

Heart Attack Analysis Detection

System Using Machine Learning

Methods

Department of Software Engineering (Distance Education)

SERDAR YANIK

ORCID 0000-0000-0000-0000

Project Advisor: Dr. Öğr. Üyesi Serpil Yılmaz

January, 2024

Heart Attack Analysis Detection System Using Machine Learning Methods

Summary

In order to investigate Heart Attack Analysis and Detection Using Machine Learning

Methods, models that predict the type of news in a new condition determined by using

Machine Learning Models have been studied.

In particular, the performance of various classifiers, including logistic regression, K-

nearest neighbour (KNN), support vector machine (SVM), Naive Bayes and decision

tree, is compared. In the experiments using a real-life dataset, logistic regression and

SVM gave the best results with a test accuracy of 90%. Naive Bayes achieved an

accuracy of 86.67%, KNN 83.33% and decision tree 63.33%. These results suggest

that logistic regression and SVM can be suitable and effective machine learning

models for predicting heart attack risk.

Keywords: Engineering, artificial intelligence, machine learning, Heart Attack

Analysis, Prediction

2

3

Acknowledgements

I would like to thank Dr. Serpil Yılmaz for her efforts in the emergence of the project

work.

4

Contents

Declaration of Authorship ii

Summary iii

Acknowledgements vi

List of Figures x

1. Purpose of the Project 1

2. Steps of the Project 2

2.1. Inclusion of Libraries in the System 2

2.2. Inclusion of the Data Set in the Project 4

2.3. Missing and Unique Value Analysis 4

2.4. Categorical and Numeric Feature Analysis 5

 2.5. Outlier Detection 8

2.6. Encoding Categorical Columns, Scaling and Separating Data into Training and Test

Data 14

2.7. Building, Training and Testing Models 16

2.7.1. Logistic Regression Modeli 16

2.7.2. K-Nearest Neighbors (KNN) Algorithm Model 19

2.7.3. Support Vector Machine (SVM) Algorithm Model 19

2.7.4. Naive Bayes Algorithm Model 20

2.7.5. Decision Tree Algorithm Model 20

3. Conclusion

4. References

5

Figures List

Figure 2.1 1: Libraries required to read the data 2

Figure 2.2. 1: Data Table 3

Figure 2.3. 2: Unique Value Analysis 4

Figure 2.4. 1: Categorical Feature Analysis 8

Figure 2.4. 2: Bivariate data analysis with scatter plot 9

Figure 2.4. 3: Box Plot Analysis 10

Figure 2.4. 4: Swarm Plot Analysis 10

Figure 2.4. 5: Cat Plot Analysis 10

Figure 2.4. 6: Correlation Analysis 11

Figure 2.5. 1: Outlier Detection 14

Figure 2.6. 1: Separation of Training and Test Data 15

Figure 2.7. 1: Required Libraries for Model 16

Figure 2.7.1. 1: Logistic Regression Model 16

Figure 2.7.1. 2: ROC Curve 17

Figure 2.7.2. K-Nearest Neighbors (KNN) Algorithm Model 19

Figure 2.7.3. Support Vector Machine (SVM) Algorithm Model 19

Figure 2.7.4. Naive Bayes Algorithm Model 20

Figure 2.7.5. Decision Tree Algorithm Model 20

6

1

Chapter 1

Introduction

1. Purpose of the Project

A decision tree model, which generates an algorithm that resembles human

thought processes, has recently been considered a suitable statistical approach for the

development of clinical prediction models [1,2]. We aimed to develop an easy-to-use

prediction model for heart attack analysis by decision tree analysis.

To determine to which class a new instance belongs, the naive Bayes algorithm

uses a simplified version of the Bayes formula [3]. Each class's posterior probability

is calculated using the feature values present in the instance. The instance with the

highest probability is then assigned to the class.

SVM has been widely utilized and routinely delivers equivalent or greater

performance compared to other machine learning algorithms [4,6]. It was first created

by Vapnik and colleagues [4,5]. Its principal idea is to use a kernel function to transfer

data points to a high-dimensional space, from which a hyper plane can be used to

segregate the data points.

Characteristics of observations are gathered for both training and test datasets,

and the purpose of the kNN classifier is to categorize unlabeled observations by

placing them in the class of the most similar labeled examples [7]. The diagnostic

efficacy of the kNN algorithm is greatly influenced by the selection of k.thus finding

a compromise between overfitting and underfitting is crucial for selecting the right k

value [7, 8]. According to some writers, k should be set to the square root of the

training dataset's observation count [7,9].

2

Logistic regression may include only one or multiple independent variables,

although examining multiple variables is generally more informative because it reveals

the unique contribution of each variable after adjusting for the others. [10].

The aim of this project is Heart Attack Analysis Detection System Using

Machine Learning Methods. For this project, Heart Attack Analysis & Prediction

Dataset containing 303 samples was used. From this dataset, machine learning models

were created using sklearn, pandas, numpy and their sub-libraries written in Python

language. The dataset was divided into training and test data and trained with these

models. After the accuracy rates of the training and test data were determined, a new

data was entered and tested and these rates were presented in the project.

2. Steps of the Project

2.1. Inclusion of Libraries in the System

 First of all, I included the libraries necessary to read the Heart Attack Analysis

& Prediction Dataset and create the models.

3

Figure 2.1 1: Libraries required to read the data

4

2.2. Inclusion of the Data Set in the Project

To read the dataset, I used the read_csv() method to read the dataset and assigned

it to a variable named df. I used the head() method to display the first 5 rows of the

dataset.

Figure 2.2. 1: Data Table

2.3. Missing and Unique Value Analysis

 To make missing value analysis I used df.isnull().sum() code.

Figure 2.3. 1: Missing Value Analysis

To make missing value analysis I used the folowing code.

for i in list(df.columns):

 print("{} -- {}".format(i, df[i].value_counts().shape[0]))

5

Figure 2.3. 2: Unique Value Analysis

2.4. Categorical and Numeric Feature Analysis

 I made a list of categorical variables and visualized them with the help of the

seaborn library. I used the following codes for this process.

categorical_list = ["sex", "cp","fbs","restecg","exng","slp","caa","thall","output"]

df_categoric = df.loc[:, categorical_list]

for i in categorical_list:

 plt.figure()

 sns.countplot(x = i, data = df_categoric, hue = "output")

 plt.title(i)

6

7

8

9

Figure 2.4. 1: Categorical Feature Analysis

I made a list of numeric variables and visualized them with the help of the seaborn

library. I used the following codes for this process.

numeric_list = ["age", "trtbps","chol","thalachh","oldpeak","output"]

 df_numeric = df.loc[:, numeric_list]

sns.pairplot(df_numeric, hue = "output", diag_kind = "kde")

plt.show()

10

Figure 2.4. 2: Bivariate data analysis with scatter plot

11

Figure 2.4. 3: Box Plot Analysis d6

Figure 2.4. 4: Swarm Plot Analysis

12

Figure 2.4. 5: Cat Plot Analysis

Figure 2.4. 6: Correlation Analysis

13

2.5. Outlier Detection

 I used the following code to find outlier values in the data set.

numeric_list = ["age", "trtbps","chol","thalachh","oldpeak"]

df_numeric = df.loc[:, numeric_list]

for i in numeric_list:

 Q1 = np.percentile(df.loc[:, i],25)

 Q3 = np.percentile(df.loc[:, i],75)

 IQR = Q3 - Q1

 print("Old shape: ", df.loc[:, i].shape)

 upper = np.where(df.loc[:, i] >= (Q3 +2.5*IQR))

 lower = np.where(df.loc[:, i] <= (Q1 - 2.5*IQR))

 print("{} -- {}".format(upper, lower))

 try:

 df.drop(upper[0], inplace = True)

 except: print("KeyError: {} not found in axis".format(upper[0]))

 try:

 df.drop(lower[0], inplace = True)

 except: print("KeyError: {} not found in axis".format(lower[0]))

14

 print("New shape: ", df.shape)

Figure 2.5. 1: Outlier Detection

2.6. Encoding Categorical Columns, Scaling and

Separating Data into Training and Test Data

Encoding categorical columns is an important step in preparing data for

machine learning. By converting categorical values to numerical values, machine

learning models are able to understand and learn from the data more effectively.

A machine learning model is trained to predict the risk of heart attack based on

a number of factors, including age, sex, blood pressure, cholesterol levels, and

smoking status.

The smoking status column is a categorical column with two possible values:

"smoker" and "non-smoker". To encode this column, one-hot encoding is used. This

creates two new binary columns: "smoker" and "non-smoker". The value of each

column is 1 if the observation is a smoker/non-smoker and 0 otherwise.

The encoded smoking status columns are then added to the dataset along with

the other features. The model is then trained on the dataset.

15

When the model is evaluated on a new dataset, it is found to perform better

than a model that was trained on the dataset without encoding the categorical columns.

This shows how encoding categorical columns can improve the performance of

machine learning models.

 I used the following code for encoding categorical columns, scaling and

separating data into training and test data

df1 = pd.get_dummies(df1, columns = categorical_list[:-1], drop_first = True)

X = df1.drop(["output"], axis = 1)

y = df1[["output"]]

scaler = StandardScaler()

scaler

X[numeric_list[:-1]] = scaler.fit_transform(X[numeric_list[:-1]])

X.head()

Figure 2.6. 1: Separation of Training and Test Data

16

2.7. Building, Training and Testing Models

 I include the libraries needed to build the model.

Figure 2.7. 1: Required Libraries for Model

2.7.1. Logistic Regression Model

 The test accuracy rate of the data trained for the Logistic Regression Model

and the codes are as follows.

Figure 2.7.1. 1: Logistic Regression Model

17

plt.plot([0,1],[0,1],"k--")

plt.plot(fpr, tpr, label = "Logistic Regression")

plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.title("Logistic Regression ROC Curve")

plt.show()

Figure 2.7.1. 2: ROC Curve

18

2.7.2. K-Nearest Neighbors (KNN) Algorithm Model

The test accuracy rate of the data trained for the K-Nearest Neighbors (KNN) Algoritm

Model and the codes are as follows.

Figure 2.7.2: K-Nearest Neighbors (KNN) Algorithm Model

2.7.3. Support Vector Machine (SVM) Algorithm Model

The test accuracy rate of the data trained for the Support Vector Machine (SVM)

Algoritm Model and the codes are as follows.

Figure 2.7.3: Support Vector Machine (SVM) Algoritm Model

19

2.7.4. Naive Bayes Algorithm Model

The test accuracy rate of the data trained for the Naive Bayes Algorithm Model and

the codes are as follows.

Figure 2.7.4: Naive Bayes Algorithm Model

2.7.5. Decision Tree Algorithm Model

The test accuracy rate of the data trained for the Decision Tree Algorithm Model and

the codes are as follows.

Figure 2.7.5: Decision Tree Algorithm

20

3. Conclusion

In this study, various machine learning models were used to predict the risk of

heart attack. Logistic regression and SVM models gave the best results with a test

accuracy of 90%, while Naive Bayes achieved 86.67%, KNN 83.33% and decision

tree 63.33% accuracy.

The results show that logistic regression and SVM are highly effective methods

for predicting heart attack risk. The high accuracy rates of these models can enable

early diagnosis and intervention by accurately predicting the risk of heart attack.

The excellent results of SVM and logistic regression can be attributed to a

number of factors. First off, a variety of factors that influence the likelihood of a heart

attack can be considered by these models. Secondly, these models excel at simulating

intricate interactions.

The superior performance of logistic regression and SVM over Naive Bayes,

KNN, and decision tree models can be attributed to multiple factors. The Naive Bayes

model, for instance, makes the assumption that characteristics are independent. This

might not always be the case. The neighbors chosen can have an impact on the KNN

model. When the decision tree model gets complicated, it can be challenging to

understand.

This study has shown that machine learning methods can be highly effective

tools for predicting heart attack risk. In particular, logistic regression and SVM models

stand out with their high accuracy rates.

21

References

1. Joung J, Oh JS, Yoon JM, Ko KO, Yoo GH, Cheon EJ. A decision tree model

for predicting intravenous immunoglobulin resistance and coronary artery

involvement in Kawasaki disease. BMC Pediatr. 2022 Aug 5;22(1):474. doi:

10.1186/s12887-022-03533-6. PMID: 35931986; PMCID: PMC9354345.

2. Sleeper LA, Minich LL, McCrindle BM, Li JS, Mason W, Colan SD, Atz

AM, et al. Evaluation of Kawasaki disease riskscoring systems for

intravenous immunoglobulin resistance. J Pediatr. 2011;158:831–5.

doi: 10.1016/j.jpeds.2010.10.031.

3. Jiang W, Shen Y, Ding Y, Ye C, Zheng Y, Zhao P, Liu L, Tong Z, Zhou L,

Sun S, Zhang X, Teng L, Timko MP, Fan L, Fang W. A naive Bayes

algorithm for tissue origin diagnosis (TOD-Bayes) of synchronous multifocal

tumors in the hepatobiliary and pancreatic system. Int J Cancer. 2018 Jan

15;142(2):357-368. doi: 10.1002/ijc.31054. Epub 2017 Oct 16. Erratum in:

Int J Cancer. 2018 Jul 1;143(1):E2. PMID: 28921531.

4. Zhang D, Xiao J, Zhou N, Zheng M, Luo X, Jiang H, Chen K. A Genetic

Algorithm Based Support Vector Machine Model for Blood-Brain Barrier

Penetration Prediction. Biomed Res Int. 2015;2015:292683. doi:

10.1155/2015/292683. Epub 2015 Oct 4. PMID: 26504797; PMCID:

PMC4609370.

5. Vapnik V. N. The Nature of Statistical Learning Theory. New York, NY,

USA: Springer; 1995.

6. Heikamp K., Bajorath J. Support vector machines for drug discovery. Expert

Opinion on Drug Discovery. 2014;9(1):93–104.

doi: 10.1517/17460441.2014.866943.

7. Zhang Z. Introduction to machine learning: k-nearest neighbors. Ann Transl

Med. 2016 Jun;4(11):218. doi: 10.21037/atm.2016.03.37. PMID: 27386492;

PMCID: PMC4916348

22

8. Zhang Z. Too much covariates in a multivariable model may cause the

problem of overfitting. J Thorac Dis 2014;6:E196-7

9. Lantz B. Machine learning with R. 2nd ed. Birmingham: Packt Publishing;

2015:1.

10. Stoltzfus JC. Logistic regression: a brief primer. Acad Emerg Med. 2011

Oct;18(10):1099-104. doi: 10.1111/j.1553-2712.2011.01185.x. PMID:

21996075.)

23

