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Investigation of the Effects of Statistically Significant 

Features on the Classification of EEG-Based Motor 

Imagery Tasks 

Abstract 

Motor imagery (MI) task classification is highly prevalent in Electroencephalography 

(EEG)-based Brain-Computer Interface (BCI) research area. Extremity movement task 

classification and finger movement classification studies are presented in this thesis. 

In extremity movement classification, binary-class (right hand and left hand) and 

multi-class (right hand, left hand, right hand, and left hand) classifications are 

performed using 4 different feature extraction approaches and statistically 

significance-based feature selection (the independent t-test, one-way ANOVA test). 

Firstly, time-domain, Fourier Transform (FT)-based frequency-domain, and Wavelet 

Transform (WT)-based time-frequency domain features are calculated from multi-

channel EEG signals. In addition to these features, Poincare plot measures-based non-

linear features are calculated. Two different combination sets are also created to 

classify MI tasks of EEG segments using the extracted features. For finger movement 

classification, time-domain, frequency-domain, WT-based time-frequency domain, 

non-linear and their two different combinations set features are investigated using 

ANOVA-based and Pricipal Component Analysis (PCA)-based feature selection 

methods. Intrincsic Time-Scale Decomposition (ITD)-based time-frequency features 

are also investigated using ANOVA-based feature selection. 9 different machine 

learning algorithms namely Decision Tree (DT), Support Vector Machine (SVM), k-

Nearest Neighbor (k-NN), Naive Bayes (NB), Logistic Regression (LR), Discriminant 

Analysis (DA), Neural Networks (NN), and Kernel Approximation (KA) are used 

based on 5-fold cross-validation to distinguish different groups. According to 

experimental results, the most successful feature sets are Poincare plot measures-based 

non-linear feature set and the combination set of different feature sets in extremity and 

finger movement classification studies. The statistically significance-based feature 

selection method improved classification performance in most of the feature sets. 
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İstatiksel Anlamlı Özniteliklerin EEG Tabanlı Motor 

Hayali Görevlerin Sınıflandırmasındaki Etkisinin 

Araştırılması 

Öz 

Motor hayali (MH) görev sınıflandırması, Elektroensefalografi (EEG) tabanlı Beyin-

Bilgisayar Arayüzü (BBA) araştırma alanında oldukça yaygındır. Bu tezde ekstremite 

hareketi görev sınıflandırması ve parmak hareketi sınıflandırma çalışmaları 

sunulmaktadır. Ekstremite hareketi sınıflandırmasında, ikili sınıf (sağ el ve sol el) ve 

çoklu sınıf (sağ el, sol el, sağ el ve sol el) sınıflandırmalar, 4 farklı öznitelik çıkarma 

yaklaşımı ve istatistiksel anlamlılığa dayalı özellik seçimi (bağımsız t-testi, tek yönlü 

ANOVA testi) kullanılarak gerçekleştirilmektedir. İlk olarak, Çok kanallı EEG 

sinyallerinden zaman alanı, Fourier Dönüşümü (FD) tabanlı frekans alanı ve Dalgacık 

Dönüşümü (DD) tabanlı zaman-frekans alanı özellikleri hesaplanır. Bu özniteliklere 

ek olarak Poincare çizimi ölçülerine dayalı doğrusal olmayan öznitelikler de 

hesaplanmaktadır. Çıkarılan öznitellikler kullanılarak EEG segmentlerinin MH 

görevlerini sınıflandırmak için iki farklı kombinasyon seti de oluşturulmuştur. Parmak 

hareketi sınıflandırması için zaman alanı, frekans alanı, WT tabanlı zaman-frekans 

alanı, doğrusal olmayan ve bunların iki farklı kombinasyon seti öznitelikleri, ANOVA 

tabanlı ve Temel Bileşen Analizi (TBA) tabanlı öznitelik seçim yöntemleri 

kullanılarak incelenmiştir. İçsel Zaman Ölçeği Ayrışımı (IZA) tabanlı zaman-frekans 

öznitelikleri, ANOVA tabanlı öznitelik seçimi kullanılarak da araştırılmaktadır. Karar 

Ağacı (KA), Destek Vektör Makinesi (DVM), k-En Yakın Komşu (k-EYK), Naive 

Bayes (NB), Lojistik Regresyon (LR), Ayırma Analizi (AA), Sinir Ağları (NN) ve 

Çekirdek Yaklaşımı (ÇY) farklı grupları ayırt etmek için 5-kat çapraz-doğrulamaya 

dayalı kullanılmaktadır. Deneysel sonuçlara göre ekstremite ve parmak hareketi 

sınıflandırma çalışmalarında en başarılı öznitelik setleri Poincare grafiği ölçümlerine 

dayalı doğrusal olmayan özellik seti ve farklı öznitelik setlerinin kombinasyon setidir. 

İstatistiksel anlamlılığa dayalı öznitelik seçme yöntemi, öznitelik setlerinin çoğunda 

sınıflandırma performansını iyileştirdi. 
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Chapter 1 

Introduction 

1.1 Background Information and Literature Review 

1.1.1 Brain-Computer Interfaces (BCIs) 

BCI, is a hardware and software communication system, ensures direct communication 

between the brain and a computer or external devices utilizing control signals obtained 

from signals of brain activity [1]. BCI systems use brain activity as input signals and 

then decode them to offer an extended degree of freedom improving life quality of 

persons who suffer from motor disabilities and serious physical disabilities [2]. BCI 

have been widely studies recently and have been different applications including 

rehabilitation, robotics, gaming, and neuroscience [3-5]. BCI applications have 

evolved substantially over the years and various publications have been introduced in 

the literature according to PubMed statistics as shown in Figure 1.1 [6].  

 

 

Figure 1.1: The number of publications over the years according to the PubMed 

statistics [6]. 
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1.1.2 Brain-Computer Interfaces (BCIs) Applications 

BCI system output could replace, restore, enhance, supplement, or improve natural 

CNS output to improve daily activities of paralyzed patients [2, 7-12]. In addition to 

these applications, a BCI system could affect interactions between the CNS and the 

external or internal environment of it. In another application of BCI, it could modulate 

brain signals using physical stimulation which are DBS, TES, TMS, tFUS, or other 

forms of brain signal modulation. These device-to-BCI connection applications are 

known as neuromodulation modalities [2]. The applications and main components of 

BCI system are given below in Figure 1.2 [2]. 

 

 

Figure 1.2: The main components and applications of BCI system. 
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1.1.3 Components of a Brain-Computer Interface (BCI) 

System  

BCI systems are artificial systems that can recognize relevant and informative patterns 

in brain signals as the first step. After recording of brain signals, BCI systems extract 

features from signals and convert or translate the features into new outputs using signal 

processing step. Therefore, BCI systems consist of five main components such as 

signal acquisition, signal preprocessing, feature extraction, feature translation 

(classification), and control [2, 13]. Figure 1.2 shows the main components of BCI 

system. 

The main components of a BCI system can be detailed as follows: 

Signal acquisition: This stage, is the first step of BCI system, captures the activities 

(metabolic or electrophysiological) in brain and these recorded signals can be digitized 

for another signal processing stages. Various electrophysiological, and metabolic 

neuroimaging modalities can be used in brain signal acquisition to give an input for 

BCI system [1, 2]. Electrophysiological modalities are EEG, and ECoC, while 

metabolic modalities are fMRI, and fNIRs. The different advantages and 

disadvantages are available in each of them, however the electrophysiological 

modalities have been mostly preferred due to high temporal resolution and portability 

[1, 2].  

Intra-cortical is an invasive technique and supplies high spatial resolution using 

electrodes which are implanted subdurally over brain cortex. It requires an operation 

for electrode placement [2, 14]. In another invasive brain imaging technique, which is 

known as ECoC, an effective representation of the underlying cortical electrical 

activity can be supplied with less invasiveness [15]. The non-invasive methods consist 

of EEG, MEG, fMRI, and fNIRs [2]. fMRI is a non-invasive brain imaging technique, 

and it measures BOLD response to capture brain activity. It provides relatively low 

temporal resolution and high spatial resolution [2, 16, 17]. fNIRs is another non-

invasive technique that uses near-infrared light to measure blood flow dynamics to 

analyze neural activity. It has different advantages such as high spatial resolution, its 

portability and relatively cost-effective system. However, it provides low temporal 

resolution and less effective than based on electromagnetic signals [18, 19]. MEG is 
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non-invasive imaging technique and measures the magnetic induction generated by 

electrical activity in neural cells. It requires specialized equipment and a laboratory 

environment. It is less cost-effective and more sophisticated than EEG-based BCI [2, 

20, 21]. Among the different neuroimaging modalities, EEG is mostly used to acquire 

and feed input signals to BCI systems measuring the electrical activities of brain which 

results from the communication activity of neurons in the brain. It is mostly preferred 

for clinical and commercial use due to its high temporal resolution, non-invasiveness 

and inexpensive [2]. German psychiatrist Hans Berger is the first person who records 

the electrical field of human brain [22]. The electrodes are located on the surface of 

the scalp as stated in the international 10-20 electrode placement scheme as shown in 

Figure 1.3 [22, 23]. 

 

 

Figure 1.3: International 10-20 electrode placement system [22]. 

 

A standard EEG signal has the amplitude which ranges between 0-200µV, and the 

frequency of EEG signals differs between 0.5-50Hz. It consists of various frequency 

bands which are defined as delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ) from 

low frequency to high frequency, respectively [14]. The relevant characteristics, the 

frequency ranges, the waveforms of frequency bands, and their personal states vary 

amongst themselves. Delta waves have frequency ranges of 0.5-4Hz, and they are 

observed during deep sleep state in adults. The frequency ranges of theta waves are 4-

8Hz, and these waves are observed in young and older children, sleeping adults, and 

sleep stages such as REM sleep. Alpha waves lie between frequency ranges of 8-13Hz, 
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these waves are associated with awake, eyes closed, and resting states. The frequency 

ranges of beta waves are 13-30Hz, and they are related to motor activities. The 

personal states of beta waves are mental activations, and stress/anxiety situations. The 

gamma bands lie within the 30 to 100Hz range, the personal state of them is whole 

brain activity. Gamma waves are not preferred for EEG-based system design, because 

they are exposed to the artifacts which affect them [1, 14]. 

Signal preprocessing: This stage obtains a suitable form of signals for further signal 

processing of signals using different processes such as signal filtering, channel 

selection, and signal segmentation [2]. 

Feature extraction: In this stage, the discriminative and relevant patterns in the brain 

signals are captured using different features. The extraction of the effective features is 

a very important task in BCI systems. Since, the brain signals have non-stationary 

forms and these signals are subject to noise by artifacts such as EMG or EOG signals 

during signal acquisition. And also, the different feature selection methods can 

optionally be used to reduce feature dimension and complexity of system without the 

loss of relevant information. Therefore, effective feature extraction and feature 

selection methods play an important role in BCI design for using discriminative and 

effective features [2]. 

Feature translation (classification): The extracted features are classified using 

various machine learning algorithms to predict the corresponding brain activity and 

commands occurred to use in BCI [24]. 

Control: In this stage the classified brain signals are translated into relevant 

commands to control any connective device such as a wheelchair, a computer or a 

neuroprosthesis device [2,7-12, 25]. 

The various neural control signals are used by BCIs. These are sensorimotor rhythms, 

SCP, the P300 event-related potential, and ERPs such as VEPs and SSVEP [26, 27]. 

Sensorimotor rhythms have been analyzed in BCI research area. MI is traditionally 

established on visual or auditory feedback. MI task performed when subject only 

imagines moving any limb without actually moving any limb [28, 29]. Then 

sensorimotor rhythms are extracted and classified using different signal processing 

algorithms. Finally, the visual or auditory feedback is generated to the subject in regard 
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to the success of system. The general concept of MI task in EEG-based BCI studies is 

represented as in Figure 1.4 [30]. 

 

 

Figure 1.4: Motor imagery task in EEG-based BCI studies. 

 

1.1.4 Extremity Movement Task Classification and Literature 

Review 

In design of MI EEG-based systems, the extremity movement task classification 

studies have been generally performed rather than finger movement classification [31-

33]. The extremity movement task generated when a subject only imagines the 

movement of different large limbs such as right hand, left hand, right feet, left feet, 

both feet, and tongue without actually moving any limb [33]. The accurate 

classification of extremity movement task is important to enable effective 

communication link which assists people suffering from motor activities by reason of 

any accident or disease [31, 34-35]. The automatic MI EEG signals classification has 

drawn attention in BCI studies and different signal processing approaches have been 
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performed to sort out in research area of extremity movement task classification [36-

38]. 

The main steps of MI EEG-based BCI systems are feature extraction, feature selection, 

and classification. Various studies have been carried out for extremity movement task 

classification using temporal, spectral, and spatial domain features. The statistical-

based and amplitude-based time domain features, raw EEG time-series have been 

evaluated as temporal features [39-40]. Spectral features consist of frequency-domain 

[41], and time-frequency domain features [36], which are the mostly evaluated features 

for the analysis of MI EEG signals. FT represents the frequency domain of EEG time 

series and is one of the mostly used methods to obtain frequency distribution of EEG 

signals for extremity movement task classification. In 2017, authors [41] performed 

binary-class extremity movement classification study using FFT and LVQ networks. 

However, FT has some disadvantages, which it rules out non-stationary structure of 

EEG signals and does not include any time information in its frequency distribution 

[42]. Therefore, various time-frequency representations have been used to analyze MI 

EEG signals [43].  

Various signal decomposition algorithms such as WT [43] and its derivatives [44, 45], 

STFT [36], ITD [46], EMD [43, 47], and its derivatives have been successfully used 

in discrimination of extremity movement tasks. Ha and Jeong [36], presented STFT-

based approach for binary-class extremity movement classification. EEG signals were 

converted into 2D images and these EEG representations applied in CNNs architecture 

for classification. In 2018, Alam and Samanta [47] performed EMD-based MI task 

classification study. In [45], authors presented MI task classification study utilizing 

DWT and cross-correlated EEG features. In a different approach [44], Chaudhary et 

al. performed binary-class (right hand and right foot) MI task classification study using 

the FAWT approach. They decomposed the MI EEG signals into sub-bands and 

temporal-moment based features were obtained from these bands. EL-based 

classification was performed with promising results. In another study [43], MI task 

classification study was performed using WPD, k-NN algorithm and higher-order 

statistical features. In 2018, Mohamed et al. [46] carried out four-class MI task 

classification study using ITD and ANNs algorithm. They extracted the PRCs using 
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ITD and evaluated the energy, entropy, and mean absolute values from PRCs as 

features.  

After a brief investigation, it was observed that spatial features have been mostly 

evaluated to analyze MI EEG signal with promising classification results in last 

decades. CSP [48] and derivatives such as FBCSP [49] are the most applied methods 

to obtain spatial features for the extremity movement task classification. In [50], CSP 

and DL approaches were employed to distinguish MI EEG signals. In a different 

approach [51], CSP-based and wavelet coherence-based feature extraction processes 

were conducted for binary-class MI EEG signal classification. Lu et al. [52], used the 

aggregated RCSP for analysis of MI EEG signals. In another study [49], Ang et al. 

proposed FBCSP-based binary-class and multi-class extremity movement task 

classifications. They also applied feature selection using MIBIF and the MIRSR 

algorithms. NBPW algorithm is applied to classify MI EEG signals. 

In addition to the effectiveness of feature extraction methods, the correlation of these 

features plays an important role in improving the classification performance. 

Additionally, the high amounts of features increase the complexity of classification 

process due to redundant information [53, 54]. In the literature, various feature 

selection methods have been introduced and used in EEG signal processing to obtain 

relevant and effective features by selecting of features. The backward elimination, 

PCA, GA, and statistically-significance based feature selection methods have been 

mostly applied in literature to improve classification performance selecting effective 

features and diminishing computational load of classifiers [53-55].  

According to the studies, the most successful experimental results have been reported 

using machine learning algorithms such as SVM [40], ANN [46], k-NN [43], NB [49], 

and EL [40, 44] and various DL models [36, 50].  

After a brief investigation of extremity movement task classification studies, some 

drawbacks and limitations of studies can be summarized as follows; 

• The succesfully employed feature extraction methods were spectral and spatial 

feature extraction-based approaches for analysis of MI EEG signals. In 

addition to these features, the effectiveness of various time-domain, non-linear, 

time-frequency domain features and the different combinations which consist 
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of variety of features can be investigated to improve the classification 

performance. 

• It was observed that the feature selection algorithms have not been mostly 

applied to analyze MI EEG signals. Various feature selection methods such as 

statistically significance-based feature selection and PCA, which is 

successfully applied in EEG signal processing can be improved to the classifier 

performance. 

• In addition to the successful machine learning such as SVM, ANN, k-NN, NB, 

and EL, the effectiveness of different algorithms such as DT, LDA, NNs, LR 

and KA can be analyzed for extremity movement task classification. 

1.3.5 Finger Movement Task Classification and Literature 

Review 

Rehabilition of motor functions of a hand, especially fingers is an important task to 

improve ADL for humans who exposure to upper limb motor impairment [56, 57]. 

Finger movements are essential tools to manipulate and move objects and interact with 

environment [58]. Hands consist of various types of tissues such as skeletal muscles, 

bones and joints [59, 60].  The sophisticated finger movements are required complex 

processing in central nervous system [56, 61]. Especially, the motor activities of hand 

can be critically affected after stroke, which affects approximately 100-200 out of 

every 100,000 people, and is the major cause of motor disability [62, 63]. Furthermore, 

these deficiencies in ADL considerably affect the patient’ independence and also cause 

long term disability [56]. Therefore, the accurate decoding of finger movement is an 

important task and can help people who suffer from motor disabilities by improving 

ADL. In recent years, finger movement classification has become a very important 

research topic and various signal processing algorithms have been used to solve this 

task [56-57, 64]. 

In literature, EEG-based finger movement classification studies have been introduced 

utilizing various signal processing and classification methods. Different types of 

features including temporal, spectral and spatial features are utilized to improve the 

classification performance of EEG segments. Various methods have been introduced 

for classification of finger movement by using temporal features such as the raw EEG 
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time series [65-67], different amplitude-based and statistical features. As spectral 

features, FT is one of the most exploited methods for EEG analysis and it has been 

frequently applied to this task [66]. Additionally, various time-frequency 

representations of EEG signals including WT [68], STFT [69], EMD [70] and its 

derivatives have been successfully utilized in classification. The spatial features such 

as CSP [71, 72] and its derivatives [73] have been mostly used to classify finger 

movement and successful classification results have been supplied for finger 

movement classification. 

Kaya et al. [66] proposed a five-finger movement classification study utilizing time-

domain and frequency domain features such as power of EEG sub-bands, FT 

amplitudes and EEG time series. They performed both subject-dependent and subject-

independent analysis with 19 channel EEG signals of 8 subjects. SVM classification 

algorithm is applied for classification. In another study [71], five finger movements 

are classified using spatial features which are extracted with CSP algorithm. The 

subject-dependent analysis is performed with 4 subjects. The extracted features are 

classified with RF algorithm. In 2022, Azizah et al. [69] conducted a channel process-

based analysis using CSP-OVR and 4 out of 19 EEG channels are selected before 

feature extraction process. They evaluated spectral features obtaining spectrogram 

features from the chosen EEG channels. The subject-dependent analysis is carried out 

using SVM algorithm with promising classification results. In [73], authors performed 

subject-dependent finger movement classification using spatial (multi-class CSP) and 

spectral features (complex Fourier amplitudes). These features are evaluated from 19 

EEG channels and classified with SVM algorithm. 

In addition to traditional machine learning algorithms, deep learning approaches have 

also been used to improve classifier performance in finger movement research area. 

Various deep learning approaches such as CNNs [65, 67, 74], LSTM and their different 

variants [70] are utilized to discriminate finger movements. Mwato-Velu et al. [70] 

presented an EMD-based subject-dependent classification study utilizing 4 selected 

and relevant channels of 19-channeled EEG signals. A deep learning model which is 

known as BiLSTM is adopted to classify finger movement. In 2022, authors [67] 

presented a deep learning-based subject-dependent finger movement classification 

study using EEG time series. Before feature extraction, EEG signals of selected 4 
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subjects are used and 4 out of 19 EEG channels are selected for analysis. In study [72], 

CSP algorithm-based feature extraction and deep learning approach are used to 

perform a subject-dependent classification. The experimental analysis performed 

using 19-channel EEG signals of 4 subjects. In a recent study [65], CNN-based 

classification approach is introduced for subject-independent classification. As feature 

extraction process before giving to CNN structure as input data, EEG time series 

combined with sliding window and noise enhancement methods. The 19-channel EEG 

signals of 8 subjects are utilized for signal processing. In another recent study 

performed by Limbaga et al. [74], a CNN architecture is employed to EEG signals 

both feature extraction and classification. In addition to their proposed study, a transfer 

learning model is applied to reinforce their deep learning model. They performed 

subject-independent analysis using 14 channels out of 19-channel EEG signals of 4 

subjects. 

According to literature studies, in classification stage, the successful classification 

results have been reported by utilizing different machine learning algorithms including 

SVM [66, 69, 73, 75], RF [71] and EL [75], etc. In addition to these machine learning 

algorithms deep learning approaches such as CNN [65, 67, 74] and LSTM [70] 

architectures have been successfully used for finger movement classification. 

Considering the recent literature studies performed for finger movement classification, 

the main benefits, drawbacks and difficulties of this task can be listed as follows;  

• The classification results remained at low rates when all EEG channels were 

used for analysis and the subject-independent analysis were performed. 

According to studies, channel selection and subject-dependent analysis can be 

used to improve classification performance. 

• After a brief comparison of extremity classification and finger movement 

classification studies, it was observed that the classification results of finger 

movement classification studies have remained at low rates than the 

classification results of extremity classification studies due to complex neural 

processing. The selection of the effective feature extraction and classification 

methods can play an important role in improving classification results, 

especially in finger movement classification. 
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• Many studies have frequently used time-domain, frequency-domain and 

spatial-domain features with promising classification results. The effectiveness 

of non-linear parameters, various time-frequency algorithms, and different 

combinations of features varieties in finger movement classification can be 

investigated to improve classification performance. 

• In the studies carried out for finger movement classification, the feature 

selection methods have not been generally included in the processing of EEG 

signals. The effective feature selection methods can be improved classifier 

performance defining relevant and fewer features and reducing the classifier 

complexity. 

• According to literature studies, it was observed that one of the most successful 

classification algorithms is SVM. In addition to SVM, various classification 

algorithms such as DT, LDA, NB, k-NN, EL, NNs and KA can be investigated 

to improve classification performance and their effectiveness can be analyzed 

and compared. 

Therefore, the effectiveness of various types of features and their combinations can be 

investigated with effective feature selection methods and various classifier algorithms 

to improve classification performance for finger movement discrimination.  

1.2 Objectives of the Thesis  

The main purpose of the presented thesis is to obtain high classification results with 

various signal processing methods for two MI EEG signal classification, extremity 

movement task classification, and finger movement classification, which are 

frequently analyzed in the literature BCI studies. The various EEG signal processing 

methods are used for classification of extremity movement task classification, and 

finger movement classification. The EEG segments of MI tasks were investigated 

using various feature sets such as time-domain feature set (amplitude-based and 

statistical based features), frequency-domain feature set (FFT-based features), time-

frequency domain features (WT-based features) and non-linear feature set (Poincare 

features) to improve classification performance. In addition to these feature sets, time-

frequency features extracted using ITD algorithm were investigated for finger 

movement classification.  
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The main objectives of the thesis can be given as follows: 

1. Distinguishing of MI EEG signals using the various feature sets separately and 

their different combinations was performed to analyze the two MI EEG signal 

classification. The effectiveness of all feature sets was investigated for both 

binary-class and multi-class MI task classification in extremity movement task 

classification. 

2. In finger movement classification, experimental analysis was carried out for 

both subject-dependent and subject dependent analysis. 

3. We investigated whether the recently presented ITD can be applied for 

representation and classification of multi-channel MI EEG signals. 

4. We aimed to investigate the effectiveness of statistically-significance based 

feature selectin method to improve classification model. 

1.3 Contributions of the Thesis to Literature 

This thesis aimed to present various signal processing methods from the literature for 

both extremity movement task classification and finger movement classification using 

different features, effective feature selection methods and various machine learning 

algorithms.  

The main and innovative contributions of the studies of this thesis can be highlighted 

as follows: 

a) For extremity movement task classification approaches; 

1. We investigate the effectiveness of hand-crafted feature extraction methods 

considering various feature sets such as time-domain, frequency-domain, time-

frequency domain, non-linear feature sets and different combinations of these 

feature sets. 

2. For the first time, novel non-linear features from the Poincare plot measures of 

MI EEG signals are implemented in this study. Thus, we show that non-linear 

feature extraction-based approach provides promising experimental results and 

it is an efficient method for classification of MI EEG signals. 

3. We demonstrated the effectiveness of the statistically-significance based 

feature selection methods by comparing the experimental results of analyzes 
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using all features and statistically significant features determined by feature 

selection. 

4. The effectiveness of all feature sets and the statistically-significance based 

feature selection methods are investigated for both binary-class and multi-class 

extremity movement task classification. 

5. This thesis is the first study that performed analyzes and comparison of various 

machine learning algorithms in extremity movement task classification to the 

author’s best knowledge. 

b) For finger movement classification approaches; 

1. The various features including time-domain, frequency-domain, time-

frequency domain, non-linear features and their different combinations are 

used for analysis of EEG signals of finger movement. 

2. For the first time, Poincare plot-based non-linear features are extracted for 

finger movement classification in addition to the traditional features. 

3. In addition to different features which are also evaluated in extremity 

movement task classification, a different approach is conducted using ITD-

based features for only finger movement classification. The first three PRCs 

are extracted from EEG signals, the effectiveness of these components and 

their different combinations are investigated using different features, 

separately. To the author's best knowledge, this is the first study that 

investigated the effectiveness of different PRCs and their combinations for 

finger movement classification. Here we demonstrate that the ITD-based 

approach can be successfully utilized to analyze MI EEG signals and the 

proposed method, combination of PRCs, improved the classifier performance. 

4. It has been noted that the statistically-significance based feature selection 

provides successful classification of finger movement in analyzes using 

various feature sets. 

5. In contrast to the traditional finger movement classification studies which have 

ignored passive mode (NoMT), we performed a six-class finger movement 

classification study implementing EEG signals NoMT task to design a more 

realistic BCI design for patients, who suffering from motor disabilities to the 

author's best knowledge. 
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6. The subject-dependent and subject-independent analyzes are carried out using 

different features and machine learning algorithms. 

7. This thesis is the first study that performed analyzes and comparison of various 

classifiers in finger movement classification to the author’s best knowledge. 
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Chapter 2 

Materials and Methods 

In this chapter, experimental data sets, various feature extraction methods, and feature 

selection methods used for signal analysis, and machine learning algorithms applied 

for classification section of proposed feature sets are listed. These are introduced in 

the following sections. 

2.1 Experimental Data Sets 

In this thesis, two different EEG data sets are used to perform experimental section. 

The first one is BCI Competition IV Dataset IIa that is publicly available MI EEG 

dataset generated during MI tasks. These MI EEG signals are utilized for extremity 

movement classification analyzes in our thesis. The second one is a publicly available 

EEG dataset that is a large electroencephalographic MI dataset for EEG-based BCIs. 

Multi-channel EEG signals of finger movements from this dataset are evaluated for 

finger movement classifications in our thesis. 

2.1.1 BCI Competition IV Dataset II-a 

In this thesis, the effectiveness of proposed approaches for extremity movement 

classification is evaluated using BCI Competition IV Dataset IIa [76]. It includes 22-

channel EEG data collected form 9 subjects (4 female and 5 male). The cue-based BCI 

paradigm includes different MI tasks the imagination of the left hand (class 1), right 

hand (class 2), both feet (class 3), and tongue (class 4). 

EEG data was recorded as two sessions on different days. Each session includes 6 runs 

which are divided by breaks. And also, each run includes 48 trials which are 
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categorized 12 trials for each class category. A total of 288 trials were recorded at the 

end of all runs for each subject. In experiments, a cue which is one of the four MI 

classes is represented to the subject during 1.25 sec. Thus, the subject is directed to 

perform the requested task. Subject performed related MI task until a shorth break. 

Therefore, the MI task is performed during 3 sec for each trial. format throughout the 

manuscript. The timing schemes of experiment are represented in Figure 2.1 [76]. 

 

(a) Session timing representation 

(b) Trials representation. 

Figure 2.1: The timing scheme for (a) One session, (b) The Paradigm [76]. 

 

In data recording, the EEG signals were sampled with 250 Hz and filtered with a band-

pass filter between 0.5 Hz and 100 Hz. In addition, the 50 Hz notch filter was applied 

to extinguish line noise. As preprocessing section of extremity movement 

classification studies, MI EEG segments of EEG signals for each trial are divided for 

signal processing.  
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2.1.2 A large electroencephalographic motor imagery dataset 

for electroencephalographic brain computer interfaces 

In this thesis, the effectiveness of proposed approaches for finger movement 

classifications is evaluated using a large electroencephalographic MI dataset for EEG-

based BCIs which is introduced by Kaya et al. [66]. The data set comprised of various 

type of MIs in 4 different paradigms. 21-channel EEG signals were recorded from 13 

healthy subjects using EEG-1200 JE-912A recording system. According to the 

international 10-20 EEG electrode placement system, 19 EEG, 2 reference electrodes 

and the ground electrode were located for experiments. BCI interaction paradigms are 

designed based on MI tasks of 10 different limbs in this data set are listed as follows: 

• Paradigm #1 (CLA): It is defined as classical left/right hand MI model and 

includes three MIs of left and right-hand movements and one passive mental 

imagery that is defined as passive model and any MI task is not available in it. 

• Paradigm #2 (HaLT): It is an extension form of 3-state CLA paradigm model 

and it includes the imagery of left and right leg movements and tongue 

movement. Therefore, a total of six different MIs are available in this model. 

• Paradigm #3 (5F): It is introduced as 5 finger MI and it consists of finger 

movements imageries which are MI EEG signals recorded during imagination 

of the movements of the five fingers on a hand as flexion of the corresponding 

fingers up or down. Finger movements imageries are denoted as Thumb (Class 

1), Index finger (Class 2), Middle finger (Class 3), Ring finger (Class 4), and 

Pinkie finger (Class 5). 

• Paradigm #4 (NoMT): It is defined as no MI model or visual signals. In this 

paradigm no visual stimulus is shown on the screen for subjects, they passively 

watched the screen. 

In our finger movement classification analysis, six different class categories are 

available utilizing 5F and NoMT paradigms. In the recording of EEG signals, the 

action signal is represented to subjects during 1 sec, subject implemented desired 

motor imagery in this time. Then, the related action signal is not remained on the screen 

and 1.5-2.5 seconds break is given for subjects until the next motor imagery action 

signal is given. Two different sampling frequencies including 200 Hz and 1000 Hz are 
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available for EEG signals in this dataset. In this thesis, EEG signals obtained with a 

1000 Hz sampling frequency were selected to be utilized for signal analysis of finger 

movement classification. In the acquisition of EEG signals, a 0.53 Hz-100 Hz band-

pass filter was implemented to the signals utilizing hardware filters. In order to 

suppress the electrical grid interface, a 50 Hz notch filter was used to signals. 

In the preprocessing section of finger movement classification of this thesis, 100 

samples of 1000 Hz EEG signals of six different classes MIs (5F and NoMT 

paradigms) were determined to be used in signal processing and following 

classification section. The same number of EEG segments were determined for each 

of six classes to provide balanced data distribution for analysis. Therefore, 600 trials 

are available for each subject. 

2.2 Feature Extraction 

In this thesis, six different feature sets are utilized for the classification of extremity 

movement task and finger movement. MI EEG signals are investigated utilizing (i) 

time-domain feature set, (ii) frequency-domain feature set, (iii) time-frequency domain 

feature set, (iv) non-linear feature set, (v) combination of time-, frequency-domain 

feature sets and time-frequency domain feature set, and finally, (vi) combination of 

time- and frequency-domain feature sets, time-frequency domain feature set and non-

linear feature set to provide high classification performance. 

2.2.1 Time Domain Feature Set 

In this thesis, 24 different time-domain features are extracted using original time-

domain information of EEG signals. These features are evaluated according to the 

amplitude and statistical changes of the EEG signal. 24 different time-domain features 

and their mathematical formulas are listed as follows [40, 75, 77-79]: 

       𝑀𝑖𝑛𝑢𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒  =  min (𝑋[𝑛])                                   (2.1) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒  =  max (𝑋[𝑛])                                   (2.2) 

  𝑀𝑒𝑎𝑛 (𝜇)  =  
1

𝑁
∑ 𝑋[𝑛]𝑁−1

𝑛=0                                        (2.3) 
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𝑆 tan 𝑑 𝑎𝑟𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒  =  √
1

𝑁
∑ (𝑋[𝑛] − 𝜇)2𝑁−1

𝑛=0                   (2.4) 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐸𝐸𝐺 𝑣𝑎𝑙𝑢𝑒  =   ∑ |𝑋[𝑛]|𝑁−1
𝑛=0                              (2.5) 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒  =  
1

𝑁
∑ |𝑋[𝑛]|𝑁−1

𝑛=0                             (2.6) 

𝑆𝑖𝑚𝑝𝑙𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙  =   ∑ |𝑋[𝑛]|2𝑁−1
𝑛=0                             (2.7) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  =  
1

𝑁−1
∑ (𝑋[𝑛] − 𝜇)2𝑁−1

𝑛=0                                (2.8) 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒  =  √
1

𝑁
∑ 𝑋[𝑛]2𝑁−1

𝑛=0                             (2.9) 

𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚 𝑙𝑒𝑛𝑔𝑡ℎ  =   ∑ |𝑋[𝑛] − 𝑋[𝑛 − 1]|𝑁
𝑛=1                         (2.10) 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑣𝑎𝑙𝑢𝑒  =  
1

𝑁
∑ |𝑋[𝑛] − 𝑋[𝑛 − 1]|𝑁

𝑛=1         (2.11) 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑆𝐷   =  √
1

𝑁
∑ (𝑋[𝑛] − 𝑋[𝑛 − 1])2𝑁

𝑛=1           (2.12) 

                                       𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠  =  
1

𝑁
∑ (𝑋[𝑛]−𝜇)2𝑁−1

𝑛=0

(
1

𝑁
∑ (𝑋[𝑛]−𝜇)2𝑁−1

𝑛=0 )
2                                     (2.13) 

     𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠  =  
1

𝑁
∑ (𝑋[𝑛]−𝜇)3𝑁−1

𝑛=0

(√
1

𝑁
∑ (𝑋[𝑛]−𝜇)2𝑁−1

𝑛=0 )

3                                  (2.14) 

𝐻𝑗𝑜𝑟𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦)  =  𝐴  =  
1

𝑁−1
∑ (𝑋[𝑁] − 𝜇)2𝑁−1

𝑛=0      (2.15) 

𝐻𝑗𝑜𝑟𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦)  =  𝑀  =  √
𝐴 (

𝑑𝑋 [𝑛]

𝑑𝑛
)

𝐴 (𝑋[𝑛])
               (2.16) 

𝐻𝑗𝑜𝑟𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)  =  𝐶  =  
𝑀 (

𝑑𝑋 [𝑛]

𝑑𝑛
)

𝑀 (𝑋[𝑛])
             (2.17) 

𝑆𝑖𝑔𝑛𝑎𝑙 𝑟𝑎𝑛𝑔𝑒  =  𝑚𝑎𝑥 (𝑋[𝑛]) − min (𝑋[𝑛])                 (2.18) 

𝐹𝑖𝑟𝑠𝑡 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑄1)  =  𝑋  [
𝑁+1

4
]                         (2.19) 
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𝐼𝑛𝑡𝑒𝑟 − 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑄2) =  𝑄3 − 𝑄1  =  𝑋  [
3(𝑁+1)

4
] − 𝑋  [

(𝑁+1)

4
]  (2.20) 

 𝑇ℎ𝑖𝑟𝑑 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 (𝑄3)  =  𝑋  [
3(𝑁+1)

4
]                              (2.21) 

𝑀𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒  =  𝑀𝑜𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑎𝑛 𝐸𝐸𝐺 𝑠𝑖𝑔𝑛𝑎𝑙.            (2.22)     

 𝑆𝑙𝑜𝑝𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑣𝑎𝑙𝑢𝑒  =   ∑ [𝑓[(𝑋[𝑛] − 𝑋[𝑛 + 1]). (𝑋[𝑛] − 𝑋[𝑛 + 1])]]𝑁−1
𝑛=1     (2.23)    

  𝑓(𝑥)  =  {1,     𝑖𝑓  →  𝑥 ≥  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, }  {0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. } 

     𝑍𝑒𝑟𝑜 − 𝑐𝑟𝑜𝑠 sin 𝑔  𝑣𝑎𝑙𝑢𝑒  =  
1

2𝑁
∑ |𝑠𝑖𝑔𝑛 [𝑋𝑖(𝑛)] − 𝑠𝑖𝑔𝑛 [𝑋𝑖(𝑛 − 1)]|𝑁−1

𝑛=1     (2.24) 

𝑠𝑖𝑔𝑛(𝑋𝑖(𝑛))  =  {1,   𝑋𝑖[𝑛]  ≥  0 , }  {−1,   𝑋𝑖[𝑛]  <  0 . } 

In the above equations, X[n] denotes the EEG signal and N denotes the size of the 

EEG signal. Mean value is denoted as µ.  

2.2.2 Frequency Domain Feature Set 

To provide this feature set, the frequency distribution embedded in the EEG signal is 

generated using FT. The various sub-bands of EEG embedded in signal which are delta 

(δ), theta (θ), alpha (α), beta (β), and gamma (γ) are extracted from the EEG signals. 

Frequency ranges of these bands are defined as δ (0.5-4 Hz), θ (4-8 Hz), α (8-13 Hz), 

β (13-30 Hz), and γ (30-100 Hz). The relevant and discriminative frequency domain 

features such as energy, variance, and entropy are evaluated from the defined EEG 

sub-bands. The change of energy, variance, and entropy (irregularity) values in the 

defined frequency bands of EEG signal can be analyzed using these features. 

Calculation of energy, variance, and entropy are given in the following equations; 

respectively [78-81] 

𝐸𝑛𝑒𝑟𝑔𝑦𝑓 =   ∑ 𝑦(𝑖)2𝑀
𝑖=1                                     (2.25) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑓 =
1

𝑀−1
  ∑ (𝑦𝑘 − 𝑦)2𝑀

𝑖=1                            (2.26) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑓 =
1

𝑙𝑜𝑔 (𝑀)
  ∑ 𝑃(𝑦(𝑖)) log (𝑃(𝑦(𝑖)))𝑀

𝑖=1                (2.27) 
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where, f indicates the frequency band type (δ, θ, α, β, and γ) of EEG signals. The 

energy of these bands is evaluated using the power spectrum of signals.  y indicates 

the FT of a real discrete time EEG signal and M indicates the maximum frequency. 

𝑦indicates the average of the y signal. Entropy is defined as irregularity and measures 

the regularity of the power spectrum of the EEG signal. P(y(i)) denotes the probability 

that the signal is in the defined frequency domain. EEG signal.  

2.2.3 Time-Frequency Domain Feature Sets 

We applied WT- and ITD-based approaches to analyze EEG signals in our study. WT-

based time-frequency set is investigated for both extremity movement task 

classification and finger movement classification.  ITD-based time-frequency feature 

set is investigated for only finger movement classification in this thesis.  

2.2.3.1 Wavelet Transform-based Time-Frequency Domain Feature Set  

In this thesis, the time-frequency domain features are evaluated using WT. It is mostly 

used analysis of non-stationary EEG signals by preserving the time-frequency 

resolution [82]. It is a smooth and fast oscillating function that is well localized in 

frequency and time. It can be used as particularly generated FIR filter [83-85]. The 

input EEG signal X[n] is decomposed into sub-frequency components [82-86]. The 

high frequency and low frequency components of the EEG signals are generated based 

on the frequency responses of the FIR. In each of the decomposition levels, both high-

pass and low-pass filters are applied to the signal. Among these filters, the high-pass 

filter is related with the mother wavelet function [79].  The output of high-pass filters 

is known as detail (d) coefficients signals, while the output of low-pass filters is known 

as approximation (a) coefficients [82, 87]. The approximation signal is re-decomposed 

until the decomposition level is completed. In analysis of extremity movement, EEG 

signals with 250 Hz sampling frequency are analyzed using 7 level decomposition. In 

analysis of finger movement, EEG signals with 1000 Hz sampling frequency are 

analyzed using 9 level decomposition. 

In WT-based analysis, one of the important steps is the defining of the mother wavelet 

function [84]. Various mother wavelet types are analyzed for EEG signal analysis in 

the literature. These are haar, db, sym, coif, bior, rbio, meyr, mexh, morl, cmor, and 
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dmey [79, 83-85]. In this thesis, wavelet function is defined as Haar for both extremity 

movement task and finger movement classification. The frequency sub-bands (delta, 

theta, alpha, beta, gamma) are decomposed from MI EEG signals utilizing Haar 

mother wavelet. Then, the energy, variance, and entropy values of these sub-bands are 

evaluated as time-frequency features [79, 86, 88-92]. The energy at each 

decomposition level is evaluated according to the below equations:  

𝐸𝑛𝑒𝑟𝑔𝑦𝑑𝑖
  =   ∑ |𝑑𝑖𝑗|

2𝑁
𝑗=1 ,         𝑖  =  1,  2,  3,   …  ,  𝑙             (2.28) 

𝐸𝑛𝑒𝑟𝑔𝑦𝑎𝑖
  =   ∑ |𝑎𝑖𝑗|

2𝑁
𝑗=1 ,         𝑖  =  1,  2,  3,   …  ,  𝑙               (2.29 

Here, (di) and (ai) are utilized to provide subsets of EEG frequency bands (δ, θ, α, β, 

and γ) based on the decomposition tree. aij and dij indicate the (a) and (d) of frequency 

band subsets, respectively. The decomposition level is represented with 𝑙  and 

𝑖 changes from 1 to 𝑙   for calculations. The entropy values of each decomposition level 

are evaluated according to following mathematical formula: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖  =   − ∑ 𝑑𝑖𝑗
2 log(𝑑𝑖𝑗

2 )𝑁
𝑗=1 ,         𝑖  =  1,  2,  3,   …  ,  𝑙       (2.30) 

In another feature variance value is evaluated utilizing following equation:  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖  =  
1

𝑁−1
∑ (𝑑𝑖𝑗 − 𝜇𝑖)

2𝑁
𝑗=1 ,         𝑖  =  1,  2,  3,   …  ,  𝑙     (2.31) 

𝜇𝑖  =  
1

𝑁
∑ 𝑑𝑖𝑗

𝑁
𝑗=1 ,         𝑖  =  1,  2,  3,   …  ,  𝑙                   (2.32) 

where, the mean value of decomposition level is indicated as 𝜇𝑖 …   

2.2.3.2 Intrinsic Time-Scale Decomposition-based Time-Frequency 

Domain Feature Set 

ITD is the iterative signal decomposition algorithm and is introduced for the analysis 

of non-stationary and non-linear biomedical signals [93]. It divides the original signal 

into a sum of PRCs and a monotonic trend without using laborious and unproductive 

sifting or splines. The original signal is decomposed into low-frequency component 

(baseline signal) which is indicated as 𝐿𝑡 and high-frequency components (proper 

rotation components) which are indicated as 𝐻𝑡 [93-95]. Firstly, an EEG signal which 
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is indicated as 𝑋𝑡 defined for ITD analysis. 𝔏 is an operator, is determined to 

decompose baseline signal from original signal 𝑋𝑡 and leave behind high-frequency 

components PRCs. Therefore, 𝑋𝑡 can be represented as follows:  

𝑋𝑡 = ℒ𝑋𝑡 + (1 − ℒ)𝑋𝑡 = 𝐿𝑡 + 𝐻𝑡                            (2.33) 

Here, the baseline signal is defined as ℒ𝑋𝑡 and PRC is denoted as 𝐻𝑡 = (1 − ℒ)𝑋𝑡. 

The process of the ITD algorithm to extract baseline and PRCs can be applied as given 

in Algorithm [93-95]. 

 

Algorithm: ITD 

• A signal 𝑋𝑡 which is available 𝑡 ≥ 0  its local extremes 𝜏𝑘,  𝑘 = 1,  2,   …  is 

assumed for analysis. 𝑋(𝜏𝑘)  ≡ 𝑋𝑘 and 𝐿(𝜏𝑘)  ≡ 𝐿𝑘 notations are defined. 

• The 𝐿𝑡 and 𝐻𝑡 are generated over the interval [0,  𝜏𝑘], and the signal 𝑋𝑡 is 

existed on [0,  𝜏𝑘 + 2]. The baseline extraction operator ℒ is introduced as 

piece-wise linear function between two extreme locations on the defined 

interval (𝜏𝑘,  𝜏𝑘 + 1] according to following equations: 

𝐿𝑡 = 𝐿𝑘 + (
𝐿𝑘+1−𝐿𝑘

𝐿𝑘+2−𝐿𝑘
) (𝑋𝑡 − 𝑋𝑘),    𝑡 ∈ (𝜏𝑘,  𝜏𝑘+1]           (2.34) 

            where 

𝐿𝑘+1 = 𝛼 [(𝑋𝑘 +
𝜏𝑘+1−𝜏𝑘

𝜏𝑘+2−𝜏𝑘
) (𝑋𝑘+2 − 𝑋𝑘)] + (1 − 𝛼)𝑋𝑘+1,     (2.35) 

      and 0 < 𝛼 < 1 , 𝛼 is typically defined as 
1

2
. The monotonicity of 𝑋𝑡 is preserved 

using this method of obtaining 𝐿𝑡.   

• After the extraction of 𝐿𝑡, the residual or PRC is evaluated as: 

ℋ𝑋𝑡 = (1 − 𝔏)𝑋𝑡 = 𝐻𝑡 = 𝑋𝑡 − 𝐿𝑡                        (2.36) 

Therefore, the original 𝑋𝑡 signal can be reconstructed utilizing the decomposed 𝐿𝑡 

and 𝐻𝑡 modes as follows: 

𝑋𝑡 = 𝐿𝑡
𝐷 + ∑ 𝐻𝑡

𝑘𝐷
𝑘=0                                      (2.37) 

Here, D denotes the number of decomposed high-frequency components (PRCs). 
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Various features are calculated from these ITD-based decomposed high-frequency 

PRCs. In our thesis studies, the first three PRCs (PRC1, PRC2, and PRC3), their binary 

combinations (PRC1–PRC2, PRC1–PRC3, and PRC2–PRC3), and their triple 

combination (PRC1-to-3) are utilized to evaluate 10 different features. The 

effectiveness of obtained feature sets is investigated separately. 

10 different features such as mean, higher order moments (1st, 2nd, 3rd, and 4th 

moments), power, sample entropy, Hjorth parameters (Activity, Mobility, and 

Complexity) are evaluated from various combinations of PRCs.  

Mean value of PRCs is evaluated based on the time-domain as follows:  

𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 𝜇 =
1

𝑁
∑ 𝑋[𝑛]𝑁−1

𝑘=0                                 (2.38) 

Here, 𝑋[𝑛] indicates the PRC which is used for analysis and 𝑁 is the size of the PRC. 

Total power and four different higher order moments are evaluated according to the 

spectrum of signals as follows [96-98]: 

𝑤𝑘 =
2𝜋

𝑁
𝑘,      𝑘 = 0,  1,  2,   …  ,  𝑁 − 1                       (2.39) 

𝑆(𝑤𝑘) =
1

𝑁
|𝑋(𝑤𝑘)|2                                           (2.40) 

𝑆𝑇 = ∑ 𝑆(𝑤𝑘)𝑁−1
𝑘=0                                               (2.41) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑗 = ∑ (𝑤𝑘)𝑗𝑁−1
𝑘=0 𝑠(𝑤𝑘),     𝑗 = 1,  2,  3,  4.                (2.42) 

where, the PSD of the signal is indicated by 𝑆(𝑤𝑘), and the Discrete Fourier Transform 

of the signal 𝑋[𝑛] is indicated as 𝑋(𝑤𝑘). The size of the related signal is 𝑁 . 

Hjorth parameters are statistical time-domain features and consist of Activity (𝐴𝑥), 

Mobility (𝑀𝑥), and Complexity (𝐶𝑥) parameters [99]. Activity parameters can be 

evaluated utilizing the variance of signal amplitude [99, 100]. 

𝐴𝑥 = (𝑦(𝑛)) = 𝜎𝑦
2                                           (2.43) 

Here, 𝑦[𝑛] = [𝑦1,  𝑦2,   …  ,  𝑦𝑁] and 𝑁  is the size of the corresponding signal. 𝜎𝑦 

indicates the standard deviation of the signal 𝑦[𝑛] and it can be evaluated as follows: 
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𝜎 = √
1

𝑁−1
∑ [𝑦[𝑛] − 𝜇]2𝑁

𝑛=1                                   (2.44) 

In the above equation, 𝜇 indicates the mean value of 𝑦[𝑛]. Mobility parameter is the 

ratio of the standard deviations of first-order derivatives. Its mathematical formulation 

is given as following equation:  

𝑀𝑥 = √
𝜎

𝑦′
2

𝜎𝑦
2 =  

𝜎
𝑦′

𝜎𝑦
                                          (2.45) 

Here, the first-order standard deviation of signal is denoted as 𝜎𝑦′. Complexity 

parameter is defined as the ratio between the 𝑀𝑥 of the first derivative of the EEG 

signal and 𝑀𝑥 of the EEG signal itself [99, 100]. 

 𝐶𝑥 =
𝑀𝑥(𝑦′(𝑡))

𝑀𝑥 (𝑦(𝑡))
= √

𝜎
𝑦′′
2

𝜎
𝑦′
2

𝜎
𝑦′
2

𝜎
𝑦
2

                                       (2.46) 

Sample entropy is a measurement of time series complexity. The new vector series are 

defined from the original time series. The sizes of the new vector sequences are defined 

as 𝑚 and the size of the original signal is defined as 𝑁 . The defined 𝑚 length denotes 

the embedding dimension [95, 101]. The distance 𝑑(𝑢(𝑖),  𝑢(𝑗)) between vectors 𝑢(𝑖) 

and 𝑢(𝑗) is defined as follows [101]: 

𝑑(𝑢(𝑖),  𝑢(𝑗)) = max{|𝑢(𝑖 + 𝑘) − 𝑢(𝑗 + 𝑘)|} ,   0 ≤ 𝑘 ≤ 𝑚 − 1      (2.47) 

where, 𝑘  denotes an index. The probability of ensuring another vector within a 

distance 𝑟 from vector is described as [101]: 

𝐶𝑖
′𝑚(𝑟) =

1

𝑁−𝑚+1
                                           (2.48) 

{𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗,  𝑗 ≠ 𝑖,  𝑗 ≤ 𝑁 − 𝑚 + 1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑢(𝑖),  𝑢(𝑗)) ≤ 𝑟} 

                              ∅𝑚(𝑟) = ((𝑁 − 𝑀 + 1)−1) ∑ 𝐶𝑖
′𝑚(𝑟)𝑁−𝑚+1

𝑖=1                           (2.49) 

Hence, the sample entropy is indicated as [95]: 
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𝑆𝑎𝑚𝑝𝐸𝑛(𝑚,  𝑟,  𝑁) = − ln [
∅′𝑚(𝑟)

∅′𝑚+1(𝑟)
]                               (2.50) 

2.2.4 Non-Linear Feature Set 

In order to investigate effectiveness of non-linear features, Poincare plot-based 

features are evaluated for the analysis of different EEG signals. Biomedical signals 

have non-linear characteristics, so these features are investigated in the literature for 

different biomedical signals. The Poincare plot measures become an important feature 

extraction process thanks to its uncomplicated visual explanation and demonstrated 

clinical ability [53, 54, 102, 103]. These measures can be possible to provide accurate 

and relevant patterns of physiological signals to provide high classification results for 

MI task classification.  

Poincare plot measures capture the non-linear dynamics embedded in the signal. 

Poincare plot is a graph or 2D visual representation of each EEG data (𝑥𝑖) on x-axis 

and the next EEG data (𝑥𝑖+𝑙𝑎𝑔) on the y-axis [54]. These plots are generated from MI 

EEG signals using determined (𝑥𝑖), and (𝑥𝑖+𝑙𝑎𝑔) intervals of EEG data for each EEG 

segment. Then, an ellipse is fitted to the generated plot, and the standard deviation of 

the distance of the points on these graphs denotes the width (𝑆𝐷1) and length (𝑆𝐷2) of 

the fitted ellipse [104]. The detailed mathematical evaluation of Poincare plot 

measures is given as follows [54, 102, 103]:  

𝑥𝑖   =  (𝑥0,  𝑥1,   …  ,  𝑥𝑁−𝑙𝑎𝑔)                                  (2.51) 

 𝑥𝑖+𝑙𝑎𝑔  =  (𝑥𝑙𝑎𝑔,  𝑥𝑙𝑎𝑔+1,   …  ,  𝑥𝑁)                             (2.52) 

𝑥𝑤  =  
𝑥𝑖+𝑙𝑎𝑔−𝑥𝑖

√2
                                              (2.53) 

𝑥𝑙   =  
𝑥𝑖+𝑙𝑎𝑔+𝑥𝑖

√2
                                               (2.54) 

𝑆𝐷1  =  𝑆𝐷(𝑥𝑤)                                             (2.55) 

𝑆𝐷2  =  𝑆𝐷(𝑥𝑙)                                               (2.56) 
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Here, EEG data and the next EEG data intervals are represented with (𝑥𝑖), and (𝑥𝑖+𝑙𝑎𝑔) 

in Equations (2.51), and (2.52); respectively. According to these intervals (𝑆𝐷1) and 

length (𝑆𝐷2) measurements are calculated as features. SD denotes the standard 

deviation of the defined time interval vectors in in Equations (2.55), and (2.56). 𝑆𝐷1, 

and 𝑆𝐷2 measures are evaluated based on the defined lag value. In the literature, the 

commonly utilized lag value is 1 [53, 54, 105, 106]. In this thesis, we aimed to 

investigate the effectiveness of various lag values which are from 1 to 10 for extremity 

movement task classification studies. In addition to the evaluation of 𝑆𝐷1 and 𝑆𝐷2, the 

product (𝑆𝐷1𝑆𝐷2) and the ratio (
𝑆𝐷1

𝑆𝐷2
) are calculated to investigate the relation between 

these measures. Therefore, a total of four non-linear features are extracted for each 

EEG signal which in the defined a lag value. The effectiveness of different lag values 

is investigated generating ten different feature sets, separately. In this thesis, Poincare 

features are evaluated where only 𝑙𝑎𝑔 = 1 for the investigation of the non-linear 

feature set in finger movement classification. 

2.3 Feature Selection 

Feature selection process can be optionally applied to decrease complexity of 

classification process and improve classifier performance for selection or reduction of 

effective features from all features in feature sets after feature extraction step [54, 107, 

108]. In this thesis, statistical significance-based feature selection methods such as 

ANOVA and independent t-test are applied to improve classifier performance 

selecting relevant and discriminative EEG features. In addition to statistical 

significance-based feature selection method, PCA-based feature selection method is 

performed in order to examine comparatively the effectiveness of ANOVA in only 

finger movement classification analysis. 

2.3.1 Statistical Significance 

In this thesis, the statistical significance-based feature selection method is performed 

to select effective feature combinations in different feature sets in our EEG signal 

processing. These tests are performed for each provided feature sets separately. 

According to the class number of MI tasks, the type of statistically significant-based 
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feature selection methods is defined. In this thesis, binary and multi-class classification 

models are performed using various feature sets [109]. Therefore, two different types 

of statistically significant-based feature selection methods such as ANOVA test and 

the independent t-test applied to select features in multi-class and binary-class 

classifications, respectively. In binary classification models, the independent t-test 

which is widely used to indicate the significance of differences between features of 

two different classes is performed for reduction of features [53]. In multi-class 

classification models, ANOVA test which is used to check that there is a significant 

difference between features of multiple classes is performed to select features [40, 54, 

109]. According to these tests, the statistical significance of all extracted features in 

feature sets is defined evaluating 𝑝 values. The indicated statistical significance level 

(𝛼) is 0.05 . The features that obtain this range are determined as statistically 

significant and selected features. 

2.3.2 Principal Component Analysis 

PCA-based feature selection, which is an effective feature reduction method, is 

performed in finger movement classification in order to compare effectiveness of 

ANOVA-based feature selection. It is known as a multivariate statistical 

transformation technique to remove similarity between features. The linearly-

independent perpendicular features are generated using PCA. The number of them 

indicates the system parameter, covering the percentage ratio of the variance of the 

initial variables. Each of new variables is defined as the principal component [107, 

110, 111]. 

PCA provides the principal components of the data based on the evaluation of 

eigenvalue and eigenvector of the covariance matrix after data normalization. 𝑋 is a 

matrix with size of 𝑛𝑥𝑚  d 𝑖 th row of it with size of m defined as 

(𝑋𝑖,   𝑖 = 1,  2,   … ,  𝑛). The covariance matrix is evaluated using mean value of the data 

as follows: 

𝐶 = ∑ (𝑥 − 𝜇)(𝑥 − 𝜇)𝑇𝑛
𝑖=1                                      (2.57) 

where, 𝜇 is the mean value of the data and 𝐶 indicates the covariance matrix. The 

eigenvalues (𝜆) and eigenvectors (𝑉) of 𝐶 is evaluated as follows: 
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det(𝜆𝐼 − 𝐶) = 0,   (𝜆𝑘𝐼 − 𝐶)𝑥𝑉𝑘 = 0                       (2.58) 

The eigenvalues are listed in ascending series and the eigenvectors matched with the 

largest eigenvalues are found. The selected data is generated with projection of 

normalized data onto 𝐾 eigenvectors [107, 110]. 

2.4 Classification  

In our thesis, the extracted different feature sets are calculated using eight different 

classifiers such as DT, LDA, NB, k-NN, EL, NNs and KA to distinguish different MI 

tasks. In addition to these classifiers, LR is also used to classify MI EEE segments in 

binary-class classifications. The fundamental information about these classifiers is 

available in below:  

2.4.1 Decision Tree 

DT is a machine learning algorithm which can divide the data into different classes. It 

can be applied for both classification and regression analysis. The branch and nodes 

which are in this algorithm are likened to tree-like structures and they give the name 

of algorithm. Training in this algorithm is performed based on the order of decision 

rules. If a decision is completed a leaf node is generated while when a decision is not 

completed a decision node that is different branch is generated. In this thesis, three 

different tree algorithms such as fine, medium, and coarse are performed for the 

classification process [112]. 

2.4.2 Discriminant Analysis 

DA classification aims to separate the independent variables in the data accurately into 

homogeneous groups [113]. LDA among these algorithms indicates group elements 

and evaluates the probability of characterizing different groups for each element. The 

group which obtains the highest probability score is indicated as the predicted group 

of elements. It generates a linear discrimination function. In this algorithm, the 

predictors are accepted to be normally distributed (Gauss distribution). And also, it 

assumes that different classes have class specified elements and equal 
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variance/covariance. However, the variance/covariance equality is not accepted in 

QDA algorithm. It assumes that covariance matrix can be divergent for each class. 

Hence, it generates a second order discrimination function in process [114, 115]. 

2.4.3 Naïve Bayes 

NB is a probabilistic machine learning algorithm using variables’ independence and 

normalcy and Bayes theorem that classification is applied in accordance with 

probability basics. The calculation of the membership probability of a sample to all 

class in feature set is fundamental process of this algorithm. 

A sample 𝑋  in the feature set is defined as 𝑋 = {𝑥1,  𝑥2,   …  ,  𝑥𝑛} and 𝑛 is the number 

of features. Classes in feature set are defined as {𝑀1,  𝑀2,   …  ,  𝑀𝑚} and 𝑚 indicates 

the number of classes. The probability that each 𝑋 data in data set is a member of the 

𝑀𝑖 class is evaluated as: 

𝑃 (
𝑀𝑖

𝑋
) =

𝑃(
𝑋

𝑀𝑖
)𝑃(𝑀𝑖)

𝑃(𝑋)
,  𝑖𝑓 𝑃 (

𝑀𝑖

𝑋
) > 𝑃 (

𝑀𝑗

𝑋
) ,  1 ≤ 𝑗 ≤ 𝑚,  𝑗 ≠ 𝑖      (2.59) 

Therefore, the highest probability of membership defines the class of the data. 

According to this formula, 𝑋 data is labeled to the 𝑀𝑖. The class prior probabilities are 

represented by 𝑃(𝑀𝑖), the prior probability of 𝑋  sample is represented with 𝑃(𝑋). The 

probability of 𝑋 conditioned on 𝑀𝑖 is denoted as 𝑃 (
𝑋

𝑀𝑖
) and 𝑃 (

𝑀𝑖

𝑋
) denotes the 

probability of 𝑀𝑖 conditioned on 𝑋  [112, 116]. Medium and Gaussian NB algorithms 

are used for classification process in this thesis. The basic scheme of NB classification 

process is given in Figure 2.2a. 

2.4.4 Logistic Regression 

LR is a commonly applied statistical machine learning process in which binary 

classification results are generated such as yes/no, 1/0. It is related to a set of 

independent variables as given in following equation: 
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(a) NB classifier simulation 

 

(b) LR classifier simulation 

Figure 2.2: The basic scheme of the (a) NB classifier, (b) LR classifier. 

 

𝐿𝑜𝑔𝑖𝑡(𝑃1) = ln (
𝑃1

1−𝑃1
) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛           (2.60) 

Here, 𝑃1 is probability of an event, 𝛽0 indicates the intercept, {𝛽0 + 𝛽1𝑋1 + ⋯ +

𝛽𝑛𝑋𝑛} indicates the coefficients related to the independent variables {𝑋1 + 𝑋2 + ⋯ +

𝑋𝑛}. In process of LR algorithm, maximum likelihood estimation is mainly utilized to 

evaluate the coefficients. The probability of an event as a logistic function of the 

independent variables is non-linear as shown in following equation: 

𝑃1(𝑥) =
𝑃1

1+𝑒−𝐿𝑜𝑔𝑖𝑡(𝑃1(𝑥))
                                        (2.61) 

where, 𝑃1 is defined as probability value and takes between 0 and 1.  When the result 

of 𝑃1(𝑥) equation is −∞ , 𝑃1 = 0, and when 𝑃1(𝑥) = ∞, the probability equals 1. The 

basic scheme of classification process of LR is represented in Figure 2.2b. 

2.4.5 Support Vector Machine  

SVM is a successful machine learning algorithm and utilized in both classification and 

regression analysis. It classifies the data based on the geometric characteristic of this 

data. Firstly, the elements of the dataset which consists of 𝑛 features are settled as the 

elements of the coordinate system that is n-dimensional space. Then, the classification 

is carried out based on obtaining the hyperplane that discriminates the classes best. 

Different hyperplanes can be constructed for discrimination of two classes. However, 

the selection of the hyperplane that the highest and accurate classification performance 
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may be provided is crucial from the different hyperplanes. Let, (𝑥𝑛,  𝑦𝑛) is defined as 

a linearly separable sample example. 𝑛 denotes the size of the feature set and 𝑦 which 

takes value of –1 or 1 denotes as class label. The hyperplane can be formulated as 

𝑓(𝑥) = 𝑤𝑥 + 𝑏 here 𝑤 and 𝑏 denote the hyperplane parameters and the offset, 

respectively. The main aim here is to provide the maximum margin. The dashed lines 

(represented in Figure 2.3a) indicate the decision boundaries which are placed on 

support vectors. The margin is defined as the distance between these support vectors 

which belongs to two different classes. Therefore, the data placed on different sides of 

the optimal hyperplane is defined as a sample of the different class [107, 113, 117].  

The basic binary-class SVM classification is shown in Figure 2.3a. Six different 

algorithms of SVM classifier such are Linear, Quadratic, Cubic, Fine Gaussian, 

Medium Gaussian, and Coarse Gausssian are used for classifications in this thesis. 

 

(a) SVM classifier simulation (b)kNN classifier simulation 

Figure 2.3: The basic scheme of the (a) SVM classifier, (b) kNN classifier. 

 

2.4.6 K-Nearest Neighbour 

k-NN, is a learning-based machine learning algorithm, evaluates the closeness of new 

data with defined classes. The distance of new sample and all the data in the feature 

set is evaluated. The closeness of new data is examined checking 𝑘 nearest neighbor 
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and minimum distance is evaluated. Finally, whichever class has the most elements 

among the determined neighbors is labeled as the class of the new sample. Different 

distance measurements methods such as Euclidean, Manhattan, Minkowski, and 

Hamming can be applied to calculate distance. Among these methods, the mostly 

applied method is Euclidean distance and its formulation is given in following equation 

[54, 107]: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                 (2.62) 

In this thesis, Fine, Medium, Coarse, Cubic, Cosine, and Weighted algorithms of the 

k-NN classifier were performed for classifications. The process of k-NN algorithm for 

binary classification is basically represented in Figure 2.3b. 

2.4.7 Ensemble Learning 

EL is defined as meta-algorithms which merges multiple pattern recognition 

techniques into a single discrimination model (classifier) to enhance deviation 

(boosting), an/or predictions (stacking) and lessen variance (bagging) [107, 114, 118-

120]. This classifier assumes that single classifiers mostly cannot provide a specific 

and accurate classification accuracy owing to possible noise in the data, overlapping 

data distributions, and outliers. The EL algorithm is generated and used for 

classifications considering there is no single classifier that performs best for all 

classification tasks. Hence, it is necessary to use EL algorithms in some classifications. 

An EL algorithms can be mostly created in two different methods such as sequential 

ensemble learning methods (AdaBoost) and parallel ensemble learning methods (RF). 

In this thesis, Boosted, Bagged, Subspace Discriminant, Subspace k-NN, and 

RUSBoosted Trees which are introduced in the process of EL classifiers are applied. 

2.4.8 Kernel Approximation 

KA algorithms can be utilized to perform non-linear classification of data including 

many samples [121, 122]. In large datasets, KA classifiers are inclined to train and 

predict faster than SVM algorithms accompanied by Gaussian kernels [122]. Gaussian 

kernel algorithms plan predictors in a low-dimensional space to high-dimensional 

space. Then, the linear model is constructed to convert predictors in a high-
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dimensional area [121, 122]. In this thesis, SVM and LR KA algorithms are used to 

classify.  

2.4.9 Neural Networks 

NN algorithms, are complex classification algorithms, mimic the human brain and 

provide accurate classification accuracy. Its deep neural structure which includes the 

number of layers and different parameters make the training process longer [123, 124]. 

NNs structures include three fundamental structures such as input layer, fully 

connected layers, and output layer as shown in Figure 2.4.  

 

 

Figure 2.4: The basic representation of NNs structures. 

 

Various NN algorithms are available and the number of fully connected layers between 

the input and output layers may differ in different algorithms. The number of fully 

connected layers determines the complexity of the classifier. When the size and 

number of these layers increase, the complexity of the model is also increased [123, 

124]. The first fully connected layer of the NN has a relationship from the network 
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input (predictor data), and each subsequent layer has a relationship from the preceding 

layer. In fully connected layers the input data (features) and a weight matrix are 

multiplied between each other and a bias vector is included into this evaluation as 

shown in Figure 2.4. An activation function accompanies each fully connected layer. 

Finally, the final fully connected layer and the following softmax function give the 

output of NN as classification scores and prediction labels [125-127]. In this thesis, 

Narrow, Medium, Wide, Bi-layered, and Tri-layered NN algorithms are used for 

classifications. The basic representation of the NN algorithm is given in Figure 2.4. 

2.5 Performance Evaluation 

In this thesis, ACC is defined as performance metric and is used to evaluate 

performances of different classifiers. Accuracy is the ratio of the total number of true 

predictions and is evaluated based on the confusion matrix. The confusion matrix 

represents the number of true and false predictions performed by classifier compared 

to real labels in the data. The confusion matrix with 𝑛𝑥𝑛 is created according to 

number of classes (𝑛). Accuracy metric formulation is given in below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
𝑥100%                 (2.63) 

Here, TP, is actual true, predicted as true by model TN, actual false, predicted as false 

by model. While FP is not actually in class true but is predicted in class false by model, 

FN is actually in class true but is predicted in class false.  

K-fold CV method is utilized to show performances of the classification algorithms 

[87, 107, 112]. K is defined as 5 in our experimental analysis. In our analysis, firstly 

feature set is divided into train (80% samples of feature sets) and test set (20% samples 

of feature sets). Then, 5-fold CV method is applied in training feature set to provide a 

consistent accuracy for training process. In this process, training feature set is 

separated into 5 equal size subsets. The classification process repeated 5 times, and 

each time 4/5(
𝐾−1

𝐾
) of the subsets are used for training, and the remaining 1/5(

1

𝐾
)is 

utilized for validation. Finally, the average performance of 5 (𝐾) is evaluated as 

training accuracy value. The proposed model is also tested using test data and its 
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performance is evaluated based on the accuracy metric. The basic representation of 5-

fold cross-validation is given in Figure 2.5. 

 

 

Figure 2.5: The representation of 5-fold cross-validation process-based classification 

used in our studies. 
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Chapter 3 

Classification of Extremity Movement 

Task 

In this thesis, four different feature sets are presented to distinguish MI task EEG 

segments. These are time-domain, frequency-domain, time-frequency domain and 

non-linear feature sets. Additionally, two different combination feature sets are created 

using different feature extraction approaches and the effectiveness of combination of 

different features is investigated. In addition, the statistically significance-based 

feature selection methods are applied and effectiveness of them is investigated in both 

binary-class and multi-class extremity movement classification. Finally, the results of 

these six different feature sets and effectiveness of statistically significance-based 

feature selection methods are compared in line with the classification performances of 

different machine learning algorithms utilized in our thesis. 

3.1 Experimental Data set 

In this thesis, the binary-class and multi-class extremity movement task classification 

analyzes are performed using BCI Competition IV Dataset IIa. The 22 EEG signals 

which belong to four different MI tasks are supplied from 9 subjects in this dataset. 

MI tasks are the imagination of the right hand, left hand, both feet, and tongue. In 

binary classification studies, we used right and left hands MI task EEG signals while 

in multi-class extremity movement classification studies, all of MI task EEG signals 

were used. Firstly, the MI task EEG segments performed during 3 sec for each trial are 

decomposed from EEG time series in preprocessing of EEG signals. Then, all channels 

of EEG signals were used to extract features for each 3 sec EEG segment. The binary-
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class extremity movement classification studies performed in this thesis are 

represented in Figure 3.1.  

 

 

Figure 3.1: The block diagram of the proposed binary-class extremity movement 

classification approach. 
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The multi-class extremity movement classification studies performed in this thesis are 

represented in Figure 3.2.  

 

 

Figure 3.2: The block diagram of the proposed multi-class extremity movement 

classification approach. 
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3.2 Feature Extraction 

24 time-domain, 15 frequency-domain, 15 time-frequency domain, and 4 non-linear 

features are evaluated for each EEG channel of each EEG segment. In addition to them, 

the combinations sets are generated to improve classifier performances. These feature 

sets and their different combination feature sets are analyzed using various machine 

learning algorithms for binary-class and multi-class extremity movement 

classifications, separately.  

3.2.1 Time-domain Feature Set 

After the extraction of EEG segments, the time-domain feature set was obtained 

evaluating 24 different amplitude and statistical information-based features in the 

time-domain. The mathematical formulations of these features are represented in 

Section 2.2.1. In the time-domain feature extraction-based approach, a total of 

2592x528 and 1296x528 size time-domain feature sets are created for multi-class and 

binary-class extremity movement task classifications, respectively. 

3.2.2 Frequency-domain Feature Set  

To create the frequency-domain feature set, the frequency domain of EEG segments is 

obtained using FT and five different EEG sub-bands are decomposed for each EEG 

segment. Energy, variance, and entropy measures are evaluated using EEG sub-bands. 

The mathematical formulations of energy, variance and entropy values are represented 

in Section 2.2.2. In the frequency-domain feature extraction-based approach, a total of 

2592x330 and 1296x330 size frequency-domain feature sets are created for multi-class 

and binary-class extremity movement task classifications, respectively. 

3.2.3 Time-Frequency Domain Feature Set  

To create the frequency-domain feature set, the time-frequency domain of EEG 

segments is obtained using WT and five different EEG sub-bands are decomposed for 

each EEG segment. Energy, variance, and entropy measures are evaluated using EEG 
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sub-bands. Haar mother wavelet and 7 level sub-band decomposition are utilized for 

our analysis. The mathematical formulations of energy, entropy, and variance values 

based on the WT methos are represented in Section 2.2.3. 

In the time-frequency domain feature extraction-based approach, a total of 2592x330 

and 1296x330 size time-frequency domain feature sets are created for multi-class and 

binary-class extremity movement task classifications, respectively. 

3.2.4 Non-linear Feature Set 

Non-linear feature sets are created using Poincare plot-based measures. 4 different 

non-linear features are evaluated to supply information about the non-linear dynamics 

embedded in EEG signals for each EEG segment where 𝑙𝑎𝑔 = 𝑚 . In this thesis, 𝑚  

defined from 1 to 10 and a non-linear feature set is created for each 𝑚 value to 

investigate the effectiveness of different 𝑚 values, separately. Poincare plot measures’ 

formulations are given in Section 2.2.4.  

In the non-linear feature extraction-based approach, a total of 2592x88 size 10 

different non-linear feature sets are created for multi-class extremity movement task 

classification.  Additionally, a total of 2592x880 size combination of 10 non-linear 

feature sets is created for analysis.  

3.2.5 Combination Feature Set Including Time-domain, 

Frequency-domain, and Time-frequency domain Features 

In addition to four different feature sets, the effectiveness of the combination of 

different feature sets are investigated to improve the classification performance in our 

thesis studies. Combination feature sets are created using 24 time-domain, 15 

frequency-domain, and 15 time-frequency domain features for each EEG channel of 

each EEG segment. In the combination feature set-based analysis, a total of 2592x1188 

and 1296x1188 size the combination feature sets are created for multi-class and binary-

class extremity movement task classifications, respectively. 
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3.2.6 Combination Feature Set Including Time-domain, 

Frequency-domain, Time-frequency domain, and Non-linear 

Features 

In our second combination feature sets, we added 8 non-linear features into our first 

combination feature set which is created using 24 time-domain, 15 frequency-domain, 

and 15 time-frequency domain features for each EEG channel of each EEG segment. 

4 non-linear features are evaluated for each EEG segments where 2 different lag 

conditions which are 𝑙𝑎𝑔 = 1 and 𝑙𝑎𝑔 = 9 . A total of 176 non-linear features are 

evaluated from all EEG channels of each EEG segment based on the 2 different lag 

conditions and added to our previous combination sets. In our second combination 

feature set-based analysis, a total of 2592x1364 and 1296x1364 size the combination 

feature sets are created for multi-class and binary-class extremity movement task 

classifications, respectively. 

3.3 Feature Selection Using Statistically Significance 

In our thesis, the statistically significance-based feature selection method is presented. 

The effectiveness of this method is investigated in six different feature sets for both 

multi-class and binary-class extremity movement task classifications.  

 

Table 3.1: Sizes of all feature sets and t-test selected feature sets used in binary-class 

extremity movement task classification. 

Feature Set All Features T-test Selected Features 

TD (1296x528) (1296x44) 

FD (1296x330) (1296x28) 

WT (1296x330) (1296x13) 

TD+FD+WT (1296x1188) (1296x85) 

TD+FT+WT+P (1296x1364) (1296x91) 
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The statistically significance-based feature selection methods which are the 

independent t-test and ANOVA test are used to select statistically significant features 

in feature sets for binary-class and multi-class extremity movement task 

classifications, respectively. Table 3.1 represents the number of all features and t-test 

selected features in six different feature sets which are used in our binary-class 

extremity movement task classifications. Table 3.2 represents the number of all 

features and ANOVA selected features in six different feature sets which are used in 

our multi-class extremity movement task classifications. 

 

Table 3.2: Sizes of all feature sets and ANOVA selected feature sets used in multi-

class extremity movement task classification. 

Feature Set All Features ANOVA Selected Features 

TD (2592x528) (2592x345) 

FD (2592x330) (2592x102) 

WT (2592x330) (2592x104) 

TD+FD+WT (2592x1188) (2592x551) 

TD+FT+WT+P (2592x1364) (2592x612) 

 

3.4 Results and Discussions of Binary-Class Extremity 

Movement Task Classification 

EEG signals including MI tasks provided from 22-channel EEG recordings of 9 

subjects were analyzed utilizing different feature sets and various classifiers. The 

different features extraction approaches including time-domain, frequency-domain, 

time-frequency domain, and non-linear features were performed for binary-class 

extremity movement task (right hand and left hand MI tasks) classification after 

obtaining of 3 sec MI EEG segments. Time-domain (24 different statistical and 

amplitude-based measures), frequency-domain (energy, variance, and entropy 

measures of FT-based five different EEG sub-bands), time-frequency domain (energy, 

variance, and entropy measures of WT-based five different EEG sub-bands), and non-
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linear (4 different Poincare plot measures) feature sets were created from 22-channel 

EEG signals. The effectiveness of these four different feature sets and their two 

different combination feature sets are investigated, separately. In addition, the 

effectiveness of the independent t-test based feature selection process is investigated 

with all extracted feature sets. Finally, DT, DA, NB, LR, SVM, k-NN, EL, NNs, and 

KA machine learning algorithms are performed for classification, and the results are 

evaluated. All signal processing (signal segmentation, feature extraction, feature 

selection, and classification) and performance analyzes were implemented using 

MATLAB software. The performances of these six different features sets are 

compared using 9 different classifiers.  

Performance evaluation results of our proposed approach including different feature 

sets, the independent t-test based feature selection, and various classifiers are given in 

Tables 3.3-3.8. In these tables TD, FD, WT, and P indicate that the features for 

classifications using the time-domain, frequency-domain, time-frequency domain, and 

non-linear information, respectively. On the other hand, TD+T-test, FD +T-test, and 

WT+T-test indicate that the independent t-test selected statistically significant features 

for classifications using the time-domain, frequency-domain, and time-frequency 

domain, respectively. The classifications performed using the first combination feature 

set including time-domain, frequency-domain, and time-frequency domain features 

are indicated as TD+FD+WT and the classifications performed using the independent 

t-test selected statistically significant features of this combination set are indicated as 

TD+FD+WT+T-test. The classifications performed using the second combination 

feature set including time-domain, frequency-domain, time-frequency domain, and 

non-linear features are indicated as TD+FD+WT+P and the classifications performed 

using the independent t-test selected statistically significant features of this 

combination set are indicated as TD+FD+WT+P+T-test. The boldface characters in 

table cells represent the best classification performance for each approach and 

classification algorithms (in Tables 3.3-3.8). 

The performance evaluation of all time-domain features and the t-test selected 

statistically significant time-domain features for binary-classification is summarized 

in Table 3.3. We obtained the highest accuracy value of 61.26% using all time-domain 

features evaluated from EEG segments and EL algorithm while the NB algorithm 
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performed the worst accuracy value of 52.62% for the same features. When the t-test 

selected statistically significant time-domain features evaluated using various 

classifiers, we achieved the highest 56.64% classification accuracy using LR algorithm 

and the worst accuracy value of 51.08% using KA algorithm. To discover the 

effectiveness of the independent t-test selection process, we analyzed and compared 

performance results of TD and TD+T-test classifications. It was observed that t-test 

based feature selection diminished classifier performances in all classifiers except two 

(NB and k-NN). Results of all classification using time-domain and statistically 

significant time-domain features are given in Table 3.3. 

 

Table 3.3: Performance results (%) for binary-class extremity movement task 

classification using time-domain feature set. 

 

Models 

Accuracy 

TD TD+T-test 

Decision Tree 56.56 55.02 

Discriminant Analysis 57.64 56.02 

Logistic Regression 56.17 55.79 

Naive Bayes 52.62 55.17 

Support Vector Machine 59.57 56.64 

k-Nearest Neighbours 53.24 54.32 

Ensemble Learning 61.26 57.72 

Neural Networks 58.72 53.01 

Kernel Approximation 54.24 51.08 

 

The performance evaluation of all frequency-domain features and the t-test selected 

statistically significant frequency-domain features for binary-classification is 

summarized in Table 3.4. We obtained the highest accuracy value of 60.03% using all 

frequency-domain features evaluated from EEG segments and EL algorithm while the 

LR and k-NN algorithms performed the worst accuracy value of 52.01% for the same 

features. When the t-test selected statistically significant frequency-domain features 
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evaluated using various classifiers, we achieved the highest 61.34% classification 

accuracy using LR algorithm and the worst accuracy value of 53.55% using KA 

algorithm. To discover the effectiveness of the independent t-test selection process in 

frequency-domain feature set, we analyzed and compared performance results of FD 

and FD+T-test classifications. It was observed that t-test based feature selection 

improved classifier performances in all classifiers except two (DT and KA). Results 

of all classification using frequency-domain and statistically significant frequency-

domain features are given in Table 3.4. 

 

Table 3.4: Performance results (%) for binary-class extremity movement task 

classification using frequency-domain feature set. 

 

Models 

Accuracy 

FD FD+T-test 

Decision Tree 57.56 57.48 

Discriminant Analysis 53.86 61.11 

Logistic Regression 54.63 61.34 

Naive Bayes 52.01 55.79 

Support Vector Machine 55.63 59.03 

k-Nearest Neighbours 52.01 54.78 

Ensemble Learning 60.03 60.26 

Neural Networks 56.48 57.18 

Kernel Approximation 55.94 53.55 

 

The performance evaluation of all time-frequency domain features and the t-test 

selected statistically significant time-frequency-domain features for binary-

classification is summarized in Table 3.5. We obtained the highest accuracy value of 

52.70% using all time-frequency domain features evaluated from EEG segments and 

DT algorithm while the LR and k-NN algorithms performed the worst accuracy value 

of 49.85% for the same features. In DA, SVM, NN, and KA, we did not perform 

classification using all time-frequency domain features, because the proposed feature 
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set is not suitable for the classifier structure. When the t-test selected statistically 

significant time-frequency domain features evaluated using various classifiers, we 

achieved the highest 54.71% classification accuracy using LR algorithm and the worst 

accuracy value of 49.15% using KA algorithm. To discover the effectiveness of the 

independent t-test selection process in time-frequency domain feature set, we analyzed 

and compared performance results of WT and WT+T-test classifications. When the 

performed classifications were examined for the case where all features were used, it 

was observed that the independent t-test based feature selection method increased the 

performance in all classifiers except one out of 5 classifiers. Results of all classification 

using time-frequency domain and statistically significant time-frequency domain 

features are given in Table 3.5. 

 

Table 3.5: Performance results (%) for binary-class extremity movement task 

classification using the time-frequency domain feature set. 

 

Models 

Accuracy 

WT WT+T-test 

Decision Tree 52.70 50.62 

Discriminant Analysis N/A 50.93 

Logistic Regression 49.85 50.77 

Naive Bayes 51.16 54.71 

Support Vector Machine N/A 50.93 

k-Nearest Neighbours 49.85 50.69 

Ensemble Learning 51.39 53.94 

Neural Networks N/A 50.54 

Kernel Approximation N/A 49.15 

 

The performance evaluation of all non-linear feature sets with various classifiers is 

summarized in Table 3.6.  In this table, Lag (1)-Lag (10) indicate that the features for 

classifications are evaluated by using the corresponding lag value. Additionally, “All 

lags” indicates that the classifications are carried out using the combination feature set 
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provided by combining the features from 10 different lag values. The results revealed 

that the non-linear feature set extracted for lag=6 condition achieved the highest 

accuracy value of 63.35% using DA classifier and the worst accuracy value of 48.53% 

is evaluated using All lags feature set and NB classifier. On the other hand, we 

analyzed the effectiveness of different lag values for 9 classifiers. We observed that 

the higher classification performance is obtained in 2 (NN and KA) classifiers using 

feature set for lag=4 condition, in 3 (DA, LR, and EL) classifiers using feature set for 

lag=6 condition, and in 1 classifier using feature sets for lag=7, lag=9, lag=10, and All 

lags conditions. Among all non-linear feature sets, the most successful feature set is 

evaluated as the 6th feature set generated where lag=6. 

 

Table 3.6: Performance results (%) for binary-class extremity movement task 

classification using the non-linear feature set. 

Model 
Lag 

(1) 

Lag  

(2) 

Lag  

(3) 

Lag  

(4) 

Lag  

(5) 

Lag  

(6) 

Lag  

(7) 

Lag  

(8) 

Lag  

(9) 

Lag 

(10) 

All 

lags 

Decision Tree 52.62 52.01 52.70 54.63 52.70 54.71 55.40 54.24 54.32 53.94 53.32 

Discriminant 

Analysis 
59.03 60.34 61.73 58.80 60.11 63.35 60.57 59.49 59.95 60.03 54.63 

Logistic 

Regression 
59.03 60.49 62.35 59.72 61.03 62.65 61.11 60.57 60.57 60.42 53.24 

Naive Bayes 49.85 49.07 49.77 49.61 49.07 50.46 50.08 50.31 51.93 52.24 48.53 

Support Vector 

Machine 
58.64 61.57 62.58 62.35 61.73 62.19 62.35 61.57 60.80 60.03 63.04 

k-Nearest 

Neighbours 
51.00 52.47 53.01 53.78 53.86 53.86 55.09 53.32 55.71 53.86 53.16 

Ensemble 

Learning 
58.95 60.26 61.27 61.42 61.34 62.81 61.81 60.03 60.42 58.80 61.19 

Neural 

Networks 
60.42 58.64 59.65 61.88 58.64 60.12 60.88 59.57 59.26 57.02 60.57 

Kernel 

Approximation 
52.16 53.70 52.93 54.63 52.39 54.17 52.24 53.16 52..85 54.17 53.86 

 

In order to compare the effectiveness of different feature sets, the classification is 

carried out with the combination of time-domain, frequency-domain, and time-

frequency domain features. The performance evaluation results of this combination 

feature set and the independent t-test selected feature set from the combined feature 

set are summarized in Table 3.7. In classification performed using combined feature 

set, the EL algorithm obtained the maximum accuracy (58.10%) and k-NN obtained 
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the worst accuracy (49.85%) using same features. In DA, SVM, NN, and KA, we did 

not perform classification using all combination set features, because the proposed 

feature set is not suitable for the classifier structure. On the other hand, in the 

classifications performed using the independent t-test selected feature set, the EL 

algorithm provided the maximum accuracy (62.96%) and KA provided the worst 

accuracy (50.00%) using same features. To discover the effectiveness of the 

independent t-test selection process in the combination feature set, we analyzed and 

compared performance results of TD+FD+WT and TD+FD+WT+T-test 

classifications. When the performed classifications were examined for the case where 

all features were used, it was observed that the independent t-test based feature 

selection method increased the performance in all classifiers except one out of 5 

classifiers. Results of all classification using the combination set and the selected 

statistically significant combination set features are given in Table 3.7. 

 

Table 3.7: Performance results (%) for binary-class extremity movement task 

classification using the combined (TD+FD+WT) feature set. 

 

Models 

Accuracy 

TD+FD+WT TD+FD+WT+T-test 

Decision Tree 56.71 55.25 

Discriminant Analysis N/A 51.23 

Logistic Regression 49.92 51.00 

Naive Bayes 53.47 57.02 

Support Vector Machine N/A 51.16 

k-Nearest Neighbours 49.85 50.31 

Ensemble Learning 58.10 62.96 

Neural Networks N/A 50.85 

Kernel Approximation N/A 50.00 

 

The classification is performed in our second combination set including time-domain, 

frequency-domain, time-frequency domain, and non-linear features. We added non-
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linear feature sets extracted for lag=1 and lag=9 conditions, into our previous 

combination set. The performance evaluation results of this combination feature set 

and the independent t-test selected feature set from this combined feature set are 

summarized in Table 3.8. In classification performed using combined feature set, the 

EL algorithm obtained the maximum accuracy (57.30%) and NB obtained the worst 

accuracy (48.50%) using same features. On the other hand, in the classifications 

performed using the independent t-test selected feature set, the EL algorithm provided 

the maximum accuracy (61.86%) and KA provided the worst accuracy (49.92%) using 

same features. To discover the effectiveness of the independent t-test selection process 

in the combination feature set, we analyzed and compared performance results of 

TD+FD+WT+P and TD+FD+WT+P+T-test classifications. When the performed 

classifications were examined for the case where all features were used, it was 

observed that the independent t-test based feature selection method increased the 

performance in all classifiers except one out of 5 classifiers. Results of all classification 

using our second combination set and the selected statistically significant combination 

set features are given in Table 3.8. 

 

Table 3.8: Performance results (%) for binary-class extremity movement task 

classification using the combined (TD+FD+WT+P) feature set. 

 

Models 

Accuracy 

TD+FD+WT+P TD+FD+WT+P+T-test 

Decision Tree 56.60 56.50 

Discriminant Analysis N/A 52.10 

Logistic Regression 49.90 51.10 

Naive Bayes 48.50 57.10 

Support Vector Machine N/A 51.40 

k-Nearest Neighbours 49.80 50.80 

Ensemble Learning 57.30 61.86 

Neural Networks N/A 50.54 

Kernel Approximation N/A 49.92 
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Also, the independent t-test selected features in four different sets are analyzed to 

investigate effects of different features and EEG channels. Firstly, we investigated the 

independent t-test selected time-domain features. The list of 24 different time-domain 

features with their abbreviations are available in Table 3.9. Channel-based t-test 

selected statistically significant time-domain feature distribution is given in Table 

3.10. A total of 44 time-domain features were indicated as statistically-significant 

features using t-test. Among the 24 different time-domain features, the selected 

features are maximum value (in 3 EEG channels), mean value (in 12 EEG channels), 

kurtosis (in 4 EEG channels), skewness (in 3 EEG channels), Q1 (in 5 EEG channels), 

Q2 (in 13 EEG channels), Q3 (in an EEG channel), and slope-change value (in 3 EEG 

channel). Among 22 EEG channels, more statistically significant features were 

selected from some channels (6th, 12th, 13th, and 18th EEG channels). Also, the 

statistically significant features were not selected from some channels as can be seen 

from Table. As a result, it was observed that feature selections were made from certain 

channels and certain features with the t test. However, it has been observed that the 

independent t-test generally cannot improve the classifier performance in the time 

domain feature set. 

 

Table 3.9: Time-domain features. 

Time-domain features 

T1 Minumum value T13 Kurtosis 

T2 Maximum value T14 Skewness 

T3 Mean T15 Hjorth parameters (Activity) 

T4 Standard deviation value T16 Hjorth parameters (Mobility) 

T5 Integrated EEG value T17 Hjorth parameters (Complexity) 

T6 Mean absolute value T18 Signal range 

T7 Simple square integral  T19 First inter-quartile value (Q1) 

T8 Variance T20 Second inter-quartile value (Q2) 

T9 Root mean square T21 Third inter-quartile value (Q3) 

T10 Waveform length  T22 Mode value 

T11 Average amplitude change value T23 Zero-crossing value 

T12 Absolute difference in standart 

deviation 

T24 Slope-change value 

 

In another feature set, frequency-domain feature set, the t-test selected features were 

investigated. The list of 15 frequency-domain features with their abbreviations are 
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given in Table 3.11. Channel-based t-test selected statistically significant frequency-

domain feature distribution is given in Table 3.12. A total of 28 frequency-domain 

features are indicated as statistically significant features with the application of t-test. 

 

Table 3.10: Channel-based t-test selected statistically significant feature distribution 

for binary extremity movement classification in time-domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

T1                       0 

T2                       3 

T3                       12 

T4                       0 

T5                       0 

T6                       0 

T7                       0 

T8                       0 

T9                       0 

T10                       0 

T11                       0 

T12                       0 

T13                       4 

T14                       3 

T15                       0 

T16                       0 

T17                       0 

T18                       0 

T19                       5 

T20                       13 

T21                       1 

T22                       0 

T23                       0 

T24                       3 

T 0 0 0 2 4 5 0 0 0 0 3 5 5 0 1 2 3 5 2 2 2 3 44 
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Table 3.11: FFT-based frequency and WT-based time-frequency domain features. 

Frequency-domain and time-frequency domain features 

F1, W1 Energy of delta band F9, W9 Entropy of alpha band 

F2, W2 Variance of delta band F10, W10 Energy of beta band 

F3, W3 Entropy of delta band F11, W11 Variance of beta band 

F4, W4 Energy of theta band F12, W12 Entropy of beta band 

F5, W5 Variance of theta band F13, W13 Energy of gamma band 

F6, W6 Entropy of theta band F14, W14 Variance of gamma band 

F7, W7 Energy of alpha band F15, W15 Entropy of gamma band 

F8, W8 Variance of alpha band   

 

Table 3.12: Channel-based t-test selected statistically significant feature distribution 

for binary extremity movement classification in frequency-domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

F1                       0 

F2                       0 

F3                       0 

F4                       0 

F5                       0 

F6                       5 

F7                       8 

F8                       5 

F9                       7 

F10                       0 

F11                       2 

F12                       0 

F13                       0 

F14                       0 

F15                       1 

T 1 1 0 0 2 1 1 1 0 0 1 4 3 1 0 0 2 5 1 1 2 1 28 

 

Among the 15 different time-domain features, the selected features are entropy of theta 

band (in 5 EEG channels), energy of alpha band (in 8 EEG channels), variance of alpha 

band (in 5 EEG channels), entropy of alpha band (in 7 EEG channels), variance of beta 

band (in 2 EEG channels), and entropy of gamma band (in an EEG channel). In 

literature it has been noted that alpha and beta rhytsms may be related motor activities 

[1]. The alpha rhythms reflect visual processing and can be also associated with 
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memory brain function. Also, Mu rhythms may be available in the same frequency-

range as alpha rhythms. Mu rhythms are strongly related to motor activities and, in 

some conditions, appear to correlate with beta rhythms. Beta rhythms are strongly 

related to motor activities. In our study, supporting the literature, statistically 

significant features were determined as frequency-domain features obtained using the 

alpha band. Therefore, it has been observed that classification performance improves 

in most classifiers by selecting effective frequency band-based features. On the other 

hand, among 22 EEG channels, more statistically significant features were selected 

from some channels (12th, 13th, and 18th EEG channels). In studies in the literature, 

certain channels (8th, 10th, and 12th) were identified as effective channels and they were 

used for extremity movement classification [128]. Selecting more statistically 

significant features from certain channels such as 12th EEG channels may also have 

improved classifier performance. 

 

Table 3.13: Channel-based t-test selected statistically significant feature distribution 

for binary extremity movement classification in time-frequency domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

W1                       0 

W2                       0 

W3                       3 

W4                       0 

W5                       0 

W6                       2 

W7                       1 

W8                       0 

W9                       0 

W10                       0 

W11                       0 

W12                       2 

W13                       0 

W14                       0 

W15                       5 

T 0 1 0 2 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 2 1 13 
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Then, the t-test selected features were investigated in WT-based time-frequency 

domain feature set. The list of 15 time-frequency domain features with their 

abbreviations are given above with Table 3.11. Channel-based t-test selected 

statistically significant time-frequency domain feature distribution is given in Table 

3.13. A total of 13 time-frequency domain features are indicated as statistically 

significant features with the application of t-test. Among the 15 different time-

fequency domain features, the selected features are entropy of delta band (in 3 EEG 

channels), entropy of theta band (in 2 EEG channels), energy of alpha band (in an EEG 

channel), entropy of beta band (in 2 EEG channels), and entropy of gamma band (in 5 

EEG channels). Contrary to the literature [1], it was observed that the t-test improved 

the classifier performance by not selecting the features obtained from the alpha and 

beta bands which are related to motor activities, but only by making a selection based 

on the entropy features of the other bands. On the other hand, among 22 EEG channels, 

more statistically significant features were selected from some channels (4th and 21th 

EEG channels). Contrary to the literature [128], it was observed that the t-test 

improved the classifier performance by not selecting the features obtained from certain 

channels which are indicated as effective channels, but only by making a selection 

based on the features of 4th and 21th EEG channels.   

 

Table 3.14: Poincare plot-based non-linear features. 

Non-linear features 
P1 SD1 where lag=1 P 5 SD1 where lag=9 
P2 SD2 where lag=1 P 6 SD2where lag=9 
P 3 SD1SD2 where lag=1 P 7 SD1SD2 where lag=9 
P 4 SD1/SD2 where lag=1 P 8 SD1/SD2 where lag=9 

 

Finally, the selected statistically significant non-linear features were investigated in 

the second combination feature set (TD+FD+WT+P). The list of 8 non-linear features 

with their abbreviations are given in Table 3.14. Channel-based t-test selected 

statistically significant non-linear feature distribution is given in Table 3.15. A total of 

6 non-linear features are indicated as statistically significant features with the 

application of t-test. Among the 8 different non-linear features, the selected features 
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are SD1 where lag=9 (in an EEG channel) and SD1/SD2 where lag=9 (in 5 EEG 

channels). It has been observed that among the non-linear features obtained for both 

lag values, the non-linear features obtained for lag = 9 were selected only as 

statistically significant features. As a result, this explains why we add the features 

obtained for the lag = 9 case to our second combination set. However, including 

selected non-linear features to the combination set generally improved classifier 

performance. On the other hand, among 22 EEG channels, statistically significant 

features were selected from a channel (12th EEG channel). This channel indicated as 

effective channel for MI task classification in the literature [128]. Therefore, selecting 

statistically significant features from it may also have improved classifier 

performance. 

 

Table 3.15: Channel-based t-test selected statistically significant feature distribution 

for binary extremity movement classification in non-linear feature set. 

Fid 

Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

P1                       0 

P 2                       0 

P 3                       0 

P 4                       0 

P 5                       1 

P 6                       0 

P 7                       0 

P 8                       5 

T 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 2 0 0 0 0 6 

 

In our proposed binary-class extremity movement task classification studies, our main 

purpose is to introduce different feature extraction-based approaches and investigate 

the effects of these feature sets and the statistically significance-based feature selection 

on the classification performance. In our experiments we included the Poincare plot-

based non-linear features that have not been used in MI task classification in previous 

studies. 

We performed the proposed four different feature extraction approaches on 

classification of right and left hands MI task 22-channel EEG signals supplied from 



58 

 

open-available dataset. 24 time-domain, 15 frequency-domain, 15 time-frequency 

domain and 4 non-linear features are extracted from each EEG segments. These time-

domain, frequency-domain, time-frequency domain, non-linear feature sets their two 

different combination feature sets were classified utilizing DT, DA, NB, SVM, LR, k-

NN, EL, NN, and KA, and performances of different feature sets were compared. 

Additionally, the independent t-test was applied to select features in the proposed 

feature sets and the effectiveness of this method is analyzed in all feature sets with 

same classifiers. 

Among all feature sets, performance of time-frequency feature set was observed to be 

poor for binary-class extremity movement task classification and the performance of 

non-linear feature sets was found to be higher especially for all classifiers except NB. 

The most successful non-linear feature set is 6th feature set including non-linear 

features for lag=6 condition. The highest accuracy value of binary classification is 

provided by using this non-linear feature set. Therefore, the successful non-linear 

feature sets revealed that MI tasks lead to distinctive and effective differences in the 

non-linear dynamics embedded in EEG signals. When the analyzes performed with 

two different combination sets were compared, it was observed that, contrary to the 

individual success of the non-linear feature sets, better performances were achieved 

with the 1st combination feature set (TD+FD+WT), in which Poincare measurements 

were not included. 

In addition, when the effects of the independent t-test were evaluated, we noted that 

performance of this feature selection with time-domain feature set was observed to be 

poor and sufficient improvements in classifier performances have not been achieved. 

On contrary to the classification performed using statistically significant features from 

time-domain feature set, the proposed the independent t-test based feature selection 

generally improves classifier performance in other feature sets-based binary 

classifications. The maximum accuracy value in binary classification is evaluated with 

DA algorithm for non-linear feature set, but the highest accuracy value in different 

feature sets is generally evaluated using EL algorithm as shown in Figure 3.3a and 

Figure 3.3b. The detailed comparision of accuracy values of proposed approaches 

using EL and DA algorithms are given in Figure 3.3a and Figure 3.3b, respectively. 
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(a) EL-based binary extremity movement classification results. 

 

(b) DA-based binary extremity movement classification results. 

Figure 3.3: Comparing of accuracy values of proposed binary-class extremity 

movement task classification approaches using (a) EL algorithm and (b) DA 

algorithm.  
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Table 3.16: Performance comparison of binary-class extremity movement task 

classification studies. 

Ref. 
Subject 

condition 

Number 

of 

channels 

Number 

of 

classes 

Proposed methods Classifier 
Accuracy 

(%) 

[38] SI/9 2 2 WPD Random forest 68.32 

[81] SI/9 22 2 

Time-domain parameters 

FFT 

T-test 

EL 62.52 

[128] SI/9 3 2 STFT CNN 74.20 

[129] SI/9 22 2 WT CNN 69.00 

This 

study 
SI/9 22 2 

TD 

FD+T-test 

WT+ T-test 

P 

TD+FD+WT+ T-test 

TD+FD+WT+P+ T-test 

EL 

LR 

NB 

LDA 

EL 

EL 

62.26 

61.34 

54.75 

63.35 

62.96 

61.86 

 

In Table 3.16, some of the previous binary-class extremity movement classification 

studies are summarized and their performances are compared with that of the proposed 

study. In [38], binary-class extremity movement classification was presented using 

WPD. They selected only two EEG channels before feature extraction step and 

Random forest-based classification results reported as 68.32%. However, they used 

certain channels eliminating information of other channels. When we examine the 

channel-based distribution of statistically significant features in our studies, we 

observed that significant features are selected from different features or different 

channels in different data sets and that the same EEG channels are not selected in all 

feature sets. Therefore, when we select certain channels and work with them as that of 

study, we would not have captured the significant features in some channels. In [128], 

STFT-based binary-class MI task classification was performed using 3 EEG channels 

of data set. Higher accuracy value was yielded than our presented studies. However, 

in their study channel selection step was performed which is not the stage in our 

studies. We used 22 EEG channels with high and low classification performance, 

which slightly decreases the overall motor imagery task classification performance, 

but eliminates a channel selection phase. In addition to channel reduction, their 

proposed study includes high complexity in terms of CNN-based feature extraction 
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and classification due to fact that its deep neural layer structures increase training time. 

In another CNN-based classification study [129], WT algorithm was used for feature 

extraction. Although it has high computational complexity, the classification result 

was reported as 69.00%. In our previous study [81], we investigated the statistically 

significant time-domain and frequency-domain features in binary-class extremity 

movement classification using EL algorithm. We observed that t-test improved 

classifier performance. In addition to these time-domain and frequency-domain feature 

extraction approaches, different feature extraction methods, which clearly have the 

computational advantages, were investigated by us. Thus, the above encouraging 

experimental results together with the computational advantages, indicate that the 

proposed Poincare plot measures and the combination of different feature extraction 

approaches may be used to analysis of non-stationary EEG signals. 

3.5 Results and Discussions of Multi-Class Extremity 

Movement Task Classification 

In the multi-class extremity movement task classification, we aim at discriminating the 

four different MI task EEG segments utilizing different feature extraction-based 

approaches. Four different (right hand, left hand, both feet, and tongue) extremity 

movement MI tasks segments of 22-channel EEG recordings obtained from 9 subjects 

are used to extract features. Time-domain, frequency-domain, time-frequency domain 

and non-linear feature sets are obtained from these EEG segments. Time-domain (24 

different statistical and amplitude-based measures), frequency-domain (energy, 

variance, and entropy measures of FT-based five different EEG sub-bands), time-

frequency domain (energy, variance, and entropy measures of WT-based five different 

EEG sub-bands), and non-linear (4 different Poincare plot measures) feature sets were 

created from 22-channel EEG signals. The effect of these four different feature sets 

and their two different combination sets are investigated as previous binary 

classification studies. In addition, the effectiveness of ANOVA-based feature selection 

process is investigated with all extracted feature sets. Finally, 8 different machine 

learning algorithms are DT, DA, NB, SVM, k-NN, EL, NN, and KA were applied to 

classify these feature sets and the results of each of them were analyzed. All signal 

processing (signal segmentation, feature extraction, feature selection, and 
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classification) and performance analyzes were implemented using MATLAB 

software. 

Performance evaluation results of our proposed approach including different feature 

sets, ANOVA-based feature selection, and various classifiers are given in Tables 3.17-

3.22.  In these tables TD, FD, WT, and P denote that the features for classifications 

using the time-domain, frequency-domain, time-frequency domain, and non-linear 

information, respectively. On the other hand, TD+ANOVA, FD+ANOVA, and 

WT+ANOVA indicate that the ANOVA selected statistically significant features for 

classifications using the time-domain, frequency-domain, and time-frequency domain, 

respectively. The classifications performed using the first combination feature set 

including time-domain, frequency-domain, and time-frequency domain features are 

denoted as TD+FD+WT and the classifications performed using the ANOVA-selected 

statistically significant features of this combination set are denoted as 

TD+FD+WT+ANOVA. The classifications performed using the second combination 

feature set including time-domain, frequency-domain, time-frequency domain, and 

non-linear features are denoted as TD+FD+WT+P and the classifications performed 

using the ANOVA selected statistically significant features of this combination set are 

denoted as TD+FD+WT+P+ANOVA. The boldface characters in table cells denote 

the best classification performance for each approach and classification algorithms (in 

Tables 3.17-3.22). 

The performance evaluation of all time-domain features and the ANOVA-selected 

statistically significant time-domain features for four-class MI task classification is 

summarized in Table 3.17. We obtained the highest accuracy value of 44.38% using 

all time-domain features evaluated from EEG segments and EL algorithm while the 

NB algorithm performed the worst accuracy value of 29.40% for the same features. 

When the ANOVA-selected statistically significant time-domain features evaluated 

using various classifiers, we achieved the highest 43.91% classification accuracy using 

EL algorithm and the worst accuracy value of 29.40% using NB algorithm. To 

investigate the effectiveness of the independent t-test selection process, we analyzed 

and compared performance results of TD and TD+ANOVA classifications. It was 

observed that ANOVA based feature selection process improved the performance in 5 

classifiers, decreased the performance in 2 classifiers, and did not change the 
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performance in 1 classifier. Results of all classification using time-domain and 

statistically significant time-domain features are given in Table 3.17. 

 

Table 3.17: Performance results (%) for multi-class extremity movement task 

classification using time-domain feature set. 

 

Models 

Accuracy 

TD TD+ANOVA 

Decision Tree 31.00 31.10 

Discriminant Analysis 41.90 44.00 

Naive Bayes 29.40 29.40 

Support Vector Machine 40.28 43.12 

k-Nearest Neighbours 32.30 33.40 

Ensemble Learning 44.38 43.91 

Neural Networks 39.89 40.86 

Kernel Approximation 32.48 31.87 

   

The performance evaluation of all frequency-domain features and the ANOVA- 

selected statistically significant frequency-domain features for four-class MI task 

classification is summarized in Table 3.18. We obtained the highest accuracy value of 

35.76% using all frequency-domain features evaluated from EEG segments and EL 

algorithm while the NB algorithm performed the worst accuracy value of 28.59% for 

the same features. When the ANOVA-selected statistically significant frequency-

domain features evaluated using various classifiers, we achieved the highest 38.46% 

classification accuracy using EL algorithm and the worst accuracy value of 29.09% 

using NB algorithm. To discover the effectiveness of the ANOVA-based feature 

selection process in frequency-domain feature set, we analyzed and compared 

performance results of FD and FD+ANOVA classifications. It was observed that 

ANOVA-based feature selection improved classifier performances in all classifiers 

except a classifier (KA). Results of all classification using frequency-domain and 

statistically significant frequency-domain features are given in Table 3.18. 
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Table 3.18: Performance results (%) for multi-class extremity movement task 

classification using frequency-domain feature set. 

 

Models 

Accuracy 

FD FD+ANOVA 

Decision Tree 31.40 31.44 

Discriminant Analysis 34.41 37.89 

Naive Bayes 28.59 29.09 

Support Vector Machine 33.14 37.69 

k-Nearest Neighbours 29.28 29.98 

Ensemble Learning 35.76 38.46 

Neural Networks 33.68 36.38 

Kernel Approximation 32.18 30.94 

 

The performance evaluation of all time-frequency domain features and the ANOVA- 

selected statistically significant time-frequency-domain features for four-class MI task 

classification is summarized in Table 3.19. We obtained the highest accuracy value of 

28.63% using all time-frequency domain features evaluated from EEG segments and 

EL algorithm while the SVM, k-NN, and KA algorithms performed the worst accuracy 

value of 24.81% for the same features. In DA algorithm, we did not perform 

classification using all time-frequency domain features, because the proposed feature 

set is not suitable for the classifier structure. When the ANOVA-selected statistically 

significant time-frequency domain features evaluated using various classifiers, we 

achieved the highest 34.34% classification accuracy using EL algorithm and the worst 

accuracy value of 25.42% using DA algorithm. To discover the effectiveness of the 

ANOVA-based feature selection process in time-frequency domain feature set, we 

analyzed and compared performance results of WT and WT+ANOVA classifications. 

When the performed classifications were examined for the case where all features were 

used, it was observed that the ANOVA-based feature selection method increased the 

performance in all classifiers except one out of 7 classifiers. Results of all classification 

using time-frequency domain and statistically significant time-frequency domain 

features are given in Table 3.19. 



65 

 

Table 3.19: Performance results (%) for multi-class extremity movement task 

classification using the time-frequency domain feature set. 

 

Models 

Accuracy 

WT WT+ANOVA 

Decision Tree 28.32 28.74 

Discriminant Analysis N/A 25.42 

Naive Bayes 28.20 28.16 

Support Vector Machine 24.81 25.73 

k-Nearest Neighbours 24.81 25.54 

Ensemble Learning 28.63 34.34 

Neural Networks 25.00 25.62 

Kernel Approximation 24.81 25.81 

 

The performance evaluation of all non-linear feature sets with various classifiers is 

summarized in Table 3.20.  In this table, Lag (1)-Lag (10) indicate that the features for 

classifications are evaluated by using the corresponding lag value. Additionally, “All 

lags” indicates that the classifications are carried out using the combination feature set 

provided by combining the features from 10 different lag values. The results revealed 

that the non-linear feature set extracted for All lags condition achieved the highest 

accuracy value of 47.08% using SVM classifier and the worst accuracy value of 

26.80% is evaluated using lag=1 feature set and NB classifier. On the other hand, we 

analyzed the effectiveness of different lag values for 8 classifiers. We observed that 

the higher classification performance is obtained in 1 (DA) classifiers using feature set 

for lag=7 condition, 1 (k-NN) classifiers using feature set for lag=8 condition, in 2 

(DA, and NB) classifiers using feature set for lag=9 condition, 1 (KA) classifiers using 

feature set for lag=10 condition, and in 4 (DT, SVM, EL, and NN) classifiers using 

feature set for All lags condition. Among all non-linear feature sets, the most 

successful feature set is evaluated as the All lags feature set generated combining of 

all non-linear feature sets. When we analyzed the other 10 non-linear sets without 

including the combination feature set, it was seen that the highest results were achieved 

with the 9th feature set generated where lag=9. 
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Table 3.20: Performance results (%) for multi-class extremity movement task 

classification using the non-linear feature set. 

Model 
Lag 

(1) 

Lag 

(2) 

Lag 

(3) 

Lag 

(4) 

Lag 

(5) 

Lag 

(6) 

Lag 

(7) 

Lag 

(8) 

Lag 

(9) 

Lag 

(10) 

All 

lags 

Decision Tree 29.10 30.10 29.60 29.30 29.40 30.60 30.50 31.40 31.50 31.10 31.90 

Discriminant 

Analysis 
40.00 40.50 40.00 41.70 40.10 41.90 42.70 42.30 42.70 41.70 40.20 

Naive Bayes 26.80 28.30 27.90 28.60 28.00 29.00 28.00 28.20 30.00 28.40 28.30 

Support Vector 

Machine 
41.01 43.16 44.30 44.51 42.98 43.07 44.36 44.48 43.41 43.78 47.08 

k-Nearest 

Neighbours 
32.20 32.10 32.50 32.40 32.10 32.40 32.20 33.30 33.10 33.00 32.30 

Ensemble 

Learning 
39.59 41.20 41.53 42.08 40.19 42.17 42.84 42.94 43.42 42.27 46.06 

Neural 

Networks 
39.97 41.71 41.59 42.05 41.00 41.20 42.00 41.47 40.35 41.05 45.18 

Kernel 

Approximation 
30.13 31.52 31.40 31.79 32.29 32.25 31.48 31.60 30.98 32.64 30.63 

 

Table 3.21: Performance results (%) for multi-class extremity movement task 

classification using the combined (TD+FD+WT) feature set. 

 

Models 

Accuracy 

TD+FD+WT TD+FD+WT+ANOVA 

Decision Tree 34.38 34.34 

Discriminant Analysis N/A 25.96 

Naive Bayes 29.09 29.51 

Support Vector Machine 24.81 26.54 

k-Nearest Neighbours 24.81 25.62 

Ensemble Learning 35.73 44.33 

Neural Networks 25.00 26.54 

Kernel Approximation 24.81 25.46 

 

In order to compare the effectiveness of different feature sets, the classification is 

carried out with the combination of time-domain, frequency-domain, and time-

frequency domain features. The performance evaluation results of this combination 

feature set and the ANOVA-selected feature set from the combined feature set are 
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summarized in Table 3.21. In classification performed using combined feature set, the 

EL algorithm obtained the maximum accuracy (35.73%) and SVM, k-NN, and KA 

algorithms obtained the worst accuracy (24.81%) using same features. In DA 

algorithm, we did not perform classification using all combination set feature, because 

the proposed feature set is not suitable for the classifier structure. On the other hand, 

in the classifications performed using the ANOVA-selected feature set, the EL 

algorithm provided the maximum accuracy (44.33%) and KA provided the worst 

accuracy (25.46%) using same features. To discover the effectiveness of the ANOVA-

based feature selection process in the combination feature set, we analyzed and 

compared performance results of TD+FD+WT and TD+FD+WT+ANOVA 

classifications. When the performed classifications were examined for the case where 

all features were used, it was observed that the ANOVA-based feature selection 

method increased the performance in all classifiers except one out of 7 classifiers. 

Results of all classification using the combination set and the selected statistically 

significant combination set features are given in Table 3.21. 

 

Table 3.22: Performance results (%) for multi-class extremity movement task 

classification using the combined (TD+FD+WT+P) feature set. 

 

Models 

Accuracy 

TD+FD+WT+P TD+FD+WT+P+ANOVA 

Decision Tree 34.50 34.50 

Discriminant Analysis N/A 27.31 

Naive Bayes 27.90 29.43 

Support Vector Machine 25.00 29.43 

k-Nearest Neighbours 24.90 26.21 

Ensemble Learning 35.60 47.36 

Neural Networks 24.90 27.55 

Kernel Approximation 24.90 25.89 

 

The classification is performed in our second combination set including time-domain, 

frequency-domain, time-frequency domain, and non-linear features. We added non-
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linear feature sets extracted for lag=1 and lag=9 conditions, into our previous 

combination set. The performance evaluation results of this combination feature set 

and the ANOVA-selected feature set from this combined feature set are summarized 

in Table 3.22. In classification performed using combined feature set, the EL algorithm 

obtained the maximum accuracy (35.60%) and k-NN, NN, and KA obtained the worst 

accuracy (24.90%) using same features. On the other hand, in the classifications 

performed using the ANOVA-selected feature set, the EL algorithm provided the 

maximum accuracy (47.36%) and KA provided the worst accuracy (25.89%) using 

same features. To discover the effectiveness of the ANOVA-based feature selection 

process in the combination feature set, we analyzed and compared performance results 

of TD+FD+WT+P and TD+FD+WT+P+ANOVA classifications. When the 

performed classifications were examined for the case where all features were used, it 

was observed that the ANOVA-based feature selection method increased the 

performance in all classifiers except one out of 7 classifiers. Results of all classification 

using our second combination set and the selected statistically significant combination 

set features are given in Table 3.22. 

ANOVA-selected features in four different sets are analyzed to investigate effects of 

different features and EEG channels for multi-class extremity movement 

classification. Firstly, we investigated the ANOVA-selected time-domain features. 

The list of 24 different time-domain features with their abbreviations are available 

above with Table 3.9. Channel-based ANOVA-selected statistically significant time-

domain feature distribution is given in Table 3.23. A total of 345 time-domain features 

were indicated as statistically-significant features using ANOVA. Among 24 different 

time-domain features, some features such as minumu value, maximum value, mean, 

standard deviation value, integrated EEG value, mean absolute value, simple square 

integral, variance, root mean square, skewness, Hjorth parameters, signal range, Q1, 

Q2, zero crossing value, and slope-change value were mostly selected as statistically 

significant features from almost all channels. As can be clearly observed in the Table 

3.23, some features were not selected as statistically significant features in any 

channel. When the effectiveness of 22 EEG channels was examined, it was observed 

that statistically significant features were selected intensively from all channels, and 

there was no density in certain channels. As a result, it has been observed that classifier 
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performance has generally improved by determining statistically significant features 

from all channels and certain features with ANOVA. 

 

Table 3.23: Channel-based ANOVA-selected statistically significant feature 

distribution for multi-class extremity movement task classification in time-domain 

feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

T1 
                      

18 

T2 
                      

15 

T3 
                      

22 

T4 
                      

22 

T5 
                      

22 

T6 
                      

22 

T7 
                      

20 

T8 
                      

20 

T9 
                      

22 

T10 
                      

0 

T11 
                      

0 

T12 
                      

0 

T13 
                      

0 

T14 
                      

4 

T15 
                      

20 

T16 
                      

11 

T17 
                      

11 

T18 
                      

17 

T19 
                      

22 

T20 
                      

22 

T21 
                      

22 

T22 
                      

1 

T23 
                      

10 

T24 
                      

22 

T 
14 16 14 13 11 9 17 18 14 14 15 15 10 19 18 18 16 18 19 19 18 18 345 
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Channel-based ANOVA-selected statistically significant frequency-domain feature 

distribution for multi-class extremity movement task classification is given in Table 

3.24. A total of 102 frequency-domain features were indicated as statistically-

significant features using ANOVA. Among 15 different frequency frequency-domain 

features, the mostly selected statistically significant features were the energy and 

variance values of theta, alpha, and beta bands. These features are selected in too many 

channels. On the other hand, among 22 EEG channels, more statistically significant 

features were selected from some channels (10th, 16th, 18th, 20th, 21th, and 22th EEG 

channels). In studies in the literature, 10th EEG channel was identified as effective 

channels and they were used for MI task classification [128]. Selecting more 

statistically significant features from certain channels such as 10th EEG channels and 

certain EEG subbands such as alpha and beta bands which are associated with motor 

activities may have improved classifier performance. 

 

Table 3.24: Channel-based ANOVA-selected statistically significant feature 

distribution for multi-class extremity movement task classification in frequency-

domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

F1                       0 

F2                       0 

F3                       0 

F4                       10 

F5                       5 

F6                       3 

F7                       22 

F8                       22 

F9                       4 

F10                       18 

F11                       17 

F12                       0 

F13                       0 

F14                       0 

F15                       1 

T 2 4 4 4 4 2 3 4 5 6 5 5 3 4 5 6 5 6 5 6 6 8 102 
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Channel-based ANOVA-selected statistically significant WT-based time-frequency 

domain feature distribution for multi-class extremity movement task classification is 

given in Table 3.25. A total of 104 time-frequency domain features were indicated as 

statistically-significant features using ANOVA. Among 15 different frequency 

frequency-domain features, the mostly selected statistically significant features were 

the energy and variance values of delta, theta, and alpha bands. These features are 

selected in too many channels. On the other hand, among 22 EEG channels, more 

statistically significant features were selected from some channels (14th, 19th, 20th, 21th, 

and 22th EEG channels). However, it was observed that statistically significant time-

frequency features were generally selected from all channels. Selecting statistically 

significant features from all EEG channels and certain EEG subbands such as alpha 

band which is associated with motor activities may have improved classifier 

performance. 

 

Table 3.25: Channel-based t-test selected statistically significant feature distribution 

for multi-class extremity movement task classification in time-frequency domain 

feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

W1                       5 

W2                       5 

W3                       1 

W4                       22 

W5                       22 

W6                       0 

W7                       22 

W8                       22 

W9                       1 

W10                       0 

W11                       0 

W12                       0 

W13                       0 

W14                       0 

W15                       4 

T 4 5 4 4 4 4 5 4 4 4 4 5 4 6 4 4 4 4 7 7 6 7 104 
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Table 3.26: Channel-based t-test selected statistically significant feature distribution 

for multi-class extremity movement task classification in non-linear feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T 

P1                       5 

P 2                       7 

P 3                       8 

P 4                       6 

P 5                       10 

P 6                       10 

P 7                       7 

P 8                       8 

T 5 2 0 2 5 1 1 5 5 1 3 6 3 0 4 5 2 0 5 5 1 0 61 

 

Finally, the selected statistically significant non-linear features were investigated in 

the second combination feature set (TD+FD+WT+P). The list of 8 non-linear features 

with their abbreviations are given above with Table 3.14. Channel-based ANOVA-

selected statistically significant non-linear feature distribution is given in Table 3.14. 

A total of 61 non-linear features are indicated as statistically significant features with 

the application of ANOVA test. When the selected statistically significant non-linear 

features were examined, it was observed that balanced selections were made from all 

features, not specific features. On the other hand, among 22 EEG channels, statistically 

significant features were selected from almost all of the EEG channels. However, from 

some channels such as 8th and 12th EEG channels, more statistically significant were 

selected. These channels were indicated as effective EEG channels in literature [128]. 

Therofore, lots of selections on these channels and there is a balanced distribution of 

feature selection from all feature may have improved classifier performance in our 

second combination feature set (TD+FD+WT+P). 

In our proposed four-class extremity movements task classification studies, we 

investigated the effects of various feature sets and statistically significance-based 

feature selection method on the classification performance. In addition to the classical 

feature extraction approaches which are time-domain, frequency-domain, and time-

frequency domain-based evaluations, we investigate the effects of non-linear features 

(Poincare plot-based measures) for four-class MI task classification. Additionally, we 
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combined different feature sets and applied ANOVA-based feature selection process 

to improve classifier performance determining effective and relevant features from 

EEG signals. 

We applied the proposed four different feature extraction approaches for classification 

of right hand, left hand, both feet, and tongue MI tasks of 22-channel EEG signals after 

obtaining of 3 sec MI EEG segments. A total of  24 time-domain, 15 frequency-

domain, 15 time-frequency domain and 4 non-linear features are evluated from each 

EEG segment. These time-domain, frequency-domain, time-frequency domain, and 

non-linear feature sets, their two different combination feature sets, and ANOVA-

selected statistically significant feature sets of all feature sets were classified utilizing 

DT, DA, NB, SVM, k-NN, EL, NN, and KA, and performances of different feature 

sets and the effectiveness of ANOVA were investigated and compared. 

Among all feature sets, performance of time-frequency feature set was observed to be 

poor for four-class extremity movement task classification the performance of non-

linear feature sets was found to be higher especially for SVM and EL classifiers. When 

we examined the 4 feature sets apart from the combinations, we observed that the most 

successful is non-linear feature set which is defined as All lags feature set including 

non-linear features for all lag condition. The highest accuracy value of multi-class 

classification is provided by using this non-linear feature set and SVM algorithm. 

Therefore, the successful non-linear feature sets revealed that MI tasks lead to 

distinctive and effective differences in the non-linear dynamics embedded in EEG 

signals.  The performance evaluation of all proposed approaches using SVM algorithm 

is given in Figure 3.3a. 

When the analyzes performed with two different combination sets were compared, it 

was observed that, better performances were achieved with the 2nd combination 

feature set (TD+FD+WT+P), in which Poincare measurements were included. At the 

same time, the highest performance value of the four-class MI task classification 

studies is achieved with this combination feature set and EL. It has been observed that, 

despite the high classification performance of the SVM algorithm in the non-linear 

data group among the four feature sets, it does not show the same performance in the 

combination feature set. In addition, it has been noticed that the highest performance 

in the proposed approaches was generally achieved with the EL algorithm in the 
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classifications carried out on all features sets (time-domain, frequency-domain, time-

frequency domain, and combination sets) except the non-linear feature sets.  

 

 

(a) 

 

(b) 

Figure 3.4: Comparing of accuracy values of proposed multi-class extremity 

movement task classification approaches using (a) SVM algorithm and (b) EL 

algorithm. 
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The detailed comparision of accuracy values of proposed approaches using SVM and 

EL algorithms are given in Figure 3.4a and Figure 3.4b, respectively. In the given 

classifier performances, it is clearly observed with which feature set the highest 

classification performance is achieved. 

In addition, when the effects of the ANOVA-based feature selection were investigated, 

we noted that performance of this feature selection with all feature sets especially 

combination feature sets is improved the four-class MI task classification performance 

determining the effective and relevant features. The maximum accuracy value in multi-

class classification is evaluated with EL algorithm and TD+FD+WT+P+ANOVA 

combination feature set as given in Figure 3.4b. Therefore, the combination of 

different feature extraction methods and the statistically significance-based feature 

selection method can be improved classifier performance and diminished classifier 

complexity selecting small number of discriminative features. 

 

Table 3.27: Performance comparison of multi-class extremity movement task 

classification studies. 

Ref. 
Subject 

condition 

Number 

of 

channels 

Number 

of 

classes 

Proposed methods Classifier 
Accuracy 

(%) 

[130] SI/9 22 4 
FBCSP 

Energy-based features 
CNN 70.60 

[131] SI/9 8 4 

FFT 

Channel variance features 

PCA 

SVM 56.00 

[132] SI/9 22 4 CSP 
Fuzzy logic 

system 
65.00 

[133] SI/9 26 4 
CSP 

Band power 
LDA 51.67 

[134] SI/10 64 4 Time domain parameters LDA 58.30 

This 

study 
SI/9 22 4 

TD 

FD+ANOVA 

WT+ANOVA 

P 

TD+FD+WT+ANOVA 

TD+FD+WT+P+ANOVA 

EL 

EL 

EL 

SVM 

EL 

EL 

44.38 

38.46 

34.34 

47.08 

44.33 

47.36 
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Performance comparison of multi-class extremity movement task classification studies 

conducted in the literature is demonstrated in Table 3.27.  In [130], a CNN-based 

approach is presented. FBCSP and energy-based features of EEG signals were used as 

input. The accuracy of 70.60% were achieved for subject-independent analysis of 9 

subjects. In that study, higher MI task classification accuracy was achieved compared 

to our presented studies at the expense of computationally expensive feature extraction 

and classification step. In another study [131], channel variance-based feature 

extraction and PCA-based feature selection were used. The extracted features were 

classified with accuracy of 56.00% using SVM algorithm. Higher accuracy value was 

obtained in that study than that of our study. While EEG data of 8 channels are 

investigated in that study, EEG data of 22 channels are examined in our analysis. In 

another studies [132-134] CSP, band power and CSP, time-domain parameters have 

been used for feature extraction for each study respectively. In these studies, higher 

accuracy values were avhieved compared to our studies. However, performance values 

are not very high (over 70.00%). Our multi-class extremity movement classification 

study is different from studies that use specific and same feature extraction methods 

in that it works with very different feature sets. This study is the first to include the 

Poincare plot measures-based non-linear feature set in the feature sets examined and 

investigate its effectiveness alone and in different combinations. Promising results 

were obtained with the different proposed feature sets and the ANOVA-based feature 

selection method used. Additionally, detailed research was conducted on the 

effectiveness of channels and different features by examining the ANOVA-based 

selected statitistically significant features. 
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Chapter 4 

Classification of Finger Movement 

In this section of the thesis, four different feature extraction approaches and 

combinations of different approaches, and two different feature extraction approaches 

known as statistically significance-based feature selection and PCA are applied to 

classify EEG segments of finger movement. In addition to these feature extraction 

approaches, ITD-based feature extraction approach is used to analyze finger 

movement. 

4.1 Experimental Data Set 

In our finger movement classification analyzes, we obtained MI EEG signals recorded 

during imagination of the movements of the five fingers from an open available large 

electroencephalographic MI dataset. The 4 different MI task paradigms available in 

this dataset, we used 5F and NoMT paradigms 1 sec 21-channel EEG signals of 8 

subjects. A total of six class categories are available in our classifications. 19 different 

EEG channels at sampling frequency of 1000 Hz are analyzed.  

In the preprocessing section of finger movement classifications, 100 samples of 1000 

Hz EEG signals of six different classes MIs (5F and NoMT paradigms) were selected 

to be analyzed in signal processing and following classification section. Hence, 600 

EEG samples are used in signal processing.  

The finger movement classification studies performed using six different feature sets 

and the ANOVA-based and PCA-based feature selection methods in this thesis are 

represented in Figure 4.1. 
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Figure 4.1: The block diagram of the proposed finger movement classification 

approach using different feature extraction approaches and feature selection methods 

with various classifiers. 
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4.2 Feature Extraction 

24 time-domain, 15 frequency-domain, 15 WT-based time-frequency domain, 30 ITD-

based time-frequency domain, and 4 non-linear features are evaluated for each EEG 

channel of each EEG segment. These feature sets and their different combination 

feature sets are analyzed using various machine learning algorithms for finger 

movement classifications, separately.  

4.2.1 Time-domain Feature Set 

After the extraction of EEG segments, the time-domain feature set was obtained 

evaluating 24 different amplitude and statistical information-based features in the 

time-domain. All time-domain features and the mathematical formulations of these 

features are given in Section 2.2.1. In the time-domain feature extraction-based 

approach, a total of 7800x456 and 600x456 size time-domain feature sets are created 

for subject-independent and subject-dependent finger movement classifications, 

respectively. 

4.2.2 Frequency-domain Feature Set  

To create the frequency-domain feature set, the frequency domain of EEG segments is 

generated using FT and five different EEG sub-bands are decomposed for each EEG 

segment. Energy, variance, and entropy measures are calculated using EEG sub-bands. 

The mathematical formulations of energy, variance and entropy values are available 

in Section 2.2.2. In the frequency-domain feature extraction-based approach, a total of 

7800x285 and 600x285 size frequency-domain feature sets are generated for subject-

independent and subject-dependent finger movement classifications, respectively. 

4.2.3 Wavelet Transform-based Time-Frequency Domain 

Feature Set  

To generate the WT-based time-frequency domain feature set, the time-frequency 

domain of EEG segments is obtained using WT and five different EEG sub-bands are 
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decomposed for each EEG segment. Energy, variance, and entropy measures are 

calculated utilizing EEG sub-bands. Haar mother wavelet and 9 level sub-band 

decomposition are utilized for our finger movement classification analysis. The 

mathematical formulations of energy, entropy, and variance values based on the WT 

methos are given in Section 2.2.3.1. In the WT-based time-frequency domain feature 

extraction approach, a total of 7800x285 and 600x285 size time-frequency domain 

feature sets are created for subject-independent and subject-dependent finger 

movement classifications, respectively. 

4.2.4 Intrinsic Time-Scale Decomposition-based Time-

Frequency Domain Feature Set  

In another time-frequency domain feature set, the features are evaluated using ITD 

algorithm. The different number of PRCs are obtained after applying the ITD 

algorithm. However, the defining of relevant PRC which best represents the EEG 

signal is an important task before feature extraction step. We performed energy-based 

feature selection process to define the best representative PRCs for feature extraction 

step. Firstly, the energies of each PRCs are evaluated as given in Equation (4.1).  

                       𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑅𝐶𝑖
= ∑ |𝑃𝑅𝐶𝑖[𝑛]|2𝑁−1

𝑛=0 ,        𝑖 = 1,  2,   …  ,  𝐿.                           (4.1) 

where, 𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑅𝐶𝑖
is energy of ith PRC which is indicated as 𝑃𝑅𝐶𝑖. The first 5 PRCs 

of a 1 sec EEG signal and energies of them are given in Figure 4.2a and 4.2.b. 

We selected the higher energy PRCs considering them as the best representative of the 

EEG signal. We observed that the energy of PRCs is decreased from PRC1 to PRC5. 

Therefore, the first 3 PRCs are used to extract features for our analysis due to their 

higher energy contents. We also investigated the effectiveness of different features. 

These are binary combinations (PRC1-PRC2, PRC1-PRC3 or PRC2-PRC3) and triple 

combination (PRC1-to-3) of these three PRCs. Then 10 time-frequency features which 

are power, mean value, sample entropy higher-order frequency moments (1st, 2nd, 3rd, 

and 4th moment), and Hjorth parameters (activity, mobility, and complexity) are 

evaluated utilizing the selected PRCs. For defining of the effect of ITD-based 

approach, the same features are evaluated from EEG segment itself, without the ITD 
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application. The mathematical formulations of these time-frequency features based on 

the WT methos are given in Section 2.2.3.2. 

 

  
(a) The extracted first five PRCs. 

(b) The energies of these first five PRCs. 

Figure 4.2: (a) The first 5 PRCs provided utilizing ITD, and (b) the energies of them. 

 

In the ITD-based time-frequency domain feature extraction-based approach for 

subject-independent classifications, a total of 4800x190, 4800x380, and 4800x570 size 

time-frequency domain feature sets are obtained for the selected PRC (PRC1, PRC2 

or PRC3), binary combinations of PRCs (PRC1-PRC2, PRC1-PRC3 or PRC2-PRC3), 

and triple combination (PRC1-to-3), respectively. In EEG-based analysis, a total of 

4800x190 EEG feature set is obtained. In the ITD-based time-frequency domain 

feature extraction-based approach for subject-dependent classifications, a total of 

600x190, 600x380, and 600x570 size time-frequency domain feature sets are obtained 
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for the selected PRC (PRC1, PRC2 or PRC3), binary combinations of PRCs (PRC1-

PRC2, PRC1-PRC3 or PRC2-PRC3), and triple combination (PRC1-to-3), 

respectively.  

4.2.5 Non-linear Feature Set 

Non-linear feature sets are provided using Poincare plot-based measures. 4 different 

non-linear features are evaluated to supply information about the non-linear dynamics 

embedded in EEG signals for each EEG segment where lag=1. Poincare plot measures’ 

mathematical formulations are given in Section 2.2.4. In the non-linear feature 

extraction-based approach, a total of 7800x76 and 600x76 size non-linear feature sets 

are created for subject-independent and subject-dependent finger movement 

classification.  

4.2.6 Combination Feature Set Including Time-domain, 

Frequency-domain, and Wavelet Transform-based Time-

frequency domain Features 

In addition to five different feature sets, the effectiveness of the combination of 

different feature sets are analyzed to improve the classification performance in our 

thesis studies. Combination feature sets are created using 24 time-domain, 15 

frequency-domain, and 15 WT-based time-frequency domain features for each EEG 

channel of each EEG segment.   In the combination feature set-based analysis, a total 

of 7800x1026 and 600x1026 size the combination feature sets are created for subject-

independent and subject-dependent finger movement classifications, respectively. 

4.2.7 Combination Feature Set Including Time-domain, 

Frequency-domain, Wavelet Transform-based Time-frequency 

domain, and Non-linear Features 

In our second combination feature sets, we added 4 non-linear features into our first 

combination feature set which is created using 24 time-domain, 15 frequency-domain, 
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and 15 WT-based time-frequency domain features for each EEG channel of each EEG 

segment. 4 non-linear features are evaluated for each EEG segment where lag=1. A 

total of 76 non-linear features are evaluated from all EEG channels of each EEG 

segment based on the lag=1 condition and added to our previous combination sets. In 

our second combination feature set-based analysis, a total of 7800x1102 and 600x1102 

size the combination feature sets are created for subject-independent and subject-

dependent finger movement classifications, respectively. 

 4.3  Feature Selection  

In our finger movement classifications, we applied statistically significance-based 

feature selection method to improve the classifier performances selecting relevant and 

discriminative features. To compare the effectiveness of ANOVA, PCA-based feature 

selection method, which is generally utilized for the feature selection, was also used. 

Four different approaches are presented for the classification of each feature set.  

 

Table 4.1: The number of features in all paradigms for time-domain feature set 

classifications. 

Feature 

set 

All 

Features 

PCA Selected 

Features 

ANOVA Selected 

Features 

ANOVA and PCA 

Selected Features 

S1 456 3 251 2 

S2 456 1 262 1 

S3 456 1 377 1 

S4 456 1 383 1 

S5 456 3 233 3 

S6 456 3 264 2 

S7 456 3 286 2 

S8 456 5 192 1 

All 456 5 318 4 

 

According to our proposed feature selection methods, four different sets are created 

from our extracted feature sets to apply as input for classifiers. These are: 

• All features in the corresponding feature set, 

• PCA-selected principal components from the corresponding feature set, 
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• ANOVA-selected statistically significant features from the corresponding 

feature set, 

• Both ANOVA and PCA selected features from the corresponding feature set. 

 

Table 4.2: The number of features in all paradigms for frequency-domain feature set 

classifications. 

Feature 

Set 

All 

Features 

PCA Selected 

Features 

ANOVA Selected 

Features 

ANOVA and PCA 

Selected Features 

S1 285 3 117 2 

S2 285 1 98 1 

S3 285 1 154 1 

S4 285 1 157 1 

S5 285 3 119 3 

S6 285 2 107 1 

S7 285 3 116 1 

S8 285 4 67 2 

All 285 5 153 4 

 

Table 4.3: The number of features in all paradigms for WT-based time-frequency 

domain feature set classifications. 

Feature 

Set 

All 

Features 

PCA Selected 

Features 

ANOVA Selected 

Features 

ANOVA and PCA 

Selected Features 

S1 285 1 10 1 

S2 285 3 88 3 

S3 285 2 39 2 

S4 285 4 136 3 

S5 285 1 25 1 

S6 285 1 26 15 

S7 285 1 135 1 

S8 285 3 20 1 

All 285 2 28 18 
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Table 4.4: The number of features in all paradigms for non-linear feature set 

classifications. 

Feature 

Set 

All 

Features 

PCA Selected 

Features 

ANOVA Selected 

Features 

ANOVA and PCA 

Selected Features 

S1 76 2 42 3 

S2 76 3 45 3 

S3 76 4 53 3 

S4 76 3 63 3 

S5 76 2 31 1 

S6 76 4 33 3 

S7 76 2 60 2 

S8 76 3 32 2 

All 76 4 38 2 

 

Table 4.5: The number of features in all paradigms for combined (TD+FD+WT) 

feature set classifications. 

Feature 

Set 

All 

Features 

PCA Selected 

Features 

ANOVA Selected 

Features 

ANOVA and PCA 

Selected Features 

S1 1026 3 378 2 

S2 1026 1 448 1 

S3 1026 1 570 1 

S4 1026 1 676 1 

S5 1026 3 377 3 

S6 1026 3 397 2 

S7 1026 3 537 2 

S8 1026 4 279 1 

All 1026 5 499 4 

 

The effectiveness of these four different feature sets is investigated and compared in 

all extracted feature sets using various classifiers. Table 4.1-4.6 summarizes the 

number of all features, ANOVA-selected, PCA-selected, and both ANOVA and PCA 



86 

 

selected features in six different feature sets (TD, FD, WT, P, TD+FD+WT, and 

TD+FD+WT+P) which are used in our finger movement classifications.  

 

Table 4.6: The number of features in all paradigms for combined (TD+FD+WT+P) 

feature set classifications. 

Feature 

Set 

All 

Features 

PCA Selected 

Features 

ANOVA Selected 

Features 

ANOVA and PCA 

Selected Features 

S1 1102 3 420 2 

S2 1102 1 493 1 

S3 1102 1 623 1 

S4 1102 1 739 1 

S5 1102 3 408 3 

S6 1102 1 430 2 

S7 1102 3 597 2 

S8 1102 5 311 1 

All 1102 5 537 3 

 

Table 4.7: The number of features in all paradigms for ITD-based and EEG-based 

feature sets classifications. 

Feature 

Set 

PRC1, PRC2, 

PRC3, EEG 

ANOVA 

+ EEG 

PRC1-PRC2, 

PRC1-PRC3, 

PRC2-PRC3 

PRC1 to 

PRC3 

ANOVA +PRC1 

to PRC3 

S1 190 108 380 570 180 

S2 190 101 380 570 169 

S3 190 147 380 570 319 

S4 190 161 380 570 284 

S5 190 127 380 570 193 

S6 190 143 380 570 194 

S7 190 101 380 570 255 

S8 190 59 380 570 131 

All 190 116 380 570 205 
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In our ITD-based finger movement classification, only ANOVA-based feature 

selection is used for triple combination (PRC1-to-PRC3) and EEG feature sets. Table 

4.7 represents the number of features in different ITD-based feature sets and EEG-

based feature sets for finger movement classification. In this table, PRC1, PRC2, PRC3 

or EEG; indicate the number of features in feature set are obtained by using the 

corresponding PRC or EEG. ANOVA+EEG shows the ANOVA selected EEG 

features. PRC1-PRC2, PRC1-PRC3, and PRC2-PRC3 show the number of features in 

binary combination feature sets are extracted from PRC1 and PRC2, PRC1 and PRC3, 

and PRC2 and PRC3, respectively. “PRC1 to PRC3” indicates the number of features 

in triple combination feature set are calculated using all three PRCs. Additionally, 

“ANOVA+ PRC1 to PRC3” indicates the number of ANOVA-selected features in 

triple combination feature set are calculated using all three PRCs. 

4.4 Results and Discussions of Finger Movement 

Classification 

In this section, we show the performance results of finger movement classification 

provided by different feature extraction-based methods utilizing different machine 

learning algorithms. Seven different feature sets are created by various feature 

extraction methods using 1 sec finger movements EEG signals provided from an open-

available EEG dataset. We calculated time-domain (TD), frequency-domain (FD), 

WT-based time-frequency domain (WT), ITD-based time-frequency domain, non-

linear, and their two different combinations features sets using EEG segments which 

belongs to the six different classes (NoMT condition and 5 finger movements). We 

obtained 2 different combination feature sets. The first combination feature set 

(TD+FD+WT) includes time-domain, frequency-domain, and WT-based time-

frequency features while the second combination feature set includes 

(TD+FD+WT+P) features of the first combination feature set and non-linear features. 

Additionally, we used two different feature selection methods such as ANOVA test 

and PCA to improve classifier performance defining relative features and reducing 

classifier complexity. These methods are applied to all feature sets except ITD-based 

time-frequency based feature set.  We defined four different feature sets using 

ANOVA and PCA feature selection methods from our 6 different feature sets. These 
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are categorized as (i) all feature set, (ii) PCA-selected feature set, (iii) ANOVA-

selected feature set, and ANOVA and PCA-selected feature set from the corresponding 

feature set (TD, FD, WT, P, TD+FD+WT, and TD+FD+WT+P). These feature sets 

are classified using 8 different machine learning algorithms and accuracy-based 

performance evaluations are performed to investigate the effects of different feature 

sets and feature selection methods. In ITD-based approaches, 10 different features are 

calculated from the selected PRCs (PRC1, PRC2, and PRC3) provided by ITD and the 

EEG signal itself for each EEG segment. Three different PRCs (PRC1, PRC2, and 

PRC3), binary combinations of them (PRC1-PRC2, PRC1-PRC3, and PRC2-PRC3), 

and triple combination (PRC1-to-3). In addition, ANOVA test-based feature selection 

is performed and the effect on PRC1-to-3 and EEG feature sets is investigated. All 

feature sets are classified using DT, LDA, SVM, NB, k-NN, EL, NN, and KA 

algorithms and the results of all proposed approaches are analyzed based on the 

accuracy performance metric.  

 

Table 4.8: Performance results (%) for finger movement classification using all 

features of time-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 24.20 37.50 38.30 40.00 28.30 35.80 29.20 32.50 28.60 

Discriminant Analysis 15.00 26.70 34.20 32.50 20.00 29.20 25.00 26.70 32.10 

Naive Bayes 30.00 40.00 33.30 41.00 26.70 33.30 30.80 38.30 27.90 

Support Vector 

Machine 
28.30 50.00 56.00 48.30 40.00 45.80 28.30 40.80 36.20 

k-Nearest Neighbours 35.80 44.20 45.00 42.00 34.20 45.00 27.50 38.30 33.50 

Ensemble Learning 30.00 44.20 48.30 50.00 38.40 46.70 30.00 37.50 32.60 

Neural Networks 29.20 45.00 51.50 47.50 35.80 45.80 31.70 38.30 34.90 

Kernel Approximation 28.33 25.83 34.17 32.50 28.33 24.17 24.17 21.67 25.20 

   

The performance results of our presented approaches using different feature sets such 

as time-domain, frequency-domain, WT-based time-frequency domain, non-linear 

feature sets and their two different combination feature sets (TD+FD+WT and 
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TD+FD+WT+P), two different feature selection methods (ANOVA test and PCA), 

and 8 different classifiers are given in Tables 4.8-4.31. In these tables, S1, S2, S3, S4, 

S5, S6, S7, or S8; indicate that features for subject-dependent classification are 

calculated utilizing the corresponding subject. “All subjects” indicates the features for 

subject-independent classification are calculated utilizing all subjects.  

 

Table 4.9: Performance results (%) for finger movement classification using PCA-

selected features of time-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 27.50 20.00 27.50 32.50 22.50 20.00 26.70 19.20 23.00 

Discriminant Analysis 25.80 18.30 27.00 32.50 20.80 26.70 18.30 18.30 20.90 

Naive Bayes 23.30 18.30 28.30 36.70 21.70 22.50 25.80 16.70 21.90 

Support Vector 

Machine 
26.70 17.50 26.00 34.20 25.00 24.20 24.20 23.30 19.90 

k-Nearest Neighbours 27.50 17.50 31.00 35.00 27.50 22.50 25.00 20.00 24.00 

Ensemble Learning 30.00 20.00 27.00 34.20 25.00 26.70 30.00 19.20 23.00 

Neural Networks 24.20 19.20 31.00 36.70 25.00 25.00 23.30 18.30 23.50 

Kernel Approximation 27.50 16.70 17.00 16.70 25.80 17.50 21.70 22.50 21.40 

 

Table 4.10: Performance results (%) for finger movement classification using 

ANOVA-selected features of time-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 35.00 38.30 36.00 45.00 24.20 39.20 30.80 31.70 28.50 

Discriminant Analysis 34.20 41.70 43.30 46.70 36.70 37.50 20.80 31.70 29.90 

Naive Bayes 25.00 42.50 45.00 48.30 30.00 39.20 30.80 37.50 28.50 

Support Vector 

Machine 
35.00 49.20 57.50 54.20 39.20 55.00 33.30 41.70 35.90 

k-Nearest Neighbours 29.20 45.00 47.00 50.00 35.00 48.30 30.80 39.20 32.70 

Ensemble Learning 33.30 43.30 53.30 55.80 43.30 50.00 34.20 40.80 33.60 

Neural Networks 35.80 46.70 57.00 50.80 40.80 48.30 34.20 40.00 34.70 

Kernel Approximation 28.30 27.50 31.00 38.30 23.30 30.00 23.30 30.80 24.70 
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The performance results of all time-domain feature set-based classification with 

various classifiers are reported in Tables 4.8-4.11. The performance results show that 

SVM algorithm obtained 56.00% accuracy utilizing all time-domain features obtained 

from Subject C (S3).  At the same time, the higher accuracy value (57.50%) of all time-

domain based classifications is achieved using ANOVA-selected time-domain 

features of same subject and same classifier. In subject-independent analysis, the best 

result is achieved using all time-domain features and SVM classifier with accuracy of 

36.20%. However, the accuracy of 35.90% is achieved using ANOVA-selected time-

domain features and SVM algorithm. The results of all classifications performed using 

time-domain based approaches are summarized in Table 4.8-4.11. 

 

Table 4.11: Performance results (%) for finger movement classification using both 

ANOVA and PCA selected features of time-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 25.80 15.80 27.00 43.30 25.80 25.00 25.00 21.70 22.60 

Discriminant Analysis 27.50 18.30 28.30 31.70 25.80 28.30 19.20 20.80 19.70 

Naive Bayes 27.50 18.30 27.00 34.20 22.50 25.00 17.50 20.80 21.80 

Support Vector 

Machine 
25.80 19.20 33.30 33.30 27.50 30.00 22.50 20.00 20.00 

k-Nearest Neighbours 34.20 16.70 29.20 40.80 28.30 32.50 25.80 25.80 22.80 

Ensemble Learning 28.30 18.30 31.00 40.00 25.00 28.30 21.70 25.80 23.50 

Neural Networks 30.00 17.50 31.00 35.80 31.70 27.50 24.20 20.80 24.00 

Kernel Approximation 21.70 16.70 17.00 16.70 23.30 15.00 23.30 16.70 22.80 

 

The selected statistically significant time-domain features distribution over 19 EEG 

channels was examined for subject-dependent and subject-independent finger 

movement classifications in Table 4.12 and Table 4.13. Firstly, in subject-independet 

finger movement classification, all time domain features except waveform length, 

average amplitude change value, absolute difference in standard deviation and slope-

change value were mostly determined and selected as significant features by ANOVA 

in all channels. When examining the effectiveness of the channels, it was observed that 
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statistically significant features were selected from all channels and did not concentrate 

on certain channels. However, selecting statistically significant features from all 

channels and specific time domain feature types did not provide improvement in 

classifier performance. It was observed that the highest performances in subject-

independent analyzes were obtained with all time-domain features. 

 

Table 4.12: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-independent finger movement classification in time-domain 

feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

T1                    18 

T2                    14 

T3                    18 

T4                    17 

T5                    15 

T6                    15 

T7                    11 

T8                    15 

T9                    15 

T10                    0 

T11                    0 

T12                    1 

T13                    11 

T14                    19 

T15                    15 

T16                    16 

T17                    16 

T18                    17 

T19                    19 

T20                    17 

T21                    14 

T22                    17 

T23                    17 

T24                    1 

T 20 20 19 20 8 8 20 19 13 14 20 20 18 14 15 16 20 12 17 313 

 

In subject-dependet finger movement classification, statistically significant features 

were selected intensively and balancedly from all channels and all feature types as can 
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be seen from Table 4.13. In fact, it has been observed that feature selection that does 

not depend on a specific channel or feature group, performed with ANOVA, improves 

classifier performance. The highest classification performances in subject-dependent 

analyzes were obtained with ANOVA-selected time-domain features. 

 

Table 4.13: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-dependent finger movement classification in time-domain 

feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

T1 7 7 6 7 5 4 5 6 4 6 7 7 6 5 5 5 4 2 5 103 

T2 7 8 7 7 3 5 4 4 4 5 7 6 5 4 3 5 8 2 4 98 

T3 7 6 5 6 7 8 5 6 6 2 7 6 6 6 4 5 8 3 5 107 

T4 8 8 7 8 3 2 4 6 5 7 7 7 3 4 4 6 8 1 4 103 

T5 8 8 6 7 3 3 4 6 5 3 6 6 4 2 4 7 8 2 5 97 

T6 8 8 6 7 3 3 4 6 5 3 6 6 4 2 4 7 8 2 5 97 

T7 8 8 6 7 2 2 2 5 3 4 6 6 4 3 3 3 8 2 3 87 

T8 8 8 7 7 2 2 2 5 3 4 7 6 4 3 3 3 8 2 3 89 

T9 8 8 6 7 3 3 4 6 5 5 6 6 4 3 4 6 8 2 5 106 

T10 2 2 5 4 4 4 3 3 2 3 4 4 6 4 3 4 2 3 3 65 

T11 2 2 5 4 4 4 3 3 2 3 4 4 6 4 3 4 2 3 3 65 

T12 2 3 5 4 4 4 3 3 2 3 4 4 6 3 3 4 2 3 3 65 

T13 6 6 5 6 2 2 2 2 1 2 6 3 5 2 1 2 6 2 6 67 

T14 7 7 6 7 2 3 5 5 5 5 4 7 4 3 5 6 7 1 5 94 

T15 8 8 7 7 2 2 2 5 3 4 7 6 4 3 3 3 8 2 3 87 

T16 7 7 7 7 6 6 7 6 6 7 8 8 5 6 4 5 7 5 8 122 

T17 8 8 6 6 5 6 6 6 6 7 7 7 6 7 5 6 7 4 8 122 

T18 8 8 7 7 2 2 3 5 2 5 7 7 4 4 4 4 8 1 4 92 

T19 6 6 6 7 8 8 4 5 4 3 7 8 6 6 5 3 6 3 4 105 

T20 7 5 5 5 8 8 5 3 6 2 6 6 7 6 6 4 5 3 4 101 

T21 6 7 5 5 8 8 5 2 5 4 7 5 6 6 5 4 7 3 4 101 

T22 6 6 3 7 4 5 5 2 3 3 5 6 3 6 3 4 5 3 3 82 

T23 7 6 6 5 4 4 5 6 6 6 6 5 6 5 4 5 5 3 7 101 

T24 6 6 4 6 5 6 5 5 4 5 4 6 6 7 4 7 5 7 6 104 

T 
1-

57 

1-

56 

1-

45 

1-

50 
99 

1-

04 
97 

1-

11 
97 

1-

03 

1-

45 

1-

42 

1-

20 

1-

04 
92 

1-

12 

1-

50 
64 

1-

10 
2258 

 

The performance results of all frequency-domain feature set-based classification with 

various classifiers are reported in Tables 4.14-4.17. The performance results show that 

EL algorithm obtained 49.17% accuracy utilizing all frequency-domain features 
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obtained from Subject C (S3).  However, the higher accuracy value (55.00%) of all 

frequency-domain based classifications is achieved using ANOVA-selected 

frequency-domain features Subject E (S4) and same classifier. In subject-independent 

analysis, the best result is achieved using ANOVA-selected frequency-domain 

features and SVM classifier with accuracy of 30.45%.  

 

Table 4.14: Performance results (%) for finger movement classification using all 

features of frequency-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 29.17 30.83 35.83 35.83 34.17 34.17 34.67 23.33 24.10 

Discriminant Analysis 25.00 30.00 40.00 39.17 28.33 35.83 24.17 23.33 28.14 

Naive Bayes 25.00 29.17 35.83 37.50 25.00 36.67 25.00 27.50 23.91 

Support Vector 

Machine 
28.33 39.17 40.83 40.00 34.17 35.00 29.17 30.83 29.42 

k-Nearest Neighbours 26.67 30.83 38.33 36.67 30.83 32.50 29.17 28.33 24.62 

Ensemble Learning 30.83 38.33 49.17 41.67 40.00 41.67 36.67 28.33 28.21 

Neural Networks 28.33 34.17 43.33 44.17 33.33 37.50 29.17 30.00 27.69 

Kernel Approximation 25.00 20.00 37.50 40.00 24.17 25.83 22.50 33.33 25.71 

 

Table 4.15: Performance results (%) for finger movement classification using PCA-

selected features of frequency-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 30.00 16.17 31.67 30.83 28.33 21.67 23.33 27.50 23.91 

Discriminant Analysis 26.67 20.00 20.00 30.83 20.83 24.17 19.17 27.50 23.14 

Naive Bayes 28.33 19.17 30.83 30.00 30.83 25.00 23.33 22.50 22.69 

Support Vector 

Machine 
27.50 17.50 28.33 31.67 25.83 25.00 22.50 26.67 21.86 

k-Nearest Neighbours 28.33 19.17 29.17 32.50 28.33 24.17 21.67 30.00 24.49 

Ensemble Learning 26.67 20.00 30.00 30.83 23.33 23.33 20.83 27.50 24.68 

Neural Networks 34.17 17.50 29.17 36.67 29.17 22.50 24.17 29.17 25.83 

Kernel Approximation 34.17 16.67 16.67 16.67 24.17 16.67 22.50 25.00 21.86 
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Table 4.16: Performance results (%) for finger movement classification using 

ANOVA-selected features of frequency-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 29.17 32.50 33.33 33.33 36.67 25.83 34.17 30.00 25.90 

Discriminant Analysis 25.83 35.00 48.33 51.67 41.67 32.50 26.67 31.67 26.60 

Naive Bayes 28.33 30.83 40.83 47.50 31.67 27.50 25.83 24.17 25.00 

Support Vector 

Machine 
30.00 45.00 50.00 54.17 40.83 40.83 29.17 31.67 30.45 

k-Nearest Neighbours 34.17 34.17 37.50 45.00 35.83 32.50 29.17 29.17 26.09 

Ensemble Learning 31.67 45.83 51.67 55.00 47.50 37.50 33.33 29.17 28.85 

Neural Networks 29.17 40.00 50.00 51.67 38.33 38.33 30.00 35.83 27.63 

Kernel Approximation 26.67 28.33 37.50 40.83 27.50 23.33 25.83 26.67 27.05 

 

Table 4.17: Performance results (%) for finger movement classification using both 

ANOVA and PCA selected features of frequency-domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 27.50 20.00 28.33 37.50 26.67 25.00 20.83 25.00 24.74 

Discriminant Analysis 28.33 20.00 26.67 34.17 23.33 29.17 19.17 20.83 21.54 

Naive Bayes 29.17 19.17 32.50 37.50 30.00 22.50 18.33 20.83 24.04 

Support Vector 

Machine 
30.00 18.33 31.67 33.33 26.67 25.83 22.50 24.17 21.60 

k-Nearest Neighbours 30.00 17.50 31.67 35.00 27.50 22.50 22.50 25.00 24.10 

Ensemble Learning 28.33 22.50 25.83 35.00 28.33 29.17 20.83 23.33 23.33 

Neural Networks 33.33 17.50 30.00 37.50 30.00 24.17 25.00 30.00 25.12 

Kernel Approximation 22.50 16.67 16.67 16.67 24.17 16.67 16.67 18.33 23.08 

 

The selected statistically significant frequency-domain features distribution over 19 

EEG channels was investigated for subject-dependent and subject-independent finger 

movement classifications in Table 3.18 and Table 3.19. For subject-independet finger 

movement classification, it has been observed that in selecting statistically significant 

features, different features are focused on in different EEG frequency bands and the 
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same features are not indicated as statistically significant features in each frequency 

band. When the statistically significant feature distribution in the channels was 

examined, it was seen that balanced selections were made from all channels. The 

highest accuracy value of subject-independent classification was achieved using 

ANOVA-selected frequency domain features. As a result, using ANOVA, classifier 

performance was improved by selecting statistically significant features from all 

channels and features, rather than selecting features by focusing on specific channels 

and features. 

 

Table 4.18: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-independent finger movement classification in frequeny-

domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

F1                    14 

F2                    17 

F3                    18 

F4                    16 

F5                    10 

F6                    2 

F7                    14 

F8                    13 

F9                    3 

F10                    16 

F11                    12 

F12                    3 

F13                    3 

F14                    3 

F15                    9 

T 7 9 11 7 7 7 8 9 6 7 11 7 10 9 4 8 9 10 7 153 

 

In subject-dependet finger movement classification, statistically significant frequency-

domain features were indicated and selected intensively and balancedly from all 

channels and 15 different features. In fact, it has been observed that feature selection 

that does not depend on a specific channel or feature group, performed with ANOVA, 

improves classifier performance. The highest classification performances in subject-

dependent analyzes were obtained with ANOVA-selected frequency-domain features. 
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Table 4.19: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-dependent finger movement classification in frequeny-

domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

F1 8 8 8 7 3 3 4 5 4 3 5 8 4 2 5 4 8 3 6 98 

F2 8 8 8 7 3 3 3 5 4 2 4 7 3 3 5 4 8 4 5 94 

F3 6 4 5 4 2 2 4 3 3 2 4 4 2 3 5 3 3 4 4 68 

F4 6 7 3 5 3 2 4 5 3 3 2 6 3 5 5 4 4 7 6 81 

F5 6 6 2 5   2 3  1 1 5  4 2 1 3 5  46 

F6 2 2  2     1 1  1 1 1   1  1 13 

F7 3 3 1 2 6 5 4 4 2 6 3 4 4 4 4 5 2 4 5 71 

F8 5 5 2 1 5 5 4 4 2 3 2 5 3 4 5 4 2 2 3 66 

F9 1 2   1 3 2 1    1 1 2  2    16 

F10 5 4 6 5 4 4 3 3 3 4 6 6 7 7 2 4 4 3 3 83 

F11 6 5 3 4 3 3 3 3 5 5 5 3 5 6 2 3 3 3 3 73 

F12 4 4  1   2 3 1 2 2 3 1 2 1 3 2 3 2 36 

F13 5 5 5 1 2 2  4 2 4 4 5 6 5 2 3 3 1 1 60 

F14 5 5 4 2 2 3  4 2 3 4 5 6 5 1 3 6 2 2 64 

F15 3 4 3 4 4 4 4 4 3 3 3   4 2 3 6 4 5 63 

T 73 72 50 50 38 39 39 54 35 42 46 63 47 57 41 46 55 45 53 
9-

32 

 

Table 4.20: Performance results (%) for finger movement classification using all 

features of WT-based time-frequency domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 29.17 30.83 26.67 35.00 22.50 31.67 26.67 20.83 22.44 

Discriminant Analysis 17.50 19.17 31.67 30.83 15.83 30.83 17.50 23.33 22.12 

Naive Bayes 29.17 34.17 25.00 31.67 24.17 29.17 24.17 21.67 21.54 

Support Vector 

Machine 
32.50 37.50 30.83 29.17 25.83 30.83 26.67 30.00 22.00 

k-Nearest Neighbours 26.67 34.17 27.50 27.50 24.17 33.33 29.17 30.83 22.12 

Ensemble Learning 35.00 33.33 28.33 35.83 27.50 31.67 33.33 25.83 26.60 

Neural Networks 28.33 30.83 30.83 30.00 18.33 31.67 25.83 25.83 21.22 

Kernel Approximation 27.50 28.33 31.67 29.17 32.50 29.17 33.33 21.67 26.54 

 

The performance results of all WT-based time-frequency domain feature set-based 

classification with various classifiers are reported in Tables 4.20-4.23. The 

performance results reveal that SVM algorithm provided 34.17% accuracy utilizing all 
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time-frequency domain features obtained from Subject E (S4).  However, the higher 

accuracy value (36.67%) of all WT-based time-frequency domain-based 

classifications is achieved using ANOVA-selected time-frequency domain features 

Subject E (S4) and both SVM and EL classifiers. In subject-independent analysis, the 

best result is achieved using all time-frequency domain features and EL algorithm with 

accuracy of 26.60%. On the other hand, 21.28% accuracy was achieved using the 

ANOVA-selected time-frequency features by the SVM algorithm. 

 

Table 4.21: Performance results (%) for finger movement classification using PCA-

selected features of WT-based time-frequency domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 20.00 19.17 25.00 31.67 29.17 23.33 30.83 25.83 20.71 

Discriminant Analysis 16.67 20.83 20.83 28.33 15.00 17.50 16.67 18.33 17.00 

Naive Bayes 18.33 22.50 26.67 26.67 23.33 30.00 30.83 19.17 19.68 

Support Vector 

Machine 
18.33 25.00 20.83 34.17 17.50 21.67 25.83 22.50 17.44 

k-Nearest Neighbours 20.00 23.33 22.50 32.50 31.67 25.83 30.83 26.67 20.58 

Ensemble Learning 21.67 21.67 28.33 30.00 30.00 23.33 30.00 25.83 19.36 

Neural Networks 19.17 20.00 28.33 30.83 31.67 26.67 33.33 27.50 21.09 

Kernel Approximation 16.67 12.50 22.50 25.00 16.67 16.67 16.67 21.67 17.05 

 

Table 4.22: Performance results (%) for finger movement classification using 

ANOVA-selected features of WT-based time-frequency domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 20.83 24.17 27.50 33.33 24.17 22.50 29.17 25.00 19.68 

Discriminant Analysis 24.17 17.50 30.83 32.50 25.00 30.00 24.17 22.50 20.77 

Naive Bayes 26.67 30.00 31.67 33.33 24.17 31.67 25.00 25.00 19.81 

Support Vector 

Machine 
25.83 31.67 33.33 36.67 25.83 32.50 27.50 26.67 21.28 

k-Nearest Neighbours 24.17 31.67 33.33 32.50 25.00 30.83 28.33 29.17 20.71 

Ensemble Learning 25.83 30.83 30.83 36.67 25.83 31.67 29.17 24.17 20.77 

Neural Networks 22.50 24.17 26.67 31.67 21.67 25.83 23.33 27.50 20.71 

Kernel Approximation 18.33 23.33 26.67 23.33 16.67 31.67 33.33 22.50 19.55 
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Table 4.23: Performance results (%) for finger movement classification using both 

ANOVA and PCA selected features of WT-based time-frequency domain feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 26.67 25.83 28.33 31.67 22.50 28.33 25.00 26.67 19.42 

Discriminant Analysis 25.83 21.67 29.17 27.50 24.17 31.67 18.33 24.17 20.45 

Naive Bayes 28.33 25.83 25.00 29.17 20.00 25.83 25.83 22.50 21.47 

Support Vector 

Machine 
25.83 25.00 32.50 30.00 20.00 30.00 23.33 24.17 20.32 

k-Nearest Neighbours 29.17 25.83 30.00 32.50 22.50 30.00 29.17 21.67 20.06 

Ensemble Learning 25.83 20.83 29.17 29.17 24.17 31.67 26.67 24.17 20.58 

Neural Networks 26.67 25.00 30.83 30.83 25.83 29.17 30.83 24.17 20.21 

Kernel Approximation 16.67 19.17 20.83 25.00 16.67 28.33 16.67 16.67 19.36 

 

Table 4.24: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-independent finger movement classification in WT-based 

time-frequeny domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

W1                    0 

W2                    0 

W3                    9 

W4                    0 

W5                    0 

W6                    8 

W7                    0 

W8                    0 

W9                    6 

W10                    0 

W11                    0 

W12                    6 

W13                    0 

W14                    0 

W15                    1 

T 0 4 3 0 0 0 3 0 1 0 3 1 4 4 5 0 0 0 0 28 

 

The selected statistically significant WT-based time-frequency domain features 

distribution over 19 EEG channels was investigated for subject-dependent and subject-

independent finger movement classifications in Table 3.24 and Table 3.25. For 

subject-independet finger movement classification, it has been observed that in 
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selecting statistically significant features with ANOVA, entropy values are focused on 

in different frequency bands such as delta, theta, alpha, and beta EEG subbands. 

Among the 19 EEG channels, it was observed that no statistically significant features 

were selected from some channels. Although more statistically significant feature 

selections were made from certain features and channels in feature selection with 

ANOVA, it could not improve the classifier performance. The highest accuracy value 

of subject-independent classification was obtained using all WT-based time-frequency 

features.  

In subject-dependet finger movement classification, statistically significant WT-based 

time-frequency features were indicated and selected intensively and balancedly from 

19 EEG channels and 15 different features. In fact, it has been observed that feature 

selection that does not depend on a specific channel or feature group, performed with 

ANOVA, improves classifier performance. The highest classification performances in 

subject-dependent analyzes were obtained with ANOVA-selected WT-based time-

frequency features. 

 

Table 4.25: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-dependent finger movement classification in WT-based time-

frequeny domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

W1 3 1 1 1 2 2 1 2 3 3 1  4 1 1 2 3 1 3 35 

W2 3 1 1 1 2 2 1 2 3 3 1  4 1 1 2 3 1 3 35 

W3 1 5 2  2 1 3 1 1 1 2 1 6 3 2 1 3  2 37 

W4 3 1 1 1 2 2 1 2 3 3 1  4 1 1 2 3 1 3 35 

W5 3  1 1 2 2 1 2 3 2 1  4 1 1 2 3 1 3 33 

W6 3 4 1  3 2 3 2 3 3 2 2 6 4 3 1 4  1 47 

W7 3 2  1 2 2  2 3 3 1 1 4 2  2 3 1 2 34 

W8 3 2  1 2 2  2 3 3 1 1 3 2  2 3 1 2 33 

W9 1 5  2  2 1 4 2 3 1 2 3 4 2 2 4 2 2 42 

W10 3 1  1 2 1  2 2 2 1 1 4 2 1 3 3 1 2 32 

W11 3 1  1 2 1  2 2 2 1 1 4 2  3 3 1 2 31 

W12   2 1 1  1  1  1 2 2 2 2  3   18 

W13 3 1  2 1 1  2 1 1 2 1 3 2 1 2 3 2 2 30 

W14 3 1  2 1 1  2 1 1 1 1 2 2 1 2 3 2 2 28 

W15 2 1 1       1  1 1 1 2  1   11 

T 37 26 10 15 24 21 12 27 31 31 17 14 54 30 18 26 45 14 29 
4-
81 
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Table 4.26: Performance results (%) for finger movement classification using all 

features of non-linear feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 29.17 30.83 29.17 34.17 28.33 34.17 33.33 24.17 25.26 

Discriminant Analysis 25.00 33.33 41.67 39.17 30.83 35.00 26.67 34.17 27.24 

Naive Bayes 30.83 32.50 30.83 33.33 25.83 31.67 30.00 27.50 23.14 

Support Vector 

Machine 
32.50 39.17 40.00 43.33 37.50 35.83 30.00 35.83 30.90 

k-Nearest Neighbours 28.33 32.50 36.67 36.67 32.50 35.00 28.33 33.33 30.64 

Ensemble Learning 30.83 36.67 44.17 38.33 37.50 35.83 30.00 33.33 29.81 

Neural Networks 31.67 35.00 45.00 35.83 30.83 36.67 26.67 30.83 29.36 

Kernel Approximation 26.67 28.33 32.50 31.67 24.17 28.33 28.33 24.17 26.09 

 

Table 4.27: Performance results (%) for finger movement classification using PCA-

selected features of non-linear feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 26.67 23.33 28.33 36.67 25.00 31.67 21.67 21.67 23.85 

Discriminant Analysis 25.00 21.67 27.50 34.17 21.67 33.33 23.33 33.33 19.29 

Naive Bayes 29.17 22.50 25.83 36.67 28.33 28.33 25.00 27.50 22.63 

Support Vector 

Machine 
26.67 23.33 33.33 39.17 20.83 33.33 24.17 25.83 21.92 

k-Nearest Neighbours 28.33 26.67 29.17 35.83 26.67 36.67 27.50 26.67 24.81 

Ensemble Learning 30.83 24.17 26.67 36.67 28.33 32.50 24.17 28.33 22.69 

Neural Networks 28.33 26.67 28.33 35.00 25.00 32.50 26.67 26.67 25.06 

Kernel Approximation 20.00 21.67 26.67 39.17 22.50 26.67 18.33 18.33 22.56 

 

The performance results of all non-linear feature set-based classification with various 

classifiers are reported in Tables 4.26-4.29. The performance results reveal that NN 

algorithm achieved 45.00% accuracy utilizing all non-linear features obtained from 

Subject C (S3).  However, the higher accuracy value (50.00%) of all non-linear feature 

set-based classifications is achieved using ANOVA-selected non-linear features 

Subject E (S4) and SVM classifier. In subject-independent analysis, the best result is 

achieved using ANOVA-selected non-linear features and SVM algorithm with 
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accuracy of 31.79%. On the other hand, 30.90% accuracy is achieved using all non-

linear features by the SVM algorithm. 

 

Table 4.28: Performance results (%) for finger movement classification using 

ANOVA-selected features of non-linear feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 34.17 25.83 29.17 41.67 23.33 30.83 33.33 28.33 24.42 

Discriminant Analysis 30.00 37.50 45.00 46.67 32.50 33.33 23.33 30.00 27.05 

Naive Bayes 28.33 33.33 30.83 42.50 29.17 35.00 33.33 28.33 21.73 

Support Vector 

Machine 
34.17 38.33 43.33 50.00 35.00 34.17 29.17 33.33 31.79 

k-Nearest Neighbours 31.67 35.83 33.33 43.33 30.83 32.50 30.83 28.33 28.27 

Ensemble Learning 30.00 36.67 39.17 45.83 40.83 35.83 30.83 30.83 27.69 

Neural Networks 30.83 37.50 40.00 42.50 31.67 38.33 30.83 35.00 29.62 

Kernel Approximation 24.17 30.00 33.33 38.33 17.50 28.33 29.17 27.50 26.54 

 

Table 4.29: Performance results (%) for finger movement classification using both 

ANOVA and PCA selected features of non-linear feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 28.33 20.83 35.00 34.17 25.83 21.67 24.17 20.83 24.04 

Discriminant Analysis 30.00 21.67 30.83 34.17 20.83 27.50 19.17 30.83 20.58 

Naive Bayes 27.50 20.83 35.83 36.67 26.67 30.83 22.50 29.17 21.73 

Support Vector 

Machine 
30.83 22.50 38.33 39.17 20.83 25.83 23.33 30.00 21.79 

k-Nearest Neighbours 29.17 27.50 38.33 36.67 26.67 29.17 31.67 25.83 24.68 

Ensemble Learning 31.67 24.17 35.00 38.33 23.33 28.33 30.83 30.83 24.04 

Neural Networks 31.67 25.83 40.00 35.00 27.50 24.17 32.50 29.17 23.72 

Kernel Approximation 24.17 25.00 35.83 38.33 16.67 25.83 23.33 13.33 21.35 

 

The selected statistically significant nonlinear domain features distribution over 19 

EEG channels was examined for subject-dependent and subject-independent finger 
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movement classifications in Table 3.30 and Table 3.31. For subject-independet finger 

movement classification, it has been observed that in selecting statistically significant 

features with ANOVA, SD2 and SD1/SD2 values where lag=1 were mostly selected as 

statistically significant features in most of the channels. Among 19 EEG channels, the 

distribution of statistically significant non-linear feature is balanced. With anova, 

balanced statistically significant feature distribution on these two non-linear features 

and in all channels increased the classifier performance. The highest accuracy value of 

subject-independent classification was obtained using ANOVA-selected non-linear 

features. 

 

Table 4.30: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-independent finger movement classification in non-linear 

domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

P1                    1 

P2                    17 

P3                    4 

P4                    16 

T 3 3 2 3 0 0 2 2 2 2 2 2 2 1 3 2 3 2 2 38 

 

Table 4.31: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-dependent finger movement classification in non-linear 

domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

P1 3 3 5 3 3 3 2 4 3 4 4 3 6 4 3 4 3 2 4 66 

P2 8 8 7 8 1 1 3 5 4 6 6 7 4 4 4 5 8 2 5 96 

P3 6 6 5 5 1 1 3 3 2 4 6 4 4 3 2 2 6 3 4 70 

P4 7 7 6 6 6 6 8 7 6 7 8 8 6 7 5 6 7 6 8 127 

T 24 24 23 22 11 11 16 19 15 21 24 22 20 18 14 17 24 13 21 359 

 

In subject-dependet finger movement classification, statistically significant non-linear 

features were indicated and selected intensively and balancedly from 19 EEG channels 
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and 4 different features. The feature selection that does not depend on a specific 

channel or feature group, performed with ANOVA, improves classifier performance. 

The highest classification performances in subject-dependent analyzes were obtained 

with ANOVA-selected non-linear features. 

 

Table 4.32: Performance results (%) for finger movement classification using all 

features of combined (TD+FD+WT) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 30.00 36.67 35.00 43.33 32.50 33.33 29.17 34.17 31.20 

Discriminant Analysis 26.67 28.33 44.17 42.50 27.50 32.50 24.17 24.17 32.40 

Naive Bayes 28.33 33.33 38.33 42.50 29.17 29.17 20.83 32.50 26.20 

Support Vector 

Machine 
33.33 50.00 57.50 51.67 39.17 45.00 28.33 42.50 37.00 

k-Nearest Neighbours 36.67 38.33 49.17 40.83 34.17 39.17 31.67 34.17 32.30 

Ensemble Learning 31.67 41.67 44.17 53.33 33.33 43.33 28.33 35.83 34.70 

Neural Networks 32.50 44.17 53.33 55.00 39.17 50.00 32.50 39.17 34.70 

Kernel Approximation 30.00 24.17 28.33 43.33 28.33 33.33 25.83 25.00 25.40 

 

Table 4.33: Performance results (%) for finger movement classification using PCA-

selected features of combined (TD+FD+WT) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 25.00 19.17 30.83 35.83 26.67 30.83 20.83 24.17 22.80 

Discriminant Analysis 30.00 23.33 27.50 35.00 25.00 29.17 19.17 21.67 20.90 

Naive Bayes 23.33 23.33 26.67 35.00 20.83 27.50 25.00 23.33 22.10 

Support Vector 

Machine 
27.50 19.17 31.67 33.33 25.00 28.33 23.33 21.67 19.60 

k-Nearest Neighbours 25.83 19.17 28.33 37.50 28.33 26.67 27.50 26.67 24.00 

Ensemble Learning 30.00 21.67 27.50 36.67 27.50 29.17 20.00 24.17 22.80 

Neural Networks 25.00 13.33 28.33 30.83 27.50 27.50 20.83 23.33 22.80 

Kernel Approximation 22.50 16.67 16.67 16.67 20.83 25.83 24.17 21.67 22.10 
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Table 4.34: Performance results (%) for finger movement classification using 

ANOVA-selected features of combined (TD+FD+WT) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 29.17 35.00 35.00 44.17 28.33 33.33 25.00 30.00 30.30 

Discriminant Analysis 29.17 18.33 25.83 38.33 32.50 35.83 15.00 31.67 34.20 

Naive Bayes 27.50 34.17 36.67 40.83 31.67 31.67 30.00 30.83 27.10 

Support Vector 

Machine 
35.83 55.83 55.00 50.00 39.17 48.33 33.33 37.50 38.70 

k-Nearest Neighbours 29.17 45.00 45.00 41.67 35.83 41.67 33.33 31.67 32.90 

Ensemble Learning 31.67 53.33 51.67 50.83 42.50 46.67 29.17 45.83 35.50 

Neural Networks 37.50 54.17 55.83 54.17 43.33 47.50 30.83 35.00 36.10 

Kernel Approximation 26.67 29.17 26.67 31.67 26.67 25.83 20.00 20.83 26.10 

 

Table 4.35: Performance results (%) for finger movement classification using both 

ANOVA and PCA selected features of combined (TD+FD+WT) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 27.50 15.83 26.67 34.17 20.83 29.17 25.00 21.67 23.40 

Discriminant Analysis 28.33 18.33 29.17 36.67 20.00 35.00 24.17 20.83 19.80 

Naive Bayes 28.33 18.33 27.50 36.67 22.50 33.33 20.00 20.83 21.40 

Support Vector 

Machine 
27.50 22.50 27.50 34.17 25.83 28.33 22.50 20.00 20.90 

k-Nearest Neighbours 31.67 16.67 28.33 35.00 25.00 30.00 26.67 25.83 21.80 

Ensemble Learning 28.33 18.33 29.17 35.83 20.83 35.83 25.00 25.83 23.40 

Neural Networks 29.17 19.17 25.83 36.67 25.00 37.50 21.67 20.00 24.50 

Kernel Approximation 18.33 16.67 16.67 16.67 23.33 15.00 20.00 16.67 22.50 

 

In order to analyze the effect of different feature sets on finger movements 

classification, and compare these approaches, we investigated the combination feature 

set including time-domain, frequency-domain, and WT-based time-frequency 

features. The performances of classification performed using this combination set are 
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given in Tables 4.32-4.35. The higher accuracy value (57.50%) of all combination set-

based classifications is achieved all features of the combination set obtained from 

Subject C (S3) and SVM classifier. However, ANOVA-selected features of Subject B 

(S2) with SVM algorithm and Subject C (S3) with NN algorithm yielded accuracy of 

55.83%. In subject-independent analysis, the best result is achieved using ANOVA-

selected the combination set features and SVM algorithm with accuracy of 38.70%. 

On the other hand, 37.00% accuracy is achieved using all the combination set features 

by the SVM algorithm. The results of all classifications performed using the 

combination set-based approaches are provided in Table 4.32-4.35. 

 

Table 4.36: Performance results (%) for finger movement classification using all 

features of combined (TD+FD+WT+P) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 28.33 33.33 35.00 36.67 36.67 37.50 30.83 35.83 30.30 

Discriminant Analysis 25.83 31.67 43.33 38.33 20.00 37.50 24.17 24.17 32.50 

Naive Bayes 26.67 34.17 36.67 35.83 27.50 35.00 31.67 33.33 27.10 

Support Vector 

Machine 
30.00 48.33 55.00 50.00 38.33 42.50 26.67 41.67 37.60 

k-Nearest Neighbours 29.17 43.33 47.50 45.00 30.83 39.17 29.17 32.50 32.10 

Ensemble Learning 27.50 40.83 41.67 55.00 36.67 42.50 28.33 40.83 36.20 

Neural Networks 31.67 42.50 55.83 55.83 35.83 44.17 27.50 40.83 34.40 

Kernel Approximation 28.33 29.17 28.33 36.67 30.00 23.33 20.83 25.83 26.00 

 

We investigated the effect of another combination, which is denoted as 

TD+FD+WT+P, including our previous combination set features with non-linear 

features. The performances of classification performed using this combination set are 

given in Tables 4.36-4.39. The higher accuracy value (59.17%) of all combination set-

based classifications is achieved ANOVA-selected features of the combination set 

obtained from Subject E (S4) and SVM classifier. However, all features of 

combination set of Subject C (S3) and Subject E (S4) with NN algorithm yielded 

accuracy of 55.83%. In subject-independent analysis, the best result is achieved using  
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Table 4.37: Performance results (%) for finger movement classification using PCA-

selected features of combined (TD+FD+WT+P) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 28.33 17.50 30.83 37.50 26.67 28.33 26.67 16.67 22.90 

Discriminant Analysis 28.33 20.83 27.50 34.17 25.00 24.17 18.33 20.00 19.60 

Naive Bayes 30.83 23.33 26.67 34.17 20.83 25.00 25.83 21.67 21.50 

Support Vector 

Machine 
26.67 20.00 31.67 33.33 24.17 28.33 24.17 20.00 19.60 

k-Nearest Neighbours 31.67 23.33 28.33 38.33 28.33 25.00 25.00 25.00 24.30 

Ensemble Learning 30.83 20.83 27.50 35.00 27.50 24.17 30.00 21.67 23.30 

Neural Networks 30.83 22.50 27.50 41.67 26.67 25.83 22.50 25.00 24.70 

Kernel Approximation 28.33 16.67 16.67 16.67 21.67 16.67 19.17 21.67 22.60 

 

Table 4.38: Performance results (%) for finger movement classification using 

ANOVA-selected features of combined (TD+FD+WT+P) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 30.00 41.67 36.67 40.00 30.83 36.67 30.83 35.00 30.40 

Discriminant Analysis 25.00 15.83 35.83 35.00 36.67 24.17 21.67 31.67 34.40 

Naive Bayes 28.33 39.17 35.00 43.33 31.67 31.67 31.67 35.00 26.90 

Support Vector 

Machine 
36.67 46.67 56.67 59.17 41.67 51.67 32.50 37.50 39.30 

k-Nearest Neighbours 31.67 41.67 43.33 45.00 29.17 45.83 31.67 34.17 33.30 

Ensemble Learning N/A 45.00 50.00 52.50 42.50 44.17 34.17 40.83 35.80 

Neural Networks N/A 46.67 55.83 57.50 45.00 49.17 30.00 40.83 37.20 

Kernel Approximation N/A 25.00 24.17 38.33 23.33 27.50 22.50 20.83 26.00 

 

ANOVA-selected the combination set features and SVM algorithm with accuracy of 

39.30%. On the other hand, 37.60% accuracy is achieved using all features of the 

combination set by the SVM algorithm. The results of all classifications performed 

using the combination set-based approaches are provided in Table 4.36-4.39. The 
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results of two different feature sets reveal that the success of finger movement 

classification improved with including of non-linear features especially in ANOVA-

selected features-based approaches. 

 

Table 4.39: Performance results (%) for finger movement classification using both 

ANOVA and PCA selected features of combined (TD+FD+WT+P) feature set. 

Models S1 (A) S2 (B) S3 (C) S4 (E) S5 (F) S6 (G) S7 (H) S8 (I) 
All 

subjects 

Decision Tree 25.00 14.17 27.50 43.33 20.83 23.33 25.00 17.50 22.60 

Discriminant Analysis 30.83 18.33 27.50 31.67 20.00 28.33 24.17 18.33 19.70 

Naive Bayes 26.67 18.33 29.17 34.17 22.50 21.67 17.50 20.00 21.80 

Support Vector 

Machine 
28.33 18.33 30.00 35.00 25.83 25.83 22.50 21.67 19.90 

k-Nearest Neighbours 25.83 17.50 30.00 40.83 25.00 24.17 25.83 23.33 22.80 

Ensemble Learning 31.67 18.33 27.50 40.00 20.83 28.33 21.67 22.50 23.50 

Neural Networks 29.17 17.50 29.17 38.33 24.17 25.83 24.17 20.00 23.40 

Kernel Approximation 17.50 16.67 16.67 16.67 20.00 23.33 16.67 16.67 22.80 

 

Table 4.40: Finger movement classification performance (%) of ITD based feature 

sets using the Decision Tree classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8   

(I) 

All 

subjects 

PRC1 29.17 27.50 35.00 32.50 29.17 25.83 31.67 27.50 25.83 

PRC2 26.67 28.33 26.67 30.00 26.67 30.83 30.00 32.50 20.63 

PRC3 24.17 28.33 26.67 34.17 29.17 20.83 28.33 27.50 21.77 

PRC1-PRC2 26.67 26.67 26.67 37.50 27.50 29.17 32.50 30.00 23.13 

PRC1-PRC3 26.67 30.83 30.00 34.17 27.50 29.17 29.17 30.00 24.79 

PRC2-PRC3 35.83 26.67 26.67 35.83 25.00 25.83 23.33 24.17 22.71 

PRC1 to PRC3 27.50 30.00 28.33 36.67 26.67 27.50 36.67 22.50 23.54 

ANOVA+PRC1-to-PRC3 30.83 30.00 35.83 44.17 26.67 27.50 34.17 27.50 24.06 

EEG Features 30.00 26.67 32.50 35.83 25.00 30.00 25.83 27.50 25.31 

ANOVA+EEG Features 23.33 30.83 35.00 38.33 21.67 30.00 25.00 30.83 23.33 

 

Classification results of ITD-based approaches are given in Tables 4.40-4.47. The 

effects of selected three PRCs (PRC1, PRC2, and PRC3) and their binary combinations 
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(PRC1-PRC2, PRC1-PRC3, and PRC2-PRC3) and triple combination (PRC1-to-3) are 

investigated with 8 different classifiers. Additionally, the effect of ANOVA test-based 

feature selection is investigated with EEG-based feature set and PRC1-to-3 feature set. 

In these tables, PRC1, PRC2, or PRC3; indicate that the features for classification are 

evaluated by utilizing the related PRC. The features are calculated using all three PRCs 

are indicated as PRC1-to-3. The binary combination features are calculated utilizing; 

PRC1 and PRC2 is denoted as PRC1-PRC2, PRC1 and PRC3 is denoted as PRC1-

PRC3, and PRC2 and PRC3 is denoted as PRC2-PRC3, respectively.  

 

Table 4.41: Finger movement classification performance (%) of ITD based feature 

sets using the Linear Discriminant Analysis classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8   

(I) 

All 

subjects 

PRC1 25.83 28.33 33.33 27.50 24.17 30.83 27.50 26.67 26.25 

PRC2 24.17 28.33 30.00 40.00 24.17 30.83 27.50 27.50 24.79 

PRC3 27.50 25.00 32.50 27.50 31.67 31.67 21.67 25.83 29.17 

PRC1-PRC2 31.67 25.83 35.00 34.17 27.50 26.67 21.67 22.50 29.38 

PRC1-PRC3 31.67 26.67 38.33 43.33 .35.83 30.83 25.00 29.17 29.90 

PRC2-PRC3 32.50 25.83 28.33 27.50 25.83 25.83 32.50 25.83 28.85 

PRC1 to PRC3 31.67 25.00 26.67 33.33 29.17 25.00 20.83 25.00 30.83 

ANOVA+PRC1-to- PRC3 38.33 40.00 37.50 47.50 35.83 28.33 28.33 30.00 33.54 

EEG Features N/A N/A N/A N/A N/A N/A N/A N/A N/A 

ANOVA+EEG Features N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 

Table 4.40 reports the classification results of ITD-based approaches using DT 

classifier. The best classification result is achieved using ANOVA selected features of 

PRC1-to-3 set obtained from Subject E (S4) with accuracy of 44.17%. The highest 

accuracy values are calculated using ITD-based approaches in all subjects. However, 

in Subject B (S2), the highest accuracy value of 30.83% is achieved in feature sets of 

PRC1-PRC2 and ANOVA-selected EEG features. Table 4.41 reports the classification 

results of ITD-based approaches using LDA classifier. The best classification result is 

achieved using ANOVA selected features of PRC1-to-3 set obtained from Subject E 

(S4) with accuracy of 47.50%. We aimed to investigate the effect of ITD-based 
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approaches, but we could not effective comparison with EEG-based approaches. 

Since, the feature sets of EEG-based approaches are not applicable to LDA classifier. 

Table 4.42 reports the classification results of ITD-based approaches using NB 

classifier. The best classification result is achieved using EEG features obtained from 

Subject E (S4) with accuracy of 40.83%. We aimed to investigate the effect of ITD-

based approaches and EEG-based approaches the results reveal that ITD-based 

approaches provided the highest classification performances in all subjects except 

Subject A (S1), Subject E (S4), and subject-independent condition. However, in 

Subject C (S3), the highest accuracy value of 34.17% is achieved in feature sets of 

ANOVA-selected PRC1-to-3 and ANOVA-selected EEG features. 

 

Table 4.42: Finger movement classification performance (%) of ITD based feature 

sets using the Naive Bayes classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8   

(I) 

All 

subjects 

PRC1 22.50 30.83 32.50 35.00 25.00 27.50 30.00 31.67 20.94 

PRC2 27.50 25.00 29.17 34.17 24.17 24.17 24.17 25.83 19.38 

PRC3 26.67 22.50 25.00 32..50 30.83 25.00 23.33 32.50 20.31 

PRC1-PRC2 24.17 26.67 29.17 30.83 27.50 22.50 30.83 25.00 22.19 

PRC1-PRC3 26.67 26.67 33.33 37.50 38.33 30.00 29.17 23.33 20.94 

PRC2-PRC3 29.17 25.00 30.83 30.00 31.67 25.00 21.67 27.50 21.15 

PRC1 to PRC3 23.33 30.00 30.83 35.83 23.33 27.50 23.33 27.50 23.96 

ANOVA+PRC1-to -PRC3 30.83 35.00 34.17 39.17 31.67 35.83 30.83 30.83 22.81 

EEG Features 31.67 30.83 28.33 40.83 26.67 22.50 20.83 21.67 25.42 

ANOVA+EEG Features 32.50 25.83 34.17 40.00 27.50 29.17 19.17 21.67 23.23 

 

Table 4.42 reports the classification results of ITD-based approaches using NB 

classifier. The best classification result is achieved using EEG features obtained from 

Subject E (S4) with accuracy of 40.83%. We aimed to investigate the effect of ITD-

based approaches and EEG-based approaches the results reveal that ITD-based 

approaches provided the highest classification performances in all subjects except 

Subject A (S1), Subject E (S4), and subject-independent condition. However, in 

Subject C (S3), the highest accuracy value of 34.17% is achieved in feature sets of 

ANOVA-selected PRC1-to-3 and ANOVA-selected EEG features. 
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Table 4.43: Finger movement classification performance (%) of ITD based feature 

sets using the Support Vector Machine classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8   

(I) 

All 

subjects 

PRC1 29.17 35.83 40.83 40.00 30.00 38.33 40.00 32.50 30.00 

PRC2 22.50 25.83 34.17 35.00 30.00 35.83 31.67 24.17 25.73 

PRC3 31.67 29.17 30.00 40.00 33.33 29.17 28.33 26.67 27.08 

PRC1-PRC2 31.67 31.67 44.17 40.00 24.17 33.33 39.17 27.50 30.52 

PRC1-PRC3 35.83 38.33 41.67 47.50 38.33 35.00 31.67 29.17 32.19 

PRC2-PRC3 29.17 32.50 39.17 37.50 38.33 30.83 35.00 32.50 28.13 

PRC1 to PRC3 27.50 37.50 45.00 49.17 33.33 38.33 35.00 35.83 30.63 

ANOVA+PRC1 –to- 

PRC3 
40.00 45.00 49.17 49.17 35.83 36.67 39.17 36.67 34.48 

EEG Features 30.00 41.67 38.33 45.00 32.50 33.33 29.17 29.17 31.46 

ANOVA+EEG Features 27.50 41.67 43.33 47.50 34.17 33.33 30.00 29.17 33.65 

 

Table 4.43 represents the classification results of ITD-based approaches using SVM 

classifier. The best classification result is achieved using ANOVA-selected PRC1-to-

3 features obtained from Subject E (S4) and Subject C (S3) with accuracy of 49.17%. 

Additionally, the same classification result is achieved using PRC1-to-3 features 

obtained from Subject E (S4). The experimental results reveal that ITD-based 

approaches provided the highest classification performances in all subjects. 

 

Table 4.44: Finger movement classification performance (%) of ITD based feature 

sets using the k-Nearest Neighbours classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8  

(I) 

All 

subjects 

PRC1 24.17 38.33 35.00 35.83 29.17 34.17 32.50 37.50 29.90 

PRC2 23.33 25.00 26.67 33.33 31.67 30.00 28.33 23.33 23.02 

PRC3 33.33 25.00 34.17 38.33 28.33 30.00 25.83 30.00 26.88 

PRC1-PRC2 32.50 30.83 34.17 36.67 26.67 32.50 30.83 30.83 28.54 

PRC1-PRC3 31.67 29.17 39.17 46.67 32.50 34.17 29.17 30.83 29.48 

PRC2-PRC3 32.50 26.67 32.50 35.83 32.50 35.00 28.33 26.67 26.25 

PRC1 to PRC3 28.33 30.83 35.00 44.17 25.83 31.67 30.83 32.50 26.88 

ANOVA+PRC1-to- PRC3 35.83 39.17 43.33 45.83 35.00 34.17 36.67 35.83 30.00 

EEG Features 30.00 33.33 33.33 43.33 26.67 29.17 31.67 30.00 27.81 

ANOVA+EEG Features 30.00 33.33 40.83 40.00 31.67 31.67 29.17 32.50 28.64 
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Table 4.44 represents the classification results of ITD-based approaches using k-NN 

classifier. The best classification result is achieved using PRC1-PRC3 features 

obtained from Subject E (S4) with accuracy of 46.17%. The experimental results of k-

NN classifications reveal that ITD-based approaches provided the highest 

classification performances in all subjects. 

Table 4.45 represents the classification results of ITD-based approaches using EL 

classifier. The best classification result is achieved using ANOVA-selected PRC1-to-

3 features obtained from Subject E (S4) with accuracy of 55.00%. The experimental 

results of EL classifications show that ITD-based approaches provided the highest 

classification performances in all subjects. 

 

Table 4.45: Finger movement classification performance (%) of ITD based feature 

sets using the Ensemble Learning classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8  

(I) 

All 

subjects 

PRC1 29.17 32.50 41.67 35.83 29.17 35.00 37.50 34.17 29.69 

PRC2 30.83 30.00 36.67 38.33 28.33 31.67 29.17 30.00 25.10 

PRC3 29.17 32.50 34.17 41.67 27.50 32.50 27.50 29.17 26.46 

PRC1-PRC2 32.50 34.17 40.00 41.67 33.33 29.17 33.33 32.50 28.85 

PRC1-PRC3 35.83 36.67 40.00 43.33 34.17 34.17 38.33 35.83 31.56 

PRC2-PRC3 36.67 29.17 37.50 45.00 31.67 30.00 28.33 30.83 29.06 

PRC1 to PRC3 34.17 35.00 40.83 47.50 32.50 30.83 36.67 31.67 32.08 

ANOVA+PRC1-to -PRC3 35.83 40.83 50.83 55.00 37.50 36.70 41.67 39.17 32.60 

EEG Features 30.83 40.00 43.33 39.17 35.83 36.67 26.67 31.67 29.06 

ANOVA+EEG Features 29.17 38.33 45.83 39.17 35.00 35.00 27.50 35.00 27.60 

 

Table 4.46 summarizes the classification results of ITD-based approaches using NN 

classifier. The best classification result is achieved using ANOVA-selected PRC1-to-

3 features obtained from Subject C (S3) with accuracy of 53.33%. We aimed to 

investigate the effect of ITD-based approaches and EEG-based approaches the results 

reveal that ITD-based approaches provided the highest classification performances in 
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all subjects except Subject I (S8). However, in Subject G (S6), the highest accuracy 

value of 38.33% is achieved in feature sets of both ANOVA-selected PRC1-to-3 and 

ANOVA-selected EEG features. 

 

Table 4.46: Finger movement classification performance (%) of ITD based feature 

sets using the Neural Networks classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8  

(I) 

All 

subjects 

PRC1 
33.33 29.17 30.83 39.17 23.33 33.33 31.67 29.17 26.25 

PRC2 
25.00 25.00 31.67 31.67 25.83 25.83 25.83 30.00 24.48 

PRC3 
32.50 20.83 35.83 35.00 30.00 25.83 32.50 28.33 25.94 

PRC1-PRC2 
27.50 30.00 43.33 42.50 33.33 30.83 27.50 26.67 28.75 

PRC1-PRC3 
34.17 32.50 40.83 42.50 35.00 30.00 31.67 31.67 30.94 

PRC2-PRC3 
29.17 29.17 37.50 35.00 34.17 35.83 31.67 30.83 28.96 

PRC1 to PRC3 30.00 33.33 45.83 48.33 37.50 32.50 30.00 34.17 29.27 

ANOVA+PRC1 to PRC3 34.17 42.50 53.33 45.83 37.50 38.33 35.00 31.67 31.88 

EEG Features 28.33 35.83 42.50 39.17 35.00 29.17 26.67 32.50 28.96 

ANOVA+EEG Features 25.83 35.00 41.67 42.50 36.67 38.33 23.33 35.00 30.42 

 

Table 4.47: Finger movement classification performance (%) of ITD based feature 

sets using the Kernel Approximation classifier. 

Components 
S1 

(A) 

S2 

(B) 

S3 

(C) 

S4 

(E) 

S5  

(F) 

S6 

(G) 

S7 

(H) 

S8  

(I) 

All 

subjects 

PRC1 
20.00 25.00 25.83 24.17 26.67 25.83 30.83 20.83 23.33 

PRC2 
26.67 25.00 23.33 30.00 23.33 17.50 23.33 24.17 19.27 

PRC3 
27.50 20.00 27.50 35.83 21.67 22.50 21.67 22.50 21.88 

PRC1-PRC2 
22.50 21.67 20.83 22.50 19.17 19.17 26.67 25.00 19.58 

PRC1-PRC3 
25.83 24.17 27.50 39.17 27.50 22.50 29.17 20.00 24.48 

PRC2-PRC3 
25.00 20.83 27.50 33.33 20.00 23.33 21.67 19.17 24.27 

PRC1 to PRC3 24.17 24.17 27.50 40.83 15.00 25.83 25.00 25.83 23.33 

ANOVA+PRC1 –to- 

PRC3 

21.67 18.33 26.67 31.67 19.17 22.50 22.50 25.83 21.88 

EEG Features 25.83 25.00 38.33 32.50 25.00 30.00 27.50 29.17 24.17 

ANOVA+EEG Features 29.17 22.50 34.17 36.67 27.50 26.67 20.00 26.67 25.31 
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Table 4.47 summarizes the classification results of ITD-based approaches using KA 

classifier. The best classification result is achieved using PRC1-to-3 features obtained 

from Subject E (S4) with accuracy of 40.83%. We aimed to investigate the effect of 

ITD-based approaches and EEG-based approaches, the results reveal that EEG-based 

approaches provided the highest classification performances in all subjects except 

Subject E (S4) and Subject H (S7). On the hand, the same highest accuracy values 

(25.00% and 27.50%) are calculated using both ITD-based and EEG-based approaches 

for Subject B (S2) and Subject F (S5). 

 

 

Figure 4.3: The comparision of the effects of PRC1-to-3 and ANOVA-selected 

PRC1-to-3 based on the EL classification. 

 

ITD-based approaches revealed that the best classification results are achieved using 

ITD-based features (especially in ANOVA-selected PRC1-to-3) features in most of 

the classifiers except NB and KA classifiers. Therefore, our presented different 

combinations of PRCs are improved the classifiers performance. Additionaly, when 

we compared the effectiveness of PRC1-to-3 and ANOVA-selected PRC1-to-3, we 

observed that ANOVA-selected features obtained better results and improved 

classifier performances. The highest accuracy value of ITD-based approaches is 
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achieved using ANOVA-selected PRC1-to-3 features and EL classifier as shown in 

Figure 4.3. On the other hand, the highest classification performances are calculated 

using ITD-based features obtained from Subject E (S4). Therefore, the experimental 

noted that ITD is an effective time-frequency representation model for classification 

of finger movement and provides better results than our first time-frequency 

representation model (WT). It can be used as an effective feature extraction method to 

analyze time-frequency domain of EEG signals in different EEG-based analysis. 

The selected statistically significant ITD-based time-frequency distribution was 

examined in 19 EEG channels. The list of ITD-based time-frequency features with 

their abbreviations is available in Table 4.48. Channel-based ANOVA-selected 

statistically significant ITD-based time-frequency domain feature distribution for 

subject-dependent finger movement classification is given in Table 4.49. Among 30 

different ITD-based features, some features such as sample entropy, Hjorth parameters 

(Mobility), and Hjorth parameters (Complexity) for PRC1, PRC2, and PRC3 were 

mostly indicated and selected as statistically significant features on almost all channels 

and 8 subjects. When the effect of the channels on the selection of statistically 

significant features was examined, it was observed that there was a balanced 

distribution and a large number of significant features were selected in many subjects 

from all channels. As a result, feature selection from all channels and certain features 

with ANOVA improved the classification performance in all classifiers except NB and 

KA. 

 

Table 4.48: ITD-based time-frequency domain features. 

ITD-based time-frequency domain features 
I1 Power for PRC1 I 16 Hjorth parameters (Complexity) for PRC2 
I 2 Mean for PRC1 I 17 First higher order moment for PRC2 
I 3 Sample entropy for PRC1 I 18 Second higher order moment for PRC2 
I 4 Hjorth parameters (Activity) for PRC1 I 19 Third higher order moment for PRC2 
I 5 Hjorth parameters (Mobility) for PRC1 I 20 Fourth higher order moment for PRC2 
I 6 Hjorth parameters (Complexity) for PRC1 I 21 Power for PRC3 
I 7 First higher order moment for PRC1 I 22 Mean for PRC3 
I 8 Second higher order moment for PRC1 I 23 Sample entropy for PRC3 
I 9 Third higher order moment for PRC1 I 24 Hjorth parameters (Activity) for PRC3 
I 10 Fourth higher order moment for PRC1 I 25 Hjorth parameters (Mobility) for PRC3 
I 11 Power for PRC2 I 26 Hjorth parameters (Complexity) for PRC3 
I 12 Mean for PRC2 I 27 First higher order moment for PRC3 
I 13 Sample entropy for PRC2 I 28 Second higher order moment for PRC3 
I 14 Hjorth parameters (Activity) for PRC2 I 29 Third higher order moment for PRC3 
I 15 Hjorth parameters (Mobility) for PRC2 I 30 Fourth higher order moment for PRC3 
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Table 4.49: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-dependent finger movement classification in ITD-based time-

frequency domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

I1 3 2  1 2 2  2 3 3 2 1 4 2 1 2 3 2 3 38 

I2 2 2 1 2  2 1 2 4 3 4 3 4 3 1 3 3 1 1 42 

I3 5 6 3 3 2 4 2 5 4 5 6 6 5 5 3 4 5 4 4 81 

I4 3 2  1 2 2  2 3 3 2 1 4 1 2 2 3 2 3 38 

I5 6 7 6 6 6 7 6 6 5 5 4 7 7 7 6 8 6 6 5 116 

I6 7 6 6 6 6 5 6 6 4 6 7 6 5 4 4 7 4 6 5 106 

I7  1 1 1 1 1 1 1  1 1 3 3 2   1 2 1 21 

I8  1 1 1 1 1 1 1  1 1 3 3 2   1 2 1 21 

I9  1 1 1 1 1 1 1  1 1 3 3 2   1 2 1 21 

I10  1 1 1 1 1 1 1  1 1 3 3 2   1 2 1 21 

I11 2 4 3 4 1 1 2 3 3 4 3 4 6 4 2 3 4 2 1 56 

I12 3 2   1 1 1  1    1 1 1 1    13 

I13 5 5 6 6 5 5 5 5 6 4 7 6 4 8 5 3 7 5 4 101 

I14 2 4 3 4 1 1 2 3 3 4 3 4 6 4 2 4 4 2 1 57 

I15 6 5 6 5 5 5 5 6 7 5 6 6 7 8 4 5 6 7 7 111 

I16 5 3 6 6 5 5 5 5 5 5 6 7 4 8 5 4 4 6 6 100 

I17 1 3 2  1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44 

I18 1 3 2  1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44 

I19 1 3 2  1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44 

I20 1 3 2  1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44 

I21 7 7 2 5   2 4 2 3 1 3 4 3 2 4 6 2 2 59 

I22 6 5 1 2   1  2 1 1 4   1 1 3  1 29 

I23 7 6 5 4 4 5 3 5 4 3 6 7 6 4 5 4 6 6 3 93 

I24 7 7 1 5   2 5 2 2  4 3 3 2 4 5 2 2 56 

I25 7 6 5 4 4 4 3 7 5 3 5 7 2 5 6 4 6 7 3 93 

I26 7 7 4 4 5 6 4 6 3 2 3 5 5 5 6 5 6 7 4 94 

I27 7 7 2 4 4 2  2   1 4 2 2  1 6 2  46 

I28 7 7 2 4 4 2  2   1 4 2 2  1 6 2  46 

I29 7 7 2 4 4 2  2   1 4 2 2  1 6 2  46 

I30 7 7 2 4 4 2  2   1 4 2 2  1 6 2  46 

T 
1-

22 

1-

30 

78 88 73 79 70 92 70 77 78 1-

17 

1-

09 

1-

11 

62 84 1-

21 

95 71 1727 

 

Channel-based ANOVA-selected statistically significant ITD-based time-frequency 

domain feature distribution for subject-independent finger movement classification is 

given in Table 4.49. Among 30 different ITD-based features, some features such as 

sample entropy for PRC1, PRC2, and PRC3, Hjorth parameters (Mobility) for PRC2 

and PRC3, and Hjorth parameters (Complexity) for PRC1, PRC2, and PRC3 were 
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mostly indicated and selected as statistically significant features on almost all 

channels. When the effect of the channels on the selection of statistically significant 

features was examined, it was observed that there was a balanced distribution and a 

large number of significant features were selected from all channels. Therefore, feature 

selection from all channels and certain features with ANOVA improved the 

classification performance in all classifiers except NB and KA. 

 

Table 4.50: Channel-based ANOVA-selected statistically significant feature 

distribution for subject-independent finger movement classification in ITD-based 

time-frequency domain feature set. 

Fid 
Channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

I1                    0 

I2                    6 

I3                    11 

I4                    0 

I5                    5 

I6                    10 

I7                    1 

I8                    1 

I9                    1 

I10                    1 

I11                    6 

I12                    4 

I13                    16 

I14                    6 

I15                    15 

I16                    16 

I17                    5 

I18                    5 

I19                    5 

I20                    5 

I21                    8 

I22                    7 

I23                    6 

I24                    8 

I25                    5 

I26                    16 

I27                    9 

I28                    9 

I29                    9 

I30                    9 

T 15 23 10 13 9 8 8 6 7 6 10 21 18 18 4 6 14 7 2 205 
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In our performed finger movement classification analyzes, we investigated the effects 

of different feature extraction approaches and PCA-based and statistically 

significance-based feature selection methods. We performed time-domain, frequency-

domain, WT-based time-frequency domain, and non-linear feature sets. In addition to 

these feature set, we investigated two different combinations of these features to 

improve classifier performance. A total of six feature set are created and analyzed 

separately. We presented four different approaches using PCA and ANOVA test for 

each feature set to reveal effectiveness of ANOVA test. These approaches are (i) all 

features, (ii) PCA-selected features, (iii) ANOVA-selected features, and (iv) ANOVA 

and PCA selected features from corresponding feature set. The presented approaches 

are analyzed using various classifiers, separately. Hence the effects of different feature 

sets and feature selection methods are analyzed for finger movement classification. In 

addition to our WT-based time-frequency analysis, we performed another time-

frequency representation (ITD) model to compare their effectiveness for classification 

finger movement. In this approach we investigated effects of the selected PRCs (PRC1, 

PRC2, and PRC3) and their different combinations. We also used ANOVA test to 

improve classifier performance. The obtained ITD-based feature sets are classified 

using different machine learning algorithms. In order to demonstrate the improvements 

of utilizing ITD approaches, the same features were calculated from the EEG signal 

itself, and classification step is repeated. 

We applied the proposed 5 different feature extraction approaches for classification of 

NoMT condition and five finger movements MI tasks of 19-channel EEG signals after 

obtaining of 1 sec MI EEG segments. A total of 24 time-domain, 15 frequency-domain, 

15 WT-based time-frequency domain, 10 different and 4 non-linear features are 

evluated from each EEG segment. These time-domain, frequency-domain, WT-based 

time-frequency domain, ITD-based time-frequency domain, and non-linear feature 

sets, their two different combination feature sets, and their features selected feature 

sets of all feature sets were classified utilizing DT, DA, NB, SVM, k-NN, EL, NN, 

and KA. The performances of different feature sets and the effectiveness of PCA and 

ANOVA were investigated and compared. 

Among all feature sets, performance of WT-based time-frequency feature set was 

observed to be poor for finger movement classification and the performance of 
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combination feature sets was found to be higher especially for SVM and EL classifiers. 

The highest accuracy value (59.17%) is achieved using ANOVA-selected 

TD+FD+WT+P and SVM algorithm. We observed that our Poincare measures-based 

non-linaer features are improved the classifier performance when these features 

included the first combination feature set including time-domain, frequency-domain, 

and WT-based time-frequency features. The highest accuracy values in different 

feature sets are generally obtained using SVM and EL algorithms. Additionally, we 

investigated the effect of ANOVA-based feature selection and observed that the 

classification performances of ANOVA-selected features are generally improve the 

classification performance determining discriminative features for finger movement 

classification.  

In addition, we investigated ITD-based time-frequency features for finger movement 

classification. Experimental results performed with different ITD-based feature sets 

revealed that the combinations of the different PRCs improve classifier performance 

and the highest classification performances are obtained using ANOVA-selected 

PRC1-to-3 features. ANOVA test-based feature selection process helps improve the 

classification performance. To reveal the effect of ITD approaches, when we compared 

ITD-based approaches and EEG-based approaches, we observed that highest accuracy 

values are mostly achieved using ITD-based approaches in all classifiers except NB 

and KA classifiers. On the other hand, we compared our two time-frequency 

representation models (WT and ITD), the classification performances of ITD-based 

approaches are higher than WT-based approaches. Therefore, we noted that ITD 

algorithm is an effective time-frequency representation model and carries the most 

useful information than WT-based approaches for classification of finger movement. 

Thus, the encouraging results of ITD-based feature extraction, the combination of 

different feature extraction methods and statistically significance-based feature 

selection showed that the proposed approaches may be used for EEG-based analysis. 

The performance of the proposed methods for finger movement classification is 

compared with the success of the finger movement classification studies performed 

using same data set in literature (given in Table 4.51). In some studies [22, 66], subject-

independent analysis was performed. When these studies are examined, higher 

performance values are reported than our proposed methods. However, in [22], using  
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Table 4.51: Performance comparison of finger movement classification studies. 

Ref. 
Subject 

condition 

Number 

of 

channels 

Number 

of classes 
Feature Classifier Accuracy (%) 

[22] SI/8 19 5 

EEG time series 

Noise addition  

Sliding window 

CNN 57.50 

[71] SD/4 19 5 CSP Random forest 51.00-56.00 

[72] SD/4 19 5 CSP 
Autonomous 

deep learning 
74.61-77.75 

[73] SD/8 19 5 
Multi-class CSP 

Complex fourier amplitudes 
SVM 23.90-58.30 

[66] SD/8 19 5 

EEG sunbbands power 

Forier transform amplitudes 

EEG time series 

SVM 20.00-60.00 

[66] SI/8 19 5 

EEG sunbbands power 

Forier transform amplitudes 

EEG time series 

SVM 43.00 

[69] SD/8 4 5 Spectrogram features SVM 21.20-66.60 

[67] SD/4 4 5 EEG time series Deep learning 80.10-91.70 

[70] SD/8 4 5 EMD BiLSTM 66.00-76.13 

This 

study 
SI/8 19 6 

TD 

FD+ANOVA 

WT 

P+ANOVA 

TD+FD+WT+ANOVA 

TD+FD+WT+P+ANOVA 

ITD+ANOVA 

SVM 

SVM 

EL 

SVM 

SVM 

SVM 

SVM 

36.20 

30.45 

26.60 

31.79 

38.70 

39.30 

34.48 

This 

study 
SD/8 19 6 

TD+ANOVA 

FD+ANOVA 

WT+ANOVA 

P+ANOVA 

TD+FD+WT+ANOVA 

TD+FD+WT+P+ANOVA 

ITD+ANOVA 

SVM 

EL 

SVM 

SVM 

SVM 

SVM 

EL 

33.30-57.50 

29.17-55.00 

25.83-36.67 

29.17-50.00 

35.83-55.83 

32.50-59.17 

35.83-55.00 

 

of CNN architecture increased complexity of classification process. In other studies 

[66, 67, 69, 70-73], subject-dependent analysis was performed. In some of these 

studies [67, 69, 70], the channel reduction is performed and only 4 out of 19 EEG 

channels selected. Among these studies, in [67, 70], higher performance values are 

presented than our proposed study. In [67], in addition to channel reduction, EEG data 

of only 4 subjects was used and their approaches inludes higher computational 
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complexity due to training time of deep learning approach. In another study [70], 

BiLSTM structure which increased classifier complexity was used for classification. 

In [66], all channels and all subjects were used as our analysis for their subject-

dependent study and the highest accuracy value of 60.00% was achieved, but it has 

also been observed that accuracy value of 20.00% was achieved in some subjects. In 

[71, 73] all EEG channels are used as our analysis, but the classification results of our 

methods are higher than these studies. In fact, in [71], EEG data of only 4 subjects 

were used. In another study [72], subject-dependent analysis was performed using 

deep learning structure and EEG data of only 4 subjects. Their experimental results 

were higher than our experimental results. However, their analysis includes higher 

complexity than our proposed methods. Our studies include low computational 

complexity in terms of feature extraction, feature selection, and classification methods. 

In addition, our statistically significance feature distribution examinations in different 

feature sets revealed that the statistically significant feature density selected from the 

channels and the selected feature types may vary in different feature sets. Therefore, 

in each study, significant and relevant feature types and channels can be determined 

by first extracting features from all channels and using ANOVA-based feature 

selection, and the study can continue with these channels and features. These analyzes 

are included in detail in our studies. Since our studies did not focus on the same 

channels in all feature sets, feature extraction, feature selection and classification 

processes were continued by using the information of all channels. Using different 

approaches, the promising classification results were achieved in finger movement 

classification studies. 
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Chapter 5 

Conclusion 

The accurate decoding of MI tasks plays an important role in BCI design in order to 

improve ADL of indivuduals who exposure motor impairment. There are different 

neuroimaging methods to provide electrophysiologic activity of the brain for BCI 

studies. Despite various brain imaging modalities, the EEG signal based BCI system 

design has mostly performed due to its low cost and ease of recording, high temporal 

resolution. However, EEG signals have non-linear and non-stationary characteristic 

structure and these drawbacks make MI EEG classifications is quite difficult task. 

Hence, the various methods have been introduced to accurate decoding of MI EEG 

signals with high-quality processing of EEG signals in the literature. This thesis aimed 

to propose various feature extraction methods with different feature selection methods 

and machine learning algorithms by using EEG signals of two different MI task 

classification, extremity movement and finger movement. 

Firstly, the extremity movement task classification approaches are presented. In this 

thesis, four different feature extraction methods that can be utilized in the classification 

of binary-class (right hand and left hand) and four-class (right hand, left hand, both 

feet, and tongue) extremity movements have been introduced with the combination of 

22-channel EEG signals and machine learning algorithms. An open-available BCI 

Competition IV-IIa dataset was used for EEG signal analysis in the extremity 

movement task classification studies. Before feature extraction step, 3 sec MI EEG 

segments are decomposed from EEG signals which belongs to four different class 

categories. Then, 24 diferent time-domain, 15 FFT-based frequency domain, 15 WT-

based time-frequency, and 4 Poincare plot-based non-linear features are calculated for 

each EEG segments. This process is performed for all 22 EEG channels. Four different 

feature sets including time-domain, frequency-domain, time-frequency domain, and 

non-linear are provided. In addition to these sets, two combination feature sets of 
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different features are created and analyzed for investigation of effects of different 

feature sets. The first combination feature set consists of time-domain, frequency-

domain, and time-frequency domain features, while the second one includes all 

features of first combination with addition of non-linear features. Additionaly, the 

statistically significance-based feature selection methods such as the independent t-

test and ANOVA test are used to improve classifier performance selecting relative and 

discriminative MI EEG features for binary and multiple extremity movement task 

classifications, respectively. The effect of ANOVA and the independent t-test is 

investigated separately in each feature set. For four-class extremity movement task 

classification, the six obtained feature sets are classified by a total of 30 different 

classification processes according to the eight basic classifiers, while for binary 

classifications, a total of 31 classification processes are performed with the addition of 

LR-based classification process.  

In our simulations for the binary-class extremity movement task classification, the 

highest classification accuracy value was obtained by using non-linear feature set 

approach where the relavent information about MI tasks may be supplied more clearly.  

When we analyzed the effect of all feature sets, performance of time-frequency feature 

set was observed to be poor for binary-class extremity movement task classification 

and the performance of non-linear feature sets was found to be higher especially for 

all classifiers except NB. Additionally, among two different combination sets, the 

highest value was achieved with the first combination set. Note that, working with the 

independent t-test as feature selection method, generally improved the classifier 

performance in all feature sets except time-domain feature set. When we observed the 

effect of 9 classifier algorithms, DA algorithm achieved the highest accuracy of 

binary-class extremity movement task classification with using non-linear feature set. 

However, the highest accuracy value in different feature sets is generally obtained by 

EL algorithm-based classifications (shown in Figure 3.3a and Figure 3.3b). 

In our simulations for the multi-class extremity movement task classification, the 

highest classification accuracy value was obtained by the second feature set 

(TD+FD+WT+P+ANOVA) approach where the relavent information about MI tasks 

may be supplied more clearly.  Among four feature sets (time-domain, frequency-

domain, time-frequency domain, and non-linear), performance of time-frequency 
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feature set was observed to be poor for four-class extremity movement task 

classification the performance of non-linear feature sets was found to be higher 

especially for SVM and EL classifiers. The most successful non-linear feature set is 

“All lags” non-linear feature set including all non-linear features which are calculated 

for 10 different lag conditions. It was shown that, despite the high classification 

performance of the SVM algorithm with the non-linear feature set among the four 

feature sets, it did not perform the same better performance with the combination 

feature set. In addition, we observed that the highest performance in the proposed 

approaches was generally achieved with the EL algorithm in the classifications 

performed on all features sets (time-domain, frequency-domain, time-frequency 

domain, and combination sets) except the non-linear feature sets (as shown in Figure 

3.4a and Figure 3.4b). The experimental results performed using ANOVA-selected 

feature sets revealed that ANOVA is improved the classifier performance in all 

proposed feature sets determining discriminative and informative MI EEG features 

from the corresponding feature sets.  

In the second section of thesis, various feature extraction approaches and two different 

feature selection methods such as ANOVA and PCA have been presented to classify 

the EEG signals of finger movements. The subject-dependent and subject-independent 

finger movement classification analyzes are performed. An open-available large 

electroencephalographic MI dataset was used for EEG signal analysis in the finger 

movement classification studies. NoMT and 5F 19-channel EEG signals are used for 

our analysis. 100 sample determined for each class category and a total of 600 sample 

used for feature extraction step to provide balanced data distribution. As our previous 

feature extraction step performed for the extremity movement task classification, the 

same six feature sets are extracted from EEG signals of finger movements and NoMT 

condition. In feature selection, PCA-based feature selection is added to process to 

reveal effect of ANOVA test. In this direction, four different feature sets generated 

based on different feature selection methods, ANOVA and PCA, from our six feature 

sets. These generated features sets are (i) all feature set, (ii) PCA-selected feature set, 

(iii) ANOVA-selected feature set, and ANOVA and PCA-selected feature set from the 

corresponding feature set (TD, FD, WT, P, TD+FD+WT, and TD+FD+WT+P). These 

feature sets are evaluated utilizing 30 different classification processes according to 

the eight basic classifiers. In addition to all feature sets, ITD-based approach is used 
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to obtain time-frequency features as alternative to WT-based time-frequency features. 

In this process, PRCs are extracted from each EEG segments using ITD. To defining 

of informative PRC is important step in this process. We used energy-based 

examinations to define PRCs and selected first three PRCs for our analysis due to their 

high-frequency content. 10 different ITD-based time-frequency features are evaluated 

from the corresponding PRCs. In addition to first three PRCs (PRC1, PRC2, and 

PRC3), different binary-combinations of PRCs (PRC1-PRC2, PRC1-PRC3, and 

PRC2-PRC3) and their triple combination (PRC1-to-3). To reveal the effect of ITD, 

the same features from EEG segments itself without application of ITD. Additionaly, 

ANOVA-based feature selection is performed for PRC1-to-3 and EEG-based feature 

sets to improve classifier performance. A total of 8 ITD-based feature sets and 2 EEG-

based feature sets are classified with 30 different classification processes under eight 

classifiers algorithms. 

The simulation results revealed that WT-based time-frequency feature set-based 

classifications obtained worse accuracy values and the combination feature set 

(TD+FD+WT+P) achieved better results for finger movement classification. The 

highest accuracy value (59.17%) is calculated utilizing ANOVA-selected 

TD+FD+WT+P feature set and SVM algorithm. The results noted that our Poincare 

measures-based non-linaer features are improved the classifier performance when 

these features included the first combination feature set (TD+FD+WT) including time-

domain, frequency-domain, and WT-based time-frequency features. On the other 

hand, the results show that ANOVA-selected statistically significant features are 

generally improve the classification performance obtaining informative features in all 

feature sets for finger movement classification. When we analyzed the simulation 

results of ITD-based approaches, we observed that the combinations of the different 

PRCs obtain better results and the highest classification performances are achieved 

utilizing ANOVA-selected PRC1-to-3 features. ANOVA-based feature selection 

generally improves the classifier performance in both PRC1-to-3 feature set and EEG-

based feature set. We compared the ITD-based and EEG-based approaches, the results 

noted that highest accuracy values are mostly calculated utilizing ITD-based 

approaches in all classification algorithms except NB and KA classifiers. Although 

WT-based approaches have been mostly used in classification of MI signals in the 

literature, in our study, ITD-based time-frequency approaches provide better results 
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than WT-based time-frequency approaches for finger movement classification. Hence, 

the results demonstrate that ITD-based approaches, which obtain the time-frequency 

representation of EEG signals, can be used successfully in discrimination of finger 

movements.  

The objectives, which are provided in our thesis, are summarized as follows;  

• Various feature extraction approaches such as time-domain, frequency-

domain, WT-based time-frequency domain, ITD-based time-frequency 

domain, non-linear features and their different combinations are investigated 

and the advantages this Poincare plot-based non-linear features and the 

combinations sets are presented in deatil for binary and multiple extremity 

movement task classification and finger movement classification. 

• In addition to the literature studies which has been mostly performed using 

spatial features such as CSP and its different versions, Poincare plot measures-

based non-linear feature extraction has been proposed and the effect of 

different lag values are investigated. It has been shown that the successful 

classification results were achieved using Poincare plot measures. 

• It has been noted that the ITD method can be utilized successfully in the 

classification of finger movement. 

• Different combinations of PRCs extracted using ITD approach are investigated 

for the first time with various classifier algorithms for the classification of MI 

tasks and successful performance evaluation results are achieved. 

• The simulation results performed with the statistically significance-based 

feature selection methods (ANOVA test and the independent t-test) reveal that 

they improved the classifier performance selecting relative and discriminative 

features and it can be used as feature selection method in EEG-based MI task 

classification. 

• The channel-based distributions of statistically significant features determined 

by the statistically significance-based feature selection method were examined 

for both extremity movement task and finger movement classifications. The 
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results revealed that the statistically significant feature density selected from 

the channels and the selected feature types may vary in different feature sets. 

Therefore, instead of eliminating the channels at first, it was concluded that 

extracting features from all channels and then determining significant and 

relevant EEG channels and features by statistically significance-based feature 

selection method is an effective way. 

• In the literature, the performances of the machine learning algorithms that were 

not analyzed before were calculated in terms of MI task classification and the 

most successful classification algorithm was found to be the SVM and EL 

lassifiers.  

• In the literature, passive mode (NoMT condition) has ignored for finger 

movement classification studies, we presented a six-class finger movement 

classification study including of EEG signals which belong to NoMT class to 

provide a more realistic BCI design for indivuduals, who suffering from motor 

disabilities to the author's best knowledge. 
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