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Estimation of Building Height from ICESat-2/ATLAS
and Airborne LIiDAR Data Using Machine Learning
Algorithms

Abstract

The height of buildings in cities are of critical importance to urban planning and
sustainable growth, as these factors are closely linked to environmental, economic,
social, and aesthetic elements that shape the structure and character of cities. The main
purpose of this study is to calculate building heights using machine learning algorithms
based on airborne LIiDAR and ICESat-2 data in urban areas. Sub-objectives of the
study to achieve the main objective are: (a) investigate the relationships between
spaceborne and airborne LIDAR data and integrate the data, (b) investigate the
performance of various machine learning algorithms that can be used in point cloud
analysis when ICESat-2/ATLAS and airborne LIiDAR data are analyzed, and (c)
comparing the accuracy of building height data obtained from both spaceborne and
airborne LIDAR systems with data obtained from ground-based measurement
techniques. Airborne LiDAR data provided by GDM were used for the study. LIDAR
points corresponding to the projection of each ICESat-2/ATLAS photon in the study
area were selected. Python libraries were used to analyze the LIDAR data. Machine
learning algorithms (K-Nearest Neighbors (K-NN), Random Forest (RF), Support
Vector Machines (SVM), Artificial Neural Networks (ANNs) and RANSAC) were

used to obtain highly accurate data by removing ground points. The results of the



classification processes indicate that the classification accuracy of the ICESat-2 data
using the RF algorithm (strong beams RF = 96.83%, weak beams RF = 95.72%) is
higher than that of the other algorithms used (strong beams K-NN = 94.08%, SVM =
75.43%, ANN = 77.60%, RANSAC = 71.68%, weak beams K-NN = 94.26%, SVM =
72.11%, ANN = 75.46%, RANSAC = 66.17%). In the classification of airborne
LIDAR data, the classification accuracy of the K-NN and RF algorithms (K-NN =
99.99%, RF = 99.98%) was found to be higher than that of the other algorithms (SVM
=91.11%, ANN = 98.48%, RANSAC = 53.66%). After an initial analysis of the point
clouds, digital elevation and terrain models were created for the study area. The
resulting point clouds and elevation models were used to calculate building heights in
the area. A regression model was created to examine the relationship between the
systems used within the scope of the study, and statistical metrics were computed.
After removing outlier values, the relationship between field measurement-airborne
LiDAR (R?=0.9985, RMSE = 0.1354, MSE = 0.0183, MAE = 0.0942, ME = 0.0388),
field measurement-ICESat-2 (R? = 0.9905, RMSE = 0.3527, MSE = 0.1244, MAE =
0.2548, ME = -0.0610) and airborne LiDAR- ICESat-2 (R? = 0.9921, RMSE = 0.3209,
MSE = 0.1029, MAE = 0.2314, ME = -0.0978) proved to be superior.

Keywords: ICESat-2/ATLAS, machine learning algorithm, building height, airborne
LiDAR



Makine Ogrenmesi Algoritmalar1 Kullanilarak ICESat-
2/ATLAS ve Havasal LIiDAR Verilerinden Bina

Yiiksekliginin Tahmini

Oz

Sehirlerdeki bina yiikseklikleri, kent planlamasi ve siirdiiriilebilir biiylime i¢in hayati
bir dneme sahiptir, ¢linkii bu faktorler sehirlerin yapisint ve karakterini belirleyen
cevresel, ekonomik, sosyal ve estetik etmenlerle yakindan iligkilidir. Bu ¢alismanin
temel amaci, kentsel alanlarda havasal LIDAR ve ICESat-2 verilerine dayali makine
O0grenme algoritmalarini kullanarak bina yliksekliklerini hesaplamaktir. Ana hedefi
gerceklestirmek igin ¢alismanin alt amaglar1 sunlardir: (a) uzaysal ve havasal LiDAR
verileri arasindaki iligkileri arastirmak ve verileri birbirleri ile entegre etmek, (b)
ICESat-2/ATLAS ve havasal LiDAR verileri analiz edildiginde nokta bulutu
analizinde kullanilabilecek cesitli makine 6grenme algoritmalarinin performansini
incelemek ve (c) uzaysal ve havasal LiDAR sistemlerinden elde edilen bina yiiksekligi
verilerinin  yersel Olgme tekniklerinden elde edilen verilerle dogrulugunu
karsilastirmak. Calisma kapsaminda HGM tarafindan temin edilen havasal LiDAR
verileri kullanilmigtir. Calisma alanindaki her bir ICESat-2/ATLAS fotonunun
izdiistimiine karsilik gelen havasal LIDAR noktalarin se¢imi yapilmistir. LIDAR
verilerinin analizinde Python yazilim dili igerisindeki kiitliphaneler kullanilmistir.
Zemin noktalarinin ¢ikarilmasi i¢in makine 6grenmesi algoritmalari (K-en yakin

komsu (K-NN), destek vektér makineleri (DVM), rastgele orman (RO), yapay sinir



aglar1 (YSA) ve RANSAC) kullanilarak yiiksek dogrulukta veriler elde edilmeye
calistlmigtir.  Simiflandirma  islemlerinin ~ sonucunda ICESat-2  verilerinin
siniflandirilmasinda RO algoritmasi ile siniflandirma dogrulugunun (giiglii 151n RO =
%96.83, zayif 1sin RO= %96.14) kullanilan diger algoritmalarin siiflandirma
dogrulugundan (giiclii 151n K-NN = %94.08, DVM = %75.43, YSA = %77.60,
RANSAC = %71.68, zayif1isin K-NN = %94.26, DVM = %72.11, YSA = %75.46,
RANSAC = 9%66.17) daha iyi oldugu goriilmiistiir. Havasal LiDAR verilerinin
siniflandirilmasinda K-NN ve RO algoritmalari ile siniflandirma dogruluklarinin (K-
NN = %99.99, RO = %99.98) kullanilan diger algoritmalarin simiflandirma
dogrulugundan (DVM = %91.11, YSA = %98.48, RANSAC = %53.66) daha yiiksek
oldugu goriilmiistiir. Calismada nokta bulutu 6n analiz islemleri gerceklestirildikten
sonra calisma alanina ait sayisal yiikseklik ve sayisal arazi modelleri olusturulmus ve
elde edilen nokta bulutlar1 ve yiikseklik modellerinden elde edilen veriler kullanilarak
alandaki bina yiikseklikleri hesaplanmistir. Calisma kapsaminda kullanilan sistemler
arasindaki iligskiyi incelemek igin regresyon modeli olusturulmus ve istatistiksel
metrikler hesaplanmistir. Aykir1 degerler ¢ikarildiktan sonra arazi 6l¢iimleri-havasal
LiDAR arasindaki iliskinin (R2 = 0.9985, RMSE = 0.1354, MSE = 0.0183, MAE =
0.0942, ME = 0.0388 ), arazi dl¢iimleri-ICESat-2 arasindaki (R? = 0.9905, RMSE =
0.3527, MSE = 0.1244, MAE = 0.2548, ME = -0.0610) ve havasal LIDAR-ICESat-2
arasindaki iliskiden (R? = 0.9921, RMSE = 0.3209, MSE = 0.1029, MAE = 0.2314,
ME = -0.0978) daha 1yi oldugu goriilmiistiir.

Anahtar Kelimeler: ICESat-2/ATLAS, makine Ogrenme algoritmasi, bina
yiiksekligi, havasal LIDAR
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Chapter 1

Introduction

In urban areas, the determination of building heights is of crucial importance for urban
planning and development. This issue plays a critical role in the transformation and
sustainable growth of cities. Building heights are intertwined with environmental,
economic, social, and aesthetic factors, and these interactions shape the structure and
character of a city. Accurately determining building heights in urban areas is a
balancing act that must take into account a variety of factors, such as population
growth, infrastructure requirements, transportation efficiency, green spaces, and
public access. Building heights are a fundamental factor for 3D urban models. Building
heights can be used to obtain many necessary parameters. The building height
parameter helps to more accurately predict data such as population distribution [18],
greenhouse gas emissions [19], energy consumption estimation [20] urban albedo [21],
material stock allocation [22], human well-being and urban heat island effects [23].

Airborne LiDAR is an advanced laser scanning system that uses sophisticated
technology to capture precise and detailed three-dimensional data of the Earth's
surface. Due to its high sensitivity and accuracy, it is used in a wide range of
applications [24]. Studies have shown that airborne LIiDAR has achieved successful
results in several areas such as land cover classification, forest stand height mapping,
seafloor bathymetric mapping, seafloor change detection, archaeological feature and
landform identification, and obtaining 3-dimensional building morphology parameters
[25,26,27,28,29].

Zhang et al. [7] developed an improved morphological filter for detecting non-ground
points (vehicles, vegetation, and buildings) from airborne LiDAR data. Gonzalez-

Gonzalez-Aguilera et al. [30] applied a Triangulated Irregular Network (TIN) model



to airborne LIDAR point cloud data. Using this model, buildings were automatically
detected and data such as height, area, and volume were obtained for each building.
Wang and Li [32] used Very High Resolution (VHR) satellite images and airborne
LiDAR data acquired after the 2010 Haiti earthquake to compare with pre-earthquake
VHR satellite images and were able to detect damage to urban buildings by comparing
building heights. Zhang et al. [33] created digital models (DHM, DSM, DTM) from
airborne LiDAR data. Color-infrared aerial photos was used to detect trees from the
DHM. The object-based image analysis method (OBIA) was used to identify buildings
and calculate their height. Zhou and Neumann [31] applied the Support Vector
Machine (SVM) algorithm to the airborne LIDAR data in their study and developed
an automatic building modeling algorithm by separating roof and ground points from
tree points. In the study conducted by Zhou and Gong [34], a deep neural network
approach was proposed for building detection and extraction from airborne LiDAR
data. Shirowzhan et al. [35] used temporal lidar data to determine building height
values. Various algorithms were used in processing these data, including machine
learning and point-based methods. As a result, the effectiveness of existing algorithms

was investigated.

The ICESat-2 satellite was launched into Earth orbit on September 15, 2018, and is
equipped with a laser altimeter called ATLAS (Advanced Topographic Laser
Altimeter System), which uses single photon counting sensitivity. ATLAS uses green
(532 nm) laser light to measure surface elevation [36]. ICESat-2 data have been
utilized for studies in several areas, including sea ice thickness [37], sea ice wave
analysis [38], ice sheet surface height [39], inland water height [40], ground height
[41], and vegetation height [9].

Smith et al. [42] developed an algorithm to estimate ice sheet surface height from the
ICESat-2/ATLAS dataset. They also evaluated the performance of this algorithm on
land-ice surfaces and under various cloud conditions. In their study, Ma et al. [43]
tested the usability of ICESat-2/ATLAS and Sentinel-2 image datasets to create
bathymetric maps. In their study, Agca and Daloglu [44] used the TG20 dataset and
local GPS leveling points to determine the geoid and orthometric heights of ground
points received from ICESat-2/ATLAS, airborne LiDAR and GNSS/CORS systems.
In their study, Wang et al. [41] compared the effectiveness of ICESat-2 dataset with



airborne LIDAR data for predicting surface elevation on the Earth's surface. In their
study, Zhang et al. [45] compared performance of the ICESat-2 dataset, specifically
ATLO6, in predicting the elevation of glaciers in the Qilian Mountains with data
obtained from CORS (Continuously Operating Reference Stations) and UAV
(Unmanned Aerial Vehicle) measurements. In their study, Zhang et al. [46] compared
the performance in obtaining Leaf Area Index (LAI) from ICESat-2/ATLAS data with
that obtained from MODIS and Sentinel-2 data. Neuenschwander et al. [9] in their
study compared the performance of terrain and canopy height estimation in the boreal
forest region of southern Finland using ICESat-2/ATLAS data with results obtained
from airborne LIiDAR data. Tiwari and Narine [47] compared machine learning
algorithms and geostatistical approaches to estimate forest canopy height in the
southeastern United States using data from the ICESat-2/ATLAS system. In their
study, Narine et al. [48] utilized height data from the ICESat-2/ATLAS system and
multispectral data from Landsat to estimate forest biomass using deep learning
algorithms. In their study, Lian et al. [49] proposed a method that used data from the
ICESat-2/ATLAS system to extract high accuracy ground control points in urban
areas. Due to the novelty of the ICESat-2/ATLAS data, there are relatively few studies
in the literature that have used it for building height analysis. Preliminary searches
have revealed that there are few studies that specifically address the calculation of
building heights using ICESat-2/ATLAS data. In their study, Dandapanthula et al. [50]
used photon data from the ICESat-2/ATLAS system to estimate the height of buildings
and compared these estimates with field measurements. Wu [11] proposed a method
in her master's thesis using data from the ICESat-2/ATLAS system to estimate the
height of all buildings in the Netherlands. In the study conducted by Zhao et al. [51],
airborne LiDAR and ICESat-2 data were utilized to extract surface heights in urban
areas. DTM and DSM raster models were created using airborne LIDAR data. These
raster models were then matched with ICESat-2/ATLAS data to calculate building
heights. In the study conducted by Lao et al. [52], building heights in urban areas were
calculated using data from ICESat-2/ATLAS and terrestrial LIDAR systems.

The scope of this study is the calculation of building heights in urban areas. In this
study, ICESat-2/ ATLAS, airborne LiDAR data and machine learning algorithms were
used to calculate heights. The sub-objectives of the study to achieve the main objective

are: (a) investigate the relationships between spaceborne and airborne LiDAR data and



integrate the data, (b) investigate the performance of various supervised and
unsupervised machine learning algorithms that can be used in point cloud analysis
when ICESat-2/ATLAS and airborne LIiDAR data are analyzed, and (c) comparing the
accuracy of building height data obtained from both spaceborne and airborne LiDAR

systems with data obtained from field measurement.



Chapter 2

Systems

2.1 Airborne LiDAR System

LiDAR is now a widely used technology for various purposes. These systems are very
popular for quickly obtaining high-precision, reference-based 3D data. LIiDAR
measures the time it takes for a laser pulse to travel from an aerial vehicle to a target
on the surface and reflect back to the sensor [4]. LIDAR systems are classified into
three main groups according to the platforms they are mounted on. These groups are
airborne, terrestrial, and spaceborne. Airborne LIiDAR systems typically measure the
X, Y and Z coordinates of reflective objects scanned by LIDAR sensors beneath aerial
vehicles. As a result of these measurements, three-dimensional point clouds are
obtained [7]. An airborne LiDAR system consists of a LIDAR sensor that generates
laser beams and measures time it takes for these beams to reach the ground and return
after they are reflected from the ground, GPS, to track the position of the aircraft, IMU,
to monitor the accelerations and orientation of the aircraft in the air, and on-board
systems to store the data of the scanned area. The system is deployed on an aircraft
(airplane or helicopter) [2]. The general concept of airborne LIiDAR system is shown
in figure 2.1. Another type of airborne LIDAR is PALS (Portable Airborne Laser
System). PALS the LIiDAR developed in 1999 by NASA (National Aeronautics and
Space Administration) employee Dr. Ross Nelson differs from other LiDAR systems

but is similar to an airborne LiDAR system in terms of the data collection method [1].
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Figure 2.1: General concept of airborne LiDAR system [2].

2.2 Spaceborne LIDAR System (ICESat-2/ATLAS)

The ICESat/GLAS system is widely recognized as the world's first space-based laser
scanning system [5]. Launched in 2003, the ICESat satellite contains the GLAS laser
sensor, forming an integrated system. The main objective of this system is to monitor
changes in polar ice and collect topographic data of the Earth's surface [3]. The
ICESat/GLAS system generates laser beams with wavelengths of 1064 nm and 532
nm. The frequency value for the repetition rate of laser pulses is 40 Hz. The GLAS
footprints directed at the Earth's surface have a nominal diameter of 70 meters and a
spacing of 172 meters between successive footprints [1,6].
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The ICESat/GLAS mission, which successfully completed its mission between 2003
and 2009, has handed over its tasks to the ICESat-2/ATLAS system. This system was
launched into orbit from NASA in 2018. ICESat-2 carries the ATLAS instrument,
which uses photon-counting technology. ICESat-2/ATLAS LiDAR system provides
data on glacier heights, sea ice heights, cloud layers, and more [9,10]. The orbital
motion of ICESat-2 is shown in Figure 2.3. The ATLAS system transmits laser pulses
at a repetition rate of 10 kHz to the Earth's surface. These laser pulses have a
wavelength of 532 nm. The ATLAS sensor sends three pairs of beams to the Earth's
surface, with each pair spaced 3.3 km apart. Each pair consists of a weak and a strong
beam, spaced 90 m apart. The footprints created by the laser beams have a diameter of
17 m. [11,12]. The ICESat-2/ATLAS sampling geometry is shown in Figure 2.4. The
data sets obtained from the ICESat-2/ATLAS system are shown in Figure 2.5.
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2.3 Satellite-based and Terrestrial Measurement Systems

2.3.1  Total Station

The total station is a measuring device used in terrestrial surveying. This device is used
to measure horizontal and vertical angles and to determine distances. The total station
determines the angles and distances of the measured point and allows to record its
coordinate information (X, Y and Z). Total stations are made by taking inspiration
from the working principle of two different electronic devices. Firstly, a system similar
to electronic theodolites was used for horizontal and vertical angle measurements.
Secondly, the system of electronic distance meters has been used for distance

measurements [17].
2.3.2  Global Positioning System (GPS)

The satellite-based system GPS provides the necessary parameters for determining the
positions of the Earth's points such as latitude, longitude and altitude. The system is
based on the "resection method”, an observation technique that can be used to
determine the position from an unknown point to known points [15]. The GPS system
consists of 24 satellites configured so that at least 6 satellites are continuously visible
from any point on Earth, except the polar regions [16]. The GPS system was initially
used in conjunction with classical Real-Time Kinematic (RTK) method. However, due
to certain limitations of the classical RTK method, the CORS (Continuously Operating

Reference Station) system was developed [53].
2.4 Machine Learning Algorithms

Computational processes that achieve specific results with input data without being
preprogrammed are called machine learning algorithms. These algorithms perform
iterative operations and modify their own structures, thereby learning to perform the

given task more effectively. Machine learning algorithms are trained from datasets
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comprising input data and corresponding target values. During the training process,
the algorithm learns from the data and adjusts its internal parameters to optimize its
performance. This enables the algorithm to make accurate predictions when faced with
new and unseen data. By generalizing patterns from the training data, the algorithm
should develop the ability to make meaningful inferences and predictions for new data
instances it has not yet encountered. The learning process, on the other hand, is an
ongoing process. Machine learning algorithms can be categorized into various types,
including supervised and unsupervised learning. In supervised learning, the algorithm
undergoes training using labeled data, which consists of input-output pairs. Contrary
to supervised learning, unsupervised learning operates on unlabeled data, aiming to

uncover patterns or structures within the data [54].
2.4.1  Random Forest (RF)

This algorithm created by combining the 'bootstrap aggregating' and ‘random subspace
method' techniques, performs classification using a collection of decision trees or
decision tree ensembles. In the Random Forest algorithm, each decision tree is trained
independently on the same dataset. Classification results are determined based on the
most frequently occurring output value of the decision trees [59]. Random Forest is
not only an effective method for classification problems with multiple classes, but also
reduces the tendency of overfitting and improves the ability of generalization. The

random forest algorithm scheme is shown in Figure 2.6.

Input Dataset

/\

N, features N, features N, features N; features
SO W.OW.®,
Tree #1 Tree #2 Tree #3 Tree #4

l
Class C Class D Class B Class C

—

Figure 2.6: Random Forest algorithm scheme.
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2.4.2 Random Sample Consensus (RANSAC)

The RANSAC algorithm, developed in 1981 by Fischler and Bolles [62], was designed
for estimating model parameters and is capable of smoothing data with significant
outliers. The algorithm is primarily used for plane estimation from three-dimensional

point cloud data. The principle of operation of the algorithm is as follows:

Firstly, three random points are selected, and the plane parameters are calculated based
on these points. Then, the algorithm determines which plane each of the other points
in the point cloud belongs tobased on a specified threshold. In this way, the points that
best fit the plane can be determined. The threshold is a tolerance limit used to
determine whether a point belongs to the plane. These steps are repeated N times. In
each iteration, the number of points belonging to a particular plane is counted, and the
quality of the plane is calculated using an error criterion. If the obtained result is better
than the previous one, i.e. with fewer errors, the new plane parameters replace the old

ones.

In a method based on RANSAC, no random starting point for the parameters is
determined, but several parameter sets are created by selecting random points.
Iterations are performed with this parameter set to obtain the best result. In the further
iterations, the parameters with the best result are selected, which leads to the desired
accuracy of the result.

2.4.3 Artificial Neural Networks (ANNS)

ANNSs, is a model that simulates the functioning of the human brain and the decision-
making process. Similar to biological neural networks, an artificial neural network is
formed by connecting nodes. ANN is trained using two main categories of learning
processes. These learning processes are supervised learning and unsupervised
learning. The first type of learning, called supervised learning, uses a training set
consisting of input data provided to the algorithm and matching output data for that
input. Unsupervised learning, on the other hand, focuses solely on the recognition of

input data [60]. An artificial neural network (ANN) usually consists of three layers.
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Nodes in input are connected to nodes in hidden, and each node in hidden is connected
to nodes in output. These connections enable the flow of information throughout the
network. Raw data is fed into input layer and forwarded to hidden layer for processing.
In the hidden layer, calculations and transformations are performed on the received
information to extract relevant features. The values obtained in hidden section are then
forwarded to output section. The output section combines the information from the
input and hidden layers, performs the necessary operations, and generates the output

data [61]. An example of the operating logic of ANN is shown in Figure 2.7.

Input Layer Hidden Layer Output Layer

h,

Input 1 .
Input 2 .

. Output 1

;

. Output n

Input n .

Figure 2.7: A operating logic of ANN.

2.4.4 Support Vector Machine (SVM)

SVM, is widely used and considered as one of the most advanced algorithms. SVM is
used for regression and classification analysis. SVM algorithms can perform both
linear and non-linear classifications. In non-linear classification, they draw margins
using the "kernel trick™ Margins are drawn to maximize the distance between classes
and minimize classification errors (Figure 2.8). By transforming data from low-
dimensional datasets into high-dimensional feature spaces, SVMs can make non-linear
relationships more modelable. SVMs can provide effective results even with a low

number of samples [57,58].
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Figure 2.8: Logic of the SVM algorithm.

2.4.5 K-NN (K-Nearest Neighbor)

The K-NN algorithm is a straightforward machine learning algorithm that belongs to
the supervised learning category. The K-NN algorithm is commonly employed for
classification problems, although it can be utilized for both regression and
classification tasks. The K-NN algorithm classifies a data point in the target dataset
based on its proximity to previous data points [56]. By using feature similarity, K-NN

predicts the values of new data points (Figure 2.9).

Before K-NN After K-NN
Category B Category B
X2 Dg e X2 ¥ Y
5  § i‘z* - * % "
* **** * **** New Data Point
* * New Data Point * Assigned to
Category A Category A Category A
X1 X1

Figure 2.9: Logic of the K-NN algorithm.
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Chapter 3

Implementation

3.1 Study Area

The district of Bergama, which is located in the northwest of the province of Izmir,
was chosen as the study area for this thesis (Figure 3.1). The study area is located at
an altitude of 68 meters above sea level and lies between 39°06'13.02"- 39°5'45.38"
north latitude and 27°9'58.11"- 27°9'55.40" east longitude. The area was selected as
the study area because the General Directorate of Mapping (GDM) provided airborne
LiDAR test flight data for Bergama district. The study area encompasses various

details including buildings, roads, water bodies, forests, and agricultural areas.

Figure 3.1: Study area.
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3.2 Material and Method

3.2.1 Processing of Airborne LiDAR Data

Test flight data collected by the GDM were used for this study. In 2014, Optech
Pegasus HA-500 system from Optech company was used to collect airborne LIiDAR
data from an altitude of 1200 m, 25% overlap, 32 columns, a scanning angle of 35°,
and a scanning width of 580 m. Related to the Pegasus HA-500 system detailed
information is shown in Table 3.1. The test area was selected based on the details it
contains such as forests, buildings, and water, with Bergama district as the center. The
test area covers about 156 km?. Instead of using the entire test data, data from a 28 km?
area with a high density of buildings was used, which is in line with the purpose of the

study.

Table 3.1: Optech Pegasus HA-500 technical specifications

Flight Altitude 150-5000 m
Effective Laser Repetition Rate 100-500 kHz
Scanning Angle 0-75° Adjustable
Accuracy (MSE) <5-20cm
Scanning Mechanism Oscillating

In examining the airborne LIDAR data used in the study, it was specified that the data
received from the GDM was unprocessed raw data. The raw data contains a significant
amount of noise points that come from sunlight and various environmental factors
(Figure 3.2). Therefore, it is necessary to clean the data from the noise points and
classify the data before using it in the study. 32 airborne LIDAR data covering the
study area were merged and noise points were removed from the merged data by
applying a SOR filter (Figure 3.3). The filtered data that completed the filtering
process was saved in a point cloud format with the extension (.las/laz). CloudCompare

v2.11 software was used for these procedures.
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Figure 3.3: Airborne LIDAR data without noise points.

The unclassified point cloud data, cleaned from noise points, was classified utilizing
Trimble Business Center v5.20 program. Two classes were formed during the
classification process: ground and non-ground (Figure 3.4). The generated classified

data was saved in point cloud format (.las/laz).

(a) (b)
Figure 3.4: Classified airborne LiDAR data a) Ground, b) Non-ground.
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The coordinate system of the point cloud data acquired from airborne LiDAR data is
defined as World Geodetic System (WGS84) Universal Transverse Mercator (UTM)
6° Zone 35. This airborne LiDAR data is used as a reference for the acquisition and
alignment of ICESat-2/ATLAS data. To be used as a reference for ICESat-2/ATLAS
data, digital models in raster data format are generated from the airborne LiDAR data.
These generated raster data are called Digital Terrain Models (DTM) and Digital
Surface Models (DSM). The resulting raster models (.tiff) were recorded with the
extension. Airborne LiDAR data classified as ground was used to create a DTM, while
airborne LIDAR data classified as ground and non-ground was used to create a DSM.
ArcGIS v10.4 software was used to define the coordinate system of the classified point
clouds and create the digital models. The digital models obtained from the LiDAR
(Figure 3.5).

(b)
Figure 3.5: Digital models obtained from airborne LiDAR data a) DTM, b) DSM.
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3.2.2 Processing of ICESat-2/ATLAS Data

All ICESat-2/ATLAS data within the study area were reviewed and the Track IDs for
the data to be used in the study were determined. Data with track IDs 777, 1196, and
1219 provided by the ICESat-2/ATLAS system since the beginning of data provision
were reviewed. In this study, for estimation of building heights from ICESat-2/ATLAS
data, Global Geolocated Photon Data (ATL03) and Land Water Vegetation Elevation
(ATLO8) data were downloaded from the OpenAltimetry website. The downloaded
data files have an (.h5) file extension. The ATLO03 dataset product includes the latitude,
longitude, elevation, and time information of each photon obtained from the ICESat-
2/ATLAS system [63]. The ATLO08 dataset product has been developed to determine
terrain and vegetation heights based on the distribution of signal photons. The ATL08
product estimates the elevations of the ground surface and top of canopy by analyzing
the distribution of individual photons. Subsequently, the individual photons are labeled
as noise, ground, canopy, or top of canopy photons [64]. Integration of the ATLO03 and
ATLO8 datasets is important to associate position and surface information with X, Y,
and Z data for the study area. This integration allows consolidation of both local
position information and surface features into a single dataset. In this way, more
comprehensive and meaningful results can be obtained [44]. The process of associating
ATLO3 and ATLO8 data was performed using PhoREAL v3.30 and Python v3.9
software. For the association process, the ATL03 and ATLO08 data were first loaded
into the software. In the previous step, a DTM generated from airborne LiDAR data
and saved in (.tiff) format was selected as reference data. The amounts of displacement
in the ICESat-2/ATLAS data were detected, and a shifting process was performed on
the data in the X and Y axes. The amounts of displacement in the ICESat-2/ATLAS
data are presented in Table 3.2. The time (Time (sec), Delta Time (sec)), location
information (Latitude (deg), Longitude (deg), UTM Easting (m), UTM Northing (m)),
elevation information (Ellipsoidal (m HAE), Orthometric (MSL)), classification, and
signal confidence values were obtained from the photon data acquired from the
ICESat-2/ATLAS system. The signal confidence values of the photons (0-noise, 1-
background, 2-low, 3-medium, 4-high) and classification values (0-noise, 1-ground,
2-canopy, 3-top of canopy) were determined. [63]. The acquired photon data were
subjected to a filtering process that selected photon data with medium and high signal

confidence, as well as classification values of ground and top of canopy. All data of
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between 2018 and 2022 belonging to tracks with 1Ds 777, 1196, and 1219 identified
in the study area were examined. Data were identified that included urban areas and

available building information. ICESat-2/ATLAS data that did not contain urban areas

were not used for the study. The DSM generated from airborne LIDAR data and
ICESat-2/ATLAS data was overlaid in ArcGIS v10.4 software. Buildings present in
the ICESat-2/ ATLAS data have been detected, and the 96 buildings identified were
designated as sample data. The overlaid ICESat-2/ATLAS and DSM are shown in

Figure 3.6.

B

Figure 3.6: Overlaid ICESat-2/ATLAS and DSM.

Table 3.2: ICESat-2/ATLAS data and shift amounts on axes

ICESat-2/ATLAS Data X-axis Y-axis
ATL03_20191116183507_07770502_005 01 gt3l  -0.5m 5.1m
ATLO3 20191116183507_07770502_005 01 gt3r  3.8m -2.4m
ATLO03_20200815053424_07770802_005_01_gt3I 1.7m -3.2m
ATLO03_20200815053424_07770802_005_01_gt3r 6.1m 0.4m
ATLO3 20210212205409 _07771002_005 01 gtll  -1.1m 0.9 m
ATLO03_20210212205409_07771002_005_01_gtlr 1.1m 0.9m
ATLO03_20210212205409_07771002_005_01_gt2I 0.4m 40m
ATLO3_20210212205409 07771002_005 01 gt2r  2.1m 0.8m
ATLO03_20190316182741_11960206_005_01_gt2I 3.6m 4.4 m
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Table 3.2 (continued): ICESat-2/ATLAS data and shift amounts on axes

ATLO03_20190316182741_11960206_005 01_gt2r
ATLO03_20190316182741_11960206_005 01 gt3l
ATLO03_20190316182741_11960206_005_01_gt3r
ATLO03_20190615140717_11960306_005_01_gt2I
ATLO03_20190615140717_11960306_005_01_gt2r
ATLO03_20200314010644_11960606_005 01_gt2I
ATLO03_20200314010644_11960606_005_01_gt2r
ATLO03_20200612204628_11960706_005_01_gt2I
ATLO03_20200612204628_11960706_005_01_gt2r
ATLO03_20201211120608_11960906_005_01_gt2I
ATLO03_20201211120608_11960906_005_01_gt2r
ATLO03_20201211120608_11960906_005 01 gt3l
ATLO03_20201211120608_11960906_005_01_gt3r
ATLO03_20210909230547_11961206_005_01_gt2I
ATLO03_20210909230547_11961206_005_01_gt2r
ATLO03_20220310142533_11961406_005_01_gt2r
ATLO03_20220908054524_11961606_005_01_gt3l
ATLO03_20220908054524 11961606_005_01_gt3r
ATLO03_20190915213117_12190402_005_01_gtll
ATLO03_20190915213117 12190402_005_01_gtlr

446 m
0.9m
2.8m
0.9m
2.7m
0.0m
0.2m
3.1m
1.1m
114 m
-18.5m
24 m
-21.2m
20m
0.2m
0.0m
5.3m
0.9m
1.5m
-1.7m

-3.9m
1.1m
2.3m
1.1m
3.3m
0.0m
-2.0m
-0.7m
-0.9m
18.1m
36.4m
6.3m
-52.2m
0.2m
-2.0m
0.0m
-35.7m
11m
-5.2m
3.2m

3.2.3 Field Measurement Data
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As part of the study, field measurements were made to determine the height of
buildings consistent with ICESat-2/ATLAS data. GNSS measurements were made
with the receiver “TOPCON GR-5” GPS, and building heights were measured with
the total station “TOPCON OS-101” total station belonging to Izmir Katip Celebi
University. The technical specifications of the GNSS receiver and total station used in



the measurements are shown in Figure 3.7 and Figure 3.8, respectively. The heights of
a total of 96 buildings were determined through field measurements, and the
corresponding X and Y coordinates of these buildings were also recorded. The
building heights obtained through field measurements are considered as reference data
for the building heights obtained from ICESat-2 and airborne LiDAR data.

GNSS
GPS: L1, L1C, L2, L2C, and LS

GLONASS: L1, L2
Galileo*: E1, E5a, ESb,
BeiDou: B1, B2

Signals Tracked AREGL

SBAS L1 C/A
WAAS/MSAS/EGNOS
QZsS L1 C/A, L1C, L2C

226-Channel Vanguard
Number of Technology with Universal

Channels Tracking Channels capable of :
All-in-View tracking )

Integrated Fence Antenna (1)
AntEIng Jye with Ground Plane

{
Accuracy ’!

&
) H: 3mm + 0.1ppm (2)
Static V:3.5mm + 0.4ppm (2)
i H: 5mm + 0.5ppm

V:10mm + 0.8ppm

Figure 3.7: Specifications of the TOPCON GR-5.

Telescope

Magpnificztion / Resolving power 30x /2.5

Others Length: 172mm (6.7in.), Objective aperture:
45mm (1.8in.) (48mm (1.Sin.) for EDM), Image:
Erect, Field of view: 1°30’ {26m/1,000m),
Minimum focus: 1.3m (4.3ft.), Reticle
illumination: 5 brightness levels

Angle Measurement

Display resolution 0.5" /1"
(0.0001 / 0.0002gon, 0.002 / 0.005mil)
Accuracy (IS0 17123-3:2001) 1"
Dual-axi: P / Colli i Dual-axis liquid tilt sensor, working range: 6’
compensation (#111mgon) / Collimztion compensation
available

Distance Measurement

Laser output * Reflectorless mode: Class 3R / Prism / sheet
mode: Class 1

Reflectorless 0.3 to 500m(1.0 to 1,640ft.)

Reflective sheet ™" RSSON-K: 1.3 to 500m (4.3 to 1,640ft.)
RSSON-K: 1.3 to 300m {4.3 to 530ft.), RSLON-K:
1.3 to 100m (4.3 to 320ft.)

Accuracy
Reflectorless™ (2+2ppm x D) mm*?
Reflective sheet’ {3+ 2ppm x D) mm
AP/CP prism {2+ 2ppm x D) mm

Figure 3.8: Specifications of the TOPCON 0OS-101.
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3.2.4 Classification Processing with Machine Learning

Algorithms

Libraries have been added to the Spyder (Python v3.9) environment that are used to
create data frames, properly access data, handle large datasets, and perform
calculations using the 'import' command. The ICESat-2/ATLAS datasets with a (.csv)
extension for which a classification task is desired has been loaded into the Spyder
environment. The ICESat-2/ ATLAS data, filtered based on signal reliability and
classification parameters, was split 70% for training and 30% for testing. The
“KNeighborsClassifier” class from the “sklearn.neighbors” module was imported to
perform classification using the K-NN machine learning algorithm. The necessary
parameters for the classification were defined. The algorithm was trained on 70% of
the training data. The remaining 30% of the data, reserved for testing, was used to
make predictions. The process applied to the K-NN algorithm were also applied to the
SVM, RF, ANN and RANSAC machine learning algorithms. For classification with
the machine learning algorithm SVM, the class "SVC" is imported from the module
"sklearn.svm". For classification with the Random Forest (RF) machine learning
algorithm, the “RandomForestClassifier” class from the “sklearn.ensemble” module is
imported. To perform classification using Artificial Neural Networks (ANNSs), the
“keras” module from  “tensorflow”, the  “Sequential” class from
“tensorflow.keras.models”, and the “Dense” class from “tensorflow.keras.layers” are
imported. Finally, for classification with the RANSAC algorithm, the
“RANSACRegressor” class from the “sklearn.linear_model” module is imported. The
parameters required for the classification are defined. The algorithm is trained on the
training data and used for the predictions of the test data.

The airborne LIDAR data used in the study consists of a dense point cloud. To facilitate
the classification process of these data using machine learning algorithms, it is
necessary to clip the classified airborne LIDAR data. The clipping process was
performed by overlaying the airborne LIDAR data with ICESat-2/ATLAS data. The
airborne LIDAR data were clipped with reference to the ICESat-2/ATLAS data.
CloudCompare v2.11 software was used for this process. The airborne LiDAR

dataset1, which corresponds to the airborne LIiDAR data coinciding with the ICESat-
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2/ATLAS datasets has been loaded into the Spyder environment with the file extension
(.csv). The airborne LIDAR data, filtered based on X, Y and Z coordinates and
classification parameters, was split 67% for training and 33% for testing. The
“KNeighborsClassifier” class from the “sklearn.neighbors” module was imported to
perform classification using the K-NN machine learning algorithm. The necessary
parameters for the classification were defined. The algorithm was trained on 67% of
the training data. The remaining 33% of the data, reserved for testing, was used to
make predictions. The parameters required for the classification are defined. The
algorithm is trained on the training data and used for the predictions of the test data.
The process applied to the K-NN algorithm were also applied to the SVM, RF, ANN
and RANSAC machine learning algorithms.

3.2.5 Accuracy Analysis of Algorithms

The confusion matrix (Figure 3.9), also called error matrix, is used to evaluate the
performance of algorithms in classification tasks. Actual values are compared to

predicted values and various performance metrics are determined [65].

Real Values
Positive Negative
— TP, algorithm correctly predicted the

s 8 =% = sitive class,
2 2 True Positive False Positive PN e
§ g (TP) (FP) — TN, algorithm correctly predicted the

o :
g negative class,
_§ 0 — FP, algorithm incorrectly predicted the

2 ’ ; 2
g = False Negative True Negative positive class,
(=% oo

g (FN) (TN) — FN, algorithm incorrectly predicted

the negative class

Figure 3.9: Confusion matrix.

Confusion matrices have been obtained for the K-NN, SVM, RF, ANN and RANSAC
algorithms in the Spyder environment. These matrices are created using the test data
set aside and the prediction results obtained from the classification process. The
accuracies of the algorithms have been calculated using equation (3.1) based on the

confusion matrix.
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Y. TP+TN
Y. TP+FP+FN+TN

Accuracy = (3.1)

The accuracy rates of classification processes using K-NN, SVM, RF, ANN, and
RANSAC algorithms for the ICESat-2/ATLAS and airborne LiDAR datasets were

calculated using the confusion matrix shown in Figure 3.9.
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Chapter 4

Results and Discussions

In this study, performance analyses of machine learning algorithms were conducted
for calculating building heights using airborne LIDAR and ICESat-2 data. K-NN,
SVM, RF, ANN and RANSAC machine learning algorithms were utilized for the
classification of ICESat-2/ATLAS and airborne LIDAR data. The accuracy values
calculated from the classification processes applied to ICESat-2/ATLAS data sets are
given in Table 4.1. Similarly, accuracy values computed from the classification
processes applied to airborne LIDAR data sets are presented in Table 4.2. (The
airborne LIiDAR data listed in Table 4.2 is presented in correspondence with the
ranking of the ICESat-2/ATLAS data listed in Table 4.1).

Table 4.1: Accuracy analysis of the classification results of ICESat-2/ATLAS

ICESat-2/ATLAS Data K-NN SVM RF ANN RANSAC
Strong Beams 0.9408  0.7543 0.9683 0.7760  0.7168
Weak Beams 0.9426 0.7211 0.9614 0.7546  0.6617

Table 4.2: Accuracy analysis of the classification results of airborne LIDAR

K-NN  SVM RF ANN  RANSAC

Airborne LIiDAR Dataset 0.9999 09111 0.9998 0.9848 0.5366

Within the scope of the study, a sample of 96 buildings was selected for the purpose
of estimating building heights. For 16 of these buildings, sufficient data could not be
obtained from the ICESat-2/ATLAS point cloud to determine their heights.
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Additionally, the building heights could not be determined for 10 buildings that were
identified as constructed after 2014, based on the acquisition date of the airborne
LiDAR data. Consequently, based on these results, a total of 70 buildings had their
heights determined using ICESat-2/ATLAS, airborne LIDAR, and field measurement
data. The heights obtained for the 70 buildings are shown in Figure 4.1.

The linear regression model was used in the study to understand the relationship
between building height data obtained from the systems used in the study and to
analyze this relationship. Linear regression models were applied to the data obtained
from pairs of field measurements - airborne LiDAR, field measurements - ICESat-2,
and airborne LIiDAR - ICESat-2. The model was developed to assess its performance

by comparing the predictions made on test data with the actual test data.
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To measure the performance of the regression model, evaluate its reliability, and assess
the accuracy of the predictions, the following metrics were calculated: R-squared (R?)
value, Root Mean Square Error (RMSE), Mean Squared Error (MSE), Mean Absolute
Error (MAE), and Mean Error (ME). The regression model applied to field
measurements - airborne LIDAR, field measurements - ICESat-2, and airborne LiDAR

- ICESat-2 pairs, along with the calculated statistical values, are shown in Figure 4.2.

When examining the building heights obtained from the systems used, it was observed
that the field measurements and ICESat-2 data were close for buildings numbered 65,
70, and 90. However, airborne LiDAR data tended to indicate lower heights for these
buildings. Therefore, to explain this situation, photographs from the years 2016 and
2022 were examined. As a result of the investigations, it was determined that
additional floors were added to buildings number 65 and 70. Additionally, it was found
that a new building was constructed in place of building number 90. Photographs of
building number 65 are provided in Figure 4.2, photographs of building number 70 are
provided in Figure 4.3, and photographs of building number 90 are provided in Figure
4.4,

Figure 4.2: Photos of building number 65, (a) From 2016, (b) From 2022.
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Figure 4.4: Photos of building number 90, (a) From 2016, (b) From 2022.

The reason for the differences in building heights obtained from airborne LiDAR data
compared to the other two systems is that the airborne LIiDAR data were collected in
2014 and do not reflect changes that occurred to these buildings after 2014. Therefore,
the airborne LIDAR data does not represent the current heights of these structures, and
this discrepancy was explained by the research conducted. As a result of these findings,
the height data for buildings numbered 65, 70, and 90 were removed from the
regression model, and a new regression model was created, which included height data
for 67 buildings. To assess the performance of the newly created regression model, the
following metrics were calculated: R? value, RMSE, MSE, MAE, and ME.

4.1 Field Measurement—Airborne LIiDAR Accuracy
Assessment
A linear regression model was built using height data for 70 different buildings based

on field measurements and airborne LiDAR data. After identifying the outliers, a new
regression model was created using height data for a total of 67 different buildings.
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Airborne LiDAR Data
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Error values for the created models were calculated. The regression models based on

field measurements and airborne LIDAR data, along with their error values, are

visually presented in Figure 4.5.
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Figure 4.5: Field Measurement-Airborne LiDAR linear regression, (a) With height
data of 70 buildings, (b) With height data of 67 buildings.

A regression model was developed based on field measurements and airborne LiDAR
data, resulting in initial height predictions for 70 different buildings. The statistical
values for these predictions were calculated as follows: R? = 0.8368, RMSE = 1.9646,
MSE = 3.8597, MAE = 1.0586, and ME =-0.3450. After removing 3 identified outliers
from the data set, a new regression model was created with height predictions for 67
different buildings. Statistical values for this updated model were calculated as
follows: R? = 0.9986, RMSE = 0.1355, MSE = 0.0184, MAE = 0.0942, and ME =
0.0388.

These results suggest that the model obtained after removing outliers fits the data more
closely and more reliably. A high R? coefficient means a strong alignment between the
model and the observed data, indicating high predictive accuracy. The low values of
RMSE, MSE, MAE, and ME indicate that the predictions of the model are closer to
the actual data.
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4.2 Field Measurement—ICESat-2/ATLAS Accuracy

Assessment

A linear regression model was created between the height data of 70 buildings obtained
from field measurement and ICESat-2/ATLAS data. After removing the identified
outlier values, a new regression model was constructed using the height data of 67
buildings, and error values for the models were calculated. The regression models and

error values for the field measurement and ICESat-2 data are shown in Figure 4.6.

Field Measurement vs. ICESat-2/ATLAS Field Measurement vs. ICESat-2/ATLAS

..4
& S

ICESat-2/ATLAS Data

b
o

- Linear Regression
e Data

- Linear Regression
e Data

25 A

ICESat-2/ATLAS Data
-
o

10 A1 R2: ©.9965073063028408
RMSE: ©.3527968527959484

R2: ©.9893990697221225
RMSE: ©.4130790913671163
MSE: 0.17063433572468242
MAE: ©.31844040871231133
ME: ©.0003295709413310937

MSE: 0.12446561934272611
57 MAE: ©.25487921893581084
ME: -0.061044752085761334

5 10 15 20 P 5 10 15 20 P
Field Measurement Field Measurement

(a) (b)

Figure 4.6: Field Measurement-ICESat-2/ATLAS linear regression, (a) With height
data of 70 buildings, (b) With height data of 67 buildings.

The regression model based on the field measurement and ICESat-2 data resulted in
height predictions for 70 different buildings. The statistical values of these predictions
were calculated as R?= 0.9894, RMSE= 0.4131, MSE= 0.1706, MAE= 0.3184, and
ME= 0.0003. After removing three outliers from the data set, the statistical values of
the new regression model created using the height predictions of 67 different buildings
were calculated as follows: R%= 0.9905, RMSE= 0.3528, MSE= 0.1245, MAE=
0.2549, and ME=-0.0611.

The results show that both the initial model and the new model created after removing
the outliers are of high quality. An R? value of about 0.99 indicates that the model is
in excellent agreement with the observed data. The low values of RMSE, MSE, MAE,
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and ME indicate that the predictions of the model are very close to the actual data. The

removal of outliers appears to have improved the accuracy of the model's predictions.

4.3 Airborne LIDAR-ICESat-2/ATLAS  Accuracy

Assessment

A linear regression model was constructed between the height data of 70 buildings
obtained from aerial LIDAR and ICESat-2/ATLAS data. After removing the identified
outlier values, a new regression model was created using the height data of 67
buildings and the error values for the models were calculated. The regression models

and error values for aerial LIDAR and ICESat-2 data are shown in Figure 4.7.
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Figure 4.7: Airborne LIDAR-ICESat-2/ATLAS linear regression, (a) With height
data of 70 buildings, (b) With height data of 67 buildings.

The regression model based on airborne LiDAR and ICESat-2 data produced height
predictions for 70 different buildings. The statistical values of these predictions were
calculated as R?>= 0.8275, RMSE= 1.6664, MSE= 2.7770, MAE= 0.9040, and ME=
0.4598. After removing three outliers from the data set, the statistical values of the new
regression model created using the height predictions of 67 different buildings were
calculated as follows: R?= 0.9922, RMSE=0.3209, MSE=0.1030, MAE=0.2314, and
ME=-0.0979.
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The results show that both the initial model and the new model created after removing
the outliers are of high quality. An R? value of about 0.99 indicates that the model is
in excellent agreement with the observed data. The low values of RMSE, MSE, MAE
and ME show that the predictions of the model are very close to the actual data. The

removal of outliers has improved the accuracy of the model's predictions.
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Chapter 5

Conclusion

The objective of this study is to estimate building heights using machine learning
algorithms based on airborne LIiDAR and ICESat-2 data. The airborne LiDAR data
were subjected to the necessary filtering processes to obtain digital models. ICESat-2
data were obtained from 2018 to 2022 within the study area. Digital models obtained
from airborne LIiDAR and ICESat-2 data were overlaid, and shifts in the ICESat-
2/ATLAS data were determined. Airborne LiDAR and ICESat-2/ATLAS data were
classified using K-NN, SVM, RF, ANN and RANSAC classification algorithms. The

error values and accuracy rates of the classification methods were determined.

The analyses for ICESat-2 data performed show that the Random Forest classification
algorithm has the highest accuracy rate. This result underlines the effective ability of
the algorithm to classify data. The K-NN algorithm was found to have higher accuracy
rates compared to the SVM, ANN and RANSAC algorithms for airborne LiDAR data.
This result shows that the K-NN algorithm has better classification performance
compared to other algorithms. In the literature, the RANSAC algorithm is commonly
used for roof inference and object detection. It is assumed that this contributes to a
lower accuracy in the classification processes. As a result of the classification
processes performed on the Icesat-2 data, it was found that strong beams have higher
accuracy rates compared to weak beams. This is thought to be due to the fact that
strong beams have a denser point cloud. As the density of the point cloud increases, it
can be deduced that the accuracy of the classification process improves. These
analyses show that classification algorithms can deliver different results depending on
the data type and features. Especially for special data types such as Icesat-2 data, data
density should be considered as an important factor that can affect classification

accuracy. In studies on the classification of ICESat-2/ATLAS data using machine
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learning algorithms, researchers have found that the data obtained from the ICESat-
2/ATLAS system in forested areas can be classified using K-NN, SVM, RF and GBDT
machine learning algorithms. In the study conducted by Luo et al. [66]in a forested

area, the RF algorithm was found to have the highest accuracy in classification.

When examining the study area and the data used, it is suspected that the presence of
trees near buildings in urban areas could influence the classification results of the
algorithms. This is due to the fact that the ICESat-2 dataset contains information on

the photon class of top of canopy, which includes both tree and building data.

The building heights were determined using the data obtained from the systems.
Regression models were created from the height data, including the following pairs:
field measurement - airborne LiDAR, field measurement -ICESat-2/ATLAS and
airborne LiDAR -ICESat-2/ATLAS. Statistical metrics were calculated on the basis of
the regression models. For the 70 buildings, the regression models yielded the
following R? values: 0.8368 for the field measurement-airborne LiDAR, 0.9894 for
the field measurement-ICESat-2/ATLAS and 0.8275 for airborne LiDAR-ICESat-
2/ATLAS. For the 67 buildings, the regression models yielded R? values of 0.9986 for
field measurement-airborne LiDAR, 0.9905 for field measurement-1CESat-2/ATLAS
and 0.9922 for airborne LiDAR-ICESat-2/ATLAS.

In the regression models created with the data from 70 buildings, the models that
included airborne LiDAR data had lower R? values, but after removing outlier data
from the models, an increase in R? values was observed. The airborne LiDAR data
used in the study was collected during a flight in 2014 and therefore does not include
recent changes to three buildings. This result underlines the importance of using up-

to-date data in research.

The results obtained underline the reliability of LiDAR technologies and field
measurements as a trustworthy data source for applications such as urban area
characterization. This study shows how promising the ICESat-2 system is for future

research in urban areas and offers a new perspective in the literature.
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