (2000) çalışmasından yararlanılmıştır.

- Eşme, U. (2006). *Effect of pool geometry on the quality of TIG welded joints*. (Doktora tezi). Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
- Tarng, Y. S., Tsai, H. L. and Yeh, S. S. (1999) Modeling, Optimization and Classification of Weld Quality in Tungsten Inert Gas Welding, *International Journal of Machine Tools & Manufacture*, Vol. 39, No. 9, 1427-1438.
- S. Arpith, B. K. Singh, P. Mastanaiah (2017), Prediction and optimization of weld bead geometry for electronvbeam welding of AISI 304 stainless steel, *Int. J. Adv. Manuf. Tech.*, 89,27–43.
- Gunaraj, V. & Murugan, N. (2000). Prediction and Optimization of Weld Bead volume for the Submerged Arc Process — Part 1. Welding Research Supplement, Elsevier, 286-294.

#### 1.4.Literatür Araştırması

Temelde, TIG kaynak kalitesini etkileyen parametreler içerisinde, kaynak dikişi kesit geometrisi önde gelmektedir. Kaynak dikişi kesit geometrisi, kaynak mekanik özelliklerinin belirlenmesinde önemli bir rol oynamaktadır. Nanda ve diğ., (2011) yaptıkları çalışmalarda kaynak dikişi kesit geometrisini oluşturan üst genişlik,üst yükseklik ve nüfuziyet gibi parametreleri incelemişler ve kaynak kalitesi için önemli birer etken olduklarını açıklamışlardır. Ark kaynağı işlemlerinin çoğunda olduğu gibi, TIG prosesi de lineer olmayan matematiksel ifadeler ile doğru bir şekilde modellenebilir. Buna ek olarak, TIG kaynak işlemi, düşük ısı girişi, az sıçrama ve kaynak temizliği ile de karakterizedir. TIG kaynağı, koruyucu amaçla sarf edilemeyen tungsten elektrot ve argon gibi inert bir gaz kullanmaktadır. Literatürde yapılan çalışmalar incelendiğinde, TIG kaynağında modelleme, simülasyon ve proses optimizasyonunun çeşitli yönleri üzerinde araştırmaların yoğunlaştığı görülmektedir. Kaynak geometrisinin matematiksel ifadesi, tüm kaynak ısıl çevriminin bir sonucu olduğu için araştırmacılar için büyük bir ilgi konusu olmuştur. Bu gerçeğin farkında olarak, çeşitli araştırmacılar tarafından bazı geleneksel regresyon analizi yaklaşımları kaynak sürecinin modellenmesi için kullanılmış ve çeşitli girişimlerde bulunulmuştur. Narang ve diğ. (2011), yaptıkları çalışmada kaynak makro yapı bölgesinde "Fuzzy Logic Simulation" ile kaynak havuzu profil özelliklerini modellemislerdir. Modelleme sürecinde 1sıdan etkilenen bölgenin sekli ile birlikte

kaynak dikişi kesit geometrisinin tahmini, ark hızı, kaynak akımı ve ark uzunluğu gibi TIG kaynak işlemi parametreleri dikkate alınarak gerçekleştirilmiştir..

Hem lineer hem de nonlineer geleneksel regresyon analizleri, belirli bir modülde (örneğin, deneylerin full faktöriyel tasarımı ve fraksiyonel faktöryel tasarımları) toplanan deneysel verilere dayanılarak geçmişte gerçekleştirilmiştir. Tarng ve diğ. TIG kaynaklarının ön genişliği, arka genişliği, ön yüksekliği ve arka (1998),yüksekliği tahmininde "Neural Networks", kaynak proses parametreleri ile kaynak dikişi özellikleri arasındaki karmaşık ilişkileri oluşturmak için hem "backpropagation" hem de "counter-propagation" kullanmışlardır. Deneysel sonuçları, "counter-propagation" ağının TIG kaynak işlemi için "back-propagation" ağından daha iyi öğrenme kabiliyetine sahip olduğunu göstermektedir. Bununla birlikte, "back-propagation" ağı TIG kaynak işlemi için "counter-propagation" ağından daha iyi bir genelleme kabiliyetine sahip olduğu sonucuna da varılmıştır.. Yang ve diğ. (1993) Curvilinear regresyon denklemleri kaynak dikişi kesit geometrisi özelliklerini modellemek için kullanılmıştır, ancak sadece korelasyon katsayıları bildirilmiştir. Bu araştırma korelasyon katsayısı ile tahmin edilen ve ölçülen değerler arasındaki sapmaların standart sapması ile erime oranı, toplam füzyon alanı, nüfuziyet, kaynak dikişi yüksekliği ve kaynak havuzu arasındaki ilişkiyi incelemek amacıyla yürütülmüştür Çalışmaların sonunda korelasyon denkleminin korelasyon katsayısı ile tahmin edilen ve ölçülen değerler arasındaki sapmaların standart sapması arasında güçlü bir ilişki bulunmadığı bulunmuştur. Lee ve diğ. (2000), bir gaz metal ark kaynak işleminde çoklu regresyon analizi ile kaynak parametrelerinin fonksiyonlarını bulmuşlardır. Regresyon modeli denklemi, ters dönüşümün uygulandığı kaynak dikişinin arka yüksekliği parametrelerinin korelasyonu yoluyla kaynak işlemi parametrelerinden elde edilmiştir. Sonuç olarak ileri süreçteki maksimum tahmin hatası oranı %9,5'in altında ve kaynak işlemi parametrelerinin ters işlemdeki tahmin hatası oranı %6,5'in altında elde edilmiştir. Kim ve diğ. (2003), robotik CO<sub>2</sub> ark kaynağı işlemi için proses değişkenleri ve kaynak dikişi nüfuziyeti arasındaki ilişkileri belirlemek için lineer ve non-lineer çoklu regresyon denklemlerini türetmiştir. Geliştirilen matematik modeler nüfuziyeti makul bir doğrukla tahmin etmiştir. Dutta ve diğ. (2007), bir TIG kaynak prosesini klasik bir lineer regresyon tekniği, aBPNN (Advance Back-Propagation Neural Network) ve GA-NN (Genetic Algorithms ve Neural Network) kullanılarak modellemiş ve bazı test durumları ile

performansları karşılaştırılmıştır. "NN" tabanlı yaklaşımlar, deneysel çalışmaların modellenmesi süreci için geleneksel regresyon analizine kıyasla daha uyarlanabilir olarak görülmüştür. Eşme (2006) çalışmasında TIG kaynağı parametrelerinin (kaynak hızı, kaynak akımı, gaz akış oranı ve boşluk mesafesi) kaynak dikişi kesit geometrisi ölçüleri ile kalite ölçütlerine etkisi araştırılmıştır. Kaynak dikişi kesit geometrisinin matematiksel ifadesinin yazılması ve optimizasyonu için matematiksel modeller geliştrimiş, ayrıca, TIG kaynağında kaynak dikişi kesit geometrisi ve kaynak parametreleri arasındaki ilişkileri yapılandırmak için "*Neural Network*" (NN) kullanmıştır. Geliştirilen matematiksel modellerin, istenilen kaynak dikişi kalitesini elde etmek için doğru işlem parametrelerini seçmek ve verilen süreç parametreleri için kaynak havuzu kalitesini tahmin etmek için kullanışlı olduğu görülmüştür.

Joby ve diğ. (2015) kaynak dikişi kalitesinin ölçümünde çekme mukavemetini incelemiştir. Bu işlemler için regresyon denklemlerini RSM'yi (Response Surface Method) kullanarak gerçekleştirmiş ve en ideal kaynak parametrelerini seçebilmek icin "Genetic Algorithm" (GA) ve "Simulated Annealing" (SA) algoritmalarını kullanarak optimize etmişlerdir. Bu modeller, optimizasyon prosedürünün parçası olarak tatmin edici sonuçlar vermiştir ve onay testinde, GA ve SA'nın giriş prosesi parametrelerini belirlemek için etkili bir şekilde kullanılabilmektedir. Tarng ve diğ. (1999) TIG kaynak işlem parametreleri ile kaynak dikişi kesit geometrisi arasındaki ilişkileri oluşturmak için "Neural Network" kullanmış ve "Simulated Annealing" algoritması yardımı ile de optimum kaynak dikişi kesit geometrisi ve giriş parametre değerlerini bulmuştur. Ayrıca, kaynak dikişi kesit geometrisindeki özellikleri kullanarak kaynak kalitesini sınıflandırmak ve doğrulamak için "fuzzy c-means algorithm" tabanlı kod kullanılmıştır. Bu çalışma sayesinde, nonlineer çok değişkenli TIG kaynak islemleri daha fazla anlaşılabilmekte, analiz edilebilmekte ve kontrol edilebilmektedir. Dey ve diğ. (2010) kaynak işlemini Al-1100 alüminyum plakalar üzerinde bir elektron ışını kaynak makinesi kullanılarak gerçekleştirmiştir. Daha regresyon analizini, işlemin girdi-çıktı iliskileri kurmak sonra için gerçekleştirilmiştir. Maksimum nüfuziyet koşulunu sağladıktan sonra kaynak alanı minimuma indirilmiştir. Bu çalışmada kısıtlı optimizasyon problemi, bir ceza fonksiyonu yaklaşımı ile "Genetic Algorithm" (GA) kullanılarak çözülmüş. Optimum kaynak dikişi kesit geometrisi belirlenebilmiştir. Kaynak dikişi profilleri "Neural Networks" kullanılarak tahmin edilmiş ve GA-NN'nin BPNN'den daha iyi

performans gösterdiği bulunmuştur. Dey ve diğ.. (2009) östenitik paslanmaz çelikler ile yaptıkları elektron kaynağı çalışmaları sonucunda yine aynı metodlar ve algoritmaları kullanarak (2010) yılındaki çalışmanın sonuçlarının aynısını elde etmişlerdir. GA-NN'nin BPNN'den daha iyi olduğu sonucuna varmışlardır.

## **BÖLÜM 2**

## TIG KAYNAĞI VE ÖZELLİKLERİ

### 2.1. TIG Kaynağı

Isı tipi kaynak olan TIG kaynağı, trenler, gemiler, köprüler, otomobiller ve nükleer reaktörler için geniş bir uygulama yelpazesi ile yapısal elemanların birleştirilmesi için en önemli üretim operasyonlarından biridir. Metali eritmek ve bir kaynak oluşturmak için ısı üretmek gerekir. Bunun için de bir elektrik arkı yaratan doğru veya alternatif elektrik akımı ile sürekli bir şekilde çalışılmasını gerektirir (Awang, 2002).

Ark kaynağı işlemi, son derece yüksek sıcaklıklara sahip ve ciddi bozulmalara ve kalıcı gerilmelere neden olan son derece karmaşık bir işlemdir. Bu aşırı fenomen, bu kaynak yapısını, kırılmaya, burkulmaya, korozyona ve diğer arıza türlerine karşı savunmasız hale getirmektedir.

Heliarc tungsten gaz kaynağı işlemi olarak da bilinen TIG kaynağı, Amerikan Havacılık Endüstrisinin bazı magnezyum ve alüminyumun parçaların birleştirme yöntemleri sonucunda İkinci Dünya Savaşı sırasında keşfedildi. Russell Meredith, 1930'lu yılların sonlarında bir tungsten elektrot ve helyum gazı kullanarak magnezyum kaynağı için ilk TIG işlemini gösterdi. Heliarc kaynağı pek çok ayrıntılandırma ve isim değişikliği ile günümüze kadar devam etmiştir. Günümüzde gaz olarak artık argon kullanılmaktadır. Şekil 2.1'de gösterildiği üzere tungsten elektrotların aşırı ısınması ve kopan elektrot parçacıklarının kaynak dikişinin kalitesini olumsuz etkilenmesi sebebi ile sulu soğutmaya sahip elektrotlar ve sistemler tasarlanmıştır.



Şekil 2.1 : Kaynak Yönteminin Şematik Gösterimi (Baylan, O., 2015)

Elektrik boşalması, elektrot ucu ve kaynak yapılacak iş parçası arasında bir ark oluşturur. Ark, normal olarak, düşük voltajlı kaynak akımı için havada başlangıç iletkenlik yolunu sağlayan küçük bir kıvılcım üreten yüksek frekanslı bir jeneratörü olan bir güç kaynağı ile başlatılır. Bu ateşleme nabzının frekansı, birkaç MHz'e kadar büyük olabilmektedir. Bu frekans, yüksek gerilimle birlikte, kaynak hücresi çevresinde güçlü bir elektriksel parazit oluşturur; bu da, sensörler ve ölçüm cihazı kullanıldığında bir dezavantajdır. Ark, tabanı ve dolgu malzemesini eritmek için gerekli olan termal enerjiyi üreten yüksek sıcaklıkta iletken bir arkdan oluşur. Ark sıcaklığı, kaynak dikişi yüzeyinin 11700 ° C ve 14700 ° Ci arasında farklılık gösterir ve eritilmiş yüzey sıcaklığı malzemeye bağlı olarak 1427 ° C'den 2500 ° C'ye kadar uzanır (Ericsson, 2002).

Akımın üç farklı alternatifi kullanılabilir;

- Pozitif elektrotlu doğru akım (DC)
- DC bir negatif elektrot ile,
- Alternatif akım (AC).

AC çoğunlukla alüminyum ve magnezyum kaynağı için tercih edilir. Çünkü yüzeydeki oksit tabakasının temizliği bu yolla başarılabilir. DC ise bir negatif elektrot ile alüminyum kalın plakaları da dahil olmak üzere çoğu diğer malzemeler için kullanılır. Darbeli ve darbeli olmayan akımlar ile kullanılabilmektedir. Darbeli olmayan bir akım en yaygın olanıdır. Darbeli bir akımın kullanımı nüfuziyetin arttırılması gibi bazı avantajlara sahiptir (Lothongkum ve diğ., 2001).

Taban malzemesinin kalınlığına, dikiş türüne ve diğer faktörlere bağlı olarak, ilave dolgu malzemesine ihtiyaç duyulabilir. Otomatik TIG kaynağında sıcak veya soğuk tel kullanılabilir. Soğuk tel veya çubuk erimiş kaynak dikişinin önüne şekil 2.2'de gösterildiği gibi beslenir. Bobinli tel, 100 mm makaralarda veya çubuk olarak 915 mm uzunluğunda üretilebilirler. Bobinler ve çubuklar, soğuk tel kaynağı sırasında kaynak dikişinin ön kenarına manuel olarak beslenir.



Şekil 2.2 : Soğuk tel ile TIG kaynağı (Kou,1987)

Şekil 2.3'te gösterildiği gibi sıcak tel, arkadan beslenir ve prosese dolgu metali yığma hızını arttırmak için ısıtılmış olarak kullanır. Tel, ergime sıcaklığına yakın bir sıcaklığa ısıtılır ve kaynak dikişinin arka kenarına beslenir. 29 kg/saat'e kadar biriktirme oranları elde edilebilir. Sıcak tel ile elde edilen daha yüksek yığma hızı oranları, süreçleri kaynak ve kaplamalar için rekabetçi hale getirir ve verimliliği arttırır. Dolgu malzemesi genellikle temel malzemeyle aynıdır (Modenesi ve diğ., 2000).



Şekil 2.3 : Sıcak tel ile TIG kaynağı (AWS,1991)

Arkı devam ettirmek aynı zamanda erimiş kaynak dikişi ile elektrotu atmosferik kontaminasyondan korumak için inert bir gaz kullanılır. Kaynak parametrelerine ve kaynak malzemelerine bağlı olarak, argon, helyum veya iki gaz karışımı kullanılabilir. Argon, alaşımsız, düşük alaşımlı ve paslanmaz çeliklerde yaygın olarak kullanılır. Bununla birlikte, mekanik kaynak için argon ve hidrojen veya helyum karışımı kullanılabilir (Tusek ve Suban, 2000). Duplex paslanmaz çeliklerde, doğru bir ferrit / ostenit dengesi sağlamak için argonun azot ile karıştırılması yaygın bir işlemdir. Alüminyum ve alaşımlar genellikle argon kullanılarak kaynaklanır. Helyum ilavesi ısı transferini iyileştirmek için kullanılabilir ve bu nedenle bazen kalın kısımların kaynağı için tercih edilebilir (Suban ve diğ., 2001).

#### 2.2. TIG Kaynağının Avantajları ve Dezavantajları

TIG kaynağının başlıca avantajları aşağıdaki gibidir;

- Yüksek kalitede düşük distorsiyonlu kaynak kabiliyeti,
- Dolgu telli yada telsiz çalışabilme,
- Her pozisyonda kaynak yapılabilme olanağı ve özellikle ince malzemelerin kaynağına uygunluk,
- Bu yöntem ile ayrı cins metalleri ve alaşımları birbirleri ile kaynatma olanağı mümkündür.
- Görülebilir ark ve kaynak dikişi,
- Dolgu metali ark ile geçmez. Eklenen dolgu miktarı kaynak akım seviyesine bağlı değildir.
- Tungsten elektrot ile dikişte çok az bir karbür ayrışması meydana gelir,

TIG kaynağının dezavantajları aşağıdaki gibidir;

- TIG kaynağında metal yığma hızı diğer ark kaynak yöntemlerine göre düşüktür,
- Kalın kesitli malzemelerin kaynağında ekonomik bir yöntem değildir,
- Koruyucu gaz gerektirir,
- Kirliliğe hassastır bu yüzden yüzey temizliği gerektirir,
- Açık havada kullanımı zordur,
- İş parçasının ve dolgu malzemesinin kimyasal yapısı düzeltilemez,
- Kalay ve kurşun gibi çok düşük erime noktalı metaller için genellikle kullanılmaz.

### 2.3. TIG Kaynağında Kullanılan Ekipmanlar

### 2.3.1. Güç Kaynağı

TIG kaynağına ait güç kaynakları genellikle sabit akımlı, düşük volt-amper eğrisine sahiptirler. TIG kaynak yönteminde, kaynatılan malzemenin türüne göre hem alternatif akım hem de doğru akım kullanıldığından, modern akım üreteçleri her iki tür akımı da gerektiğinde sağlayabilecek türde dizayn edilmişlerdir. İyi bir kaynak akım üreteci hem alternatif hem de doğru akım sağladığında, kaynak akımını sabit

tutabilmek ve ayrıca doğru akımda tutuşmayı, alternatif akımda ise arkın sürekliliğini sağlamak için bir yüksek frekans jeneratörüne sahip olmalıdır. Son yıllarda birçok uygulamada bu konuda darbeli akım da kullanılmaktadır.

Günümüzde TIG kaynak yönteminde akım üreteci olarak transformatör ve redresör özellikli jeneratörler, alternatörlere nazaran çok daha yaygın bir kullanma alanına sahiptir. Redresörler, akımı kaynak gerilimine ayarlayan bir transformatör ve bu akımı doğrultan bir redresörden oluşmuşlardır, bu neden ile hem doğru akım hem de alternatif akım üreten bu tür üreteçler ile her tür metal ve alaşımın kaynağını yapmak mümkün olabilmektedir.

Günümüzde gelişmiş TIG kaynak redresörleri bir de darbeli akım üretecek biçimde dizayn edilmişlerdir. Darbeli akım doğru akımın şiddetinin iki sınır değer arasında öngörülen frekansta değişmesidir. Bu şekilde akımın üst sınır değerinin nüfuziyeti elde edilebilmekte ve aynı zamanda ortalama akım şiddetinin ısı girdisi parçaya uygulanmaktadır.

Son yıllarda da inverter üniteler TIG kaynak yönteminde yaygın bir uygulama alanı bulmuştur; bu akım üreteçleri daha hafif olukları gibi daha stabil bir ark oluşturduklarından pek çok kullanıcı tarafından tercih edilmektedirler.

İnverter güç kaynağı üç dönüştürücüden oluşur:

- 60 Hz birincil alternatif akımı (AC), DC'ye doğrultur.
- Doğru akımı yüksek frekanslı AC'ye dönüştürülür.
- Alternatif akımı DC'ye doğrultulur (Byrd,1993).

TIG kaynağındaki inverter üniteler sabit akımı sabit voltaja çevirebilirler. Böylece çok yönlü bir üreteç elde edilmiş olur. İnvertör kontrollü güç kaynakları, geleneksel silikon kontrollü doğrultucu (SCR) güç kaynaklarından daha kararlı ve daha hızlı tepki vermektedir. Şekil 2.4,'de invertör kontrollü bir ark kaynağı makinesi ile tristör kontrollü kaynak makinelerinin tepkilerini karşılaştırıldığı iki farklı grafik verrilmiştir.



Şekil 2.4 : (a) Tristör kontrollü ünite, (b) İnvertör kontrollü ünite (ASM, 2002)

## 2.3.2 TIG Kaynak Torcu

TIG kaynak yönteminde torç, iş parçası ile ucundaki tungsten elektrot arasında kaynak için gerekli olan elektrik arkını oluşturabilmek için, akım kablosundan aldığı akımı elektroda iletmek, koruyucu gazı kaynak banyosunun üzerini örtecek biçimde sevk etmek görevlerini yerine getirmek için geliştirilmis bir elemandır.

TIG kaynak yönteminde kullanılan torçlar uygulama koşulları göz önünde bulundurularak çesitli tür ve büyüklüklerde üretilmektedirler. El ile yapılan TIG kaynağında kullanılan torçlar hafif, küçük ve elektrik akımı kaçaklarına karşı etkin bir biçimde yalıtımlı olarak tasarlanmış ve üretilmişlerdir. Torç ile akım üreteci, gaz tüpü ve soğutma suyu ile bağlantıları, değişik kalınlıklardaki kablolar ve hortumlar ile sağlanır ve bunların tümü torç bağlantı paketi adı verilen çelik spiral takviyeli bir kalın hortum içine yerleştirilmişlerdir.

Genel olarak koruyucu gaz debisi arttıkça, gaz nozulu çapı da büyür.



Şekil 2.5 : Bir TIG Kaynak Torcunun Parçaları (Baylan,O.,2015-2)

Genelde torçlar hava sogutmalı ve su sogutmalı olarak iki ana gruba ayrılırlar.



Şekil 2.6 : Su Soğutmalı Bir TIG Kaynak Torcunun Kesiti (Kurt, 2006)

TIG kaynak torçlarına takılan gaz memeleri, torcun biçimine, türüne, kapasitesine, hava veya su soğutmalı olmasına, kullanılan gaz debisine ve kaynak yerine göre değişik çap ve tipte olabileceği gibi değişik malzemelerden de üretilmiş olabilir. Günümüz endüstrisinde kullanılan gaz nozulları, malzemeleri açısından başlıca dört gruba ayırabiliriz:

• Seramik gaz nozulları,

- Metalsel gaz nozulları,
- Saydam gaz nozulları,
- Çift gazlı gaz nozulları.

Hava soğutmalı torçlarda tercih edilen seramik gaz nozulları kırılgan olmalarına karşın, fiyatlarının ucuzluğu, oldukça yüksek sıcaklıklarda dahi kullanılabilmeleri ve alternatif akım uygulamalarında yüksek frekans akımının oluşturduğu çapraz ateslemelere engel olması nedeni ile endüstride en yaygın olarak kullanılan TIG gaz nozulu türüdür.

### 2.3.3 TIG Kaynak Elektrodu

TIG kaynak yöntemi ile diğer elektrik ark kaynağı yöntemleri arasındaki en önemli fark, ek kaynak metalinin elektrot tarafından sağlanmaması ve elektrodun sadece ark oluşturma görevini üstlenmiş olmasıdır. Günümüz endüstrisinde ticari saflıktaki tungsten (% 99.5 W) ile toryum, zirkonyum ve lantanyum ile alaşımlandırılmış elektrotlar kullanılmaktadır. Uygulamada karşılaşılan TIG kaynak elektrotlarını, saf tungsten elektrotlar, alaşımlı elektrotlar ve çizgili elektrotlar olmak üzere üç grup altında toplamak mümkündür. TIG kaynak elektrodları, AWS A5.12 ile DIN 32528 standartların da bileşimlerine göre sınıflandırılmış ve bunları birbirlerinden kolaylıkla ayırt edebilmek için Tablo 2.1'de renk kodları kullanılmıştır.

| Standart           | Standart Gösterim Kimyasal bileşimler |                                                                                                                       |                                                        |            |   |
|--------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|---|
| ISO 6848 AWS A5.12 |                                       | OKSIT ILAVESI                                                                                                         | TUNGSTEN                                               | UÇ RENKLER | i |
| WT20               | EWTh-2                                | ThO <sub>2</sub> : 1.70-2.20%                                                                                         | 2% THORIATED                                           | Kırmızı    |   |
| WP                 | EWP                                   | ~~~~~                                                                                                                 | SAF                                                    | Yeşil      | ( |
| WL15               | EWLa-1.5                              | La0 <sub>2</sub> : 1.30-1.70%                                                                                         | 1.5% LANTHANATED                                       | Altın      |   |
| WC20               | EWCe-2                                | CeO <sub>2</sub> : 1.80-2.20%                                                                                         | 2% CERIATED                                            | Gri        | ( |
| WL20               | EWLa-2                                | La <sub>2</sub> 0 <sub>3</sub> : 1.80-2.20%                                                                           | 2% LANTHANATED                                         | Mavi       |   |
| WZ8                | EWZr-8                                | ZrO <sub>2</sub> : 0.70-0.90%                                                                                         | 0.8% ZIRCONIATED                                       | Beyaz      | 0 |
| LaYZr™             | EWG                                   | La <sub>2</sub> 0 <sub>3</sub> : 1.3-1.7%; Y <sub>2</sub> 0 <sub>3</sub> : 0.06-0.10%;<br>Zr0 <sub>2</sub> : 0.6-1.0% | 1.5% LANTHANATED<br>0.8% YTTRIATED<br>0.8% ZIRCONIATED | Açık yeşil |   |

**Tablo 2.1 :** Tungsten Elektrotların Kimyasal Bileşimleri ve Renk Kodları (DIN32528)

DIN 32528 de TIG kaynak elektrotlarının çapları 0.5, 1.0, 1.6, 2.0, 2.4, 3.0, 3.2, 4.0, 5.0, 6.0, 6.4 ve 8.0 mm boyları ise 50, 75, 150, 175 mm olarak belirlenmiştir. AWS A5.12 de ise elektrotların çaplan 0.01, 0.02, 0.04, 1/16, 3/32, 1/8, 5/32, 3/16, 1/4 inç boyları ise 3, 6, 7, 12, 18 ve 24 inç olarak saptanmıştır. 7 inçten daha uzun olanlar sadece mekanize ve otomatik kaynak yöntemlerinde kullanılırlar. Uygulamada elektrot çapı, elektrodun maksimum akım yüklenebilme kapasitesi göz önüne alınarak seçilmelidir. Bu değere yaklaşıldığında arkın ısı yoğunluğu artmakta, daha stabil bir ark ile nüfuziyeti fazla, dikiş yüksekliği az bir dikiş elde edilebilmektedir. TIG kaynak yönteminde kullanılan elektrotların akım yüklenebilme kapasitesi çok sayıdaki etkene bağlı olarak oldukça geniş bir aralık içinde değişmektedir (Tablo 2.2). Bu etkenleri şu şekilde sıralayabiliriz;

- Elektrodun bileşimi,
- Koruyucu gazın türü,
- Elektrodun, elektrot tutucusunun dış kısmında kalan boyu,
- Elektroda uygulanan soğutma sisteminin etkinliği,
- Akım türü ve kutuplama,
- Kaynak pozisyonu.

|                       | Alternat   | if Akım (A) | Doğru Akım (A)          |                         |  |  |
|-----------------------|------------|-------------|-------------------------|-------------------------|--|--|
| Elektrot Çapı<br>(mm) | W Elektrod | WT Elektrod | W ve WT<br>Elektrod (-) | W ve WT<br>Elektrod (+) |  |  |
| 0.5                   | 5-15       | 5-20        | 5-20                    | -                       |  |  |
| 1.0                   | 10-60      | 15-80       | 15-80                   | -                       |  |  |
| 1.6                   | 50-100     | 70-150      | 70-150                  | 10-20                   |  |  |
| 2.4                   | 100-160    | 140-235     | 150-250                 | 15-30                   |  |  |
| 3.2                   | 150-210    | 220-325     | 250-400                 | 25-40                   |  |  |
| 4.0                   | 200-275    | 300-425     | 400-500                 | 40-55                   |  |  |
| 4.8                   | 250-350    | 400-525     | 500-650                 | 55-80                   |  |  |
| 6.4                   | 325-425    | 500-700     | 650-800                 | 80-125                  |  |  |

 Tablo 2.2 : Tungsten Elektrotların Bilesim ve Çaplarına Göre Akım Yüklenebilme

 Kapasiteleri

DIN 32528'e göre tungsten elektrotlar şu biçimde gösterilmektedir:

Elektrot; DIN 32528 1,6 - 75 - WT 10

Burada 1.6 elektrodun mm. olarak çapını, 75 mm. olarak boyunu ve WT 10 da bileşiminde % 0.9 ila 1.2 toryum-oksit bulunduğunu belirtmektedir.

#### 2.3.4 Dolgu Malzemesi

TIG kaynağında dolgu metalinin seçimi, genel olarak, diğer ark kaynak yöntemlerine göre daha az sorun ortaya çıkarmaktadır. Genellikle dolgu metalinin seçimi, kaynak yapılan ana metalin türüne bağlıdır. TIG kaynağında, dolgu metali ark içine değil, kaynak edilecek parçanın kaynak ağzına beslenir; bu, avantajlı bir durumdur, çünkü daha verimli alaşım transferi ile sonuçlanır ve böylece kaynak metalinin kompozisyonu üzerinde daha doğru kontrol sağlanır (Modenesi ve diğ., 2000).

#### 2.3.5 Tel Sürme Sistemleri

Tel besleme sistemleri bir dizi bileşenden yapılır ve basitten komplekse doğru değişir. Temel de, telin makaradan çekilmesi için telin yeterince kavranması (özellikle sıcak tel TIG kaynağında) ve kılavuz tüpü boyunca kaynak noktasına itmek

için bir vasıtadan oluşur. Tel, soğuk tel için ön kenara beslenir, sıcak tel beslemeleri ise arka kenara beslenir (AWS,A5 1991).

#### **REGRESYON ANALİZİ**

Regresyon analizi; herhangi bir değişkenin (bağımlı değişken) bir veya birden fazla değişken ile (bağımsız - açıklayıcı değişken) arasındaki ilişkinin matematik bir fonksiyon şeklinde yazılmasıdır. Elde edilen bu fonksiyona ise regresyon denklemi adı verilmektedir (Orhunbilge, 2000). Regresyonda kullanılan temel matematiksel araç olan en küçük kareler, 1805 yılında Legendre tarafından, Dunquerque ve Barcelona arasındaki meridyen yayının uzunluğunu hesaplamak için doğrusal olarak tanımlanmış ve yeni oluşturulmuş ölçüm birimi "metre" için kullanılmıştır. 1809'da Gauss, 1820'de de Laplace, yöntemi istatistiksel olarak ispatlamış, tekniği nonlineer durumlara genişletmiş ve ağırlıklandırılmış en küçük kareleri tanıtmıştır. Regresyon analizinin temeli; ilk olarak Francis Galton tarafından 19. yüzyılın sonlarında atılmıştır. Galton yaptığı çalışmada; anne-babaların boyu ile çocuklarının boyları arasındaki ilişkiyi incelemiş ve kısa boylu anne babaların çocuklarının boylarının kısa, uzun boylu anne-babaların çocuklarının boylarının uzun olmasına rağmen, çocuklarının boylarının ana kütle boy ortalamasına doğru yaklaşma eğiliminde olduğunu görmüştür. Bu eğilimi "ortaya doğru çekilme = regression to mediocrity" olarak adlandırmıştır. (Galton, 1886). Galton'un çalışmaları bugün, değişkenler arasındaki istatistik ilişkileri inceleyen "Regression Analizi (Regression Analysis -Relationship Analysis)"nin başlangıcı olmuştur. Günümüzde regresyon analizi için lineer ve nonlineer olmak üzere iki türlü yaklaşım bulunmaktadır.

#### 3.1. Modeller

Regresyon analizinin temel unsurlarından biri modeldir. Bir model, nicel terimlerle çalışılan deneysel sistemi açıklayan matematiksel bir fonksiyondur. Genel olarak, bir model aşağıdaki gibi temsil edilir:

$$y=f(x;a) \tag{1}$$
Genellikle modellerin üç temel bileşeni vardır: matematiksel ilişki veya fonksiyon (f), parametreler (a) ve değişkenler (x). En yaygın durumlarda, yalnızca bir veya iki bağımsız değişkene sahip olup gerçek değerli sürekli denklemlerden nispeten basittirler. Bunlara örnek olarak üstel, hiperbolik ve lojistik fonksiyonlar verilebilir. Aynı fonksiyonlar, mevcut fiziksel süreçlerden tamamen ilgisiz olayların modellenmesinde de kullanılabilir.

Fonksiyonun nasıl türetildiğine bağlı olarak, modeller iki geniş grupta sınıflandırılabilir (Ferreti ve diğ., 1989):

- Yapılandırılmış veya mekanistik modeller,
- Yapılandırılmamış veya ampirik modeller.

Yapılandırılmış modeller, altında yatan mekanizmanın teorik alt yapısından elde edilebilir. Mutlaka olup bitenlere dair bir fikir sahibiyiz veya onunla ilgili bir teori var demektir.

Yapılandırılmamış modeller, ölçümlerin açıklanmasında kullanışlı oldukları için seçilen ampirik fonksiyonlardır (Reinsch, 1967; Marschner ve diğ., 1978). Yarı ampirik modellerin üçüncü bir grubu ise, teorik değerlendirmelerden ve kısmen gözlemlerden elde edildiğinden, yukarıdaki türler arasında yer alır (Seshadri ve diğ., 1963), (Barker ve diğ., 1980).

Modellerin bir diğer bileşeni de parametrelerdir. Fonksiyon, eğri türünü belirlediğinde, gerçek şekli, konumu ve oranı parametre değerleri ile belirlenir. Mekanik ve yarı ampirik modellerde, parametreler, sistem için gerekli olan özellikleri bölümlü modellerde oran veya difüzyon sabitlerini temsil ettiği için esas itibarıyla önemlidir. Ampirik modellerde, parametreler eğriyi tam olarak tanımlamak ve daha etkin hesap yapmak için gereklidir, ancak sistemin herhangi bir temel özelliğini temsil etmezler.

Parametrelerin model fonksiyonu içerisindeki matematiksel ifadelerine bağlı olarak, modelleri lineer ve nonlinear olmak üzere iki kategoride sınıflandırabiliriz. Bu ayrım önemlidir, çünkü nonlineer fonksiyonlarla oluşturulan matematiksel modellerin çalışması için gerekli olan metodoloji lineer modellere göre çok daha karmaşıktır. İkincisi, lineer modellerin çoğunlukla ele alınması ve anlaşılması kolaydır, bununla birlikte gerçek hayatta ancak az sayıda fenomeni modellemek için kullanılabilirler.

Fonksiyonlar ayrıca bağımsız değişkenlerine göre lineer olabilir yada olmayabilir. Değişkenlere ve parametrelere göre lineerlik veya lineerlik ile ilgili her türlü kombinasyon mevcuttur.

Bu tez kapsamında, ele alınan problemin karmaşıklığı sebebiyle, nonlinear regresyon modelleri tercih edilmiştir.

## 3.2. Regresyon Analizinin Amacı ve Kullanımı

Nonlineer regresyon üç farklı amaçla kullanılabilir:

- Modelin geçerliliğini sınamak (veya hipotezi karşılaştırmak),
- Modeli karakterize etmek (diğer bir deyişle parametreleri tahmin etmek),
- Sistemin davranışını tahmin etmek (enterpolasyon ve kalibrasyon).

Model doğrulama veya karşılaştırma, regresyon analizinin önemli bir uygulamasıdır. Bir sisteme ait model ve deney verileri arasında iyi uyan bir eğriye ulaşmak, matematiksel modelin başarısıyla ilgili en iyi göstergelerden biridir. Ancak iyi bir uyum, modelin doğru olduğunun her zaman bir kanıtı değildir. Bu aşamada dikkatli hareket etmek, yapılan işin anlamlı olması açısından önemlidir. Parametrelerin tahmin edilmesi, regresyonun doğrudan bir sonucudur. Regresyon, davranışları tahmin etmek için, yani enterpolasyon (veya tahmin) ve kalibrasyon (veya ters tahmin) için yararlıdır. İnterpolasyon ve ekstrapolasyon ise gerçek deneyler yapmak zorunda kalmadan sistemin davranışını öngörmek için kullanılabilirler.

#### 3.3. Genel Uygunluk Denklemi

Bazı nonlineer modeller veri dönüştürme yoluyla lineer hale getirilebilir ve bu nedenle grafik çizim yoluyla analiz edebilmeye olanak sağlarlar. Bununla birlikte, deney veri hataları genellikle veri dönüştürme ile değişikliğe uğrarlar ve dolayısıyla parametre değerlendirmesinde önemli hatalara yol açabilirler. İkinci olarak, belirli bir modeli lineerleştiren ve birbirinden farklı sonuçlar veren bazı dönüşümler vardır. Herşeye ragmen, bu, grafik gösterimlerin reddedilmesi gerektiği anlamına gelmez. Gerçekten de, herhangi bir veri analizinde ilk adım olmalıdır çünkü önerilen modelden belirgin sapmaların saptanmasına izin verirler ve yine de bilgiyi sezgisel bir şekilde yoğunlaştırmanın en iyi yoludur. Bununla birlikte, veri analizi yöntemi olarak kullanılmaya devam edilmemelidir.

Nonlineer sayısal yöntemler, grafiksel yöntemlerin yukarıda öngörülen dezavantajlarının çoğunu çözmektedir. Grafik yöntemler zayıf deneysel verilerle başarısız olmasına rağmen, genellikle bir şeylerin yanlış olduğunu basit bir gözlemle anlamaya olanak sağlarlar. Sayısal yöntemlerle elde edilen risk, sonuçta körü körüne deneyin gerçek sonucu olarak alınabilecek bir cevap vermesi olabilir. Bu, daha sonra, sayısal analizle başlamadan önce deneylerin grafiksel sunumlarının yapılmasının önemli bir nedenidir. Özetle; her iki yöntemin güçlü yönlerini modelleme aşamasında kullanmak, başarıya ulaşmak için kaçınılmazdır.

#### 3.4. Non-Lineer Regresson Analizi

Nonlineer regresyon modeli aşağıdaki denklemde belirtildiği gibi yazılabilir:

$$y_i = f(x_i, \theta) + \varepsilon_i \tag{2}$$

Burada ε hata teriminin bağımsız olarak alınabileceği ve normal dağılımlı olduğu varsayılır.

Nonlineer regresyon için aşağıdaki maddelerde belirtilen önemli özellikler dikkate alınarak matematsiksel modelleme süreçleri sistematik halde gerçekleştirilebilir.

- a) Nonlineer regresyon, lineer regresyondan daha esnektir, çünkü fonksiyonun doğrusal veya lineerleştirilebilir olmasına gerek yoktur. Bu sebeple doğrusal olmayan regresyon fenomeni veriye uydurmak için geniş bir seçim olanağı sağlar. f fonksiyonu için tek gereklilik  $\theta$  unsurlarına göre farklılaşmasıdır. Bu da en küçük kareler yöntemi ile hesaplabilir.
- b) Nonlineer regresyon, *f* fonksiyonunun lineer hale getirilebildiği durumlarda dönüşümlerin ve doğrusal regresyonun kullanımından daha uygun olabilir.
- c) Nonlineer regresyon, incelenen sürecin kapsamlı bir şekilde anlaşılmasını gerektiren f fonksiyonunun ne olduğunun bilgisi gerektirir (polinom, trigonometrik, üstel vb.). Lineer regresyon modelleri ise girdi ve çıktı arasındaki ilişki kabaca belli olan ancak hassas derecede netlik gerektirmeyen proses tahminleri için uygundur.

Nonlineer regresyon modelleri en genel matematiksel ifadeleri içerdiklerinden fonksiyonel olarak genelleştirilmiş hallerini yazmak mümkün değildir. Bununla birlikte, mühendislik alanında kullanılan temel bir kaç model tipi aşağıdaki gibi ifade edilebilir.

Polinom tipi:

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \tag{3}$$

Üstel fonksiyon tipi:

$$y = a_0 + a_1 e^x + a_2 e^{x^2} + \dots + a_n e^{x^n}$$
(4)

Trigonometrik fonksiyon tipi:

$$y = a_0 + a_1 sinx + a_2 sinx^2 + \dots + a_n sinx^n$$
(5)

Rasyonel fonksiyon tipi:

$$y = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n} \tag{6}$$

Bu aşamada, yukarıda bahsi geçen model tiplerinin birden fazla girdi içeren çok değişkenli halleri de benzer mantıkla türetilebilir. Bir diğer önemli husus, matematiksel fonksiyon aileleri hakkında daha geniş bilgi sahibi olunarak örneğin özel fonksiyonlar (Bessel, Laguerre, Lambert, Gamma, vb.) ya da elementer fonksiyonların farklı kombinasyonları da model yapıları olarak seçilebilir.

## **BÖLÜM 4**

## MATEMATİKSEL MODEL

Tez çalışmasının bu bölümünde, kaynak girdi parametrelerinin bir fonksiyonu olarak kaynak dikişi kesit geometrisi için bir model geliştirmeyi amaçlanmıştır. Önceki bölümlerde de vurgulandığı gibi kaynak dikişinin mekanik özellikleri, geometrik parametrelere o da işlem parametrelerine bağlıdır.

Kaynak dikişi kesit geometrisini ve kaynak dikişinin kalitesini etkileyen bağımsız olarak kontrol edilebilir işlem parametreleri, kaynak hızı (a), dolgu teli sürme hızı (b), koruyucu gaz temizlik yüzdesi (c), ark mesafesi (d) ve kaynak akımı (e)'dır. Çıktı parametreleri ise üst yükseklik (FH), üst genişlik (FW), alt yükseklik (BH), alt genişlik (BW) olarak isimlendirilmiştir.

Bu çalışmada kullanılan deney seti, en istatistiksel prensiplere dayalı olarak Y.S. Tarng ve arkadaşları tarafından hazırlanmıştır (Tablo 4.1 ve Tablo 4.2). İşlemin matematiksel bir modeli de TIG kaynak parametrelerinin optimum değerlerini belirlemek için geliştirilmiştir. Bunun için çok değişkenli non-lineer regresyon tipi kullanılmıştır. Ardından, elde edilen bilgiler, süreci optimize etmek ve parametrelerin amaç fomksiyonları üzerindeki etkisini belirlemek için kullanılmıştır.

Bu çalışmada kaynak dikişi kesit geometrisi modellemesi yapılırken standart nonlineer çoklu regresyon analizi ile "*Artificial Neural Network*" (ANN) metodunun kazanımları hibrit olarak kullanılmıştır. Bu sebeple Y.S. Tarng ve arkadaşları tarafından gerçekleştirilen 108 adet deneysel çalışma datası 72 çalışma ve 36 doğrulama datası olarak iki ayrı parçaya ayrılmış, regresyon modellenmesi 72 değer üzerinden yapılmış ve elde edilen matematiksel modelin doğruluğu, (i) R<sup>2</sup> değeri (ii) 36 değer üzerinden test edilerek gerçekleştirilmiştir. Hesaplamalar içinde "*Wolfram Mathematica v.11*" programı kullanılmıştır.

Tablo 4.3, çeşitli fonksiyonlar ile R<sup>2</sup> değerlerini veren ve "Wolfram Mathematica v.11" bilgisayar yazılımı kullanarak yapılan regresyon tahminlerini göstermektedir. Bu tablo, her fonksiyonun regresyon modeline uyması için nasıl davrandığına yönelik bir göstergedir. Referans makalesi modelinde, 108 adetlik deney sonuçlarından 32 adet ve 36 adetlik deneyler seçilmiş, regresyon analizleri 32 adetlik deney tablosuna göre yapılmıştır. 36 adet deney içeren doğrulama datasından ise kurulan modelin teyidi alınmamıştır. Bizim çalışmamızda ise beşinci dereceden polinom fonksiyonun R<sup>2</sup> değerlerini en iyiyi sağladığı ve dolayısı ile bu modelin gerekli regresyon eşitliğine uyması için en iyi olduğu anlaşılmaktadır. R<sup>2</sup> sonuçları doğrultusunda fenomeni en iyi tahmin eden modelin 5. dereceden polinom fonksiyon olduğu görülmektedir.Bundan sonraki adımda 5 farklı optimizasyon problemi, elde edilen matematik model yardımı ile çözülmüştür.

| NO | GİRİŞ PARAMETRELERİ |           |          |          | ÇIKTI DEĞERLERİ |           |                |           |          |
|----|---------------------|-----------|----------|----------|-----------------|-----------|----------------|-----------|----------|
|    | Kaynak              | Dolgu     |          | Ark      |                 | Ön        | Ön             | Arka      | Arka     |
|    | Hızı                | Teli Hızı | Temizlik | Mesafesi | Akım            | Yükseklik | Genişlik       | Yükseklik | Genişlik |
|    | (cm/dak.)           | (cm/dak.) | (%)      | (mm)     | (A)             | (mm)      | (mm)           | (mm)      | (mm)     |
| 1  | 24                  | 1,5       | 30       | 2,4      | 80              | -0,149    | 6,09           | 0,672     | 5,664    |
| 2  | 24                  | 1,5       | 30       | 3,2      | 80              | 0,027     | 6,411          | 0,412     | 5,197    |
| 3  | 24                  | 1,5       | 70       | 2,4      | 80              | -0,179    | 7,432          | 0,593     | 7,058    |
| 4  | 24                  | 1,5       | 70       | 3,2      | 80              | -0,306    | 7,287          | 0,63      | 6,895    |
| 5  | 24                  | 2,5       | 30       | 2,4      | 80              | 0,155     | 6,676          | 0,743     | 5,96     |
| 6  | 24                  | 2,5       | 30       | 3,2      | 80              | 0,099     | 6,824          | 0,803     | 5,732    |
| 7  | 24                  | 2,5       | 70       | 2,4      | 80              | -0,129    | 7,009          | 0,878     | 6,989    |
| 8  | 24                  | 2,5       | 70       | 3,2      | 80              | -0,077    | 7,46           | 0,82      | 7,809    |
| 9  | 24                  | 1,5       | 30       | 2,4      | 95              | -0,017    | 8,664          | 0,437     | 8,75     |
| 10 | 24                  | 1,5       | 30       | 3,2      | 95              | -0,25     | 8,782          | 0,593     | 9,993    |
| 11 | 24                  | 1,5       | 70       | 2,4      | 95              | -0,553    | 9,757          | 0,852     | 9,993    |
| 12 | 24                  | 1,5       | 70       | 3,2      | 95              | -0,42     | 10,374         | 0,736     | 10,687   |
| 13 | 24                  | 2,5       | 30       | 2,4      | 95              | -0,345    | 9,783          | 0,965     | 10,237   |
| 14 | 24                  | 2,5       | 30       | 3,2      | 95              | -0,043    | 8,803          | 0,654     | 9,076    |
| 15 | 24                  | 2,5       | 70       | 2,4      | 95              | -0,134    | 9,75           | 0,798     | 9,465    |
| 16 | 24                  | 2,5       | 70       | 3,2      | 95              | -0,168    | 10,348         | 0,708     | 10,193   |
| 17 | 24                  | 1,5       | 30       | 2,4      | 110             | -0,599    | 11,348         | 0,805     | 11,679   |
| 18 | 24                  | 1,5       | 30       | 3,2      | 110             | -0,745    | 11,491         | 1,1       | 11,848   |
| 19 | 24                  | 1,5       | 70       | 2,4      | 110             | -0,254    | 11,237         | 0,47      | 12       |
| 20 | 24                  | 1,5       | 70       | 3,2      | 110             | -0,683    | 12,946         | 0,945     | 13,921   |
| 21 | 24                  | 2,5       | 30       | 2,4      | 110             | -0,232    | 9 <i>,</i> 338 | 0,866     | 10,611   |
| 22 | 24                  | 2,5       | 30       | 3,2      | 110             | -0,557    | 12,348         | 1,139     | 12,403   |
| 23 | 24                  | 2,5       | 70       | 2,4      | 110             | -0,623    | 11,767         | 1,128     | 12,86    |
| 24 | 24                  | 2,5       | 70       | 3,2      | 110             | -0,617    | 12,533         | 1,084     | 13,346   |
| 25 | 35                  | 1,5       | 30       | 2,4      | 80              | 0,123     | 5 <i>,</i> 355 | 0,245     | 4,104    |
| 26 | 35                  | 1,5       | 30       | 3,2      | 80              | 0,108     | 5,173          | 0,34      | 3,418    |
| 27 | 35                  | 1,5       | 70       | 2,4      | 80              | -0,044    | 5 <i>,</i> 833 | 0,51      | 4,875    |
| 28 | 35                  | 1,5       | 70       | 3,2      | 80              | -0,09     | 5,831          | 0,502     | 5,082    |
| 29 | 35                  | 2,5       | 30       | 2,4      | 80              | 0,251     | 5 <i>,</i> 656 | 0,557     | 4,37     |
| 30 | 35                  | 2,5       | 30       | 3,2      | 80              | 0,23      | 5,562          | 0,593     | 3,948    |
| 31 | 35                  | 2,5       | 70       | 2,4      | 80              | 0,18      | 5,711          | 0,45      | 5,085    |
| 32 | 35                  | 2,5       | 70       | 3,2      | 80              | 0,12      | 5,85           | 0,626     | 4,989    |
| 33 | 35                  | 1,5       | 30       | 2,4      | 95              | -0,213    | 6,348          | 0,458     | 5,874    |
| 34 | 35                  | 1,5       | 30       | 3,2      | 95              | -0,19     | 6,992          | 0,447     | 6,74     |
| 35 | 35                  | 1,5       | 70       | 2,4      | 95              | -0,152    | 7,163          | 0,464     | 6,994    |
| 36 | 35                  | 1,5       | 70       | 3,2      | 95              | -0,213    | 7,25           | 0,504     | 7,019    |
| 37 | 35                  | 2,5       | 30       | 2,4      | 95              | -0,164    | 7,288          | 0,715     | 6,724    |
| 38 | 35                  | 2,5       | 30       | 3,2      | 95              | -0,113    | 6,966          | 0,746     | 6,433    |
| 39 | 35                  | 2,5       | 70       | 2,4      | 95              | -0,107    | 7,055          | 0,696     | 7,24     |

**Tablo 4.1 :** İnce alüminyum levhaların TIG kaynağı için çalışma datası (Y.S. Tarng<br/>ve diğ.,1998)

| NO       | GİRİŞ PARAMETRELERİ |                       |          |            |           | ÇIKTI DEĞERLERİ |           |                  |           |                  |
|----------|---------------------|-----------------------|----------|------------|-----------|-----------------|-----------|------------------|-----------|------------------|
|          | Kaynak              | Dolgu                 |          | Ark        |           |                 | Ön        | Ön               | Arka      | Arka             |
|          | Hızı<br>(cm/min)    | Teli Hızı<br>(cm/min) | Temizlik | Mesafesi   | Akım      |                 | Yükseklik | Genişlik<br>(mm) | Yükseklik | Genişlik<br>(mm) |
| 40       | 35                  | 2.5                   | 70       | 3.2        | (A)<br>05 |                 | -0.018    | 7 5/19           | 0 591     | 7 166            |
| 40<br>41 | 35                  | 2,5                   | 30       | 2,2<br>2,4 | 110       |                 | -0.575    | 8 337            | 0,551     | 8 763            |
| 42       | 35                  | 15                    | 30       | 3.2        | 110       |                 | -0 267    | 8 605            | 0 506     | 8 58             |
| 43       | 35                  | 15                    | 70       | 2.4        | 110       |                 | -0 385    | 9 109            | 0.672     | 9 652            |
| 44       | 35                  | 15                    | 70       | 3.2        | 110       |                 | -0 564    | 9.67             | 0 743     | 9 952            |
| 45       | 35                  | 2.5                   | 30       | 2.4        | 110       |                 | -0.556    | 8.756            | 1.011     | 8.853            |
| 46       | 35                  | 2.5                   | 30       | 3.2        | 110       |                 | -0.188    | 9.442            | 0.666     | 9.614            |
| 47       | 35                  | 2.5                   | 70       | 2.4        | 110       |                 | -0.309    | 9.015            | 0.784     | 9.041            |
| 48       | 35                  | 2.5                   | 70       | 3.2        | 110       |                 | -0.318    | 9.297            | 0.785     | 9.47             |
| 49       | 46                  | 1.5                   | 30       | 2.4        | 80        |                 | 0.357     | 4.982            | 0.001     | 2.255            |
| 50       | 46                  | 1,5                   | 30       | ,<br>3,2   | 80        |                 | 0,168     | 4,898            | 0,277     | 2,998            |
| 51       | 46                  | 1,5                   | 70       | 2,4        | 80        |                 | 0,088     | 5,02             | 0,281     | 3,302            |
| 52       | 46                  | 1,5                   | 70       | 3,2        | 80        |                 | 0,09      | 4,423            | 0,42      | 3,172            |
| 53       | 46                  | 2,5                   | 30       | 2,4        | 80        |                 | 0,39      | 4,78             | 0,062     | 1,33             |
| 54       | 46                  | 2,5                   | 30       | 3,2        | 80        |                 | 0,487     | 4,992            | 0,139     | 1,6              |
| 55       | 46                  | 2,5                   | 70       | 2,4        | 80        |                 | 0,38      | 5,231            | 0,397     | 2,817            |
| 56       | 46                  | 2,5                   | 70       | 3,2        | 80        |                 | 0,394     | 5,337            | 0,378     | 3,041            |
| 57       | 46                  | 1,5                   | 30       | 2,4        | 95        |                 | -0,321    | 5,847            | 0,44      | 5,332            |
| 58       | 46                  | 1,5                   | 30       | 3,2        | 95        |                 | -0,152    | 5,704            | 0,386     | 5,35             |
| 59       | 46                  | 1,5                   | 70       | 2,4        | 95        |                 | -0,155    | 5,967            | 0,445     | 5,415            |
| 60       | 46                  | 1,5                   | 70       | 3,2        | 95        |                 | -0,09     | 5,892            | 0,399     | 5,319            |
| 61       | 46                  | 2,5                   | 30       | 2,4        | 95        |                 | -0,236    | 5,984            | 0,696     | 5,531            |
| 62       | 46                  | 2,5                   | 30       | 3,2        | 95        |                 | 0,067     | 6,03             | 0,575     | 5,636            |
| 63       | 46                  | 2,5                   | 70       | 2,4        | 95        |                 | -0,075    | 5,562            | 0,816     | 4,835            |
| 64       | 46                  | 2,5                   | 70       | 3,2        | 95        |                 | 0,138     | 6,546            | 0,575     | 6,285            |
| 65       | 46                  | 1,5                   | 30       | 2,4        | 110       |                 | -0,217    | 6,092            | 0,359     | 6,419            |
| 66       | 46                  | 1,5                   | 30       | 3,2        | 110       |                 | -0,339    | 7,335            | 0,619     | 7,52             |
| 67       | 46                  | 1,5                   | 70       | 2,4        | 110       |                 | -0,249    | 7,719            | 0,492     | 7,706            |
| 68       | 46                  | 1,5                   | 70       | 3,2        | 110       |                 | -0,396    | 7,633            | 0,458     | 7,601            |
| 69       | 46                  | 2,5                   | 30       | 2,4        | 110       |                 | -0,01     | 6,396            | 0,536     | 6,197            |
| 70       | 46                  | 2,5                   | 30       | 3,2        | 110       |                 | 0,074     | 6,863            | 0,484     | 6,072            |
| 71       | 46                  | 2,5                   | 70       | 2,4        | 110       |                 | -0,201    | 7,052            | 0,658     | 7,48             |
| 72       | 46                  | 2,5                   | 70       | 3,2        | 110       |                 | -0,385    | 7,759            | 0,798     | 7,917            |

**Tablo 4.1 (devam) :** İnce alüminyum levhaların TIG kaynağı için çalışma datası<br/>(Y.S. Tarng ve diğ.,1998).

| NO | GİRİŞ PARAMETRELERİ |           |          | ÇIK      | ÇIKTI DEĞERLERİ |     |         |                |           |          |
|----|---------------------|-----------|----------|----------|-----------------|-----|---------|----------------|-----------|----------|
|    | Kaynak              | Dolgu     |          | Ark      |                 |     | Ön      | Ön             | Arka      | Arka     |
|    | Hızı                | Teli Hızı | Temizlik | Mesafesi | Akım            | Yül | kseklik | Genişlik       | Yükseklik | Genişlik |
|    | (cm/min)            | (cm/min)  | (%)      | (mm)     | (A)             | (   | mm)     | (mm)           | (mm)      | (mm)     |
| 1  | 24                  | 2         | 30       | 2,4      | 80              | -(  | ),066   | 6,123          | 0,801     | 5,541    |
| 2  | 24                  | 2         | 30       | 3,2      | 80              | 0   | ,114    | 5,979          | 0,682     | 4,633    |
| 3  | 24                  | 2         | 70       | 2,4      | 80              | -0  | ),213   | 7,424          | 0,806     | 7,026    |
| 4  | 24                  | 2         | 70       | 3,2      | 80              | 0   | ,034    | 7,516          | 0,557     | 7,48     |
| 5  | 24                  | 2         | 30       | 2,4      | 95              | -0  | ),167   | 8,481          | 0,713     | 8,34     |
| 6  | 24                  | 2         | 30       | 3,2      | 95              | -0  | ),296   | 8,928          | 0,807     | 8,64     |
| 7  | 24                  | 2         | 70       | 2,4      | 95              | -0  | ),219   | 9,677          | 0,688     | 9,717    |
| 8  | 24                  | 2         | 70       | 3,2      | 95              | -(  | ),448   | 10,523         | 1,005     | 11,088   |
| 9  | 24                  | 2         | 30       | 2,4      | 110             | -0  | ),281   | 10,871         | 0,713     | 11,142   |
| 10 | 24                  | 2         | 30       | 3,2      | 110             | -0  | ),452   | 10,83          | 0,803     | 11,37    |
| 11 | 24                  | 2         | 70       | 2,4      | 110             | -0  | ),651   | 13,986         | 1,09      | 14,146   |
| 12 | 24                  | 2         | 70       | 3,2      | 110             | -   | 0,74    | 12,273         | 1,148     | 12,712   |
| 13 | 35                  | 2         | 30       | 2,4      | 80              | 0   | ,144    | 5,474          | 0,425     | 5,057    |
| 14 | 35                  | 2         | 30       | 3,2      | 80              | 0   | ,224    | 5,449          | 0,379     | 3,884    |
| 15 | 35                  | 2         | 70       | 2,4      | 80              | 0   | ,023    | 5,758          | 0,515     | 4,97     |
| 16 | 35                  | 2         | 70       | 3,2      | 80              | 0   | ,041    | 5,758          | 0,54      | 4,768    |
| 17 | 35                  | 2         | 30       | 2,4      | 95              | -0  | ),094   | 6,665          | 0,613     | 6,304    |
| 18 | 35                  | 2         | 30       | 3,2      | 95              | -0  | ),154   | 7,402          | 0,564     | 7,44     |
| 19 | 35                  | 2         | 70       | 2,4      | 95              | -0  | ),179   | 7,614          | 0,61      | 7,557    |
| 20 | 35                  | 2         | 70       | 3,2      | 95              | -   | 0,05    | 7,506          | 0,457     | 7,31     |
| 21 | 35                  | 2         | 30       | 2,4      | 110             | -0  | ),433   | 8,011          | 0,868     | 8,047    |
| 22 | 35                  | 2         | 30       | 3,2      | 110             | -0  | ),449   | 8,473          | 0,78      | 8,466    |
| 23 | 35                  | 2         | 70       | 2,4      | 110             | -0  | ),396   | 9 <i>,</i> 652 | 0,782     | 10,277   |
| 24 | 35                  | 2         | 70       | 3,2      | 110             | -0  | ),553   | 9,773          | 0,847     | 10,427   |
| 25 | 46                  | 2         | 30       | 2,4      | 80              | 0   | ,454    | 5,581          | 0,315     | 3,046    |
| 26 | 46                  | 2         | 30       | 3,2      | 80              | 0   | ,193    | 4,645          | 0,332     | 2,81     |
| 27 | 46                  | 2         | 70       | 2,4      | 80              | 0   | ,023    | 5 <i>,</i> 656 | 0,584     | 4,034    |
| 28 | 46                  | 2         | 70       | 3,2      | 80              | 0   | ,219    | 5,538          | 0,363     | 2,857    |
| 29 | 46                  | 2         | 30       | 2,4      | 95              | 0   | ,057    | 5,6            | 0,495     | 4,836    |
| 30 | 46                  | 2         | 30       | 3,2      | 95              | 0   | ,155    | 6,002          | 0,351     | 4,922    |
| 31 | 46                  | 2         | 70       | 2,4      | 95              | -0  | ),189   | 5,859          | 0,729     | 5,201    |
| 32 | 46                  | 2         | 70       | 3,2      | 95              | -0  | ),182   | 6,124          | 0,569     | 5,299    |
| 33 | 46                  | 2         | 30       | 2,4      | 110             | -(  | ),368   | 6,927          | 0,748     | 6,775    |
| 34 | 46                  | 2         | 30       | 3,2      | 110             | -(  | ),154   | 6,877          | 0,539     | 6,335    |
| 35 | 46                  | 2         | 70       | 2,4      | 110             | -   | 0,35    | 7,63           | 0,65      | 7,869    |
| 36 | 46                  | 2         | 70       | 3,2      | 110             | -(  | ),225   | 7,553          | 0,557     | 7,707    |

**Tablo 4.2 :** İnce alüminyum levhaların TIG kaynağı için doğrulama datası (Y.S. Tarng ve diğ.,1998).

|               | $R^2$          | Referans Makale<br>Modeli* | 4. Derece<br>Polinom Model | 5. Derece<br>Polinom Model |
|---------------|----------------|----------------------------|----------------------------|----------------------------|
|               | Arka Yükseklik | 0,789298                   | 0,937399                   | 0,964117                   |
| ışma<br>tası  | Arka Genişlik  | 0,971766                   | 0,990747                   | 0,997344                   |
| Çal<br>Da     | Ön Yükseklik   | 0,847849                   | 0,940308                   | 0,97193                    |
|               | Ön Genişlik    | 0,972834                   | 0,990799                   | 0,997724                   |
| la            | Arka Yükseklik | 0,850297                   | 0,961873                   | 0,988406                   |
| ulan<br>ıtası | Arka Genişlik  | 0,982617                   | 0,996965                   | 0,997496                   |
| Joğr<br>Da    | Ön Yükseklik   | 0,930275                   | 0,973936                   | 0,986197                   |
| I             | Ön Genişlik    | 0,970867                   | 0,996155                   | 0,999355                   |

Tablo 4.3 : Fonksiyon modellerine göre kaynak geometrisi ölçülerinin R<sup>2</sup> değerleri

\*Dutta. (2007).

Burada BH,BW,FH ve FW değerlerini kaynak hızı, dolgu teli hızı, gaz temizlik yüzdesi, ark mesafesi ve akım cinsinden ifade etmek için "*Wolfram Mathematica v.11*" "FindFit" çözücüsü kullanarak çoklu nonlineer regresyon analizi gerçekleştirilmiştir.

Etkileşim terimleri de dahil olmak üzere regresyon eşitliğinin genel formu şu şekildedir:

$$\begin{aligned} \mathbf{y} &= \mathbf{b}_{0} + \sum_{1}^{5} \mathbf{b}_{ij} \mathbf{x}_{i} + \sum_{1}^{5} \mathbf{b}_{ij} \mathbf{x}_{i} \mathbf{x}_{j} + \sum_{1}^{5} \mathbf{b}_{ijk} \mathbf{x}_{i} \mathbf{x}_{j} \mathbf{x}_{k} + \sum_{1}^{5} \mathbf{b}_{ijkl} \mathbf{x}_{i} \mathbf{x}_{j} \mathbf{x}_{k} \mathbf{x}_{l} + \\ & \sum_{1}^{5} \mathbf{b}_{ijklm} \mathbf{x}_{i} \mathbf{x}_{j} \mathbf{x}_{k} \mathbf{x}_{l} \mathbf{x}_{m} + \sum_{1}^{5} \mathbf{b}_{ii} \mathbf{x}_{i}^{2} + \sum_{1}^{5} \mathbf{b}_{iiijj} \mathbf{x}_{i}^{3} \mathbf{x}_{j}^{2} + \sum_{1}^{5} \mathbf{b}_{iijjk} \mathbf{x}_{i}^{2} \mathbf{x}_{j}^{2} \mathbf{x}_{k} + \\ & \sum_{1}^{5} \mathbf{b}_{iijkl} \mathbf{x}_{i}^{2} \mathbf{x}_{j} \mathbf{x}_{k} \mathbf{x}_{l} + \sum_{1}^{5} \mathbf{b}_{iii} \mathbf{x}_{i}^{3} + \sum_{1}^{5} \mathbf{b}_{iiiii} \mathbf{x}_{i}^{4} + \sum_{1}^{5} \mathbf{b}_{iiiii} \mathbf{x}_{i}^{5} \end{aligned}$$

Bu fonksiyonda x, girdi değişkenlerinin kodlanmış değerlerini temsil eder, y ise yanıt yani çıktı değerini göstermektedir.  $b_0, b_1, ..., b_{12345}$  değerleri ise en küçük kareler tekniği kullanılarak belirlenecek olan katsayıları temsil etmektedir.

Çalışma datası için öngörülen matematiksel modelin, doğrulama datasındaki veriler ile regresyon analizi yapıldığında hesaplanan  $R^2$  değerlerinin yine yüksek olduğu görülmektedir. Bu şekilde belirlenen fonksiyon TIG kaynak parametreleri ile kaynak dikişi kesit geometrisini doğru bir şekilde tarif etmektedir. Tablo A.1'de gösterildiği gibi çalışma datası verilerine göre giriş parametreleri ve bu parametrelere karşılık gelen katsayılar listelenmiştir. Her bir çıktı parametresi için (7) fonksiyonu program yardımı ile çalıştırılmış ve hesaplanmış değerler (HD), ölçülmüş değerler (ÖD), sapma değerleri Tablo A.2, Tablo A.3, Tablo A.4 ve Tablo A.5'te belirtilmiştir.

Ölçülen değerler ile hesaplanan değerler arasındaki farkın oldukça küçük olmasından dolayı kaynak dikişinin kesit geometrisini tarif etmesi için düzenlenen fonksiyonun mühendislik problemimizi doğru tanımladığı görülmektedir. **BÖLÜM 5** 

## **OPTİMİZASYON**

Optimizasyon, verilen kısıtlar kümesi altında ve seçilen bir optimizasyon hedef fonksiyonuna uygun olarak, tasarım değişkenlerinin mümkün olan en iyi değerlerinin elde edildiği bir prosedürdür. Mühendislik alanında en yaygın optimizasyon prosedürü, toplam maliyeti en aza indirecek veya muhtemel güvenilirliği ve kaliteyi maksimize edecek şekilde gerçekleştirilir. Mühendislikteki tasarım problemleri, optimizasyon yaklaşımının uygulanmasını gerektiren pek çok durumu içerir. Bu sebeple etkili bir optimizasyon algoritması kullanarak en iyi çözümü sistematik bir temelle bulabilmek, bir mühendis için başarı kriteri olarak değerlendirilir.

Tasarım problemlerini çözmek için birçok optimizasyon algoritması mevcuttur. geleneksel Bunlar temelde geleneksel ve olmayan yöntemler olarak sınıflandırılabilirler. Geleneksel yöntemler daha gradyan çok tabanlıdır (fonksiyonların türev bilgilerine ihtiyaç duyarlar) ve deterministik bir yaklaşımla problemi formülize ederler. Bu sebeple nonlineer fonksiyonları içeren, daha karmaşık ve uzun matematiksel yapılarla ifade edilen problemler için tercih edilmezler. Kısıtlı varyasyon ve Lagrange çarpanları gibi yöntemler analitiktir ve geleneksel yöntemlere örnek olarak verilebilir (Silva,2014). Geleneksel olmayan yöntemler ise stokastik süreçleri ve sezgisel tabanlı arama tekniklerini kullanarak sonuca gider ve yaklaşık çözüm üretirler. Türev bilgisine ihitiyaç duymama, tam sayılı programlamaya uyarlama kolaylığı, ayrık ve sürekli çözüm kümelerinin her ikisinden de sonuca gidebilme kabiliyeti gibi avantajlarından dolayı son dönem mühendislik optimizasyon problem çözümlemelerinde tercih edilmektedirler. Kaynak prosesi fiziksel süreç olarak nonlineer terimleri içerdiğinden, geleneksel optimizasyon yöntemleri çözüm için başarısız olur. Bu koşullar altında, Evolutionary Algorithmns (GA), Differential Evolution (DE), Nelder-Mead (NM), Ant Colony Optimization (ACO), Memetic Algorithms (MA), Particle Swarm Optimization (PSO) ve *Simulated Annealing* (SA) yöntemleri gibi stokastik optimizasyon metotlarının kullanılması uygundur.

Bu çalışmada TIG kaynak dikişi kesit geometrisinin optimizasyon süreci sırasıyla "Random Search (RS)", "Differential Evolution (DE)", "Nelder-Mead (NM)" ve Simulated Annealing(SA) metotları kullanılarak gerçekleştirilmiştir.

#### 5.1 Tek Amaçlı Optimizasyon

Tek amaçlı optimizasyon, minimize yada maksimize etmek istediğimiz bir tane amaç fonksiyonumuzun olması durumudur. Bu optimizasyon yaklaşımı tasarım değişkenleri, kısıtlar ve kısıtların sınırlarını içermektedir. Tek amaçlı optimizasyon yaklaşımı ile çözülen problemler aşağıdaki şekilde ifade edilmiştir.

| minimizasyon | $f(\theta_1, \theta_2, \dots, \theta_n)$                                                                                                       |                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| öyle ki      | $h_1(\theta_1, \theta_2, \dots, \theta_n) \ge 0$                                                                                               | <i>i</i> = 1,2,,r |
|              | $\boldsymbol{g}_1(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2,, \boldsymbol{\theta}_n) = 0$                                                   | <i>j</i> = 1,2,,m |
|              | $\boldsymbol{\theta}^{L} \leq (\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \dots, \boldsymbol{\theta}_{n}) \leq \boldsymbol{\theta}^{u}$ |                   |

Burada f amaç fonksiyonu,  $\theta_1, \theta_2, ..., \theta_n$  tasarım değişkenleri, h ve g ise kısıtlardır.

#### 5.2 Çok Amaçlı Optimizasyon

Çok amaçlı bir optimizasyon problemi şu şekilde ifade edilebilir;

minimizasyon

$$f_1(\theta_1, \theta_2, ..., \theta_n), f_2(\theta_1, \theta_2, ..., \theta_n), ..., f_t(\theta_1, \theta_2, ..., \theta_n)$$
  
öyle ki  $h_1(\theta_1, \theta_2, ..., \theta_n) \ge \mathbf{0}$   $i = 1, 2, ..., r$   
 $g_1(\theta_1, \theta_2, ..., \theta_n) = \mathbf{0}$   $j = 1, 2, ..., m$   
 $\theta^L \le (\theta_1, \theta_2, ..., \theta_n) \le \theta^u$ 

Burada  $f_1, f_2, \dots, f_t$  minimizasyon yada maksimizasyon yapılacak fonksiyonlardır.

#### 5.3 Stokastik Optimizasyon Algoritmaları

Bu tezde, optimum kaynak dikişi kesit geometrisi ve minimum kaynak dikiş kesit alanı problemleri için DE, NM, RS ve SA yöntemleri kullanılmış ve aşağıdaki alt bölümlerde algoritmaların basamakları kısaca açıklanmıştır. Algoritmaların ilgili parametreleri için seçeneklerin ayarlanmasında kullanılan değerler Tablo 5.1'de ayrıca listelenmiştir.

#### 5.3.1 Nelder-Mead Algoritması

*Nelder-Mead* algoritması, geleneksel bir lokal arama yöntemidir. Nelder ve Mead (1965) tarafından öncelikle kısıtsız optimizasyon problemi için tasarlanmıştır. Nelder-Mead küresel bir optimizasyon algoritması olmasa da, pratik kullanımda çok fazla lokal minimuma sahip olmayan problemler için oldukça iyidir. Algoritma seçeneklerinin ayarlanması dört temel prosedür ile kontrol edilir: Yansıma, genişleme, daralma ve büzülme. Karakteristik özelliklerden biri algoritmanın ilk bir kaç iterasyonda önemli derecede ilerleme sağlamasıdır. Dahası, yöntem genellikle yineleme başına "*shrink*" dışında bir veya iki fonksiyon değerlendirmesine ihtiyaç duyar ve dönüşümler, pratikte nadiren görülür. Buna ek olarak, simpleks hedef fonksiyonun yerel konturuna uyacak şekilde yönünü, boyutunu ve şeklini değiştirebilir, bu nedenle NM optimum noktanın barındığı zor alanların keşfedilmesinde yüksek esnekliğe sahiptir. Algoritmaya ait akış şeması kabaca şekil 5.1'de verildiği gibi ifade edilebilir.



Şekil 5.1 : Nelder-Mead akış şeması (Barati'den uyarlanmış, 2011)

#### 5.3.2 Random Search Algoritması

Monte-Carlo yöntemi olarak da bilinen Random Search yöntemi, stokastik tabanlı bir algoritma olup Branch ve Bound, Interval Analysis ve Tunneling gibi deterministik yöntemlerinden oldukça farklıdır. Stokastik süreçte, rasgele sayı üretecine dayanan bir takım standart teknikler ve programlar vardır. Elde edilen değerler, arzulanan herhangi bir dağılıma yakınlık sağlamak için ölçeklendirilmeli ve dönüştürülmelidir. Random Search algoritmasının en önemli avantajı, sürekli ve ayrık alanlarda da dahil olmak üzere konveks olmayan, türevlenebilir amaç fonksiyonları için genel optimuma ulaşma kabiliyetine sahip olmasıdır. RS yönteminin diğer bir avantajı, karmaşık problemlerde uygulanmasının nispeten kolay olmasıdır. Genellikle, RS algoritmalarının, kötü yapılanmış küresel optimizasyon problemleri için hızlı bir şekilde sonuç verdiği için "güçlü" oldukları ve iyi performans gösterdiği bilinmektedir. Şekil 5.2'de metodun temel çalışma prensiplerini içeren bir akış şeması mevcuttur . Random Search yönteminin ayrıntılı bir şekilde incelenmesi (Zabinsky, 2011) çalışmasında bulunabilir.



Şekil 5.2 : Random Search akış şeması (Zabinsky'den uyarlanmış, 2011)

#### 5.3.3 Simulated Annealing Algoritması

En popüler rasgele arama yöntemlerinden biri de SA'dır. Bir metal nesnenin yüksek sıcaklığa ısıtıldığı ve yavaşça soğumasına izin verilen, tavlama işleminin fiziksel sürecine dayanır. Ergitme işlemi, maddenin atomik yapısının daha düşük bir enerji durumuna geçmesini ve böylece sert bir malzeme haline gelmesini sağlar. Optimizasyon açısından, SA algoritmasında işlem yapının yerel bir minimumdan uzaklaşmasını ve daha iyi bir küresel optimal noktayı keşfetmesini ve yerleşmesini sağlar. SA'nın en büyük avantajı, sürekli, ayrık veya karışık tamsayılı gibi çeşitli optimizasyon problemlerini çözmeyi mümkün kılmasıdır. Bu yöntemin çalışma aşamasında, her yinelemede rastgele yeni bir nokta üretilir ve tüm durdurma ölçütleri yerine getirildiğinde algoritma durur. Yeni noktanın geçerli noktadaki veya arama kapsamındaki boşluğu, Boltzmann'ın olasılık dağılımına dayanmaktadır. Dağılım, bir sistemin "T" sıcaklığında termal denge içindeki enerjisini ifade eder. Boltzmann'ın olasılık dağılımı matematiksel olarak şu şekilde ifade edilebilir (Rao, 2009);

$$P(E) = e^{-E/kT}$$
(8)

Burada, P(E) enerji seviyesine ulaşma ihtimalini temsil eder, k, boltzmann sabiti ve T, sıcaklıktır.



Şekil 5.3 : Simulated Annealing akış şeması (Pham & Karaboğa'dan uyarlanmış, 2000)

#### 5.3.4 Differential Evolution Algoritması

DE algoritması, optimizasyon için (Price & Storn, 1997) tarafından gerçekleştirilen evrimsel programlamanın bir dalıdır. DE'de her değişkenin değeri gerçek sayı ile temsil edilir. DE'nin avantajları basit bir yapısının olması, kullanımının kolay olması, hızlı olması ve sağlamlığıdır. DE, gerçek değerli değişkenlerle problemleri çözmek için en iyi genetik tip algoritmalardan biridir. DE, uzman bilgisi veya karmaşık tasarım algoritmalarına başvurmadan neredeyse çözülemeyen tüm problemlere çözüm üretebilmek için çeşitli bilim ve mühendislik uygulamalarında kullanılmıştır. DE, dönüşümü bir arama mekanizması olarak kullanır ve arama, uygulanabilir alandaki muhtemel bölgelere yönlendirir. Her nesil için D boyutlu parametre vektörlerinin popülasyonu olarak NP değişkenlerini kullanan nüfusa dayalı bir arama tekniğidir. Problemle ilgili hiçbir bilgi mevcut değilse ilk popülasyon rasgele seçilir. Mevcut ön çözüm durumunda, başlangıç popülasyonu genellikle ön çözüme normal dağılmış rasgele sapmalar eklenerek üretilir. DE, iki popülasyon üyesi arasındaki ağırlıklı fark vektörünü üçüncü bir üyeye ekleyerek yeni parametre vektörleri üretir. Ortaya çıkan vektör, önceden belirlenmiş bir popülasyon üyesinden daha düşük bir hedef fonksiyon değeri üretirse, yeni oluşturulan vektör, karşılaştırıldığı vektörün yerine geçer. Buna ek olarak, en iyi parametre vektörü, optimizasyon işlemi sırasında yapılan ilerlemeyi takip etmek için her jenerasyon için değerlendirilir. Rasgele sapmalar üretmek için nüfustan uzaklığı ve yön bilgisini çıkarmak mükemmel yakınsaklık özelliklerine sahip uyarlanabilir bir düzende sonuçlanır (Price ve diğ., 2005).



Şekil 5.4 : Differential Evolution akış şeması (Vo-Duy ve diğ.'den uyarlanmış, 2017)

|                   | J     |         |       |       |
|-------------------|-------|---------|-------|-------|
| Opsiyonlar        | DE    | NM      | RS    | SA    |
| CrossProbability  | 0.5   | -       | -     | -     |
| RandomSeed        | 0     | 5/1/2/5 | 0     | 0     |
| ScalingFactor     | 0.6   | -       | -     | -     |
| SearchPoints      | -     | -       | 3000  | 1000  |
| Tolerance         | 0.001 | 0.001   | 0.001 | 0.001 |
| ContractRatio     | -     | 0.5     | -     | -     |
| ExpandRatio       | -     | 2.0     | -     | -     |
| ReflectRatio      | -     | 1.0     | -     | -     |
| ShrinkRatio       | -     | 0.5     | -     | -     |
| LevelIterations   | -     | -       | -     | 50    |
| PerturbationScale | -     | -       | -     | 0.1   |

 

 Tablo 5.1 : Dört optimizasyon metoduna ait "Wolfram Mathematica v.11" programı avarları

Bu çalışmada kaynak dikişi kesit geometrisinin alanı minimize edilmiştir. Fakat kaynak dikişinin mekanik özellikleri bakımından kalitesininde korunabilmesi için nüfuziyetin (BP, nüfuziyet) maksimum olması istenmiştir. Burada özellikle, nüfuziyetin ulaşabileceği maksimum değerde, elde edilebilicek minimum alan hesaplanmıştır. Maksimum nüfuziyet için genel form şu şekildedir:

Nüfuziyet = 
$$BH + Iş$$
 Parçası Kalınlığı (9)

Kaynak dikişine ait kesit geometrisinin, alan hesabının yapılabilmesi için genel formu şu şekildedir (Siddaiah ve diğ., 2017):

Alan = 
$$\left(\frac{FW^2 + FH^2}{8 FH}\right)^2 \cos^{-1}\left(\frac{FW^2 - FH^2}{FW^2 + FH^2}\right) - \frac{FW^3}{16 FH} + \frac{(FH)(FW)}{4} + FW + \frac{(BP)(BW)}{2}$$
 (10)

#### 5.4. Wolfram Mathematica ve Optimizasyon Araçları

Mathematica programlama dilinde yerel optimizasyon problemleri "FindMinimum" çözücüsü kullanılarak çözülebilir. Optimizasyon problemleri ayrıca problemin

karmaşıklığına, yaklaşım seçimine, analitik ve nümerik çözüm arayışına bağlı olarak "Minimize" veya "NMinimize" çözücüleri kullanarak da sayısal olarak çözülebilir.

Aşağıdaki örneklerde Mathematica programına ait farklı çözücü kullanımları listelenmiştir:

Minimize komutu kullanırsak,

 $In[1]:= Minimize[\{x - y, -3x^2 + 2xy - y^2 \ge -1\}, \{x, y\}]$  $Out[1]= \{-1, \{x \to 0, y \to 1\}\}$ 

NMinimize kullanarak problemi sayısal olarak çözmek istersek,

In[1]:= NMinimize[ $x^4 - 3x^2 - x, x$ ] Out[1]= {-3.51391, { $x \rightarrow 1.30084$ }}

FindMinimum, sayısal olarak yerel bir minimum bulur. Bu örnekte bulunan yerel minimum da lokal bir minimumdur.

In[3]:= FindMinimum[{x - y, -3  $x^2$  + 2 x y -  $y^2 \ge -1$ }, {x, y}] Out[3]= {-1., {x  $\Rightarrow 2.78301 \times 10^{-17}, y \Rightarrow 1.}}$ 

#### 5.4.1. NMinimize ve NMaximize Çözücüleri

"NMinimize" ve "NMaximize", kısıtlı global optimumu bulmak için birkaç algoritma uygular. Bu algoritmalar, türevlenebilir veya sürekli olmayan ve yerel optimum metotları tarafından kolayca yakalanmayan fonksiyonlarla baş edebilecek kadar esnektir.

Bazen bir problem için optimum nokta bulmak kısıtlamalar olmadan bile zor olabilir ve bu nedenle kullanılan yöntemler başarısız olabilir. Fonksiyonu farklı başlangıç koşullarında birkaç kez optimize etmek ve sonuçların en iyisini almak sıklıkla yararlı olabilir.

 $sin(x+y)-x^2-y^2$  if a desinin maksimumunu bulalım,

```
In[46]:= NMaximize[Sin[x + y] - x^2 - y^2, {x, y}]
Out[46]= {0.400489, {x \rightarrow 0.369543, y \rightarrow 0.369543}}
```

 $(y - \frac{1}{2})^2 + x^2$  fonksiyonunun minimumunu şu kısıtlarla bulalım :

 $y \ge 0$  ve  $y \ge x + 1$ 

```
In[47]:= NMinimize[{x^2 + (y - .5)^2, y \ge 0 \&\& y \ge x + 1}, {x, y}]
Out[47]= {0.125, {x \rightarrow -0.25, y \rightarrow 0.75}}
```

NMinimize çözücüsü çalışması için, başlaması gereken dikdörtgen bir başlangıç bölgesine ihtiyaç duyar. Bu, diğer sayısal yöntemlere bir başlangıç noktası veya başlangıç noktası vermekle benzerdir. İlk bölge, her değişkene bir sonlu üst ve alt sınır vererek belirtilir. Bu kısıtlamalarda bir  $\mathbf{a} \le \mathbf{x} \le \mathbf{b}$  veya değişkenlerde {x, a, b} eklenerek yapılır. Her ikisi de verilirse, değişkenlerin sınırları başlangıç bölgesi için kullanılır. Bir değişken x için başlangıç bölgesi belirtilmemişse, varsayılan başlangıç bölgesi olan  $-\mathbf{1} \le \mathbf{x} \le \mathbf{1}$  kullanılır. Farklı değişkenlerin başlangıç bölgeleri farklı şekillerde tanımlanabilir.

NMinimize ve NMaximize, otomatik, "DifferentialEvolution", "NelderMead", "RandomSearch" ve "SimulatedAnnelling" olmak üzere çeşitli optimizasyon yöntemlerine sahiptir. "Method" seçeneği ile kontrol edilir. Metoda özgü tüm seçenekler, sol taraflar da dizeler halinde verilmelidir.

Varsayılan yöntemle NMinimize, sorunun türüne göre hangi yöntemi kullanacağını seçer. Amaç fonksiyonu ve kısıtlamaları lineer ise, "LinearProgramming" çözücüsü kullanılır. Tamsayı değişkenleri varsa veya nonlinear ifadeler sözkonusu ise "Differantial Evolution" devreye alınır.

## BÖLÜM 6

#### SONUÇLAR VE TARTIŞMA

Kaynak prosesi parametrelerini ilişkilendirmek için geliştirilen regresyon modelleri baz alınarak (I) kaynak dikişi kesit geometrisi optmizasyonu, (ii) kaynak dikiş alan mnimizasyonu stokastik yöntemler ile gerçekleştirilmiştir. Aynı zamanda giriş parametre değerlerindeki değişimler ile kaynak dikişi kesit geometrisi ölçülerindeki değişimler irdelenmiştir.

Bu sayede optimizasyon için geliştirilen matematiksel modeller, kaynak dikişi kesit geometrisi parametrelerini öngörmede ve yüksek derecede tekrarlanabilirlik ve artan üretim hızı ile istenen kaynak kalitesini nispeten düşük bir maliyetle elde etmek için işlem parametrelerini optimum değerlerde ayarlamada yardımcı olacaktır.

#### 6.1. Kaynak Parametrelerinin Doğrudan Etkileri

Kaynak dikişine ait kesitin geometrisini oluşturan ön yükseklik, ön genişlik, alt yükseklik ve alt genişlik değerlerinin kaynak girdi parametreleri ile nasıl sonuçlar meydana getirdiği irdelenmiştir. Grafiklerde belirtilen değerler regresyon analizi sonucu hesaplanan değerlerden oluşmaktadır. Elde edilen veriler ile çalışmaya konu olan dataların kıyaslanması sonucunda değerlerin tutarlılık gösterdiği görülmektedir.

#### 6.1.1. Kaynak Hızı

Yapılan çalımalar neticesinde yüksek kaynak hızı tüm kaynak dikişine ait kesit geometrileri için olumsuz bir etkiye sahip olduğu görülmüştür. Bunun nedeni, hız arttıkça torç, metal üzerinde daha hızlı ilerlemekte ve dikiş bölgesinde daha az bir metal birikim oranı elde edilmektedir. Hız daha da arttıkça, kaynaklı bölgeyi dolduracak olan erimiş metal yetersiz olmaktadır.

# 6.1.1.1.Kaynak Hızının Kaynak Dikişi Kesit Geometrisinin Üst Genişliğine Etkisi

Kaynak hızı, üst genişlikte oluşan tüm ölçüsel değişikliklerde direkt etkendir. Isıdan etkilenen bölge azaldıkça kaynak genişliği de azalmaktadır. Şekil 6.1'te gösterildiği gibi, artan kaynak hızı farklı tel hızı, koruyucu gaz temizlik yüzdesi, ark mesafesi ve akım değerlerinde de yetersiz ısı girdisi sebebi ile üst yüksekliği düşürmektedir.





Şekil 6.1 : Kaynak Hızının Farklı Giriş Paremetleri ile Üst Genişliğe Etkisi.

# 6.1.1.2. Kaynak Hızının Kaynak Dikişi Kesit Geometrisinin Üst Yüksekliğine Etkisi

Şekil 6.2'de görüldüğü gibi yüksek kaynak hızı kaynak dikişi kesit geometrisinin yüksekliğini arttırmaktadır. Kaynak hızının arttırılması, dolgu malzmenin tam olarak ana malzemeye nüfuziyet edememesi sebebi ile yüksekliği arttırmaktadır. Şekil 6.3'te artan ön yüksekliğe karşılık azalan nufuziyet görülmektedir. Kaynak hızının arttırıldığı durumlarda, işlem için kullanılan kaynak akımı da arttırılırsa, işlem bölgesinde oluşan ısı girdisi artacağından üst yükseklikte belirli bir miktarda azalma oluşmaktadır. Fakat akım değeri dahada arttırıldığında üst yükseklik miktarı artmaya devam etmektedir.









Şekil 6.2 : Kaynak Hızının Farklı Giriş Paremetleri ile Üst Yüksekliğe Etkisi



. Şekil 6.3 : Artan Kaynak Hızı ile Üst Yükseklik ve Alt Yükseklik Arasındaki İlişki.

# 6.1.1.3. Kaynak Hızının Kaynak Dikişi Kesit Geometrisinin Alt Genişliğine Etkisi

Şekil 6.4'te görüldüğü gibi artan kaynak hızları ile alt genişlik değerleri düşmektedir. Çünkü artan hız ile sisteme verilen ısı miktarı düşmekte ve ana kaynağın nüfuziyeti azalmaktadır.





Şekil 6.4 : Kaynak Hızının Farklı Giriş Paremetleri ile Alt Genişliğe Etkisi.

## 6.1.1.4. Kaynak Hızının Kaynak Dikişi Kesit Geometrisinin Alt Yüksekliğine Etkisi

Şekil 6.5'da görüldüğü gibi kaynak hızının artması ile kaynak dikişi kesit geometrisine ait alt yükseklik değeride düşmektedir. Bunun sebebi diğer unsurlarda da olduğu gibi ısı oluşumunun azalması sonucunda gerekli nüfuziyetin sağlanamamasıdır. Bu durum kaynak kalitesi için istenmeyen bir durumdur. Kaynak dikişinin mekanik özelliklerini belirleyen en önemli çıktı unsurlarından biri nüfuziyetin oranıdır. Nüfuziyet ne kadar artar ise kaynak dikişinin mekanik özellikleri de o oranda iyileşme göstermektedir. Fakat aşırı nüfuziyet meydana gelen kaynak dikişleri de, günümüz imalat koşulları göz önünde bulundurulduğunda maliyet arttırıcı bir unsurdur. Bu sebeple en ideal kaynak dikişinin elde edilmesi için kaynak giriş parametrelerinin optimize edilmesi gereklidir.



Şekil 6.5 : Kaynak Hızının Farklı Giriş Paremetleri ile Alt Yüksekliğe Etkisi.

#### 6.1.2. Kaynak Akımı

Akım, herhangi bir kaynak prosesinde kontrol edilmesi gereken en önemli giriş parametrelerinden birisidir. Çünkü akımdaki bir değişiklik, kaynak kalitesini etkiler. Isı giriş formülü  $\mathbf{H} = \frac{\mathbf{EI}}{1000V}$  (Eşme, 2006)'e göre akımdaki herhangi bir değişiklik ısı giriş hızı ile malzeme biriktirme oranını büyük ölçüde etkiler.

## 6.1.2.1.Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Üst Genişliğine Etkisi

Şekil 6.6'de olduğu gibi artan kaynak akımları ile kaynak dikişi kesit geometrisinin üst genişliği artmaktadır. Fakat uygun olmayan kaynak hızları ile ısı girişi arttırılarak, kaynak yığılması oluşup üst genişliği daha da arttırmaktadır.



Şekil 6.6 : Kaynak Akımının Farklı Giriş Paremetleri ile Üst Genişliğe Etkisi.

# 6.1.2.2.Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Üst Yüksekliğine Etkisi

Şekil 6.7'de olduğu gibi artan kaynak akımı ile nüfuziyet artmakta ve bu sebepten ötürü kaynak dikişi kesit geometrisinin üst yüksekliği azalmaktadır.





Şekil 6.7 : Kaynak Akımının Farklı Kaynak Hızlarında Üst Genişliğe Etkisi.

# 6.1.2.3. Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Alt Genişliğine Etkisi

Şekil 6.8' da görüldüğü gibi farklı kaynak hızlarında da artan kaynak akımı ile nüfuziyet artmakta ve kaynak dikişi kesit geometrisinin alt genişliğide artmaktadır.





Şekil 6.8 : Kaynak Akımının Farklı Kaynak Hızlarında Alt Genişliğe Etkisi.

# 6.1.2.4. Kaynak Akımının Kaynak Dikişi Kesit Geometrisinin Alt Yüksekliğine Etkisi

Şekil 6.9'da görüldüğü gibi artan kaynak akımı ile kaynak dikişine ait alt yükseklikte artmaktadır. Artan akım değerleri ısı girdisini arttırmakta ve nüfuziyette de artış

yaşatmaktadır. Fakat yüksek kaynak hızlarında artan akım ile birlikte dolgu malzemesi yetersiz gelmekte ve alt yükseklik düşüş göstermektedir.





Şekil 6.9 : Kaynak Akımının Farklı Kaynak Hızlarında Alt Yüksekliğe Etkisi.

## 6.1.3. Koruyucu Gaz Temizlik Yüzdesi

Sonuçlar, koruyucu gazın kaynak geometrisi üzerine etkisinin kaynak akımı ve kaynak hızı kadar önemli olmadığını bununla birlikte, nüfuziyet üzerine daha belirgin olduğunu göstermiştir. Ancak gaz temizlik yüzdesi, kaynak hızı, akım ve ark uzunluğu ile uyumlu olmalıdır.

# 6.1.3.1. Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit Geometrisinin Üst Genişliğine Etkisi

Şekil 6.10'de olduğu gibi farklı kaynak hızlarında da artan gaz temizleme yüzdesi ile üst genişlikte artış oluşmaktadır.





Şekil 6.10 : Koruyucu Gaz Temizik Yüzdesi Farklı Akım Değerlerinde Üst Genişliğe Etkisi.

## 6.1.3.2. Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit Geometrisinin Üst Yüksekliğine Etkisi

Şekil 6.11'de olduğu gibi artan koruyucu gaz temizlik yüzdesi ile genel olarak kaynak dikişi kesit geometrisinin üst yüksekliğinde düşüş gözlenmektedir. Fakat yüksek akım değerlerinde ısı girişinin çok olması sebebi ile gaz artışı ile yükseklik değeri de artmaktadır.






Şekil 6.11 : Koruyucu Gaz Temizlik Yüzdesinin Farklı Akım Değerlerinde Üst Yüksekliğe Etkisi.

## 6.1.3.3. Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit Geometrisinin Alt Genişliğine Etkisi

Şekil 6.12'te görüldüğü üzere artan koruyucu gaz temizlik yüzdesi ile 1s1 girdisi artmakta ve kaynak dikişi kesit geometrisine ait alt genişlikte artış gözlenmektedir.





Şekil 6.12 : Koruyucu Gaz Temizlik Yüzdesinin Farklı Akım Değerlerinde Alt Genişliğe Etkisi.

### 6.1.3.4. Koruyucu Gaz Temizlik Yüzdesinin Kaynak Dikişi Kesit Geometrisinin Alt Yüksekliğine Etkisi

Şekil 6.13'te olduğu üzere artan koruyucu gaz temizlik yüzdesi ile kaynak dikişi kesit geometrisine ait alt yükseklik değeri de artmaktadır. Bu sayede kaynak dikişinde maksimum nüfuziyet ile istenen kalite kriterleri sağlanabilmektedir. Fakat koruyucu gazın tek başına değil, kaynak hızı ve kaynak akımı ile birlikte kaynak dikişi kesit geometrisinin ölçülerine olan ilişkisi incelenmelidir. Düşük kaynak hızlarında ve yüksek kaynak akım değerlerinde alt yükseklikte ve nüfuziyette düşüş yaşanmaktadır. Yüksek kaynak hızlarında ise yüksek yüzdeli koruyucu gaz ile alt yükseklikte artış görülmektedir.





Şekil 6.13 : Koruyucu Gaz Temizlik Yüzdesinin Farklı Akım Değerlerinde Alt Yüksekliğe Etkisi.

#### 6.1.4. Ark Mesafesi

Genel olarak, ark uzunluğunun artması, verimsiz kaynakla sonuçlanmaktadır.. Fakat çalışmalar gösteriyor ki bunun tersi durumlarla da zaman zaman karşılaşılmaktadır.

### 6.1.4.1. Ark Mesafesinin Kaynak Dikişi Kesit Geometrisinin Üst Genişliğine Etkisi

Yukarıda da belirtildiği gibi, artan ark uzunluğu arkın koni şeklinde tabanını arttırır. Bu da üst genişliği arttıracaktır. Şekil 6.14'de gösterildiği gibi, farklı akım ve hız değerlerinde de üst genişlikte artış görülmektedir. Fakat yüksek kaynak hızı ve düşük akım durumunda gerekli ısı elde edilmediği için üst genişlikte düşüş görünmektedir.



8 7,5

7

6,5 6 5,5 5

0

1

2

3

AKIMI 95 V

AKIMI 110 V

KAYNAK

ARK

MESAFESİ

4



Şekil 6.14 : Ark Mesafesinin Farklı Akım Değerlerinde Üst Genişliğe Etkisi.

## 6.1.4.2. Ark Mesafesinin Kaynak Dikişi Kesit Geometrisinin Üst Yüksekliğine Etkisi

Yukarıda verilen kaynak verimliliği formülüne uygun olarak, aralık mesafesi arttığında ark voltajı artar ve böylece kaynak işleminin toplam verimliliği azalır. Şekil 6.15'da gösterildiği gibi ark boşluğundaki artış, üst yüksekliği azaltmaktadır.





Şekil 6.15 : Ark Mesafesinin Farklı Akım Değerlerinde Üst Yüksekliğe Etkisi.

### 6.1.4.3. Ark Mesafesinin Kaynak Dikişi Kesit Geometrisinin Alt Genişliğine Etkisi

Şekil 6.16'de gösterildiği gibi artan ark mesafeleri sonucunda kaynak dikişi kesit geometrisine ait alt genişlik değerleri genel olarak artış gözlenmektedir.









## 6.1.4.4. Ark Mesafesinin Kaynak Dikişi Kesit Geometrisinin Alt Yüksekliğine Etkisi

Şekil 6.17'de görüldüğü gibi artan ark mesafesi ile alt yükseklikte genel olarak yükselme görünmektedir. Böylece nüfuziyette artmaktadır.





Şekil 6.17 : Ark Mesafesinin Farklı Akım Değerlerinde Alt Yüksekliğe Etkisi.

#### 6.1.5. Kaynak Dolgu Teli

Uygun dolgu teli hızının seçilmesi, kaynak bölgesinin servis ömrü üzerinde büyük bir etki yaratmaktadır.

### 6.1.5.1. Kaynak Dolgu Teli Hızının Kaynak Dikişi Kesit Geometrisinin Üst Genişliğine Etkisi

Şekil 6.18'da görüldüğü gibi artan dolgu teli hızlarında kaynak dikişi kesit geometrisine ait üst genişlik değerleri önce belli bir değere kadar artmaktadır. Daha sonra malzemeyi ergitmek için gerekli olan ısı girdisi sağlanamadığı için üst genişlik ölçülerinde düşme olmaktadır. Fakat hesaplanan değerlerden de görüldüğü gibi artan dolgu tel hızına karşılık yüksek akımlar ve daha düşük kaynak hızlarında üst genişlik daha büyük olmaktadır.







Şekil 6.18 : Dolgu Tel Hızının Farklı Akım Değerlerinde Üst Genişliğe Etkisi.

## 6.1.5.2. Kaynak Dolgu Teli Hızının Kaynak Dikişi Kesit Geometrisinin Üst Yüksekliğine Etkisi

Şekil 6.19'de görüldüğü gibi artan dolgu teli hızı kaynak dikişi kesit geometrisinin üst yüksekliğini arttırmaktadır. Düşük kaynak akımı ve düşük kaynak hızlarında dolgu teli gerekli nüfziyeti sağlayamayıp malzeme üzerine yığılmıştır.





Şekil 6.19 : Dolgu Tel Hızının Farklı Akım Değerlerinde Üst Yüksekliğe Etkisi.

### 6.1.5.3. Kaynak Dolgu Teli Hızının Kaynak Dikişi Kesit Geometrisinin Alt Genişliğine Etkisi

Şekil 6.20' de görüldüğü gibi artan dolgu teli hızlarında alt genişlikte belirli bir miktar yükseldikten sonra düşüş yaşanmaktadır. Bunun sebebi de artan dolgu malzemesine karşılık gerekli ısı girdisinin olmayışıdır. Gerekli ısı girdisinin sağlandığı proseslerde nihai alt genişlikler hep daha büyük değerlerdedir.







Şekil 6.20 : Dolgu Tel Hızının Farklı Akım Değerlerinde Alt Genişliğe Etkisi.

### 6.1.5.4. Kaynak Dolgu Teli Hızının Kaynak Dikişi Kesit Geometrisinin Alt Yüksekliğine Etkisi

Şekil 6.21'de görüldüğü üzere artan dolgu teli hızlarında önce alt yükseklik bir miktar düşmektedir. Tel hızı artmaya devam ettikçe alt yükseklikte artmaya devam etmektedir. Dolgu teli hızının "2 cm/dak" değerinde alt yüksekliğin en az olduğu değerde yukarıda olduğu gibi alt genişlik en büyük değerini almaktadır. Artan alt yükseklik değeri ile de kaynağın iş parçasına olan nüfuziyeti de artmaktadır.







Şekil 6.21 : Dolgu Tel Hızının Farklı Akım Değerlerinde Alt Yüksekliğe Etkisi.

#### 6.2. TIG Kaynak Parametrelerinin Kaynak Nüfuziyetine Etkileri

Yukarıda görüldüğü gibi kaynak parametrelerindeki değişim kaynak dikişi kesit geometrisinin ölçülerini de etkilemektedir. Fakat nüfuziyete etkisi olan alt yüksekliğin (nüfuziyetin) makisimum olması tüm parametrelere bağlıdır. Bunu da Jackson (1953), nüfuziyet, kaynak voltajı, kaynak akımı ve kaynak hızı arasındaki ilişki hakkında bir kaynak tekniği performans faktörü (WTPF) kullanarak bildirmiştir. WTPF'nin gösterimi şu şekildedir;

$$WTPF = \sqrt[3]{\frac{I^4}{SE^2}}$$
(9)

Burada I, kaynak akımını (amper), S kaynak hızını (m/dak), ve E kaynak voltajını (volt) temsil etmektedir.

Nüfuziyet ile ilgili kaynak tekniği performans faktörü şekil 6.22'te gösterilmiştir. Jackson (1953) tarafından rapor edilen kaynak tekniği performans faktörü sonuçları ile aynı eğilime sahip olduğu bulunmuştur. Artan kaynak tekniği performans faktörü ile nüfuziyette artmaktadır.



Şekil 6.22 : WTPF'nin nüfuziyete etkisi.

#### 6.3. TIG Kaynak Parametrelerinin ve Kaynak Dikişi Kesit Geometrisi Alanının Optimizasyonu

Geliştirilen matematiksel modeller, istenen kaynak dikişi kalitesini elde etmek için doğru işlem parametrelerini seçmek veya verilen süreç parametreleri için kaynak dikiş kalitesini tahmin etmek için yararlıdır. Bu modeller, sürecin optimizasyonunu kolaylaştırır. Ayrıca, işlem parametrelerinin kaynak dikişi kalitesi üzerindeki etkisinin anlaşılmasına, ve yüksek verimlilikle nispeten düşük bir maliyetle yüksek kaliteli bir kaynak dikişi elde etmek için kaynak dikişi kalitesinin optimize edilmesine yardımcı olurlar.

Çalışmanın bu bölümünde, geliştirilmiş matematik modellerin tümü nonlineer olduğu için, süreç parametrelerini optimize etmek için "*Random Search* (RS)", "*Differential Evolution* (DE)", "*Nelder-Mead* (NM)" ve *Simulated Annealing*(SA optimizasyon metodları kullanıldı.

Tablo 6.1'da görüldüğü gibi minumum kaynak dikişi kesit alanı ve maksimum nüfuziyetin sağlanabilmesi için dört farklı optimizasyon problem ile üst genişlik,üst yükseklik ve alt genişlik minimize edilmiştir. Alt yükseklik değeri ise maksimize edilmiştir. Bulunan değerlere karşılık gelen giriş parametrelerinin çalışma datası (ÇD) ve doğrulama datası (DD) içerisinde hangi işlem sırasında olduğuda belirtilmiştir.

| Optimizasyon<br>Problem No | Kaynak Dikişi<br>Kesit Geometrisi |                  | Kaynak<br>Hızı<br>(cm/dak.) | Tel Hızı<br>(cm/dak.) | Koruyucu<br>Gaz (%) | Ark<br>Mesafesi<br>(mm) | Akım<br>(A) | Yanıt   | Test<br>No |
|----------------------------|-----------------------------------|------------------|-----------------------------|-----------------------|---------------------|-------------------------|-------------|---------|------------|
| 1                          | Üst Genişliğin                    | DE Minimizasyon  | 46                          | 1,5                   | 70                  | 3,2                     | 80          | 4,5552  | ÇD-52      |
|                            | (FW)<br>Minimizasyonu             | Ölçüm Değeri     |                             |                       |                     |                         |             | 4,423   |            |
| 2                          | Üst Yüksekliğin<br>(FH)           | DE Minimizasyon  | 24                          | 2                     | 70                  | 3,2                     | 110         | -0,8942 | DD-<br>12  |
|                            | Minimizasyonu                     | Ölçüm Değeri     |                             |                       |                     |                         |             | -0,74   |            |
| 3                          | Alt Genişliğin<br>(BW)            | DE Minimizasyon  | 46                          | 2                     | 30                  | 3,2                     | 80          | -0,0127 | DD-<br>25  |
|                            | Minimizasyonu                     | Ölçüm Değeri     |                             |                       |                     |                         |             | 3,046   |            |
| 4                          | Alt Yüksekliğin<br>(BH)           | DE Maksimizasyon | 24                          | 2                     | 70                  | 3,2                     | 110         | 1,1471  | DD-<br>12  |
|                            | Maksimizasyonu                    | Ölçüm Değeri     |                             |                       |                     |                         |             | 1,148   |            |

**Tablo 6.1 :** Optimum kaynak dikişi kesit geometrisi ölçüleri ve giriş parametredeğerleri.

Yapılan beş farklı optimizasyon çalışması sonucunda maksimum nüfuziyet koşulu ile minimum kaynak dikişi kesit alanı hesaplanmıştır. Ulaşılabilecek en küçük kaynak alanı Tablo 6.2'da görüldüğü gibi 7,0867 mm<sup>2</sup>'dir. Fakat bu değere ulaşırken hesaplanan giriş parametreleri ile maksimum nüfuziyetin sağlanamadığı şekil 6.23'te görülmektedir. BH değeri 0,06mm çıkmaktadır.

Elde edilen 0,06mm değeri pratikte istenen bir nüfuziyet değeri değildir. Gerçekte bu kadar küçük bir ölçü değerine ulaşılamamaktadır. Bu sebepten ötürü hesaplamalar yapılırken kaynak dikişi kesit geometrisinin alanı her durum için ayrı ayrı optimizasyon problemleri oluşturulup minimize edilmiş ve sırası ile "BH> 0,1", "BH> 0,3", "BH> 0,4", "BH> 0,5", "BH> 0,7" kısıtları altında meydana gelen alanlar hesaplanmıştır. Bu optimizasyon çalışması esnasında hesaplanan her alan değeri için bulunan giriş parametre değerleri de BW, FH ve FW'yi temsil eden fonksiyonlarda yerlerine koyularak olması gereken ölçüsel değerleri hesaplanmıştır. Hesaplanan tüm değerler Tablo 6.2'de gösterilmiştir.

Tablo 6.2'den anlaşıldığı gibi BH değeri, kaynak dikişi kesit alanı 7,0867 mm<sup>2</sup>'den 8,11013 mm<sup>2</sup>'ye yükselirken en büyük büyüme oranına sahiptir. Bu noktadan sonraki

tüm alan hesaplamaları için BH değeri ilk koşulda olduğu kadar yükseliş gösterememiş fakat kaynak dikişi kesit alanının miktarı fazlası ile artmıştır. Bu sebepten ötürü kaynak dikişi kesit alanının 8,11013 mm<sup>2</sup> olduğu noktadaki giriş parametre değerleri ile bulunan 5c numaralı problem çözümü bize istenen sonucu vermektedir.



Şekil 6.23 : Kaynak Dikişi Kesit Geometrisi Ölçülerinin, Kaynak Dikişi Kesit Geometrisi Alanına Göre Değişimi

|                                    |               |            |            |            |            | _ | (              | Siriş Parame   | treler   | Ì         |          |
|------------------------------------|---------------|------------|------------|------------|------------|---|----------------|----------------|----------|-----------|----------|
| Alan<br>Optimizasyon<br>Problem No | Alan<br>(mm²) | BH<br>(mm) | BW<br>(mm) | FH<br>(mm) | FW<br>(mm) |   | a<br>(cm/dak.) | b<br>(cm/dak.) | c<br>(%) | d<br>(mm) | e<br>(A) |
| 5a                                 | 7,0863        | 0,067      | 1,298      | 0,395      | 4,746      |   | 46             | 2,5            | 30       | 2,4       | 80       |
| 5b                                 | 8,0234        | 0,25       | 2,806      | 0,207      | 4,766      |   | 46             | 1,5            | 30       | 3,2       | 80       |
| 5c                                 | 8,1101        | 0,448      | 3,328      | 0,0485     | 4,555      |   | 46             | 1,5            | 70       | 3,2       | 80       |
| 5d                                 | 10,6194       | 0,617      | 3,848      | 0,223      | 5,527      |   | 35             | 2,5            | 30       | 3,2       | 80       |
| 5e                                 | 14,1268       | 0,621      | 6,408      | 0,079      | 6,655      |   | 46             | 2,5            | 70       | 3,2       | 95       |
| 5f                                 | 14,1295       | 0,761      | 5,71       | 0,132      | 6,784      |   | 24             | 2,5            | 30       | 3,2       | 80       |

**Tablo 6.2 :** Farklı alt yükseklik (BH) kısıtları için hesaplanan minimum kaynakdikişi kesit alanı optimizasyon sonuçları

#### BÖLÜM 7

#### GELECEKTEKİ ÇALIŞMALAR

Günümüzde yaşanan teknolojik gelişmeler ile birlikte, TIG kaynağını, ulaşım endüstrisi, havacılık sanayi, gıda endüstrisi, makine imalatı ve alüminyum malzemelerin kullanıldığı yerler için sıradan ark kaynağına ilginç bir alternatif haline getirir.

TIG kaynağı yüksek hızlı ve kolayca otomatikleştirilmiş bir işlem olduğundan, imalat istasyonlarında kabul edilebilir bir kaynak dikişi kesit geometrisi elde etmek için tüm kaynak parametreleri kontrol edilebilir ve uygun bir kombinasyon içerisinde kullanılabilir.

Bu çalışmada, Yapılan bu çalışmada maksimum nüfuziyet koşulu altında minimum kaynak dikişi kesit geometrisine ait alan hesaplanmıştır. Sunulan model, deneyleri önceden yapılmış olan test koşullarını, kaynak dikişi kesit geometrisini, kaynak girişi parametreleriyle ilişkilendirerek başarıya ulaşmıştır. Bu şekilde, verilen spesifikasyonlar için en iyi kaynak parametrelerini bulmak için gerçek kaynakların yapılması gerekli değildir. Ölçülmüş değerler ile nonlineer regresyon analizi uygulanan ve "*Diferential Evolution*" yöntemi ile optimize edilen sonuçlarının yakın çıkması tez boyunca yürütülen prosesin başarısını kanıtlamaktadır. Bu da ulaşılabilir en az kesit alanına sahip bir kaynak dikişi kesit geometrisi sağlamakla birlikte kaynak kalitesinden de ödün vermeksizin maksimum nüfuziyet sağlamaktadır.

Geliştirilmiş matematiksel model, 1,6 mm kalınlığındaki 1100 kalite alüminyum plakalarının yüksek doğrulukla TIG kaynağı için kaynak dikişi kesit geometrisini öngörebilir. Çalışma, girdi parametrelerindeki etkileşimlerin önemini ve kaynak dikişi kesit geometrisine olan etkisini ortaya koymaktadır.

Bu çalışma ile kaynak dikişi kesit geometrisini tahmin etmek, bir hesap makinesinde ki işlem kadar basittir. Kullanıcı sadece TIG kaynak girdi değişkenlerini girmelidir,

çıktı olarak kaynak dikişi kesit geometrisi ölçülerini sağlayarak hesaplama çalışmalarını yapar.

Kaynak parametrelerinin etkisi çeşitli malzemeler için aynı olabilir. Aradaki fark sadece kaynak tepkileri üzerinedir. Bu nedenle, bu parametreler, kaynak dikişi kesit geometrisi ölçümleri için gelecekte çeşitli materyal türleri üzerinde de hazırlanabilir ve denenebilir.

#### KAYNAKLAR

- Arunachalam, V. (2008). Optimization using differential evolution. Facility for Intelligent Decision Support Department of Civil and Environmental Engineering The University Of Western Ontario, London, Ontario, Canada
- ASM (2002). Metals Handbook, Tenth Edition, ASM International Handbook Committee, Materials Park Vol. 1.
- Awang, M. (2002). The effects of process parameters on steel welding response in curved plates, MSC Thesis, College of Engineering and Mineral Resources West Virginia University, Morgantown, West Virginia.
- AWS, (1991). Welding Handbook 8th edition, Volume 2, 74-107.
- AWS (1991). A5.32-9X Standard, Specification for Shielding Gases.
- Barati, R. (2011). Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. *Journal of Hydrologic Engineering*, 19, 1-8.
- Barker, B.E. & Fox, M.E. (1980). Computer resolution of overlapping electronic absorption bands. *Chem. Soc. Rev.*, (9), 143-184.
- Baylan,O., (2015). TIG kaynağı şematik gösterim ve özet bilgi. http://www.metaluzmani.com/tig-kaynagi-sematik-gosterim-ve-ozetbilgi/
- Baylan, O., (2015-2). Torç elemanları. http://www.metaluzmani.com/torc-elemanlari/
- **Byrd, T.** (1993), Inverter power sources, an efficient alternative, *Welding Journal*, (2), 37-40.
- Cârmenes, R.S. (1996). Nonlinear Regression, Chapter 4. Elsevier, Departamento de Biologia Funcional Universidad de Oviedo Oviedo, SPAIN
- Dey, V., Pratihar, D.K., Datta, G.L., Jha, M.N., Saha, T.K., Bapat, A.V. (2009). Optimization of bead geometry in electron beam welding using a Genetic Algorithm. *Journal of Materials Processing Technology*, 209, 1151–1157
- Dey, V., Pratihar, D.K., Datta, G.L., Jha, M.N., Saha, T.K., Bapat, A.V. (2010). Optimization and prediction of weldment profile in bead-on-plate welding of Al1100 plates using electron beam. *Int. J. Adv. Manuf. Tech.*, 48, 513–528
- Dixon, M. & Webb, E.C. (1979). Enzymes. 3rd Ed. Longman, London.
- Dutta, P., & Pratihar, D.K. (2007). Modeling of TIG welding process using conventional regression analysis and neural network-based

approaches. *Journal of Materials Processing Technology*, (184), 56–68

- Ericsson, M. (2002), Simulation of robotic TIG-Welding, Lund Institute of Technology Department of Mechanical Engineering, Sweeden.
- Eşme, U. (2006). Effect of pool geometry on the quality of TIG welded joints. (Doktora tezi). Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
- Eşme, U., Bayramoğlu, M., Kazancoğlu, Y., & Özgün, S. (2009). Optimization of weld bead geometry in TIG welding process using grey relation analysis abd Taguchi Method, *Materials and Technology*, 43, (3), 143–149.
- Ferreti, J.A. & Weiss, G.H. (1989). One-dimensional nuclear overhauser effects and peak intensity measurements. *Meth. Enzymol.*, 176, 3-11.
- **Galton, F.** (1886). Regression towards mediocrity in hereditary stature, *Journal of Anthropological Institute of Great Britain and reland*, Vol. 15, 246–263
- Gunaraj, V. & Murugan, N. (2000). Prediction and Optimization of Weld Bead volume for the Submerged Arc Process — Part 1. Welding Research Supplement, Elsevier, 286-294.
- Jackson, C. E, & Shrubsall, A. E. (1953). Control of penetration and melting ratio with welding technique, *Welding Journal*, 32(4), 172-178.
- Jacquez, J.A. (1972). Compartmental analysis in biology and medicine. Elsevier, New York.
- Joby, J., & Muthukumaran, S. (2015). Optimization of activated TIG welding parameters for improving weld joint strength of AISI 4135 PM steel by genetic algorithm and simulated annealing, *Int J Adv Manuf Technol*, Springer-Verlag London, Vol. 6, Issue 72.
- Kim, I.S., Son, J.S., Kim, I.G., Kim, J.Y., & Kim, O.S. (2003). A study on relationship between process variables and bead penetration for robotic Co2 arc welding, J. Mater. Process. Technol., 136, 139–145.
- Kou, S. (1987). Welding Metallurgy Second Edition, John Wiley & Sons.
- Kurt, H.,İ., (2006). TIG kaynak yöntemiyle birleşen östenitik paslanmaz çeliklerin mikroyapı ve mekanik özelliklerinin incelenmesi. (Yüksek Lisanstezi). Marmara Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
- Lee, J.I., & Rhee S. (2000). Prediction of process parameters for gas metal arc welding by multiple regression analysis, *Proc. of Institution of Mechanical Engineers*, Part B, vol. 214, 443–449.
- Levenberg, K. (1944). A method for the solution of certain problems in least squares. *Quart. Appl. Math.*, (2), 164-168.
- Lothongkum, G., Viyanit, E. & Bhandhubanyong, P. (2001). Study on the Effects Pulsed TIG Welding Parameters on delta-Ferrite Content, Shape Factor and Bead Quality in Orbital Welding of AISI 316L Stainless Steel Plate, *Journal of Materials Processing Technology*, (110), 233-238.

- Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters, *SIAM J. Appl. Math.*, (11), 431-441.
- Marschner, I., Erhardt, F. & Scriba, P.C. (1978). Calculation of the immunoassay standard curve by spline function, Radioimmunoassay and related procedures in medicine, 111-122, Int. Atomic Energy Agency, Vienna.
- Modenesi, J.P., Apolinario, R.E., & Pereira, M.I. (2000), TIG Welding With Single-Component Fluxes, *Journal of Materials Processing Technology*, (99), 260-265.
- Nanda, N.K. & Balasubramanian, K.R. (2011). Parametric Optimization of TIG Welding on 316L Austenitic Stainless Steel by Grey-Based Taguchi Method, Advanced Materials Research, Vols. 383-390, 4667-4671.
- Narang, H.K., Singh, U.P., Mahapatra, M.M., & Jha, P.K. (2011). Prediction of the weld pool geometry of TIG arc welding by using fuzzy logic controller, *International Journal of Engineering, Science and Technology* Vol. 3, No. 9, 77-85.
- Nelder, J.A. & Mead, R. (1965). A simplex method for function minimization. *Computer Journal*, (7), 308-313.
- Orhunbilge N. (2000). Uygulamalı Regresyon ve Korelasyon Analizi, 2.Baskı, İstanbul, 12.
- Pham, D., & Karaboga, D. (2000). Intelligent optimization techniques, genetic algorithms, tabu search, simulated annealing and neural network. Springer, New York.
- Price, V. K., Storn, M. R., & Lampinen, A. J. (2005). Differential evolution: A practical approach to global optimization. Springer-Verlag Berlin, Heidelberg.
- Price, V. Kenneth, Storn, & M. Rainer (1997). Differential evolution A simple evolution strategy for fast optimization, *Dr. Dobb's Journal*, (22), 18-24 and 78.
- **Rao, S.S.** (2009). Engineering optimization: theory and practice, 4th ed. New Jersey: John Wiley and Sons.
- **Reinsch, C.H.** (1967). Smoothing by spline function. *Numerische Mathematik*, (10), 177-183.
- Seshadri, K.S. & Jones, R.N. (1963). The shapes and intensities of infrared absorption bands. *Spectrochim. Acta*, (19), 1013-1085.
- Siddaiah, A., Singh, B.K., & Mastanaiah,P. (2017). Prediction and optimization of weld bead geometry for electron beam welding of AISI 304 stainless steel, *Int J Adv Manuf Technol*, 89, 27–43
- Silva, S.P., Ribeiro Filho, S.L.M., & Brandao, L.C. (2014). Particle swarm optimization for achieving the minimum profile error in honing process, *Precision Engineering*, (38), 759-768.

- Suban, M., Tusek, J. & Uran, M. (2001), Use of Hydrogen in Welding Engineering in Former Times and Today, *Journal of Materials Processing Technology*, (119), 193-198.
- Tarng, Y.S., Juang, S.C., & Lii,H.R. (1998). A comparison between the backpropagation and counter-propagation networks in the modeling of the TIG welding process. *Journal of Materials Processing Technology*, (75), 54–62
- Tarng, Y. S., Tsai, H. L. & Yeh, S. S. (1999) Modeling, Optimization and Classification of Weld Quality in Tungsten Inert Gas Welding, *International Journal of Machine Tools & Manufacture*, Vol. 39, No. 9, 1427-1438.
- Tusek, J. & Suban, M. (2000). Experimental research of the effect of hydrogen in Argon as a shielding gas in Arc Welding of high-alloy stainless steel, *International Journal of Hydrogen Energy*, (25), 369-376.
- **Vo-Duy, T., Ho-Huu, V., Do-Thi, T.D., Dang-Trung, H., & Nguyen-Thoi, T.** (2017). A global numerical approach for lightweight design optimization of laminated composite plates subjected to frequency constraints. *Composite Structures*, 159, 646-655
- Yang, L.J., Chandel, R.S., & Bibby, M.J. (1993). An analysis of curvilinear regression equations for modeling the submerged arc welding process, *J. Mater. Process. Technol.* 37, (1–4), 601–611.

**Zabinsky, Z.B.** (2011). Random Search Algorithmns. *In Wiley Encyclopedia of Operations Research and Management Science*, 1-16

|                      |         | BH                      |         | BW                      |
|----------------------|---------|-------------------------|---------|-------------------------|
| Giriș<br>Parametresi | Katsayı | Katsayı Değeri          | Katsayı | Katsayı Değeri          |
|                      | b0      | 1.7836850085137135      | b0      | -2.6114328944148806     |
| x1                   | b1      | -0.03656547604323018    | b1      | 0.02072697763446732     |
| x2                   | b2      | 0.02053064075102738     | b2      | -6.724385572644062      |
| x3                   | b3      | -0.026671115474291344   | b3      | -0.031297579541103585   |
| x4                   | b4      | 0.2273289984904623      | b4      | -4.022072401249757      |
| x5                   | b5      | -0.021248329914320456   | b5      | -0.06353343078798768    |
| x1x2                 | b12     | -0.009675935881269953   | b12     | 0.18991000928601864     |
| x1x3                 | b13     | 0.0015164728643129062   | b13     | -0.0077806427553367905  |
| x1x4                 | b14     | -0.024714853737251574   | b14     | 0.1828819407405371      |
| x1x5                 | b15     | -0.000628293767364378   | b15     | -0.0017714314657599705  |
| x2x3                 | b23     | 0.002188873242470355    | b23     | -0.02616790058742634    |
| x2x4                 | b24     | 0.1920967703094718      | b24     | 1.470062186690807       |
| x2x5                 | b25     | 0.007934315030101523    | b25     | 0.1944417150459604      |
| x3x4                 | b34     | 0.004633873312315109    | b34     | 0.013792283114926017    |
| x3x5                 | b35     | 0.0008038857384961575   | b35     | 0.000571189843131237    |
| x4x5                 | b45     | -0.005230012435955598   | b45     | 0.10787657234211989     |
| x1²                  | b11     | -0.0041407559375541865  | b11     | -0.006956910330892624   |
| x2²                  | b22     | -0.287356279158029      | b22     | -4.737526636079902      |
| x3²                  | b33     | -0.000925089606876522   | b33     | -0.00028946728524934797 |
| x4²                  | b44     | -0.05091979120274922    | b44     | -2.3201768679408183     |
| x5²                  | b55     | -0.0003807705552927371  | b55     | 0.0008349197319376332   |
| x1 <sup>3</sup>      | b111    | -0.0001762570596912749  | b111    | -0.00045206933503367315 |
| x2³                  | b222    | -0.20104311097544775    | b222    | -2.4334935991135165     |
| x3³                  | b333    | -0.0000166518966146234  | b333    | -2.84895*10-6           |
| x4 <sup>3</sup>      | b444    | -0.05320418698384184    | b444    | -1.027207275664079      |
| x5³                  | b555    | -3.24882*10-6           | b555    | 0.00003769547308995536  |
| x1x2x3               | b123    | -0.0002966978543337686  | b123    | 0.003338293362526786    |
| x1x2x4               | b124    | -0.014346558229443336   | b124    | -0.23093042203531003    |
| x1x2x5               | b125    | -0.00006972320170533227 | b125    | -0.008462310430118981   |
| x1x3x4               | b134    | -0.00044837864945087316 | b134    | 0.0003952881478785548   |
| x1x3x5               | b135    | -0.00007461564842616938 | b135    | 0.0002865178192851392   |
| x1x4x5               | b145    | 0.001949481933817092    | b145    | -0.006506448292173618   |
| x2x3x4               | b234    | 0.0002645877952810619   | b234    | -0.022544745466652565   |
| x2x3x5               | b235    | -0.00021747222414420317 | b235    | -0.00044108926500969787 |
| x3x4x5               | b345    | -0.00019111405414910018 | b345    | -0.0014350520865208775  |
| x1²x2                | b112    | -0.00039255173439677374 | b112    | 0.002049798157180873    |
| x1²x3                | b113    | -1.52547*10-6           | b113    | 0.000036781647037326854 |
| x1 <sup>2</sup> X4   | b114    | 0.0005229529008435738   | b114    | 0.004442699569241915    |
| x1²x5                | b115    | 0.00016658029022873793  | b115    | 0.0004324876004051523   |
| x2 <sup>2</sup> x3   | b223    | 0.006219944620357596    | b223    | -0.014843666260940941   |
| x2 <sup>2</sup> x4   | b224    | 0.10937841831554776     | b224    | 1.816377503453239       |
| x2²x5                | b225    | 0.009725307316939064    | b225    | 0.16062366102075615     |
| x2²x1                | b221    | -0.001240583573139111   | b221    | 0.14280992594802622     |
| x3²x4                | b334    | 0.00006981727346907608  | b334    | 0.00100291008387231     |
| x3²x1                | b331    | 0.00004162486948091291  | b331    | -0.00018532740149316168 |
| x3 <sup>2</sup> x2   | b332    | 0.00004767597863361222  | b332    | 0.0005263915013213788   |
| x3²x5                | b335    | 0.000022381011843731248 | b335    | 0.00002409873159541112  |
| x4 <sup>2</sup> x5   | b445    | -0.0010304238833113682  | b445    | 0.07709348324791507     |
| x4 <sup>2</sup> x1   | b441    | -0.01197379495253812    | b441    | 0.116404044108366       |
| x4²x3                | b443    | 0.005975746639247754    | b443    | 0.01243537437105284     |

**Tablo A.1 :** Çalışma datası değerlerine göre kaynak giriş değişkenleri ve katsayıları

|                                 |         | BH                       |         | BW                       |
|---------------------------------|---------|--------------------------|---------|--------------------------|
| Giriș<br>Parametresi            | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri           |
| x4 <sup>2</sup> x2              | b442    | 0.12240732792824127      | b442    | 1.7024942499353921       |
| x5²x1                           | b551    | 9.61603*10-6             | b551    | -0.00004206195336591778  |
| x5²x2                           | b552    | -0.00010117178226812918  | b552    | -0.0001102211824940917   |
| x5²x3                           | b553    | -1.14686*10-6            | b553    | -0.000011741421273224697 |
| x5²x4                           | b554    | 0.00009537313616740095   | b554    | -0.0005527569349848151   |
| x1²x2²                          | b122    | 0.00040133508359342754   | b122    | 0.002761925548286152     |
| x1²x3²                          | b132    | 6.65044*10-7             | b132    | 2.03676*10-6             |
| x1²x4²                          | b142    | 0.00080022045911818      | b142    | 0.003657936700730233     |
| x1²x5²                          | b152    | -3.97355*10-6            | b152    | -0.000010806434033351609 |
| x2 <sup>2</sup> x3 <sup>2</sup> | b232    | 0.00019397519149694153   | b232    | 0.00045480602115920127   |
| x2 <sup>2</sup> x4 <sup>2</sup> | b242    | 0.10297444947927382      | b242    | 1.7062012692889006       |
| x2 <sup>2</sup> x5 <sup>2</sup> | b252    | -0.000013236519711396823 | b252    | -0.00022684233868904685  |
| x3²x4²                          | b342    | 0.00014825931398453456   | b342    | 0.0006832095076435045    |
| x3²x5²                          | b352    | 3.76332*10-8             | b352    | -4.1566*10-7             |
| x4 <sup>2</sup> x5 <sup>2</sup> | b452    | 0.00010427824734906803   | b452    | -0.0004517064376373954   |
| x1 <sup>2</sup> x1 <sup>2</sup> | b1111   | -5.60364*10-6            | b1111   | -0.00001726496406548569  |
| x2 <sup>2</sup> x2 <sup>2</sup> | b2222   | -0.10179949093687814     | b2222   | -1.0979139265015572      |
| x3²x3²                          | b3333   | -2.58005*10-7            | b3333   | -3.22934*10-8            |
| x4 <sup>2</sup> x4 <sup>2</sup> | b4444   | -0.026692717309635197    | b4444   | -0.3981689884237494      |
| x5²x5²                          | b5555   | -1.02284*10-8            | b5555   | 7.48206*10-7             |
| x1³x2                           | b1112   | -0.000010692284809725932 | b1112   | -0.00017952264367942757  |
| x1³x3                           | b1113   | -2.19176*10-6            | b1113   | 0.000011218648563550242  |
| x1 <sup>3</sup> x4              | b1114   | 0.00006231774502364273   | b1114   | -5.97179*10-6            |
| x1³x5                           | b1115   | 0.00001014012903611802   | b1115   | 0.000026411885842309125  |
| x2 <sup>3</sup> x3              | b2223   | 0.004023186560053684     | b2223   | -0.006988598312720519    |
| x2³x4                           | b2224   | 0.05158745270629478      | b2224   | 1.0712286546788146       |
| x2³x5                           | b2225   | 0.005727716080905561     | b2225   | 0.08669094876949174      |
| x2³x1                           | b2221   | 0.00035008421144799645   | b2221   | 0.074951969215339        |
| x3³x4                           | b3334   | 9.87058*10-7             | b3334   | 0.00001960865042661299   |
| x3³x1                           | b3331   | 7.16707*10-7             | b3331   | -3.08515*10-6            |
| x3³x2                           | b3332   | 7.74395*10-7             | b3332   | 0.00001372914507262864   |
| x3³x5                           | b3335   | 3.86544*10-7             | b3335   | 4.46502*10-7             |
| x4³x5                           | b4445   | -0.00012163608207591609  | b4445   | 0.03663466641170175      |
| x4³x1                           | b4441   | -0.004916609365973152    | b4441   | 0.053372127534930376     |
| x4³x3                           | b4443   | 0.0032018351888265443    | b4443   | 0.006259829525155115     |
| x4³x2                           | b4442   | 0.056145750673476554     | b4442   | 0.8976452372237874       |
| x5³x1                           | b5551   | 4.00663*10-7             | b5551   | -6.72269*10-7            |
| x5³x2                           | b5552   | -4.8987*10-6             | b5552   | -0.0000610411880261725   |
| x5³x3                           | b5553   | -2.70466*10-7            | b5553   | -5.05702*10-7            |
| x5³x4                           | b5554   | 4.24093*10-6             | b5554   | -0.000047732640387198825 |
| x1 <sup>2</sup> x2x3            | b1223   | -5.00476*10-6            | b1223   | -0.0000449754898105236   |
| x1 <sup>2</sup> x2x4            | b1224   | -0.000199593407604314    | b1224   | -0.0003960124395613168   |
| x1²x2x5                         | b1225   | -0.000014588300739406365 | b1225   | 0.000052832581334325864  |

**Tablo A.1 (devam) :** Çalışma datası değerlerine göre kaynak giriş değişkenleri vekatsayıları

|                                    |         | BH                       |         | BW                       |
|------------------------------------|---------|--------------------------|---------|--------------------------|
| Giriș<br>Parametresi               | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri           |
| x1²x3x4                            | b1234   | 0.00001709891836474023   | b1234   | -0.000043102669270279674 |
| x1²x3x5                            | b1235   | 1.04012*10-6             | b1235   | -0.000013120499732794115 |
| x1²x4x5                            | b1245   | -0.00011963592198503049  | b1245   | -0.00013210306208287075  |
| x2²x3x4                            | b2234   | -0.0005837521774470451   | b2234   | -0.019715885982635805    |
| x2²x3x5                            | b2235   | -0.0003042084682348825   | b2235   | -0.00043696223983831066  |
| x2²x4x5                            | b2245   | -0.008361203919151556    | b2245   | -0.16181863343057995     |
| x2²x1x3                            | b2213   | -0.00048637447092144884  | b2213   | 0.003894771559455474     |
| x2²x1x4                            | b2214   | -0.006853746786720947    | b2214   | -0.20902547092669868     |
| x2²x1x5                            | b2215   | 0.00005306774840508482   | b2215   | -0.00621944064887432     |
| x3²x1x2                            | b3212   | -5.29596*10-6            | b3212   | 0.00004587381597205119   |
| x3²x1x4                            | b3214   | -6.29562*10-6            | b3214   | -0.00002170979151493672  |
| x3²x1x5                            | b3215   | -1.63732*10-6            | b3215   | 6.99518*10-6             |
| x3²x2x4                            | b3224   | -0.000026323348730188564 | b3224   | -0.0007755928102264484   |
| x3²x2x5                            | b3225   | -6.42458*10-6            | b3225   | -0.0000432105953646576   |
| x3²x4x5                            | b3245   | -3.58099*10-6            | b3245   | -0.00005178935592420416  |
| x4²x1x2                            | b4212   | -0.008235792335145011    | b4212   | -0.1710316177127849      |
| x4²x1x3                            | b4213   | -0.00045979395251297795  | b4213   | 0.0011223839336425116    |
| x4²x1x5                            | b4215   | 0.001335341807987182     | b4215   | -0.004026281554640769    |
| x4 <sup>2</sup> x2x3               | b4223   | -0.00007182245308552505  | b4223   | -0.011722156668744528    |
| x4 <sup>2</sup> x2x5               | b4225   | -0.008675332100678848    | b4225   | -0.1425080520349157      |
| x4²x3x5                            | b4235   | -0.00021350716481747435  | b4235   | -0.0009950660624780023   |
| x5²x1x2                            | b5212   | 6.4729*10-6              | b5212   | 0.00014032352314026367   |
| x5²x1x3                            | b5213   | 4.931*10-7               | b5213   | -1.64656*10-6            |
| x5²x1x4                            | b5214   | -0.000035747052998904705 | b5214   | 0.000036402706511323595  |
| x5²x2x3                            | b5223   | 0.000012035378102305139  | b5223   | 0.00008422187912514138   |
| x5²x2x4                            | b5224   | 0.0000859876340434485    | b5224   | 0.0018620990475680882    |
| x5²x3x4                            | b5234   | 2.44478*10-6             | b5234   | 0.00004287563225066171   |
| x1x2x3x4                           | b11234  | -0.00022156114132073067  | b11234  | -0.0035382604310511784   |
| x1x2x3x5                           | b11235  | 0.000031931894927007727  | b11235  | -0.00015317878448714426  |
| x1x3x4x5                           | b11345  | 0.00003504753558442325   | b11345  | 0.000052069645427879876  |
| x1x2x4x5                           | b11245  | 0.0009498380146317138    | b11245  | 0.016214883637628172     |
| x2x3x4x5                           | b22345  | 0.00008247884792766765   | b22345  | 0.0034898416049986094    |
| x1²x1²x1                           | b11111  | -1.54475*10-7            | b11111  | -5.26898*10-7            |
| x2 <sup>2</sup> x2 <sup>2</sup> x2 | b22222  | -0.04576862087366267     | b22222  | -0.4671274989402535      |
| x3²x3²x3                           | b33333  | -3.80516*10-9            | b33333  | -4.08991*10-10           |
| x4²x4²x4                           | b44444  | -0.01085724054225288     | b44444  | -0.14287710232871167     |
| x5²x5²x5                           | b55555  | 2.09811*10-10            | b55555  | 1.12995*10-8             |
| x1²x1²x2                           | b11112  | -2.48843*10-7            | b11112  | -0.00001044493634229128  |
| x1²x1²x3                           | b11113  | -1.06368*10-7            | b11113  | 5.15333*10-7             |
| x1²x1²x4                           | b11114  | 2.66871*10-6             | b11114  | -3.53251*10-6            |
| x1²x1²x5                           | b11115  | 3.75617*10-7             | b11115  | 9.78858*10-7             |
| x2²x2²x1                           | b22221  | 0.00036294218581909963   | b22221  | 0.034147234822229304     |
| x2²x2²x3                           | b22223  | 0.0019870947972399204    | b22223  | -0.0030209697387897578   |

**Tablo A.1 (devam) :** Çalışma datası değerlerine göre kaynak giriş değişkenleri vekatsayıları

|                                    |         | BH                      |         | BW                       |
|------------------------------------|---------|-------------------------|---------|--------------------------|
| Giriș<br>Parametresi               | Katsayı | Katsayı Değeri          | Katsayı | Katsayı Değeri           |
| x2 <sup>2</sup> x2 <sup>2</sup> x4 | b22224  | 0.022320296841716117    | b22224  | 0.5120024967039818       |
| x2²x2²x5                           | b22225  | 0.0027361817450905546   | b22225  | 0.0399809714792819       |
| x3²x3²x1                           | b33331  | 1.09414*10-8            | b33331  | -4.65433*10-8            |
| x3²x3²x2                           | b33332  | 1.15781*10-8            | b33332  | 2.34063*10-7             |
| x3²x3²x4                           | b33334  | 1.39405*10-8            | b33334  | 3.11624*10-7             |
| x3²x3²x5                           | b33335  | 5.90726*10-9            | b33335  | 6.98193*10-9             |
| x4²x4²x1                           | b44441  | -0.0018296695395871709  | b44441  | 0.02105186700805853      |
| x4²x4²x2                           | b44442  | 0.022149910650925125    | b44442  | 0.37643486299257156      |
| x4²x4²x3                           | b44443  | 0.0013512105955046116   | b44443  | 0.0025757820163538506    |
| x4²x4²x5                           | b44445  | 0.000019080787940940735 | b44445  | 0.014695970363688833     |
| x5²x5²x1                           | b55551  | 7.80902*10-9            | b55551  | -8.99758*10-9            |
| x5²x5²x2                           | b55552  | -9.92604*10-8           | b55552  | -1.44206*10-6            |
| x5²x5²x3                           | b55553  | -6.27443*10-9           | b55553  | -1.01238*10-8            |
| x5²x5²x4                           | b55554  | 8.53109*10-8            | b55554  | -1.04862*10-6            |
| x1 <sup>3</sup> x2 <sup>2</sup>    | b11122  | 0.000021719892671097743 | b11122  | -0.00006149008209078809  |
| x1 <sup>3</sup> x3 <sup>2</sup>    | b11133  | -2.13916*10-8           | b11133  | 3.38659*10-7             |
| x1 <sup>3</sup> x4 <sup>2</sup>    | b11144  | 0.00006006423282564932  | b11144  | 0.000046428100804293755  |
| x1³x5²                             | b11155  | -2.44324*10-7           | b11155  | -5.63065*10-7            |
| x2 <sup>3</sup> x1 <sup>2</sup>    | b22211  | 0.0003261762652447247   | b22211  | 0.0016520192461890162    |
| x2³x3²                             | b22233  | 0.0001280350230260445   | b22233  | 0.0002484805034039156    |
| x2 <sup>3</sup> x4 <sup>2</sup>    | b22244  | 0.05585718676399388     | b22244  | 0.9661343566158714       |
| x2³x5²                             | b22255  | 3.47748*10-6            | b22255  | -0.00014293505231143542  |
| x3³x1²                             | b33311  | 1.41008*10-8            | b33311  | 3.89197*10-8             |
| x3³x2²                             | b33322  | 3.42705*10-6            | b33322  | 0.00001106307252648175   |
| x3³x4²                             | b33344  | 2.49366*10-6            | b33344  | 0.000013045186927599755  |
| x3³x5²                             | b33355  | 9.07047*10-10           | b33355  | -7.50695*10-9            |
| x1³x2x3                            | b11123  | 9.28607*10-8            | b11123  | -6.89377*10-6            |
| x1³x2x4                            | b11124  | 7.80177*10-6            | b11124  | 0.0002714633936214903    |
| x1³x2x5                            | b11125  | -6.75862*10-7           | b11125  | 0.000015242714851050711  |
| x1³x3x4                            | b11134  | 1.57408*10-6            | b11134  | -2.8218*10-6             |
| x1³x3x5                            | b11135  | 1.583*10-7              | b11135  | -1.09662*10-6            |
| x1³x4x5                            | b11145  | -9.30208*10-6           | b11145  | 1.35249*10-6             |
| x2³x1x3                            | b22213  | -0.0002989374098698847  | b22213  | 0.0022737691740616186    |
| x2³x1x4                            | b22214  | -0.0029444138995974446  | b22214  | -0.11557133781483706     |
| x2³x1x5                            | b22215  | 0.00004535212285666048  | b22215  | -0.003240289121431884    |
| x2³x3x4                            | b22234  | -0.0004362127734117066  | b22234  | -0.010805880354679671    |
| x2³x3x5                            | b22235  | -0.00018299471199057757 | b22235  | -0.0002467960964116785   |
| x2 <sup>3</sup> x4x5               | b22245  | -0.004277752629491378   | b22245  | -0.088543041994806       |
| x3³x1x2                            | b33312  | -8.05116*10-8           | b33312  | 6.18345*10-7             |
| x3³x1x4                            | b33314  | -8.58645*10-8           | b33314  | -4.95855*10-7            |
| x3³x1x5                            | b33315  | -2.6652*10-8            | b33315  | 1.17186*10-7             |
| x3³x2x4                            | b33324  | -5.79138*10-7           | b33324  | -0.000013942002359588092 |
| x3³x2x5                            | b33325  | -1.12327*10-7           | b33325  | -8.60601*10-7            |

**Tablo A.1 (devam) :** Çalışma datası değerlerine göre kaynak giriş değişkenleri vekatsayıları

|                      |         | ВН                       |         | BW                       |
|----------------------|---------|--------------------------|---------|--------------------------|
| Giriș<br>Parametresi | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri           |
| x3³x4x5              | b33345  | -5.54177*10-8            | b33345  | -9.382*10-7              |
| x4 <sup>3</sup> x1x2 | b44412  | -0.003639449425524749    | b44412  | -0.0820892947980989      |
| x4 <sup>3</sup> x1x3 | b44413  | -0.00023743832652207817  | b44413  | 0.0006475312549667537    |
| x4 <sup>3</sup> x1x5 | b44415  | 0.0006266879792429433    | b44415  | -0.0018285181548814075   |
| x4³x2x3              | b44423  | -0.00006959833899476059  | b44423  | -0.004973649750273815    |
| x4 <sup>3</sup> x2x5 | b44425  | -0.0041355720845830495   | b44425  | -0.06900191238316412     |
| x4³x3x5              | b44435  | -0.00011191596670554969  | b44435  | -0.000468708888312793    |
| x5³x1x2              | b55512  | 1.88954*10-7             | b55512  | 6.3136*10-6              |
| x5³x1x3              | b55513  | 3.49343*10-8             | b55513  | -1.29086*10-7            |
| x5³x1x4              | b55514  | -1.53188*10-6            | b55514  | 2.90963*10-6             |
| x5³x2x3              | b55523  | 3.93055*10-7             | b55523  | 2.42449*10-6             |
| x5³x2x4              | b55524  | 5.75764*10-6             | b55524  | 0.00010256009168655545   |
| x5³x3x4              | b55534  | 1.22858*10-7             | b55534  | 1.58193*10-6             |
| x1²x2²x3             | b11223  | -3.59707*10-6            | b11223  | -0.00004090717295187308  |
| x1²x2²x4             | b11224  | -0.00024268153233660252  | b11224  | -0.0010602758008403188   |
| x1²x2²x5             | b11225  | -0.00003955477398009869  | b11225  | -0.00003280111586695193  |
| x1²x3²x2             | b11332  | -5.05256*10-8            | b11332  | -1.39786*10-6            |
| x1²x3²x4             | b11334  | 3.11079*10-7             | b11334  | -1.75902*10-6,           |
| x1²x3²x5             | b11335  | -3.88274*10-9            | b11335  | -3.79788*10-7            |
| x1²x4²x2             | b11442  | -0.00008587646251351763  | b11442  | -0.00048514881911274077  |
| x1²x4²x3             | b11443  | 0.000011268823978212537  | b11443  | -0.00003207127794134004  |
| x1²x4²x5             | b11445  | -0.00009619323091375964  | b11445  | -0.0001338748660109973   |
| x1²x5²x2             | b11552  | 1.15932*10-6             | b11552  | -4.71304*10-6            |
| x1²x5²x3             | b11553  | -5.58425*10-8            | b11553  | 7.72211*10-7             |
| x1²x5²x4             | b11554  | 0.000010040748393021854  | b11554  | 6.50539*10-6             |
| x2²x3²x1             | b22331  | -0.000011155791383802952 | b22331  | 0.00006684793777446791   |
| x2²x3²x4             | b22334  | -0.00003215010554724176  | b22334  | -0.0007680902250068265   |
| x2²x3²x5             | b22335  | -8.75452*10-6            | b22335  | -0.00003739151794502717  |
| x3²x4²x1             | b33441  | -8.71839*10-6            | b33441  | 6.53045*10-6             |
| x3²x4²x2             | b33442  | -0.000022391933905721223 | b33442  | -0.0005620196099078928   |
| x3²x4²x5             | b33445  | -4.81492*10-6            | b33445  | -0.00003629858766571364  |
| x4²x5²x1             | b44551  | -0.00002427379570749962  | b44551  | 0.00002830983768777051   |
| x4²x5²x2             | b44552  | 0.00006707340291472005   | b44552  | 0.0012209716943631845    |
| x4²x5²x3             | b44553  | 1.71455*10-6             | b44553  | 0.00002913753071972326   |
| x1²x2x3x4            | b111234 | -6.97314*10-6            | b111234 | 0.00020773071625341697   |
| x1²x2x3x4            | b111235 | 8.55716*10-7             | b111235 | 6.73726*10-6             |
| x1²x3x4x5            | b111345 | -3.15298*10-6            | b111345 | 3.23907*10-6             |
| x1²x2x4x5            | b111245 | 1.11915*10-6             | b111245 | -0.0003291150137743735   |
| x2²x1x3x4            | b22134  | -0.00009450966423760284  | b22134  | -0.0027935527651263524   |
| x2²x1x3x5            | b22135  | 0.00003728729270706844   | b22135  | -0.00016673002418491148  |
| x2²x1x4x5            | b22145  | 0.00040052981287109373   | b22145  | 0.013600099849719003     |
| x2²x3x4x5            | b222345 | 0.00009603708183032767   | b222345 | 0.0029329746225233424    |
| x3²x1x2x4            | b33124  | -2.7498*10-6             | b33124  | -0.000043605289178971994 |

**Tablo A.1 (devam) :** Çalışma datası değerlerine göre kaynak giriş değişkenleri vekatsayıları

|                      |         | BH                      | BW      |                         |  |
|----------------------|---------|-------------------------|---------|-------------------------|--|
| Giriș<br>Parametresi | Katsayı | Katsayı Değeri          | Katsayı | Katsayı Değeri          |  |
| x3²x1x2x5            | b33125  | 7.57991*10-7            | b33125  | -2.14754*10-6           |  |
| x3²x2x4x5            | b33245  | 3.95882*10-6            | b33245  | 0.00011306181289064868  |  |
| x3²x1x4x5            | b33145  | 4.89111*10-7            | b33145  | 2.31779*10-6            |  |
| x4²x1x2x3            | b44123  | -0.00011080216655556952 | b44123  | -0.002668191306999635   |  |
| x4²x1x2x5            | b44125  | 0.000624307672864974    | b44125  | 0.011466891504053077    |  |
| x4²x1x3x5            | b44135  | 0.00003105262678006851  | b44135  | 1.91637*10-6            |  |
| x4²x2x3x5            | b44235  | 0.00007773725932094005  | b44235  | 0.002314372992663294    |  |
| x5²x1x2x3            | b55123  | -2.07197*10-6           | b55123  | -4.17929*10-7           |  |
| x5²x1x2x4            | b55124  | -0.00003390151515151604 | b55124  | -0.000645138888889144   |  |
| x5²x2x3x4            | b55234  | -0.00001118055555551104 | b55234  | -0.00025488425925911893 |  |
| x5²x1x3x4            | b55134  | -4.02462*10-7           | b55134  | -4.96054*10-6           |  |
| x1x2x3x4x5           | b12345  | 0.000024952651515181832 | b12345  | 0.0002245738636364038   |  |

**Tablo A.1 (devam) :** Çalışma datası değerlerine göre kaynak giriş değişkenleri vekatsayıları

|                      |         | FH                       |         | FW                       |
|----------------------|---------|--------------------------|---------|--------------------------|
| Giriș<br>Parametresi | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri           |
|                      | b0      | -1.8157215703232548      | b0      | -6.668433514315278       |
| x1                   | b1      | 0.04137633638762016      | b1      | 0.2547613201343468       |
| x2                   | b2      | 0.2974185588724235       | b2      | -4.732372813808849       |
| x3                   | b3      | 0.039496365430034194     | b3      | -0.02389161930300866     |
| x4                   | b4      | -0.11044343583427771     | b4      | -0.9554719221653944      |
| x5                   | b5      | 0.03252945592136489      | b5      | 0.03176115528607723      |
| x1x2                 | b12     | 0.0173229718924237       | b12     | 0.08799740426071176      |
| x1x3                 | b13     | -0.0012628759977060886   | b13     | -0.002043287037848971    |
| x1x4                 | b14     | 0.02639113045582394      | b14     | -0.02936369392051456     |
| x1x5                 | b15     | 0.0003790533311338345    | b15     | -0.007322880575391666    |
| x2x3                 | b23     | -0.0047599841605629545   | b23     | -0.023019816378157594    |
| x2x4                 | b24     | -0.1684178252815038      | b24     | 0.7227948602934693       |
| x2x5                 | b25     | -0.017094546305458307    | b25     | 0.1285797184804135       |
| x3x4                 | b34     | -0.009296846203190929    | b34     | -0.016188376620641116    |
| x3x5                 | b35     | -0.001122623103700982    | b35     | 0.0004509828976049092    |
| x4x5                 | b45     | 0.0026702394559589555    | b45     | 0.0031970106690204663    |
| x1²                  | b11     | 0.004745915322326532     | b11     | 0.001668679148357284     |
| x2²                  | b22     | 0.537793605834011        | b22     | -2.5130294499218957      |
| x3²                  | b33     | 0.0012302144469245593    | b33     | 0.0005701160955581744    |
| x4²                  | b44     | 0.13035625415308816      | b44     | 0.12183018683200547      |
| x5²                  | b55     | 0.00038749682720708737   | b55     | 0.0013151571660235308    |
| x1 <sup>3</sup>      | b111    | 0.00020496560584844483   | b111    | -0.0002793877673941751   |
| x2 <sup>3</sup>      | b222    | 0.33436362419342974      | b222    | -1.1454775667762267      |
| x3³                  | b333    | 0.00002172976842212431   | b333    | 0.000014411698726573104  |
| x4 <sup>3</sup>      | b444    | 0.09039551589400419      | b444    | 0.16727963256563408      |
| x5³                  | b555    | 3.94768*10^-7            | b555    | 0.00002187300091793506   |
| x1x2x3               | b123    | 0.00021635083702394386   | b123    | 0.002601998094356896     |
| x1x2x4               | b124    | 0.006855189624663185     | b124    | -0.0812163564867251      |
| x1x2x5               | b125    | 0.00003376701050074229   | b125    | -0.003811098682956809    |
| x1x3x4               | b134    | 0.0005803241606110844    | b134    | 0.0015368377906802696    |
| x1x3x5               | b135    | 0.00007154447453668584   | b135    | 0.00009306096500810429   |
| x1x4x5               | b145    | -0.0018642853611959569   | b145    | 0.0035752252311990465    |
| x2x3x4               | b234    | 0.005657931951081991     | b234    | -0.0182549547833014      |
| x2x3x5               | b235    | 0.000491726510498329     | b235    | -0.000027698173323534353 |
| x3x4x5               | b345    | 0.0004217116105144882    | b345    | 0.00007089050686056439   |
| x1²x2                | b112    | 0.00016838109869093962   | b112    | 0.0019136035987673214    |
| x1²x3                | b113    | -0.000012972675887744341 | b113    | -0.000025625156967789992 |
| x1²x4                | b114    | -0.000544265406504444    | b114    | 0.0022686486754267135    |
| x1²x5                | b115    | -0.00019120760992215517  | b115    | 0.00022596243148132256   |
| x2²x3                | b223    | -0.010381013079800138    | b223    | -0.013676750419090016    |
| x2²x4                | b224    | -0.1110001199702777      | b224    | 0.7193442416956867       |
| x2²x5                | b225    | -0.018701087679617624    | b225    | 0.09367709379693426      |
| x2²x1                | b221    | 0.006315207278317064     | b221    | 0.02450315794123768      |
| x3²x4                | b334    | -0.0001985619810018457   | b334    | -0.00021661065138764868  |
| x3²x1                | b331    | -0.00003651284010914163  | b331    | -0.00009085834112827712  |
| x3²x2                | b332    | -0.0001615611911077703   | b332    | 0.0002628715681885162    |
| x3²x5                | b335    | -0.00003173832050903272  | b335    | 5.16411*10-6             |
| x4²x5                | b445    | -0.0018864680016714432   | b445    | -0.0014590422509453739   |
| x4²x1                | b441    | 0.012526549469066887     | b441    | -0.047409072848094244    |
| x4²x3                | b443    | -0.010429670060156717    | b443    | -0.007849470809348542    |

**Tablo A.1 (devam) :** Çalışma datası değerlerine göre kaynak giriş değişkenleri vekatsayıları

|                                 | FH      |                          | FW      |                         |  |  |
|---------------------------------|---------|--------------------------|---------|-------------------------|--|--|
| Giriș                           |         |                          |         |                         |  |  |
| Parametresi                     | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri          |  |  |
| x4²x2                           | b442    | -0.14241719663652688     | b442    | 0.9957725703335032      |  |  |
| x5²x1                           | b551    | -7.9776*10^-6            | b551    | -0.00008186237933351651 |  |  |
| x5²x2                           | b552    | 0.00014277888343280757   | b552    | -0.00023192467725746083 |  |  |
| x5²x3                           | b553    | 1.77512*10^-6            | b553    | -9.82066*10-6           |  |  |
| x5²x4                           | b554    | -0.000024189608430308754 | b554    | -0.00025321792455757993 |  |  |
| x1 <sup>2</sup> x2 <sup>2</sup> | b122    | -0.000676927083537721    | b122    | 0.0011908765720337645   |  |  |
| x1²x3²                          | b132    | -1.10624*10^-6           | b132    | -8.81186*10-7           |  |  |
| x1 <sup>2</sup> x4 <sup>2</sup> | b142    | -0.0008813943093806559   | b142    | 0.0012869181889415924   |  |  |
| x1²x5²                          | b152    | 4.13287*10^-6            | b152    | -9.64423*10-6           |  |  |
| x2²x3²                          | b232    | -0.00033359068212458006  | b232    | 0.00010564901076606265  |  |  |
| x2²x4²                          | b242    | -0.131894766954134       | b242    | 0.7465731669246815      |  |  |
| x2²x5²                          | b252    | 0.0000441531066794477    | b252    | -0.00040224629510616974 |  |  |
| x3²x4²                          | b342    | -0.0002657818252224904   | b342    | -0.00020404431326287236 |  |  |
| x3²x5²                          | b352    | -2.40902*10^-8           | b352    | -4.5204*10-7            |  |  |
| x4²x5²                          | b452    | -0.00005882079483926745  | b452    | -0.00031071161641410143 |  |  |
| x1²x1²                          | b1111   | 6.57795*10^-6            | b1111   | -0.00001500832109954189 |  |  |
| x2 <sup>2</sup> x2 <sup>2</sup> | b2222   | 0.162921115575506        | b2222   | -0.4866191520330962     |  |  |
| x3²x3²                          | b3333   | 3.34603*10^-7            | b3333   | 2.44114*10-7            |  |  |
| x4 <sup>2</sup> x4 <sup>2</sup> | b4444   | 0.04150931537485278      | b4444   | 0.08727856213388026     |  |  |
| x5²x5²                          | b5555   | -5.83855*10^-8           | b5555   | 2.85682*10-7            |  |  |
| x1 <sup>3</sup> x2              | b1112   | -8.26852*10^-6           | b1112   | -0.00004396518433694038 |  |  |
| x1³x3                           | b1113   | 1.17911*10^-6            | b1113   | 7.56068*10-7            |  |  |
| x1 <sup>3</sup> x4              | b1114   | -0.00006439589869843145  | b1114   | 0.00015656516810251805  |  |  |
| x1³x5                           | b1115   | -0.000011143206894951383 | b1115   | 0.000022195683770129798 |  |  |
| x2³x3                           | b2223   | -0.006576590196298789    | b2223   | -0.006575281110736634   |  |  |
| x2³x4                           | b2224   | -0.05566130559748249     | b2224   | 0.4067023993960716      |  |  |
| x2³x5                           | b2225   | -0.010784799557575487    | b2225   | 0.04866539230878515     |  |  |
| x2³x1                           | b2221   | 0.0022011568280386235    | b2221   | 0.005947961805833559    |  |  |
| x3³x4                           | b3334   | -3.20664*10^-6           | b3334   | -2.87598*10-6           |  |  |
| x3³x1                           | b3331   | -6.35617*10^-7           | b3331   | -1.69477*10-6           |  |  |
| x3³x2                           | b3332   | -2.89765*10^-6           | b3332   | 7.88008*10-6            |  |  |
| x3³x5                           | b3335   | -5.49941*10^-7           | b3335   | 6.18726*10-8            |  |  |
| x4 <sup>3</sup> x5              | b4445   | -0.0014123103138028409   | b4445   | -0.0012022693457084627  |  |  |
| x4 <sup>3</sup> x1              | b4441   | 0.005091568984843992     | b4441   | -0.026120885397601604   |  |  |
| x4 <sup>3</sup> x3              | b4443   | -0.005470796462628459    | b4443   | -0.00322441979519007    |  |  |
| x4³x2                           | b4442   | -0.07067499543719101     | b4442   | 0.5383366375262387      |  |  |
| x5³x1                           | b5551   | -2.84441*10^-7           | b5551   | -7.97839*10-8           |  |  |
| x5³x2                           | b5552   | 8.78303*10^-6            | b5552   | -0.00004502453725130566 |  |  |
| x5³x3                           | b5553   | 3.84545*10^-7            | b5553   | -4.1376*10-7            |  |  |
| x5³x4                           | b5554   | -1.48212*10^-6           | b5554   | -8.72548*10-6           |  |  |
| x1²x2x3                         | b1223   | 0.000027121207554339885  | b1223   | 7.08863*10-6            |  |  |
| x1 <sup>2</sup> x2x4            | b1224   | 0.00036074293169251827   | b1224   | -0.0006897567796272098  |  |  |
| x1²x2x5                         | b1225   | 0.00003154126822276211   | b1225   | -0.00001565583876579471 |  |  |

|                                    |         | FH                                        |         | FW                       |
|------------------------------------|---------|-------------------------------------------|---------|--------------------------|
| Giriș<br>Parametresi               | Vataova | Kataaya Dağari                            | Votoova | Katsaya Dačari           |
| v1 <sup>2</sup> v2v4               | h1234   | 0.000011351557742593857                   | h1234   | 0.0000108711050/337107   |
| x1 x3x4                            | b1235   | -0.000011351557742595857<br>2 11468*10^-7 | b1235   | 1 1/209*10-7             |
| x1 x3x5                            | b1245   | 0.0001193910281148323                     | b1235   | -0.0002651/1/303/5/9//   |
| x2 <sup>2</sup> x3x4               | b2234   | 0.005939853436481602                      | b2234   | -0.01131/57536//98/92    |
| x2 <sup>2</sup> x3x4               | b2235   | 0.000569708207009699                      | b2235   | -0.0009799681867790078   |
| $x2^{2}x4x5$                       | b2245   | 0.012093764376935236                      | b2245   | -0.07751907389599859     |
| $x2^{2}x1x3$                       | b2213   | 0.00038135973797541776                    | b2213   | 0.0023522399551265324    |
| $x2^{2}x1x4$                       | b2214   | 0.0007964412209778413                     | b2214   | -0.05758931254922164     |
| $x2^{2}x1x5$                       | b2215   | -0.00003840955525071361                   | b2215   | -0.0016919150347710157   |
| $x3^{2}x1x2$                       | b3212   | 2.12438*10^-6                             | b3212   | 0.0000459133681406363    |
| x3 <sup>2</sup> x1x4               | b3214   | 9.0953*10^-6                              | b3214   | 0.00004088208835386217   |
| x3 <sup>2</sup> x1x5               | b3215   | 1.60773*10^-6                             | b3215   | 3.41384*10-6             |
| x3 <sup>2</sup> x2x4               | b3224   | 0.0001607153665731662                     | b3224   | -0.0005488965425851043   |
| x3 <sup>2</sup> x2x5               | b3225   | 0.000014383500022293222                   | b3225   | -0.000022405308546776605 |
| x3²x4x5                            | b3245   | 9.40281*10^-6                             | b3245   | 1.11559*10-6             |
| x4 <sup>2</sup> x1x2               | b4212   | 0.00252214031015752                       | b4212   | -0.06251032831381002     |
| x4 <sup>2</sup> x1x3               | b4213   | 0.0005172218399063798                     | b4213   | 0.0012249451946949896    |
| x4²x1x5                            | b4215   | -0.0012523054085074943                    | b4215   | 0.003135574305309116     |
| x4 <sup>2</sup> x2x3               | b4223   | 0.004202290862128957                      | b4223   | -0.009287917640182154    |
| x4²x2x5                            | b4225   | 0.012472471560843407                      | b4225   | -0.07915297555072179     |
| x4²x3x5                            | b4235   | 0.0003986581044106144                     | b4235   | -4.16783*10-6            |
| x5²x1x2                            | b5212   | -0.000014406559386660256                  | b5212   | 0.00013223459209903965   |
| x5²x1x3                            | b5213   | -4.35033*10^-7                            | b5213   | 5.54691*10-7             |
| x5²x1x4                            | b5214   | 0.00003279806267894601                    | b5214   | -0.00004382154544842156  |
| x5²x2x3                            | b5223   | -0.000022468608911315323                  | b5223   | 0.00006941778713295788   |
| x5²x2x4                            | b5224   | -0.00016340660408747484                   | b5224   | 0.0013779294554666145    |
| x5²x3x4                            | b5234   | -6.38366*10^-6                            | b5234   | 0.00001728013688297784   |
| x1x2x3x4                           | b11234  | 0.0002715488686795394                     | b11234  | -0.0020415403201789217   |
| x1x2x3x5                           | b11235  | -0.00004274374679100678                   | b11235  | -0.00014267422488242683  |
| x1x3x4x5                           | b11345  | -0.000048536479009259176                  | b11345  | -0.00011703227657810252  |
| x1x2x4x5                           | b11245  | -0.0006583221674786884                    | b11245  | 0.006816265742898161     |
| x2x3x4x5                           | b22345  | -0.0006504620449386264                    | b22345  | 0.0023987841335383507    |
| x1²x1²x1                           | b11111  | 1.82466*10^-7                             | b11111  | -5.19096*10-7            |
| x2 <sup>2</sup> x2 <sup>2</sup> x2 | b22222  | 0.0719890366662641                        | b22222  | -0.20035928160739958     |
| x3²x3²x3                           | b33333  | 4.92303*10^-9                             | b33333  | 3.71851*10-9             |
| x4²x4²x4                           | b44444  | 0.016258327843077097                      | b44444  | 0.036046489172539865     |
| x5²x5²x5                           | b55555  | -1.3251*10^-9                             | b55555  | 3.30778*10-9             |
| x1²x1²x2                           | b11112  | -4.97177*10^-7                            | b11112  | -3.69035*10-6            |
| x1²x1²x3                           | b11113  | 6.80069*10^-8                             | b11113  | 5.25952*10-8             |
| x1²x1²x4                           | b11114  | -2.74808*10^-6                            | b11114  | 5.97037*10-6             |
| x1²x1²x5                           | b11115  | -4.06722*10^-7                            | b11115  | 9.20778*10-7             |
| x2²x2²x1                           | b22221  | 0.0007765916223837287                     | b22221  | 0.0013052164664613067    |
| x2²x2²x3                           | b22223  | -0.0032254842388739838                    | b22223  | -0.0028731304963303165   |

|                                    |         | FH                       |         | FW                       |
|------------------------------------|---------|--------------------------|---------|--------------------------|
| Giriș                              |         |                          |         |                          |
| Parametresi                        | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri           |
| x2²x2²x4                           | b22224  | -0.02483117427192121     | b22224  | 0.19121508450967867      |
| x2²x2²x5                           | b22225  | -0.005110491601625737    | b22225  | 0.022069809912147666     |
| x3²x3²x1                           | b33331  | -9.73978*10^-9           | b33331  | -2.65563*10-8            |
| x3²x3²x2                           | b33332  | -4.48437*10^-8           | b33332  | 1.3789*10-7              |
| x3²x3²x4                           | b33334  | -4.78398*10^-8           | b33334  | -3.94277*10-8            |
| x3²x3²x5                           | b33335  | -8.41367*10^-9           | b33335  | 8.02707*10-10            |
| x4²x4²x1                           | b44441  | 0.001883678150356483     | b44441  | -0.011140894229870016    |
| x4 <sup>2</sup> x4 <sup>2</sup> x2 | b44442  | -0.02890427205665526     | b44442  | 0.22796873638124193      |
| x4²x4²x3                           | b44443  | -0.002289522594086448    | b44443  | -0.0012002181716663798   |
| x4²x4²x5                           | b44445  | -0.0006616898952467411   | b44445  | -0.0005761541492764124   |
| x5²x5²x1                           | b55551  | -5.31641*10^-9           | b55551  | 1.20817*10-8             |
| x5²x5²x2                           | b55552  | 1.85117*10^-7            | b55552  | -1.03861*10-6            |
| x5²x5²x3                           | b55553  | 8.90155*10^-9            | b55553  | -8.24394*10-9            |
| x5²x5²x4                           | b55554  | -3.13807*10^-8           | b55554  | -1.67545*10-7            |
| x1 <sup>3</sup> x2 <sup>2</sup>    | b11122  | -0.000041209556612222525 | b11122  | 0.000013611149873807645  |
| x1³x3²                             | b11133  | -7.13021*10^-9           | b11133  | 6.49455*10-8             |
| x1 <sup>3</sup> x4 <sup>2</sup>    | b11144  | -0.00006460775388635386  | b11144  | 0.00013271712700376544   |
| x1 <sup>3</sup> x5 <sup>2</sup>    | b11155  | 2.51585*10^-7            | b11155  | -4.43127*10-7            |
| x2 <sup>3</sup> x1 <sup>2</sup>    | b22211  | -0.000488569510636303    | b22211  | 0.000583856574284233     |
| x2 <sup>3</sup> x3 <sup>2</sup>    | b22233  | -0.0002102638813478494   | b22233  | 0.00004018302720367611   |
| x2 <sup>3</sup> x4 <sup>2</sup>    | b22244  | -0.07333693324916302     | b22244  | 0.39145863091768385      |
| x2 <sup>3</sup> x5 <sup>2</sup>    | b22255  | 0.000012687083954809241  | b22255  | -0.00024890838988181243  |
| x3 <sup>3</sup> x1 <sup>2</sup>    | b33311  | -2.18596*10^-8           | b33311  | -1.5839*10-8             |
| x3 <sup>3</sup> x2 <sup>2</sup>    | b33322  | -5.9262*10^-6            | b33322  | 3.62233*10-6             |
| x3 <sup>3</sup> x4 <sup>2</sup>    | b33344  | -4.49946*10^-6           | b33344  | -3.4705*10-6             |
| x3³x5²                             | b33355  | -6.87736*10^-10          | b33355  | -8.46736*10-9            |
| x1³x2x3                            | b11123  | 1.25222*10^-6            | b11123  | -2.97248*10-6            |
| x1³x2x4                            | b11124  | 0.000010783571584068865  | b11124  | 0.0000658409915786752    |
| x1³x2x5                            | b11125  | 1.60345*10^-6            | b11125  | 5.00595*10-6             |
| x1³x3x4                            | b11134  | -1.44973*10^-6           | b11134  | -8.78463*10-7            |
| x1³x3x5                            | b11135  | -8.5712*10^-8            | b11135  | -1.01494*10-7            |
| x1³x4x5                            | b11145  | 9.15908*10^-6            | b11145  | -0.000019564690137878697 |
| x2 <sup>3</sup> x1x3               | b22213  | 0.00023642435444792937   | b22213  | 0.0013001605979916459    |
| x2 <sup>3</sup> x1x4               | b22214  | -0.0003050010275239482   | b22214  | -0.029647028697498523    |
| x2 <sup>3</sup> x1x5               | b22215  | -0.000030742267184236796 | b22215  | -0.0006932390191587897   |
| x2³x3x4                            | b22234  | 0.00339699175966273      | b22234  | -0.005538054027225196    |
| x2 <sup>3</sup> x3x5               | b22235  | 0.0003321696114065144    | b22235  | -0.00006423307999100292  |
| x2 <sup>3</sup> x4x5               | b22245  | 0.006322081048020719     | b22245  | -0.04108244866057516     |
| x3 <sup>3</sup> x1x2               | b33312  | 2.22807*10^-8            | b33312  | 6.94932*10-7             |
| x3 <sup>3</sup> x1x4               | b33314  | 1.30989*10^-7            | b33314  | 6.99037*10-7             |
| x3 <sup>3</sup> x1x5               | b33315  | 2.63475*10^-8            | b33315  | 6.20019*10-8             |
| x3 <sup>3</sup> x2x4               | b33324  | 2.78753*10^-6            | b33324  | -9.6303*10-6             |
| x3 <sup>3</sup> x2x5               | b33325  | 2.50981*10^-7            | b33325  | -4.66916*10-7            |

|                        | FH      |                          | FW      |                          |
|------------------------|---------|--------------------------|---------|--------------------------|
| Giriş                  |         |                          |         |                          |
| Parametresi            | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri           |
| x3³x4x5                | b33345  | 1.53756*10^-7            | b33345  | 1.60964*10-8             |
| x4 <sup>3</sup> x1x2   | b44412  | 0.0008753971200774101    | b44412  | -0.03031236549522819     |
| x4 <sup>3</sup> x1x3   | b44413  | 0.0002597162590875082    | b44413  | 0.0005993086898752561    |
| x4³x1x5                | b44415  | -0.0005842179917796008   | b44415  | 0.0015689404986037984    |
| x4 <sup>3</sup> x2x3   | b44423  | 0.002018518047034117     | b44423  | -0.003902743437859007    |
| x4 <sup>3</sup> x2x5   | b44425  | 0.006040406873721648     | b44425  | -0.0386683688177374      |
| x4³x3x5                | b44435  | 0.00020266648040576297   | b44435  | -9.43416*10-6            |
| x5³x1x2                | b55512  | -3.91958*10^-7           | b55512  | 4.75596*10-6             |
| x5³x1x3                | b55513  | -3.22781*10^-8           | b55513  | -1.13421*10-8            |
| x5³x1x4                | b55514  | 1.42906*10^-6            | b55514  | -2.19346*10-6            |
| x5³x2x3                | b55523  | -7.5728*10^-7            | b55523  | 1.90736*10-6             |
| x5³x2x4                | b55524  | -9.02067*10^-6           | b55524  | 0.00006544754396585357   |
| x5³x3x4                | b55534  | -2.97623*10^-7           | b55534  | 4.44564*10-7             |
| x1²x2²x3               | b11223  | 0.000023102915035875386  | b11223  | 9.81761*10-6             |
| x1²x2²x4               | b11224  | 0.00037047592579051076   | b11224  | -0.0009170899846077253   |
| x1²x2²x5               | b11225  | 0.00005680363045858848   | b11225  | -0.000050470634653761805 |
| x1²x3²x2               | b11332  | 6.05282*10^-7            | b11332  | -1.58168*10-7            |
| x1²x3²x4               | b11334  | -1.73166*10^-7           | b11334  | 8.0458*10-8              |
| x1²x3²x5               | b11335  | 3.72975*10^-8            | b11335  | -3.55681*10-8            |
| x1²x4²x2               | b11442  | 0.00021542500030369518   | b11442  | -0.0006606659658395415   |
| x1²x4²x3               | b11443  | -5.92486*10^-6           | b11443  | 0.000015750051343812597  |
| x1²x4²x5               | b11445  | 0.0000987746966537119    | b11445  | -0.00019725008625738562  |
| x1²x5²x2               | b11552  | -1.16391*10^-6           | b11552  | -4.47429*10-6            |
| x1²x5²x3               | b11553  | 7.05923*10^-9            | b11553  | 3.52961*10-8             |
| x1²x5²x4               | b11554  | -9.71935*10^-6           | b11554  | 0.000018184687786935523  |
| x2²x3²x1               | b22331  | 7.84306*10^-6            | b22331  | 0.00005082135014711729   |
| x2²x3²x4               | b22334  | 0.00015758724807159568   | b22334  | -0.0003861281034198089   |
| x2²x3²x5               | b22335  | 0.000016477652228707226  | b22335  | -0.00001814189962819031  |
| x3²x4²x1               | b33441  | 9.96685*10^-6            | b33441  | 0.00003664731341232086   |
| x3²x4²x2               | b33442  | 0.0001222997955613792    | b33442  | -0.0003855454080064062   |
| x3²x4²x5               | b33445  | 9.63517*10^-6            | b33445  | 1.49502*10-7             |
| x4²x5²x1               | b44551  | 0.00002217725836436553   | b44551  | -0.00001933567905557532  |
| x4²x5²x2               | b44552  | -0.00012195668478170605  | b44552  | 0.0009202351447448881    |
| x4²x5²x3               | b44553  | -4.34123*10^-6           | b44553  | 0.000012309509857693283  |
| x1²x2x3x4              | b111234 | -0.000025869490358062436 | b111234 | -0.000024707300275548125 |
| x1²x2x3x4              | b111235 | -2.78753*10^-6           | b111235 | 4.77445*10-6             |
| x1²x3x4x5              | b111345 | 3.13576*10^-6            | b111345 | 1.35589*10-7             |
| x1²x2x4x5              | b111245 | -0.000025223829201026844 | b111245 | 0.00006017561983451974   |
| x2²x1x3x4              | b22134  | 0.0001106001208081392    | b22134  | -0.0018343037804990669   |
| x2²x1x3x5              | b22135  | -0.00004509622549385439  | b22135  | -0.00012575367441450258  |
| x2²x1x4x5              | b22145  | -0.00019038670787944353  | b22145  | 0.004644506425462969     |
| x2 <sup>2</sup> x3x4x5 | b222345 | -0.0005728849089328304   | b222345 | 0.0018363055351509887    |
| x3²x1x2x4              | b33124  | 5.1856*10^-6             | b33124  | -0.00003396392781842715  |
## **Tablo A.1 (devam) :** Çalışma datası değerlerine göre kaynak giriş değişkenleri vekatsayıları

|                      |         | FH                       | FW      |                         |  |  |
|----------------------|---------|--------------------------|---------|-------------------------|--|--|
| Giriș<br>Parametresi | Katsayı | Katsayı Değeri           | Katsayı | Katsayı Değeri          |  |  |
| x3²x1x2x5            | b33125  | -1.00456*10^-6           | b33125  | -2.68914*10-6           |  |  |
| x3²x2x4x5            | b33245  | -0.000017955753130994343 | b33245  | 0.00007296006499380937  |  |  |
| x3²x1x4x5            | b33145  | -8.18741*10^-7           | b33145  | -3.33983*10-6           |  |  |
| x4²x1x2x3            | b44123  | 0.00015219038172093618   | b44123  | -0.0016147236605563676  |  |  |
| x4²x1x2x5            | b44125  | -0.00043108082203824273  | b44125  | 0.004848588521865795    |  |  |
| x4²x1x3x5            | b44135  | -0.0000394666842085014   | b44135  | -0.00008632224536883897 |  |  |
| x4²x2x3x5            | b44235  | -0.00047693862454916444  | b44235  | 0.001560156411593724    |  |  |
| x5²x1x2x3            | b55123  | 2.82955*10^-6            | b55123  | -1.36237*10-6           |  |  |
| x5²x1x2x4            | b55124  | 0.000029229797979890273  | b55124  | -0.00038263888888919503 |  |  |
| x5²x2x3x4            | b55234  | 0.000040949074074067     | b55234  | -0.00019335648148145767 |  |  |
| x5²x1x3x4            | b55134  | 6.8971*10^-7             | b55134  | 2.01231*10-6            |  |  |
| x1x2x3x4x5           | b12345  | -6.86553*10^-6           | b12345  | 0.0002718276515151232   |  |  |

| NO |          | ВН    |            |         | BW     |           |
|----|----------|-------|------------|---------|--------|-----------|
|    | HD       | ÖD    | SAPMA      | HD      | ÖD     | SAPMA     |
| 1  | 0.621979 | 0.672 | 0.0500208  | 5.6233  | 5.664  | 0.0407014 |
| 2  | 0.441056 | 0.412 | 0.0290556  | 5.14844 | 5.197  | 0.0485556 |
| 3  | 0.641333 | 0.593 | 0.0483333  | 7.1335  | 7.058  | 0.0755    |
| 4  | 0.602632 | 0.63  | 0.0273681  | 6.90876 | 6.895  | 0.0137569 |
| 5  | 0.805069 | 0.743 | 0.0620694  | 6.07114 | 5.96   | 0.111139  |
| 6  | 0.761896 | 0.803 | 0.0411042  | 5.71012 | 5.732  | 0.0218819 |
| 7  | 0.817618 | 0.878 | 0.0603819  | 6.84306 | 6.989  | 0.145938  |
| 8  | 0.859417 | 0.82  | 0.0394167  | 7.86568 | 7.809  | 0.0566806 |
| 9  | 0.519979 | 0.437 | 0.0829792  | 8.88067 | 8.75   | 0.130674  |
| 10 | 0.551951 | 0.593 | 0.0410486  | 10.0408 | 9.993  | 0.0478403 |
| 11 | 0.772396 | 0.852 | 0.0796042  | 9.79273 | 9.993  | 0.200271  |
| 12 | 0.773674 | 0.736 | 0.0376736  | 10.7088 | 10.687 | 0.0217569 |
| 13 | 0.857924 | 0.965 | 0.107076   | 9.96545 | 10.237 | 0.271549  |
| 14 | 0.719146 | 0.654 | 0.0651458  | 9.16903 | 9.076  | 0.0930347 |
| 15 | 0.901701 | 0.798 | 0.103701   | 9.80615 | 9.465  | 0.341146  |
| 16 | 0.646229 | 0.708 | 0.0617708  | 10.0304 | 10.193 | 0.162632  |
| 17 | 0.772042 | 0.805 | 0.0329583  | 11.589  | 11.679 | 0.0899722 |
| 18 | 1.11199  | 1.1   | 0.0119931  | 11.8487 | 11.848 | 0.0007152 |
| 19 | 0.501271 | 0.47  | 0.0312708  | 12.1248 | 12     | 0.124771  |
| 20 | 0.934694 | 0.945 | 0.0103056  | 13.8855 | 13.921 | 0.0355139 |
| 21 | 0.911007 | 0.866 | 0.0450069  | 10.7714 | 10.611 | 0.16041   |
| 22 | 1.11496  | 1.139 | 0.0240417  | 12.3318 | 12.403 | 0.0711528 |
| 23 | 1.08468  | 1.128 | 0.0433194  | 12.6648 | 12.86  | 0.195208  |
| 24 | 1.10635  | 1.084 | 0.0223542  | 13.452  | 13.346 | 0.105951  |
| 25 | 0.289187 | 0.245 | 0.0441875  | 4.04234 | 4.104  | 0.0616597 |
| 26 | 0.337743 | 0.34  | 0.00225694 | 3.65817 | 3.418  | 0.240174  |
| 27 | 0.469188 | 0.51  | 0.0408125  | 4.86706 | 4.875  | 0.0079375 |
| 28 | 0.500882 | 0.502 | 0.00111806 | 4.91142 | 5.082  | 0.170576  |
| 29 | 0.488715 | 0.557 | 0.0682847  | 4.29078 | 4.37   | 0.0792153 |
| 30 | 0.619354 | 0.593 | 0.0263542  | 3.8487  | 3.948  | 0.0992986 |
| 31 | 0.51491  | 0.45  | 0.0649097  | 5.23381 | 5.085  | 0.148813  |
| 32 | 0.603021 | 0.626 | 0.0229792  | 5.0187  | 4.989  | 0.0297014 |
| 33 | 0.40375  | 0.458 | 0.05425    | 5.89878 | 5.874  | 0.0247778 |
| 34 | 0.417389 | 0.447 | 0.0296111  | 6.35819 | 6.74   | 0.381806  |
| 35 | 0.5115   | 0.464 | 0.0475     | 7.10842 | 6.994  | 0.114417  |
| 36 | 0.540361 | 0.504 | 0.0363611  | 7.26161 | 7.019  | 0.242611  |
| 37 | 0.817444 | 0.715 | 0.102444   | 6.98097 | 6.724  | 0.256972  |
| 38 | 0.727417 | 0.746 | 0.0185833  | 6.53306 | 6.433  | 0.100056  |
| 39 | 0.600306 | 0.696 | 0.0956944  | 6.84383 | 7.24   | 0.396167  |

**Tablo A.2 :** Çalışma datasına göre BH ve BW için ölçülmüş ve hesaplanmışdeğerler.

| NO |          | BH    |            |         | BW    |           |
|----|----------|-------|------------|---------|-------|-----------|
|    | HD       | ÖD    | SAPMA      | HD      | ÖD    | SAPMA     |
| 40 | 0.602833 | 0.591 | 0.0118333  | 7.20514 | 7.166 | 0.0391389 |
| 41 | 0.776063 | 0.766 | 0.0100625  | 8.79988 | 8.763 | 0.0368819 |
| 42 | 0.537868 | 0.506 | 0.0318681  | 8.72163 | 8.58  | 0.141632  |
| 43 | 0.665313 | 0.672 | 0.0066875  | 9.54552 | 9.652 | 0.106479  |
| 44 | 0.707757 | 0.743 | 0.0352431  | 9.87997 | 9.952 | 0.0720347 |
| 45 | 0.97684  | 1.011 | 0.0341597  | 8.67524 | 8.853 | 0.177757  |
| 46 | 0.658229 | 0.666 | 0.00777083 | 9.61324 | 9.614 | 0.0007569 |
| 47 | 0.814785 | 0.784 | 0.0307847  | 9.28835 | 9.041 | 0.247354  |
| 48 | 0.796146 | 0.785 | 0.0111458  | 9.40116 | 9.47  | 0.0688403 |
| 49 | 0.006833 | 0.001 | 0.00583333 | 2.35736 | 2.255 | 0.102361  |
| 50 | 0.250201 | 0.277 | 0.0267986  | 2.80638 | 2.998 | 0.191618  |
| 51 | 0.273479 | 0.281 | 0.00752083 | 3.23444 | 3.302 | 0.0675625 |
| 52 | 0.448486 | 0.42  | 0.0284861  | 3.32882 | 3.172 | 0.156819  |
| 53 | 0.068215 | 0.062 | 0.00621528 | 1.29808 | 1.33  | 0.0319236 |
| 54 | 0.15375  | 0.139 | 0.01475    | 1.72118 | 1.6   | 0.121181  |
| 55 | 0.392472 | 0.397 | 0.00452778 | 2.81413 | 2.817 | 0.002875  |
| 56 | 0.361562 | 0.378 | 0.0164375  | 2.95462 | 3.041 | 0.0863819 |
| 57 | 0.411271 | 0.44  | 0.0287292  | 5.17655 | 5.332 | 0.155451  |
| 58 | 0.45666  | 0.386 | 0.0706597  | 5.68397 | 5.35  | 0.333965  |
| 59 | 0.477104 | 0.445 | 0.0321042  | 5.50085 | 5.415 | 0.0858542 |
| 60 | 0.324965 | 0.399 | 0.0740347  | 5.05463 | 5.319 | 0.264368  |
| 61 | 0.700632 | 0.696 | 0.00463194 | 5.54558 | 5.531 | 0.0145764 |
| 62 | 0.528437 | 0.575 | 0.0465625  | 5.44291 | 5.636 | 0.19309   |
| 63 | 0.807993 | 0.816 | 0.00800694 | 4.89002 | 4.835 | 0.0550208 |
| 64 | 0.624938 | 0.575 | 0.0499375  | 6.40849 | 6.285 | 0.123493  |
| 65 | 0.381896 | 0.359 | 0.0228958  | 6.47209 | 6.419 | 0.0530903 |
| 66 | 0.575139 | 0.619 | 0.0438611  | 7.37765 | 7.52  | 0.142347  |
| 67 | 0.467417 | 0.492 | 0.0245833  | 7.68771 | 7.706 | 0.0182917 |
| 68 | 0.503549 | 0.548 | 0.0455486  | 7.70855 | 7.601 | 0.107549  |
| 69 | 0.525153 | 0.536 | 0.0108472  | 6.21435 | 6.197 | 0.0173472 |
| 70 | 0.515813 | 0.484 | 0.0318125  | 6.14391 | 6.072 | 0.0719097 |
| 71 | 0.670535 | 0.658 | 0.0125347  | 7.42785 | 7.48  | 0.0521458 |
| 72 | 0.7645   | 0.798 | 0.0335     | 7.87989 | 7.917 | 0.0371111 |

**Tablo A.2 (devam) :** Çalışma datasına göre BH ve BW için ölçülmüş vehesaplanmış değerler.

| NO |           | FH     |           |         | FW     |           |
|----|-----------|--------|-----------|---------|--------|-----------|
|    | HD        | ÖD     | SAPMA     | HD      | ÖD     | SAPMA     |
| 1  | -0.104688 | -0.149 | 0.0443125 | 6.06785 | 6.09   | 0.0221458 |
| 2  | 0.004888  | 0.027  | 0.0221111 | 6.3929  | 6.411  | 0.0180972 |
| 3  | -0.221153 | -0.179 | 0.0421528 | 7.45325 | 7.432  | 0.02125   |
| 4  | -0.286049 | -0.306 | 0.0199514 | 7.30599 | 7.287  | 0.0189933 |
| 5  | 0.098833  | 0.155  | 0.0561667 | 6.75567 | 6.676  | 0.079666  |
| 6  | 0.132965  | 0.099  | 0.0339653 | 6.78458 | 6.824  | 0.0394236 |
| 7  | -0.074993 | -0.129 | 0.0540069 | 6.93023 | 7.009  | 0.078770  |
| 8  | -0.108806 | -0.077 | 0.0318056 | 7.49853 | 7.46   | 0.038527  |
| 9  | -0.106146 | -0.017 | 0.0891458 | 8.74823 | 8.664  | 0.0842292 |
| 10 | -0.205257 | -0.25  | 0.0447431 | 8.77826 | 8.782  | 0.0037430 |
| 11 | -0.468174 | -0.553 | 0.0848264 | 9.67456 | 9.757  | 0.082437  |
| 12 | -0.460424 | -0.42  | 0.0404236 | 10.376  | 10.374 | 0.0019513 |
| 13 | -0.232146 | -0.345 | 0.112854  | 9.58373 | 9.783  | 0.199271  |
| 14 | -0.111451 | -0.043 | 0.0684514 | 8.92178 | 8.803  | 0.118785  |
| 15 | -0.242535 | -0.134 | 0.108535  | 9.94748 | 9.75   | 0.197479  |
| 16 | -0.103868 | -0.168 | 0.0641319 | 10.231  | 10.348 | 0.116993  |
| 17 | -0.554167 | -0.599 | 0.0448333 | 11.2859 | 11.348 | 0.062083  |
| 18 | -0.767632 | -0.745 | 0.0226319 | 11.5128 | 11.491 | 0.0218403 |
| 19 | -0.296674 | -0.254 | 0.0426736 | 11.2982 | 11.237 | 0.061187  |
| 20 | -0.662528 | -0.683 | 0.0204722 | 12.9251 | 12.946 | 0.020944  |
| 21 | -0.288687 | -0.232 | 0.0566875 | 9.4576  | 9.338  | 0.119604  |
| 22 | -0.522514 | -0.557 | 0.0344861 | 12.2686 | 12.348 | 0.079361  |
| 23 | -0.568472 | -0.623 | 0.0545278 | 11.6483 | 11.767 | 0.118708  |
| 24 | -0.649326 | -0.617 | 0.0323264 | 12.6115 | 12.533 | 0.078465  |
| 25 | 0.095770  | 0.123  | 0.0272292 | 5.28606 | 5.355  | 0.068937  |
| 26 | 0.090826  | 0.108  | 0.0171736 | 5.32242 | 5.173  | 0.149424  |
| 27 | -0.021090 | -0.044 | 0.0229097 | 5.90373 | 5.833  | 0.0707292 |
| 28 | -0.068506 | -0.09  | 0.0214931 | 5.67978 | 5.831  | 0.151215  |
| 29 | 0.301937  | 0.251  | 0.0509375 | 5.6099  | 5.656  | 0.0461042 |
| 30 | 0.223465  | 0.23   | 0.0065347 | 5.52762 | 5.562  | 0.034381  |
| 31 | 0.133382  | 0.18   | 0.0466181 | 5.75531 | 5.711  | 0.044312  |
| 32 | 0.122215  | 0.12   | 0.0022152 | 5.88617 | 5.85   | 0.036173  |
| 33 | -0.1575   | -0.213 | 0.0555    | 6.406   | 6.348  | 0.058     |
| 34 | -0.156694 | -0.19  | 0.0333056 | 6.77303 | 6.992  | 0.218972  |
| 35 | -0.198861 | -0.152 | 0.0468611 | 7.10142 | 7.163  | 0.061583  |
| 36 | -0.254944 | -0.213 | 0.0419444 | 7.47256 | 7.25   | 0.222556  |
| 37 | -0.266917 | -0.164 | 0.102917  | 7.46008 | 7.288  | 0.172083  |
| 38 | -0.098888 | -0.113 | 0.0141111 | 6.95489 | 6.966  | 0.011111  |
| 39 | -0.012722 | -0.107 | 0.0942778 | 6.8865  | 7.055  | 0.1685    |

Tablo A.3 : Çalışma datasına göre FH ve FW için ölçülmüş ve hesaplanmış değerler.

| NO |           | FH     |           |         | FW    |            |
|----|-----------|--------|-----------|---------|-------|------------|
|    | HD        | ÖD     | SAPMA     | HD      | ÖD    | SAPMA      |
| 40 | -0.023472 | -0.018 | 0.0054722 | 7.55653 | 7.549 | 0.00752778 |
| 41 | -0.603271 | -0.575 | 0.0282708 | 8.34794 | 8.337 | 0.0109375  |
| 42 | -0.283132 | -0.267 | 0.0161319 | 8.67455 | 8.605 | 0.0695486  |
| 43 | -0.361049 | -0.385 | 0.0239514 | 9.09985 | 9.109 | 0.00914583 |
| 44 | -0.543549 | -0.564 | 0.0204514 | 9.59866 | 9.67  | 0.0713403  |
| 45 | -0.504021 | -0.556 | 0.0519792 | 8.63002 | 8.756 | 0.125979   |
| 46 | -0.195576 | -0.188 | 0.0075763 | 9.48749 | 9.442 | 0.0454931  |
| 47 | -0.35666  | -0.309 | 0.0476597 | 9.13919 | 9.015 | 0.124188   |
| 48 | -0.314743 | -0.318 | 0.0032569 | 9.2533  | 9.297 | 0.0437014  |
| 49 | 0.339917  | 0.357  | 0.0170833 | 5.07308 | 4.982 | 0.0910833  |
| 50 | 0.207285  | 0.168  | 0.0392847 | 4.76667 | 4.898 | 0.131326   |
| 51 | 0.107243  | 0.088  | 0.0192431 | 4.92802 | 5.02  | 0.0919792  |
| 52 | 0.048555  | 0.09   | 0.0414444 | 4.55522 | 4.423 | 0.132222   |
| 53 | 0.395229  | 0.39   | 0.0052291 | 4.74644 | 4.78  | 0.0335625  |
| 54 | 0.459569  | 0.487  | 0.0274306 | 5.06581 | 4.992 | 0.0738056  |
| 55 | 0.372611  | 0.38   | 0.0073888 | 5.26546 | 5.231 | 0.0344583  |
| 56 | 0.42359   | 0.394  | 0.0295903 | 5.2623  | 5.337 | 0.0747014  |
| 57 | -0.287354 | -0.321 | 0.0336458 | 5.70477 | 5.847 | 0.142229   |
| 58 | -0.230049 | -0.152 | 0.0780486 | 5.92672 | 5.704 | 0.222715   |
| 59 | -0.192965 | -0.155 | 0.0379653 | 6.11102 | 5.967 | 0.144021   |
| 60 | -0.007631 | -0.09  | 0.0823681 | 5.66749 | 5.892 | 0.224507   |
| 61 | -0.245937 | -0.236 | 0.0099375 | 6.01119 | 5.984 | 0.0271875  |
| 62 | 0.12134   | 0.067  | 0.0543403 | 5.92233 | 6.03  | 0.107674   |
| 63 | -0.060743 | -0.075 | 0.0142569 | 5.53302 | 5.562 | 0.0289792  |
| 64 | 0.079340  | 0.138  | 0.0586597 | 6.65547 | 6.546 | 0.109465   |
| 65 | -0.233562 | -0.217 | 0.0165625 | 6.14315 | 6.092 | 0.0511458  |
| 66 | -0.300236 | -0.339 | 0.0387639 | 7.24361 | 7.335 | 0.0913889  |
| 67 | -0.230278 | -0.249 | 0.0187222 | 7.66696 | 7.719 | 0.0520417  |
| 68 | -0.436924 | -0.396 | 0.0409236 | 7.72528 | 7.633 | 0.0922847  |
| 69 | -0.005291 | -0.01  | 0.0047083 | 6.40238 | 6.396 | 0.006375   |
| 70 | 0.047090  | 0.074  | 0.0269097 | 6.89687 | 6.863 | 0.0338681  |
| 71 | -0.207868 | -0.201 | 0.0068680 | 7.04652 | 7.052 | 0.00547917 |
| 72 | -0.328931 | -0.358 | 0.0290694 | 7.72424 | 7.759 | 0.0347639  |

**Tablo A.3 (devam) :** Çalışma datasına göre FH ve FW için ölçülmüş ve hesaplanmış değerler.

| NO |          | BH    |           |         | BW     |           |
|----|----------|-------|-----------|---------|--------|-----------|
|    | HD       | ÖD    | SAPMA     | HD      | ÖD     | SAPMA     |
| 1  | 0.811847 | 0.801 | 0.0108472 | 5.6109  | 5.541  | 0.0698958 |
| 2  | 0.671153 | 0.682 | 0.0108472 | 4.5631  | 4.633  | 0.0698958 |
| 3  | 0.795153 | 0.806 | 0.0108472 | 6.9561  | 7.026  | 0.0698958 |
| 4  | 0.567847 | 0.557 | 0.0108472 | 7.5499  | 7.48   | 0.0698958 |
| 5  | 0.691306 | 0.713 | 0.0216944 | 8.20021 | 8.34   | 0.139792  |
| 6  | 0.828694 | 0.807 | 0.0216944 | 8.77979 | 8.64   | 0.139792  |
| 7  | 0.709694 | 0.688 | 0.0216944 | 9.85679 | 9.717  | 0.139792  |
| 8  | 0.983306 | 1.005 | 0.0216944 | 10.9482 | 11.088 | 0.139792  |
| 9  | 0.723847 | 0.713 | 0.0108472 | 11.2119 | 11.142 | 0.0698958 |
| 10 | 0.792153 | 0.803 | 0.0108472 | 11.3001 | 11.37  | 0.0698958 |
| 11 | 1.07915  | 1.09  | 0.0108472 | 14.0761 | 14.146 | 0.0698958 |
| 12 | 1.15885  | 1.148 | 0.0108472 | 12.7819 | 12.712 | 0.0698958 |
| 13 | 0.403306 | 0.425 | 0.0216944 | 4.91721 | 5.057  | 0.139792  |
| 14 | 0.400694 | 0.379 | 0.0216944 | 4.02379 | 3.884  | 0.139792  |
| 15 | 0.536694 | 0.515 | 0.0216944 | 5.10979 | 4.97   | 0.139792  |
| 16 | 0.518306 | 0.54  | 0.0216944 | 4.62821 | 4.768  | 0.139792  |
| 17 | 0.656389 | 0.613 | 0.0433889 | 6.58358 | 6.304  | 0.279583  |
| 18 | 0.520611 | 0.564 | 0.0433889 | 7.16042 | 7.44   | 0.279583  |
| 19 | 0.566611 | 0.61  | 0.0433889 | 7.27742 | 7.557  | 0.279583  |
| 20 | 0.500389 | 0.457 | 0.0433889 | 7.58958 | 7.31   | 0.279583  |
| 21 | 0.846306 | 0.868 | 0.0216944 | 7.90721 | 8.047  | 0.139792  |
| 22 | 0.801694 | 0.78  | 0.0216944 | 8.60579 | 8.466  | 0.139792  |
| 23 | 0.803694 | 0.782 | 0.0216944 | 10.4168 | 10.277 | 0.139792  |
| 24 | 0.825306 | 0.847 | 0.0216944 | 10.2872 | 10.427 | 0.139792  |
| 25 | 0.325847 | 0.315 | 0.0108472 | 3.1159  | 3.046  | 0.0698958 |
| 26 | 0.321153 | 0.332 | 0.0108472 | 2.7401  | 2.81   | 0.0698958 |
| 27 | 0.573153 | 0.584 | 0.0108472 | 3.9641  | 4.034  | 0.0698958 |
| 28 | 0.373847 | 0.363 | 0.0108472 | 2.9269  | 2.857  | 0.0698958 |
| 29 | 0.473306 | 0.495 | 0.0216944 | 4.69621 | 4.836  | 0.139792  |
| 30 | 0.372694 | 0.351 | 0.0216944 | 5.06179 | 4.922  | 0.139792  |
| 31 | 0.750694 | 0.729 | 0.0216944 | 5.34079 | 5.201  | 0.139792  |
| 32 | 0.547306 | 0.569 | 0.0216944 | 5.15921 | 5.299  | 0.139792  |
| 33 | 0.758847 | 0.748 | 0.0108472 | 6.8449  | 6.775  | 0.0698958 |
| 34 | 0.528153 | 0.539 | 0.0108472 | 6.2651  | 6.335  | 0.0698958 |
| 35 | 0.639153 | 0.65  | 0.0108472 | 7.7991  | 7.869  | 0.0698958 |
| 36 | 0.567847 | 0.557 | 0.0108472 | 7.7769  | 7.707  | 0.0698958 |

Tablo A.4 : Kontrol datasına göre BH ve BW için ölçülmüş ve hesaplanmış değerler.

| NO |            | FH     |           |         | FW     |           |
|----|------------|--------|-----------|---------|--------|-----------|
|    | HD         | ÖD     | SAPMA     | HD      | ÖD     | SAPMA     |
| 1  | -0.0815625 | -0.066 | 0.0155625 | 6.15013 | 6.123  | 0.0271319 |
| 2  | 0.129563   | 0.114  | 0.0155625 | 5.95187 | 5.979  | 0.0271319 |
| 3  | -0.197438  | -0.213 | 0.0155625 | 7.39687 | 7.424  | 0.0271319 |
| 4  | 0.0184375  | 0.034  | 0.0155625 | 7.54313 | 7.516  | 0.0271319 |
| 5  | -0.135875  | -0.167 | 0.031125  | 8.42674 | 8.481  | 0.0542639 |
| 6  | -0.327125  | -0.296 | 0.031125  | 8.98226 | 8.928  | 0.0542639 |
| 7  | -0.250125  | -0.219 | 0.031125  | 9.73126 | 9.677  | 0.0542639 |
| 8  | -0.416875  | -0.448 | 0.031125  | 10.4687 | 10.523 | 0.0542639 |
| 9  | -0.296562  | -0.281 | 0.0155625 | 10.8981 | 10.871 | 0.0271319 |
| 10 | -0.436438  | -0.452 | 0.0155625 | 10.8029 | 10.83  | 0.0271319 |
| 11 | -0.635438  | -0.651 | 0.0155625 | 13.9589 | 13.986 | 0.0271319 |
| 12 | -0.755562  | -0.74  | 0.0155625 | 12.3001 | 12.273 | 0.0271319 |
| 13 | 0.175125   | 0.144  | 0.031125  | 5.41974 | 5.474  | 0.0542639 |
| 14 | 0.192875   | 0.224  | 0.031125  | 5.50326 | 5.449  | 0.0542639 |
| 15 | -0.008125  | 0.023  | 0.031125  | 5.81226 | 5.758  | 0.0542639 |
| 16 | 0.072125   | 0.041  | 0.031125  | 5.70374 | 5.758  | 0.0542639 |
| 17 | -0.15625   | -0.094 | 0.06225   | 6.77353 | 6.665  | 0.108528  |
| 18 | -0.09175   | -0.154 | 0.06225   | 7.29347 | 7.402  | 0.108528  |
| 19 | -0.11675   | -0.179 | 0.06225   | 7.50547 | 7.614  | 0.108528  |
| 20 | -0.06725   | -0.005 | 0.06225   | 7.61453 | 7.506  | 0.108528  |
| 21 | -0.401875  | -0.433 | 0.031125  | 7.95674 | 8.011  | 0.0542639 |
| 22 | -0.480125  | -0.449 | 0.031125  | 8.52726 | 8.473  | 0.0542639 |
| 23 | -0.427125  | -0.396 | 0.031125  | 9.70626 | 9.652  | 0.0542639 |
| 24 | -0.521875  | -0.553 | 0.031125  | 9.71874 | 9.773  | 0.0542639 |
| 25 | 0.438437   | 0.454  | 0.0155625 | 5.60813 | 5.581  | 0.0271319 |
| 26 | 0.208563   | 0.193  | 0.0155625 | 4.61787 | 4.645  | 0.0271319 |
| 27 | 0.0385625  | 0.023  | 0.0155625 | 5.61887 | 5.646  | 0.0271319 |
| 28 | 0.203437   | 0.219  | 0.0155625 | 5.56513 | 5.538  | 0.0271319 |
| 29 | 0.088125   | 0.057  | 0.031125  | 5.54574 | 5.6    | 0.0542639 |
| 30 | 0.123875   | 0.155  | 0.031125  | 6.05626 | 6.002  | 0.0542639 |
| 31 | -0.220125  | -0.189 | 0.031125  | 5.91326 | 5.859  | 0.0542639 |
| 32 | -0.150875  | -0.182 | 0.031125  | 6.06974 | 6.124  | 0.0542639 |
| 33 | -0.383562  | -0.368 | 0.0155625 | 6.95413 | 6.927  | 0.0271319 |
| 34 | -0.138437  | -0.154 | 0.0155625 | 6.84987 | 6.877  | 0.0271319 |
| 35 | -0.334437  | -0.35  | 0.0155625 | 7.60287 | 7.63   | 0.0271319 |
| 36 | -0.240562  | -0.225 | 0.0155625 | 7.58013 | 7.553  | 0.0271319 |

Tablo A.5 : Kontrol datasına göre FH ve FW için ölçülmüş ve hesaplanmış değerler.

## ÖZGEÇMİŞ



Ad-Soyad:Fatih TURHANDoğum Tarihi ve Yeri: 12.11.1983-İZMİRE-posta: fatih\_turhan@hotmail.com

## **ÖĞRENİM DURUMU:**

 Lisans : 2007, Balıkesir Üniversitesi, Mühendislik Mimarlık Fakültesi, Makine Mühendisliği Bölümü

## MESLEKİ DENEYİM:

- 2008-2013 Şantiye Mühendisi (Mekanik Şantiye Şefi), Baltes Mühendislik, BALIKESİR.
- 2013-.....Üretim Şefi, Genç Makine Isı Sistemleri, MANİSA