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Deep Learning Based Smoke Detection for Foggy 

Environments 

Abstract 

In recent years, as the global warming threat manifests itself more, the number of 

studies on outdoor smoke detection is increased to prevent wildfires, and these studies 

are mostly focused on image-based detection of smoke. However, the major bottleneck 

of the detection of smoke with high accuracy is harsh weather conditions. Especially 

fog, due seems to smoke, prevents detecting with high accuracy. 

In this thesis, a method is proposed for the detection of fog and smoke images. In this 

method, videos from various databases including footage with and without smoke are 

divided into their images. By changing the brightness values of images, foggy images 

are created artificially. The dataset containing foggy and smoky samples is classified 

using modern Convolutional Neural Network architectures in various color spaces. By 

comparing the performances of color spaces and deep learning architectures the best 

solutions in terms of memory usage and classification accuracy are determined. The 

proposed method as one of these solutions, is overtaken the literature studies. 

Keywords: Smoke detection, deep learning, color spaces, convolutional neural 

networks, image processing 
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Sisli Ortamlar için Derin Öğrenme Tabanlı Duman 

Tespiti 

Öz 

Son yıllarda küresel ısınma tehdidinin kendisini daha çok göstermesiyle orman 

yangınlarını önlemek için dış ortam duman tespitiyle ilgili çalışmaların sayısı artmış 

ve bu çalışmalarda çoğunlukla dumanın görüntü tabanlı tespitine odaklanılmıştır. 

Lakin yüksek doğrulukla duman tespitinin en önemli darboğazı zorlu hava 

koşullarıdır. Özellikle sis, duman gibi gözüktüğü için yüksek doğrulukta tespit 

yapılmasını engeller. 

 Bu tezde, sis ve duman görüntülerinin tespiti için bir yöntem önerildi. Bu yöntemde, 

dumanlı ve dumansız çekimleri içeren çeşitli veri tabanlarından videolar görüntülerine 

ayrıldı. Görüntülerin parlaklık değerleri değiştirilerek yapay olarak sisli görüntüler 

oluşturuldu. Sisli ve dumanlı örnekleri içeren veri seti, çeşitli renk uzaylarında modern 

Konvolüsyonel Sinir Ağları mimarileri kullanılarak sınıflandırıldı. Renk uzayları ve 

derin öğrenme mimarilerinin performansları karşılaştırılarak bellek kullanımı ve 

sınıflandırma doğruluğu açısından en iyi çözümler belirlendi. Bu çözümlerden biri 

olan önerilen yöntem, literatür çalışmalarını geride bıraktı.  

Anahtar Kelimeler: Duman tespiti, derin öğrenme, renk uzayları, evrişimli sinir 

ağları, görüntü işleme 
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Chapter 1 

Introduction 

Wildfires are one of the most serious natural disasters nowadays, as they spread very 

rapidly. Therefore, wildfire detection has an important role in the safety of the 

environment and people. The most important stage in this detection is its beginning 

time. At this stage, the fire emits only visible smoke. For this reason, the detection of 

smoke also brings about interfering with the fires. 

Due to the smoke rises upwards, it can be noticed even from far away. By means of 

this attribute of the smoke, sensors placed on the ceilings of confined spaces for 

detection. Nonetheless these sensors, remain incapable in open-air spaces due to the 

fact that presence of winds and flammable wood materials. This incapability, occurring 

especially in forest fires, paves the way for wasting of resources, extinction of many 

living species, global warming, and greenhouse gas emission. Therefore, the studies 

mostly focused on developing detectors for smoke in open-air areas. 

By means of smart monitoring systems in major cities, it makes it possible to detect 

smoke with computer vision systems. However, these systems are not efficient for 

some environmental factors such as fog, dust, and clouds. One of the most challenging 

factors in detecting smoke in open-air areas is the presence of fog in the environment. 

Especially in recent years, largely populated cities have been affected by the formation 

of fog due to air pollution. In fact, fog and smoke can be detected separately from each 

other. While the smoke is usually concentrated in an area, the fog is more 

homogeneously spread around the environment. While smoke can be of various colors 

and densities depending on the type of flammable substance, fog is generally like a 

white tulle. Nevertheless, detecting smoke in foggy environments is a much more 

difficult problem than detecting both separately.   
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1.1 Motivation 

In classical smoke detection studies, color space-based approaches are often used in 

determining the smoky area in the image. In these studies, the features required for 

smoke detection are usually extracted manually. Nowadays, the success of classical 

image processing-based smoke detection studies has been left behind with the 

execution of artificial intelligence studies in this field. In artificial intelligence-based 

approaches, features can be automatically extracted with a series of filtering methods 

using deep learning-based models. However, obtaining higher results in systems based 

on deep learning requires a large number of examples to be trained. Notwithstanding, 

due to lacking dataset much deep learning-based smoke detection models are trained 

only in footage from optimum weather conditions. On the contrary, models that are 

not trained for harsh weather conditions like the foggy environment will not classify 

the smoke correctly.  

In this thesis, a method is proposed for the integration of the classical color space-

based approach with the modern deep learning approach to detect smoke in the foggy 

environment. Choosing the right color space has been an important parameter to 

increase performance. It has been noticed that there is a lack of literature studies in the 

field of deep learning approaches in smoke detection in different color spaces for real-

world conditions. It is also planned to overcome the lack of the dataset by creating 

artificial foggy images from smoky and normal images. After overcoming the lack of 

the dataset, classification using modern convolutional neural networks that sub-branch 

of deep learning is proposed. With the proposed method, it is aimed to detect smoke 

in the foggy environment with high accuracy. 

1.2 Thesis Organization 

Today, many successful methods have been proposed for image processing-based 

smoke detection systems. However, recent studies focus on artificial intelligence-

based approaches that allow machines to make decisions like humans. For establishing 

a base for this thesis, studies in the literature for computer vision-based smoke 

detection systems, color spaces and deep learning background information, smoke 

detection databases are given in Chapter 2. 
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In Chapter 3, is proposed methodology of this thesis, for this, dataset images are 

collected from literature database video sources. This dataset images are increased by 

adding artificial fog. After artificial fog is added, the data set is transformed into 

various color spaces in order to better detect smoke from images. Training sessions are 

carried out with modern deep learning architectures using this data set transformed 

into color spaces. In addition to these, the hardware equipment and software 

environments where the training sessions carrying out are explained. 

In Chapter 4, the results were obtained when the training sessions are finished. These 

results are schematized with various tables and graphics. Numerous modern deep 

learning models for smoke detection in foggy environments are trained in various color 

spaces. The models were compared with each other and the model with the highest 

accuracy and the lowest memory requirement is chosen as the proposed model. In 

addition, color spaces are compared with each other in terms of accuracy level. The 

results obtained are compared with other results in the literature. 

In Chapter 5, the general evaluation of the thesis, its conclusion and achievements that 

will shed light on future studies are described. 
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Chapter 2 

Background 

Smoke, due to its structure, does not have a fixed distinctive shape, can occur in any 

environment where there is air, its color changes with the type of flammable substance 

and can be transparent with the background color, and also it can be unclear in cloudy 

or foggy environments. By using this color-oriented characteristic of the smoke, 

studies were carried out to determine the places where the smoky regions in footages. 

In these studies, color space in which color is represented as a numerical value was 

also discussed [1]. 

Artificial intelligence means machines that perform the ascriptitious tasks to human 

beings by imitating human intelligence. In this way, people are prevented for spending 

time with their work, and both labor and time are saved. In subfields of artificial 

intelligence such as machine learning, images are processed, and features are extracted 

from them. The model is trained using these features, and by means of this model, an 

image is classified with a label. Using machine learning, classification studies on 

whether there is smoke in the image were made in the problems of detecting smoke 

from the image. In these studies color space based features were obtained from smoke 

images manually, have been used for classification by machines [2]. By editing fog, 

light, and noise of frames to adapt the problem more related to real-world conditions, 

studies were also carried out the detection of smoke based on machine learning [3]. 

In recent years, the success achieved with deep learning methods in classification 

exceeds the success point arrived at machine learning. Recent studies in the literature 

were focused on the use of the deep learning-based smoke detection [4]. The 

performance of different segmentation approaches based on deep learning-based 

smoke detection was investigated [5]. There are studies in the literature that increase 

the classification performance with regard to simple models by combining various 



5 

model features used as inputs to the networks. [6].  Studies were conducted on the 

effect of the deep learning-based color space approach on smoke detection [7, 8]. 

Additionally, there are studies in which smoke images in the used dataset are also 

created artificially. The performance of synthetic and contaminated smoke images 

with deep learning-based approaches was studied [9-12]. In particular, generator and 

discriminator based deep learning models used to generate new data, were used in 

smoke detection problems [13]. The size of the smoke in the footages can be small or 

large. Smaller smokes are more difficult to detect from the image than large ones. 

Studies were made to detect small-sized smoke with deep learning-based models under 

normal and harsh weather conditions [14]. Studies in which deep learning and machine 

learning used together were also conducted. The features obtained by deep learning 

were tested with machine learning classifiers [15]. Unmanned aerial vehicles were 

originally produced for monitoring purposes and were subsequently used for smoke 

detection and fire extinguishing purposes. Smoky images obtained from unmanned 

aerial vehicles were trained in different color spaces with deep learning and machine 

learning-based approaches [16]. Deep learning models can be applied in embedded 

systems for real time applications. Hence, studies on real-time smoke detection model 

deployed embedded system based on deep learning were implemented [17]. All these 

studies show that there are many approaches in the literature about smoke detection 

and these approaches can work integrated with each other. In brief, deep learning-

based studies are become more popular in recent years due they have been more 

successful. 

2.1 Color Spaces 

Color is the wavelength of light reflected from an object. While the light is reflected, 

it is partially absorbed, thus the colors are very diverse. By virtue of this diversity 

brought about the need to standardize the colors and display them. Color spaces are 

proposed to implement these standards in digital imaging with computer graphics. 

Color spaces are composed of channels. A color is formed by combining the values in 

these channels of space at a certain rate.  

 A lot of color spaces are proposed to apply color representation in various computer 

graphics applications [18]. The reason for the color space diversity is the perceptual 
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quality or technical characteristics of the color of the systems used to define the color. 

The perceptual quality of color defines how well the human perceives the color. The 

technical characteristic of the color defines the wavelength value of that color. By 

using these color spaces, the same color can be defined in different spaces.  RGB is a 

three-dimensional cartesian coordinate system, consists of the of red, green and blue 

color channels as shown in Figure 2.1.  

 

 

Figure 2.1: RGB color space and channels of an image [19] 

 

YUV color space, channels consist of luminance, blue-based chrominance and red-

based chrominance channels [20]. In the L⃰⃰⃰ A ⃰ B ⃰ color space, L⃰ corresponds to the 

luminance value, A ⃰corresponds to the color on the red-green axis, and B ⃰to the color 

on the blue-yellow axis [21]. Similarly, HSV is another color space composed of hue, 

saturation and value color channels [22]. Choosing the appropriate color space to 

emphasize the desired area in an image can significantly improve performance. From 

this emphasized area, the features that better define the problem can be extracted. 

Color spaces can be transformed into each other using various functions. This 

transformation is done due to the fact that the transmission between various devices 

used different color spaces or emphasizing the desired areas of the image. 
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2.2 Machine Learning 

Artificial intelligence-based systems show great progress with the increase of studies 

in this field. Especially in recent years, artificial intelligence supplies, better outcomes 

than even human experts [23]. Just as people benefit from their experience while doing 

a job, artificial intelligence also benefits from data. In this field it is aimed to find 

appropriate results to solve the problem by making use of statistical models and 

patterns among the data. Artificial intelligence hosts many sub-fields. These sub-fields 

are shown in Figure 2.2 and explained in the following headings. 

 

 

Figure 2.2: Artificial Intelligence sub-fields 

 

Machine learning is an approach for the estimation of action by performing 

mathematical operations on data. This approach is based on a machine model that can 

learn like humans and can be used to solve complex problems.  

Data is used in machine learning and splits in training, validation and test sets. The 

training set is used for model fitting, the validation set is used to tuning 

hyperparameters with unbiased evaluation, and the test set is used to calculate model 

performance. While learning like humans, the machine can create a function between 

the labelled input data and the labelled output data. This type of learning where both 

input and output are labelled is called supervised learning. Classification is one of the 
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types used to predict categorical data in supervised learning. In the classification 

problem, features are used to extract meaningful values from data. In an image dataset, 

these features can be brightness, contrast, histogram, vertices, and edges. In machine 

learning, the failure to extracting the features suitable for the problem or selecting 

appropriate learning parameters results in overfitting or underfitting. In general, an 

overfitting model has redundant parameters, while on the contrary, an underfitting 

model has a lack/wrong parameters chosen to generalize the problem [24].  

Classification is made on the test dataset with the weights obtained using train and 

validation datasets. Accuracy is used to determine the performance of the model as a 

result of the classification. On the other hand, the accuracy is not sufficient parameter 

to confirm the correctness of the model. According to the class distribution of the 

samples in the test dataset, it is necessary to clarify which prediction the model made 

for which class. The matrix that shows to what accurate the model classifies the test 

dataset consisting of samples of different classes is called a confusion matrix. 

One of the sub-branches of machine learning used today is the artificial neural 

networks (ANN) that aim to learn by imitating the working mechanism of the human 

brain. The human brain actually works with the principle that many neurons connected 

to each other with the help of axons and dendrites interact with their synapses and take 

action. The single layer neural network model is called the perceptron, and perceptrons 

have interconnected each other just like neurons via weight parameters. The weight 

parameter and the bias independent variable are used by the neural network to produce 

the correct output and they are also updated until the iteration is over. This process, in 

which weight and bias are updated with forward and backwardly in ANN, is called 

forward and backward propagation. The number of samples in forward and backward 

propagation at the same time is named as batch size. The first derivative-based gradient 

descent algorithm is often preferred for propagation algorithm [25]. The Stochastic 

Gradient Descent (SGD) algorithm, that uses the cost function over the gradient of a 

sample instead of all samples, is often preferred among these algorithms. 

In ANN, an iteration is called as epoch. At the end of the epoch, it is aimed to prevent 

false prediction and minimize the cost function. The activation function is applied to 

an input before it is transmitted to the output of ANN. Activation is a kind of threshold 

function that decides whether transmit to the output or not the value obtained from the 
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perceptron. If the activation function is not used, the function remains a one-degree 

linear polynomial. In this state, the activation function can not solve requiring multiple 

perceptrons complex real-world problems [26]. Rectified linear units (ReLU) and 

Sigmoid are generally preferred as the activation functions [27]. Softmax function, 

which is a kind of Sigmoid function, is used when classifying in multiple outputs. 

Figure 2.3 shows the mathematical model and thegraphs of these activation functions. 

In Figure 2.3, The ReLU function takes the value 0 for negative values and produces 

the same output between 0 and positive inputs. On the other hand, Sigmoid function 

produces between 0 and 1 as output. 

 

 
(a) 

 
(b) 

Figure 2.3: Activation functions, (a) ReLU, (b) Sigmoid 

 

An ANN consisting of a single perceptron is insufficient to solve non-linear problems. 

Perceptrons can be connected to each other in various ways, just like neurons. In order 

to solve ANN problems such as exclusive-or perceptrons should be placed in 

successive layers [28]. Models consisting of more than one perceptron in many layers 

named as multi-layer perceptron are used for solving more complicated problems.  

If there is more than one layer including perceptrons between the input layer and the 

output layer in an ANN, it is called a deep neural network. It is the presence of more 

than one hidden layer between the input and output layers that differences a deep 

neural network from an ANN. Training using multilayer ANN is called deep learning. 

Deep learning actually has been found in theory long before, it has recently become 

popular with the massive increase in processor capacity and the amount of data. By 

using deep learning, applications were developed for our daily life without human 
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intervention in areas such as translators, autonomous vehicles, disease diagnosis, 

object detection, face recognition, chatbots, search engines, marketing 

recommendations, elderly and disabled people assistant services, robotic technologies 

and the entertainment sector [29]. 

2.3 Convolutional Neural Network 

Today, as the amount of visual data increases, the need to extract meaningful features 

from this data has emerged. With a convolutional neural network (CNN) model, 

accessing this meaningful information is not possible with a smaller number of 

perceptrons. At this point, CNN has been proposed to obtain the features by using 

visual data [30]. CNN is a kind of deep learning algorithm based on ANN and mostly 

used in computer vision, object detection, image processing and classification fields 

[31]. In CNN there is not used exact feature extraction. The model learns to do feature 

extraction properly via convolutional layers. The main reason why CNN has become 

popular in recent years is the development of computing resource hardware equipment, 

especially in graphical process units (GPU), and image processing fields related to 

image filters. With these developments over the years, CNN is used in image and video 

classification by using its many layers. 

2.3.1 CNN Layers 

The data to be used as input should be arranged with processing methods in order to 

ensure stability before beginning the convolution process. This arrangement may 

include the steps like the fixing of the image/video sizes. A classic CNN consists of 

several sequential convolutional layers and pooling layers. At the end of the 

convolutional and pooling layers, features are obtained. The achieved features are 

transmitted to the flattening and connected layers. At the last stage, the Softmax 

activation layer takes place, and the classification is made as a result of this layer. This 

general architecture of CNN is shown in Figure 2.4. 
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Figure 2.4: General architecture of CNN 

 

2.3.1.1 Convolution Layer 

Convolution is originally a mathematical operation, it is used to extract meaningful 

features from the image by applying filters. In the CNN algorithm, the convolution is 

the most important structure, and it is used to extract appropriate features to the 

problem from an input matrix (this matrix can be video or photo) according to the 

solution of the problem. While creating CNN architectures, arranged at the entrance 

layer is generally the convolution layer. In the convolution layer, various filters are 

applied to extract the low and high-level features in the image, such as detecting the 

edges of the image, removing the noise in the image. These filters can also be placed 

consecutively, depending on the type of features [32]. In the convolution process, the 

symmetry of the filter with respect to the x and y-axis is taken and applied to the two-

dimensional input matrix. All values in the filter are multiplied by the corresponding 

element in the input matrix, and the sum of all multiplied values is assigned as the 

corresponding element of the output matrix. This operation is shown in Figure 2.5. 
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Figure 2.5: Convolution operation 

 

The filters are operated on the all-input image with shifts over. A number of pixels can 

also be skipped while shifting over. This skipping is called as stride. The output matrix 

in other words output image or feature map, shrinks after the convolution operation 

according to the input matrix size. A sample image and convolved features of the 

image are shown in Figure 2.6. 

 

 
(a) 

 
(b) 

Figure 2.6: Convolution on an image, (a) Original image [19], (b) Selected features 
of the original image convoluted with 4 different filters 

 

Pixels are added to the output matrix to prevent this shrinkage. This adding called as 

padding, zeros are added from all four sides of frame. Output matrix size 𝑚 is found 

by: 

 𝑚 = '
𝑛 + 2𝑝 − 𝑓

𝑠 + 10 (2.1) 
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Here, 𝑝 is the pixel size padded to input matrix, 𝑠 is the stride number, the input matrix 

size is 𝑛 and the filter matrix size is 𝑓, is applied to detect 𝑚 via floor function. 

At the end of the convolution layers there are usually ReLU activation functions. These 

functions, used to speed up learning in the network, transform the feature map from 

linear to the non-linear input function.  

2.3.1.2 Pooling Layer 

Following the convolution layer generally the pooling layer is used. The pooling layer 

significantly decreases the number of parameters in the network. As the matrix size 

decreases, the loss of matrix information increases, whereas the learning speed 

increases. Pooling layer paves the way for less calculation operations in the next layers 

due to this shrinkage of the matrix and prevents the system from overfitting. In the 

pooling layer, maximum and average filters are generally used for matrix shrinkage.  

These filters can be in a fixed form specific to the architecture or selected according 

to the requirement of the problem. Pooling filters can be operated on the input image 

with strides just as in the convolutional filters. The size of the network can be further 

reduced with the preferred pooling layers along with the strides. Due to this feature, 

the pooling layer is also called the down-sampling layer. Figure 2.7 shows the 

application of average and maximum (2,2) pooling layers with (2,2) stride. 
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Figure 2.7: Maximum and average pooling with 2x2 filters and (2x2) stride 
 

2.3.1.3 Batch Normalization 

Batch normalization is used for scaling the layer values between 0 and 1. By 

normalizing the layers in this way, the performance of CNN increases. By means of 

this normalization process with batch normalization, the vanishing gradients that 

occurred during training in CNN are largely prevented. In terms of the machine 

learning evaluation, better performance can be achieved with less number of epochs 

by using batch normalization layers [33]. 

2.3.1.4 Dropout Layer 

Dropout layer avoids overfitting by ignoring parameters with certain rate between 0 to 

1. It is assumed that the removal of some connections within the network parameters 

will improve training performance. When training is carried out in networks with very 

large structures, this layer allows to randomly eliminate the connection between 

perceptron in certain rate. This layer is usually placed between connected layers  [34]. 

Connected layer net and dropout operation to it are shown in Figure 2.8. By applying 

dropout operation, one of the 3 perceptrons in the left layer and half of the perceptrons 

in the middle layer are closed. 
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(a) 

 
(b) 

Figure 2.8: Connected layers, (a) Fully connected layer, (b) Dropout operation  

 

2.3.1.5 Connected Layer 

After the convolutional and pooling layers, flattening layer is placed in CNN 

architecture. Flattening layer is used in changing matrix shape before the connected 

layers. By means of the flattening layer, the input matrix of connected layers resizes 

to one-dimensional array. This operation can be seen in Figure 2.9.  

 

 

Figure 2.9: Flattening operation 

  

The fully connected layer following the flattening layer, is operated for connecting all 

the inputs to all neurons. The operations performed in fully connected layers are 

similar to the calculations performed in the multilayer ANN. The architecture is 

completed with building these fully connected layers ending with activation function. 
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For classification problems, Softmax function is used to make a decision for the best 

option of multi output that has the highest probability.  

2.3.2 CNN Architecture Models 

In CNN, models compete with each other every year to obtain better results in visual 

object detection and classification. The ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) is one of the annual computer vision competition [35]. Since 

2012, the minimum error rate in this challenge has been taken by using CNN-based 

systems [36]. The ImageNet dataset has 14 million images with 1000 classes in RGB 

channels. Therefore, models that achieve high results in this challenge are known as 

models that have proven their success. In this way, models are frequently preferred in 

classification problems in different datasets. Below, models with proven success in the 

challenge and used in this thesis will be described. 

2.3.2.1 VGG 

Visual Geometry Group (VGG) model won 1st and 2nd place with its VGG 16 network 

on the classification and detection categories respectively in the 2014 ILSVRC 

challenge [37]. This model was accomplished 92,7% top-5 test accuracy on the 

ImageNet dataset. Generally, this model shows that using more filters of smaller 

matrix size involves fewer parameters than using a single large size filter. In this 

context, the same performance can be obtained with fewer parameters when small size 

convolution filters are used in succession. The difference that distinguishes this model 

from the previous literature models is that the pooling layer places after the double-

triple (quadruple for VGG 19) mini-size convolutional layers [37]. VGG 16 and VGG 

19 architectures of the models can be seen in Figure 2.10. 
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(a) 

 
(b) 

Figure 2.10: VGG model architectures, (a) VGG 16, (b) VGG 19 
 

2.3.2.2 Inception V3 

The Inception V3 Model is not a very deep but a broader focused CNN model. In an 

Inception model, many mini-network modules are built within the main network. 

Multiple convolution filters of different sizes are carried out together in the layer and 

the results obtained from these filters are concatenated. In the Inception V3 model, the 

number of filters and layers is increased, and also the convolutional filter size is 

reduced and enriched with batch normalization and fully connected layers. The 

Inception V3 model thus accomplished lower error rate success in the ImageNet 

dataset than the VGG model [38]. The architecture of this model is shown in Figure 

2.11. 
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Figure 2.11: Inception V3 model architecture 

  

2.3.2.3 Inception ResNetV2 

As the number of CNN layers are increased (especially after about 20 layers), it occurs 

the problem of vanishing gradients. In this model, the problem is largely solved by 

assigning a shortcut path to each layer’s input and output. By means of this method 

called Residual Networks (ResNet), the lowest error rate on the ImageNet dataset was 

reduced by using 152 layers [39]. The Inception-Resnet Model was created by 

combining the depth-based approach of the ResNet Model and the broad-based 

approach of the Inception Model. The Inception-ResNet Model includes the Inception- 

ResNetV1 and Inception-ResNetV2 models, whose general scheme is the same. Using 

the Inception-ResNetV2 model, a lower error rate was obtained on the ImageNet 

dataset than the InceptionV3 model [40]. Inception-ResNetV2 model architecture can 

be seen in Figure 2.12. 
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Figure 2.12: Inception-ResNetV2 model architecture 
 

2.3.2.4 Xception 

Xception is a model proposed to evolve the Inception V3 model result. The most 

important factor in achievements compared to the Inception based models is in the 

convolutional layer differences. Unlike the conventional convolution layers in the 

Inception model, depth-wise convolution and pointwise convolution processes are 

applied in this model. The number of multiplications and therefore the computing cost 
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in classical convolution processes is quite high. When depth-wise and pointwise 

convolution are used together named as separable convolution operation, the number 

of multiplications decreases considerably. Thus, the Xception model was obtained 

better performance on the ImageNet dataset with the same number of parameters as 

for the Inception V3 model, since the parameters were used effectively [41]. The 

Xception model architecture is shown in Figure 2.13. 

 

 

Figure 2.13: Xception model architecture 

 

2.3.2.5 Densely Connected Networks 

Studies in the field of CNN show that short-cuts between the entrance layers and the 

layers near to the output layers like in ResNet make the training more successful [42]. 

In the DenseNet approach, a difference from the ResNet approach, all layers in the 

Dense blocks transmit the features they extract to the next layer as input. Thus, while 

solving the problem of vanishing gradients occurring in deep CNN models, the 

features are reused. DenseNet model consists of dense blocks and between they 

include convolution and pooling layers called transition layers. By means of transition 

layers, feature maps are diversified, and their sizes are adjusted. The DenseNet 
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architecture consists of models such as DenseNet 169 and DenseNet 201 according to 

the number of convolution and pooling layers. The default memory space and the 

number of parameters vary between these two DenseNet models [43]. DenseNet 169 

and DenseNet 201 architectures of the models can be seen in Figure 2.14. 

 

 
(a) 

 
(b) 

Figure 2.14: Dense model architectures (a) DenseNet 169, (b) DenseNet 201 

 

2.3.2.5 MobileNetV2 

In recent years, studies in the field of CNN have been directed to compose architectures 

with low parameters that will work effectively on mobile devices. MobileNetV2 

architecture developed for this purpose consists of bottleneck residual blocks [44]. In 

bottleneck residual blocks, the amount of data flowing over the network is reduced 

with residual connection. In these blocks the ReLU6 function is used as the activation 

function, very similar to ReLU, but limits the activation to a maximum size of 6.  The 

mathematical model of ReLU6 and its graphs are shown in Figure 2.15. 
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Figure 2.15: Exclusive ReLU6 activation function used in MobileNetV2  

 

In these blocks, depth-wise and pointwise convolution processes are applied just like 

in the Xception architecture. However here there are two types of pointwise 

convolution processes as expansion and projection.  

Expansion process is made on entrance of blocks and transmits data with a low number 

of dimensions (channels) into a tensor with a much higher number of dimensions. On 

the other hand, projection process has fewer output channels than input channels and 

places in exit of blocks. The factor in the expansion and projection operations is 

selected as 1 or 6. There is no pooling layer between the expansion and projection 

processes, instead stride value is selected as 2 to reduce the data size. Batch 

normalization is applied after every layer. Bottleneck blocks used in MobileNetV2 

architecture are shown in Figure 2.16. 

 

 

Figure 2.16: MobileNetV2 bottleneck blocks 
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By means of Figure 2.16, the MobileNetV2 architecture created using bottleneck 

blocks is shown in Figure 2.17. 

 

 

Figure 2.17: MobileNetV2 model architecture 

 

2.4 Smoky and Normal Images Databases 

Many studies were conducted in the literature for forest fire smoke detection 

implementations on computer vision-based systems. Some of these studies also keep 

the video sources they use as a database on the internet. By editing on databases created 

by academic institutions in various areas of the world were used as datasets. These 

databases, described below, are open source and obtained from various parts of the 

world using different smoke sources. Smoke generated places are mostly in outdoor 

environments. In addition, normal videos mostly consist of outdoor footage. The use 

of many databases has enabled the acquisition of footage in different environments. 

2.4.1 Center for Wildfire Research Database 

The smoke detection task is handled in this database image and video frame based. 

This database is collected from wildfire smoke sequences. In this database, the 

segmentation areas where the smoke area is detected for the whole image are also 

highlighted [45].  
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2.4.2 VisiFire Database 

In this study, fire, smoke, forest smoke and normal video clips were used. In addition 

to detection with coding screen, Closed Circuit Television (CCTV) integrated 

graphical-user-interfaced software was developed [46]. 

2.4.3 Firesense Database 

Firesense database consists of 13 smoky and 9 normal videos. This database is also 

subproject of the Projection of Cultural Heritage Areas from the Risk of Fire and 

Extreme Weather [19]. 

2.4.4 MIVIA Smoke Database 

This database obtained in July 2012 and composed of 149 videos totally 35 hours 

recording. Some of these videos are include such as cloudy landscape without smoke, 

sun reflection and low luminance footage  [47]. 

2.4.5 Wildfire Smoke Detection Database 

This database of project is a part of the “Adaptive Systems for Environmental 

Monitoring” initiative. The database contains smoky and normal real and synthetic 

frame sequences [48]. 

2.4.6 Other Online Video Databases 

There are many online video database websites on the Internet platform. Pond5 

platform is New York based media company and includes stock music, video, and 

photography footage [49]. This platform is a kind of marketplace for commercial 

content producer comprises high-quality video with various tags. The other platform 

is HDNatureFootage that provides high-definition wildlife and nature stock video 

footage [50]. These platforms contain videos that do not contain smoke images. The 

reason for using HDNatureFootage and Pond5 is that normal video content is limited 

in academic databases. 
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2.4.7 Analysis of Database Footages 

Since the videos in each database were recorded with different hardware products, they 

include videos of different resolutions. Utilizing videos of different resolutions allows 

the detection of smoke captured from different video sources. In this way, the trained 

model can classify the smoky images of video from different resolutions. Low- and 

high-resolution images of video can be examined from Figure 2.18. 

 

 
(a) 

 
(b) 

Figure 2.18: Different resolution smoky images of video, (a) Low [19], (b) High [48] 
 

Having different colors of smoke in the videos accessed from databases is also an 

important parameter. The fact that the smoke in all images is the same color makes 

classification easier. Since the substance burning in real life cannot be chosen, different 

colored smokes will be emitted. Different colored smoke image of video samples in 

the databases can be seen in Figure 2.19.  
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(a) 

 
(b) 

Figure 2.19: Different colored smoke images, (a) Darkly [46], (b) Whitely [19] 

 

The different locations of the smoke area in the images can significantly improve 

training success. Searching for smoke in the same place in all images can be modelled 

as if smoke could only occur there. This results in wrong modelling. Examples of 

smoky images located in different places of video are shown in Figure 2.20. 

 

 
(a) 

 
(b) 

Figure 2.20: Smoky images located in different places, (a) Left [19], (b) Right [47] 

 

The distance of the smoke in the video images from the footage area is also important 

in the detection of the smoke. In real life, it is impossible to have large numbers of 

equipment capable of footage in the forest with very short distances. For this reason, 

the smoke area in the images should not be too close to the area where the footage was 

taken. On the other hand, the detection of smoke from a very long distance also means 
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that a very long time passed since the fire started. In this situation the smoke already 

ascending overly and can be seen even from the shooting area. Actually, this situation 

shows us that it is late in classification. Therefore, in order to provide real-world 

conditions, both the smoke images are taken from a short and long distance takes place 

together. Images of video that smoke occurred in different distances are shown in 

Figure 2.21. 

 

 
(a) 

 
(b) 

Figure 2.21: Smoke footage from different distances, (a) Short [19], (b) Long [45] 
 

Due to smoke structure, it can be confused with clouds. This may result in a false alarm 

in the classification. Therefore, both images containing smoke in cloudy environments 

and the images containing cloudy environments without smoke include in the dataset. 

Selected images of video in cloudy environment are given in Figure 2.22. 

 

 
(a) 

 
(b) 

Figure 2.22: Cloudy images, (a) Smoky [48], (b) Normal [19] 
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Sunlight may be reflected on the camera that capturing the footage using for smoke 

detection. The image is created by the camera due to the reflection of sunlight can be 

confused with the fire. Therefore, to make the correct classification by the model even 

under this condition, the dataset includes the shots containing such images. Sunlight 

reflected images in the dataset can be seen in Figure 2.23. 

 

 
(a) 

 
(b) 

Figure 2.23: Sunlight reflected images, (a) Smoky [47], (b) Normal [47] 

 

Close and far shot footage without smoke are also included in the database as shown 

in Figure 2.24. Attention was paid to the fact that without smoke images are taken from 

the environment similar to those containing smoke. 

 

 
(a) 

 
(b) 

Figure 2.24: Normal footages, (a) Close [49], (b) Far [50]  
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Chapter 3 

Methodology 

There are many databases for smoke detection as mentioned in Chapter 2, but these 

databases do not supply the literature with foggy footage. Considering that deep 

learning-based studies need a lot of data to be able to model correctly, the first process 

in this Chapter was to create the dataset. Then, color spaces were used to make the 

perceptibility of smoke and fog more apparent in this dataset. After the dataset 

operations were completed, the stages of the deep learning model modifications align 

with the dataset were implemented. This chapter consists of three sections, in which 

dataset operations, model modifications, hardware equipment and software 

environmens. 

3.1 Dataset Operations 

In this section, the operations of the dataset are explained. These steps include the 

preparing dataset, the addition of artificial fog into the dataset, the color space 

transformations of the foggy images, and the pre-processing of dataset.  

3.1.1 Preparing Dataset 

In this preparation, firstly, the databases described in Chapter 2 have been accessed 

and downloaded. After obtaining videos from databases to detect smoke in various 

conditions, the stage of splitting the videos into images was implemented. Dataset 

using in this project is acquired with these images split from the videos.  

While preparing dataset, a total of 188 videos consisting of 94 normal videos and 94 

smoky videos were used. These videos consisted of different durations and different 
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number of frames per second (FPS). For this reason, the number of images obtained 

from videos is not equal. Homogenizing the dataset and using a close number of 

images from each video makes modelling more successful as it increases the 

possibility of training more diverse images. The number of images 𝛾 splitting from a 

video can be found by, 

 𝜉 = 𝛿 × 𝛽 (3.1) 

 𝛾 =
ξ
𝜆!,#

 (3.2) 

Here, 𝛿 is the duration seconds of the video, 𝛽 is the FPS, 𝜉 is the total frame of the 

video,  𝜆 is the constant number assigned by each smoke labelled video for 𝜆! and each 

normal labelled video for 𝜆#. 

In the study, to obtain a close number of images with the studies in the literature 𝜆! 

and 𝜆# are chosen as 197 and 182 respectively [51]. After the Equation 3.2 can be 

detected the 𝛾 number. The first frame of each video is taken and saved, then the next 

frame is saved as an image, skipping with γ number of frames. This process is repeated 

until the last frame of the video. Thus, approximately close number of images are 

obtained from each video. This process is repeated for 188 videos and the saved images 

are divided into folders as “smoky” and “normal” according to their labels. The dataset 

created by splitting videos into images is shown in Table 3.1. 
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Table 3.1 Dataset prepared by splitting videos into images 

No. 
Video 

Name 

Video 

Label 
𝛿 𝛽 

Video 

Resolution 
𝜉 𝛾 

Obtained 

Images 

1 3-20… Smoky 301 25 292*240 7525 38,19 198 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

106 3-20… Normal 901 8,3 292*240 7508 41,25 183 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

154 test… Smoky 109 4,69 320*240 511 2,59 257 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

167 test… Normal 10 25 352*288 250 1 250 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

177 smok… Smoky 240 50 1200*676 12000 60,91 76 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

188 V10… Normal 17 29,97 640*360 510 2,79 256 

 

As shown in Table 3.1, a total of 36110 images were acquired using these 188 smoky 

and normal labelled videos. These 36110 images were used as the dataset. The dataset 

obtained from databases is shown in Table 3.2. 
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Table 3.2 Collected images 

Source Video Address 
Obtained 

Images 

[45] http://wildfire.fesb.hr 718 

[46] http://signal.ee.bilkent.edu.tr/VisiFire 1773 

[19] https://zenodo.org/record/836749#.XrFiavkzZEY 5255 

[47] https://mivia.unisa.it/datasets/video-analysis-datasets/smoke-

detection-dataset/ 

24621 

[48] 

[49] 

[50] 

https://homes.di.unimi.it/genovese/wild/wildfire.htm 

https://www.pond5.com 

http://www.hdnaturefootage.net 

3743 

 Total 36110 

 

3.1.2 Adding Artificial Fog into Images 

The obtained 36110 images may contain sufficient information to detect smoke in 

normal weather conditions. However, in this situation, the dataset does not contain 

sufficient data to detect smoke in harsh weather conditions. The fog is an important 

parameter in the detection in outdoor environments due to confusion with smoke. 

Thus, the fog parameter was chosen to increase the alignment with real world condition 

of the smoke detection problem in this study. Fog can severely limit vision on long 

distances. In addition, the distinctiveness of colors also deteriorates in foggy 

environments. From this point, the fog significantly changes the brightness of the 

colors. Therefore, in the study, the fog was added artificially by changing the 

brightness value of all the images in the dataset. 
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In each channel of RGB color space, images have possible values ranging in 8-bit 

unsigned format from 0 to 255. As closer the pixel brightness value of the image to 

255 in all channels, whiter image is obtained. Therefore, by increasing the brightness 

value of the image in 3 channels, it can be seen as if the image was taken from foggy 

environment footage.  

Fog is added to the images as described below. In an image, assuming that 𝛺 

corresponds to highest brightness value of the pixels in each color channel, 𝛺 can be 

found as follows. 

 𝛺 = 𝑎𝑟𝑔	𝑚𝑎𝑥	(𝐼$,%,&(𝑝)'×)) (3.3) 

Here, 𝐼$,%,& corresponds to an 8-bit 3-channel input image, 𝑝 is the pixel, 𝑚 and 𝑛 are 

value of row and column respectively. Then, 𝐼*+,-.) is obtained by increasing the 

brightness value. 

 𝐼*+,-.) =	 𝐼$,%,& 	+ 	100 (3.4) 

Where, 𝐼*+,-.) is an intermediate image formed by adding 100 brightness values to 

pixels of 𝐼$,%,&. Again, 𝜙 corresponds to the the highest brightness value of the pixels 

in each color channel of  𝐼*+,-.)	can be reached as follows. 

 𝜙	 = 	𝑎𝑟𝑔	𝑚𝑎𝑥	(𝐼*+,-.)(𝑝)'×)) (3.5) 

By multiplying all the pixels in 𝐼*+,-.) with the /
0

 value, the 𝐼12334 output image is 

obtained. Afterwards, the result obtained is converted into an integer using the floor 

function. 

	 𝐼12334 =	 '𝐼*+,-.)	´	
𝛺
𝜙	0 (3.6) 

After this multiplication, in order to limit 𝐼12334 in 8-bit range thresholding operation 

is done.  
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	 𝐼12334(𝑝)'×) =	 ?
𝑝, 𝑓𝑜𝑟	𝑝 ≤ 255
255 𝑓𝑜𝑟	𝑝 > 255E		 (3.7) 

Hence, an 𝐼12334 3-channel 8-bit image is obtained from an 𝐼$,%,& 3-channel 8-bit 

image. 

The artificial fog was added to each of the 36110 images using in Equation 3.3 to 3.7. 

With the addition of artificial fog, the dataset consisting of 36110 images with 2 labels 

has been increased to 72220 images with 4 labels. Thus, “foggy-smoky” labelled 

images were created by adding fog to “smoky” labelled images, and “foggy” labelled 

images were also created by adding fog to “normal” labelled images. In this project, 

this dataset consisting of 72220 images and 4 labels was used in the deep learning 

stages. 

Selected images and after applying adding fog of these can be seen from Figure 3.1, 

3.2, 3,3, and 3.4. The fog in the images causes a loss of details generally. According 

to Figure 3.1(a) and 3.1(b), it has been found that the fog causes the dark-colored 

smoke to appear lighter in color.  

 

 
(a) 

 
(b) 

Figure 3.1: Black colored smoky images labeled as, (a) Smoky [46], (b) Foggy-

smoky 

 

Especially in Figure 3.2(a) and 3.2(b) areas with white colored smoke, the fog 

decreases the sharpness of the smoke.  
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 (a) 

 
(b) 

Figure 3.2: White colored smoky images labeled as, (a) Smoky [19], (b) Foggy-

smoky 

 

It has been noticed from Figure 3.3(a) and 3.3(b) that unless the smoke is very dense, 

it can be confused with fog, especially at long distances.  

 

 
(a) 

 
(b) 

Figure 3.3: Long distances smoky images labeled as, (a) Smoky [47], (b) Foggy-

smoky 

 

It has been noticed that also foggy labeled images can be confused with normal, and 

smoky labeled images in general. When fog is added to the images, the vividness of 

the colors has decreased. The dataset with the fog is added, increases the difficulty of 
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detection significantly. Thus, the possibility of confusing foggy labeled images and 

smoke labeled images with each other has increased considerably. Selected sample 

images can be seen in Figure 3.4. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3.4: Selected normal images labeled as, (a [46],c [50],e [19]) Normal, (b,d,e) 
Foggy 
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The addition of fog is achieved by changing the brightness value of the image. To 

differentiate smoke from fog, research has been done on a parameter that is less 

affected by the fog brightness. It has been suggested that fog and smoke can be 

detected more easily by visualizing in different color spaces instead of RGB color 

space. 

3.1.3 Color Space Transformations 

When an image is read in digital media, it is mostly expressed in RGB color space. 

Although this color space is popular because it can easily distinguish 3 channels from 

each other, it does not always produce the most appropriate result for visualization. 

Depending on the visualization, different color spaces can be proposed. 

Color spaces and their transformations can be various. This variety is mostly 

determined by concerning bit-range of the output matrix. In this thesis, both the input 

image and the output image are selected in 8-bit range. Therefore, at the end of the 

applied color space transformation, thresholding processes have been carried out to 

ensure that the output image is within this 8-bit range. 

Images in the default RGB color space is transformed into YUV, L⃰⃰⃰ A ⃰B⃰, and HSV 

color spaces in order to distinguish better fog and smoke. It is aimed to extract the 

features that will make detection more successful with deep learning architectures by 

transforming the color space. Although there are many color space conversion methods 

that have been made, one of the most frequently used transformation methods has been 

chosen in this thesis.  

The OpenCV library [52] mostly preferred in the literature was used in color space 

transformation and thresholding operations [20]. The operations in this library are 

based on previous studies in the literature [53, 54]. The formulas for transformation 

from RGB to YUV color space in this thesis is shown below. 

  Ɣ = 0,299 × 𝑅 + 0,587 × 𝐺 + 0,114 × 𝐵  

 𝑈 = (𝑅 − Ɣ) × 0,713 + 128 (3.7) 
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 𝑣 = (𝐵 − Ɣ) × 0,564 + 128  

Here Ɣ,	𝑈, and 𝑣 correspond to each channel of the YUV 3-channel output image. 128 

value is added so that the output image is in the 8-bit range like in RGB.  

The formulas for transformation from RGB to L⃰⃰⃰ A ⃰B⃰ color space is shown below. 

 R
𝑋
𝑌
𝑍
V ← R

0,412453 0,357580 0,180423
0,212671 0,715160 0,072169
0,019334 0,119193 0,950227

V × R
𝑅
𝐺
𝐵
V 

(3.8) 

 

𝑋 ← 𝑋 ÷ 𝑋), where 𝑋) = 0,950456 

𝑍 ← 𝑍 ÷ 𝑍), where 𝑍) = 1,088754 

𝑓(𝑡) = ? √𝑡! 																																		𝑓𝑜𝑟	𝑡 > 0,008856		
				7,787𝑡 + 0,137931		𝑓𝑜𝑟	𝑡 ≤ 0,008856						

E 

 L⃰⃰⃰		 = \ 116 × √𝑌! − 16							𝑓𝑜𝑟	𝑌 > 0,008856		
				903,3 × 𝑌																	𝑓𝑜𝑟	𝑌 ≤ 0,008856						

] 

 A ⃰			 = 500_𝑓(𝑋) − 𝑓(𝑌)` + 128 

 B ⃰	 = 200_𝑓(𝑌) − 𝑓(𝑍)` + 128 

In this OpenCV based transformation, temporary variables 𝑋, 𝑌, 𝑍, and 𝑓(𝑡) function 

are used. Here L⃰⃰⃰, A,⃰ and B ⃰correspond to each channel of the L⃰⃰⃰ A ⃰B ⃰3-channel output 

image. 

Here, the output range is between 0 ≤ L⃰⃰⃰			 ≤ 100, −127 ≤ A ⃰		 ≤ 127, −127 ≤ B ⃰			 ≤

127. As can be seen, the values found here are not in the unsigned 8-bit range. 

Therefore, to output image fit in the 8-bit range, each channel of the L⃰⃰⃰ A ⃰B⃰ is calculated 

as: 

L⃰⃰⃰		 = L⃰⃰⃰		 × 255 ÷ 100, A ⃰	 = A ⃰	 + 128, B ⃰			 = B ⃰	 + 128.  

Hence, it is completed the conversion from RGB to 3-channel 8-bit L⃰⃰⃰ A ⃰B⃰ image. 
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On the other hand, the formulas for transformation from RGB to HSV color space is 

considered below. 

 𝑉 = max	(𝑅, 𝐺, 𝐵) 

(3.9) 

 𝑆 = h
𝑉 −𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)

𝑉 							 , 𝑖𝑓	𝑉 ≠ 0

				0																																						, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
n 

 𝐻 =

⎩
⎪⎪
⎨

⎪⎪
⎧

60(𝐺 − 𝐵)
_𝑉 −min	(𝑅, 𝐺, 𝐵)`

			 , 𝑖𝑓	𝑉 = 𝑅

120 + 60(𝐵 − 𝑅)
(𝑉 − min(𝑅, 𝐺, 𝐵))

				 , 𝑖𝑓	𝑉 = 𝐺

240 + 60(𝑅 − 𝐺)
(𝑉 − min(𝑅, 𝐺, 𝐵))				 , 𝑖𝑓	𝑉 = 𝐵⎭

⎪⎪
⎬

⎪⎪
⎫

 

Here 𝐻,	𝑆, and 𝑉 correspond to each channel of the HSV 3-channel output image.  

In this point, where if 𝐻 < 0 then 𝐻 = 𝐻 + 360.  

On output are 0 ≤ 𝑉 ≤ 1, 0 ≤ 𝑆 ≤ 1, 0 ≤ 𝐻 ≤ 360.  As can be seen, the values range 

is not fit in 8-bit range. To fix this: 

 𝑉 = 𝑉 × 255, 𝑆 = 𝑆 × 255, 𝐻 = 𝐻 ÷ 2. 

Hence, it is completed the conversion from RGB to 3-channel 8-bit HSV image. 

3.1.3.1 Comparison of Color Spaces 

After the thresholding processes with the transformation from RGB to three other color 

spaces as described, the equivalents of the same images in different color spaces were 

examined. For this examination, sample images taken from images in RGB color space 

are presented in Figure 3.5. Smoke areas in images are marked with yellow to make 

the difference between images of different color spaces more clearly visible. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.5: RGB color space, (a) Smoky labeled [47], (b) Foggy-smoky labeled, (c) 
Normal labeled [19], (d) Foggy labeled images  

 

The representations of YUV, L⃰⃰⃰ A ⃰B⃰, and HSV color spaces in RGB color space are 

shown in Figure 3.6, 3.7, 3.8 respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.6: YUV color space, (a) Smoky labeled, (b) Foggy-smoky labeled, (c) 
Normal labeled, (d) Foggy labeled images  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.7: L⃰⃰⃰ A ⃰B ⃰  color space, (a) Smoky labeled, (b) Foggy-smoky labeled, (c) 
Normal labeled, (d) Foggy labeled images  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.8: HSV color space, (a) Smoky labeled, (b) Foggy-smoky labeled, (c) 
Normal labeled, (d) Foggy labeled images  

 

When the images given in Figure 3.6 to 3.8 were examined, it was highlighted that the 

smoky area marked with the yellow circle and the fog detection entire image were in 

the clearest HSV color space. Therefore, the images of the HSV color space in each 

color channel were examined separately in Figure 3.9 to 3.11. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.9: HSV color space H-Channel, (a) Smoky labeled, (b) Foggy-smoky 
labeled, (c) Normal labeled, (d) Foggy labeled 

 

 

 

 

 

 



45 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.10: HSV color space S-Channel, (a) Smoky labeled, (b) Foggy-smoky 
labeled, (c) Normal labeled, (d) Foggy labeled 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.11: HSV color space V-Channel, (a) Smoky labeled, (b) Foggy-smoky 
labeled, (c) Normal labeled, (d) Foggy labeled 

 

As can be seen from Figures 3.9 to 3.11, it was determined that the H color channel is 

more successful in detecting the smoke area, while the S and V channels are more 

successful in detecting the foggy images.  

Especially in the S color channel, smoky and normal labeled images appear much 

brighter. This brightness affects the overall histogram of the image. The histogram of 

the images in Figure 3.10 are shown in Figure 3.12.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.12: Histogram of S-Channel Images, (a) Figure 3.10a, (b) Figure 3.10b, (c) 
Figure 3.10c, (d) Figure 3.10d 

  

Adding fog to the image reduces the average histogram value of the S-Channel of the 

image by 30 to 40 as can be seen from Figure 3.12. In addition, the values between the 

mean value and maximum values in the histogram graph, marked with purple, 

vanished considerably. It facilitates the detection of fog in images by means of the S-

channel of the HSV color space. 

3.1.4 Dataset Preprocessing 

In this thesis, to fairly comparison, previously used data split rates in the literature are 

used [55]. 20% of the whole dataset is reserved for training, 30% for validation, and 

50% for testing. Images representing numbers of training, validation, and testing data 

visualized in Figure 3.13. 
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Figure 3.13: The graph of number of training, validation and testing images 

 

The other pre-training process on dataset, training and validation images are resized in 

alignment with the model entrance. In this way, all these images with different sizes 

in their original form are brought to a specific width and height value. These width and 

height values are selected as 224x224 or 299x299 depending on the type of model 

used. In addition, one hot encoding method has been used in order to make a 

classification of categorically labeled images.  

3.2 Model Modifications 

After the dataset operations, model modifications are carried out. Model modifications 

have been implemented for architectures VGG 16, VGG 19, Inception V3, Inception-

ResNetV2, Xception, DenseNet169, DenseNet201, and MobileNetV2.  Originally, 

these architectures were built to classify the 1000-labeled Imagenet dataset. In this 

thesis, instead of the Softmax layer used to classify 1000-labeled Softmax layers in the 

output of these architectures, 4-labeled Softmax layers are used for the classification 

images with labels of Smoky, Foggy-smoky, Normal and Foggy. The revision in the 

Softmax layer of the architectural model is shown in Figure 3.14. 
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Figure 3.14: Model with 4-labeled Softmax layer 

 

While training on the architectural model, the SGD algorithm was used to update the 

parameters iteratively by minimizing the cost function. In SGD, the training is faster 

because random batches in the dataset are used instead of the whole dataset. By means 

of a fixed learning rate, the minimum cost function can be reached with random 

batches. In this thesis, while in training section for all architectural models, SGD 

algorithm learning rate value is chosen as 0,001. These parameters is selected same 

values with literature used similar dataset [55].  Values of all training parameters used 

in the model are given in Table 3.3. In Table 3.3, the validation steps parameter is the 

number of batch iterations before the end of the epoch on validation data.  

 

Table 3.3: Model training parameters 

Parameters Value 

Initial Weight None 

Optimizer SGD 

Learning Rate 0,001 

Batch Size 16 

Epoch 30 

Validation Steps 1 
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While training on each of the architectural model, the weights of the highest results 

according to the validation accuracy are saved. Then, these weights are loaded, and the 

results are compared on the test dataset. 

3.3 Hardware Equipment and Software Environments 

In this thesis, the training of the models is carried out on a computer with an Intel Core 

(TM) i7-10750H (CPU) processor, 16GB RAM capacity, Windows 10 operating 

system on NVIDIA GeForce RTX 2070 with Max-Q Design GPU. While the image 

processing toolbox in the 2020b version of the MATLAB program [56] is used in the 

process of adding fog to the images, all other operations related to the model and 

dataset are performed in the 3.7 version of the Python program [57]. Keras interface 

of the 2.1.0 version of the TensorFlow [58] library is used in the processes related to 

model modification and deep learning in the Python program. NumPy [59] and 

OpenCV [52] libraries are used in the operations related to the dataset in the Python 

program. 
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Chapter 4 

Results 

In this chapter, the findings obtained in the thesis will be explained. The eight state-

of-the-art architectures described were trained in four color spaces. These training 

sessions were repeated five times in order to verify the performance of the results. The 

highest results achieved at the end of a total of 160 training sessions are listed in Table 

4.1.  

 

Table 4.1: Model highest accuracy (%) 

Architecture Color Spaces 

 RGB YUV L⃰⃰⃰ A ⃰B ⃰ HSV 

VGG 16 97,82 97,64 97,75 98,71 

VGG 19 96,55 98,45 96,83 97,95 

InceptionV3 97,08 98,78 97,95 98,85 

Inception-ResNetV2 96,43 98,32 98,01 98,38 

Xception 98,17 98,61 98,47 98,48 

DenseNet 169 97,72 98,37 98,50 98,90 

DenseNet 201 98,21 97,07 98,65 97,92 

MobileNetV2 98,64 98,98 99,11 99,44 

 

After 5 sessions, calculated the arithmetic average of the results and the performance 

rates were compared in terms of color space with box plot shown in Figure 4.1. 
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Figure 4.1: Color space comparison after 5 sessions over all architectures 
 

It has been determined that the HSV color space has higher accuracy result than other 

color spaces in terms of median, maximum and minimum values. On the other hand, 

RGB color space has the lowest percentage of accuracy among the compared color 

spaces. 

Accuracy percentages between color spaces and architectures at the end of 5 sessions 

are given in Table 4.2. 

 

Table 4.2: Average accuracy (%) of models 

Architecture Color Spaces 

 RGB YUV L⃰⃰⃰ A ⃰B ⃰ HSV 

VGG 16 94,99 94,47 96,45 97,50 

VGG 19 93,83 96,36 94,43 96,08 

InceptionV3 95,46 97,50 95,20 97,73 

Inception-ResNetV2 95,15 95,79 94,99 97,62 

Xception 96,44 96,72 97,24 97,19 

DenseNet 169 95,23 96,97 97,56 98,14 

DenseNet 201 95,27 94,18 97,13 95,21 

MobileNetV2 96,27 98,19 97,45 98,95 
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The highest average accuracy percentage was obtained in HSV color space using the 

MobileNetV2 based architecture. MobileNetV2 architecture in HSV color space is the 

method that we propose in this thesis, due it gives the best result at the end of both the 

5 sessions table and the highest performance table. RGB has the poorest performance 

with no highest score in any of the architectures. The success of the method that we 

propose can be examined deeply from the confusion matrix in Table 4.3. 

 

Table 4.3: Confusion matrix of the best MobileNetV2-HSV Score 

Predicted Label True Label 

 Smoky Foggy-
smoky Normal Foggy 

Smoky 9234 15 50 0 

Foggy-smoky 48 9236 0 22 

Normal 9 0 8704 0 

Foggy 6 46 4 8758 

 

It is noticed that from the confusion matrix, the model makes of the most mistakes in 

classifying smoky true labeled images. Only 50 normal labeled images were predicted 

as smoke labeled according to the confusion matrix. In addition, 46 images labeled 

with foggy-smoky were predicted as foggy. 

There are other performance metrics that are used to measure model performance in 

align with the confusion matrix in Table 4.3. Precision is expressed by the ratio of true 

positive samples to all correct values. Recall is defined as the ratio of true positive 

values to true positive and false negative values. The F1-Score is calculated by the 

harmonic average of the Precision and Recall values and takes a value between 0 and 

1. The values are closer to 1, the more successful it is. In Table 4.4, the most successful 

performance of the MobileNetV2 model in the HSV color space, in accordance with 

the result of Precision, Recall, and F1-Score metrics can be examined. Over 99% 

success rate was achieved in all labeled images given to the classifier. 
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Table 4.4: Evaluation with various metrics of the best MobileNetV2-HSV Score 

True Label Precision Recall F1 - Score 

Smoky 99,30 99,32 99,31 

Foggy-smoky 99,25 99,34 99,30 

Normal 99,90 99,38 99,64 

Foggy 99,36 99,75 99,56 

 

Selected false predicted images made by the proposed HSV color space based 

MobileNetV2 model in line with the Table 4.3 are shown in Figure 4.2. 

 

 
(a) 

Predicted: Foggy-smoky 
Real: Foggy 

 
(b) 

Predicted: Foggy-smoky 
Real: Smoky [19] 

 
(c) 

Predicted: Foggy-smoky 
Real: Smoky [46] 

 
(d) 

Predicted: Smoky 
Real: Foggy-smoky 

Figure 4.2: False predicted images with the proposed model 
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As can be seen from Figure 4.2(a), the proposed model did not perform well on 

prediction in foggy low-light images. In Figures 4.2(b) and 4.2(c), where the smoke is 

formed right in front of the footage, the image is perceived by the proposed model as 

if it was an image taken in a foggy environment. Similarly, in Figure 4.2 (d), it is 

confused with smoky labeled with foggy-smoky because smoke is very close. It is hard 

to decide their label by seeing them also. If the proposed model is retrained using these 

false predicted images, these erroneous results may not be obtained. Furthermore, 

more successful results may be obtained by increasing the ratio of training and 

validation sets in the dataset. 

Disk usage of the models is another parameter to be compared. The disk usage is an 

important parameter of the model when integrating into embedded systems and 

classifying on low-capacity systems. The training elapsed time is an important 

parameter in the model training phase, and its short duration is an indication that the 

model has successfully architecture. Here it consists of the size of the model, the 

weights, and the related parameters to be used in the classification. 

 

Table 4.5: Model comparison based on the number of parameters, approximately 
elapsed training time, and disk usage 

Architecture Number of total 
parameter (mill.) 

Approximately 
elapsed training 

time (sec.) 
Size (MB) 

VGG 16 134,276 5890 524,60 

VGG 19 139,586 6257 545,35 

InceptionV3 21,81 6268 86,03 

Inception-ResNetV2 54,342 14474 214,27 

Xception 20,869 14004 81,90 

DenseNet 169 12,649 5408 50,96 

DenseNet 201 18,329 8435 73,44 

MobileNetV2 2,263 3210 9,29 
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Furthermore, the MobileNetV2-based model has the shortest training time using the 

least number of parameters. Accordingly, the lowest disk usage was realized in 

MobileNetV2 based model. Among the other architectures chosen, its size deploys 

approximately 18% of its closest competitor DenseNet 169. From these results, it is 

seen that the MobileNetV2 model gives more successful results than the other models 

used in the thesis. 

 

In this thesis the proposed model has been compared with the studies that have a 

similar dataset. In align with the test dataset image quantity, the accuracy percentage 

on the test dataset of the models and the disk usage capacity of them were selected as 

the comparison criteria. This comparison is shown in Table 4.6. 

 

Table 4.6: Comparison between the literature and the proposed method 

 
Test Dataset 

Image 
Quantity 

Architecture Color 
Space 

Accuracy 
(%) 

Size 
(MB) 

[51] 36006 VGG 16 RGB 97,72 930,00 

[60] 36110 DenseNet 169 YUV 97,80 50,96 

[61] 36006 MobileNetV2 RGB 98,17 13,23 

Proposed 36110 MobileNetV2 HSV 99,44 9,29 

 

The VGG 16 architecture in RGB color space method by [51] achieved an accuracy of 

97.72%. When this method was repeated in this thesis, the accuracy of [51] was within 

the 5-session range, but not equal exactly the same. The reasons for these might be, 

splitting the datasets at different rates from the videos, preferring different artificial 

fog algorithms, choosing different starting weights in training sessions, splitting the 

train test and validation datasets in different ways. 

In this thesis, the MobileNetV2-based model in the HSV color space is proposed and 

it has achieved the highest accuracy result among the studies using the same dataset in 

the literature. Moreover, the proposed model has the lowest memory requirement 
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among the studies in Table 4.6. Since the model parameters of [61] were recorded in 

an environment different from the programming environment used in this thesis, their 

model size may have been higher.   
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Chapter 5 

Conclusion 

The necessity of smoke detection in the outdoor environment becomes more important 

with the integration of image processing areas and monitoring systems together. This 

detection is essential for the reliability and sustainability of the system, especially in 

harsh weather conditions. While there are various image processing methods for the 

detection of smoke, these methods are not feasible in harsh weather conditions such as 

fog. 

In this thesis, a color space-based deep learning model is proposed for smoke detection 

for foggy environments. Firstly, videos were downloaded from databases about smoke 

detection in the literature.  Images were extracted from these downloaded videos. 

Then, new foggy images were obtained by changing the brightness values of these 

images. With the addition of new foggy images, the dataset with 4 labels has been 

created. This dataset composed of RGB images were transformed into YUV, HSV, 

and L⃰⃰⃰ A⃰ B⃰ color spaces searching for better detection. Eight of the state-of-the-art CNN 

models were trained and tested on the dataset that is transformed into color spaces. At 

the end of the training sessions, the comparison was made, and the most successful 

color space and model were determined. MobileNetV2-based model in the HSV color 

space is selected as proposed model in this thesis and was compared with other studies 

in the literature in terms of memory usage and accuracy results. At the end of the 

comparison, the proposed model showed better classification performance than other 

results in the literature. Moreover, most of the images that the proposed model 

misclassified consisted of close-up images, perhaps where fog detection was not 

necessary. This superior classification success of the proposed model was also seen 

when the model is evaluated in terms of memory requirement. The memory 

requirement of the proposed model is the lowest among the studies in the literature. 
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This situation showed that deep learning models that have already achieved saturation 

in performance success, can be used for wildfire monitoring applications with much 

lower memory requirements. The proposed model paved the way for detecting smoke 

in foggy environments in embedded systems integrated with cameras. It supports the 

automatic operation of wildfire monitoring systems. In addition, the model can be 

enhanced to show the segmentation of the smoke area in the image. The model can 

also detect fire by training with images containing fire pictures. The development of 

the proposed smoke detection model can significantly enhance the fire safety of 

forested areas in cities. It can be used to pinpoint the area where the fire started. 

Decreasing the number of forest fires could trigger the repopulation of many species 

facing extinction. Restoring the natural life balance leads to a more livable world. It 

can be an important milestone in the fight against the greenhouse gas effect related to 

carbon emission and the resulting global warming. By reducing the high budget 

appropriations allocated to prevent forest fires, not only ecological and environmental 

harmfulness but can also alleviate the burden on states economically. 
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