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Application of Artificial Intelligence to Paper Based 

Colorimetric Sensors 

Abstract 

Using color changes to measure the presence and concentration of the substance visible 

to the naked eye, colorimetric analysis is a method used in the detection of 

biomolecules. In many different industries, including the health, pharmaceutical, food, 

paint, and cosmetics sectors, the colorimetric analysis is used to analyze biological, 

medical, and environmental samples. Point-of-care (POC) tests are used in many areas 

due to their ease of use and accessibility. Integration of POC tests with colorimetric 

analysis increases ease of use. In colorimetric analysis, accurate measurement and 

calibration techniques are required to obtain accurate results. For this reason, artificial 

intelligence and smartphone technology have been widely used in the development of 

biological sensors in chemistry and biomedicine in recent years. Images obtained using 

a smartphone camera are processed with artificial intelligence techniques to obtain 

highly accurate results. In this thesis, lactate detection and H2O2 detection in sweat 

were performed using artificial intelligence approaches, respectively. First, H2O2 

detection was performed using a Fe3O4@chitosan nanozyme (Fe3O4@chi) with a 

peroxidase-like activity using a uPAD. First, the catalytic performance of the 

Fe3O4@Chi nanozyme was first evaluated by UV-Vis spectroscopy using 3,3',5,5'-

tetramethylbenzidine. Unlike Fe3O4 nanoparticles (NP), Fe3O4@Chi nanozyme 

exhibited an intrinsic peroxidase activity with a detection limit of 69 nM. Then, based 

on the reaction of the nanozyme with 3,3',5,5'-tetramethylbenzidine, colorimetric 

detection of H2O2 was performed with the help of a µPAD. A user-friendly system has 

been developed by integrating the system with an application called "Hi-perox 
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Sens++", which has machine learning classifiers. In the system where machine 

learning classifiers were trained using different light sources and different phone 

brands, images were taken at 30 seconds and 10 minutes. In the end, it was found that 

linear discriminant analysis had the highest classification accuracy (98.7%) with 

phone-independent repeatability at t=30 s, and accuracy was maintained for 10 

minutes. Second, colorimetric detection of lactate was performed using horseradish 

peroxidase, lactate oxidase and 3,3′,5,5′-tetramethylbenzidine reaction system to 

detect lactate in artificial sweat using a microfluidic paper-based analytical systems 

(µPAD). Images obtained with different lighting conditions and different brands of 

phones were applied for the selective and quantitative analysis of lactate in sweat in a 

deep learning-based phone application called "DeepLactate". In the system where 

various deep learning models are trained, Inception-v3 with the highest performance 

is placed in the application. According to the results obtained, the current system 

showed 99.9% classification accuracy with phone-independent repeatability and a 

processing time of less than 1 second. A patch was then designed to detect lactate in 

human sweat on volunteers. Lactate detection was performed in volunteers after rest 

and exercise, respectively.  

Keywords: Colorimetric Detection, Microfluidic Paper-based Analytical Systems, 

Non-Invasive Detection, 3,3′,5,5′-tetramethylbenzidine, Artificial Intelligence, 

Smartphone App 
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Yapay Zekanın Kağıt Tabanlı Kolorimetrik Sensörlere 

Uygulanması 

Öz 

Kolorimetrik analiz, biyomoleküllerin saptanmasında kullanılan ve çıplak gözle 

gözlemlenen maddenin varlığını ve konsantrasyonunu belirlemek için renk 

değişimlerini kullanılarak ölçülmesini sağlayan bir tekniktir. Sağlık, gıda, ilaç, 

kozmetik ve boya endüstrileri gibi birçok farklı alanda biyolojik, tıbbi ve çevresel 

numunelerin analizinde kolorimetrik analiz kullanılmaktadır. Bakım-noktası (POC) 

testleri kullanım kolaylığı ve ulaşılabilirliği nedeniyle bir çok alanda kullanılmaktadır. 

POC testlerinin kolorimetrik analiz ile entegrasyonu kullanım kolaylığını 

arttırmaktadır. Kolorimetrik analizde, doğru sonuçlar elde etmek için doğru ölçüm ve 

kalibrasyon teknikleri gerekmektedir. Bu nedenle son yıllarda kimya ve biyotıpta 

biyolojik sensörlerin geliştirilmesinde yapay zeka ve akıllı telefon teknolojisi yaygın 

olarak kullanılmaktadır. Akıllı telefon kamerası kullanılarak elde edilen görüntüler, 

yapay zeka teknikleriyle işlenerek yüksek doğrulukta sonuçlar elde etmektedir. Bu 

tezde yapay zeka yaklaşımları kullanılarak sırasıyla terde laktat tespiti ve H2O2 tespiti 

gerçekleştirilmiştir. İlk olarak, bir µPAD kullanılarak peroksidaz-benzeri aktivite 

gösteren bir Fe3O4@chitosan nanozim (Fe3O4@chi) kullanılarak H2O2 tespiti 

gerçekleştirilmiştir. Öncelikle, Fe3O4@Chi nanoziminin katalitik performansı ilk 

olarak 3,3',5,5'-tetrametilbenzidin kullanılarak UV-Vis spektroskopisi ile 

değerlendirildi. Fe3O4 nanoparçacıklarının (NP) aksine, Fe3O4@ Chi nanozim, 69 

nM'lik bir tespit limiti ile içsel bir peroksidaz aktivitesi sergilemiştir. Ardından 

nanozimin 3,3',5,5'-tetrametilbenzidin ile reaksiyonuna dayanarak bir µPAD 

yardımıyla H2O2'nin kolorimetrik tespiti gerçekleştirildi. Makine öğrenimi 
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sınıflandırıcılarak sahip "Hi-perox Sens++" adlı bir uygulama ile sistemin 

entegrasyonu gerçekleştirilerek kullanıcı dostu bir sistem geliştirilmiştir. Farklı ışık 

kaynakları ve farklı telefon markaları kullanılarak makine öğrenimi 

sınıflandırıcılarının eğitildiği sistemde 30. saniye ve 10. dakikalarda görüntüler alındı. 

Sonuçlara göre lineer diskriminant analizi, t=30 s'de telefondan bağımsız 

tekrarlanabilirlik ile en yüksek sınıflandırma doğruluğunu (%98,7) sergiledi ve 

doğruluk 10 dakika boyunca korundu. İkinci olarak, bir kağıt-tabanlı mikroakışkan 

cihaz (µPAD) kullanılarak yapat terde laktat tespiti gerçekleştirmek amacıyla laktat 

oksidaz- yaban turpu peroksidazı ve 3,3′ ,5,5′ -tetramethylbenzidine reaksiyon sistemi 

kullanılarak laktatın kolorimetrik tespiti gerçekleştirilmiştir. Farklı aydınlatma 

koşulları ve farklı marka telefonlar ile elde edilen görüntüler "DeepLactate" adlı derin 

öğrenme tabanlı telefon uygulamasında terde ki laktatın seçici ve kantitatif analizi için 

uygulanmıştır. Çeşitli derin öğrenme modellerinin eğitildiği sistemde en yüksek 

performansa sahip Inception-v3 uygulama içerisine yerleştirilmiştir. Elde edilen 

sonuçlara göre, mevcut sistem telefondan bağımsız tekrarlanabilirliği ve 1 saniyeden 

kısa işlem süresi ile %99,9 sınıflandırma doğruluğu göstermiştir.  Ardından gönüllüler 

üzerinde insan terinde laktat tespiti gerçekleştirmek amacıyla bir yama tasarlanmıştır. 

Sırasıyla dinlenme ve egzersiz sonrası gönüllülerde laktat tespiti gerçekleştirilmiştir. 

Anahtar Kelimeler: Kolorimetrik Tespit, Mikroakışkan Kağıt Tabanlı Analitik 

Sistemler, İnvaziv Olmayan Tespit, 3,3' ,5,5' -tetrametilbenzidin, Yapay Zeka, Akıllı 

Telefon Uygulaması 
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Chapter 1 

1 Introduction 

1.1 Biosensors 

Biosensors are analytical devices that produce signals for detecting or diagnosing a 

target analyte [1,2]. Selective or semi-quantitative analyses are performed using 

biological recognition elements like enzymes and antibodies to obtain a measurable 

signal with biosensors [3,4]. When biosensors are compared with traditional analytical 

devices, they have advantages such as speed, cost, unparalleled specificity, sensitivity, 

and on-site detection [1,2]. The components of biosensors are described in Clark's 

1956 report, who is the father of biosensors. The electrode that measures the blood's 

oxygen content was used as the biosensor in this study [3,4]. Biosensors can be 

different shapes and different sizes for their intended use. In general, biosensors consist 

of five components which are bioreceptor, electronics, analyte, display, and 

transducer. The analyte is a component named the detected molecule. Biomolecules 

that recognize target substrates like enzymes, antibodies, or aptamers are named 

bioreceptor. Transducer is the equipment that converts the output signal produced as a 

result of the biochemical reaction into an electrical signal that can be processed. 

Electronics can be defined as converting electrical signal that converts that of 

transducers to digital forms. The display unit allows the users to read the response 

obtained. The evolution of biosensors is classified into three generations. It depends 

on the integration of bioreceptor into transducers. The earliest biosensors are 

unmediated amperometric biosensors that gauge analyte concentrations and the 

byproducts of bioreceptor reactions, which diffuse the surfaces of transducers and 

cause an electrical response. In second-generation biosensors, co-reactants and 

enzymes are integrated into the biological component layer to increase analytical 
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performance. In third and last-generation biosensors, electrode uses enzymes and 

mediators. In this generation of biosensors, electron transfers are used to establish 

direct interaction between the enzymes and electrode in place of intermediary 

processes [4]. Biosensors have some characteristics which are named stability, 

selectivity, linearity, sensitivity, response time, and reproducibility. These are the 

characteristics that are important to developing highly effective and capable biosensor 

systems. Selectivity is important for biosensors because bioreceptor has to recognize 

only its target analyte. In a mixture with different species and unwanted contaminants, 

a bioreceptor can recognize a target analyte. Stability is a vulnerability of a biosensor. 

The biosensor can be affected by environmental changes inside and outside of the 

biosensing device. In general meaning, stability is a degradation of the biosensor over 

time. Sensitivity is defined as the accurate determination of the amount of analyte at a 

minimum step and low concentration. Linearity gives an accuracy of the measured 

results because if the linearity is high concentration detection is higher. Response time 

describes as the time taken for 95% of results. Reproducibility is the capability of a 

biosensor's precision and accuracy. If the same sample with the biosensor gives the 

same results when measured more than once, it can be said to have reproducibility. 

Potential application areas of biosensors are listed as environment, biotechnology, and 

medicine. At the same time, biosensors have important requirements for their fertile 

usage. These requirements can be listed as output sensitivity, concentrations of 

required samples, concentrations measured analytes, time, re-usage of biosensors, and 

cleanliness of the system. Depending on the signal transmission methods, biosensors 

can be divided into different groups; optical, electrochemical, piezoelectric, 

thermometric and magnetic [4,5]. 

1.2 Optical Chemical/Biosensor 

Optical biosensor presents more advantages than other analytical techniques. It is 

possible to detect chemical and biological matter in real-time, directly, with high 

sensitivity, stability, less noise, and immunity to external disturbance [5,6]. Small size 

and cost-effectiveness are other advantages when compared with conventional 

analytical methods. Besides that, one of the most effective sensors for cataloging 

affinity or catalytic receptors is optical biosensor technology [5,7]. Micro/nano-

technologies, molecular biology, microelectronics, biotechnology, chemistry, and 
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microelectromechanical systems (MEMS) are among the many improved concepts and 

multidisciplinary approaches applied in the development of next-generation optical 

biosensors [5]. It is known that optical sensing is sensing that takes advantage of the 

interaction between biorecognition elements and the optical field. These 

biorecognition elements are antibodies, antigens, enzymes, nucleic acids, and cells. 

Optical biosensors are high-sensitivity and versatility devices that detect changes in 

the light property when the interaction between an analyte and a receptor. These 

properties can be absorption, light scattering, index of refraction, or fluorescence. 

Optical chemical sensors are the sensors that respond to optical signals or produce 

optical signals. When an analyte and a receptor interact, they respond to or produce 

optical signals. They provide real-time, fast, and very parameter sensing [5,7,8]. The 

optical biosensor uses these biorecognition elements to measure matter concentration 

and produces a proportional signal [5,7]. There are two types of optical biosensing: 

labeled and label-free based detection. When these two detection methods are 

compared, it becomes clear that the label-free detection method produces the signal as 

a direct result of the analyzed material interacting with the transducer. Due to its 

detection being more similar to its natural form, label-free detection is a simple and 

economical method [5,9]. Labeled-based detection uses a label for detection as the 

name suggests. The produced optical signal is produced with fluorescent, luminescent, 

or colorimetric methods [5]. In Figure 1.1 there is a schematic illustration of optical 

biosensors. 

 

Figure 1.1:Schematic Illustration of Optical Biosensors [10]. 
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1.2.1 Fluorimetric sensors 

F. Goppelsroder first described fluorescent chemosensors in 1867 for the purpose of 

sensing the Al+3 ion. These devices are used for the selective detection of anionic and 

cationic species [11,12]. Fluorescence emission is started by forming an electronic 

excitation when light is absorbed from the fluorophore and it ends up light spread. 

After the excitation, the molecule absorbs light and stays excitation state. 

Subsequently, fluorescent emission is obtained with lower energy and higher 

wavelength than the excitation wavelength [13]. Fluorescent chemosensors, which are 

chemical types that use fluorescent properties to use measure electrical, thermal, 

magnetic, and electronic changes as well as optical changes, detect light using 

photodiodes or photomultipliers [14,15]. In the construction of fluorescent sensors, an 

intermediary component is in charge of the analyte's detection, and a signaling unit is 

in charge of the conversion of the measurable signal. The detection element is 

responsible for selectivity and binding productivity. The converter converts the 

information into an optical signal [13,14]. In the fluorescent chemosensor (Figure 

1.2),  generally, there are three main units. One of them is the receiving unit, which is 

in charge of selectively binding visitors, and the other is the species that are most likely 

to be impacted by the bonding event due to their optical properties. In some cases, 

there is a separator unit. This unit arranges electronic interaction between receptor and 

photoactive species [11].   

 

Figure 1.2 :The working principle of fluorescent chemosensors [14]. 

Instead of traditional methods like raman scattering, mass spectrometry, 

electrothermal atomic absorption spectrometry, voltammetry, and atomic absorption 

spectrometry fluorescent chemosensors are come to the forefront because of their high 

sensitivity, selectivity, naked-eye detection, cost-effectiveness, and low analyte 

concentration. In addition, it is advantageous to control the outputs by making changes 

in the molecular designs of the probes [11,14]. Due to the mechanical, electrical, and 
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optical properties of two-dimensional materials, it is widely used in the design of 

fluorescent biosensors. For example, carbon nanomaterials are highly preferred due to 

their stable and shiny structures [12,15]. 

In a study, a fluorescent method was used for the easy and high-sensitivity detection 

of glutathione. The results obtained showed that the limit of detection is 0.018 μmol/L 

[16]. For the detection of 6-mercaptopurine used in cancer treatment, measurements 

were made using carbon quantum dots based on fluorescent emission. In this study, a 

detection limit of 0.001 mg/L was obtained [12]. In another study in the literature, the 

detection limit for chlorpyrifos, which was synthesized using a one-pot hydrothermal 

approach for the detection of pesticides, was found to be 2.7 ng/mL [17].  

1.2.2 Infrared sensors 

Infrared biosensors, like other biosensors, are a sensing technology that depends on 

the concentration of substances in biological samples. This type of sensor allows 

measurements to be taken using infrared spectroscopy methods. Near-infrared imaging 

in the range of 700-1700 nm, which is used as a non-invasive technique, is the most 

used in infrared sensors. This is brought on by their high signal-to-noise ratio, capacity 

for deep tissue penetration, and improved imaging resolution. NIR spectroscopy is a 

method that relates to vibrational and rotational transitions connected to chemical 

bonds within molecules and is used to determine the concentration of molecules by 

examining component bonds. This is due to the fact that biological tissues absorb and 

scatter NIR wavelengths less than visible ones [18–20]. 

A prototype of the near-infrared optical nose has been developed in a study in the 

literature. In this study, the optical properties of semiconductor single-walled carbon 

nanotubes were utilized [21].  

In a study in the literature, graphene metasurface-based sensors were used to 

investigate infrared biosensors. The biosensor designed as a result of the experiments 

works in the infrared range of 250 THz–320 THz [22].  

In a study published in the literature, it was investigated in the mid-infrared spectral 

range using biosensors based on metasurfaces that provide strong optical confinement 
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and tunable optical resonance. This study provided a highly sensitive and specific 

method for detecting the secondary structure of protein immunoglobulin (IgG) 

molecules [23].  

A system that monitors blood glucose concentration with a wearable Vis-NIR-based 

biosensor has been developed for diabetics, which affects a large part of the world 

population. With the results obtained, the standard estimation error was found to be 

6.16 mg/dL [19].  

In another study in the literature, a paper-based NIR biosensor was developed to detect 

trypsin activity. Peptide-encapsulated SWCNTs were used for this detection. The 

lowest trypsin concentration detectable in this study was 1 µg/mL [18].  

1.2.3 Fiber-optic sensors 

The fact that optical biosensors are disposable, not affected by electrical interference, 

and easy to miniaturize offers many advantages. The fact that fiber optic sensors are 

made of glass stands out because it increases resistance to ambient conditions and can 

be multiplexed on a single fiber network. In situations where conventional sensors 

cannot cope, fiber-optic sensors, which are immune to electromagnetic interference, 

are more convenient to use than other sensors. Since there is no electricity flowing at 

the sensing point, they are immune to electromagnetic interference. Because they are 

made of glass, they have a high tolerance for heat, shocks, and vibrations. Fiber-optic 

biosensors are made of filters and lenses, as well as optical components [24,25]. The 

development of lasers and modern low-cost optical fibers in the 1960s has greatly 

contributed to the development of fiber-optic sensors. The first developed chemical 

biosensors were made using low-loss fiber-optic sensors. In fiber-optic biosensors, the 

transmission of light is provided by a plastic optical fiber or silica glass fiber. These 

biosensors detect biomolecules by optical transduction mechanisms [24–26].  

The total internal reflection principle determines how light travels through optical 

fibers. Thus, there is little environmental loss as light rays are directed through the 

fiber's core. Fiber-optic sensors can be used in conjunction with a variety of 

spectroscopic methods, including fluorescence, surface plasmon resonance, Raman, 
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and absorption. It is associated with the change in analyte concentration in the 

measurement that takes place in accordance with Beer's law [25]. 

The light emitted along the optical fiber consists of two components, the exponentially 

decreasing volatile field in the cladding and the guided one in the core. Light emitted 

in coated fibers with a uniform diameter does not interact with the surrounding of the 

fiber, since the lost area is reduced to almost zero within the coating [26].  Fiber-optic 

biosensors are divided into extrinsic and intrinsic sensors. Intrinsic sensors direct 

incoming and outgoing light based on volatile waves, while extrinsic sensors direct it 

with a bifurcated fiber or a single fiber [24]. 

A biosensor for the detection of some herbicides in Chlorella vulgaris cells was 

developed by Naessens et al. in the literature. Using kinetic measurements of 

chlorophyll-a fluorescence, the concentration of a toxic chemical was determined in 

this biosensor by placing microalgae in front of the end of the optic fiber bundle [27].   

Murugan et al. have created a diagnostic platform based on a U-bent fiber optic sensor 

system for quick and early detection of the SARS-CoV-2 virus. Saliva can be used for 

plasmonic labeled and unlabeled immunoassays with the proposed plasmonic fiber 

optic absorbance biosensor [28].  

1.2.4 Colorimetric sensors  

Colorimetric analysis which is observed with the naked eye and used for the detection 

of biomolecules, stands out for manufacture and application of sensors and biosensors. 

This kind of detection method comes to the forefront when compared with other 

methods like electrochemical, electrophoresis, spectrometry, and chromatography 

because of fast, has no need for complicated tools, is low cost, has a simple detection 

mechanism, and is portable [29–33]. 

. 

 

Figure 1.3: Colorimetric detection of target DNA dependent on concentration [34]. 
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Visible color changes are obtained by using the concentration information in 

colorimetric detection. The main challenge in colorimetric detection is to convert the 

detection events into color changes [30,31].  

In the fabrication of colorimetric sensors, functional materials or optical probes are 

used to obtain specific selectivity and colorimetric function. In the presence of 

biomolecular analytes, materials such as nanoparticles, polymers, carbon and graphene 

nanotubes, and metal nanoparticles can be used for sensing units. For colorimetric 

detection mechanisms, surface plasmon resonance, ligand-receptor binding, enzyme 

catalysis, nanozyme catalysis, color change of photonic crystals, and fluorescent on-

off adjustment can be used depending on the materials that are used. [29,30,33]. When 

considering the fabrication and sensing properties these sensors can be used for the 

detection of viruses, heavy-metal ions, cells, DNA, small molecules, proteins, and 

other different chemicals [31,33].  

Point-of-care (POC) tests are preferred for the diagnosis of diseases because of their 

time and cost savings properties. For POC tests that are suitable for daily use and do 

not require complex instrumentation and expertise, the application of the colorimetric 

method is more useful than other methods [29].  

In the literature, developed a colorimetric sensor for detecting the concentration of 

E.coli bacteria with aggregation of gold nanoparticles (AuNP) has a lower detection 

limit of 50 CFU/mL. This sensor uses the blue-to-red color change of AuNP to detect 

bacterial concentration with smartphone imaging [35].  

When salt concentration increases, AuNP aggregates and changes color from purple 

to blue. Based on this, Liu et.al designed a colorimetric sensor for DNA detection. The 

limit of detection of this sensor is 50 pM, and also the lower limit of naked eye 

detection was 100 pM [34].  

For food safety purposes, the detection of two different mycotoxins using the catalysis 

of 3,3',5,5'-tetramethylbenzidine under acidic conditions was investigated.  Zhu et.al 

fabricated a biosensor that combination of two colorimetric methods, for aflatoxins B1 

detection Fe3O4/GO and for ochratoxin A detection Fe3O4@Au detection mechanisms 

used. The detection range of 5-250 ng*mL-1 for aflatoxins B1 and 0.5-80 ng*mL-1 for 

ochratoxin A was obtained [31].  
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In another study in the literature, colorimetric biosensor fabricated for the detection of 

Staphylococcus aureus (SA) take advantage of catalysis of specific aptamer and 

dsDNA-SYBR Green I (SG I) complex. The dsDNA-SG I complex generates an SA-

sensitive photocatalyzed colorimetric response and catalyzes the oxidation of TMB 

under photo-irradiation. LOD of this colorimetric biosensor was obtained at 81 CFU 

mL-1 [36].  

Zeng et.al fabricated a colorimetric biosensor for fast and easy detection of cancer-

derived exosomes with horseradish-peroxidase (HRP) encapsulated DNA 

nanoflowers. In this sensor, ABTS is oxidized in the presence of H2O2, and its color 

changes from colorless to green. The low detection limit was observed at 3.32 × 103 

particles/μL [37].  

A POC colorimetric biosensor was developed for urea detection. In this sensor, 

hydrolysis of urea and urease to NH3 was provided to take advantage of the reducing 

power of tannic acid, and colorimetric detection was performed as a result of silver 

nanoparticle (AgNP) production from AgNO3. The limit of detection was obtained at 

0,58 mM [29].  

1.3 Microfluidic paper-based analytical systems 

(µPADs) 

The use of paper in different areas is increasing day by day. Paper usage is preferred 

in the health and biomedical industry because of its unique properties. Figure 1.4 

shows some applications of microfluidic paper-based analytical systems (μPADs). 

Thanks to the fibrous structure of the paper, chemicals are immobilized, and also, 

chemicals are stored because of absorbance. Another property is thanks to capillarity, 

transportation of liquid is easy. Air bubble formation is prevented thanks to its air 

permeability feature and thanks to the structure of the paper, liquids are filtered. 

Through the high surface/volume ratio, the number of reagents can be increased, thus 

reducing the analysis time. At the same time, the paper has high biocompatibility and 

biodegradability that encourages its use in the health and biomedical sector [38,39]. 

The things that encourage the use of paper in sensing devices are its advantages due to 

the above-mentioned properties. These advantages are; low cost, ease of access, fast 



10 

 

response, can be easily destroyed thanks to being flammable and does not require an 

external power for liquid transfer [39,40]. The use of paper in sensing devices first 

began in 1784 with litmus test papers for pH determination. For metal detection, spot 

tests were fabricated in the 1930s and 1940s [41]. After that, the detection of semi-

quantitative urine-sugar [42], and blood sugar [43] devices  were fabricated in the 

1950s and 1970s.  

 

Figure 1.4: Aplication area of μPADs [40]. 

 

Microfluidic technologies use for the analysis of biochemicals and medical diagnosis 

which was improved in 1979 by Terry et.al [44]. Materials for microfluidic 

technologies that use micron or submicron channels to detect liquid analytes include 

quartz and glass, monocrystalline crystalline silicon wafers, paper-based materials, 

and high molecular weight polymers [45].  

The most important step for the treatment and prevention of disease is accurate and 

rapid diagnosis. The need for low-cost, fast-responding tests that do not require 

experienced personnel is increasing day by day. For this reason, Martinez et.al. 

introduced μPADs in 2007 (Figure 1.5)  [46]. μPADs, which can be given as an 

example of the ASSURED statement determined by the World Health Organization, 

have the specified features. These qualities include affordability, accuracy, focus, 

friendliness, quickness, robustness, and ability to reach end users without the need for 

special equipment [45–47]. Providing the ASSURED principle, μPADs are a widely 

used diagnostic device for point-of-care testing (POCT). POCT devices can be used in 

medical diagnosis as well as environmental monitoring, food safety, and where 

resources are limited. The most important advantages of μPADs are the use of small 
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amounts of analyte and rapid diffusion, so their use in POCT devices draws attention. 

Other advantages of μPADs are; It is easy to produce, user-friendly, environmentally 

friendly due to being made of paper, portable, and produce fast and simple analytical 

results [38–40,45–48].  

In a study published in the literature, the colorimetric method with µPAD was used to 

detect carcinoembryonic antigens. The obtained results indicated that the sensitivity 

was 98% and that the limit of detection (LOD) value was 0.015 ng/mL [49].  

 

Figure 1.5: Different type of μPAD. μPAD fabricated by wax printing (a). μPAD 

fabricated by photolithography (b) [46]. 

A μPAD developed by Peters et al. has been developed for the detection of improvised 

explosives. 2 different μPADs were designed and colorimetrically different explosives 

were detected. When the results were examined, the detection limit was obtained as 

0.39-0.98 mg and the total analysis time was 5 minutes [50].  

Ueland et al. carried out an investigation to identify explosive mixtures in soil using a 

combination of lab-on-a-chip and μPAD for sample preparation and analysis. This 

combination, which has a minimum detectable amount range of 1.4-5.6 ng, is 

considered a viable approach due to its low cost per sample [51].  

1.3.1 Fabrication of µPADs 

As a result of patterning the paper using various printing methods and hydrophobic 

inks, along with the identification of test regions and the use of hydrophobic barriers 

to delimit the hydrophilic channels, µPADs are created. Indicating fluid penetration 

paths, hydrophobic barriers offer a very effective physical barrier to the paper. The 

patterns provided in the paper make it possible to perform multiple diagnostic tests 

while only using small volumes [52–54].  Both 3D and 2D formats can be used to 
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create µPADs [55]. Wax printing, plotting, inkjet printing, laser cutting,flexographic 

printing, and photolithography methods can be used for production. 

Wax printing: The benefits of choosing the wax printing technique are; It is cheap, 

environmentally friendly, and easy to produce. It is fast to manufacture and enables 

the production of many paper analytical instruments at once. For this method, there 

are three different approaches. Painting with a wax pencil is the first. This technique 

involves drawing the desired pattern on the paper with a wax pen, then heating the 

paper in an oven to melt the wax and seep it into the paper. The second method 

involves printing the computer-designed pattern on a regular printer, then passing it 

over with a wax pen and heating it in the oven. Utilizing a wax printer directly is the 

third and final strategy. This technique involves using a computer to draw the pattern, 

which is then taken out of the wax printer and heated in the oven. In these procedures, 

a heater or an oven is used to allow the wax to enter the paper and create defined 

microchannels on the paper [53,55–57]. There is a chance of contamination because 

the channels are open. Kevin and others have proposed a technique to create wax prints 

by using a printing toner on the top and bottom sides. Fully enclosed "µPADs," made 

with beeswax and toner, were introduced in 2012. Wax was printed as hydrophobic 

barriers, and toner was printed as a seal on the top and bottom of the paper [56,57]. 

The main drawback of this approach is that most organic solvents do not work well 

with wax. Wax printing requires heating, and wax printers are scarce. In addition, the 

patterns' resolution is lower than it is for other approaches [55]. 

Inkjet printing: The inkjet printing process can be used to create paper-based 

microfluidic devices. This method makes it possible to precisely create zones for 

biological and chemical detection [53]. Alkyl ketene dimer (AKD) is the chemical of 

choice for hydrophobization in the paper. The AKD-heptane solution is printed on 

paper using an inkjet printing device, and the paper is then cured to the required level 

in the required amount of time to create hydrophobic barriers. Reduced cross-

contamination, efficiency, high resolution, and quick fabrication are benefits of the 

method. The method is expensive, and organic solvents harm the device, which are 

drawbacks [57,58]. 

Photolithography: The first patterning technique was photolithography, which offers 

high sensitivity for the development of hydrophilic and hydrophobic areas on papers 
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[55]. The chromatography paper is first thoroughly coated with SU-8 photoresist 

before being baked. The photomask is then used to expose the paper to UV light. After 

a second baking of the paper, the non-polymerized photoresist is removed with acetone 

and allowed to dry. The paper is then treated with air plasma to create hydrophilic 

channels [57,58].  

Laser-cutting: The process of laser cutting can be used to create µPADs. In this 

method, the parchment paper is set up on a platform and cut to the desired shape using 

a CO2 laser and computer control. In order to avoid damaging the paper during this 

process, laser power and scanning speed are crucial. Silica microparticles are applied 

to patterned areas to make the surface more wettable. In this technique, waxed paper 

can be used in place of parchment paper. Despite the method's low cost, it is not 

favored because of the pricey equipment required [56,58]. 

Plotting: For production, Whitesides et al. used x-y plotting. Polydimethylsiloxane 

(PDMS), a hydrophobic polymer that can dissolve, is used in this method. This 

solution was printed on filter paper using an x-y plotter to produce hydrophobic walls. 

It benefits from being inexpensive and physically adaptable. In this technique, the 

barrier thickness is also significant. A drawback arises if the barrier thickness cannot 

be controlled. [59].  

Flexographic Printing: The flexographic printing process uses polystyrene. Using 

this method, polystyrene is deeply embedded in the filter paper. It consequently 

produces hydrophobic channels. Hydrophilic components are non-polystyrene parts. 

This approach holds promise for the large-scale manufacture of PADs. [60]. 

1.3.2 Colorimetric detection with µPADs 

Polymer-based materials can be used in analytical platforms using the microfluidic 

device although, since their use requires additional systems, they do not meet the 

ASSURED criteria. Therefore, using μPADs is more advantageous. In μPADs, where 

analysis can be performed with different methods, the colorimetric analysis step forth 

as it is not time-consuming and does not require complex equipment [61,62]. A visible 

color change in colorimetric analysis using μPADs makes it easy to use and provides 

a user-friendly system. The biggest disadvantage encountered with this technology is 
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poor color uniformity. There are different techniques to overcome this problem. Some 

of these techniques are; paper oxidation, the addition of chitosan, and the control of 

fluid flow. In this way, the problem can be solved by obtaining color homogeneity 

[61].  

In another research, a Griess reaction dependent μPAD was developed for nitrite 

detection in pork. The analysis is completed within 15 minutes in μPAD, which is 

integrated with a smartphone. In the analysis using the coffee-ring region, the linear 

regression range was obtained from 1 mg kg−1 to 250 mg*kg−1 and the LOD value was 

1.1 mg*kg−1 [62].  

In the research using 3 different combinations, a smartphone application using 

machine learning was developed for glucose detection. In this study, chitosan was 

added to one of the combinations to ensure color uniformity. In the study in which 

TMB and  potassium iodide (KI) were used as chromogenic agents, an accuracy of 

98.24% was obtained in the region of TMB [63].  

In a research in the literature, colorimetric analysis was performed by creating 

hydrophobic channels using an adhesive stamp on a paper towel for the detection of 

glucose. The LOD value was calculated as 29.65 μM in the study using an offline 

smartphone application. In order to eliminate the disadvantage of poor color 

uniformity enabled precise extraction of ROI using Matlab and the application was 

tested with artificial saliva samples [61].  

Colorimetric detection of C-reactive protein to determine heart disease risk was 

performed by Zheng et al using µPAD. The detection performance of uPADs was 

improved which was analyzed using machine learning. In the research using different 

classification models, ResNet gave the best results with 96% accuracy [64].  

Sousa et al. performed the first dual µPADs combined with a colorimetric and 

electrochemical module for POCT diagnosis of periodontal patients. In this study, 

salivary amylase, lactate, nitrite, and pH measurements were performed 

simultaneously. As a result of the experiments carried out with samples taken from 

sick and healthy individuals, it was observed that the amount of nitrite and salivary 

amylase was high in sick individuals. Almost no lactate detection was achieved in 

samples taken from sick individuals and acidic pH was observed [65].  
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1.4 Importance of non-invasive Detection 

Early diagnosis, accurate and rapid detection, and monitoring of cell activity are very 

important for human health. Medical practitioner monitoring and self-monitoring are 

the two most common methods used today for health screening. There are two methods 

for performing health screenings. These are called invasive and non-invasive methods. 

The invasive method is a method that uses needles and the like to bore the human body 

for detection with blood but these procedures have a high risk of pain, suffering, and 

transmission of disease. Considering these disadvantages, non-invasive methods come 

to the fore. Introduced more than 30 years ago, non-invasive methods are diagnostics 

with fluids coming out of natural openings in the body. For example; sweat, urine, 

tears, and saliva are body fluids used in non-invasive diagnostic methods. It is drawing 

attention that non-invasive methods are an alternative to blood diagnostics. However, 

for the detection and diagnosis of biomolecules in the body, there must be a correlation 

between the amount of their presence in fluids such as sweat and urine and their 

amount in the blood. For this purpose, in which body fluid the molecule to be detected 

should be measured should be selected to be investigated [66–68].  

The most useful method for non-invasive detection and health monitoring is sensor 

systems that are flexible, easy to use, and do not affect daily movements. Optical 

chemical sensors are preferred more than other sensor types because they provide real-

time, fast results that do not require preliminary preparation [67,69]. The contents of 

the body fluids used in the measurement with the non-invasive method are important 

for the biomolecule to be determined as previously stated. 

 The tear is a biofluid that is secreted from lacrimal glands and contains various 

proteins [70], glucose [71], lysozyme [72], and ascorbic acid (AA) [73]. Sweat is 

secreted from sweat glands and they are categorized into two types of glands eccrine 

and apocrine. Minerals like magnesium and sodium, metabolites like lactate and urea, 

proteins, lipids, and steroids are among the substances found in sweat [74]. Saliva is a 

biological fluid that includes electrolytes, cations, enzymes, anions, hormones, lactate, 

proteins, urea, immunoglobulins, uric acid (UA), and immunoreactive insulin. 

Salivary glands are responsible for the secretion of saliva [75,76]. Urine is formed in 
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the kidneys and it is the filtration of blood. Components of urine are creatinine, ions 

such as chloride and potassium, urea, and uric acid [77].  

Integration of wearable devices with non-invasive methods is very common. In a study 

conducted in the literature, a paper-based wearable system was designed and sweat 

lactate and pH measurements were carried out. The lactate sensor showed linear 

detection between 0-25 mM and the pH sensor between pH 4 and pH 8 [78].  

A microfluidic paper-based sensor has been developed for the detection of COVID-19 

disease by Bordbar et al. Colorimetric determination was made in this measurement 

taken by a non-invasive method. In their study, they used four different receptor groups 

to provide reliable responses between patients and healthy individuals. The sensitivity 

of the sensor for sick individuals was 73.3% [79].  

1.4.1 Hydrogen Peroxide 

Observing in 1818 that hydrogen peroxide is the product of the reaction of barium 

peroxide with nitric acid, Thenard also found that blood breaks down H2O2. The world 

production of H2O2, which is mainly used in the textile and paper industry [80] is over 

2.2 Mton/year [81]. It is also used in pharmaceutical and medical applications [82]. 

There are reactions that hydrogen peroxide can undergo depending on the substrate 

type as molecular addition (Equation 1), decomposition (Equation 2),  reduction 

(Equation 3),  substitution (Equation 4), and oxidation (Equation 5) [81].  H2O2, which 

is used as both an oxidant and a reducing agent, is preferred in many applications 

compared to other chemicals, as it gives environmentally friendly products, which are 

water and oxygen as side reaction products. It also has a high oxidation potential and 

is a versatile oxidant in the entire pH range with the water it produces as a by-product 

[81,83–85]. H2O2 is one of the most important representatives of reactive oxygen 

species (ROS) and is one of the responsible signaling molecules in different 

transmission processes such as disease progression or normal cell functions. H2O2, 

which acts as a messenger molecule in cell shape changes, recruitment of immune 

cells, and initiation of cell proliferation, spreads between cells and tissues [83,85].  
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Addition:  H2O2 + A → A H2O2                     (1) 

Decomposition: 2H2O2 → 2H2O + O2           (2) 

Reduction: H2O2 + R → RH2 + O2                (3) 

Substitution: H2O2 + RX → ROOH + HX     (4) 

Oxidation: H2O2 + M → MO + H2O             (5) 

Due to all these features it has, H2O2 determination and monitoring are important in 

both environmental and medical diagnosis. It is particularly helpful in providing 

quantitative analysis of various enzyme substrates such as protein and carbohydrates 

[84,85]. Many different analytical techniques can be used for the determination of  

H2O2. Examples of these methods can be colorimetry [86], titrimetry [87], 

chemiluminescence [88], and spectrophotometry [89]. 

In a study in the literature, an amperometric sensor was developed for the 

determination of H2O2. In order to facilitate the reduction of H2O2, nanoparticles were 

used in the study and a more understandable evaluation of the concentration ranges 

was achieved by using two different linear ranges [90].  

A two-stage colorimetric system was used in a study by Zhang et al. to detect H2O2. 

The outcomes demonstrated that the H2O2 detection limit was 0.3 µM [85].  

1.4.2 Lactate 

The two isomers of lactate, discovered by Carl Wilhelm Scheele in 1780 as a byproduct 

of milk, are L-lactate and D-lactate. L-lactate, generally produced in human cells, is 

almost 10 times more abundant than D-lactate in the blood. At the same time, L-lactate 

is a by-product that shows the transition from an aerobic state to an anaerobic state. 

Lactate dehydrogenase (LDH), the lactate oxidizing enzyme, is the byproduct of 

glycolysis and produces L-lactate as a result [91,92]. Both in the lab and at the point 

of care, L-lactate is measured [92]. It has also gained importance in the fermentation 

and dairy industry [93]. L-lactate, which is the carbon source for the synthesis of 

various biomolecules, is a biomarker in energy metabolism [94]. 
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 It is known that lactate is important in evaluating physical performance in military, 

sports, and health applications, as it is an important marker in tissue oxygenation and 

shock/trauma treatment. The normal lactate level in human blood is between 0.5-1.5 

mM and it can be increased to 25 mM in excessive activity and certain medical 

conditions [95]. In a healthy person sweat lactate concertation is between 10-25 mM. 

At the same time, lactate is found in interstitial fluid, saliva, and tear, and the 

concentration of lactate is between 1.9-2.2 mM, 0.1-2.5 mM, and 1-5 mM respectively 

[96]. When physical activity is intense, aerobic metabolism is insufficient. In this case, 

glycogen stored in the muscles is used for energy and lactate production. Due to these 

features, lactate must be followed by health personnel and trainers in cases where high 

performance is required [74,91,97].  

In a study by Jia et al., lactate from human sweat was measured for the first time in 

real-time using an electrochemical biosensor. A flexible printed temporary transfer 

tattoo serves as the sensor that is measured while exercising. Lactate was measured by 

this enzyme sensor linearly up to 20 mM [98].  

In another study in the literature, sweat lactate measurement was performed. In this 

study, a design that can be easily adhered to the skin using a paper-based sensor was 

used. A low detection limit of 0.06 mM was obtained in this biosensor, which is a 

disposable wearable analytical platform [99].  

1.5 Peroxidase-like activity of Nanoparticles 

Their size-dependent physical and chemical properties make nanoparticles stand out 

in many areas. Combining the properties of solids with the ability of molecules to 

move, nanoparticles form large surfaces that can interact with biological systems due 

to their small size [100,101]. An important advantage of nanoparticles is that they can 

be imparted with various metal and semiconductor core materials such as magnetic 

and fluorescence behaviors [102].  

Enzymes, one of the basic macromolecules, have an important place in the field of 

biomedicine because they can catalyze biological systems and have high selectivity. 

However, due to their disadvantages [103] (expensive, easily degraded, difficult 

storage conditions, etc.), different materials that can replace them have been 
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researched for a long time. For this purpose, man-made nanomaterials that can replace 

enzymes have been produced. Nanoparticles called nanozymes, which replace 

enzymes and are preferred due to their particle sizes [104], shapes, and structures [105] 

are used in the field of biosensing. The large surface-to-volume ratio, high catalytic 

activity, high surface reaction activity, and strong adsorption properties of these 

nanoparticles provide great advantages for biosensor applications [106–110]. 

Particularly in biosensor studies, nanoparticles with peroxidase activity draw attention. 

In 2007, Fe3O4 nanoparticles are the first original nanozyme imitating peroxidase 

activity in the literature [111].  

Carbon nanoparticles (PtCNPs) coated with Pt have been used to create a biosensor 

that can detect glucose. In this experiment, H2O2 and PtCNPs catalyze TMB in place 

of HRP. According to the results, the detection limit for glucose is 0.30 mM and for 

H2O2 is 0.15 mM [108].  

A point-of-care test based on the peroxidase activity of Au@Pt nanoparticles was 

carried out for the quick and precise detection of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). The LOD was 11 ng mL-1 in the study conducted for 

the colorimetric detection of the spike (S1) protein of SARS-CoV-2 [112].  

1.6 Artificial Intelligence in Colorimetry 

The biggest disadvantages in colorimetric analysis are environmental conditions and 

camera optics. In order to eliminate these disadvantages, artificial intelligence 

approaches in the quantitative evaluation process have become a trend recently. 

Chemometrics is the use of mathematical or statistical methods to design or choose the 

best experiments and measurement techniques and to query the most chemical 

information by examining chemical data. Principal component analysis (PCA), 

multiple linear regression (MLR), hierarchical clustering analysis (HCA), principal 

component regression (PCR),  partial least squares discriminant analysis (PLSDA), 

and their combinations are the most frequently used chemometric techniques 

[1,63,113].  The purpose of using color spaces in colorimetric analysis is to measure 

and describe the colors produced by a sample. Commonly used color spaces in the 

colorimetric analysis are L*a*b*, RGB, HSV, CMYK, and CIE Lab*. The color space 
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used to measure color differences and used independently of the device is L*a*b*. 

Defines colors by their L-value or their lightness. It also defines it according to the 

red-green and blue-yellow color components [114]. An additional color space that 

describes the colors produced by digital displays is RGB. It describes colors based on 

the red, green, and blue light required to produce a particular color [115]. Used in 

CMYK printing as a subtractive color space [116]. Another color space used in 

colorimetric analysis is CIE Lab* defined by the International Commission on 

Illumination (CIE). This color space is similar to the Lab color space. The difference 

from the Lab color space is that it is based on a standard observer model [117]. 

The disadvantages of the calibration curve used in colorimetric sensors encourage the 

use of artificial intelligence (AI) approaches. AI algorithms (Machine Learning (ML) 

and Deep Learning (DL)) can quickly and accurately measure the concentration of the 

substance. ML and DL algorithms can be trained to recognize patterns in colorimetric 

data and use that information to measure the concentration of a particular substance in 

a sample. The advantages of artificial intelligence algorithms in colorimetric analysis 

can be sorted; increased accuracy, fast results, automation, optimization, detection of 

complex models, and integration [118,119].  

The use of smartphones in colorimetric analysis is particularly noteworthy for POC 

tests. It can be used to find the concentration of molecules by analyzing the RGB 

values of the color change in the image obtained with the smartphone camera. The 

main advantages of using smartphones as a colorimeter can be sorted; low cost, 

integration with applications, portability, user-friendly system, and high-quality 

imaging [63,120].  

A machine learning-based smartphone application was developed to detect H2O2. 

Images are processed for feature extraction to eliminate camera optics issues. Then, in 

the study using machine learning, the highest classification accuracy was obtained with 

a repeatability of 97.8% [120].  

In another study in the literature, a deep learning-based smartphone application was 

developed using the enzyme-linked immunosorbent test (c-ELISA). In the study using 

µPAD, an accuracy of over 97% was achieved in the classification of the results [121]. 
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1.7 Aim of Thesis 

This project, it is aimed to perform a colorimetric analysis of quantitative data obtained 

from images photographed with a smartphone camera using artificial intelligence 

methods. This thesis aimed to change the color of the solution depending on the lactate 

concentration with a deep learning-based smartphone application, and the change of 

the hydrogen peroxide concentration using nanoparticles with peroxidase-mimetic 

activity, with a machine learning-based smartphone applicationAt the same time, this 

kit is aimed to be easy to use for non-professionals. Chapter 2, it is aimed to detect 

H2O2 concentration with peroxidase-mimetic activity magnetic NPs and use a machine 

learning-based smartphone application. It is aimed to detect the lactate concentration 

in sweat with a smartphone application developed using deep learning in Chapter 3. It 

is aimed to produce a colorimetric analysis kit for the clinic by integrating a 

colorimetric analysis-based microfluidic analytical device (µPAD) and a smartphone 

application for use in sports medicine. 
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Chapter 2 

2 Colorimetric Detection of H2O2 With 

Fe3O4@ Chi Nanozyme Modified 

µpads Using Artificial Intelligence  

2.1 Materials and Methods 

2.1.1 Materials 

TMB, H2O2 (≥ 30 wt%), Chi – high molecular weight, acetic acid (≥ 99%), D( +)-

glucose (≥ 99.5%), sucrose (≥ 99.5%), lactic acid (≥ 85%), urea (≥ 99.5%), KCl (≥ 

99%), NaCl (≥ 99.5%), CaCl2 (≥ 93%), MgCl2 (≥ 98%), Na2SO4 (≥ 99%), NaHCO3 (≥ 

99.7%), FeCl2.4H2O (≥ 99.0%) FeCl3.6H2O (≥ 99.0%), NaOH (≥ 97.0%), HCl (37 

wt%), and fetal bovine serum (FBS). All chemicals were supplied by Sigma- Aldrich, 

USA. Synthetic serum (physiologic) (Osel, Turkey). Whatman qualitative filter paper 

– grade 1 (Sigma-Aldrich, USA). 

2.1.2 Methods 

2.1.2.1  Design and Fabrication of μPAD  

First, the Microsoft PowerPoint program was used to create a design for the µPADs. 

The design was then printed using a Wax printer (ColorQube 8900 Multifunction 

Printer, Xerox, USA) on Whatman filter paper. Whatman No. 1 filter paper is the 

material used for the production of uPADs. uPADs were made in the shape of a circle, 
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with an outer diameter of 0.6 cm and an inner diameter of 0.4 cm. The filter paper was 

then placed on a hot plate for 3–4 minutes at 120 °C to speed up the diffusion of the 

solid ink into the paper's pores and create the hydrophobic barriers. 

2.1.2.2  Synthesis and Characterization of Nanoparticles 

Co-precipitation of 1.72 g of Fe (II) and 4.7 g of Fe (III) salts in 50 mL dH2O produced 

Fe3O4 NPs. The iron salt solution was then added 3 M of ammonia at a rate of 10 mL 

per minute while being mechanically stirred. A black precipitate was finally produced 

after the process was continued until the pH level reached 10. Fe3O4 NPs were then 

washed with dH2O to remove alkali metals and bring the pH level to a neutral range 

(pH ±7). After that, samples were freeze-dried for characterization and storage. 

Fe3O4@Chi NPs were subsequently created. In simple terms, high molecular weight 

Chi was dissolved in 1 M acetic acid solution to produce 0.2 mg mL1 of Chi solution. 

Then, 100 mL of Chi solution was added, along with 70 mg of Fe3O4, and the mixture 

was mixed for 18 hours. In essence, during this process, Chi was adsorbed on the NP 

surface, resulting in a uniform dark brown suspension. Using a magnet and water, the 

magnetic Fe3O4@Chi NPs were washed numerous times. To confirm the functional 

groups on their surfaces, Fe3O4 and Fe3O4@Chi NPs performed Fourier-transform 

infrared spectroscopy (FTIR) measurements. Then, an X-ray diffractometer was used 

to characterize the iron phase abundance, morphology, crystallite size, and magnetic 

properties of both NPs. The patterns from X-ray diffraction (XRD) were subjected to 

Rietveld pattern analysis. Their particle size distribution was also measured using 

dynamic light scattering (DLS). Using a thermogravimetric system (TGA-SDT Q600 

analyzer, TA Instruments, USA), the thermal characteristics of the Fe3O4@ Chi NPs 

were investigated. The sample was first put into an alumina crucible with 4 mg for 

analysis. The temperature was then increased by 20 °C per minute until it reached 600 

°C. 

2.1.2.3 Colorimetric Detections 

For colorimetric detection, 0.8 and 1 µL of Fe3O4@Chi NPs were added to the 

detection zones, respectively. After each addition, the PADs were allowed to air-dry 

at room temperature. After that, H2O2 solutions of varying concentrations (0.01 mM, 
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0.05 mM, 0.1 mM, 0.2 mM, 0.5 mM, 1 mM, 5 mM, 10 mM, 25 mM, 50 mM) were 

used to test the PADs. A smartphone was used to image the color change obtained at t 

= 30 s and t = 10 min for each concentration level after 2 µL aliquots of H2O2 solutions 

were added to the detection areas of the µPADs (Figure 2.1). 

 

 

Figure 2.1: An illustration of the system's schematic. Images of the color change 

brought about by the oxidation of TMB by Fe3O4@ Chi NPs at various H2O2 

concentrations under seven different illuminations were taken using a smartphone 

camera. 

2.1.2.4 Detection with UV-Vis 

TMB and H2O2 solutions were prepared in ethanol and dH2O, respectively. Time-

dependent absorbance of Fe3O4@Chi NPs was recorded every 4 s at 645 nm for 300 s 

in a mixture containing 50 μL of TMB, 50 μL of 2 mg mL− 1 Fe3O4@Chi NPs, and 900 

μL of 200 μM H2O2. The absorption spectrum was recorded by UV–Vis 

spectrophotometer in a quartz cuvette with a 1 cm path length (Evolution 201/220, 

Thermo Scientific, USA). Next, H2O2 concentration-dependent absorbance was 

obtained at 120 s by adding H2O2 at varying concentrations (0, 0.25, 0.5, 1, 10, 20, 50, 

100, and 200 μM) to the mixture. For comparison, the impact of  Fe3O4 NPs, TMB, 

and Chi on color change was investigated with 200 μM of H2O2 simply by recording 

the UV–Vis spectra at 120 s. Fe3O4 NPs and Chi were tested in the same way as 

Fe3O4@Chi NPs, where a mixture containing 50 μL TMB and 900 μL of 200 μM H2O2 

was mixed with 50 μL 2 mg mL− 1 Fe3O4 NPs and 1% (w/v) Chi in acetic acid, 2% 

(v/v), respectively. To investigate the impact of TMB alone on color change, 50 μL 

TMB was mixed with 50 μL of dH2O and 900 μL of 200 μM H2O2. 
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2.1.2.5 Image acquisition  

The acquisition of images is a key step in enhancing the machine learning classifiers' 

resilience to challenging circumstances like ambient light and camera optics [63,120]. 

A dataset for training classifiers must mimic every scenario in order for them to 

function with phone-independent repeatability under a variety of lighting conditions 

[122,123]. In order to ensure that the dataset was large enough to handle the 

challenging circumstances, images were taken with multiple smartphones under 

controlled lighting conditions, including halogen (H), fluorescent (F), and sunlight (S) 

bulb sources. H (Osram 60 W), F (Klite 6 W), and S (Philips 5.5 W) light bulb sources 

were purposefully selected with various characteristics as hot (2700 K), neutral (4000 

K), and cold (6500 K), respectively. The dataset could be expanded by using additional 

illumination sources, but three sources were found to be adequate because seven 

lighting conditions (H, F, S, HF, HS, FS, and HFS) were obtained by combining the 

light sources in different ways. Images of µPADs were taken with a smartphone at a 

distance of 8 cm and a 30° incident angle. Additionally, the distances between the H, 

F, and S lamp sources and the PADs were 50, 53, and 57 cm, respectively. (Figure 

2.2).  

 

Figure 2.2: The numerical values of the system created while capturing the photo are 

shown. 
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To ensure phone-independent repeatability, the setup uses four different smartphones 

(iPhone 6S, iPhone 5SE, Oppo A5 2020, and Reeder P10) running Android and iOS 

and with distinctive camera properties (Table 2.1). The shutter speed, ISO, exposure 

time, and color temperature were all adjusted by the embedded imaging software while 

using a smartphone camera in auto mode. At t = 30 s and t = 10 min intervals, PAD 

images with eight different concentration values were captured, yielding 448 images 

for the dataset. The dataset was uploaded to a computer and used in the MATLAB 

(MathWorks, MA, USA) environment to extract the features from these images. 

Table 2.1: Camera properties of the smartphones used for imaging. 

Smartphone 

brand 

Image  

resolution 

Optics Camera 

resolution 

Oppo A5 2020 4000 x 3000 f/1.8 12 MP 

iPhone 5SE 4032 x 3024 f/2.2 12 MP 

iPhone 6S 4032 x 3024 f/2.2 12 MP 

Reeder P10 4160 x 3120 f/2 13 MP 

2.1.2.6 Feature extraction and machine learning classifiers  

Feature extraction derives a new input representation with reduced dimensions 

containing informative and nonredundant sets of feature vectors [63]. Extracted 

features are important because, during the training phase, classifiers learn to 

distinguish inputs based on them. Therefore, more distinguishing features enable 

classifiers to precisely differentiate between inputs. As they are promising in terms of 

image representation, color and texture information are used in this study to extract the 

image features [120]. The region of interest (ROI) was cropped to obtain the color 

channels R, G, B, H, S, V, L*, a*, and b* after converting the RGB image to HSV and 

L*a*b* for each concentration. Then, values for each color channel's mean, skewness, 

and kurtosis were determined. Calculations were also made for texture characteristics 

like contrast, correlation, homogeneity, and energy. Additionally, the values for 

entropy and density were calculated, yielding a total of 33 features for the classifiers 

to be trained in the MATLAB (Math-Works, MA, USA) environment. To determine 

the H2O2 on PADs, a total of 23 classifiers were trained using all the extracted features. 
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The performance comparison's classification accuracy was assessed in order to 

determine which classifier should be included in our Hiperox Sens++ app. 

2.1.2.7 Smartphone application: Hi‑perox Sens++  

To test the proposed colorimetric detection of H2O2, our custom-designed Android 

application, named Hi-perox Sens++, was developed with improved features in terms 

of simplicity, speed, test options, and user-friendliness. In comparison to the previous 

version, which used both the MATLAB and Python environments, the classification 

process was only run on the remote server under the MATLAB environment in the 

current version. Additionally, the interface has been enhanced with new screen designs 

and icons to make it simpler and more intuitive. In Figure 2.3, screenshots of the Hi-

perox Sens++ are shown. The main page of the app, as seen in Figure 2.3a, gives users 

the option to upload an existing photo or take a new one using their smartphone's 

camera (Figure 2.3b). The image is displayed on the screen once it has been loaded or 

captured in the application (Figure 2.3c). The ROI is then quantitatively cropped using 

the crop box as shown in Figure 2.3d. To determine whether the ROI is suitable for 

analysis, the cropped ROI is displayed (Figure 2.3e). If not, the crop icon can be used 

to re-crop it. When the upload button is pressed, the ROI is transmitted to the distant 

server. The remote server's classifier uses the ROI to categorize the concentration 

value. In order to display the value on the screen, the value is finally sent from the 

remote server to the Hi-perox Sens++ (Figure 2.3f). 
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Figure 2.3: Demonstration of colorimetric H2O2 quantification procedures on the 

homepage of the Hi-perox Sens++. The gallery or smartphone camera can be used to 

select an image as shown in b. The selected image is displayed on the screen in c. 

The image is cropped using an adjustable crop box, and d displays the cropped area. 

The cropped patch is uploaded in e for H2O2 analysis. Finally, the result is given in f. 

2.1.2.8 Selectivity, Stability, and Real Sample Analysis 

A selectivity test was conducted using a variety of interferents (CaCl2, NaCl, KCl, 

NaHCO3, MgCl2, CaCl2, Na2SO4, urea, sucrose, glucose, lactate solutions) at 10 mM 

to show the specificity of PADs for H2O2. The images of µPADs were taken with a 

smartphone camera at t = 30 s and t = 10 min following the addition of each interferent. 

Following an empirical analysis of the images, the outcomes were contrasted with 

those obtained using 0 and 5 mM H2O2. In addition, a mixture containing all the 

interfering species was prepared at given concentrations and used for colorimetric 

testing of 0 and 5 mM H2O2. The stability test was conducted with μPADs stored at 4 

°C for 0, 1, 3, 6, and 8 days. Briefly, 5 mM H2O2 was added to these μPADs, and the 

color change was imaged at 10 min under controlled lighting conditions. Water 

directly taken from the tap, artificial serum, and FBS were used as real samples to test 

the classification performance of the system. Only FBS was diluted 50 times with 
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dH2O. Varying concentrations of standard H2O2 (0, 0.05, 0.1, 0.2, 0.5, 1, and 5 mM) 

were added to the solutions to prepare the spiked samples.  

2.2 Results and Discussion 

The XRD patterns of Fe3O4 and Fe3O4@Chi NPs are displayed in Figure 2.4a. In 

accordance with the diffraction patterns of the 220°, 311°, 400°, 422°, 511°, and 440° 

crystal faces of the Fe3O4 spinel structure (ICSD #26,410), characteristic peaks were 

seen at 2 δ of 9.6°, 30.1°, 35.5°, 43.1°, 54.5°, 57.6°, and 63.6° (Figure 2.5). Peak 

broadening suggested that NPs were of a small size. In order to determine the 

crystallite size of NPs from the XRD data, a modified Debye-Scherrer equation was 

used. The Fe3O4@Chi NPs' broad diffraction peak proves that the amorphous Chi 

polymer successfully coated the Fe3O4 NPs. Additionally, the Fe3O4 NP phase did not 

change as a result of the Chi coating. The Fe3O4 spinel type structure is confirmed by 

the peaks at wavenumbers of 578 and 464 cm1 in the FTIR spectrum of the material 

(Figure 2.4b). These peaks are thought to originate from Fe-O bands in tetrahedral and 

octahedral sites [124,125]. The Fe3O4@Chi NPs spectrum, when compared to Fe3O4 

NPs, showed a number of absorption peaks, indicating the presence of various 

functional groups in the cross-linked beads. O-H stretching vibrations and amino 

groups of Chi can be linked to the broadband in the 3000–3600 cm-1 range. At 2931 

cm -1, the symmetric and asymmetric aliphatic C-H stretching bands were visible. Chi's 

C-O stretching vibration of the amide was represented by the bands at 1625 and 1529 

cm-1, while the C-O stretching vibration of the C-OH was represented by the band at 

1068 cm-1 [126,127]. Additionally, the IR spectrum of Fe3O4 @ Chi NPs (580 cm-1) 

showed the strong characteristic adsorption peaks linked to the Fe-O bond vibration of 

Fe3O4, further supporting the idea that Fe3O4 in Fe3O4@Chi NPs was formed in situ. 

[127]. The Chi coating of Fe3O4 NP was also confirmed with DLS and TGA (Figure 

2.6). 
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Figure 2.4: XRD (a) and FTIR (b) analysis results of Fe3O4@Chi NPs Fe3O4 and 

Fe3O4. 

 

 

 
 

Figure 2.5: Rietveld pattern analysis results and report of Fe3O4@Chi NPs. 

 

 

 

Figure 2.6: DLS (a) and TGA (b) analysis results of Fe3O4 @Chi NPs Fe3O4 and 

Fe3O4. 
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Using UV-Vis spectroscopy, the efficiency of Fe3O4@ Chi NPs for the colorimetric 

detection of H2O2 was evaluated in comparison to TMB, Chi, and Fe3O4 NPs. First, 

the time-dependent UV–Vis absorbance response of Fe3O4@ Chi NPs at 645 nm was 

analyzed. The response reaches a steady state after 100 seconds, as shown in Figure 

2.7a, so the response at 120 seconds was used in the subsequent experiments. The 

chromogenic substance TMB was present in all test groups. 

 

Figure 2.7: Fe3O4@Chi NPs' time-dependent reaction to 200 µM of H2O2 (a). A 

calibration curve showing the response of Fe3O4@Chi NPs in 0 to 1µM H2O2 (n = 3). 

In the cases of only TMB (control) and Fe3O4 NPs, as shown in Figures 2.8ai and bi-

bii, no color change was seen, proving conclusively that these two cannot cause any 

color change by themselves even in the presence of H2O2 at high concentration. As 

opposed to Chi, which produced a blueish color, H2O2 confirmed Chi's catalytic 

properties for the oxidation of TMB [128,129]. Though it was significantly less than 

that of Fe3O4 @ Chi NPs at 10 µM H2O2, the color change was obtained at 200 µM 

H2O2. In other words, Fe3O4 @ Chi NPs had significantly better catalytic performance 

than Chi alone. The detection of H2O2 at various concentrations was then performed 

using Fe3O4 @ Chi NPs. Figure 2.8bi unequivocally demonstrates that increasing the 

H2O2 concentration from 1 to 200 µM caused a perceptible color change. Figures 2.8aii 

and 2.7b show the calibration curve that was created using the UV-Vis absorbance 

data at 645 nm (Figure 2.8ai). 
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Figure 2.8: UV-Vis spectra of TMB, Fe3O4, and Chi in 200 µM of H2O2 (ai), as well 

as those of Fe3O4@Chi NPs in various concentrations of H2O2. A calibration curve 

showing the correlation between Fe3O4@Chi NP response and H2O2 concentrations 

(n = 3) (aii). The visual color change of TMB, Fe3O4, Chi, and Fe3O4@ Chi NPs in 

solutions of H2O2 at various concentrations (n = 3), and a comparison of their 

responses (bii). Fe3O4@ Chi NPs' effects on the color of µPADs that can be seen 

with the naked eye in the presence of TMB and various concentrations of H2O2 as 

opposed to TMB only at 5000 µM of H2O2 (c). 

 

The limit of detection (LOD) of the Fe3O4@ Chi NPs for the detection of H2O2 was 

calculated to be 69 nM (LOD = 3 × σ/ Slope). Compared to some of the recently 

published studies, Fe3O4@ Chi NPs demonstrated a significantly low LOD with a 

narrow detection range. Afterward, the Fe3O4@Chi NPs were applied to a μPAD as 

shown in Figure 2.1 for the colorimetric detection of H2O2 using machine learning 

classifiers, a subset of an artificial approach. First, varying concentration of TMB (20–

320 mM) was tested in μPADs to obtain the maximum color intensity. According to 

the results of 5 mM H2O2 (t = 10 min), increasing the concentration of TMB had no 

significant impact in terms of color intensity, and therefore, 20 mM of TMB (0.8 μL) 

was used in subsequent experiments (Figure 2.9a). As for the nanozyme, it increased 

the color intensity as well as the background noise as it alone made the detection areas 

of the μPADs brown (Figure 2.9b). To reduce the background noise and have much 

uniform color change, 1 μL aliquots of 2 mg mL− 1 Fe3O4@ Chi NPs were used in 

μPADs. Similarly, increasing the sample volume changes the response as the drying 

time changes, and the color information changes during drying. Therefore, 2 μL of 

sample was used in all control and test groups to prevent any interference caused by 

drying and to have a uniform response as well as a satisfactory color change. The LOD 

of the μPAD based on color intensity was calculated as 6.5 μM (LOD = 3 × σ/Slope), 
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which was higher than that of the UV–Vis absorbance-based detection due to various 

reasons, including heterogeneous color distribution and noise from the underlying 

paper structure. However, it still demonstrates the potential of the system to be trained 

for lower concentrations of H2O2. When compared to a recently published study, the 

system had a comparable performance with a larger detection range. Unlike the study, 

the proposed system uses machine learning classifiers for a robust and adaptive H2O2 

determination based on image features instead of color intensity data or a calibration 

curve, eliminating the influence of illumination variation and camera optics. The effect 

of pH on sensing was also tested in a pH range of 3 to 11. According to the results at 

10 min, the sensor performed better at acidic and neutral pH than in basic conditions 

(Figure 2.10). 

 

Figure 2.9: The effect of TMB (a) and Fe3O4@Chi (b) NPs on color intensity (t=10 

min, n=3). 

 

 

Figure 2.10: The effect of pH at 10 min. 

 

First, images of µPADs detecting H2O2 at varying concentrations between 0 and 5 mM 

at t = 30 s were used to train twenty-three classifiers (Figure 2.8c). 98.7% classification 

accuracy put linear discriminant analysis (LDA) ahead of the competition in the 
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performance comparison (Table 2.2). The classification accuracy was then increased 

to 98.7% for the images taken at t = 10 min (Figure 2.8c) using the same techniques. 

The accuracy shows a small change even after 10 minutes, demonstrating the system's 

stability. The LDA uses maximum likelihood and Bayesian rules to determine which 

input and predefined classes have the highest likelihood based on a discriminant 

function that accurately assigns units to their correct classes with the least amount of 

error [130]. LDA is used in two steps to obtain the class separation rules. Finding the 

discriminant functions that will be used to identify the true group of the trained object 

comes first. Second, based on the assignment rule generated using these functions, it 

aims to identify the group to which the object will be assigned [131]. The robustness 

of the system is demonstrated by the confusion matrices shown in Fig. 2.3a-b. Besides 

classification accuracy (Eq. 1), the performance of the classifiers was also tested for 

precision (Eq. 2), recall (Eq. 3), and F1-score (Eq. 4). 

Accuracy = (TP+TN)/(TP+TN+FP+FN)              (1) 

Precision = TP/(TP+FP)                              (2) 

Recall = TP/(TP+FN)                                  (3) 

F1-score = 2×(Precision×Recall)/(Precision+Recall)      (4) 

 

Table 2.2: Classification accuracy results for H2O2 with different machine learning 

classifiers 

  Classification Accuracy (%) 

Machine Learning Classifiers t = 30 s t = 10 min 

Linear SVM 83.25 74.86 

Random Forest 70.81 71.81 

Decision Tree 82.80 83.82 

Nearest Neighbors (KNN) 63.29 64.63 

Bagging Classifier 42.48 44.20 

Naive Bayes 68.77 69.03 

Gaussian Process 81.04 81.42 

Logistic Regression 90.05 90.10 

Linear Discriminant Analysis 98.60 98.70 

AdaBoost 63.97 64.76 

Bernoulli Naive Bayes 84.34 85.38 

Extra Tree Classifier 82.46 83.44 
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Gradient Boosting Classifier 85.74 86.72 

RBF SVM 73.83 75.44 

Nu SVM 75.28 76.65 

Passive Aggressive Classifier 74.64 75.09 

QDA 70.40 71.69 

Weighted KNN 87.56 88.74 

Ensemble Boosted Tree 77.98 78.82 

Ensemble Bagged Tree 75.93 76.91 

Ensemble Subspace Discriminant 82.02 83.78 

Coarse Tree 73.69 72.63 

Ensemble RUS Boosted Tree 70.02 71.11 

 

False positives (FPs) are positive predictions that the classifier incorrectly identifies as 

negative. The positive predictions that the classifier makes are known as TPs (true 

positives). The number of predictions that are classified as negative is called TN (true 

negative), and the number of false negatives is known as FN (false negatives) [132]. 

The accuracy rate of the model, which is the ratio of TP + TN to TP + TN + FP + FN, 

is the most widely used and straightforward metric to assess performance. The 

precision is calculated as the product of the TP and the total number of samples 

predicted to be class positive (TP + FP). The proportion of TP to TP + FN is the recall. 

Utilizing metrics for precision and recall, the F1-score is determined. Measures of 

recall and precision by themselves are insufficient to derive a meaningful comparison 

conclusion. More accurate results are obtained when combining the two evaluation 

criteria, and the F1 score is calculated as the harmonic mean of precision and recall. 

[133]. According to the results of the performance metrics (Figure 2.11), LDA had the 

best accuracy in terms of precision, recall, and F1-score. For t = 10 min, classification 

reports and a confusion matrix are presented in Table 2.3 and Figure 2.12, respectively. 

The performance metrics' results are below average at concentrations of 0.5 and 5 mM 

H2O2, which is also evident in the confusion matrix (Figure 2.13), which depicts the 

performance metrics. In a nutshell, two out of 28 tested samples at 5 mM and one out 

of 28 tested samples at 0.5 mM were misclassified as 0.2 mM and 0.5 mM, respectively 

(Figure 2.13a). The confusion matrix's diagonal location of the other concentration 

results indicates that they were correctly classified. The correlation between the 

classifier's true and predicted classes can be seen in the confusion matrices. The true 

and predicted classes of LDA for each value of the H2O2 concentration are displayed 
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in Figure 2.13a-b along with confusion matrices for t = 30 s and t = 10 min, 

respectively. The current system showed greater accuracy when compared to the 

nonenzymatic platform [120]. The current system, in contrast to the platform, can be 

used to detect some biologically important molecules, including lactate and glucose. 

 

Figure 2.11: The performance of LDA based on precision, recall, and F1-score at t = 

30 s. 

 

Table 2.3: Evaluation of the LDA for Fe3O4@Chi at t=10 min in terms of precision, 

recall, and F1-score 

 Precision Recall F1-score 

0 mM 1.00 0.93 0.97 

0.01 mM 0.96 1.00 0.98 

0.05 mM 0.96 1.00 0.98 

0.1 mM 1.00 1.00 1.00 

0.2 mM 1.00 1.00 1.00 

0.5 mM 1.00 0.97 0.98 

1 mM 1.00 1.00 1.00 

5 mM 0.96 1.00 0.98 

Average 0.99 0.99 0.99 
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Figure 2.12: Evaluation of LDA with error bars in terms of precision, recall, and F1-

score at t=10 min for Fe3O4@Chi 

 

 

Figure 2.13: Confusion matrices of Fe3O4@ Chi NPs at t = 30 s (a) and t = 10 min 

(b) in various H2O2 concentrations 

 

Hi-perox Sens++, a user-friendly and easy-to-use smartphone app for H2O2 detection, 

uses the LDA classifier. The app is shown using screenshots in Figure 2.3, where the 

cropped version of the selected image is sent to a remote server. The result is shown 

in Hi-perox Sens++ as in Figure 2.3f, where the sample H2O2 was correctly identified 

as 1 mM, following the classification of the concentration level. The proposed system 

was then tested with tap water, synthetic serum, and FBS to demonstrate its practical 

applicability. Synthetic serum and FBS resulted in a slightly different color than tap 

water. Therefore, the machine learning (ML) training dataset was expanded to include 

these two samples, which demonstrates the adaptability of the system to new 

conditions. As seen in Table 2.4, an acceptable recovery of H2O2 (104.6% for tap 
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water, 96.9% for synthetic serum and 100.6 for FBS in average, calculated as shown 

in [134], was achieved with the present systemIt is important to note that training the 

machine learning classifier with additional real samples could increase the system's 

accuracy even more. A selectivity test was also run using a few interfering species. 

Real samples contain various chemicals that could potentially interfere with the 

detection of H2O2 [135]. Therefore, various anions and cations present in tap water 

along with some common organic compounds were tested for the selectivity of the 

system. The results at 30 s clearly demonstrated that there was no discernible 

difference between 10 mM interferents and 0 mM H2O2. However, a significant change 

in color intensity at 5 mM H2O2 demonstrated the sensor's H2O2 selectivity. All test 

groups experienced a proportional change in color intensity as the solutions in the 

µPADs dried after 10 minutes. When a mixture made up of all interfering species was 

used as a base solution, a comparable reaction was also noticed. In addition, μPADs 

demonstrated a relatively stable response for 8 days when they were stored in fridge 

(Figure 2.14). It is worth noting that the μPADs were stored at + 4°C, as TMB causes 

loss of sensitivity when stored at room temperature. Although machine learning was 

successfully integrated to the system, it requires internet access for operation. Unlike 

machine learning, deep learning can be embedded into a smartphone app for off-line 

analysis. It also automatically extracts features for training. Therefore, deep learning 

will be integrated to the system in the future. Although the system is robust against 

illumination variation and camera optics, its robustness can be further improved by 

including more illumination conditions and smartphones of different brands to the 

training dataset. In addition, although nanozymes have the potential to overcome some 

of the disadvantages of natural enzymes in general, they have disadvantages such as 

low substrate specificity, poor biocompatibility, and potential nanotoxicity [136]. 

Their catalytic activity also depends on size, shape, structure, and composition. 

Therefore, it is possible to further improve the catalytic performance of the Fe3O4@Chi 

nanozyme by changing the synthesis conditions. 
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Figure 2.14: Stability of the system for 8 days (n=3). 

 

Table 2.4: Determination of H2O2 in tap water, synthetic serum and FBS based on the 

average of classification results. 

 

 

Added 

(mM) 

Tap water Synthetic serum FBS 

Found 

(mM)* 

Recovery 

(%) 

Found 

(mM)* 

Recovery 

(%) 

Found 

(mM)* 

Recovery 

(%) 

0 0.014 - 0.007 - 0.00 - 

0.05 0.057 114 0.05 100 0.05 100 

0.1 0.114 114 0.10 100 0.11 114.3 

0.2 0.2 100 0.19 92.9 0.18 89.3 

0.5 0.5 100 0.57 114.3 0.50 100 

1 1 100 0.86 85.7 1.00 100 

5 5 100 4.43 88.6 5.00 100 

Average  104.7  96.9  100.6 

* The average of classification results 
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2.3 Conclusion 

In this study, a machine learning-based smartphone app was used to determine H2O2 

using a peroxidase mimicking Fe3O4@ Chi nanozyme that was synthesized. The 

nanozyme displayed excellent peroxidase-like activity and high selectivity in 

comparison to the control group (only TMB), Fe3O4 NPs, and Chi. Although there are 

numerous studies using nanozymes for UV-Vis-based colorimetric analysis, very few 

report the use of nanozymes in µPADs, and none use artificial intelligence. To remove 

the obstacle preventing the widespread use of these excellent materials, particularly in 

resource-constrained environments, nanozymes must be applied to μPADs. To our 

knowledge, this is the first study to describe the development of a machine learning-

based smartphone app with an intuitive user interface for quick and accurate H2O2 

analysis in a paper sensor based on nanozymes. High accuracy, repeatability, and 

robustness against variations in lighting and camera optics were all provided by 

machine learning. The system can be trained for lower H2O2 concentrations, which 

could increase the system's practical applications due to the sensor's low LOD. Real 

samples were used to show the system's practical applicability. The tested H2O2 

concentration range could be useful for processes like wastewater treatment and H2O2 

testing in the food industry [137]. In conclusion, combining artificial intelligence with 

a smartphone app makes the analysis portable, simple to use, affordable, adaptable, 

and robust, all of which may help non-expert users use such analytical tools more 

effectively. 
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Chapter 3 

3 Smartphone Embedded Deep 

Learning Approach for Highly 

Accurate and Automated 

Colorimetric Lactate Analysis in 

Sweat 

3.1 Materials and Methods 

3.1.1 Materials 

NaCl (≥99 %) (Sigma Aldrich, USA), NH4Cl (≥99 %) (Sigma Aldrich, USA), urea 

(≥99 %) (Sigma Aldrich, USA), lactic acid (≥85 %) (Sigma Aldrich, USA), acetic acid 

(≥99 %) (Sigma Aldrich, USA), NaOH (≥98 %) (Sigma Aldrich, USA), TMB (Sigma 

Aldrich, USA), LOx from Aerococcus viridans (500 units/mg) (Sigma Aldrich, USA), 

HRP (≥250 units/ mg) (Sigma Aldrich, USA), KCl (≥99 %) (Sigma Aldrich, USA), D 

(+)-glucose (≥99 %) (Sigma Aldrich, USA), sucrose (≥99.5 %) (Sigma Aldrich, USA), 

uric acid (UA) (≥99%) (Sigma Aldrich, USA), ascorbic acid (AA) (≥99 %) (Sigma 

Aldrich, USA), dopamine (DA) (≥97 %) (Sigma Aldrich, USA), CaCl2 (≥97 %) 

(Sigma Aldrich, USA), Whatman qualitative filter paper - grade 1 (Sigma Aldrich, 

USA), plaster (Pharmacy, Turkey).  
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Artificial sweat was prepared according to a previous report [138]; only the lactate 

concentration was varied for testing as mentioned in the next section. 

3.1.2 Methods 

3.1.2.1 Design and Fabrication of μPAD and Patch 

The μPAD was designed using Microsoft PowerPoint 2013 to be printed on Whatman 

qualitative filter paper. μPADs were printed using wax printing. Briefly, designed 

μPAD pattern transferred onto filter paper using the wax printer (Xerox ColorQube 

8900, Xerox Corporation, USA). The designed μPAD provides the movement of 

artificial sweat with the help of hydrophilic channels, enabling it to reach the detection 

area. After printing, the designed μPAD was placed onto the hot plate to the paper, and 

penetration of the melted solid ink was placed into the pores of the chromatography 

paper. The hot plate was set at 180 °C for 120 sec where the wax melted and diffused 

into the pores of the filter paper, forming hydrophobic channels that allowed controlled 

fluid flow. 

Turning the μPAD into a lactate patch, a sticking plaster purchased from a local 

pharmacy. The sticking plaster was cut with a CNC laser cutting machine (Genmitsu 

3018-PRO CNC, SainSmart, China) and adjusted only the detection area of the μPAD 

was visible. The lactate detecting μPAD was sandwiched between the plaster and a 

transparent tape to avoid direct contact between the detection area and the skin.  

3.1.2.2 Preparation of Artificial Sweat 

Artificial sweat was prepared according to the previous report [138]. Artificial sweat 

solution is prepared by dissolving 20 g/L NaCl, 17.5 g/L NH4Cl, 5 g/L CH4N2O, 2.5 

ml/L C2H4O2, 15 ml/L C3H6O3 in deionized water. The lactic acid concentration was 

adjusted in artificial sweat solutions according to the value to be measured. The ideal 

pH environment for the operation of the HRP and LOx enzymes was investigated. The 

HRP enzyme is active between pH 4.0 and 8.0, and its most stable pH is 5.5 [139]. 

The LOx enzyme is active between pH 5.7 and 9.5, and its most stable pH is 7.7 [140]. 

Considering these values, the pH setting of artificial sweat containing 100 mM lactic 
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acid was measured between 6 and 7 using a pH meter. The lactic acid concentration 

was then adjusted to 0, 1, 5, 10, 20, and 50 mM concentrations. 

3.1.2.3 Colorimetric Detections 

The detection areas of the μPADs were modified by first adding 0.8 μL TMB and then 

an enzyme mixture containing 0.2 μL LOx and 0.8 μL HRP. After each solution 

addition, the μPADs were left to dry for about 10 min at + 4 °C. The colorimetric 

behavior of μPADs was evaluated using artificial sweat (Figure 3.1).  

 

Figure 3.1: Images of μPADs showing visually observable color changes with 

varying concentrations of lactate in artificial sweat at t = 0 min and t = 5 min. 

Briefly, μPADs were immersed in artificial sweat solutions containing lactate at 

different concentrations (0, 1, 5, 10, 20, and 50 mM), allowing these solutions to reach 

the detection areas under lateral flow. Color changes in the detection areas were 

imaged at time points of 0, 5, 10, and 15 min. To turn the μPAD into a lactate patch, a 

sticking plaster purchased from a local pharmacy was used. The plaster was cut with 

a CNC laser cutting machine (Genmitsu 3018-PRO CNC, SainSmart, China) so that 

only the detection area of the μPAD was visible. The lactate detecting μPAD was 

sandwiched between the plaster and a transparent tape to avoid direct contact between 

the detection area and the skin. Figure 3.2 shows that shematic illustration of the 

working principle of systems. 
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Figure 3.2: A schematic illustration showing the working principle of the system. 

Lactate is first converted to pyruvate by LOx, releasing H2O2 which is then used by 

HRP for the oxidation of TMB. The color change is imaged using a smartphone 

camera and the lactate level is determined by DeepLactate, an app running deep 

learning classifier. 

 

3.1.2.4 Deep Learning 

Deep learning is the branch of ML based on neural network architectures, including 

CNNs [141], recurrent neural networks (RNN) [142], autoencoders [143], 

transformers [144], and deep belief nets [133]. Among these architectures, CNNs show 

outstanding performance in processing grid-like topology data such as a digital image 

(DI). DI represents the visual data in the form of two-dimensional matrice, driven by 

applications such as classification [145,146], clustering [147], and object recognition 

[148]. Considering their multi-layered structure, CNNs are very powerful and 

computationally efficient in image classification as they employ convolution and 

pooling operations, and perform parameter sharing. Therefore, in this study, several 

CNN-based deep learning models were tested for quantitative and qualitative analysis 

of lactate on μPAD images captured with cameras of different smartphones. CNN 

models mostly follow similar architecture, consisting of convolution and pooling 

operations, followed by several fully connected layers as demonstrated in Figure 3.3. 

The convolutional layer is the main block of CNN which applies a convolution filter 

on the input data to generate a feature map. The output of the convolution layer then 

passes through pooling operations to reduce the dimensionality, leading to less number 

of parameters and shortened training time. The convolution and pooling operations 

may be repeated several times depending on the structure of the architecture. Before 

the fully connected layer, the output of the final pooling layer is converted to a vector 
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by flattening. It is the last and most crucial layer of CNN which takes the data from 

the flatten layer and performs the learning process through the neural network. Here, 

six CNN models were trained, and it was observed that Inception-v3 outperforms the 

others in terms of validation and test accuracy. The dataset used in the training of CNN 

models has a key role in performance as described in the next section. 

 

Figure 3.3: General structure of the CNN 

3.1.2.5 Image Acquisition 

In order for the deep learning models to interpret a given image data accurately under 

various conditions, the training dataset needs to be fed into the models first, and then 

validation and testing datasets are used to optimize the parameters of these models. 

The dataset used for training, validation and testing should contain a sufficient quantity 

of highquality image captured under various conditions such as rotation, illumination 

conditions and camera optics. Therefore, image acquisition is a crucial step as it 

increases the adequacy of the dataset and leads to better performance for deep learning 

models.    

As a proof of concept, the images here were captured under different combinations of 

three light sources, four smartphone camera optics and five shooting angles to mimic 

as many varying conditions as possible. In this context, halogen (H), fluorescent (F) 

and sunlight (S) bulbs were used as light sources. The color temperatures of halogen 

(Osram 60 W), fluorescent (Klite 6 W) and sunlight (Philips 5.5 W) bulbs are 2700 K 

(warm), 4000 K (neutral) and 6500 K (cold), respectively. Seven lighting conditions 

(H, F, S, HF, HS, FS, HFS) were created by switching on these light sources in 
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different sequences. In addition, images were captured at five different angles (30°, 

60°, 90°, 120°, and 150°) with respect to the vertical axis between the μPAD and 

smartphone camera. The bulb sources were placed 40 cm away from the smartphones 

and the distance between each lamp source was 9 cm. The images were captured at an 

incidence angle of 35° between the sources and μPAD. Android smartphones of four 

different brands (Huawei Mate 20 lite, Lenovo P2a42, Oppo A5 2020, and Xiaomi 

Note 8 Pro) with unique camera properties (Table 3.1) were used for image capturing 

to ensure interoperability and compatibility. A total of 840 images were captured using 

the camera settings of the smartphones in automatic mode. 

Table 3.1: Camera properties of the smartphones used for imaging. 

Smartphone Brand Image Resolution Optics Camera 

Resolution 

Huawei Mate 20 

Lite 

4000 × 3000 f/1.8 12 MP 

Lenovo P2a42 4032 × 3024 f/2.2 12 MP 

Oppo A5 2020 4000× 3000 f/1.8 12 MP 

XiaomiNote8Pro 4160 × 3120 f/2 13 MP 

 

Since the number of images in the dataset affects the performance in deep learning, 

the number of images was increased with additional methods such as data 

augmentation. The benefits of data augmentation are two-fold. First, it helps prevent 

overfitting, which causes the training data to be memorized, making it unable to 

interpret new data. Second, new images are created based on altering the existing ones, 

which offers an artificially expanded dataset. Seven methods were employed for 

augmentation, including a rotation at 90° angles on the horizontal, vertical, and 

horizontal-vertical axes and square cropping with 180, 240, 300, and 400 pixels. As a 

result, the total number of images in the dataset reached 10,080. The images were then 

resized to 400×400 so that the size of the images in the dataset was the same before 

being fed into the neural networks. 

 

 



47 

 

3.1.2.6 Smartphone app: DeepLactate 

A smartphone app has been developed for highly sensitive colorimetric lactate analysis 

in sweat with a deep learning approach. To embed the trained CNN model into Android 

smartphones, the Tensorflow-Lite (.tflite) library is used to make the model compatible 

with smartphones. Here, the Inception-v3 model was saved as a data file in the 

Hierarchical Data Format (HDF -.h5 file) due to its superior performance among the 

tested CNN models. Then, the “.h5” file was converted to the “.tflite” file using 

Python, and embedded in our customdesigned DeepLactate app. 

DeepLactate having a simple and user-friendly interface is demonstrated in figure 3.4. 

The home page is given in figure 3.4.a., where an image can be selected from the 

gallery of the smartphone (figure 3.4b.) or a new image can be captured using the 

smartphone camera. Then, after selecting or capturing the image from the gallery or 

camera, the crop alert dialog is displayed to the user (figure 3.4c.). If the user taps the 

“NO” action, the result is calculated directly (without cropping), as shown in figure 

3.4d. Otherwise, the user is directed to the crop screen when the “YES” action is 

tapped. Next, the region of interest (ROI) on the image is cropped using an adjustable 

crop box (figure 3.4e) and displayed on the app as shown in figure 3.4f and h. Lastly, 

the cropped image is loaded to the model using the “UPLOAD” icon to perform the 

colorimetric lactate analysis and the results are displayed (figure 3.4g. and i) on the 

app screen. 
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Figure 3.4: The steps for colorimetric lactate analysis in DeepLactate are as follows. 

The home page of DeepLactate is given in (a). The user can select an image from the 

gallery in (b) or capture a new image using the smartphone camera. Then, after 

selecting the image from the gallery, the crop alert dialog is asked to the user as in 

(c). If the user taps the “NO” action, the result is calculated directly (without 

cropping) as shown in (d). Otherwise, the user is directed to the crop screen in (e), (f) 

and (h) when the “YES” action is tapped. The app is tested for the concentrations of 

0 mM in (g) and 50 mM in (i). 

3.1.2.7 Selectivity, Stability, and Real Sample Analysis 

Several potential interfering species were tested for the selectivity of the colorimetric 

lactate sensor; KCl, glucose, sucrose, AA, UA, DA, and CaCl2. All species were tested 

at a concentration of 20 mM, except for uric acid and DA, which were tested at 10 

mM. Uric acid and DA were tested at different concentrations because of the 

dissolving problem, and also their concentration in human sweat. For stability, 

modified μPADs were put into  + 4 °C, and measurements took place at 1, 3, 7, and 14 

days. Human sweat analysis took place with to help of two volunteers. Human sweat 

samples were taken from volunteers resting and jogging (15 min) time (Figure 3.5). 
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Figure 3.5: An image (a) showing the application of a lactate patch for human sweat 

analysis. The patch was made by sandwiching a μPAD between a sticking plaster and 

a transparent tape (bi-ii). Classification results of the smartphone app DeepLactate 

for lactate level in the sweat of two volunteers after resting and 15 min jogging. 

3.2 Results and Discussion 

Here, an offline colorimetric lactate determination method was used with a PAD and 

a deep learning model integrated into a smartphone app. A sample was intended to be 

absorbed by the single detection area of the PAD before being transferred to the 

detection area for colorimetric analysis. For the purpose of determining lactate, the 

two enzymes LOx and HRP were combined with TMB. Briefly, LOx catalyzes the 

oxidation of L-lactate to pyruvate and produces H2O2 as a by-product [149]. The 

chromogenic substrate TMB is oxidized by the second enzyme HRP using the 

byproduct H2O2, resulting in a blueish color change. First, artificial saliva containing 

varying amounts of lactate was used to test  μPADs.  

As seen visually in Figure 3.1, at both the 5 and 10 minute time points, a bluish color 

formed, and color intensity increased with increasing lactate concentration. Based on 

the color intensity (RGB data) of images taken by the Oppo A5 2020 at 5 minutes, a 

detection limit (LOD) of 0.67 mM was calculated (LOD = 3.3 * /Slope). Less than 10 

µl of sample are needed for the µPAD to finish the analysis. The images of the PADs 

were taken using four different Android smartphones, each with a different camera 

configuration (Table 2.1): the Huawei Mate 20 Lite, Lenovo P2a42, Oppo A5 2020, 

and Xiaomi Note 8 Pro. 
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For the purpose of training different deep-learning models, a total of 840 images were 

captured and increased to 10,080 images. Six well-known CNN models were trained 

in this study using the generated dataset (Section 3.1.2.5). The performance of CNN 

models is significantly impacted by hyper-parameters like epochs, learning rate, batch 

size, and optimizer. The epoch was set to 30, the learning rate was set to 0.001, and 

the batch size was set to 64 under Adam's optimizer, all of which were determined to 

be suitable based on in-depth experimental studies. When compared to other models, 

the Inception-v3 model performed the best in terms of validation accuracy, scoring 

0.9992 (Table 3.2). 

Table 3.2: Experimental results of CNN models. 

 

Models Validation Accuracy Test Accuracy 

MobileNet 0.9986 0.9869 

Xception 0.9990 0.9365 

VGG16 0.9926 0.9582 

VGG19 0.9965 0.9463 

ResNet50 0.9989 0.9767 

Inception-v3 0.9992 0.9906 

 

In addition, Figure 3.6 graphically displays the accuracy and loss results for each epoch 

used in the training and testing of Inception-v3. Besides validation accuracy (Eq. 1), 

precision (Eq. 2), recall (Eq. 3), F1- score (Eq. 4), and receiver operating characteristic 

(ROC) curve values were also used in the comparison. While FP (False- Positive) and 

FN (False-Negative) define the samples that were incorrectly predicted, TP (True-

Positive) and TN (True-Negative) describe the number of correctly identified positive 

and negative samples, respectively. The ratio of correctly predicted samples to all 

correctly predicted samples is known as precision. The recall is the proportion of actual 

samples to all of the test set's positive samples. The harmonic mean of the precision 

and recall values is displayed by the F1-score value. 
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Figure 3.6: Model Accuracy of Inception-v3 is given in (a) and Model Loss of 

Inception-v3 is shown in (b). 

 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (1) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                          (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (3) 

F1-score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (4) 

The confusion matrix (Figure 3.7) is also used to represent the true and predicted 

labels, which consist of four indices, including TP, TN, FP, and FN. ROC curves are 

one of the methods used to measure the success of the models in distinguishing each 

class. The area under these curves (AUC) approaches show that the CNN model has 

successfully classified the concentrations. The threshold value was used to classify 

probability values of colorimetric lactate analysis in artificial sweat and was chosen as 

0.5 to obtain the ROC curve. The ROC curve and AUC value of the proposed CNN 

model (Inception-v3) to detect lactate in artificial sweat were shown in Figure 3.8. The 

y-axis and x-axis in the ROC curve represent the TP and FP rates, respectively. The 

Inception-v3 model was tested with 1008 new sample data for each concentration 

value. In Table 3.3 and Figure 3.7, these performance metrics and the robustness of 

the system for six different concentration values were illustrated for Inception-v3. Fig. 

5 shows that the 5 and 20 mM concentrations deviated from the predicted labels 

slightly more than the other concentrations. However, the test accuracy was quite close 

to the validation accuracy and outperformed the other models (Table 3.2). The 

Inception-v3 model was then included in DeepLactate, a user-friendly and 

straightforward smartphone app for colorimetric lactate determination in sweat.The 
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app's screenshots were broken down step by step in Figure 3.4, where the lactate 

detection of the chosen image from the gallery was shown. 

After the concentration classification, the results were displayed in DeepLactate for 

two different samples, as in Figures 3.4g and i, where the samples were correctly 

classified as 0 and 50 mM, respectively. In addition, confidence and processing time 

were given for each concentration value, as shown in Figure 3.4d, to highlight the 

impact of cropping. The comparison results in Figures 3.4d and 3.4g proved that both 

confidence (77–97.5 %) and processing times (767 ms - 622 ms) were improved for 

the same sample as cropping operation reduces the size of the image by removing 

redundant areas. In addition, the proposed model was robust against rotated images 

and showed a reliable performance (Figures 3.4h and i). With some interfering species 

in artificial sweat, the system's selectivity for lactate was tested. By dividing the 

intensity at t = 5 min by the intensity at t = 0 min (It=5, It=0), the color intensity for 

each species was normalized.  As shown in Figure 3.9, the color intensity increased 

only in the case of lactate with time. In other words, only lactate showed higher It=5 

than It=0, confirming the selectivity of the system for lactate. 

 

Figure 3.7: Confusion matrix of Inception-v3 in varying concentrations of the test 

dataset. 
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Figure 3.8: ROC curves of Inception-v3 in varying concentrations of the test dataset. 

 

Figure 3.9: Selectivity results based on intensity change (I). The intensity change was 

normalized by diving the intensity at t = 5 min by the intensity at 0 min (It=5 ∕ It=0). 

 

Lastly, the μPAD was turned into a patch by sandwiching it between a sticking plaster 

and a transparent tape as shown in Figures 3.2, 3.5bi, and bii. Briefly, a rectangular 

tape was used to cover the backside of the μPAD starting from the hydrophobic 

boundary (only the Ω shape) in which case a sample pad was left uncovered for sample 

absorption via capillary force without the use of external equipment (Figures 3.2 and 

3.5bii). When using the patch, only the sample pad is in direct contact with the skin, 

where it absorbs the sweat sample and the channel transfers it to the detection area for 

detection, avoiding direct contact between the detection area and the skin. This can 

reduce the potential for skin irritation, a problem frequently observed with current 

wearable sensors. Since the patch is more like a closed chamber due to its design, the 

volume of the sample it absorbs is around 8 μL and doesn’t change significantly over 

the course of analysis. The patch was tested on two volunteers to demonstrate its 

practical use for human sweat lactate analysis. Sweat lactate was tested for both 
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volunteers after rest and 15 min of jogging. To stimulate sweat production while 

resting, the volunteers used plastic wrap. It should be noted that the volunteers 

produced enough sweat, significantly larger than 8 μL. As can be easily seen in Figures 

3.5a and c, the patch successfully detected lactate in human sweat, and the lactate 

levels in the sweat of both volunteers increased after 15 min of jogging, according to 

the classification results of DeepLactate. Each patch costs around 40 cents, and unlike 

commercially available lactate sensors, the system does not require a special reader. 

Instead, reading is done with a smartphone app that works offline and sweat sample 

collection is not manual, both of which may significantly contribute to the widespread 

use of such wearable devices. 

 

3.3 Conclusion 

This study describes the classification of lactate in sweat using a deep learning model 

embedded in a smartphone app called DeepLactate, which also provides the benefit of 

offline analysis. The deep learning models were trained using images of the μPAD 

taken in seven illumination conditions using four smartphones of various brands, in 

order to increase the robustness against illumination variation and ensure inter-phone 

repeatability. The best-performing model, Inception-v3, was integrated into a 

smartphone app, enabling quick analysis in a resource-constrained environment 

because cloud systems are not needed for data sharing with the server. The proposed 

system can accurately and quickly (within one second) identify lactate in sweat, 

showcasing its great potential for colorimetric analysis.The system was also put 

through its paces on volunteers, and the classification outcomes of the app amply 

illustrated the rise in sweat lactate following jogging. This study is the first that, to the 

best of our knowledge, links deep learning with both quantitative and qualitative 

colorimetric analysis of chemical species. It should be noted that training the system 

with closer concentration levels can also increase the proposed system's classification 

sensitivity. The proposed system could be easily applied for multi-analyte detection in 

actual samples like water, urine, and blood as well as for clinical and environmental 

monitoring in remote and resource-constrained settings. 
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Appendix A 

 

Figure A. 1: An image showing a patch used for fluid absorption testing (a). The 

variation in volume of fluid absorbed by different patches over time (b). 
 

 Patch fluid absorption 

A number of patches were prepared as shown in Figure A.1a to absorb liquid properly 

from a droplet. Briefly, 100 µL of dH2O was put on a weighing boat and weighted 

using a sensitive analytical balance (Radwag, Poland). Next, a patch was dipped into 

the droplet for 30 sec and the remaining fluid was weighted again to calculate the 

volume absorbed by the patch. The process was repeated in the same way for 1 and 5 

min, respectively.   
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