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Estimation of Building Height from ICESat-2/ATLAS 

and Airborne LiDAR Data Using Machine Learning 

Algorithms 

 

Abstract 

The height of buildings in cities are of critical importance to urban planning and 

sustainable growth, as these factors are closely linked to environmental, economic, 

social, and aesthetic elements that shape the structure and character of cities. The main 

purpose of this study is to calculate building heights using machine learning algorithms 

based on airborne LiDAR and ICESat-2 data in urban areas. Sub-objectives of the 

study to achieve the main objective are: (a) investigate the relationships between 

spaceborne and airborne LiDAR data and integrate the data, (b) investigate the 

performance of various machine learning algorithms that can be used in point cloud 

analysis when ICESat-2/ATLAS and airborne LiDAR data are analyzed, and (c) 

comparing the accuracy of building height data obtained from both spaceborne and 

airborne LiDAR systems with data obtained from ground-based measurement 

techniques. Airborne LiDAR data provided by GDM were used for the study. LiDAR 

points corresponding to the projection of each ICESat-2/ATLAS photon in the study 

area were selected. Python libraries were used to analyze the LiDAR data. Machine 

learning algorithms (K-Nearest Neighbors (K-NN), Random Forest (RF), Support 

Vector Machines (SVM), Artificial Neural Networks (ANNs) and RANSAC) were 

used to obtain highly accurate data by removing ground points. The results of the 
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classification processes indicate that the classification accuracy of the ICESat-2 data 

using the RF algorithm (strong beams RF = 96.83%, weak beams RF = 95.72%) is 

higher than that of the other algorithms used (strong beams K-NN = 94.08%, SVM = 

75.43%, ANN = 77.60%, RANSAC = 71.68%, weak beams K-NN = 94.26%, SVM = 

72.11%, ANN = 75.46%, RANSAC = 66.17%). In the classification of airborne 

LiDAR data, the classification accuracy of the K-NN and RF algorithms (K-NN = 

99.99%, RF = 99.98%) was found to be higher than that of the other algorithms (SVM 

= 91.11%, ANN = 98.48%, RANSAC = 53.66%). After an initial analysis of the point 

clouds, digital elevation and terrain models were created for the study area. The 

resulting point clouds and elevation models were used to calculate building heights in 

the area. A regression model was created to examine the relationship between the 

systems used within the scope of the study, and statistical metrics were computed. 

After removing outlier values, the relationship between field measurement-airborne 

LiDAR (R2 = 0.9985, RMSE = 0.1354, MSE = 0.0183, MAE = 0.0942, ME = 0.0388), 

field measurement-ICESat-2 (R2 = 0.9905, RMSE = 0.3527, MSE = 0.1244, MAE = 

0.2548, ME = -0.0610) and airborne LiDAR- ICESat-2 (R2 = 0.9921, RMSE = 0.3209, 

MSE = 0.1029, MAE = 0.2314, ME = -0.0978) proved to be superior. 

 

Keywords: ICESat-2/ATLAS, machine learning algorithm, building height, airborne 

LiDAR 
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Makine Öğrenmesi Algoritmaları Kullanılarak ICESat-

2/ATLAS ve Havasal LiDAR Verilerinden Bina 

Yüksekliğinin Tahmini 

 

Öz 

Şehirlerdeki bina yükseklikleri, kent planlaması ve sürdürülebilir büyüme için hayati 

bir öneme sahiptir, çünkü bu faktörler şehirlerin yapısını ve karakterini belirleyen 

çevresel, ekonomik, sosyal ve estetik etmenlerle yakından ilişkilidir. Bu çalışmanın 

temel amacı, kentsel alanlarda havasal LiDAR ve ICESat-2 verilerine dayalı makine 

öğrenme algoritmalarını kullanarak bina yüksekliklerini hesaplamaktır. Ana hedefi 

gerçekleştirmek için çalışmanın alt amaçları şunlardır: (a) uzaysal ve havasal LiDAR 

verileri arasındaki ilişkileri araştırmak ve verileri birbirleri ile entegre etmek, (b) 

ICESat-2/ATLAS ve havasal LiDAR verileri analiz edildiğinde nokta bulutu 

analizinde kullanılabilecek çeşitli makine öğrenme algoritmalarının performansını 

incelemek ve (c) uzaysal ve havasal LiDAR sistemlerinden elde edilen bina yüksekliği 

verilerinin yersel ölçme tekniklerinden elde edilen verilerle doğruluğunu 

karşılaştırmak. Çalışma kapsamında HGM tarafından temin edilen havasal LiDAR 

verileri kullanılmıştır. Çalışma alanındaki her bir ICESat-2/ATLAS fotonunun 

izdüşümüne karşılık gelen havasal LiDAR noktalarının seçimi yapılmıştır. LiDAR 

verilerinin analizinde Python yazılım dili içerisindeki kütüphaneler kullanılmıştır. 

Zemin noktalarının çıkarılması için makine öğrenmesi algoritmaları (K-en yakın 

komşu (K-NN), destek vektör makineleri (DVM), rastgele orman (RO), yapay sinir 
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ağları (YSA) ve RANSAC) kullanılarak yüksek doğrulukta veriler elde edilmeye 

çalışılmıştır. Sınıflandırma işlemlerinin sonucunda ICESat-2 verilerinin 

sınıflandırılmasında RO algoritması ile sınıflandırma doğruluğunun (güçlü ışın RO = 

%96.83, zayıf ışın RO= %96.14) kullanılan diğer algoritmaların sınıflandırma 

doğruluğundan (güçlü ışın K-NN = %94.08, DVM = %75.43, YSA = %77.60, 

RANSAC = %71.68,  zayıf ışın K-NN = %94.26, DVM = %72.11, YSA = %75.46, 

RANSAC = %66.17) daha iyi olduğu görülmüştür. Havasal LiDAR verilerinin 

sınıflandırılmasında K-NN ve RO algoritmaları ile sınıflandırma doğruluklarının (K-

NN = %99.99, RO = %99.98) kullanılan diğer algoritmaların sınıflandırma 

doğruluğundan (DVM = %91.11, YSA = %98.48, RANSAC = %53.66) daha yüksek 

olduğu görülmüştür. Çalışmada nokta bulutu ön analiz işlemleri gerçekleştirildikten 

sonra çalışma alanına ait sayısal yükseklik ve sayısal arazi modelleri oluşturulmuş ve 

elde edilen nokta bulutları ve yükseklik modellerinden elde edilen veriler kullanılarak 

alandaki bina yükseklikleri hesaplanmıştır. Çalışma kapsamında kullanılan sistemler 

arasındaki ilişkiyi incelemek için regresyon modeli oluşturulmuş ve istatistiksel 

metrikler hesaplanmıştır. Aykırı değerler çıkarıldıktan sonra arazi ölçümleri-havasal 

LiDAR arasındaki ilişkinin (R2 = 0.9985, RMSE = 0.1354, MSE = 0.0183, MAE = 

0.0942, ME = 0.0388 ), arazi ölçümleri-ICESat-2 arasındaki (R2 = 0.9905, RMSE = 

0.3527, MSE = 0.1244, MAE = 0.2548, ME = -0.0610) ve havasal LiDAR-ICESat-2 

arasındaki ilişkiden (R2 = 0.9921, RMSE = 0.3209, MSE = 0.1029, MAE = 0.2314, 

ME = -0.0978) daha iyi olduğu görülmüştür. 

Anahtar Kelimeler: ICESat-2/ATLAS, makine öğrenme algoritması, bina 

yüksekliği, havasal LiDAR 
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Chapter 1 

Introduction 

In urban areas, the determination of building heights is of crucial importance for urban 

planning and development. This issue plays a critical role in the transformation and 

sustainable growth of cities. Building heights are intertwined with environmental, 

economic, social, and aesthetic factors, and these interactions shape the structure and 

character of a city. Accurately determining building heights in urban areas is a 

balancing act that must take into account a variety of factors, such as population 

growth, infrastructure requirements, transportation efficiency, green spaces, and 

public access. Building heights are a fundamental factor for 3D urban models. Building 

heights can be used to obtain many necessary parameters. The building height 

parameter helps to more accurately predict data such as population distribution [18], 

greenhouse gas emissions [19], energy consumption estimation [20] urban albedo [21], 

material stock allocation [22], human well-being and urban heat island effects [23]. 

Airborne LiDAR is an advanced laser scanning system that uses sophisticated 

technology to capture precise and detailed three-dimensional data of the Earth's 

surface. Due to its high sensitivity and accuracy, it is used in a wide range of 

applications [24].  Studies have shown that airborne LiDAR has achieved successful 

results in several areas such as land cover classification, forest stand height mapping, 

seafloor bathymetric mapping, seafloor change detection, archaeological feature and 

landform identification, and obtaining 3-dimensional building morphology parameters 

[25,26,27,28,29]. 

Zhang et al. [7] developed an improved morphological filter for detecting non-ground 

points (vehicles, vegetation, and buildings) from airborne LiDAR data. González- 

González-Aguilera et al. [30] applied a Triangulated Irregular Network (TIN) model 
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to airborne LiDAR point cloud data. Using this model, buildings were automatically 

detected and data such as height, area, and volume were obtained for each building. 

Wang and Li [32] used Very High Resolution (VHR) satellite images and airborne 

LiDAR data acquired after the 2010 Haiti earthquake to compare with pre-earthquake 

VHR satellite images and were able to detect damage to urban buildings by comparing 

building heights. Zhang et al. [33] created digital models (DHM, DSM, DTM) from 

airborne LiDAR data. Color-infrared aerial photos was used to detect trees from the 

DHM. The object-based image analysis method (OBIA) was used to identify buildings 

and calculate their height. Zhou and Neumann [31] applied the Support Vector 

Machine (SVM) algorithm to the airborne LiDAR data in their study and developed 

an automatic building modeling algorithm by separating roof and ground points from 

tree points. In the study conducted by Zhou and Gong [34], a deep neural network 

approach was proposed for building detection and extraction from airborne LiDAR 

data. Shirowzhan et al. [35] used temporal lidar data to determine building height 

values. Various algorithms were used in processing these data, including machine 

learning and point-based methods. As a result, the effectiveness of existing algorithms 

was investigated.  

The ICESat-2 satellite was launched into Earth orbit on September 15, 2018, and is 

equipped with a laser altimeter called ATLAS (Advanced Topographic Laser 

Altimeter System), which uses single photon counting sensitivity. ATLAS uses green 

(532 nm) laser light to measure surface elevation [36]. ICESat-2 data have been 

utilized for studies in several areas, including sea ice thickness [37], sea ice wave 

analysis [38], ice sheet surface height [39], inland water height [40], ground height 

[41], and vegetation height [9]. 

Smith et al. [42] developed an algorithm to estimate ice sheet surface height from the 

ICESat-2/ATLAS dataset. They also evaluated the performance of this algorithm on 

land-ice surfaces and under various cloud conditions. In their study, Ma et al. [43] 

tested the usability of ICESat-2/ATLAS and Sentinel-2 image datasets to create 

bathymetric maps. In their study, Agca and Daloglu [44] used the TG20 dataset and 

local GPS leveling points to determine the geoid and orthometric heights of ground 

points received from ICESat-2/ATLAS, airborne LiDAR and GNSS/CORS systems. 

In their study, Wang et al. [41] compared the effectiveness of ICESat-2 dataset with 
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airborne LiDAR data for predicting surface elevation on the Earth's surface. In their 

study, Zhang et al. [45] compared performance of the ICESat-2 dataset, specifically 

ATL06, in predicting the elevation of glaciers in the Qilian Mountains with data 

obtained from CORS (Continuously Operating Reference Stations) and UAV 

(Unmanned Aerial Vehicle) measurements. In their study, Zhang et al. [46] compared 

the performance in obtaining Leaf Area Index (LAI) from ICESat-2/ATLAS data with 

that obtained from MODIS and Sentinel-2 data. Neuenschwander et al. [9] in their 

study compared the performance of terrain and canopy height estimation in the boreal 

forest region of southern Finland using ICESat-2/ATLAS data with results obtained 

from airborne LiDAR data. Tiwari and Narine [47] compared machine learning 

algorithms and geostatistical approaches to estimate forest canopy height in the 

southeastern United States using data from the ICESat-2/ATLAS system. In their 

study, Narine et al. [48] utilized height data from the ICESat-2/ATLAS system and 

multispectral data from Landsat to estimate forest biomass using deep learning 

algorithms. In their study, Lian et al. [49] proposed a method that used data from the 

ICESat-2/ATLAS system to extract high accuracy ground control points in urban 

areas. Due to the novelty of the ICESat-2/ATLAS data, there are relatively few studies 

in the literature that have used it for building height analysis. Preliminary searches 

have revealed that there are few studies that specifically address the calculation of 

building heights using ICESat-2/ATLAS data. In their study, Dandapanthula et al. [50] 

used photon data from the ICESat-2/ATLAS system to estimate the height of buildings 

and compared these estimates with field measurements. Wu [11] proposed a method 

in her master's thesis using data from the ICESat-2/ATLAS system to estimate the 

height of all buildings in the Netherlands. In the study conducted by Zhao et al. [51], 

airborne LiDAR and ICESat-2 data were utilized to extract surface heights in urban 

areas. DTM and DSM raster models were created using airborne LiDAR data. These 

raster models were then matched with ICESat-2/ATLAS data to calculate building 

heights. In the study conducted by Lao et al. [52], building heights in urban areas were 

calculated using data from ICESat-2/ATLAS and terrestrial LiDAR systems. 

The scope of this study is the calculation of building heights in urban areas. In this 

study, ICESat-2/ ATLAS, airborne LiDAR data and machine learning algorithms were 

used to calculate heights. The sub-objectives of the study to achieve the main objective 

are: (a) investigate the relationships between spaceborne and airborne LiDAR data and 
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integrate the data, (b) investigate the performance of various supervised and 

unsupervised machine learning algorithms that can be used in point cloud analysis 

when ICESat-2/ATLAS and airborne LiDAR data are analyzed, and (c) comparing the 

accuracy of building height data obtained from both spaceborne and airborne LiDAR 

systems with data obtained from field measurement.  
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Chapter 2 

Systems 

2.1 Airborne LiDAR System 

LiDAR is now a widely used technology for various purposes. These systems are very 

popular for quickly obtaining high-precision, reference-based 3D data. LiDAR 

measures the time it takes for a laser pulse to travel from an aerial vehicle to a target 

on the surface and reflect back to the sensor [4]. LiDAR systems are classified into 

three main groups according to the platforms they are mounted on. These groups are 

airborne, terrestrial, and spaceborne. Airborne LiDAR systems typically measure the 

X, Y and Z coordinates of reflective objects scanned by LiDAR sensors beneath aerial 

vehicles. As a result of these measurements, three-dimensional point clouds are 

obtained [7]. An airborne LiDAR system consists of a LiDAR sensor that generates 

laser beams and measures time it takes for these beams to reach the ground and return 

after they are reflected from the ground, GPS, to track the position of the aircraft, IMU, 

to monitor the accelerations and orientation of the aircraft in the air, and on-board 

systems to store the data of the scanned area. The system is deployed on an aircraft 

(airplane or helicopter) [2]. The general concept of airborne LiDAR system is shown 

in figure 2.1. Another type of airborne LiDAR is PALS (Portable Airborne Laser 

System). PALS the LiDAR developed in 1999 by NASA (National Aeronautics and 

Space Administration) employee Dr. Ross Nelson differs from other LiDAR systems 

but is similar to an airborne LiDAR system in terms of the data collection method [1]. 
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Figure 2.1: General concept of airborne LiDAR system [2]. 

 

2.2 Spaceborne LiDAR System (ICESat-2/ATLAS) 

The ICESat/GLAS system is widely recognized as the world's first space-based laser 

scanning system [5]. Launched in 2003, the ICESat satellite contains the GLAS laser 

sensor, forming an integrated system. The main objective of this system is to monitor 

changes in polar ice and collect topographic data of the Earth's surface [3]. The 

ICESat/GLAS system generates laser beams with wavelengths of 1064 nm and 532 

nm. The frequency value for the repetition rate of laser pulses is 40 Hz. The GLAS 

footprints directed at the Earth's surface have a nominal diameter of 70 meters and a 

spacing of 172 meters between successive footprints [1,6]. 
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Figure 2.2: ICESat/GLAS system, which performs measurements in Earth's orbit [8]. 

 

The ICESat/GLAS mission, which successfully completed its mission between 2003 

and 2009, has handed over its tasks to the ICESat-2/ATLAS system. This system was 

launched into orbit from NASA in 2018. ICESat-2 carries the ATLAS instrument, 

which uses photon-counting technology. ICESat-2/ATLAS LiDAR system provides 

data on glacier heights, sea ice heights, cloud layers, and more [9,10]. The orbital 

motion of ICESat-2 is shown in Figure 2.3. The ATLAS system transmits laser pulses 

at a repetition rate of 10 kHz to the Earth's surface. These laser pulses have a 

wavelength of 532 nm. The ATLAS sensor sends three pairs of beams to the Earth's 

surface, with each pair spaced 3.3 km apart. Each pair consists of a weak and a strong 

beam, spaced 90 m apart. The footprints created by the laser beams have a diameter of 

17 m. [11,12]. The ICESat-2/ATLAS sampling geometry is shown in Figure 2.4. The 

data sets obtained from the ICESat-2/ATLAS system are shown in Figure 2.5. 
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Figure 2.3: ICESat-2/ATLAS system and the areas where it obtains data [55]. 

 

 
Figure 2.4: Sampling geometry of ICESat-2/ATLAS [13]. 
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2.3 Satellite-based and Terrestrial Measurement Systems 

2.3.1 Total Station 

The total station is a measuring device used in terrestrial surveying. This device is used 

to measure horizontal and vertical angles and to determine distances. The total station 

determines the angles and distances of the measured point and allows to record its 

coordinate information (X, Y and Z). Total stations are made by taking inspiration 

from the working principle of two different electronic devices. Firstly, a system similar 

to electronic theodolites was used for horizontal and vertical angle measurements. 

Secondly, the system of electronic distance meters has been used for distance 

measurements [17].  

2.3.2 Global Positioning System (GPS) 

The satellite-based system GPS provides the necessary parameters for determining the 

positions of the Earth's points such as latitude, longitude and altitude. The system is 

based on the "resection method", an observation technique that can be used to 

determine the position from an unknown point to known points [15]. The GPS system 

consists of 24 satellites configured so that at least 6 satellites are continuously visible 

from any point on Earth, except the polar regions [16]. The GPS system was initially 

used in conjunction with classical Real-Time Kinematic (RTK) method. However, due 

to certain limitations of the classical RTK method, the CORS (Continuously Operating 

Reference Station) system was developed [53]. 

2.4 Machine Learning Algorithms 

Computational processes that achieve specific results with input data without being 

preprogrammed are called machine learning algorithms. These algorithms perform 

iterative operations and modify their own structures, thereby learning to perform the 

given task more effectively. Machine learning algorithms are trained from datasets 
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comprising input data and corresponding target values. During the training process, 

the algorithm learns from the data and adjusts its internal parameters to optimize its 

performance. This enables the algorithm to make accurate predictions when faced with 

new and unseen data. By generalizing patterns from the training data, the algorithm 

should develop the ability to make meaningful inferences and predictions for new data 

instances it has not yet encountered. The learning process, on the other hand, is an 

ongoing process. Machine learning algorithms can be categorized into various types, 

including supervised and unsupervised learning. In supervised learning, the algorithm 

undergoes training using labeled data, which consists of input-output pairs. Contrary 

to supervised learning, unsupervised learning operates on unlabeled data, aiming to 

uncover patterns or structures within the data [54].  

2.4.1 Random Forest (RF) 

This algorithm created by combining the 'bootstrap aggregating' and 'random subspace 

method' techniques, performs classification using a collection of decision trees or 

decision tree ensembles. In the Random Forest algorithm, each decision tree is trained 

independently on the same dataset. Classification results are determined based on the 

most frequently occurring output value of the decision trees [59]. Random Forest is 

not only an effective method for classification problems with multiple classes, but also 

reduces the tendency of overfitting and improves the ability of generalization. The 

random forest algorithm scheme is shown in Figure 2.6. 

 
Figure 2.6: Random Forest algorithm scheme. 
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2.4.2 Random Sample Consensus (RANSAC) 

The RANSAC algorithm, developed in 1981 by Fischler and Bolles [62], was designed 

for estimating model parameters and is capable of smoothing data with significant 

outliers. The algorithm is primarily used for plane estimation from three-dimensional 

point cloud data. The principle of operation of the algorithm is as follows: 

Firstly, three random points are selected, and the plane parameters are calculated based 

on these points. Then, the algorithm determines which plane each of the other points 

in the point cloud belongs tobased on a specified threshold. In this way, the points that 

best fit the plane can be determined. The threshold is a tolerance limit used to 

determine whether a point belongs to the plane. These steps are repeated N times. In 

each iteration, the number of points belonging to a particular plane is counted, and the 

quality of the plane is calculated using an error criterion. If the obtained result is better 

than the previous one, i.e. with fewer errors, the new plane parameters replace the old 

ones.  

In a method based on RANSAC, no random starting point for the parameters is 

determined, but several parameter sets are created by selecting random points. 

Iterations are performed with this parameter set to obtain the best result. In the further 

iterations, the parameters with the best result are selected, which leads to the desired 

accuracy of the result. 

2.4.3 Artificial Neural Networks (ANNs) 

ANNs, is a model that simulates the functioning of the human brain and the decision-

making process. Similar to biological neural networks, an artificial neural network is 

formed by connecting nodes. ANN is trained using two main categories of learning 

processes. These learning processes are supervised learning and unsupervised 

learning. The first type of learning, called supervised learning, uses a training set 

consisting of input data provided to the algorithm and matching output data for that 

input. Unsupervised learning, on the other hand, focuses solely on the recognition of 

input data [60]. An artificial neural network (ANN) usually consists of three layers. 
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Nodes in input are connected to nodes in hidden, and each node in hidden is connected 

to nodes in output. These connections enable the flow of information throughout the 

network. Raw data is fed into input layer and forwarded to hidden layer for processing. 

In the hidden layer, calculations and transformations are performed on the received 

information to extract relevant features. The values obtained in hidden section are then 

forwarded to output section. The output section combines the information from the 

input and hidden layers, performs the necessary operations, and generates the output 

data [61]. An example of the operating logic of ANN is shown in Figure 2.7. 

 
Figure 2.7: A operating logic of ANN. 

2.4.4 Support Vector Machine (SVM) 

SVM, is widely used and considered as one of the most advanced algorithms. SVM is 

used for regression and classification analysis. SVM algorithms can perform both 

linear and non-linear classifications. In non-linear classification, they draw margins 

using the "kernel trick" Margins are drawn to maximize the distance between classes 

and minimize classification errors (Figure 2.8). By transforming data from low-

dimensional datasets into high-dimensional feature spaces, SVMs can make non-linear 

relationships more modelable. SVMs can provide effective results even with a low 

number of samples [57,58]. 
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Figure 2.8: Logic of the SVM algorithm. 

2.4.5 K-NN (K-Nearest Neighbor) 

The K-NN algorithm is a straightforward machine learning algorithm that belongs to 

the supervised learning category. The K-NN algorithm is commonly employed for 

classification problems, although it can be utilized for both regression and 

classification tasks. The K-NN algorithm classifies a data point in the target dataset 

based on its proximity to previous data points [56]. By using feature similarity, K-NN 

predicts the values of new data points (Figure 2.9).  

 

Figure 2.9: Logic of the K-NN algorithm. 
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Chapter 3 

Implementation 

3.1 Study Area 

The district of Bergama, which is located in the northwest of the province of Izmir, 

was chosen as the study area for this thesis (Figure 3.1). The study area is located at 

an altitude of 68 meters above sea level and lies between 39°06'13.02"- 39°5'45.38" 

north latitude and 27°9'58.11"- 27°9'55.40" east longitude. The area was selected as 

the study area because the General Directorate of Mapping (GDM) provided airborne 

LiDAR test flight data for Bergama district. The study area encompasses various 

details including buildings, roads, water bodies, forests, and agricultural areas. 

 
Figure 3.1: Study area. 
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3.2 Material and Method 

3.2.1 Processing of Airborne LiDAR Data 

Test flight data collected by the GDM were used for this study. In 2014, Optech 

Pegasus HA-500 system from Optech company was used to collect airborne LiDAR 

data from an altitude of 1200 m, 25% overlap, 32 columns, a scanning angle of 35º, 

and a scanning width of 580 m. Related to the Pegasus HA-500 system detailed 

information is shown in Table 3.1. The test area was selected based on the details it 

contains such as forests, buildings, and water, with Bergama district as the center. The 

test area covers about 156 km2. Instead of using the entire test data, data from a 28 km2 

area with a high density of buildings was used, which is in line with the purpose of the 

study. 

Table 3.1: Optech Pegasus HA-500 technical specifications 

Flight Altitude 150-5000 m 

Effective Laser Repetition Rate 100-500 kHz 

Scanning Angle 0-75º Adjustable 

Accuracy (MSE) ≤ 5-20 cm 

Scanning Mechanism Oscillating 

 

In examining the airborne LiDAR data used in the study, it was specified that the data 

received from the GDM was unprocessed raw data. The raw data contains a significant 

amount of noise points that come from sunlight and various environmental factors 

(Figure 3.2). Therefore, it is necessary to clean the data from the noise points and 

classify the data before using it in the study. 32 airborne LiDAR data covering the 

study area were merged and noise points were removed from the merged data by 

applying a SOR filter (Figure 3.3). The filtered data that completed the filtering 

process was saved in a point cloud format with the extension (.las/laz). CloudCompare 

v2.11 software was used for these procedures.  
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Figure 3.2: Airborne LiDAR data with noise points. 

 

 
Figure 3.3: Airborne LiDAR data without noise points. 

 

The unclassified point cloud data, cleaned from noise points, was classified utilizing 

Trimble Business Center v5.20 program. Two classes were formed during the 

classification process: ground and non-ground (Figure 3.4). The generated classified 

data was saved in point cloud format (.las/laz).  

 
                            (a)                                                            (b) 

Figure 3.4: Classified airborne LiDAR data a) Ground, b) Non-ground. 
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The coordinate system of the point cloud data acquired from airborne LiDAR data is 

defined as World Geodetic System (WGS84) Universal Transverse Mercator (UTM) 

6° Zone 35. This airborne LiDAR data is used as a reference for the acquisition and 

alignment of ICESat-2/ATLAS data. To be used as a reference for ICESat-2/ATLAS 

data, digital models in raster data format are generated from the airborne LiDAR data. 

These generated raster data are called Digital Terrain Models (DTM) and Digital 

Surface Models (DSM). The resulting raster models (.tiff) were recorded with the 

extension. Airborne LiDAR data classified as ground was used to create a DTM, while 

airborne LiDAR data classified as ground and non-ground was used to create a DSM. 

ArcGIS v10.4 software was used to define the coordinate system of the classified point 

clouds and create the digital models. The digital models obtained from the LiDAR 

(Figure 3.5). 

 
(a) 

 
(b) 

Figure 3.5: Digital models obtained from airborne LiDAR data a) DTM, b) DSM. 
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3.2.2 Processing of ICESat-2/ATLAS Data 

All ICESat-2/ATLAS data within the study area were reviewed and the Track IDs for 

the data to be used in the study were determined. Data with track IDs 777, 1196, and 

1219 provided by the ICESat-2/ATLAS system since the beginning of data provision 

were reviewed. In this study, for estimation of building heights from ICESat-2/ATLAS 

data, Global Geolocated Photon Data (ATL03) and Land Water Vegetation Elevation 

(ATL08) data were downloaded from the OpenAltimetry website. The downloaded 

data files have an (.h5) file extension. The ATL03 dataset product includes the latitude, 

longitude, elevation, and time information of each photon obtained from the ICESat-

2/ATLAS system [63]. The ATL08 dataset product has been developed to determine 

terrain and vegetation heights based on the distribution of signal photons. The ATL08 

product estimates the elevations of the ground surface and top of canopy by analyzing 

the distribution of individual photons. Subsequently, the individual photons are labeled 

as noise, ground, canopy, or top of canopy photons [64]. Integration of the ATL03 and 

ATL08 datasets is important to associate position and surface information with X, Y, 

and Z data for the study area. This integration allows consolidation of both local 

position information and surface features into a single dataset. In this way, more 

comprehensive and meaningful results can be obtained [44]. The process of associating 

ATL03 and ATL08 data was performed using PhoREAL v3.30 and Python v3.9 

software. For the association process, the ATL03 and ATL08 data were first loaded 

into the software. In the previous step, a DTM generated from airborne LiDAR data 

and saved in (.tiff) format was selected as reference data. The amounts of displacement 

in the ICESat-2/ATLAS data were detected, and a shifting process was performed on 

the data in the X and Y axes. The amounts of displacement in the ICESat-2/ATLAS 

data are presented in Table 3.2. The time (Time (sec), Delta Time (sec)), location 

information (Latitude (deg), Longitude (deg), UTM Easting (m), UTM Northing (m)), 

elevation information (Ellipsoidal (m HAE), Orthometric (MSL)), classification, and 

signal confidence values were obtained from the photon data acquired from the 

ICESat-2/ATLAS system. The signal confidence values of the photons (0-noise, 1-

background, 2-low, 3-medium, 4-high) and classification values (0-noise, 1-ground, 

2-canopy, 3-top of canopy) were determined. [63]. The acquired photon data were 

subjected to a filtering process that selected photon data with medium and high signal 

confidence, as well as classification values of ground and top of canopy. All data of 
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between 2018 and 2022 belonging to tracks with IDs 777, 1196, and 1219 identified 

in the study area were examined. Data were identified that included urban areas and 

available building information. ICESat-2/ATLAS data that did not contain urban areas 

were not used for the study. The DSM generated from airborne LiDAR data and 

ICESat-2/ATLAS data was overlaid in ArcGIS v10.4 software. Buildings present in 

the ICESat-2/ ATLAS data have been detected, and the 96 buildings identified were 

designated as sample data. The overlaid ICESat-2/ATLAS and DSM are shown in 

Figure 3.6. 

 
Figure 3.6: Overlaid ICESat-2/ATLAS and DSM. 

 

Table 3.2: ICESat-2/ATLAS data and shift amounts on axes 

ICESat-2/ATLAS Data X-axis Y-axis 

ATL03_20191116183507_07770502_005_01_gt3l -0.5 m 5.1 m 

ATL03_20191116183507_07770502_005_01_gt3r 3.8 m -2.4 m 

ATL03_20200815053424_07770802_005_01_gt3l 1.7 m -3.2 m 

ATL03_20200815053424_07770802_005_01_gt3r 6.1 m 0.4 m 

ATL03_20210212205409_07771002_005_01_gt1l -1.1 m -0.9 m 

ATL03_20210212205409_07771002_005_01_gt1r 1.1 m 0.9 m 

ATL03_20210212205409_07771002_005_01_gt2l 0.4 m 4.0 m 

ATL03_20210212205409_07771002_005_01_gt2r 2.1 m 0.8 m 

ATL03_20190316182741_11960206_005_01_gt2l 3.6 m 4.4 m 
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Table 3.2 (continued): ICESat-2/ATLAS data and shift amounts on axes 

ATL03_20190316182741_11960206_005_01_gt2r 44.6 m -3.9 m 

ATL03_20190316182741_11960206_005_01_gt3l 0.9 m 1.1 m 

ATL03_20190316182741_11960206_005_01_gt3r 2.8 m 2.3 m 

ATL03_20190615140717_11960306_005_01_gt2l 0.9 m 1.1 m 

ATL03_20190615140717_11960306_005_01_gt2r 2.7 m 3.3 m 

ATL03_20200314010644_11960606_005_01_gt2l 0.0 m 0.0 m 

ATL03_20200314010644_11960606_005_01_gt2r 0.2 m -2.0 m 

ATL03_20200612204628_11960706_005_01_gt2l 3.1 m -0.7 m 

ATL03_20200612204628_11960706_005_01_gt2r 1.1 m -0.9 m 

ATL03_20201211120608_11960906_005_01_gt2l 11.4 m 18.1 m 

ATL03_20201211120608_11960906_005_01_gt2r -18.5 m 36.4 m 

ATL03_20201211120608_11960906_005_01_gt3l 2.4 m 6.3 m 

ATL03_20201211120608_11960906_005_01_gt3r -21.2 m -52.2 m 

ATL03_20210909230547_11961206_005_01_gt2l 2.0 m 0.2 m 

ATL03_20210909230547_11961206_005_01_gt2r 0.2 m -2.0 m 

ATL03_20220310142533_11961406_005_01_gt2r 0.0 m 0.0 m 

ATL03_20220908054524_11961606_005_01_gt3l 5.3 m -35.7 m 

ATL03_20220908054524_11961606_005_01_gt3r 0.9 m 1.1 m 

ATL03_20190915213117_12190402_005_01_gt1l 1.5 m -5.2 m 

ATL03_20190915213117_12190402_005_01_gt1r -1.7 m 3.2 m 

 

3.2.3 Field Measurement Data 

As part of the study, field measurements were made to determine the height of 

buildings consistent with ICESat-2/ATLAS data. GNSS measurements were made 

with the receiver “TOPCON GR-5” GPS, and building heights were measured with 

the total station “TOPCON OS-101” total station belonging to Izmir Katip Çelebi 

University. The technical specifications of the GNSS receiver and total station used in 
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the measurements are shown in Figure 3.7 and Figure 3.8, respectively. The heights of 

a total of 96 buildings were determined through field measurements, and the 

corresponding X and Y coordinates of these buildings were also recorded. The 

building heights obtained through field measurements are considered as reference data 

for the building heights obtained from ICESat-2 and airborne LiDAR data.  

 
Figure 3.7: Specifications of the TOPCON GR-5. 

 

 
Figure 3.8: Specifications of the TOPCON OS-101. 
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3.2.4 Classification Processing with Machine Learning 

Algorithms 

Libraries have been added to the Spyder (Python v3.9) environment that are used to 

create data frames, properly access data, handle large datasets, and perform 

calculations using the 'import' command. The ICESat-2/ATLAS datasets with a (.csv) 

extension for which a classification task is desired has been loaded into the Spyder 

environment. The ICESat-2/ ATLAS data, filtered based on signal reliability and 

classification parameters, was split 70% for training and 30% for testing. The 

“KNeighborsClassifier” class from the “sklearn.neighbors” module was imported to 

perform classification using the K-NN machine learning algorithm. The necessary 

parameters for the classification were defined. The algorithm was trained on 70% of 

the training data. The remaining 30% of the data, reserved for testing, was used to 

make predictions. The process applied to the K-NN algorithm were also applied to the 

SVM, RF, ANN and RANSAC machine learning algorithms. For classification with 

the machine learning algorithm SVM, the class "SVC" is imported from the module 

"sklearn.svm". For classification with the Random Forest (RF) machine learning 

algorithm, the “RandomForestClassifier” class from the “sklearn.ensemble” module is 

imported. To perform classification using Artificial Neural Networks (ANNs), the 

“keras” module from “tensorflow”, the “Sequential” class from 

“tensorflow.keras.models”, and the “Dense” class from “tensorflow.keras.layers” are 

imported. Finally, for classification with the RANSAC algorithm, the 

“RANSACRegressor” class from the “sklearn.linear_model” module is imported. The 

parameters required for the classification are defined. The algorithm is trained on the 

training data and used for the predictions of the test data. 

 

The airborne LiDAR data used in the study consists of a dense point cloud. To facilitate 

the classification process of these data using machine learning algorithms, it is 

necessary to clip the classified airborne LiDAR data. The clipping process was 

performed by overlaying the airborne LiDAR data with ICESat-2/ATLAS data. The 

airborne LiDAR data were clipped with reference to the ICESat-2/ATLAS data. 

CloudCompare v2.11 software was used for this process. The airborne LiDAR 

dataset1, which corresponds to the airborne LiDAR data coinciding with the ICESat-
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2/ATLAS datasets has been loaded into the Spyder environment with the file extension 

(.csv). The airborne LiDAR data, filtered based on X, Y and Z coordinates and 

classification parameters, was split 67% for training and 33% for testing. The 

“KNeighborsClassifier” class from the “sklearn.neighbors” module was imported to 

perform classification using the K-NN machine learning algorithm. The necessary 

parameters for the classification were defined. The algorithm was trained on 67% of 

the training data. The remaining 33% of the data, reserved for testing, was used to 

make predictions. The parameters required for the classification are defined. The 

algorithm is trained on the training data and used for the predictions of the test data. 

The process applied to the K-NN algorithm were also applied to the SVM, RF, ANN 

and RANSAC machine learning algorithms.  

3.2.5 Accuracy Analysis of Algorithms 

The confusion matrix (Figure 3.9), also called error matrix, is used to evaluate the 

performance of algorithms in classification tasks. Actual values are compared to 

predicted values and various performance metrics are determined [65].  

 

Figure 3.9: Confusion matrix. 

Confusion matrices have been obtained for the K-NN, SVM, RF, ANN and RANSAC 

algorithms in the Spyder environment. These matrices are created using the test data 

set aside and the prediction results obtained from the classification process. The 

accuracies of the algorithms have been calculated using equation (3.1) based on the 

confusion matrix. 
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Accuracy = 
∑𝑇𝑃+𝑇𝑁

∑𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 

 

(3.1) 

The accuracy rates of classification processes using K-NN, SVM, RF, ANN, and 

RANSAC algorithms for the ICESat-2/ATLAS and airborne LiDAR datasets were 

calculated using the confusion matrix shown in Figure 3.9. 

 

 

 

 

 

 

 

 

 



26 

 

 

Chapter 4 

Results and Discussions 

In this study, performance analyses of machine learning algorithms were conducted 

for calculating building heights using airborne LiDAR and ICESat-2 data. K-NN, 

SVM, RF, ANN and RANSAC machine learning algorithms were utilized for the 

classification of ICESat-2/ATLAS and airborne LiDAR data. The accuracy values 

calculated from the classification processes applied to ICESat-2/ATLAS data sets are 

given in Table 4.1. Similarly, accuracy values computed from the classification 

processes applied to airborne LiDAR data sets are presented in Table 4.2. (The 

airborne LiDAR data listed in Table 4.2 is presented in correspondence with the 

ranking of the ICESat-2/ATLAS data listed in Table 4.1). 

Table 4.1: Accuracy analysis of the classification results of ICESat-2/ATLAS 

ICESat-2/ATLAS Data K-NN SVM RF ANN RANSAC 

Strong Beams 0.9408 0.7543 0.9683 0.7760 0.7168 

Weak Beams 0.9426 0.7211 0.9614 0.7546 0.6617 

 

Table 4.2: Accuracy analysis of the classification results of airborne LiDAR 

 K-NN SVM RF  ANN RANSAC 

Airborne LiDAR Dataset 0.9999 0.9111 0.9998 0.9848 0.5366 

 

Within the scope of the study, a sample of 96 buildings was selected for the purpose 

of estimating building heights. For 16 of these buildings, sufficient data could not be 

obtained from the ICESat-2/ATLAS point cloud to determine their heights. 
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Additionally, the building heights could not be determined for 10 buildings that were 

identified as constructed after 2014, based on the acquisition date of the airborne 

LiDAR data. Consequently, based on these results, a total of 70 buildings had their 

heights determined using ICESat-2/ATLAS, airborne LiDAR, and field measurement 

data. The heights obtained for the 70 buildings are shown in Figure 4.1. 

The linear regression model was used in the study to understand the relationship 

between building height data obtained from the systems used in the study and to 

analyze this relationship. Linear regression models were applied to the data obtained 

from pairs of field measurements - airborne LiDAR, field measurements - ICESat-2, 

and airborne LiDAR - ICESat-2. The model was developed to assess its performance 

by comparing the predictions made on test data with the actual test data. 
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To measure the performance of the regression model, evaluate its reliability, and assess 

the accuracy of the predictions, the following metrics were calculated: R-squared (R2) 

value, Root Mean Square Error (RMSE), Mean Squared Error (MSE), Mean Absolute 

Error (MAE), and Mean Error (ME). The regression model applied to field 

measurements - airborne LiDAR, field measurements - ICESat-2, and airborne LiDAR 

- ICESat-2 pairs, along with the calculated statistical values, are shown in Figure 4.2.  

When examining the building heights obtained from the systems used, it was observed 

that the field measurements and ICESat-2 data were close for buildings numbered 65, 

70, and 90. However, airborne LiDAR data tended to indicate lower heights for these 

buildings. Therefore, to explain this situation, photographs from the years 2016 and 

2022 were examined. As a result of the investigations, it was determined that 

additional floors were added to buildings number 65 and 70. Additionally, it was found 

that a new building was constructed in place of building number 90. Photographs of 

building number 65 are provided in Figure 4.2, photographs of building number 70 are 

provided in Figure 4.3, and photographs of building number 90 are provided in Figure 

4.4. 

 
(a) 

 
(b) 

Figure 4.2: Photos of building number 65, (a) From 2016, (b) From 2022. 
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(a) 

 
(b) 

Figure 4.3: Photos of building number 70, (a) From 2016, (b) From 2022. 

 

 
(a) 

 
(b) 

Figure 4.4: Photos of building number 90, (a) From 2016, (b) From 2022. 

The reason for the differences in building heights obtained from airborne LiDAR data 

compared to the other two systems is that the airborne LiDAR data were collected in 

2014 and do not reflect changes that occurred to these buildings after 2014. Therefore, 

the airborne LiDAR data does not represent the current heights of these structures, and 

this discrepancy was explained by the research conducted. As a result of these findings, 

the height data for buildings numbered 65, 70, and 90 were removed from the 

regression model, and a new regression model was created, which included height data 

for 67 buildings. To assess the performance of the newly created regression model, the 

following metrics were calculated: R2 value, RMSE, MSE, MAE, and ME. 

4.1 Field Measurement–Airborne LiDAR Accuracy 

Assessment 

A linear regression model was built using height data for 70 different buildings based 

on field measurements and airborne LiDAR data. After identifying the outliers, a new 

regression model was created using height data for a total of 67 different buildings. 
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Error values for the created models were calculated. The regression models based on 

field measurements and airborne LiDAR data, along with their error values, are 

visually presented in Figure 4.5. 

 
(a) 

 
(b) 

Figure 4.5: Field Measurement-Airborne LiDAR linear regression, (a) With height 

data of 70 buildings, (b) With height data of 67 buildings. 

A regression model was developed based on field measurements and airborne LiDAR 

data, resulting in initial height predictions for 70 different buildings. The statistical 

values for these predictions were calculated as follows: R² = 0.8368, RMSE = 1.9646, 

MSE = 3.8597, MAE = 1.0586, and ME = -0.3450. After removing 3 identified outliers 

from the data set, a new regression model was created with height predictions for 67 

different buildings. Statistical values for this updated model were calculated as 

follows: R² = 0.9986, RMSE = 0.1355, MSE = 0.0184, MAE = 0.0942, and ME = 

0.0388. 

These results suggest that the model obtained after removing outliers fits the data more 

closely and more reliably. A high R² coefficient means a strong alignment between the 

model and the observed data, indicating high predictive accuracy. The low values of 

RMSE, MSE, MAE, and ME indicate that the predictions of the model are closer to 

the actual data. 
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4.2 Field Measurement–ICESat-2/ATLAS Accuracy 

Assessment 

A linear regression model was created between the height data of 70 buildings obtained 

from field measurement and ICESat-2/ATLAS data. After removing the identified 

outlier values, a new regression model was constructed using the height data of 67 

buildings, and error values for the models were calculated. The regression models and 

error values for the field measurement and ICESat-2 data are shown in Figure 4.6. 

 
(a) 

 
(b) 

Figure 4.6: Field Measurement-ICESat-2/ATLAS linear regression, (a) With height 

data of 70 buildings, (b) With height data of 67 buildings. 

The regression model based on the field measurement and ICESat-2 data resulted in 

height predictions for 70 different buildings. The statistical values of these predictions 

were calculated as R²= 0.9894, RMSE= 0.4131, MSE= 0.1706, MAE= 0.3184, and 

ME= 0.0003. After removing three outliers from the data set, the statistical values of 

the new regression model created using the height predictions of 67 different buildings 

were calculated as follows: R²= 0.9905, RMSE= 0.3528, MSE= 0.1245, MAE= 

0.2549, and ME= -0.0611. 

The results show that both the initial model and the new model created after removing 

the outliers are of high quality. An R² value of about 0.99 indicates that the model is 

in excellent agreement with the observed data. The low values of RMSE, MSE, MAE, 
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and ME indicate that the predictions of the model are very close to the actual data. The 

removal of outliers appears to have improved the accuracy of the model's predictions. 

 

4.3 Airborne LiDAR–ICESat-2/ATLAS Accuracy 

Assessment 

A linear regression model was constructed between the height data of 70 buildings 

obtained from aerial LiDAR and ICESat-2/ATLAS data. After removing the identified 

outlier values, a new regression model was created using the height data of 67 

buildings and the error values for the models were calculated. The regression models 

and error values for aerial LiDAR and ICESat-2 data are shown in Figure 4.7. 

 
(a) 

 
(b) 

Figure 4.7: Airborne LiDAR-ICESat-2/ATLAS linear regression, (a) With height 

data of 70 buildings, (b) With height data of 67 buildings. 

The regression model based on airborne LiDAR and ICESat-2 data produced height 

predictions for 70 different buildings. The statistical values of these predictions were 

calculated as R²= 0.8275, RMSE= 1.6664, MSE= 2.7770, MAE= 0.9040, and ME= 

0.4598. After removing three outliers from the data set, the statistical values of the new 

regression model created using the height predictions of 67 different buildings were 

calculated as follows: R²= 0.9922, RMSE= 0.3209, MSE= 0.1030, MAE= 0.2314, and 

ME= -0.0979. 
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The results show that both the initial model and the new model created after removing 

the outliers are of high quality. An R² value of about 0.99 indicates that the model is 

in excellent agreement with the observed data. The low values of RMSE, MSE, MAE 

and ME show that the predictions of the model are very close to the actual data. The 

removal of outliers has improved the accuracy of the model's predictions. 
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Chapter 5 

Conclusion 

The objective of this study is to estimate building heights using machine learning 

algorithms based on airborne LiDAR and ICESat-2 data. The airborne LiDAR data 

were subjected to the necessary filtering processes to obtain digital models. ICESat-2 

data were obtained from 2018 to 2022 within the study area. Digital models obtained 

from airborne LiDAR and ICESat-2 data were overlaid, and shifts in the ICESat-

2/ATLAS data were determined. Airborne LiDAR and ICESat-2/ATLAS data were 

classified using K-NN, SVM, RF, ANN and RANSAC classification algorithms. The 

error values and accuracy rates of the classification methods were determined.   

The analyses for ICESat-2 data performed show that the Random Forest classification 

algorithm has the highest accuracy rate. This result underlines the effective ability of 

the algorithm to classify data. The K-NN algorithm was found to have higher accuracy 

rates compared to the SVM, ANN and RANSAC algorithms for airborne LiDAR data. 

This result shows that the K-NN algorithm has better classification performance 

compared to other algorithms. In the literature, the RANSAC algorithm is commonly 

used for roof inference and object detection. It is assumed that this contributes to a 

lower accuracy in the classification processes. As a result of the classification 

processes performed on the Icesat-2 data, it was found that strong beams have higher 

accuracy rates compared to weak beams. This is thought to be due to the fact that 

strong beams have a denser point cloud. As the density of the point cloud increases, it 

can be deduced that the accuracy of the classification process improves. These 

analyses show that classification algorithms can deliver different results depending on 

the data type and features. Especially for special data types such as Icesat-2 data, data 

density should be considered as an important factor that can affect classification 

accuracy. In studies on the classification of ICESat-2/ATLAS data using machine 
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learning algorithms, researchers have found that the data obtained from the ICESat-

2/ATLAS system in forested areas can be classified using K-NN, SVM, RF and GBDT 

machine learning algorithms. In the study conducted by Luo et al. [66]in a forested 

area, the RF algorithm was found to have the highest accuracy in classification.  

When examining the study area and the data used, it is suspected that the presence of 

trees near buildings in urban areas could influence the classification results of the 

algorithms. This is due to the fact that the ICESat-2 dataset contains information on 

the photon class of top of canopy, which includes both tree and building data. 

The building heights were determined using the data obtained from the systems. 

Regression models were created from the height data, including the following pairs: 

field measurement - airborne LiDAR, field measurement -ICESat-2/ATLAS and 

airborne LiDAR -ICESat-2/ATLAS. Statistical metrics were calculated on the basis of 

the regression models. For the 70 buildings, the regression models yielded the 

following R² values: 0.8368 for the field measurement-airborne LiDAR, 0.9894 for 

the field measurement-ICESat-2/ATLAS and 0.8275 for airborne LiDAR-ICESat-

2/ATLAS. For the 67 buildings, the regression models yielded R² values of 0.9986 for 

field measurement-airborne LiDAR, 0.9905 for field measurement-ICESat-2/ATLAS 

and 0.9922 for airborne LiDAR-ICESat-2/ATLAS. 

In the regression models created with the data from 70 buildings, the models that 

included airborne LiDAR data had lower R² values, but after removing outlier data 

from the models, an increase in R² values was observed. The airborne LiDAR data 

used in the study was collected during a flight in 2014 and therefore does not include 

recent changes to three buildings. This result underlines the importance of using up-

to-date data in research. 

The results obtained underline the reliability of LiDAR technologies and field 

measurements as a trustworthy data source for applications such as urban area 

characterization. This study shows how promising the ICESat-2 system is for future 

research in urban areas and offers a new perspective in the literature. 
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