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Heart Attack Analysis Detection System Using Machine Learning Methods 

Summary  

In order to investigate Heart Attack Analysis and Detection Using Machine Learning 

Methods, models that predict the type of news in a new condition determined by using 

Machine Learning Models have been studied. 

In particular, the performance of various classifiers, including logistic regression, K-

nearest neighbour (KNN), support vector machine (SVM), Naive Bayes and decision 

tree, is compared. In the experiments using a real-life dataset, logistic regression and 

SVM gave the best results with a test accuracy of 90%. Naive Bayes achieved an 

accuracy of 86.67%, KNN 83.33% and decision tree 63.33%. These results suggest 

that logistic regression and SVM can be suitable and effective machine learning 

models for predicting heart attack risk. 

Keywords: Engineering, artificial intelligence, machine learning, Heart Attack 

Analysis, Prediction  
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Chapter 1 

Introduction 

1. Purpose of the Project 

A decision tree model, which generates an algorithm that resembles human 

thought processes, has recently been considered a suitable statistical approach for the 

development of clinical prediction models [1,2]. We aimed to develop an easy-to-use 

prediction model for heart attack analysis by decision tree analysis. 

To determine to which class a new instance belongs, the naive Bayes algorithm 

uses a simplified version of the Bayes formula [3]. Each class's posterior probability 

is calculated using the feature values present in the instance. The instance with the 

highest probability is then assigned to the class.  

SVM has been widely utilized and routinely delivers equivalent or greater 

performance compared to other machine learning algorithms [4,6]. It was first created 

by Vapnik and colleagues [4,5]. Its principal idea is to use a kernel function to transfer 

data points to a high-dimensional space, from which a hyper plane can be used to 

segregate the data points. 

Characteristics of observations are gathered for both training and test datasets, 

and the purpose of the kNN classifier is to categorize unlabeled observations by 

placing them in the class of the most similar labeled examples [7]. The diagnostic 

efficacy of the kNN algorithm is greatly influenced by the selection of k.thus finding 

a compromise between overfitting and underfitting is crucial for selecting the right k 

value [7, 8]. According to some writers, k should be set to the square root of the 

training dataset's observation count [7,9]. 
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Logistic regression may include only one or multiple independent variables, 

although examining multiple variables is generally more informative because it reveals 

the unique contribution of each variable after adjusting for the others. [10].   

The aim of this project is Heart Attack Analysis Detection System Using 

Machine Learning Methods. For this project, Heart Attack Analysis & Prediction 

Dataset containing 303 samples was used. From this dataset, machine learning models 

were created using sklearn, pandas, numpy and their sub-libraries written in Python 

language. The dataset was divided into training and test data and trained with these 

models. After the accuracy rates of the training and test data were determined, a new 

data was entered and tested and these rates were presented in the project. 

 

 

 

 

 

 

2. Steps of the Project 

2.1. Inclusion of Libraries in the System 

 First of all, I included the libraries necessary to read the Heart Attack Analysis 

& Prediction Dataset and create the models. 
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Figure 2.1 1: Libraries required to read the data 
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2.2. Inclusion of the Data Set in the Project 

To read the dataset, I used the read_csv() method to read the dataset and assigned 

it to a variable named df. I used the head() method to display the first 5 rows of the 

dataset.  

 

Figure 2.2. 1: Data Table 

 

2.3. Missing and Unique Value Analysis 

 To make missing value analysis I used df.isnull().sum() code. 

  

Figure 2.3. 1: Missing Value Analysis 

To make missing value analysis I used the folowing code. 

for i in list(df.columns): 

    print("{} -- {}".format(i, df[i].value_counts().shape[0])) 
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Figure 2.3. 2: Unique Value Analysis 

  

2.4. Categorical and Numeric Feature Analysis 

 I made a list of categorical variables and visualized them with the help of the 

seaborn library. I used the following codes for this process. 

categorical_list = ["sex", "cp","fbs","restecg","exng","slp","caa","thall","output"] 

 

df_categoric = df.loc[:, categorical_list] 

for i in categorical_list: 

    plt.figure() 

    sns.countplot(x = i, data = df_categoric, hue = "output") 

    plt.title(i) 
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Figure 2.4. 1: Categorical Feature Analysis 

 

I made a list of numeric variables and visualized them with the help of the seaborn 

library. I used the following codes for this process.  

numeric_list = ["age", "trtbps","chol","thalachh","oldpeak","output"] 

 df_numeric = df.loc[:, numeric_list] 

sns.pairplot(df_numeric, hue = "output", diag_kind = "kde") 

plt.show() 
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Figure 2.4. 2: Bivariate data analysis with scatter plot 
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Figure 2.4. 3: Box Plot Analysis  d6 

 

 

 

 

 

 

 

Figure 2.4. 4: Swarm Plot Analysis 
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Figure 2.4. 5: Cat Plot Analysis 

 

 

 

 

 

Figure 2.4. 6: Correlation Analysis 
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2.5. Outlier Detection 

 I used the following code to find outlier values in the data set. 

numeric_list = ["age", "trtbps","chol","thalachh","oldpeak"] 

df_numeric = df.loc[:, numeric_list] 

 

for i in numeric_list: 

    

     

    Q1 = np.percentile(df.loc[:, i],25) 

    Q3 = np.percentile(df.loc[:, i],75) 

     

    IQR = Q3 - Q1 

     

    print("Old shape: ", df.loc[:, i].shape) 

     

    

    upper = np.where(df.loc[:, i] >= (Q3 +2.5*IQR)) 

     

     

    lower = np.where(df.loc[:, i] <= (Q1 - 2.5*IQR)) 

     

    print("{} -- {}".format(upper, lower)) 

     

    try: 

        df.drop(upper[0], inplace = True) 

    except: print("KeyError: {} not found in axis".format(upper[0])) 

     

    try: 

        df.drop(lower[0], inplace = True) 

    except:  print("KeyError: {} not found in axis".format(lower[0])) 
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    print("New shape: ", df.shape) 

 

 

 

Figure 2.5. 1: Outlier Detection 

 

2.6. Encoding Categorical Columns, Scaling and 

Separating Data into Training and Test Data 

Encoding categorical columns is an important step in preparing data for 

machine learning. By converting categorical values to numerical values, machine 

learning models are able to understand and learn from the data more effectively. 

A machine learning model is trained to predict the risk of heart attack based on 

a number of factors, including age, sex, blood pressure, cholesterol levels, and 

smoking status. 

The smoking status column is a categorical column with two possible values: 

"smoker" and "non-smoker". To encode this column, one-hot encoding is used. This 

creates two new binary columns: "smoker" and "non-smoker". The value of each 

column is 1 if the observation is a smoker/non-smoker and 0 otherwise. 

The encoded smoking status columns are then added to the dataset along with 

the other features. The model is then trained on the dataset. 
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When the model is evaluated on a new dataset, it is found to perform better 

than a model that was trained on the dataset without encoding the categorical columns. 

This shows how encoding categorical columns can improve the performance of 

machine learning models. 

 I used the following code for encoding categorical columns, scaling and 

separating data into training and test data 

df1 = pd.get_dummies(df1, columns = categorical_list[:-1], drop_first = True) 

 

X = df1.drop(["output"], axis = 1) 

y = df1[["output"]] 

 

scaler = StandardScaler() 

scaler 

 

X[numeric_list[:-1]] = scaler.fit_transform(X[numeric_list[:-1]]) 

X.head() 

 

 

Figure 2.6. 1: Separation of Training and Test Data 
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2.7. Building, Training and Testing Models 

 I include the libraries needed to build the model. 

  

Figure 2.7. 1: Required Libraries for Model  

 

2.7.1. Logistic Regression Model 

 The test accuracy rate of the data trained for the Logistic Regression Model 

and the codes are as follows. 

 

  

Figure 2.7.1. 1: Logistic Regression Model 
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plt.plot([0,1],[0,1],"k--") 

plt.plot(fpr, tpr, label = "Logistic Regression") 

plt.xlabel("False Positive Rate") 

plt.ylabel("True Positive Rate") 

plt.title("Logistic Regression ROC Curve") 

plt.show() 

 

 

 

 

 

Figure 2.7.1. 2: ROC Curve  
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2.7.2. K-Nearest Neighbors (KNN) Algorithm Model 

The test accuracy rate of the data trained for the K-Nearest Neighbors (KNN) Algoritm 

Model and the codes are as follows. 

 

Figure 2.7.2: K-Nearest Neighbors (KNN) Algorithm Model 

 

2.7.3. Support Vector Machine (SVM) Algorithm Model 

The test accuracy rate of the data trained for the Support Vector Machine (SVM) 

Algoritm Model and the codes are as follows. 

Figure 2.7.3: Support Vector Machine (SVM) Algoritm Model 
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2.7.4. Naive Bayes Algorithm Model 

The test accuracy rate of the data trained for the Naive Bayes Algorithm Model and 

the codes are as follows. 

 

Figure 2.7.4: Naive Bayes Algorithm Model 

 

2.7.5. Decision Tree Algorithm Model 

The test accuracy rate of the data trained for the Decision Tree Algorithm Model and 

the codes are as follows. 

 

Figure 2.7.5: Decision Tree Algorithm 
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3. Conclusion 

In this study, various machine learning models were used to predict the risk of 

heart attack. Logistic regression and SVM models gave the best results with a test 

accuracy of 90%, while Naive Bayes achieved 86.67%, KNN 83.33% and decision 

tree 63.33% accuracy. 

 

The results show that logistic regression and SVM are highly effective methods 

for predicting heart attack risk. The high accuracy rates of these models can enable 

early diagnosis and intervention by accurately predicting the risk of heart attack. 

The excellent results of SVM and logistic regression can be attributed to a 

number of factors. First off, a variety of factors that influence the likelihood of a heart 

attack can be considered by these models. Secondly, these models excel at simulating 

intricate interactions. 

The superior performance of logistic regression and SVM over Naive Bayes, 

KNN, and decision tree models can be attributed to multiple factors. The Naive Bayes 

model, for instance, makes the assumption that characteristics are independent. This 

might not always be the case. The neighbors chosen can have an impact on the KNN 

model. When the decision tree model gets complicated, it can be challenging to 

understand. 

This study has shown that machine learning methods can be highly effective 

tools for predicting heart attack risk. In particular, logistic regression and SVM models 

stand out with their high accuracy rates. 
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