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Investigation of the Effects of Statistically Significant
Features on the Classification of EEG-Based Motor

Imagery Tasks

Abstract

Motor imagery (M) task classification is highly prevalent in Electroencephalography
(EEG)-based Brain-Computer Interface (BCI) research area. Extremity movement task
classification and finger movement classification studies are presented in this thesis.
In extremity movement classification, binary-class (right hand and left hand) and
multi-class (right hand, left hand, right hand, and left hand) classifications are
performed using 4 different feature extraction approaches and statistically
significance-based feature selection (the independent t-test, one-way ANOVA test).
Firstly, time-domain, Fourier Transform (FT)-based frequency-domain, and Wavelet
Transform (WT)-based time-frequency domain features are calculated from multi-
channel EEG signals. In addition to these features, Poincare plot measures-based non-
linear features are calculated. Two different combination sets are also created to
classify Ml tasks of EEG segments using the extracted features. For finger movement
classification, time-domain, frequency-domain, WT-based time-frequency domain,
non-linear and their two different combinations set features are investigated using
ANOVA-based and Pricipal Component Analysis (PCA)-based feature selection
methods. Intrincsic Time-Scale Decomposition (ITD)-based time-frequency features
are also investigated using ANOVA-based feature selection. 9 different machine
learning algorithms namely Decision Tree (DT), Support Vector Machine (SVM), k-
Nearest Neighbor (k-NN), Naive Bayes (NB), Logistic Regression (LR), Discriminant
Analysis (DA), Neural Networks (NN), and Kernel Approximation (KA) are used
based on 5-fold cross-validation to distinguish different groups. According to
experimental results, the most successful feature sets are Poincare plot measures-based
non-linear feature set and the combination set of different feature sets in extremity and
finger movement classification studies. The statistically significance-based feature

selection method improved classification performance in most of the feature sets.



Keywords: Extremity movement task classification, finger movement classification,
intrinsic time-scale decomposition, motor imagery task, poincare plots, statistically

significance-based feature selection



Istatiksel Anlamli Ozniteliklerin EEG Tabanli Motor
Hayali Gorevlerin Smiflandirmasindaki Etkisinin

Arastirilmasi
Oz

Motor hayali (MH) gorev siniflandirmasi, Elektroensefalografi (EEG) tabanli Beyin-
Bilgisayar Arayiizii (BBA) aragtirma alaninda oldukga yaygindir. Bu tezde ekstremite
hareketi gorev siniflandirmasi ve parmak hareketi siniflandirma g¢alismalari
sunulmaktadir. Ekstremite hareketi siniflandirmasinda, ikili sinif (sag el ve sol el) ve
coklu smif (sag el, sol el, sag el ve sol el) siniflandirmalar, 4 farkli 6znitelik ¢ikarma
yaklasimi ve istatistiksel anlamliliga dayali 6zellik se¢imi (bagimsiz t-testi, tek yonli
ANOVA testi) kullanilarak gerceklestirilmektedir. Ilk olarak, Cok kanalli EEG
sinyallerinden zaman alani, Fourier Doniisiimii (FD) tabanli frekans alan1 ve Dalgacik
Dontisiimii (DD) tabanli zaman-frekans alani 6zellikleri hesaplanir. Bu 6zniteliklere
ek olarak Poincare ¢izimi Olgiilerine dayali dogrusal olmayan o6znitelikler de
hesaplanmaktadir. Cikarilan oznitellikler kullanilarak EEG segmentlerinin MH
gorevlerini siniflandirmak igin iki farkli kombinasyon seti de olusturulmustur. Parmak
hareketi siniflandirmasi i¢in zaman alani, frekans alani, WT tabanli zaman-frekans
alani, dogrusal olmayan ve bunlarin iki farkli kombinasyon seti 6znitelikleri, ANOVA
tabanli ve Temel Bilesen Analizi (TBA) tabanli oznitelik secim yontemleri
kullanilarak incelenmistir. i¢sel Zaman Olgegi Ayrisimi (IZA) tabanli zaman-frekans
Oznitelikleri, ANOVA tabanli 6znitelik se¢imi kullanilarak da arastirilmaktadir. Karar
Agaci (KA), Destek Vektor Makinesi (DVM), k-En Yakin Komsu (k-EYK), Naive
Bayes (NB), Lojistik Regresyon (LR), Ayirma Analizi (AA), Sinir Aglar1 (NN) ve
Cekirdek Yaklasimi (CY) farkli gruplart ayirt etmek icin 5-kat ¢apraz-dogrulamaya
dayali kullanilmaktadir. Deneysel sonuglara gore ekstremite ve parmak hareketi
smiflandirma ¢alismalarinda en basarili 6znitelik setleri Poincare grafigi 6l¢timlerine
dayali dogrusal olmayan 6zellik seti ve farkli 6znitelik setlerinin kombinasyon setidir.
[statistiksel anlamliliga dayali 6znitelik segme yontemi, 6znitelik setlerinin ¢ogunda

siniflandirma performansini iyilestirdi.



Anahtar Kelimeler: Ekstremite hareketi gorev smiflandirmasi, parmak hareketi
simiflandirmasi, igsel zaman Ol¢egi ayristirmasi, motor hayali goérev, poincare

cizimleri, istatiksel anlamliliga dayali 6znitelik se¢imi
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Chapter 1

Introduction

1.1 Background Information and Literature Review

1.1.1 Brain-Computer Interfaces (BClIs)

BClI, is a hardware and software communication system, ensures direct communication
between the brain and a computer or external devices utilizing control signals obtained
from signals of brain activity [1]. BCI systems use brain activity as input signals and
then decode them to offer an extended degree of freedom improving life quality of
persons who suffer from motor disabilities and serious physical disabilities [2]. BCI
have been widely studies recently and have been different applications including
rehabilitation, robotics, gaming, and neuroscience [3-5]. BCI applications have
evolved substantially over the years and various publications have been introduced in

the literature according to PubMed statistics as shown in Figure 1.1 [6].
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Figure 1.1: The number of publications over the years according to the PubMed
statistics [6].
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1.1.2 Brain-Computer Interfaces (BCIs) Applications

BCI system output could replace, restore, enhance, supplement, or improve natural
CNS output to improve daily activities of paralyzed patients [2, 7-12]. In addition to
these applications, a BCI system could affect interactions between the CNS and the
external or internal environment of it. In another application of BCI, it could modulate
brain signals using physical stimulation which are DBS, TES, TMS, tFUS, or other
forms of brain signal modulation. These device-to-BCI connection applications are
known as neuromodulation modalities [2]. The applications and main components of

BCI system are given below in Figure 1.2 [2].
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Figure 1.2: The main components and applications of BCI system.



1.1.3 Components of a Brain-Computer Interface (BCI)

System

BCI systems are artificial systems that can recognize relevant and informative patterns
in brain signals as the first step. After recording of brain signals, BCI systems extract
features from signals and convert or translate the features into new outputs using signal
processing step. Therefore, BCI systems consist of five main components such as
signal acquisition, signal preprocessing, feature extraction, feature translation
(classification), and control [2, 13]. Figure 1.2 shows the main components of BCI

system.
The main components of a BCI system can be detailed as follows:

Signal acquisition: This stage, is the first step of BCI system, captures the activities
(metabolic or electrophysiological) in brain and these recorded signals can be digitized
for another signal processing stages. Various electrophysiological, and metabolic
neuroimaging modalities can be used in brain signal acquisition to give an input for
BCI system [1, 2]. Electrophysiological modalities are EEG, and ECoC, while
metabolic modalities are fMRI, and fNIRs. The different advantages and
disadvantages are available in each of them, however the electrophysiological
modalities have been mostly preferred due to high temporal resolution and portability
[1, 2].

Intra-cortical is an invasive technique and supplies high spatial resolution using
electrodes which are implanted subdurally over brain cortex. It requires an operation
for electrode placement [2, 14]. In another invasive brain imaging technique, which is
known as ECoC, an effective representation of the underlying cortical electrical
activity can be supplied with less invasiveness [15]. The non-invasive methods consist
of EEG, MEG, fMRI, and fNIRs [2]. fMRI is a non-invasive brain imaging technique,
and it measures BOLD response to capture brain activity. It provides relatively low
temporal resolution and high spatial resolution [2, 16, 17]. fNIRs is another non-
invasive technique that uses near-infrared light to measure blood flow dynamics to
analyze neural activity. It has different advantages such as high spatial resolution, its
portability and relatively cost-effective system. However, it provides low temporal

resolution and less effective than based on electromagnetic signals [18, 19]. MEG is
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non-invasive imaging technique and measures the magnetic induction generated by
electrical activity in neural cells. It requires specialized equipment and a laboratory
environment. It is less cost-effective and more sophisticated than EEG-based BCI [2,
20, 21]. Among the different neuroimaging modalities, EEG is mostly used to acquire
and feed input signals to BCI systems measuring the electrical activities of brain which
results from the communication activity of neurons in the brain. It is mostly preferred
for clinical and commercial use due to its high temporal resolution, non-invasiveness
and inexpensive [2]. German psychiatrist Hans Berger is the first person who records
the electrical field of human brain [22]. The electrodes are located on the surface of
the scalp as stated in the international 10-20 electrode placement scheme as shown in
Figure 1.3 [22, 23].
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Figure 1.3: International 10-20 electrode placement system [22].

A standard EEG signal has the amplitude which ranges between 0-200uV, and the
frequency of EEG signals differs between 0.5-50Hz. It consists of various frequency
bands which are defined as delta (), theta (0), alpha (a), beta (B), and gamma (y) from
low frequency to high frequency, respectively [14]. The relevant characteristics, the
frequency ranges, the waveforms of frequency bands, and their personal states vary
amongst themselves. Delta waves have frequency ranges of 0.5-4Hz, and they are
observed during deep sleep state in adults. The frequency ranges of theta waves are 4-
8Hz, and these waves are observed in young and older children, sleeping adults, and
sleep stages such as REM sleep. Alpha waves lie between frequency ranges of 8-13Hz,



these waves are associated with awake, eyes closed, and resting states. The frequency
ranges of beta waves are 13-30Hz, and they are related to motor activities. The
personal states of beta waves are mental activations, and stress/anxiety situations. The
gamma bands lie within the 30 to 100Hz range, the personal state of them is whole
brain activity. Gamma waves are not preferred for EEG-based system design, because
they are exposed to the artifacts which affect them [1, 14].

Signal preprocessing: This stage obtains a suitable form of signals for further signal
processing of signals using different processes such as signal filtering, channel

selection, and signal segmentation [2].

Feature extraction: In this stage, the discriminative and relevant patterns in the brain
signals are captured using different features. The extraction of the effective features is
a very important task in BCI systems. Since, the brain signals have non-stationary
forms and these signals are subject to noise by artifacts such as EMG or EOG signals
during signal acquisition. And also, the different feature selection methods can
optionally be used to reduce feature dimension and complexity of system without the
loss of relevant information. Therefore, effective feature extraction and feature
selection methods play an important role in BCI design for using discriminative and
effective features [2].

Feature translation (classification): The extracted features are classified using
various machine learning algorithms to predict the corresponding brain activity and

commands occurred to use in BCI [24].

Control: In this stage the classified brain signals are translated into relevant
commands to control any connective device such as a wheelchair, a computer or a

neuroprosthesis device [2,7-12, 25].

The various neural control signals are used by BCIs. These are sensorimotor rhythms,
SCP, the P300 event-related potential, and ERPs such as VEPs and SSVEP [26, 27].
Sensorimotor rhythms have been analyzed in BCI research area. Ml is traditionally
established on visual or auditory feedback. MI task performed when subject only
imagines moving any limb without actually moving any limb [28, 29]. Then
sensorimotor rhythms are extracted and classified using different signal processing

algorithms. Finally, the visual or auditory feedback is generated to the subject in regard
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to the success of system. The general concept of Ml task in EEG-based BCI studies is

represented as in Figure 1.4 [30].
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Figure 1.4: Motor imagery task in EEG-based BCI studies.

1.1.4  Extremity Movement Task Classification and Literature

Review

In design of MI EEG-based systems, the extremity movement task classification
studies have been generally performed rather than finger movement classification [31-
33]. The extremity movement task generated when a subject only imagines the
movement of different large limbs such as right hand, left hand, right feet, left feet,
both feet, and tongue without actually moving any limb [33]. The accurate
classification of extremity movement task is important to enable effective
communication link which assists people suffering from motor activities by reason of
any accident or disease [31, 34-35]. The automatic MI EEG signals classification has

drawn attention in BCI studies and different signal processing approaches have been



performed to sort out in research area of extremity movement task classification [36-
38].

The main steps of MI EEG-based BCI systems are feature extraction, feature selection,
and classification. Various studies have been carried out for extremity movement task
classification using temporal, spectral, and spatial domain features. The statistical-
based and amplitude-based time domain features, raw EEG time-series have been
evaluated as temporal features [39-40]. Spectral features consist of frequency-domain
[41], and time-frequency domain features [36], which are the mostly evaluated features
for the analysis of MI EEG signals. FT represents the frequency domain of EEG time
series and is one of the mostly used methods to obtain frequency distribution of EEG
signals for extremity movement task classification. In 2017, authors [41] performed
binary-class extremity movement classification study using FFT and LVVQ networks.
However, FT has some disadvantages, which it rules out non-stationary structure of
EEG signals and does not include any time information in its frequency distribution
[42]. Therefore, various time-frequency representations have been used to analyze Ml
EEG signals [43].

Various signal decomposition algorithms such as WT [43] and its derivatives [44, 45],
STFT [36], ITD [46], EMD [43, 47], and its derivatives have been successfully used
in discrimination of extremity movement tasks. Ha and Jeong [36], presented STFT-
based approach for binary-class extremity movement classification. EEG signals were
converted into 2D images and these EEG representations applied in CNNs architecture
for classification. In 2018, Alam and Samanta [47] performed EMD-based Ml task
classification study. In [45], authors presented MI task classification study utilizing
DWT and cross-correlated EEG features. In a different approach [44], Chaudhary et
al. performed binary-class (right hand and right foot) Ml task classification study using
the FAWT approach. They decomposed the MI EEG signals into sub-bands and
temporal-moment based features were obtained from these bands. EL-based
classification was performed with promising results. In another study [43], MI task
classification study was performed using WPD, k-NN algorithm and higher-order
statistical features. In 2018, Mohamed et al. [46] carried out four-class MI task
classification study using ITD and ANNs algorithm. They extracted the PRCs using



ITD and evaluated the energy, entropy, and mean absolute values from PRCs as
features.

After a brief investigation, it was observed that spatial features have been mostly
evaluated to analyze MI EEG signal with promising classification results in last
decades. CSP [48] and derivatives such as FBCSP [49] are the most applied methods
to obtain spatial features for the extremity movement task classification. In [50], CSP
and DL approaches were employed to distinguish M1 EEG signals. In a different
approach [51], CSP-based and wavelet coherence-based feature extraction processes
were conducted for binary-class MI EEG signal classification. Lu et al. [52], used the
aggregated RCSP for analysis of MI EEG signals. In another study [49], Ang et al.
proposed FBCSP-based binary-class and multi-class extremity movement task
classifications. They also applied feature selection using MIBIF and the MIRSR
algorithms. NBPW algorithm is applied to classify MI EEG signals.

In addition to the effectiveness of feature extraction methods, the correlation of these
features plays an important role in improving the classification performance.
Additionally, the high amounts of features increase the complexity of classification
process due to redundant information [53, 54]. In the literature, various feature
selection methods have been introduced and used in EEG signal processing to obtain
relevant and effective features by selecting of features. The backward elimination,
PCA, GA, and statistically-significance based feature selection methods have been
mostly applied in literature to improve classification performance selecting effective
features and diminishing computational load of classifiers [53-55].

According to the studies, the most successful experimental results have been reported
using machine learning algorithms such as SVM [40], ANN [46], k-NN [43], NB [49],
and EL [40, 44] and various DL models [36, 50].

After a brief investigation of extremity movement task classification studies, some

drawbacks and limitations of studies can be summarized as follows;

e The succesfully employed feature extraction methods were spectral and spatial
feature extraction-based approaches for analysis of Ml EEG signals. In
addition to these features, the effectiveness of various time-domain, non-linear,

time-frequency domain features and the different combinations which consist
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of variety of features can be investigated to improve the classification
performance.

e It was observed that the feature selection algorithms have not been mostly
applied to analyze MI EEG signals. Various feature selection methods such as
statistically significance-based feature selection and PCA, which is
successfully applied in EEG signal processing can be improved to the classifier
performance.

¢ In addition to the successful machine learning such as SVM, ANN, k-NN, NB,
and EL, the effectiveness of different algorithms such as DT, LDA, NNs, LR

and KA can be analyzed for extremity movement task classification.

1.3.5 Finger Movement Task Classification and Literature

Review

Rehabilition of motor functions of a hand, especially fingers is an important task to
improve ADL for humans who exposure to upper limb motor impairment [56, 57].
Finger movements are essential tools to manipulate and move objects and interact with
environment [58]. Hands consist of various types of tissues such as skeletal muscles,
bones and joints [59, 60]. The sophisticated finger movements are required complex
processing in central nervous system [56, 61]. Especially, the motor activities of hand
can be critically affected after stroke, which affects approximately 100-200 out of
every 100,000 people, and is the major cause of motor disability [62, 63]. Furthermore,
these deficiencies in ADL considerably affect the patient’ independence and also cause
long term disability [56]. Therefore, the accurate decoding of finger movement is an
important task and can help people who suffer from motor disabilities by improving
ADL. In recent years, finger movement classification has become a very important
research topic and various signal processing algorithms have been used to solve this
task [56-57, 64].

In literature, EEG-based finger movement classification studies have been introduced
utilizing various signal processing and classification methods. Different types of
features including temporal, spectral and spatial features are utilized to improve the
classification performance of EEG segments. Various methods have been introduced

for classification of finger movement by using temporal features such as the raw EEG
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time series [65-67], different amplitude-based and statistical features. As spectral
features, FT is one of the most exploited methods for EEG analysis and it has been
frequently applied to this task [66]. Additionally, various time-frequency
representations of EEG signals including WT [68], STFT [69], EMD [70] and its
derivatives have been successfully utilized in classification. The spatial features such
as CSP [71, 72] and its derivatives [73] have been mostly used to classify finger
movement and successful classification results have been supplied for finger

movement classification.

Kaya et al. [66] proposed a five-finger movement classification study utilizing time-
domain and frequency domain features such as power of EEG sub-bands, FT
amplitudes and EEG time series. They performed both subject-dependent and subject-
independent analysis with 19 channel EEG signals of 8 subjects. SVM classification
algorithm is applied for classification. In another study [71], five finger movements
are classified using spatial features which are extracted with CSP algorithm. The
subject-dependent analysis is performed with 4 subjects. The extracted features are
classified with RF algorithm. In 2022, Azizah et al. [69] conducted a channel process-
based analysis using CSP-OVR and 4 out of 19 EEG channels are selected before
feature extraction process. They evaluated spectral features obtaining spectrogram
features from the chosen EEG channels. The subject-dependent analysis is carried out
using SVM algorithm with promising classification results. In [73], authors performed
subject-dependent finger movement classification using spatial (multi-class CSP) and
spectral features (complex Fourier amplitudes). These features are evaluated from 19
EEG channels and classified with SVM algorithm.

In addition to traditional machine learning algorithms, deep learning approaches have
also been used to improve classifier performance in finger movement research area.
Various deep learning approaches such as CNNs [65, 67, 74], LSTM and their different
variants [70] are utilized to discriminate finger movements. Mwato-Velu et al. [70]
presented an EMD-based subject-dependent classification study utilizing 4 selected
and relevant channels of 19-channeled EEG signals. A deep learning model which is
known as BILSTM is adopted to classify finger movement. In 2022, authors [67]
presented a deep learning-based subject-dependent finger movement classification

study using EEG time series. Before feature extraction, EEG signals of selected 4
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subjects are used and 4 out of 19 EEG channels are selected for analysis. In study [72],
CSP algorithm-based feature extraction and deep learning approach are used to
perform a subject-dependent classification. The experimental analysis performed
using 19-channel EEG signals of 4 subjects. In a recent study [65], CNN-based
classification approach is introduced for subject-independent classification. As feature
extraction process before giving to CNN structure as input data, EEG time series
combined with sliding window and noise enhancement methods. The 19-channel EEG
signals of 8 subjects are utilized for signal processing. In another recent study
performed by Limbaga et al. [74], a CNN architecture is employed to EEG signals
both feature extraction and classification. In addition to their proposed study, a transfer
learning model is applied to reinforce their deep learning model. They performed
subject-independent analysis using 14 channels out of 19-channel EEG signals of 4

subjects.

According to literature studies, in classification stage, the successful classification
results have been reported by utilizing different machine learning algorithms including
SVM [66, 69, 73, 75], RF [71] and EL [75], etc. In addition to these machine learning
algorithms deep learning approaches such as CNN [65, 67, 74] and LSTM [70]

architectures have been successfully used for finger movement classification.

Considering the recent literature studies performed for finger movement classification,

the main benefits, drawbacks and difficulties of this task can be listed as follows;

e The classification results remained at low rates when all EEG channels were
used for analysis and the subject-independent analysis were performed.
According to studies, channel selection and subject-dependent analysis can be
used to improve classification performance.

o After a brief comparison of extremity classification and finger movement
classification studies, it was observed that the classification results of finger
movement classification studies have remained at low rates than the
classification results of extremity classification studies due to complex neural
processing. The selection of the effective feature extraction and classification
methods can play an important role in improving classification results,

especially in finger movement classification.
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e Many studies have frequently used time-domain, frequency-domain and
spatial-domain features with promising classification results. The effectiveness
of non-linear parameters, various time-frequency algorithms, and different
combinations of features varieties in finger movement classification can be
investigated to improve classification performance.

e In the studies carried out for finger movement classification, the feature
selection methods have not been generally included in the processing of EEG
signals. The effective feature selection methods can be improved classifier
performance defining relevant and fewer features and reducing the classifier
complexity.

e According to literature studies, it was observed that one of the most successful
classification algorithms is SVM. In addition to SVM, various classification
algorithms such as DT, LDA, NB, k-NN, EL, NNs and KA can be investigated
to improve classification performance and their effectiveness can be analyzed
and compared.

Therefore, the effectiveness of various types of features and their combinations can be
investigated with effective feature selection methods and various classifier algorithms

to improve classification performance for finger movement discrimination.

1.2 Objectives of the Thesis

The main purpose of the presented thesis is to obtain high classification results with
various signal processing methods for two MI EEG signal classification, extremity
movement task classification, and finger movement classification, which are
frequently analyzed in the literature BCI studies. The various EEG signal processing
methods are used for classification of extremity movement task classification, and
finger movement classification. The EEG segments of MI tasks were investigated
using various feature sets such as time-domain feature set (amplitude-based and
statistical based features), frequency-domain feature set (FFT-based features), time-
frequency domain features (WT-based features) and non-linear feature set (Poincare
features) to improve classification performance. In addition to these feature sets, time-
frequency features extracted using ITD algorithm were investigated for finger

movement classification.
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The main objectives of the thesis can be given as follows:

1.3

Distinguishing of M1 EEG signals using the various feature sets separately and
their different combinations was performed to analyze the two MI EEG signal
classification. The effectiveness of all feature sets was investigated for both
binary-class and multi-class Ml task classification in extremity movement task
classification.

In finger movement classification, experimental analysis was carried out for
both subject-dependent and subject dependent analysis.

We investigated whether the recently presented ITD can be applied for
representation and classification of multi-channel M1 EEG signals.

We aimed to investigate the effectiveness of statistically-significance based

feature selectin method to improve classification model.

Contributions of the Thesis to Literature

This thesis aimed to present various signal processing methods from the literature for

both extremity movement task classification and finger movement classification using

different features, effective feature selection methods and various machine learning

algorithms.

The main and innovative contributions of the studies of this thesis can be highlighted

as follows:

a) For extremity movement task classification approaches;

1. We investigate the effectiveness of hand-crafted feature extraction methods

considering various feature sets such as time-domain, frequency-domain, time-
frequency domain, non-linear feature sets and different combinations of these
feature sets.

For the first time, novel non-linear features from the Poincare plot measures of
MI EEG signals are implemented in this study. Thus, we show that non-linear
feature extraction-based approach provides promising experimental results and
it is an efficient method for classification of M1 EEG signals.

We demonstrated the effectiveness of the statistically-significance based

feature selection methods by comparing the experimental results of analyzes

13



b)

using all features and statistically significant features determined by feature
selection.

The effectiveness of all feature sets and the statistically-significance based
feature selection methods are investigated for both binary-class and multi-class
extremity movement task classification.

This thesis is the first study that performed analyzes and comparison of various
machine learning algorithms in extremity movement task classification to the
author’s best knowledge.

For finger movement classification approaches;

The various features including time-domain, frequency-domain, time-
frequency domain, non-linear features and their different combinations are
used for analysis of EEG signals of finger movement.

For the first time, Poincare plot-based non-linear features are extracted for
finger movement classification in addition to the traditional features.

In addition to different features which are also evaluated in extremity
movement task classification, a different approach is conducted using 1TD-
based features for only finger movement classification. The first three PRCs
are extracted from EEG signals, the effectiveness of these components and
their different combinations are investigated using different features,
separately. To the author's best knowledge, this is the first study that
investigated the effectiveness of different PRCs and their combinations for
finger movement classification. Here we demonstrate that the ITD-based
approach can be successfully utilized to analyze MI EEG signals and the
proposed method, combination of PRCs, improved the classifier performance.
It has been noted that the statistically-significance based feature selection
provides successful classification of finger movement in analyzes using
various feature sets.

In contrast to the traditional finger movement classification studies which have
ignored passive mode (NoMT), we performed a six-class finger movement
classification study implementing EEG signals NoMT task to design a more
realistic BCI design for patients, who suffering from motor disabilities to the

author's best knowledge.
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The subject-dependent and subject-independent analyzes are carried out using
different features and machine learning algorithms.
This thesis is the first study that performed analyzes and comparison of various

classifiers in finger movement classification to the author’s best knowledge.
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Chapter 2

Materials and Methods

In this chapter, experimental data sets, various feature extraction methods, and feature
selection methods used for signal analysis, and machine learning algorithms applied
for classification section of proposed feature sets are listed. These are introduced in

the following sections.

2.1 Experimental Data Sets

In this thesis, two different EEG data sets are used to perform experimental section.
The first one is BCI Competition 1V Dataset Ila that is publicly available Ml EEG
dataset generated during M1 tasks. These MI EEG signals are utilized for extremity
movement classification analyzes in our thesis. The second one is a publicly available
EEG dataset that is a large electroencephalographic MI dataset for EEG-based BCIs.
Multi-channel EEG signals of finger movements from this dataset are evaluated for

finger movement classifications in our thesis.

2.1.1  BCI Competition IV Dataset Il-a

In this thesis, the effectiveness of proposed approaches for extremity movement
classification is evaluated using BCI Competition IV Dataset Ila [76]. It includes 22-
channel EEG data collected form 9 subjects (4 female and 5 male). The cue-based BCI
paradigm includes different Ml tasks the imagination of the left hand (class 1), right

hand (class 2), both feet (class 3), and tongue (class 4).

EEG data was recorded as two sessions on different days. Each session includes 6 runs

which are divided by breaks. And also, each run includes 48 trials which are
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categorized 12 trials for each class category. A total of 288 trials were recorded at the
end of all runs for each subject. In experiments, a cue which is one of the four Ml
classes is represented to the subject during 1.25 sec. Thus, the subject is directed to
perform the requested task. Subject performed related MI task until a shorth break.
Therefore, the Ml task is performed during 3 sec for each trial. format throughout the
manuscript. The timing schemes of experiment are represented in Figure 2.1 [76].

EOG EOG EOG
Eyesopen | |Eyes closed| | Movement Run 1 Run N

(a) Session timing representation

Fixation cross Mator i Break i
I I I I -

0 1 2 3 4 5 6 7 8 t(s)
(b) Trials representation.

Figure 2.1: The timing scheme for (a) One session, (b) The Paradigm [76].

In data recording, the EEG signals were sampled with 250 Hz and filtered with a band-
pass filter between 0.5 Hz and 100 Hz. In addition, the 50 Hz notch filter was applied
to extinguish line noise. As preprocessing section of extremity movement
classification studies, MI EEG segments of EEG signals for each trial are divided for

signal processing.
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2.1.2 A large electroencephalographic motor imagery dataset

for electroencephalographic brain computer interfaces

In this thesis, the effectiveness of proposed approaches for finger movement
classifications is evaluated using a large electroencephalographic Ml dataset for EEG-
based BCIs which is introduced by Kaya et al. [66]. The data set comprised of various
type of Mls in 4 different paradigms. 21-channel EEG signals were recorded from 13
healthy subjects using EEG-1200 JE-912A recording system. According to the
international 10-20 EEG electrode placement system, 19 EEG, 2 reference electrodes
and the ground electrode were located for experiments. BCI interaction paradigms are

designed based on M1 tasks of 10 different limbs in this data set are listed as follows:

e Paradigm #1 (CLA): It is defined as classical left/right hand MI model and
includes three Mls of left and right-hand movements and one passive mental
imagery that is defined as passive model and any MI task is not available in it.

e Paradigm #2 (HaLT): It is an extension form of 3-state CLA paradigm model
and it includes the imagery of left and right leg movements and tongue
movement. Therefore, a total of six different Mls are available in this model.

e Paradigm #3 (5F): It is introduced as 5 finger MI and it consists of finger
movements imageries which are MI EEG signals recorded during imagination
of the movements of the five fingers on a hand as flexion of the corresponding
fingers up or down. Finger movements imageries are denoted as Thumb (Class
1), Index finger (Class 2), Middle finger (Class 3), Ring finger (Class 4), and
Pinkie finger (Class 5).

e Paradigm #4 (NoMT): It is defined as no MI model or visual signals. In this
paradigm no visual stimulus is shown on the screen for subjects, they passively

watched the screen.

In our finger movement classification analysis, six different class categories are
available utilizing 5F and NoMT paradigms. In the recording of EEG signals, the
action signal is represented to subjects during 1 sec, subject implemented desired
motor imagery in this time. Then, the related action signal is not remained on the screen
and 1.5-2.5 seconds break is given for subjects until the next motor imagery action
signal is given. Two different sampling frequencies including 200 Hz and 1000 Hz are
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available for EEG signals in this dataset. In this thesis, EEG signals obtained with a
1000 Hz sampling frequency were selected to be utilized for signal analysis of finger
movement classification. In the acquisition of EEG signals, a 0.53 Hz-100 Hz band-
pass filter was implemented to the signals utilizing hardware filters. In order to

suppress the electrical grid interface, a 50 Hz notch filter was used to signals.

In the preprocessing section of finger movement classification of this thesis, 100
samples of 1000 Hz EEG signals of six different classes Mls (5F and NoMT
paradigms) were determined to be used in signal processing and following
classification section. The same number of EEG segments were determined for each
of six classes to provide balanced data distribution for analysis. Therefore, 600 trials

are available for each subject.

2.2 Feature Extraction

In this thesis, six different feature sets are utilized for the classification of extremity
movement task and finger movement. M1 EEG signals are investigated utilizing (i)
time-domain feature set, (ii) frequency-domain feature set, (iii) time-frequency domain
feature set, (iv) non-linear feature set, (v) combination of time-, frequency-domain
feature sets and time-frequency domain feature set, and finally, (vi) combination of
time- and frequency-domain feature sets, time-frequency domain feature set and non-

linear feature set to provide high classification performance.

2.2.1 Time Domain Feature Set

In this thesis, 24 different time-domain features are extracted using original time-
domain information of EEG signals. These features are evaluated according to the
amplitude and statistical changes of the EEG signal. 24 different time-domain features

and their mathematical formulas are listed as follows [40, 75, 77-79]:

Minumum value = min (X[n]) (2.1)
Maximum value = max (X[n]) (2.2)
Mean (i) = EN=3 X[n] (23)
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Stand art deviation value = \/% YN (X[n] — w)?

Integrated EEG value = YNZ}X[n]|
Mean absolute value = %Zﬁ;&lX [n]|
Simple square integral = YN_3|X[n]|?

Variance = ﬁZﬁ;&(X[n] —u)?

1y
Root mean square = EZL&X[n]Z

Waveformlength = YN_.|X[n] — X[n —1]|

Average amplitude change value = %ZﬁﬂlX[n] —X[n—1]|

Absolute dif ference inSD = \/%ZLI(X[n] — X[n —1])?

~ INZ3(X[n]-p)?

(EeNzdxinl-p2)’

Kurtosis =

1$N-1 3
~Yn=oX[n]l-w)
Skewness = —N="=2 >

(J%zﬁgﬂx[n]—mﬂ

Hjorth parameters (Activity) = A = ﬁZﬁ;&(X[N] —w)?

Hjorth parameters (Mobility) = M =

A (X[n])

dan
M (X[n])

Hjorth parameters (Complexity) = C =
Signal range = max (X[n]) — min (X[n])

N+1

First quartile value (Q1) = X [T

20

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)



Inter — quartile value (Q2) = Q3 —-Q1 = X [3(N4+1)] - X [(N:D] (2.20)

Third quartile (Q3) = X [3(N+1)] (2.21)
Mode value = Most frequent value in an EEG signal. (2.22)
Slope change value = YNZ [f X[n] —X[n+1]).X[n] — X[n + 1])]] (2.23)

f(x) = {1, if » x> threshold,} {0, otherwise.}

Zero — crossing value = Z Lsign [X;(n)] — sign [X;(n — 1)]| (2.24)

sign(X;(n)) = {1, Xi[n] = 0,} {-1, X;[n] < 0.}

In the above equations, X[n] denotes the EEG signal and N denotes the size of the

EEG signal. Mean value is denoted as .

2.2.2 Frequency Domain Feature Set

To provide this feature set, the frequency distribution embedded in the EEG signal is
generated using FT. The various sub-bands of EEG embedded in signal which are delta
(0), theta (0), alpha (o), beta (B), and gamma (y) are extracted from the EEG signals.
Frequency ranges of these bands are defined as 6 (0.5-4 Hz), 6 (4-8 Hz), o (8-13 Hz),
B (13-30 Hz), and y (30-100 Hz). The relevant and discriminative frequency domain
features such as energy, variance, and entropy are evaluated from the defined EEG
sub-bands. The change of energy, variance, and entropy (irregularity) values in the
defined frequency bands of EEG signal can be analyzed using these features.
Calculation of energy, variance, and entropy are given in the following equations;
respectively [78-81]

Energyy = XiL,y()’ (2.25)
Variance; = ﬁ M (e —y)? (2.26)
Entropyy = g(M) M. P(y())log (P(y(l))) (2.27)
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where, f indicates the frequency band type (9, 6, a, B, and y) of EEG signals. The
energy of these bands is evaluated using the power spectrum of signals. y indicates
the FT of a real discrete time EEG signal and M indicates the maximum frequency.
yindicates the average of the y signal. Entropy is defined as irregularity and measures
the regularity of the power spectrum of the EEG signal. P(y(i)) denotes the probability
that the signal is in the defined frequency domain. EEG signal.

2.2.3 Time-Frequency Domain Feature Sets

We applied WT- and ITD-based approaches to analyze EEG signals in our study. WT-
based time-frequency set is investigated for both extremity movement task
classification and finger movement classification. ITD-based time-frequency feature

set is investigated for only finger movement classification in this thesis.

2.2.3.1 Wavelet Transform-based Time-Frequency Domain Feature Set

In this thesis, the time-frequency domain features are evaluated using WT. It is mostly
used analysis of non-stationary EEG signals by preserving the time-frequency
resolution [82]. It is a smooth and fast oscillating function that is well localized in
frequency and time. It can be used as particularly generated FIR filter [83-85]. The
input EEG signal X[n] is decomposed into sub-frequency components [82-86]. The
high frequency and low frequency components of the EEG signals are generated based
on the frequency responses of the FIR. In each of the decomposition levels, both high-
pass and low-pass filters are applied to the signal. Among these filters, the high-pass
filter is related with the mother wavelet function [79]. The output of high-pass filters
is known as detail (d) coefficients signals, while the output of low-pass filters is known
as approximation (a) coefficients [82, 87]. The approximation signal is re-decomposed
until the decomposition level is completed. In analysis of extremity movement, EEG
signals with 250 Hz sampling frequency are analyzed using 7 level decomposition. In
analysis of finger movement, EEG signals with 1000 Hz sampling frequency are

analyzed using 9 level decomposition.

In WT-based analysis, one of the important steps is the defining of the mother wavelet
function [84]. Various mother wavelet types are analyzed for EEG signal analysis in

the literature. These are haar, db, sym, coif, bior, rbio, meyr, mexh, morl, cmor, and
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dmey [79, 83-85]. In this thesis, wavelet function is defined as Haar for both extremity
movement task and finger movement classification. The frequency sub-bands (delta,
theta, alpha, beta, gamma) are decomposed from MI EEG signals utilizing Haar
mother wavelet. Then, the energy, variance, and entropy values of these sub-bands are
evaluated as time-frequency features [79, 86, 88-92]. The energy at each

decomposition level is evaluated according to the below equations:
Energyy, = Zﬁy=1|dij|2, i=1,273 ..,1 (2.28)

Energy,, = Zﬂy=1|aij|2, i=1273 ..,1 (2.29

Here, (di) and (ai) are utilized to provide subsets of EEG frequency bands (5, 0, a, 3,
and y) based on the decomposition tree. ajjand djj indicate the (a) and (d) of frequency
band subsets, respectively. The decomposition level is represented with [ and
i changes from 1to ! for calculations. The entropy values of each decomposition level

are evaluated according to following mathematical formula:
Entropy; = — ?’:1 dizj log(dizj , i=1,23 ..,1 (230
In another feature variance value is evaluated utilizing following equation:
Variance; = ﬁ a(dy —,ul-)z, i=123 ..,1 (231
wo= <¥ady,  i=1,23 ..,1 (2.32)
where, the mean value of decomposition level is indicated as y; ...

2.2.3.2 Intrinsic Time-Scale Decomposition-based Time-Frequency

Domain Feature Set

ITD is the iterative signal decomposition algorithm and is introduced for the analysis
of non-stationary and non-linear biomedical signals [93]. It divides the original signal
into a sum of PRCs and a monotonic trend without using laborious and unproductive
sifting or splines. The original signal is decomposed into low-frequency component
(baseline signal) which is indicated as L; and high-frequency components (proper

rotation components) which are indicated as H; [93-95]. Firstly, an EEG signal which
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is indicated as X; defined for ITD analysis. £is an operator, is determined to
decompose baseline signal from original signal X, and leave behind high-frequency

components PRCs. Therefore, X, can be represented as follows:
Xt = LXt + (1 - L)Xt = Lt + Ht (2.33)

Here, the baseline signal is defined as £X; and PRC is denoted as H, = (1 — £)X,.
The process of the ITD algorithm to extract baseline and PRCs can be applied as given
in Algorithm [93-95].

Algorithm: ITD

e Asignal X; which is available t > 0 its local extremes 7, k =1, 2, ... is
assumed for analysis. X(t;) = Xy and L(t;) = L; notations are defined.

e The L; and H, are generated over the interval [0, t;], and the signal X, is
existed on [0, T, + 2]. The baseline extraction operator £ is introduced as
piece-wise linear function between two extreme locations on the defined
interval (ty, 7 + 1] according to following equations:

Le= L+ (B225) (X, = Xp), L€ (T Tera]  (2.39)

Lgt2—Lg

where

Lyyr =« [(Xk + M) (Xper2 — Xk)] + (1 - ) Xpy1, (2.39)

Tk+2" Tk

and 0 < a < 1, ais typically defined as % The monotonicity of X, is preserved
using this method of obtaining L,.
e After the extraction of L,, the residual or PRC is evaluated as:

Therefore, the original X; signal can be reconstructed utilizing the decomposed L;
and H; modes as follows:

X, =12 +¥P_ Hf (2.37)

Here, D denotes the number of decomposed high-frequency components (PRCs).
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Various features are calculated from these ITD-based decomposed high-frequency
PRCs. In our thesis studies, the first three PRCs (PRC1, PRC2, and PRC3), their binary
combinations (PRC1-PRC2, PRC1-PRC3, and PRC2-PRC3), and their triple
combination (PRC1-to-3) are utilized to evaluate 10 different features. The

effectiveness of obtained feature sets is investigated separately.

10 different features such as mean, higher order moments (1%t, 2"d, 3, and 4t
moments), power, sample entropy, Hjorth parameters (Activity, Mobility, and

Complexity) are evaluated from various combinations of PRCs.
Mean value of PRCs is evaluated based on the time-domain as follows:
Mean value = yu = %Z’,ﬁ;&X[n] (2.38)

Here, X[n] indicates the PRC which is used for analysis and N is the size of the PRC.

Total power and four different higher order moments are evaluated according to the

spectrum of signals as follows [96-98]:

we =2k k=0,1,2 .., N—1 (2.39)
Swi) = ~1X(w)1? (2.40)

Sr = SNZ2S(w) (2.41)

Moment; = Y¥Zi(wi) s(wy), j=1,2,3 4 (2.42)

where, the PSD of the signal is indicated by S(wy,), and the Discrete Fourier Transform

of the signal X[n] is indicated as X (w; ). The size of the related signal is N .

Hjorth parameters are statistical time-domain features and consist of Activity (4,),
Mobility (M,), and Complexity (C,) parameters [99]. Activity parameters can be

evaluated utilizing the variance of signal amplitude [99, 100].
Ay = (y() = o} (2.43)

Here, y[n] = [y1, ¥2, ..., yn] and N is the size of the corresponding signal. o,

indicates the standard deviation of the signal y[n] and it can be evaluated as follows:
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1 N

0= |5 Zn=alyln] —ul? (2.44)

In the above equation, u indicates the mean value of y[n]. Mobility parameter is the
ratio of the standard deviations of first-order derivatives. Its mathematical formulation

is given as following equation:

2
M= |2=2 (2.45)
Ty Oy

Here, the first-order standard deviation of signal is denoted as o.,r. Complexity

y
parameter is defined as the ratio between the M, of the first derivative of the EEG

signal and M, of the EEG signal itself [99, 100].

) _
x M (Y(t)) h

(2.46)

Sample entropy is a measurement of time series complexity. The new vector series are
defined from the original time series. The sizes of the new vector sequences are defined

as m and the size of the original signal is defined as N . The defined m length denotes
the embedding dimension [95, 101]. The distance d(u(i), u(/)) between vectors u(i)
and u(j) is defined as follows [101]:

d(u(i), u(/')) =max{|lu(i+k) —u(j+k)|}, 0<k<m-1 (247)

where, k denotes an index. The probability of ensuring another vector within a

distance r from vector is described as [101]:

1

G =0 (2.48)
{The number of j, j # i, j <N —m + 1 such that d(u(i), u(j)) <r}
" (r) = (N =M + D)"Y T+t ci™(r) (2.49)

Hence, the sample entropy is indicated as [95]:
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9'™(r)
0'mF(r)

SampEn(m, r, N) = —ln[ (2.50)

2.2.4 Non-Linear Feature Set

In order to investigate effectiveness of non-linear features, Poincare plot-based
features are evaluated for the analysis of different EEG signals. Biomedical signals
have non-linear characteristics, so these features are investigated in the literature for
different biomedical signals. The Poincare plot measures become an important feature
extraction process thanks to its uncomplicated visual explanation and demonstrated
clinical ability [53, 54, 102, 103]. These measures can be possible to provide accurate
and relevant patterns of physiological signals to provide high classification results for

MI task classification.

Poincare plot measures capture the non-linear dynamics embedded in the signal.
Poincare plot is a graph or 2D visual representation of each EEG data (x;) on x-axis
and the next EEG data (x;,q4) ON the y-axis [54]. These plots are generated from Ml
EEG signals using determined (x;), and (x;4,44) intervals of EEG data for each EEG
segment. Then, an ellipse is fitted to the generated plot, and the standard deviation of
the distance of the points on these graphs denotes the width (SD;) and length (SD,) of
the fitted ellipse [104]. The detailed mathematical evaluation of Poincare plot

measures is given as follows [54, 102, 103]:

x; = (xo, X1, ) XN_1ag) (2.51)
Xitlag = (xlag: Xiag+1r = xN) (2.52)
x, = % (2.53)

x, = T (2.54)

SD, = SD(x,) (2.55)

SD, = SD(x}) (2.56)
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Here, EEG data and the next EEG data intervals are represented with (x;), and (x;444)
in Equations (2.51), and (2.52); respectively. According to these intervals (SD;) and
length (SD,) measurements are calculated as features. SD denotes the standard
deviation of the defined time interval vectors in in Equations (2.55), and (2.56). SD;,
and SD, measures are evaluated based on the defined lag value. In the literature, the
commonly utilized lag value is 1 [53, 54, 105, 106]. In this thesis, we aimed to
investigate the effectiveness of various lag values which are from 1 to 10 for extremity

movement task classification studies. In addition to the evaluation of SD; and SD,, the

product (SD;SD,) and the ratio (%) are calculated to investigate the relation between
2

these measures. Therefore, a total of four non-linear features are extracted for each
EEG signal which in the defined a lag value. The effectiveness of different lag values
is investigated generating ten different feature sets, separately. In this thesis, Poincare
features are evaluated where only lag = 1 for the investigation of the non-linear

feature set in finger movement classification.

2.3 Feature Selection

Feature selection process can be optionally applied to decrease complexity of
classification process and improve classifier performance for selection or reduction of
effective features from all features in feature sets after feature extraction step [54, 107,
108]. In this thesis, statistical significance-based feature selection methods such as
ANOVA and independent t-test are applied to improve classifier performance
selecting relevant and discriminative EEG features. In addition to statistical
significance-based feature selection method, PCA-based feature selection method is
performed in order to examine comparatively the effectiveness of ANOVA in only

finger movement classification analysis.

2.3.1 Statistical Significance

In this thesis, the statistical significance-based feature selection method is performed
to select effective feature combinations in different feature sets in our EEG signal
processing. These tests are performed for each provided feature sets separately.
According to the class number of Ml tasks, the type of statistically significant-based
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feature selection methods is defined. In this thesis, binary and multi-class classification
models are performed using various feature sets [109]. Therefore, two different types
of statistically significant-based feature selection methods such as ANOVA test and
the independent t-test applied to select features in multi-class and binary-class
classifications, respectively. In binary classification models, the independent t-test
which is widely used to indicate the significance of differences between features of
two different classes is performed for reduction of features [53]. In multi-class
classification models, ANOVA test which is used to check that there is a significant
difference between features of multiple classes is performed to select features [40, 54,
109]. According to these tests, the statistical significance of all extracted features in
feature sets is defined evaluating p values. The indicated statistical significance level
(a) is 0.05. The features that obtain this range are determined as statistically

significant and selected features.

2.3.2 Principal Component Analysis

PCA-based feature selection, which is an effective feature reduction method, is
performed in finger movement classification in order to compare effectiveness of
ANOVA-based feature selection. It is known as a multivariate statistical
transformation technique to remove similarity between features. The linearly-
independent perpendicular features are generated using PCA. The number of them
indicates the system parameter, covering the percentage ratio of the variance of the
initial variables. Each of new variables is defined as the principal component [107,
110, 111].

PCA provides the principal components of the data based on the evaluation of
eigenvalue and eigenvector of the covariance matrix after data normalization. X is a
matrix with size of nxm d ith row of it with size of m defined as
(X;, i =1, 2, ..., n). The covariance matrix is evaluated using mean value of the data

as follows:
C=Yr,(x—wx—p" (2.57)

where, uis the mean value of the data and C indicates the covariance matrix. The

eigenvalues (1) and eigenvectors (V) of C is evaluated as follows:
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The eigenvalues are listed in ascending series and the eigenvectors matched with the
largest eigenvalues are found. The selected data is generated with projection of

normalized data onto K eigenvectors [107, 110].
2.4 Classification

In our thesis, the extracted different feature sets are calculated using eight different
classifiers such as DT, LDA, NB, k-NN, EL, NNs and KA to distinguish different Ml
tasks. In addition to these classifiers, LR is also used to classify MI EEE segments in
binary-class classifications. The fundamental information about these classifiers is

available in below:

2.4.1 Decision Tree

DT is a machine learning algorithm which can divide the data into different classes. It
can be applied for both classification and regression analysis. The branch and nodes
which are in this algorithm are likened to tree-like structures and they give the name
of algorithm. Training in this algorithm is performed based on the order of decision
rules. If a decision is completed a leaf node is generated while when a decision is not
completed a decision node that is different branch is generated. In this thesis, three
different tree algorithms such as fine, medium, and coarse are performed for the

classification process [112].

2.4.2 Discriminant Analysis

DA classification aims to separate the independent variables in the data accurately into
homogeneous groups [113]. LDA among these algorithms indicates group elements
and evaluates the probability of characterizing different groups for each element. The
group which obtains the highest probability score is indicated as the predicted group
of elements. It generates a linear discrimination function. In this algorithm, the
predictors are accepted to be normally distributed (Gauss distribution). And also, it

assumes that different classes have class specified elements and equal
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variance/covariance. However, the variance/covariance equality is not accepted in
QDA algorithm. It assumes that covariance matrix can be divergent for each class.

Hence, it generates a second order discrimination function in process [114, 115].

2.4.3 Naive Bayes

NB is a probabilistic machine learning algorithm using variables’ independence and
normalcy and Bayes theorem that classification is applied in accordance with
probability basics. The calculation of the membership probability of a sample to all

class in feature set is fundamental process of this algorithm.

A sample X in the feature set is defined as X = {x;, x5, ..., x,,} and n is the number
of features. Classes in feature set are defined as {M;, M,, ..., M,,} and m indicates
the number of classes. The probability that each X data in data set is a member of the

M; class is evaluated as:

p(’%):% ifP(%)>P(%), 1<j<m j#i (259

Therefore, the highest probability of membership defines the class of the data.
According to this formula, X data is labeled to the M;. The class prior probabilities are

represented by P(M;), the prior probability of X sample is represented with P(X). The

probability of X conditioned on M; is denoted as P(Mi) and P(%) denotes the

probability of M; conditioned on X [112, 116]. Medium and Gaussian NB algorithms
are used for classification process in this thesis. The basic scheme of NB classification
process is given in Figure 2.2a.

2.4.4 Logistic Regression

LR is a commonly applied statistical machine learning process in which binary
classification results are generated such as yes/no, 1/0. It is related to a set of

independent variables as given in following equation:
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(a) NB classifier simulation (b) LR classifier simulation

Figure 2.2: The basic scheme of the (a) NB classifier, (b) LR classifier.

Py
1-P;

Logit(P;) = ln(

)= Bo+ Xy + -+ fuXn  (260)

Here, P, is probability of an event, S, indicates the intercept, {8, + B, X; + -+
BnXy} indicates the coefficients related to the independent variables {X; + X, + --- +
X, }. In process of LR algorithm, maximum likelihood estimation is mainly utilized to
evaluate the coefficients. The probability of an event as a logistic function of the

independent variables is non-linear as shown in following equation:

P
Pl(x) = 1+e—Log1it(P1(x)) (261)
where, P; is defined as probability value and takes between 0 and 1. When the result
of P, (x) equation is —oo , P, = 0, and when P, (x) = oo, the probability equals 1. The
basic scheme of classification process of LR is represented in Figure 2.2b.

2.4.5 Support Vector Machine

SVM is a successful machine learning algorithm and utilized in both classification and
regression analysis. It classifies the data based on the geometric characteristic of this
data. Firstly, the elements of the dataset which consists of n features are settled as the
elements of the coordinate system that is n-dimensional space. Then, the classification
is carried out based on obtaining the hyperplane that discriminates the classes best.
Different hyperplanes can be constructed for discrimination of two classes. However,

the selection of the hyperplane that the highest and accurate classification performance
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may be provided is crucial from the different hyperplanes. Let, (x,,, y,,) is defined as
a linearly separable sample example. n denotes the size of the feature set and y which
takes value of —1 or 1 denotes as class label. The hyperplane can be formulated as
f(x) =wx +b here wand b denote the hyperplane parameters and the offset,
respectively. The main aim here is to provide the maximum margin. The dashed lines
(represented in Figure 2.3a) indicate the decision boundaries which are placed on
support vectors. The margin is defined as the distance between these support vectors
which belongs to two different classes. Therefore, the data placed on different sides of

the optimal hyperplane is defined as a sample of the different class [107, 113, 117].

The basic binary-class SVM classification is shown in Figure 2.3a. Six different
algorithms of SVM classifier such are Linear, Quadratic, Cubic, Fine Gaussian,

Medium Gaussian, and Coarse Gausssian are used for classifications in this thesis.

Support sample of Class 1
- - sample of Class
Xl vectors X1

» /'? » sample of Class 2

@S &
D

* D
¢ o

¢ o

* is indicated as the element
of Clazz 2 for k=3.

(@) SVM classifier simulation (b)kNN classifier simulation

> X2

Figure 2.3: The basic scheme of the (a) SVM classifier, (b) kNN classifier.

2.4.6 K-Nearest Neighbour

k-NN, is a learning-based machine learning algorithm, evaluates the closeness of new
data with defined classes. The distance of new sample and all the data in the feature

set is evaluated. The closeness of new data is examined checking k nearest neighbor
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and minimum distance is evaluated. Finally, whichever class has the most elements
among the determined neighbors is labeled as the class of the new sample. Different
distance measurements methods such as Euclidean, Manhattan, Minkowski, and
Hamming can be applied to calculate distance. Among these methods, the mostly
applied method is Euclidean distance and its formulation is given in following equation
[54, 107]:

Euclidean = /3™, (x; — y;)? (2.62)

In this thesis, Fine, Medium, Coarse, Cubic, Cosine, and Weighted algorithms of the
k-NN classifier were performed for classifications. The process of k-NN algorithm for

binary classification is basically represented in Figure 2.3b.

2.4.7 Ensemble Learning

EL is defined as meta-algorithms which merges multiple pattern recognition
techniques into a single discrimination model (classifier) to enhance deviation
(boosting), an/or predictions (stacking) and lessen variance (bagging) [107, 114, 118-
120]. This classifier assumes that single classifiers mostly cannot provide a specific
and accurate classification accuracy owing to possible noise in the data, overlapping
data distributions, and outliers. The EL algorithm is generated and used for
classifications considering there is no single classifier that performs best for all
classification tasks. Hence, it is necessary to use EL algorithms in some classifications.
An EL algorithms can be mostly created in two different methods such as sequential
ensemble learning methods (AdaBoost) and parallel ensemble learning methods (RF).
In this thesis, Boosted, Bagged, Subspace Discriminant, Subspace k-NN, and

RUSBoosted Trees which are introduced in the process of EL classifiers are applied.

2.4.8 Kernel Approximation

KA algorithms can be utilized to perform non-linear classification of data including
many samples [121, 122]. In large datasets, KA classifiers are inclined to train and
predict faster than SVM algorithms accompanied by Gaussian kernels [122]. Gaussian
kernel algorithms plan predictors in a low-dimensional space to high-dimensional

space. Then, the linear model is constructed to convert predictors in a high-
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dimensional area [121, 122]. In this thesis, SVM and LR KA algorithms are used to
classify.

2.4.9 Neural Networks

NN algorithms, are complex classification algorithms, mimic the human brain and
provide accurate classification accuracy. Its deep neural structure which includes the
number of layers and different parameters make the training process longer [123, 124].
NNs structures include three fundamental structures such as input layer, fully

connected layers, and output layer as shown in Figure 2.4.

Input layer Hidden layer Qutput layer

x] —D“
X5 —y
X3 _’
X, —h

x. —»{

Inputs —3» QOutput

Sum Activation
function

Figure 2.4: The basic representation of NNs structures.

Various NN algorithms are available and the number of fully connected layers between
the input and output layers may differ in different algorithms. The number of fully
connected layers determines the complexity of the classifier. When the size and
number of these layers increase, the complexity of the model is also increased [123,

124]. The first fully connected layer of the NN has a relationship from the network
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input (predictor data), and each subsequent layer has a relationship from the preceding
layer. In fully connected layers the input data (features) and a weight matrix are
multiplied between each other and a bias vector is included into this evaluation as
shown in Figure 2.4. An activation function accompanies each fully connected layer.
Finally, the final fully connected layer and the following softmax function give the
output of NN as classification scores and prediction labels [125-127]. In this thesis,
Narrow, Medium, Wide, Bi-layered, and Tri-layered NN algorithms are used for

classifications. The basic representation of the NN algorithm is given in Figure 2.4.

2.5 Performance Evaluation

In this thesis, ACC is defined as performance metric and is used to evaluate
performances of different classifiers. Accuracy is the ratio of the total number of true
predictions and is evaluated based on the confusion matrix. The confusion matrix
represents the number of true and false predictions performed by classifier compared
to real labels in the data. The confusion matrix with nxnis created according to
number of classes (n). Accuracy metric formulation is given in below:

TP+TN

Accuracy (ACC) = oy

x100% (2.63)

Here, TP, is actual true, predicted as true by model TN, actual false, predicted as false
by model. While FP is not actually in class true but is predicted in class false by model,

FN is actually in class true but is predicted in class false.

K-fold CV method is utilized to show performances of the classification algorithms
[87, 107, 112]. K is defined as 5 in our experimental analysis. In our analysis, firstly
feature set is divided into train (80% samples of feature sets) and test set (20% samples
of feature sets). Then, 5-fold CV method is applied in training feature set to provide a
consistent accuracy for training process. In this process, training feature set is

separated into 5 equal size subsets. The classification process repeated 5 times, and

each time 4/5(%) of the subsets are used for training, and the remaining 1/5(%)is
utilized for validation. Finally, the average performance of 5 (K) is evaluated as

training accuracy value. The proposed model is also tested using test data and its
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performance is evaluated based on the accuracy metric. The basic representation of 5-
fold cross-validation is given in Figure 2.5.

Features Vector
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Figure 2.5: The representation of 5-fold cross-validation process-based classification
used in our studies.
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Chapter 3

Classification of Extremity Movement
Task

In this thesis, four different feature sets are presented to distinguish MI task EEG
segments. These are time-domain, frequency-domain, time-frequency domain and
non-linear feature sets. Additionally, two different combination feature sets are created
using different feature extraction approaches and the effectiveness of combination of
different features is investigated. In addition, the statistically significance-based
feature selection methods are applied and effectiveness of them is investigated in both
binary-class and multi-class extremity movement classification. Finally, the results of
these six different feature sets and effectiveness of statistically significance-based
feature selection methods are compared in line with the classification performances of

different machine learning algorithms utilized in our thesis.

3.1 Experimental Data set

In this thesis, the binary-class and multi-class extremity movement task classification
analyzes are performed using BCl Competition IV Dataset Ila. The 22 EEG signals
which belong to four different M1 tasks are supplied from 9 subjects in this dataset.
MI tasks are the imagination of the right hand, left hand, both feet, and tongue. In
binary classification studies, we used right and left hands MI task EEG signals while
in multi-class extremity movement classification studies, all of Ml task EEG signals
were used. Firstly, the MI task EEG segments performed during 3 sec for each trial are
decomposed from EEG time series in preprocessing of EEG signals. Then, all channels
of EEG signals were used to extract features for each 3 sec EEG segment. The binary-
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class extremity movement classification studies performed in this thesis are

represented in Figure 3.1.
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Figure 3.1: The block diagram of the proposed binary-class extremity movement
classification approach.
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The multi-class extremity movement classification studies performed in this thesis are

represented in Figure 3.2.
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Figure 3.2: The block diagram of the proposed multi-class extremity movement
classification approach.
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3.2 Feature Extraction

24 time-domain, 15 frequency-domain, 15 time-frequency domain, and 4 non-linear
features are evaluated for each EEG channel of each EEG segment. In addition to them,
the combinations sets are generated to improve classifier performances. These feature
sets and their different combination feature sets are analyzed using various machine
learning algorithms for binary-class and multi-class extremity movement

classifications, separately.
3.2.1  Time-domain Feature Set

After the extraction of EEG segments, the time-domain feature set was obtained
evaluating 24 different amplitude and statistical information-based features in the
time-domain. The mathematical formulations of these features are represented in
Section 2.2.1. In the time-domain feature extraction-based approach, a total of
2592x528 and 1296x528 size time-domain feature sets are created for multi-class and

binary-class extremity movement task classifications, respectively.
3.2.2  Frequency-domain Feature Set

To create the frequency-domain feature set, the frequency domain of EEG segments is
obtained using FT and five different EEG sub-bands are decomposed for each EEG
segment. Energy, variance, and entropy measures are evaluated using EEG sub-bands.
The mathematical formulations of energy, variance and entropy values are represented
in Section 2.2.2. In the frequency-domain feature extraction-based approach, a total of
2592x330 and 1296x330 size frequency-domain feature sets are created for multi-class

and binary-class extremity movement task classifications, respectively.

3.2.3  Time-Frequency Domain Feature Set

To create the frequency-domain feature set, the time-frequency domain of EEG
segments is obtained using WT and five different EEG sub-bands are decomposed for

each EEG segment. Energy, variance, and entropy measures are evaluated using EEG

41



sub-bands. Haar mother wavelet and 7 level sub-band decomposition are utilized for
our analysis. The mathematical formulations of energy, entropy, and variance values

based on the WT methos are represented in Section 2.2.3.

In the time-frequency domain feature extraction-based approach, a total of 2592x330
and 1296x330 size time-frequency domain feature sets are created for multi-class and

binary-class extremity movement task classifications, respectively.

3.2.4 Non-linear Feature Set

Non-linear feature sets are created using Poincare plot-based measures. 4 different
non-linear features are evaluated to supply information about the non-linear dynamics
embedded in EEG signals for each EEG segment where lag = m . In this thesis, m
defined from 1 to 10 and a non-linear feature set is created for each m value to
investigate the effectiveness of different m values, separately. Poincare plot measures’

formulations are given in Section 2.2.4.

In the non-linear feature extraction-based approach, a total of 2592x88 size 10
different non-linear feature sets are created for multi-class extremity movement task
classification. Additionally, a total of 2592x880 size combination of 10 non-linear

feature sets is created for analysis.

3.25 Combination Feature Set Including Time-domain,

Frequency-domain, and Time-frequency domain Features

In addition to four different feature sets, the effectiveness of the combination of
different feature sets are investigated to improve the classification performance in our
thesis studies. Combination feature sets are created using 24 time-domain, 15
frequency-domain, and 15 time-frequency domain features for each EEG channel of
each EEG segment. In the combination feature set-based analysis, a total of 2592x1188
and 1296x1188 size the combination feature sets are created for multi-class and binary-

class extremity movement task classifications, respectively.

42



3.2.6  Combination Feature Set Including Time-domain,
Frequency-domain, Time-frequency domain, and Non-linear

Features

In our second combination feature sets, we added 8 non-linear features into our first
combination feature set which is created using 24 time-domain, 15 frequency-domain,
and 15 time-frequency domain features for each EEG channel of each EEG segment.
4 non-linear features are evaluated for each EEG segments where 2 different lag
conditions which are lag = 1and lag = 9. A total of 176 non-linear features are
evaluated from all EEG channels of each EEG segment based on the 2 different lag
conditions and added to our previous combination sets. In our second combination
feature set-based analysis, a total of 2592x1364 and 1296x1364 size the combination
feature sets are created for multi-class and binary-class extremity movement task

classifications, respectively.

3.3 Feature Selection Using Statistically Significance

In our thesis, the statistically significance-based feature selection method is presented.
The effectiveness of this method is investigated in six different feature sets for both

multi-class and binary-class extremity movement task classifications.

Table 3.1: Sizes of all feature sets and t-test selected feature sets used in binary-class
extremity movement task classification.

Feature Set All Features T-test Selected Features
TD (1296x528) (1296x44)
FD (1296x330) (1296x28)
WT (1296x330) (1296x13)
TD+FD+WT (1296x1188) (1296x85)
TD+FT+WT+P (1296x1364) (1296x91)

43



The statistically significance-based feature selection methods which are the
independent t-test and ANOVA test are used to select statistically significant features
in feature sets for binary-class and multi-class extremity movement task
classifications, respectively. Table 3.1 represents the number of all features and t-test
selected features in six different feature sets which are used in our binary-class
extremity movement task classifications. Table 3.2 represents the number of all
features and ANOVA selected features in six different feature sets which are used in

our multi-class extremity movement task classifications.

Table 3.2: Sizes of all feature sets and ANOVA selected feature sets used in multi-
class extremity movement task classification.

Feature Set All Features ANOVA Selected Features
TD (2592x528) (2592x345)
FD (2592x330) (2592x102)
WT (2592x330) (2592x104)
TD+FD+WT (2592x1188) (2592x551)
TD+FT+WT+P (2592x1364) (2592x612)

3.4 Results and Discussions of Binary-Class Extremity

Movement Task Classification

EEG signals including MI tasks provided from 22-channel EEG recordings of 9
subjects were analyzed utilizing different feature sets and various classifiers. The
different features extraction approaches including time-domain, frequency-domain,
time-frequency domain, and non-linear features were performed for binary-class
extremity movement task (right hand and left hand MI tasks) classification after
obtaining of 3 sec MI EEG segments. Time-domain (24 different statistical and
amplitude-based measures), frequency-domain (energy, variance, and entropy
measures of FT-based five different EEG sub-bands), time-frequency domain (energy,

variance, and entropy measures of WT-based five different EEG sub-bands), and non-

44



linear (4 different Poincare plot measures) feature sets were created from 22-channel
EEG signals. The effectiveness of these four different feature sets and their two
different combination feature sets are investigated, separately. In addition, the
effectiveness of the independent t-test based feature selection process is investigated
with all extracted feature sets. Finally, DT, DA, NB, LR, SVM, k-NN, EL, NNs, and
KA machine learning algorithms are performed for classification, and the results are
evaluated. All signal processing (signal segmentation, feature extraction, feature
selection, and classification) and performance analyzes were implemented using
MATLAB software. The performances of these six different features sets are

compared using 9 different classifiers.

Performance evaluation results of our proposed approach including different feature
sets, the independent t-test based feature selection, and various classifiers are given in
Tables 3.3-3.8. In these tables TD, FD, WT, and P indicate that the features for
classifications using the time-domain, frequency-domain, time-frequency domain, and
non-linear information, respectively. On the other hand, TD+T-test, FD +T-test, and
WT+T-test indicate that the independent t-test selected statistically significant features
for classifications using the time-domain, frequency-domain, and time-frequency
domain, respectively. The classifications performed using the first combination feature
set including time-domain, frequency-domain, and time-frequency domain features
are indicated as TD+FD+WT and the classifications performed using the independent
t-test selected statistically significant features of this combination set are indicated as
TD+FD+WT+T-test. The classifications performed using the second combination
feature set including time-domain, frequency-domain, time-frequency domain, and
non-linear features are indicated as TD+FD+WT+P and the classifications performed
using the independent t-test selected statistically significant features of this
combination set are indicated as TD+FD+WT+P+T-test. The boldface characters in
table cells represent the best classification performance for each approach and

classification algorithms (in Tables 3.3-3.8).

The performance evaluation of all time-domain features and the t-test selected
statistically significant time-domain features for binary-classification is summarized
in Table 3.3. We obtained the highest accuracy value of 61.26% using all time-domain

features evaluated from EEG segments and EL algorithm while the NB algorithm
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performed the worst accuracy value of 52.62% for the same features. When the t-test
selected statistically significant time-domain features evaluated using various
classifiers, we achieved the highest 56.64% classification accuracy using LR algorithm
and the worst accuracy value of 51.08% using KA algorithm. To discover the
effectiveness of the independent t-test selection process, we analyzed and compared
performance results of TD and TD+T-test classifications. It was observed that t-test
based feature selection diminished classifier performances in all classifiers except two
(NB and k-NN). Results of all classification using time-domain and statistically

significant time-domain features are given in Table 3.3.

Table 3.3: Performance results (%) for binary-class extremity movement task
classification using time-domain feature set.

Accuracy
Models TD TD+T-test
Decision Tree 56.56 55.02
Discriminant Analysis 57.64 56.02
Logistic Regression 56.17 55.79
Naive Bayes 52.62 55.17
Support Vector Machine 59.57 56.64
k-Nearest Neighbours 53.24 54.32
Ensemble Learning 61.26 57.72
Neural Networks 58.72 53.01
Kernel Approximation 54.24 51.08

The performance evaluation of all frequency-domain features and the t-test selected
statistically significant frequency-domain features for binary-classification is
summarized in Table 3.4. We obtained the highest accuracy value of 60.03% using all
frequency-domain features evaluated from EEG segments and EL algorithm while the
LR and k-NN algorithms performed the worst accuracy value of 52.01% for the same

features. When the t-test selected statistically significant frequency-domain features
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evaluated using various classifiers, we achieved the highest 61.34% classification
accuracy using LR algorithm and the worst accuracy value of 53.55% using KA
algorithm. To discover the effectiveness of the independent t-test selection process in
frequency-domain feature set, we analyzed and compared performance results of FD
and FD+T-test classifications. It was observed that t-test based feature selection
improved classifier performances in all classifiers except two (DT and KA). Results
of all classification using frequency-domain and statistically significant frequency-

domain features are given in Table 3.4.

Table 3.4: Performance results (%) for binary-class extremity movement task
classification using frequency-domain feature set.

Accuracy
Models FD FD+T-test
Decision Tree 57.56 57.48
Discriminant Analysis 53.86 61.11
Logistic Regression 54.63 61.34
Naive Bayes 52.01 55.79
Support Vector Machine 55.63 59.03
k-Nearest Neighbours 52.01 54.78
Ensemble Learning 60.03 60.26
Neural Networks 56.48 57.18
Kernel Approximation 55.94 53.55

The performance evaluation of all time-frequency domain features and the t-test
selected statistically significant time-frequency-domain features for binary-
classification is summarized in Table 3.5. We obtained the highest accuracy value of
52.70% using all time-frequency domain features evaluated from EEG segments and
DT algorithm while the LR and k-NN algorithms performed the worst accuracy value
of 49.85% for the same features. In DA, SVM, NN, and KA, we did not perform
classification using all time-frequency domain features, because the proposed feature
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set is not suitable for the classifier structure. When the t-test selected statistically
significant time-frequency domain features evaluated using various classifiers, we
achieved the highest 54.71% classification accuracy using LR algorithm and the worst
accuracy value of 49.15% using KA algorithm. To discover the effectiveness of the
independent t-test selection process in time-frequency domain feature set, we analyzed
and compared performance results of WT and WT+T-test classifications. When the
performed classifications were examined for the case where all features were used, it
was observed that the independent t-test based feature selection method increased the
performance in all classifiers except one out of 5 classifiers. Results of all classification
using time-frequency domain and statistically significant time-frequency domain

features are given in Table 3.5.

Table 3.5: Performance results (%) for binary-class extremity movement task
classification using the time-frequency domain feature set.

Accuracy
Models WT WT+T-test
Decision Tree 52.70 50.62
Discriminant Analysis N/A 50.93
Logistic Regression 49.85 50.77
Naive Bayes 51.16 54.71
Support Vector Machine N/A 50.93
k-Nearest Neighbours 49.85 50.69
Ensemble Learning 51.39 53.94
Neural Networks N/A 50.54
Kernel Approximation N/A 49.15

The performance evaluation of all non-linear feature sets with various classifiers is
summarized in Table 3.6. In this table, Lag (1)-Lag (10) indicate that the features for
classifications are evaluated by using the corresponding lag value. Additionally, “All

lags” indicates that the classifications are carried out using the combination feature set
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provided by combining the features from 10 different lag values. The results revealed
that the non-linear feature set extracted for lag=6 condition achieved the highest
accuracy value of 63.35% using DA classifier and the worst accuracy value of 48.53%
is evaluated using All lags feature set and NB classifier. On the other hand, we
analyzed the effectiveness of different lag values for 9 classifiers. We observed that
the higher classification performance is obtained in 2 (NN and KA) classifiers using
feature set for lag=4 condition, in 3 (DA, LR, and EL) classifiers using feature set for
lag=6 condition, and in 1 classifier using feature sets for lag=7, lag=9, lag=10, and All
lags conditions. Among all non-linear feature sets, the most successful feature set is
evaluated as the 6™ feature set generated where lag=6.

Table 3.6: Performance results (%) for binary-class extremity movement task
classification using the non-linear feature set.

Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag Al

Model o © @ @ ) ®) @ ® © (0 lags

Decision Tree 52.62 52.01 52.70 54.63 52.70 54.71 55.40 54.24 54.32 53.94 53.32

Discriminant 50.03  60.34 6173 5880 6011 6335 6057 5949  50.95  60.03  54.63
Analysis

Logistic

Regression 5903 6049 6235 5972 6103 6265 6111 6057 6057 6042  53.24
Naive Bayes 49.85  49.07 4977 4961  49.07 5046  50.08  50.31 5193 5224 4853
SUpportVector  gger 6157 g258 6235 6173 6219 6235 6157  60.80 6003  63.04
Machine

k-Nearest 5100 5247 5301 5378 5386 5386 5509  53.32 5571 5386  53.16
Neighbours

Ensemble

Learning 5895  60.26 6127 6142 6134 6281 6181 6003 6042 5880  61.19
Neural 60.42 5864  59.65  61.88 5864 6012  60.88 5957 5926  57.02  60.57
Netiorks ) . ) . ) . ) . . i .
Kernel

. . 52.16 53.70 52.93 54.63 52.39 54.17 52.24 53.16 52..85 54.17 53.86
Approximation

In order to compare the effectiveness of different feature sets, the classification is
carried out with the combination of time-domain, frequency-domain, and time-
frequency domain features. The performance evaluation results of this combination
feature set and the independent t-test selected feature set from the combined feature
set are summarized in Table 3.7. In classification performed using combined feature

set, the EL algorithm obtained the maximum accuracy (58.10%) and k-NN obtained
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the worst accuracy (49.85%) using same features. In DA, SVM, NN, and KA, we did
not perform classification using all combination set features, because the proposed
feature set is not suitable for the classifier structure. On the other hand, in the
classifications performed using the independent t-test selected feature set, the EL
algorithm provided the maximum accuracy (62.96%) and KA provided the worst
accuracy (50.00%) using same features. To discover the effectiveness of the
independent t-test selection process in the combination feature set, we analyzed and
compared performance results of TD+FD+WT and TD+FD+WT+T-test
classifications. When the performed classifications were examined for the case where
all features were used, it was observed that the independent t-test based feature
selection method increased the performance in all classifiers except one out of 5
classifiers. Results of all classification using the combination set and the selected

statistically significant combination set features are given in Table 3.7,

Table 3.7: Performance results (%) for binary-class extremity movement task
classification using the combined (TD+FD+WT) feature set.

Accuracy
Models TD+FD+WT TD+FD+WT+T-test
Decision Tree 56.71 55.25
Discriminant Analysis N/A 51.23
Logistic Regression 49.92 51.00
Naive Bayes 53.47 57.02
Support Vector Machine N/A 51.16
k-Nearest Neighbours 49.85 50.31
Ensemble Learning 58.10 62.96
Neural Networks N/A 50.85
Kernel Approximation N/A 50.00

The classification is performed in our second combination set including time-domain,

frequency-domain, time-frequency domain, and non-linear features. We added non-
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linear feature sets extracted for lag=1 and lag=9 conditions, into our previous
combination set. The performance evaluation results of this combination feature set
and the independent t-test selected feature set from this combined feature set are
summarized in Table 3.8. In classification performed using combined feature set, the
EL algorithm obtained the maximum accuracy (57.30%) and NB obtained the worst
accuracy (48.50%) using same features. On the other hand, in the classifications
performed using the independent t-test selected feature set, the EL algorithm provided
the maximum accuracy (61.86%) and KA provided the worst accuracy (49.92%) using
same features. To discover the effectiveness of the independent t-test selection process
in the combination feature set, we analyzed and compared performance results of
TD+FD+WT+P and TD+FD+WT+P+T-test classifications. When the performed
classifications were examined for the case where all features were used, it was
observed that the independent t-test based feature selection method increased the
performance in all classifiers except one out of 5 classifiers. Results of all classification
using our second combination set and the selected statistically significant combination

set features are given in Table 3.8.

Table 3.8: Performance results (%) for binary-class extremity movement task
classification using the combined (TD+FD+WT+P) feature set.

Accuracy
TD+FD+WT+P  TD+FD+WT+P+T-test
Models
Decision Tree 56.60 56.50
Discriminant Analysis N/A 52.10
Logistic Regression 49.90 51.10
Naive Bayes 48.50 57.10
Support Vector Machine N/A 51.40
k-Nearest Neighbours 49.80 50.80
Ensemble Learning 57.30 61.86
Neural Networks N/A 50.54
Kernel Approximation N/A 49.92
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Also, the independent t-test selected features in four different sets are analyzed to
investigate effects of different features and EEG channels. Firstly, we investigated the
independent t-test selected time-domain features. The list of 24 different time-domain
features with their abbreviations are available in Table 3.9. Channel-based t-test
selected statistically significant time-domain feature distribution is given in Table
3.10. A total of 44 time-domain features were indicated as statistically-significant
features using t-test. Among the 24 different time-domain features, the selected
features are maximum value (in 3 EEG channels), mean value (in 12 EEG channels),
kurtosis (in 4 EEG channels), skewness (in 3 EEG channels), Q1 (in 5 EEG channels),
Q2 (in 13 EEG channels), Q3 (in an EEG channel), and slope-change value (in 3 EEG
channel). Among 22 EEG channels, more statistically significant features were
selected from some channels (6", 121" 13" and 18" EEG channels). Also, the
statistically significant features were not selected from some channels as can be seen
from Table. As a result, it was observed that feature selections were made from certain
channels and certain features with the t test. However, it has been observed that the
independent t-test generally cannot improve the classifier performance in the time

domain feature set.

Table 3.9: Time-domain features.

Time-domain features

T: | Minumum value T3 | Kurtosis
T, | Maximum value T | Skewness
Ts | Mean Tis | Hjorth parameters (Activity)
T4 | Standard deviation value Tis | Hjorth parameters (Mobility)
Ts | Integrated EEG value Ti7 | Hjorth parameters (Complexity)
Ts | Mean absolute value Tis | Signal range
T7 | Simple square integral T | First inter-quartile value (Q1)
Ts | Variance T2 | Second inter-quartile value (Q2)
Ty | Root mean square T2 | Third inter-quartile value (Q3)
T | Waveform length T2 | Mode value
T11 | Average amplitude change value Ty | Zero-crossing value
Tio | Absolute difference in standart T2 | Slope-change value

deviation

In another feature set, frequency-domain feature set, the t-test selected features were

investigated. The list of 15 frequency-domain features with their abbreviations are
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given in Table 3.11. Channel-based t-test selected statistically significant frequency-
domain feature distribution is given in Table 3.12. A total of 28 frequency-domain

features are indicated as statistically significant features with the application of t-test.

Table 3.10: Channel-based t-test selected statistically significant feature distribution
for binary extremity movement classification in time-domain feature set.

Fu Channels

1123|4567 ([8]9]10 11 12 13 | 14 | 15 16 17 | 18 19 20 | 21 | 22 T
T 0
T 3
T, 0
Ts 0
To 0
T 0
Te 0
T 0
T 0
Tu 0
T 0
Tus 4
n :
Tus 0
Tus 0
Ty 0
T 0
T °
Tao 13
Tar 1
To 0
Tos 0
Tos 3
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Table 3.11: FFT-based frequency and WT-based time-frequency domain features.

Frequency-domain and time-frequency domain features
F1, W1 Energy of delta band Fo, Wo Entropy of alpha band
F2, W2 Variance of delta band F10, W10 Energy of beta band
Fs, Ws Entropy of delta band Fu, W Variance of beta band
Fa, Wa Energy of theta band Fi2, W12 Entropy of beta band
Fs, W5 Variance of theta band Fis, Wis Energy of gamma band
Fe, Ws Entropy of theta band Fi4, W1s Variance of gamma band
F7, W~ Energy of alpha band Fis, Was Entropy of gamma band
Fs, Ws Variance of alpha band

Table 3.12: Channel-based t-test selected statistically significant feature distribution
for binary extremity movement classification in frequency-domain feature set.

Fiq Channels

1 2(3|4|5]|6 71819 10 11 12 13 14 15 16 17 18 19 | 20 21 22 T
F 0
E 0
F3 0
Fa 0
Fs 0
Fs

-

Fs

Fo

F1o

F11

F12 0
Fi3 0
Fia 0

F1s . 1

T 111j]0(0[2(1|1]|1]0] O 1 4 3 1 0 0 2 5 1 1 2 1 28

Among the 15 different time-domain features, the selected features are entropy of theta
band (in 5 EEG channels), energy of alpha band (in 8 EEG channels), variance of alpha
band (in 5 EEG channels), entropy of alpha band (in 7 EEG channels), variance of beta
band (in 2 EEG channels), and entropy of gamma band (in an EEG channel). In
literature it has been noted that alpha and beta rhytsms may be related motor activities

[1]. The alpha rhythms reflect visual processing and can be also associated with
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memory brain function. Also, Mu rhythms may be available in the same frequency-
range as alpha rhythms. Mu rhythms are strongly related to motor activities and, in
some conditions, appear to correlate with beta rhythms. Beta rhythms are strongly
related to motor activities. In our study, supporting the literature, statistically
significant features were determined as frequency-domain features obtained using the
alpha band. Therefore, it has been observed that classification performance improves
in most classifiers by selecting effective frequency band-based features. On the other
hand, among 22 EEG channels, more statistically significant features were selected
from some channels (12", 13", and 18" EEG channels). In studies in the literature,
certain channels (8", 10", and 12'") were identified as effective channels and they were
used for extremity movement classification [128]. Selecting more statistically
significant features from certain channels such as 12" EEG channels may also have

improved classifier performance.

Table 3.13: Channel-based t-test selected statistically significant feature distribution
for binary extremity movement classification in time-frequency domain feature set.

_ Channels
Fid
1(12|3|4|5|6|7(8|9|10|11 |12 |13 |14 |15 |16 | 17 | 18 | 19 | 20 | 21 | 22 T
W1 0
W2 0
W, 0
Ws 0

Ws 0
W 0
Wio 0
Wit 0
Wi . -] 2
Wis 0
Wi 0

55



Then, the t-test selected features were investigated in WT-based time-frequency
domain feature set. The list of 15 time-frequency domain features with their
abbreviations are given above with Table 3.11. Channel-based t-test selected
statistically significant time-frequency domain feature distribution is given in Table
3.13. A total of 13 time-frequency domain features are indicated as statistically
significant features with the application of t-test. Among the 15 different time-
fequency domain features, the selected features are entropy of delta band (in 3 EEG
channels), entropy of theta band (in 2 EEG channels), energy of alpha band (in an EEG
channel), entropy of beta band (in 2 EEG channels), and entropy of gamma band (in 5
EEG channels). Contrary to the literature [1], it was observed that the t-test improved
the classifier performance by not selecting the features obtained from the alpha and
beta bands which are related to motor activities, but only by making a selection based
on the entropy features of the other bands. On the other hand, among 22 EEG channels,
more statistically significant features were selected from some channels (4" and 21%
EEG channels). Contrary to the literature [128], it was observed that the t-test
improved the classifier performance by not selecting the features obtained from certain
channels which are indicated as effective channels, but only by making a selection

based on the features of 4" and 21" EEG channels.

Table 3.14: Poincare plot-based non-linear features.

Non-linear features
P1 SD; where lag=1 Ps SD; where lag=9
P2 SD, where lag=1 Ps SDowhere lag=9
Ps SD1SD, where lag=1 P7 SD1SD; where lag=9
P4 SD1/SD; where lag=1 Ps SD1/SD; where lag=9

Finally, the selected statistically significant non-linear features were investigated in
the second combination feature set (TD+FD+WT+P). The list of 8 non-linear features
with their abbreviations are given in Table 3.14. Channel-based t-test selected
statistically significant non-linear feature distribution is given in Table 3.15. A total of
6 non-linear features are indicated as statistically significant features with the

application of t-test. Among the 8 different non-linear features, the selected features
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are SD1 where lag=9 (in an EEG channel) and SD1/SD> where lag=9 (in 5 EEG
channels). It has been observed that among the non-linear features obtained for both
lag values, the non-linear features obtained for lag = 9 were selected only as
statistically significant features. As a result, this explains why we add the features
obtained for the lag = 9 case to our second combination set. However, including
selected non-linear features to the combination set generally improved classifier
performance. On the other hand, among 22 EEG channels, statistically significant
features were selected from a channel (12" EEG channel). This channel indicated as
effective channel for M1 task classification in the literature [128]. Therefore, selecting
statistically significant features from it may also have improved classifier

performance.

Table 3.15: Channel-based t-test selected statistically significant feature distribution
for binary extremity movement classification in non-linear feature set.

. Channels
id 1| 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T
P, 0
P2 0
Ps 0
Pa 0
Ps - 1
Pe 0
P 0
Ps 5
T 0| 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 2 0 0 0 0 6

In our proposed binary-class extremity movement task classification studies, our main
purpose is to introduce different feature extraction-based approaches and investigate
the effects of these feature sets and the statistically significance-based feature selection
on the classification performance. In our experiments we included the Poincare plot-
based non-linear features that have not been used in Ml task classification in previous

studies.

We performed the proposed four different feature extraction approaches on

classification of right and left hands Ml task 22-channel EEG signals supplied from
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open-available dataset. 24 time-domain, 15 frequency-domain, 15 time-frequency
domain and 4 non-linear features are extracted from each EEG segments. These time-
domain, frequency-domain, time-frequency domain, non-linear feature sets their two
different combination feature sets were classified utilizing DT, DA, NB, SVM, LR, k-
NN, EL, NN, and KA, and performances of different feature sets were compared.
Additionally, the independent t-test was applied to select features in the proposed
feature sets and the effectiveness of this method is analyzed in all feature sets with

same classifiers.

Among all feature sets, performance of time-frequency feature set was observed to be
poor for binary-class extremity movement task classification and the performance of
non-linear feature sets was found to be higher especially for all classifiers except NB.
The most successful non-linear feature set is 6™ feature set including non-linear
features for lag=6 condition. The highest accuracy value of binary classification is
provided by using this non-linear feature set. Therefore, the successful non-linear
feature sets revealed that Ml tasks lead to distinctive and effective differences in the
non-linear dynamics embedded in EEG signals. When the analyzes performed with
two different combination sets were compared, it was observed that, contrary to the
individual success of the non-linear feature sets, better performances were achieved
with the 1st combination feature set (TD+FD+WT), in which Poincare measurements

were not included.

In addition, when the effects of the independent t-test were evaluated, we noted that
performance of this feature selection with time-domain feature set was observed to be
poor and sufficient improvements in classifier performances have not been achieved.
On contrary to the classification performed using statistically significant features from
time-domain feature set, the proposed the independent t-test based feature selection
generally improves classifier performance in other feature sets-based binary
classifications. The maximum accuracy value in binary classification is evaluated with
DA algorithm for non-linear feature set, but the highest accuracy value in different
feature sets is generally evaluated using EL algorithm as shown in Figure 3.3a and
Figure 3.3b. The detailed comparision of accuracy values of proposed approaches
using EL and DA algorithms are given in Figure 3.3a and Figure 3.3b, respectively.
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(a) EL-based binary extremity movement classification results.
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(b) DA-based binary extremity movement classification results.

Figure 3.3: Comparing of accuracy values of proposed binary-class extremity
movement task classification approaches using (a) EL algorithm and (b) DA
algorithm.
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Table 3.16: Performance comparison of binary-class extremity movement task
classification studies.

Number  Number

Ref. ciﬂzifi%tn of of Proposed methods Classifier AC((:;; )a oy
channels  classes
[38] SI/9 2 2 WPD Random forest 68.32
Time-domain parameters
[81] S1/9 22 2 FFT EL 62.52
T-test

[128] SlI/9 3 2 STFT CNN 74.20
[129] SlI/9 22 2 WT CNN 69.00
TD EL 62.26
FD+T-test LR 61.34
i WT+ T-test NB 54.75
SISCI’; S0 % ? P LDA 63.35
TD+FD+WT+ T-test EL 62.96
TD+FD+WT+P+ T-test EL 61.86

In Table 3.16, some of the previous binary-class extremity movement classification
studies are summarized and their performances are compared with that of the proposed
study. In [38], binary-class extremity movement classification was presented using
WPD. They selected only two EEG channels before feature extraction step and
Random forest-based classification results reported as 68.32%. However, they used
certain channels eliminating information of other channels. When we examine the
channel-based distribution of statistically significant features in our studies, we
observed that significant features are selected from different features or different
channels in different data sets and that the same EEG channels are not selected in all
feature sets. Therefore, when we select certain channels and work with them as that of
study, we would not have captured the significant features in some channels. In [128],
STFT-based binary-class Ml task classification was performed using 3 EEG channels
of data set. Higher accuracy value was yielded than our presented studies. However,
in their study channel selection step was performed which is not the stage in our
studies. We used 22 EEG channels with high and low classification performance,
which slightly decreases the overall motor imagery task classification performance,
but eliminates a channel selection phase. In addition to channel reduction, their

proposed study includes high complexity in terms of CNN-based feature extraction
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and classification due to fact that its deep neural layer structures increase training time.
In another CNN-based classification study [129], WT algorithm was used for feature
extraction. Although it has high computational complexity, the classification result
was reported as 69.00%. In our previous study [81], we investigated the statistically
significant time-domain and frequency-domain features in binary-class extremity
movement classification using EL algorithm. We observed that t-test improved
classifier performance. In addition to these time-domain and frequency-domain feature
extraction approaches, different feature extraction methods, which clearly have the
computational advantages, were investigated by us. Thus, the above encouraging
experimental results together with the computational advantages, indicate that the
proposed Poincare plot measures and the combination of different feature extraction

approaches may be used to analysis of non-stationary EEG signals.

3.5 Results and Discussions of Multi-Class Extremity

Movement Task Classification

In the multi-class extremity movement task classification, we aim at discriminating the
four different MI task EEG segments utilizing different feature extraction-based
approaches. Four different (right hand, left hand, both feet, and tongue) extremity
movement M1 tasks segments of 22-channel EEG recordings obtained from 9 subjects
are used to extract features. Time-domain, frequency-domain, time-frequency domain
and non-linear feature sets are obtained from these EEG segments. Time-domain (24
different statistical and amplitude-based measures), frequency-domain (energy,
variance, and entropy measures of FT-based five different EEG sub-bands), time-
frequency domain (energy, variance, and entropy measures of WT-based five different
EEG sub-bands), and non-linear (4 different Poincare plot measures) feature sets were
created from 22-channel EEG signals. The effect of these four different feature sets
and their two different combination sets are investigated as previous binary
classification studies. In addition, the effectiveness of ANOVA-based feature selection
process is investigated with all extracted feature sets. Finally, 8 different machine
learning algorithms are DT, DA, NB, SVM, k-NN, EL, NN, and KA were applied to
classify these feature sets and the results of each of them were analyzed. All signal

processing (signal segmentation, feature extraction, feature selection, and
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classification) and performance analyzes were implemented using MATLAB

software.

Performance evaluation results of our proposed approach including different feature
sets, ANOVA-based feature selection, and various classifiers are given in Tables 3.17-
3.22. In these tables TD, FD, WT, and P denote that the features for classifications
using the time-domain, frequency-domain, time-frequency domain, and non-linear
information, respectively. On the other hand, TD+ANOVA, FD+ANOVA, and
WT+ANOVA indicate that the ANOVA selected statistically significant features for
classifications using the time-domain, frequency-domain, and time-frequency domain,
respectively. The classifications performed using the first combination feature set
including time-domain, frequency-domain, and time-frequency domain features are
denoted as TD+FD+WT and the classifications performed using the ANOVA-selected
statistically significant features of this combination set are denoted as
TD+FD+WT+ANOVA. The classifications performed using the second combination
feature set including time-domain, frequency-domain, time-frequency domain, and
non-linear features are denoted as TD+FD+WT+P and the classifications performed
using the ANOVA selected statistically significant features of this combination set are
denoted as TD+FD+WT+P+ANOVA. The boldface characters in table cells denote
the best classification performance for each approach and classification algorithms (in
Tables 3.17-3.22).

The performance evaluation of all time-domain features and the ANOVA-selected
statistically significant time-domain features for four-class Ml task classification is
summarized in Table 3.17. We obtained the highest accuracy value of 44.38% using
all time-domain features evaluated from EEG segments and EL algorithm while the
NB algorithm performed the worst accuracy value of 29.40% for the same features.
When the ANOVA-selected statistically significant time-domain features evaluated
using various classifiers, we achieved the highest 43.91% classification accuracy using
EL algorithm and the worst accuracy value of 29.40% using NB algorithm. To
investigate the effectiveness of the independent t-test selection process, we analyzed
and compared performance results of TD and TD+ANOVA classifications. It was
observed that ANOVA based feature selection process improved the performance in 5

classifiers, decreased the performance in 2 classifiers, and did not change the
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performance in 1 classifier. Results of all classification using time-domain and

statistically significant time-domain features are given in Table 3.17.

Table 3.17: Performance results (%) for multi-class extremity movement task
classification using time-domain feature set.

Accuracy
Models TD TD+ANOVA
Decision Tree 31.00 31.10
Discriminant Analysis 41.90 44.00
Naive Bayes 29.40 29.40
Support Vector Machine 40.28 43.12
k-Nearest Neighbours 32.30 33.40
Ensemble Learning 44.38 43.91
Neural Networks 39.89 40.86
Kernel Approximation 32.48 31.87

The performance evaluation of all frequency-domain features and the ANOVA-
selected statistically significant frequency-domain features for four-class MI task
classification is summarized in Table 3.18. We obtained the highest accuracy value of
35.76% using all frequency-domain features evaluated from EEG segments and EL
algorithm while the NB algorithm performed the worst accuracy value of 28.59% for
the same features. When the ANOVA-selected statistically significant frequency-
domain features evaluated using various classifiers, we achieved the highest 38.46%
classification accuracy using EL algorithm and the worst accuracy value of 29.09%
using NB algorithm. To discover the effectiveness of the ANOVA-based feature
selection process in frequency-domain feature set, we analyzed and compared
performance results of FD and FD+ANOVA classifications. It was observed that
ANOVA-based feature selection improved classifier performances in all classifiers
except a classifier (KA). Results of all classification using frequency-domain and
statistically significant frequency-domain features are given in Table 3.18.
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Table 3.18: Performance results (%) for multi-class extremity movement task
classification using frequency-domain feature set.

Accuracy
Models FD FD+ANOVA
Decision Tree 31.40 31.44
Discriminant Analysis 34.41 37.89
Naive Bayes 28.59 29.09
Support Vector Machine 33.14 37.69
k-Nearest Neighbours 29.28 29.98
Ensemble Learning 35.76 38.46
Neural Networks 33.68 36.38
Kernel Approximation 32.18 30.94

The performance evaluation of all time-frequency domain features and the ANOVA-
selected statistically significant time-frequency-domain features for four-class Ml task
classification is summarized in Table 3.19. We obtained the highest accuracy value of
28.63% using all time-frequency domain features evaluated from EEG segments and
EL algorithm while the SVM, k-NN, and KA algorithms performed the worst accuracy
value of 24.81% for the same features. In DA algorithm, we did not perform
classification using all time-frequency domain features, because the proposed feature
set is not suitable for the classifier structure. When the ANOVA-selected statistically
significant time-frequency domain features evaluated using various classifiers, we
achieved the highest 34.34% classification accuracy using EL algorithm and the worst
accuracy value of 25.42% using DA algorithm. To discover the effectiveness of the
ANOVA-based feature selection process in time-frequency domain feature set, we
analyzed and compared performance results of WT and WT+ANOVA classifications.
When the performed classifications were examined for the case where all features were
used, it was observed that the ANOVA-based feature selection method increased the
performance in all classifiers except one out of 7 classifiers. Results of all classification
using time-frequency domain and statistically significant time-frequency domain

features are given in Table 3.19.
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Table 3.19: Performance results (%) for multi-class extremity movement task
classification using the time-frequency domain feature set.

Accuracy
Models WT WT+ANOVA
Decision Tree 28.32 28.74
Discriminant Analysis N/A 25.42
Naive Bayes 28.20 28.16
Support Vector Machine 24.81 25.73
k-Nearest Neighbours 24.81 25.54
Ensemble Learning 28.63 34.34
Neural Networks 25.00 25.62
Kernel Approximation 24.81 25.81

The performance evaluation of all non-linear feature sets with various classifiers is
summarized in Table 3.20. In this table, Lag (1)-Lag (10) indicate that the features for
classifications are evaluated by using the corresponding lag value. Additionally, “All
lags” indicates that the classifications are carried out using the combination feature set
provided by combining the features from 10 different lag values. The results revealed
that the non-linear feature set extracted for All lags condition achieved the highest
accuracy value of 47.08% using SVM classifier and the worst accuracy value of
26.80% is evaluated using lag=1 feature set and NB classifier. On the other hand, we
analyzed the effectiveness of different lag values for 8 classifiers. We observed that
the higher classification performance is obtained in 1 (DA) classifiers using feature set
for lag=7 condition, 1 (k-NN) classifiers using feature set for lag=8 condition, in 2
(DA, and NB) classifiers using feature set for lag=9 condition, 1 (KA) classifiers using
feature set for lag=10 condition, and in 4 (DT, SVM, EL, and NN) classifiers using
feature set for All lags condition. Among all non-linear feature sets, the most
successful feature set is evaluated as the All lags feature set generated combining of
all non-linear feature sets. When we analyzed the other 10 non-linear sets without
including the combination feature set, it was seen that the highest results were achieved

with the 9th feature set generated where lag=9.
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Table 3.20: Performance results (%) for multi-class extremity movement task
classification using the non-linear feature set.

Model Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag All
(1) (2 3) (C)] (5) 6 (O] ® ) (10) lags

Decision Tree 2910 3010 2960 2930 2940 3060 3050 3140 3150 3110  31.90
Discriminant 4000 4050 4000 4170 4010 4190 4270 4230 4270 4170  40.20
Analysis
Naive Bayes 26.80 2830  27.90 2860 2800  29.00 2800 2820  30.00 2840 2830
SUPPOTEVECIOr 41 01 4316 4430 4451 4298 4307 4436 4448 4341 4378 47.08
Machine
k-Nearest 3220 3210 3250 3240 3210 3240 3220 3330 3310 3300 3230
Neighbours
Ensemble 3059 4120 4153 4208 4019 4217 4284 4294 4342 4227 46.06
Learning
Neural 3097 4171 4159 4205 4100 4120 4200 4147 4035 4105 4518
Networks : : ’ . ’ ’ : ’ . . ’
Kernel

3013 3152 3140 3179 3229 3225 3148 3160 3098  32.64  30.63

Approximation

Table 3.21: Performance results (%) for multi-class extremity movement task

classification using the combined (TD+FD+WT) feature set.

Accuracy
Models TD+FD+WT TD+FD+WT+ANOVA
Decision Tree 34.38 34.34
Discriminant Analysis N/A 25.96
Naive Bayes 29.09 29.51
Support Vector Machine 24.81 26.54
k-Nearest Neighbours 24.81 25.62
Ensemble Learning 35.73 44.33
Neural Networks 25.00 26.54
Kernel Approximation 24.81 25.46

In order to compare the effectiveness of different feature sets, the classification is

carried out with the combination of time-domain, frequency-domain, and time-

frequency domain features. The performance evaluation results of this combination

feature set and the ANOVA-selected feature set from the combined feature set are
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summarized in Table 3.21. In classification performed using combined feature set, the
EL algorithm obtained the maximum accuracy (35.73%) and SVM, k-NN, and KA
algorithms obtained the worst accuracy (24.81%) using same features. In DA
algorithm, we did not perform classification using all combination set feature, because
the proposed feature set is not suitable for the classifier structure. On the other hand,
in the classifications performed using the ANOVA-selected feature set, the EL
algorithm provided the maximum accuracy (44.33%) and KA provided the worst
accuracy (25.46%) using same features. To discover the effectiveness of the ANOVA-
based feature selection process in the combination feature set, we analyzed and
compared performance results of TD+FD+WT and TD+FD+WT+ANOVA
classifications. When the performed classifications were examined for the case where
all features were used, it was observed that the ANOVA-based feature selection
method increased the performance in all classifiers except one out of 7 classifiers.
Results of all classification using the combination set and the selected statistically

significant combination set features are given in Table 3.21.

Table 3.22: Performance results (%) for multi-class extremity movement task
classification using the combined (TD+FD+WT+P) feature set.

Accuracy
TD+FD+WT+P TD+FD+WT+P+ANOVA
Models
Decision Tree 34.50 34.50
Discriminant Analysis N/A 27.31
Naive Bayes 27.90 29.43
Support Vector Machine 25.00 29.43
k-Nearest Neighbours 24.90 26.21
Ensemble Learning 35.60 47.36
Neural Networks 24.90 27.55
Kernel Approximation 24.90 25.89

The classification is performed in our second combination set including time-domain,

frequency-domain, time-frequency domain, and non-linear features. We added non-
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linear feature sets extracted for lag=1 and lag=9 conditions, into our previous
combination set. The performance evaluation results of this combination feature set
and the ANOVA-selected feature set from this combined feature set are summarized
in Table 3.22. In classification performed using combined feature set, the EL algorithm
obtained the maximum accuracy (35.60%) and k-NN, NN, and KA obtained the worst
accuracy (24.90%) using same features. On the other hand, in the classifications
performed using the ANOVA-selected feature set, the EL algorithm provided the
maximum accuracy (47.36%) and KA provided the worst accuracy (25.89%) using
same features. To discover the effectiveness of the ANOVA-based feature selection
process in the combination feature set, we analyzed and compared performance results
of TD+FD+WT+P and TD+FD+WT+P+ANOVA classifications. When the
performed classifications were examined for the case where all features were used, it
was observed that the ANOVA-based feature selection method increased the
performance in all classifiers except one out of 7 classifiers. Results of all classification
using our second combination set and the selected statistically significant combination

set features are given in Table 3.22.

ANOVA-selected features in four different sets are analyzed to investigate effects of
different features and EEG channels for multi-class extremity movement
classification. Firstly, we investigated the ANOVA-selected time-domain features.
The list of 24 different time-domain features with their abbreviations are available
above with Table 3.9. Channel-based ANOVA-selected statistically significant time-
domain feature distribution is given in Table 3.23. A total of 345 time-domain features
were indicated as statistically-significant features using ANOVA. Among 24 different
time-domain features, some features such as minumu value, maximum value, mean,
standard deviation value, integrated EEG value, mean absolute value, simple square
integral, variance, root mean square, skewness, Hjorth parameters, signal range, Q1,
Q2, zero crossing value, and slope-change value were mostly selected as statistically
significant features from almost all channels. As can be clearly observed in the Table
3.23, some features were not selected as statistically significant features in any
channel. When the effectiveness of 22 EEG channels was examined, it was observed
that statistically significant features were selected intensively from all channels, and

there was no density in certain channels. As a result, it has been observed that classifier

68



performance has generally improved by determining statistically significant features
from all channels and certain features with ANOVA.

Table 3.23: Channel-based ANOVA-selected statistically significant feature
distribution for multi-class extremity movement task classification in time-domain
feature set.

Fu Channels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T
T: 18
T2 15
K] 22
Ta 22
Ts 22
Te 22
T7 20
Ts 20
To 22
Two 0
Tu 0
T 0
Tis 0

69



Channel-based ANOVA-selected statistically significant frequency-domain feature
distribution for multi-class extremity movement task classification is given in Table
3.24. A total of 102 frequency-domain features were indicated as statistically-
significant features using ANOVA. Among 15 different frequency frequency-domain
features, the mostly selected statistically significant features were the energy and
variance values of theta, alpha, and beta bands. These features are selected in too many
channels. On the other hand, among 22 EEG channels, more statistically significant
features were selected from some channels (10", 16™, 181 20", 21" and 22" EEG
channels). In studies in the literature, 10" EEG channel was identified as effective
channels and they were used for MI task classification [128]. Selecting more
statistically significant features from certain channels such as 10" EEG channels and
certain EEG subbands such as alpha and beta bands which are associated with motor

activities may have improved classifier performance.

Table 3.24: Channel-based ANOV A-selected statistically significant feature
distribution for multi-class extremity movement task classification in frequency-
domain feature set.

Fus Channels
1
112 (3 /4|5(|6|7 (891011 )12 |13 [ 14 (15|16 | 17 [ 18 | 19 [ 20 | 21 | 22 T
F1 0
F2 0

Fi3 0

Fia 0

Fis . 1
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Channel-based ANOVA-selected statistically significant WT-based time-frequency
domain feature distribution for multi-class extremity movement task classification is
given in Table 3.25. A total of 104 time-frequency domain features were indicated as
statistically-significant features using ANOVA. Among 15 different frequency
frequency-domain features, the mostly selected statistically significant features were
the energy and variance values of delta, theta, and alpha bands. These features are
selected in too many channels. On the other hand, among 22 EEG channels, more
statistically significant features were selected from some channels (14", 19, 20, 21t
and 22" EEG channels). However, it was observed that statistically significant time-
frequency features were generally selected from all channels. Selecting statistically
significant features from all EEG channels and certain EEG subbands such as alpha
band which is associated with motor activities may have improved classifier

performance.

Table 3.25: Channel-based t-test selected statistically significant feature distribution
for multi-class extremity movement task classification in time-frequency domain
feature set.

Fus Channels

Wi 0
Wi 0
Wi 0
Wi 0
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Table 3.26: Channel-based t-test selected statistically significant feature distribution
for multi-class extremity movement task classification in non-linear feature set.

Fu Channels

1123|4567 ]|8|9]10 |11 )12 |13 | 14 | 15 | 16 (17 | 18 |19 [ 20 |21 [22 | T
P 5
P, 7
Ps 8
Pa 6
Ps 10
Ps 10
P, 7
Ps 8
T 5(2(0|2|5|1]1(5|5]|1 3 6 3 0 4 5 2 0 5 5 1 0 | 61

Finally, the selected statistically significant non-linear features were investigated in
the second combination feature set (TD+FD+WT+P). The list of 8 non-linear features
with their abbreviations are given above with Table 3.14. Channel-based ANOVA-
selected statistically significant non-linear feature distribution is given in Table 3.14.
A total of 61 non-linear features are indicated as statistically significant features with
the application of ANOVA test. When the selected statistically significant non-linear
features were examined, it was observed that balanced selections were made from all
features, not specific features. On the other hand, among 22 EEG channels, statistically
significant features were selected from almost all of the EEG channels. However, from
some channels such as 8" and 12" EEG channels, more statistically significant were
selected. These channels were indicated as effective EEG channels in literature [128].
Therofore, lots of selections on these channels and there is a balanced distribution of
feature selection from all feature may have improved classifier performance in our

second combination feature set (TD+FD+WT+P).

In our proposed four-class extremity movements task classification studies, we
investigated the effects of various feature sets and statistically significance-based
feature selection method on the classification performance. In addition to the classical
feature extraction approaches which are time-domain, frequency-domain, and time-
frequency domain-based evaluations, we investigate the effects of non-linear features

(Poincare plot-based measures) for four-class Ml task classification. Additionally, we

72



combined different feature sets and applied ANOVA-based feature selection process
to improve classifier performance determining effective and relevant features from
EEG signals.

We applied the proposed four different feature extraction approaches for classification
of right hand, left hand, both feet, and tongue Ml tasks of 22-channel EEG signals after
obtaining of 3 sec MI EEG segments. A total of 24 time-domain, 15 frequency-
domain, 15 time-frequency domain and 4 non-linear features are evluated from each
EEG segment. These time-domain, frequency-domain, time-frequency domain, and
non-linear feature sets, their two different combination feature sets, and ANOVA-
selected statistically significant feature sets of all feature sets were classified utilizing
DT, DA, NB, SVM, k-NN, EL, NN, and KA, and performances of different feature

sets and the effectiveness of ANOVA were investigated and compared.

Among all feature sets, performance of time-frequency feature set was observed to be
poor for four-class extremity movement task classification the performance of non-
linear feature sets was found to be higher especially for SVM and EL classifiers. When
we examined the 4 feature sets apart from the combinations, we observed that the most
successful is non-linear feature set which is defined as All lags feature set including
non-linear features for all lag condition. The highest accuracy value of multi-class
classification is provided by using this non-linear feature set and SVM algorithm.
Therefore, the successful non-linear feature sets revealed that MI tasks lead to
distinctive and effective differences in the non-linear dynamics embedded in EEG
signals. The performance evaluation of all proposed approaches using SVM algorithm

is given in Figure 3.3a.

When the analyzes performed with two different combination sets were compared, it
was observed that, better performances were achieved with the 2nd combination
feature set (TD+FD+WT+P), in which Poincare measurements were included. At the
same time, the highest performance value of the four-class MI task classification
studies is achieved with this combination feature set and EL. It has been observed that,
despite the high classification performance of the SVM algorithm in the non-linear
data group among the four feature sets, it does not show the same performance in the
combination feature set. In addition, it has been noticed that the highest performance

in the proposed approaches was generally achieved with the EL algorithm in the
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classifications carried out on all features sets (time-domain, frequency-domain, time-

frequency domain, and combination sets) except the non-linear feature sets.
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Figure 3.4: Comparing of accuracy values of proposed multi-class extremity
movement task classification approaches using (a) SVM algorithm and (b) EL
algorithm.
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The detailed comparision of accuracy values of proposed approaches using SVM and
EL algorithms are given in Figure 3.4a and Figure 3.4b, respectively. In the given
classifier performances, it is clearly observed with which feature set the highest

classification performance is achieved.

In addition, when the effects of the ANOVA-based feature selection were investigated,
we noted that performance of this feature selection with all feature sets especially
combination feature sets is improved the four-class Ml task classification performance
determining the effective and relevant features. The maximum accuracy value in multi-
class classification is evaluated with EL algorithm and TD+FD+WT+P+ANOVA
combination feature set as given in Figure 3.4b. Therefore, the combination of
different feature extraction methods and the statistically significance-based feature
selection method can be improved classifier performance and diminished classifier

complexity selecting small number of discriminative features.

Table 3.27: Performance comparison of multi-class extremity movement task
classification studies.

Number  Number

Ref. Sub!e_ct of of Proposed methods Classifier Accuracy
condition (%)
channels  classes
FBCSP
[130] S1/9 22 4 CNN 70.60
Energy-based features
FFT
[131] SI/9 8 4 Channel variance features SVM 56.00
PCA
[132] sI/9 22 4 CSP Fuzzy logic 65.00
system
CSP
[133] S1/9 26 4 LDA 51.67
Band power
[134] S1/10 64 4 Time domain parameters LDA 58.30
TD EL 44.38
FD+ANOVA EL 38.46
This WT+ANOVA EL 34.34
d S1/9 22 4
study P SVM 47.08
TD+FD+WT+ANOVA EL 44.33
TD+FD+WT+P+ANOVA EL 47.36
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Performance comparison of multi-class extremity movement task classification studies
conducted in the literature is demonstrated in Table 3.27. In [130], a CNN-based
approach is presented. FBCSP and energy-based features of EEG signals were used as
input. The accuracy of 70.60% were achieved for subject-independent analysis of 9
subjects. In that study, higher MI task classification accuracy was achieved compared
to our presented studies at the expense of computationally expensive feature extraction
and classification step. In another study [131], channel variance-based feature
extraction and PCA-based feature selection were used. The extracted features were
classified with accuracy of 56.00% using SVM algorithm. Higher accuracy value was
obtained in that study than that of our study. While EEG data of 8 channels are
investigated in that study, EEG data of 22 channels are examined in our analysis. In
another studies [132-134] CSP, band power and CSP, time-domain parameters have
been used for feature extraction for each study respectively. In these studies, higher
accuracy values were avhieved compared to our studies. However, performance values
are not very high (over 70.00%). Our multi-class extremity movement classification
study is different from studies that use specific and same feature extraction methods
in that it works with very different feature sets. This study is the first to include the
Poincare plot measures-based non-linear feature set in the feature sets examined and
investigate its effectiveness alone and in different combinations. Promising results
were obtained with the different proposed feature sets and the ANOVA-based feature
selection method used. Additionally, detailed research was conducted on the
effectiveness of channels and different features by examining the ANOVA-based

selected statitistically significant features.
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Chapter 4

Classification of Finger Movement

In this section of the thesis, four different feature extraction approaches and
combinations of different approaches, and two different feature extraction approaches
known as statistically significance-based feature selection and PCA are applied to
classify EEG segments of finger movement. In addition to these feature extraction
approaches, ITD-based feature extraction approach is used to analyze finger

movement.

4.1 Experimental Data Set

In our finger movement classification analyzes, we obtained MI EEG signals recorded
during imagination of the movements of the five fingers from an open available large
electroencephalographic MI dataset. The 4 different Ml task paradigms available in
this dataset, we used 5F and NOMT paradigms 1 sec 21-channel EEG signals of 8
subjects. A total of six class categories are available in our classifications. 19 different

EEG channels at sampling frequency of 1000 Hz are analyzed.

In the preprocessing section of finger movement classifications, 100 samples of 1000
Hz EEG signals of six different classes Mls (5F and NoMT paradigms) were selected
to be analyzed in signal processing and following classification section. Hence, 600

EEG samples are used in signal processing.

The finger movement classification studies performed using six different feature sets
and the ANOVA-based and PCA-based feature selection methods in this thesis are
represented in Figure 4.1.
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19 channel EEG signals

« Combination feature set including
time-domain, frequency-domain,
and WT-based time-frequency
domain features

« Combination feature set including
time-domain, frequency-domain,
WT-based time-frequency domain,
and non-linear features

Time-domain features

+ Frequency-domain features
WT-based time-frequency
domain features

Nonlinear parameters

/N

Subject-dependent Subject-independent
Feature Selection
N/A ANOVA test PCA ANOVA test
L] ] L]
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Figure 4.1: The block diagram of the proposed finger movement classification
approach using different feature extraction approaches and feature selection methods
with various classifiers.
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4.2 Feature Extraction

24 time-domain, 15 frequency-domain, 15 WT-based time-frequency domain, 30 ITD-
based time-frequency domain, and 4 non-linear features are evaluated for each EEG
channel of each EEG segment. These feature sets and their different combination
feature sets are analyzed using various machine learning algorithms for finger

movement classifications, separately.
4.2.1  Time-domain Feature Set

After the extraction of EEG segments, the time-domain feature set was obtained
evaluating 24 different amplitude and statistical information-based features in the
time-domain. All time-domain features and the mathematical formulations of these
features are given in Section 2.2.1. In the time-domain feature extraction-based
approach, a total of 7800x456 and 600x456 size time-domain feature sets are created
for subject-independent and subject-dependent finger movement classifications,

respectively.
4.2.2  Frequency-domain Feature Set

To create the frequency-domain feature set, the frequency domain of EEG segments is
generated using FT and five different EEG sub-bands are decomposed for each EEG
segment. Energy, variance, and entropy measures are calculated using EEG sub-bands.
The mathematical formulations of energy, variance and entropy values are available
in Section 2.2.2. In the frequency-domain feature extraction-based approach, a total of
7800x285 and 600x285 size frequency-domain feature sets are generated for subject-

independent and subject-dependent finger movement classifications, respectively.

4.2.3 Wavelet Transform-based Time-Frequency Domain

Feature Set

To generate the WT-based time-frequency domain feature set, the time-frequency

domain of EEG segments is obtained using WT and five different EEG sub-bands are
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decomposed for each EEG segment. Energy, variance, and entropy measures are
calculated utilizing EEG sub-bands. Haar mother wavelet and 9 level sub-band
decomposition are utilized for our finger movement classification analysis. The
mathematical formulations of energy, entropy, and variance values based on the WT
methos are given in Section 2.2.3.1. In the WT-based time-frequency domain feature
extraction approach, a total of 7800x285 and 600x285 size time-frequency domain
feature sets are created for subject-independent and subject-dependent finger

movement classifications, respectively.

4.2.4  Intrinsic Time-Scale Decomposition-based Time-

Frequency Domain Feature Set

In another time-frequency domain feature set, the features are evaluated using ITD
algorithm. The different number of PRCs are obtained after applying the ITD
algorithm. However, the defining of relevant PRC which best represents the EEG
signal is an important task before feature extraction step. We performed energy-based
feature selection process to define the best representative PRCs for feature extraction
step. Firstly, the energies of each PRCs are evaluated as given in Equation (4.1).

Energyprc, = om=o|PRC;[n]I*, i=1,2, .., L. (4.1)

where, Energypgc,is energy of i PRC which is indicated as PRC;. The first 5 PRCs

of a 1 sec EEG signal and energies of them are given in Figure 4.2a and 4.2.b.

We selected the higher energy PRCs considering them as the best representative of the
EEG signal. We observed that the energy of PRCs is decreased from PRC1 to PRC5.
Therefore, the first 3 PRCs are used to extract features for our analysis due to their
higher energy contents. We also investigated the effectiveness of different features.
These are binary combinations (PRC1-PRC2, PRC1-PRC3 or PRC2-PRC3) and triple
combination (PRC1-to-3) of these three PRCs. Then 10 time-frequency features which
are power, mean value, sample entropy higher-order frequency moments (1%, 2", 3",
and 4" moment), and Hjorth parameters (activity, mobility, and complexity) are
evaluated utilizing the selected PRCs. For defining of the effect of ITD-based

approach, the same features are evaluated from EEG segment itself, without the ITD
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application. The mathematical formulations of these time-frequency features based on
the WT methos are given in Section 2.2.3.2.
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(a) The extracted first five PRCs.

(b) The energies of these first five PRCs.

Figure 4.2: (a) The first 5 PRCs provided utilizing ITD, and (b) the energies of them.

In the ITD-based time-frequency domain feature extraction-based approach for
subject-independent classifications, a total of 4800x190, 4800x380, and 4800x570 size
time-frequency domain feature sets are obtained for the selected PRC (PRC1, PRC2
or PRC3), binary combinations of PRCs (PRC1-PRC2, PRC1-PRC3 or PRC2-PRC3),
and triple combination (PRC1-to-3), respectively. In EEG-based analysis, a total of
4800x190 EEG feature set is obtained. In the ITD-based time-frequency domain
feature extraction-based approach for subject-dependent classifications, a total of
600x190, 600x380, and 600x570 size time-frequency domain feature sets are obtained
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for the selected PRC (PRC1, PRC2 or PRC3), binary combinations of PRCs (PRC1-
PRC2, PRC1-PRC3 or PRC2-PRC3), and triple combination (PRC1-to-3),

respectively.
4.2.5 Non-linear Feature Set

Non-linear feature sets are provided using Poincare plot-based measures. 4 different
non-linear features are evaluated to supply information about the non-linear dynamics
embedded in EEG signals for each EEG segment where lag=1. Poincare plot measures’
mathematical formulations are given in Section 2.2.4. In the non-linear feature
extraction-based approach, a total of 7800x76 and 600x76 size non-linear feature sets
are created for subject-independent and subject-dependent finger movement

classification.

4.2.6  Combination Feature Set Including Time-domain,
Frequency-domain, and Wavelet Transform-based Time-

frequency domain Features

In addition to five different feature sets, the effectiveness of the combination of
different feature sets are analyzed to improve the classification performance in our
thesis studies. Combination feature sets are created using 24 time-domain, 15
frequency-domain, and 15 WT-based time-frequency domain features for each EEG
channel of each EEG segment. In the combination feature set-based analysis, a total
of 7800x1026 and 600x1026 size the combination feature sets are created for subject-

independent and subject-dependent finger movement classifications, respectively.

4.2.7 Combination Feature Set Including Time-domain,
Frequency-domain, Wavelet Transform-based Time-frequency

domain, and Non-linear Features

In our second combination feature sets, we added 4 non-linear features into our first

combination feature set which is created using 24 time-domain, 15 frequency-domain,
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and 15 WT-based time-frequency domain features for each EEG channel of each EEG
segment. 4 non-linear features are evaluated for each EEG segment where lag=1. A
total of 76 non-linear features are evaluated from all EEG channels of each EEG
segment based on the lag=1 condition and added to our previous combination sets. In
our second combination feature set-based analysis, a total of 7800x1102 and 600x1102
size the combination feature sets are created for subject-independent and subject-

dependent finger movement classifications, respectively.

4.3 Feature Selection

In our finger movement classifications, we applied statistically significance-based
feature selection method to improve the classifier performances selecting relevant and
discriminative features. To compare the effectiveness of ANOVA, PCA-based feature
selection method, which is generally utilized for the feature selection, was also used.

Four different approaches are presented for the classification of each feature set.

Table 4.1: The number of features in all paradigms for time-domain feature set
classifications.

Feature All PCA Selected ANOVA Selected ANOVA and PCA

set Features Features Features Selected Features
S1 456 3 251 2
S2 456 1 262 1
S3 456 1 377 1
S4 456 1 383 1
S5 456 3 233 3
S6 456 3 264 2
S7 456 3 286 2
S8 456 5 192 1
All 456 5 318 4

According to our proposed feature selection methods, four different sets are created

from our extracted feature sets to apply as input for classifiers. These are:

e All features in the corresponding feature set,

e PCA-selected principal components from the corresponding feature set,
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e ANOVA-selected statistically significant features from the corresponding

feature set,

e Both ANOVA and PCA selected features from the corresponding feature set.

Table 4.2: The number of features in all paradigms for frequency-domain feature set
classifications.

Feature All PCA Selected ANOVA Selected ANOVA and PCA
Set Features Features Features Selected Features
S1 285 3 117 2
S2 285 1 98 1
S3 285 1 154 1
S4 285 1 157 1
S5 285 3 119 3
S6 285 2 107 1
S7 285 3 116 1
S8 285 4 67 2
All 285 5 153 4

Table 4.3: The number of features in all paradigms for WT-based time-frequency

domain feature set classifications.

Feature All PCA Selected ANOVA Selected ANOVA and PCA
Set Features Features Features Selected Features
S1 285 1 10 1
S2 285 3 88 3
S3 285 2 39 2
S4 285 4 136 3
S5 285 1 25 1
S6 285 1 26 15
S7 285 1 135 1
S8 285 3 20 1
All 285 2 28 18
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Table 4.4: The number of features in all paradigms for non-linear feature set
classifications.

Feature All PCA Selected ANOVA Selected ANOVA and PCA

Set Features Features Features Selected Features
S1 76 2 42 3
S2 76 3 45 3
S3 76 4 53 3
S4 76 3 63 3
S5 76 2 31 1
S6 76 4 33 3
S7 76 2 60 2
S8 76 3 32 2
All 76 4 38 )

Table 4.5: The number of features in all paradigms for combined (TD+FD+WT)
feature set classifications.

Feature All PCA Selected ANOVA Selected ANOVA and PCA

Set Features Features Features Selected Features
S1 1026 3 378 2
S2 1026 1 448 1
S3 1026 1 570 1
S4 1026 1 676 1
S5 1026 3 377 3
S6 1026 3 397 2
S7 1026 3 537 2
S8 1026 4 279 1
All 1026 5 499 4

The effectiveness of these four different feature sets is investigated and compared in
all extracted feature sets using various classifiers. Table 4.1-4.6 summarizes the
number of all features, ANOVA-selected, PCA-selected, and both ANOVA and PCA
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selected features in six different feature sets (TD, FD, WT, P, TD+FD+WT, and
TD+FD+WT+P) which are used in our finger movement classifications.

Table 4.6: The number of features in all paradigms for combined (TD+FD+WT+P)
feature set classifications.

Feature All PCA Selected ANOVA Selected ANOVA and PCA

Set Features Features Features Selected Features
Sl 1102 3 420 2
S2 1102 1 493 1
S3 1102 1 623 1
S4 1102 1 739 1
S5 1102 3 408 3
S6 1102 1 430 2
S7 1102 3 597 2
S8 1102 5 311 1
All 1102 5 537 3

Table 4.7: The number of features in all paradigms for ITD-based and EEG-based
feature sets classifications.

Feature ~PRCLPRC2, ANOVA RCFPREZ pRCIto  ANOVA +PRCI
Set PRC3,EEG ~ +EEG ol onds PRC3 to PRC3
S1 190 108 380 570 180
S2 190 101 380 570 169
S3 190 147 380 570 319
S4 190 161 380 570 284
S5 190 127 380 570 193
S6 190 143 380 570 194
S7 190 101 380 570 255
S8 190 59 380 570 131
All 190 116 380 570 205
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In our ITD-based finger movement classification, only ANOVA-based feature
selection is used for triple combination (PRC1-to-PRC3) and EEG feature sets. Table
4.7 represents the number of features in different ITD-based feature sets and EEG-
based feature sets for finger movement classification. In this table, PRC1, PRC2, PRC3
or EEG; indicate the number of features in feature set are obtained by using the
corresponding PRC or EEG. ANOVA+EEG shows the ANOVA selected EEG
features. PRC1-PRC2, PRC1-PRC3, and PRC2-PRC3 show the number of features in
binary combination feature sets are extracted from PRC1 and PRC2, PRC1 and PRC3,
and PRC2 and PRC3, respectively. “PRC1 to PRC3” indicates the number of features
in triple combination feature set are calculated using all three PRCs. Additionally,
“ANOVA+ PRCI1 to PRC3” indicates the number of ANOVA-selected features in

triple combination feature set are calculated using all three PRCs.

4.4 Results and Discussions of Finger Movement

Classification

In this section, we show the performance results of finger movement classification
provided by different feature extraction-based methods utilizing different machine
learning algorithms. Seven different feature sets are created by various feature
extraction methods using 1 sec finger movements EEG signals provided from an open-
available EEG dataset. We calculated time-domain (TD), frequency-domain (FD),
WT-based time-frequency domain (WT), ITD-based time-frequency domain, non-
linear, and their two different combinations features sets using EEG segments which
belongs to the six different classes (NoMT condition and 5 finger movements). We
obtained 2 different combination feature sets. The first combination feature set
(TD+FD+WT) includes time-domain, frequency-domain, and WT-based time-
frequency features while the second combination feature set includes
(TD+FD+WT+P) features of the first combination feature set and non-linear features.
Additionally, we used two different feature selection methods such as ANOVA test
and PCA to improve classifier performance defining relative features and reducing
classifier complexity. These methods are applied to all feature sets except ITD-based
time-frequency based feature set. We defined four different feature sets using

ANOVA and PCA feature selection methods from our 6 different feature sets. These
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are categorized as (i) all feature set, (ii) PCA-selected feature set, (iii) ANOVA-
selected feature set, and ANOVA and PCA-selected feature set from the corresponding
feature set (TD, FD, WT, P, TD+FD+WT, and TD+FD+WT+P). These feature sets
are classified using 8 different machine learning algorithms and accuracy-based
performance evaluations are performed to investigate the effects of different feature
sets and feature selection methods. In ITD-based approaches, 10 different features are
calculated from the selected PRCs (PRC1, PRC2, and PRC3) provided by ITD and the
EEG signal itself for each EEG segment. Three different PRCs (PRC1, PRC2, and
PRC3), binary combinations of them (PRC1-PRC2, PRC1-PRC3, and PRC2-PRC3),
and triple combination (PRC1-to-3). In addition, ANOVA test-based feature selection
is performed and the effect on PRC1-to-3 and EEG feature sets is investigated. All
feature sets are classified using DT, LDA, SVM, NB, k-NN, EL, NN, and KA
algorithms and the results of all proposed approaches are analyzed based on the

accuracy performance metric.

Table 4.8: Performance results (%) for finger movement classification using all
features of time-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(l) .
subjects

Decision Tree 2420 3750 3830 40.00 2830 3580 29.20 3250  28.60

Discriminant Analysis 1500 2670 3420 3250 20.00 2920 2500 26.70  32.10

Naive Bayes 30.00 4000 33.30 41.00 2670 33.30 30.80 38.30  27.90
Support Vector 2830 50.00 56.00 48.30 40.00 4580 28.30 40.80  36.20
1

k-Nearest Neighbours 3580 44.20 4500 42.00 3420 4500 27.50 3830  33.50

Ensemble Learning 30.00 44.20 4830 50.00 38.40 4670 30.00 37.50  32.60

Neural Networks 29.20 45.00 5150 4750 3580 4580 31.70 38.30 34.90

Kernel Approximation ~ 28.33 25.83 34.17 3250 28.33 24.17 2417 21.67 25.20

The performance results of our presented approaches using different feature sets such
as time-domain, frequency-domain, WT-based time-frequency domain, non-linear

feature sets and their two different combination feature sets (TD+FD+WT and
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TD+FD+WT+P), two different feature selection methods (ANOVA test and PCA),
and 8 different classifiers are given in Tables 4.8-4.31. In these tables, S1, S2, S3, S4,
S5, S6, S7, or S8; indicate that features for subject-dependent classification are
calculated utilizing the corresponding subject. “All subjects” indicates the features for

subject-independent classification are calculated utilizing all subjects.

Table 4.9: Performance results (%) for finger movement classification using PCA-
selected features of time-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I .
subjects

Decision Tree 2750 20.00 2750 3250 2250 20.00 26.70 19.20 23.00

Discriminant Analysis 2580 18.30 27.00 3250 20.80 2670 1830 1830  20.90

Naive Bayes 2330 1830 2830 36.70 21.70 2250 25.80 16.70 21.90
SUPPQ” Vector 26.70 1750 26.00 34.20 25.00 2420 2420 23.30 19.90
Machine

k-Nearest Neighbours 2750 1750 3100 3500 27.50 2250 25.00 20.00  24.00

Ensemble Learning 30.00 20.00 27.00 3420 2500 2670 30.00 19.20  23.00

Neural Networks 2420 1920 3100 36.70 25.00 25.00 23.30 18.30 23.50

Kernel Approximation 2750 16,70 17.00 16.70 2580 1750 21.70 22.50 21.40

Table 4.10: Performance results (%) for finger movement classification using
ANOVA-selected features of time-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) s8(I) .
subjects

Decision Tree 35.00 3830 36.00 4500 2420 3920 30.80 31.70 28.50

Discriminant Analysis 3420 4170 4330 4670 3670 3750 2080 3170  29.90

Naive Bayes 25.00 4250 4500 4830 30.00 39.20 30.80 37.50 28.50
SUPPQ” Vector 35.00 4920 5750 5420 39.20 55.00 33.30 41.70 35.90
Machine

k-Nearest Neighbours 2920 4500 47.00 50.00 3500 4830 30.80 39.20  32.70
Ensemble Learning 3330 4330 5330 5580 4330 5000 3420 4080  33.60
Neural Networks 3580 4670 57.00 50.80 40.80 4830 3420 4000  34.70

Kernel Approximation 2830 2750 31.00 3830 2330 3000 2330 30.80 24.70
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The performance results of all time-domain feature set-based classification with
various classifiers are reported in Tables 4.8-4.11. The performance results show that
SVM algorithm obtained 56.00% accuracy utilizing all time-domain features obtained
from Subject C (S3). At the same time, the higher accuracy value (57.50%) of all time-
domain based classifications is achieved using ANOVA-selected time-domain
features of same subject and same classifier. In subject-independent analysis, the best
result is achieved using all time-domain features and SVM classifier with accuracy of
36.20%. However, the accuracy of 35.90% is achieved using ANOVA-selected time-
domain features and SVM algorithm. The results of all classifications performed using
time-domain based approaches are summarized in Table 4.8-4.11.

Table 4.11: Performance results (%) for finger movement classification using both
ANOVA and PCA selected features of time-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) s8(l) .
subjects

Decision Tree 25.80 15.80 27.00 4330 2580 2500 25.00 2170 22.60

Discriminant Analysis ~ 27.50 1830 2830 3170 2580 2830 1920 2080  19.70

Naive Bayes 2750 1830 2700 3420 2250 25.00 1750 20.80 21.80
SUPDQ” Vector 2580 1920 3330 3330 2750 30.00 2250 20.00 20.00
Machine

k-Nearest Neighbours 3420 1670 2920 40.80 2830 3250 2580 2580  22.80

Ensemble Learning 2830 1830 31.00 4000 2500 2830 21.70 2580 2350

Neural Networks 30.00 1750 31.00 3580 3170 2750 2420 20.80 24.00

Kernel Approximation 2170 16.70 17.00 16.70 2330 15.00 23.30 16.70 22.80

The selected statistically significant time-domain features distribution over 19 EEG
channels was examined for subject-dependent and subject-independent finger
movement classifications in Table 4.12 and Table 4.13. Firstly, in subject-independet
finger movement classification, all time domain features except waveform length,
average amplitude change value, absolute difference in standard deviation and slope-
change value were mostly determined and selected as significant features by ANOVA

in all channels. When examining the effectiveness of the channels, it was observed that
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statistically significant features were selected from all channels and did not concentrate
on certain channels. However, selecting statistically significant features from all
channels and specific time domain feature types did not provide improvement in
classifier performance. It was observed that the highest performances in subject-

independent analyzes were obtained with all time-domain features.

Table 4.12: Channel-based ANOV A-selected statistically significant feature
distribution for subject-independent finger movement classification in time-domain
feature set.

Fu Channels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T
T 18
T2 14
T3 18
Ts 17
Ts 15
Te 15
T7 11
T 15
T 15
T 0
Tu 0
T 1

T 20|20 (19|20 | 8|8 | 20|19 13|14 | 20| 20 | 18 | 14 | 15 | 16 | 20 | 12 | 17 | 313

In subject-dependet finger movement classification, statistically significant features

were selected intensively and balancedly from all channels and all feature types as can
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be seen from Table 4.13. In fact, it has been observed that feature selection that does
not depend on a specific channel or feature group, performed with ANOVA, improves
classifier performance. The highest classification performances in subject-dependent

analyzes were obtained with ANOVA-selected time-domain features.

Table 4.13: Channel-based ANOV A-selected statistically significant feature
distribution for subject-dependent finger movement classification in time-domain
feature set.

Fu Channels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T

Ty 7 7 6 7 5 4 5 6 4 6 7 7 6 5 5 5 4 2 5 103

T2 7 8 7 7 3 5 4 4 4 5 7 6 5 4 3 5 8 2 4 98

Ts 8 8 6 7 3 3 4 6 5 3 6 6 4 2 4 7 8 2 5 97

Te 8 8 6 7 3 3 4 6 5 3 6 6 4 2 4 7 8 2 5 97

T7 8 8 6 7 2 2 2 5 3 4 6 6 4 3 3 3 8 2 3 87

Ts 8 8 7 7 2 2 2 5 3 4 7 6 4 3 3 3 8 2 3 89

To 8 8 6 7 3 3 4 6 5 5 6 6 4 3 4 6 8 2 5 106

Tao 2 2 5 4 4 4 3 3 2 3 4 4 6 4 3 4 2 3 3 65

Tu 2 2 5 4 4 4 3 3 2 3 4 4 6 4 3 4 2 3 3 65

T 2 3 5 4 4 4 3 3 2 3 4 4 6 3 3 4 2 3 3 65

T 6 6 5 6 2 2 2 2 1 2 6 3 5 2 1 2 6 2 6 67

T 7 7 6 7 2 3 5 5 5 5 4 7 4 3 5 6 7 1 5 94

Tis 8 8 7 7 2 2 2 5 3 4 7 6 4 3 3 3 8 2 3 87

T 7 7 7 7 6 6 7 6 6 7 8 8 5 6 4 5 7 5 8 122

T 8 8 6 6 5 6 6 6 6 7 7 7 6 7 5 6 7 4 8 122

T 8 8 7 7 2 2 3 5 2 5 7 7 4 4 4 4 8 1 4 92

T 6 6 6 7 8 8 4 5 4 3 7 8 6 6 5 3 6 3 4 105

T2 7 5 5 5 8 8 5 3 6 2 6 6 7 6 6 4 5 3 4 101

T2 6 7 5 5 8 8 5 2 5 4 7 5 6 6 5 4 7 3 4 101

T2 6 6 3 7 4 5 5 2 3 3 5 6 3 6 3 4 5 3 3 82

T _ - - ~ | 99 |97 L 97 . - ) - | 92 . - | 64 | 2258

The performance results of all frequency-domain feature set-based classification with
various classifiers are reported in Tables 4.14-4.17. The performance results show that

EL algorithm obtained 49.17% accuracy utilizing all frequency-domain features
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obtained from Subject C (S3). However, the higher accuracy value (55.00%) of all
frequency-domain based classifications is achieved using ANOVA-selected
frequency-domain features Subject E (S4) and same classifier. In subject-independent
analysis, the best result is achieved using ANOVA-selected frequency-domain

features and SVM classifier with accuracy of 30.45%.

Table 4.14: Performance results (%) for finger movement classification using all
features of frequency-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) s8(I) .
subjects

Decision Tree 29.17 30.83 3583 3583 3417 3417 3467 2333 24.10

Discriminant Analysis 2500 30.00 4000 3917 2833 3583 24.17 2333  28.14

Naive Bayes 25.00 29.17 3583 3750 25.00 36.67 25.00 27.50 23.91
SUDPQ"I Vector 28.33 39.17 40.83 40.00 34.17 35.00 29.17 30.83 29.42
Machine

k-Nearest Neighbours ~ 26.67  30.83 38.33 3667 3083 3250 2017 28.33  24.62

Ensemble Learning 30.83 3833 49.17 4167 4000 4167 3667 2833 2821

Neural Networks 28.33 3417 4333 4417 3333 3750 29.17 30.00 27.69

Kernel Approximation ~ 25.00 20.00 37.50 40.00 24.17 25.83 2250 33.33 25.71

Table 4.15: Performance results (%) for finger movement classification using PCA-
selected features of frequency-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) s8I .
subjects

Decision Tree 30.00 16.17 3167 3083 2833 2167 2333 2750 2391

Discriminant Analysis ~ 26.67 2000 2000 30.83 2083 2417 1917 2750 2314

Naive Bayes 28.33 19.17 30.83 30.00 30.83 25.00 2333 2250 22.69
SUDPQ” Vector 2750 1750 2833 31.67 2583 25.00 2250 26.67 21.86
Machine

k-Nearest Neighbours 28.33 19.17 29.17 3250 2833 2417 21.67 30.00 24.49
Ensemble Learning 26.67 20.00 30.00 30.83 2333 2333 20.83 27.50 24.68
Neural Networks 3417 1750 29.17 36.67 29.17 2250 2417 29.17 25.83

Kernel Approximation 34.17 16.67 16.67 16.67 24.17 16.67 2250 25.00 21.86
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Table 4.16: Performance results (%) for finger movement classification using
ANOVA-selected features of frequency-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(l) )
subjects

Decision Tree 29.17 3250 3333 3333 36.67 25.83 3417 30.00 25.90

Discriminant Analysis ~ 25.83 3500 48.33 5167 4167 3250 2667 3167  26.60

Naive Bayes 2833 30.83 4083 4750 3167 2750 2583 2417 2500
Support Vector 3000 4500 5000 5417 4083 4083 2917 3167 3045
acnine

k-Nearest Neighbours ~ 34.17 3417 3750 4500 3583 3250 2917 2917  26.09
Ensemble Learning 3167 4583 5167 5500 47.50 3750 3333 2917 2885

Neural Networks 29.17 4000 50.00 5167 3833 3833 30.00 3583 27.63

Kernel Approximation  26.67 28.33 3750 40.83 2750 2333 2583 26.67 27.05

Table 4.17: Performance results (%) for finger movement classification using both
ANOVA and PCA selected features of frequency-domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) s8(l) .
subjects

Decision Tree 2750 20.00 2833 3750 26.67 2500 20.83 25.00 24.74

Discriminant Analysis ~ 28.33 2000 2667 3417 2333 2017 1917 2083 2154

Naive Bayes 29.17 19.17 3250 3750 30.00 2250 18.33 20.83 24.04
Suppqrt Vector 30.00 1833 31.67 3333 26.67 2583 2250 24.17 21.60
Machine

k-Nearest Neighbours ~~ 30.00  17.50 3167 3500 2750 2250 2250 2500  24.10

Ensemble Learning 2833 2250 2583 3500 2833 2917 2083 2333  23.33

Neural Networks 3333 1750 30.00 3750 30.00 2417 25.00 30.00 25.12

Kernel Approximation 2250 16.67 16.67 16.67 2417 16.67 16.67 18.33 23.08

The selected statistically significant frequency-domain features distribution over 19
EEG channels was investigated for subject-dependent and subject-independent finger
movement classifications in Table 3.18 and Table 3.19. For subject-independet finger
movement classification, it has been observed that in selecting statistically significant

features, different features are focused on in different EEG frequency bands and the
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same features are not indicated as statistically significant features in each frequency
band. When the statistically significant feature distribution in the channels was
examined, it was seen that balanced selections were made from all channels. The
highest accuracy value of subject-independent classification was achieved using
ANOVA-selected frequency domain features. As a result, using ANOVA, classifier
performance was improved by selecting statistically significant features from all
channels and features, rather than selecting features by focusing on specific channels

and features.

Table 4.18: Channel-based ANOVA-selected statistically significant feature
distribution for subject-independent finger movement classification in frequeny-
domain feature set.

Fig Channels

1 2 3 4 |56 7 8 9 (10| 11 )12 |13 | 14 | 15| 16 | 17 | 18 | 19 T

Fi1 14
F2 17
Fs 18
Fa 16
Fs 10
Fe 2
F7 14
Fe 13
Fo 3
F1o 16
Fu 12
Fi2 3
Fis 3
F1a 3
Fis 9
T 7 9 11 | 7 717]8 9 6 7 11 |7 10 | 9 4 8 9 10 | 7 153

In subject-dependet finger movement classification, statistically significant frequency-
domain features were indicated and selected intensively and balancedly from all
channels and 15 different features. In fact, it has been observed that feature selection
that does not depend on a specific channel or feature group, performed with ANOVA,
improves classifier performance. The highest classification performances in subject-

dependent analyzes were obtained with ANOVA-selected frequency-domain features.
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Table 4.19: Channel-based ANOV A-selected statistically significant feature
distribution for subject-dependent finger movement classification in frequeny-
domain feature set.

Fig Channels

1 2 3 4 5 6 7 8 9 1011 |12 |13 (14 |15 (16 |17 [ 18 |19 | T
Fi 8 8 8 7 3 3 4 5 4 3 5 8 4 2 5 4 8 3 6 | 98
F, 8 8 8 7 3 3 3 5 4 2 4 7 3 3 5 4 8 4 5 | 9%
Fs 6 4 5 4 2 2 4 3 3 2 4 4 2 3 5 3 3 4 4 | 68
Faq 6 7 3 5 3 2 4 5 3 3 2 6 3 5 5 4 4 7 6 | 81
Fs 6 6 2 5 2 3 1 1 5 4 2 1 3 5 46
Fes 2 2 2 1 1 1 1 1 1 1 13
= 3 3 1 2 6 5 4 4 2 6 3 4 4 4 4 5 2 4 5171
Fs 5 5 2 1 5 5 4 4 2 3 2 5 3 4 5 4 2 3 | 66
Fq 1 2 1 3 2 1 1 1 2 2 16
Fio 5 4 6 4 4 3 3 3 4 6 6 7 7 2 4 4 3 3 |83
Fi1 6 5 3 4 3 3 3 3 5 5 5 3 5 6 2 3 3 3 3|73
Fi2 4 4 1 2 3 1 2 2 3 1 2 1 3 2 3 2 | 36
Fis 5 5 5 1 2 4 2 4 4 5 6 5 2 3 3 1 60
Fia 5 5 4 2 2 3 4 2 3 4 5 6 5 1 3 6 2 2 | 64
Fis 3 4 3 4 4 4 4 4 3 3 3 4 2 3 6 4 5 ] 63
T | 73| 72|50 |50|38 |39 |39 |54|35/|42|46|63|47 |57 |41 |46 |55]| 45|53 3?2
Table 4.20: Performance results (%) for finger movement classification using all

features of WT-based time-frequency domain feature set.
Models SI(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8() A_”
subjects

Decision Tree 2917 3083 2667 3500 2250 31.67 2667 2083 2244
Discriminant Analysis ~ 17.50 19.17 3167 30.83 1583 30.83 17.50 2333 2212
Naive Bayes 2917 3417 2500 31.67 2417 2917 2417 2167 2154
Support Vector 3250 3750 3083 29.17 2583 3083 26,67 3000  22.00
Machine
k-Nearest Neighbours ~ 26.67 3417 2750 2750 2417 3333 2917 3083 2212
Ensemble Learning 35.00 3333 2833 3583 2750 3167 3333 2583  26.60
Neural Networks 2833 30.83 3083 30.00 1833 3167 2583 2583  21.22
Kernel Approximation ~ 27.50 28.33 31.67 29.17 3250 29.17 33.33 2167 26.54

The performance results of all WT-based time-frequency domain feature set-based

classification with various classifiers are reported in Tables 4.20-4.23. The

performance results reveal that SVM algorithm provided 34.17% accuracy utilizing all
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time-frequency domain features obtained from Subject E (S4). However, the higher
accuracy value (36.67%) of all WT-based time-frequency domain-based
classifications is achieved using ANOVA-selected time-frequency domain features
Subject E (S4) and both SVM and EL classifiers. In subject-independent analysis, the
best result is achieved using all time-frequency domain features and EL algorithm with
accuracy of 26.60%. On the other hand, 21.28% accuracy was achieved using the

ANOVA-selected time-frequency features by the SVM algorithm.

Table 4.21: Performance results (%) for finger movement classification using PCA-
selected features of WT-based time-frequency domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) s8(l) .
subjects

Decision Tree 20.00 19.17 25.00 31.67 29.17 2333 30.83 2583 20.71

Discriminant Analysis ~ 16.67 2083 2083 28.33 1500 17.50 1667 1833  17.00

Naive Bayes 18.33 2250 26.67 26.67 23.33 30.00 30.83 19.17 19.68
SUPIOC_'V'C Vector 18.33 25.00 20.83 34.17 1750 21.67 25.83 22.50 17.44
Machine

k-Nearest Neighbours ~ 20.00 2333 2250 3250 3167 2583 3083 2667 2058
Ensemble Learning 2167 2167 2833 3000 3000 2333 3000 258  19.36
Neural Networks 1917 2000 2833 3083 31.67 2667 33.33 2750  21.09

Kernel Approximation ~ 16.67 1250 2250 25.00 16.67 16.67 16.67 21.67 17.05

Table 4.22: Performance results (%) for finger movement classification using
ANOVA-selected features of WT-based time-frequency domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I) .
subjects

Decision Tree 20.83 2417 2750 3333 2417 2250 29.17 25.00 19.68

Discriminant Analysis 2417 1750 30.83 3250 2500 30.00 2417 2250 20.77

Naive Bayes 26.67 30.00 3167 3333 2417 31.67 25.00 25.00 19.81
Support Vector 2583 3167 3333 36.67 2583 3250 2750 26.67 21.28
Machine

k-Nearest Neighbours 2417 31.67 3333 3250 25.00 30.83 2833 29.17 20.71
Ensemble Learning 2583 30.83 30.83 36.67 2583 31.67 29.17 2417 20.77
Neural Networks 2250 2417 26.67 31.67 21.67 2583 23.33 2750 20.71

Kernel Approximation 1833 2333 26.67 2333 16.67 3167 3333 2250 19.55
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Table 4.23: Performance results (%) for finger movement classification using both
ANOVA and PCA selected features of WT-based time-frequency domain feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I) )
subjects

Decision Tree 26.67 2583 2833 3167 2250 2833 25.00 26.67 19.42

Discriminant Analysis 2583 2167 2017 2750 2417 3167 1833 2417 2045

Naive Bayes 28.33 2583 25.00 29.17 20.00 2583 25.83 2250 21.47
SUDPQ“ Vector 2583 25.00 3250 30.00 20.00 30.00 2333 24.17 20.32
Machine

k-Nearest Neighbours 2917 25.83 3000 3250 2250 30.00 29.17 2167  20.06
Ensemble Learning 2583 2083 2917 2917 2417 3167 2667 2417 2058
Neural Networks 2667 2500 30.83 3083 2583 20.17 3083 2417 2021

Kernel Approximation ~ 16.67 19.17 20.83 25.00 16.67 2833 16.67 16.67 19.36

Table 4.24: Channel-based ANOV A-selected statistically significant feature
distribution for subject-independent finger movement classification in WT-based
time-frequeny domain feature set.

Fu Channels |
4 1516178 9 | 10|11 )12 |13 |14 |15 | 16 | 17 | 18 | 19

=
B :
w

r|l|lO|lo|lo|lo|lo|lo|lo|j|o|om|]o|o|jw|o|o]H

N
o]

Wis
T (0|4 1]3|]0(0}lO(3 |01 |0 {3 (1 [4 |4 |5 |00 O |O

The selected statistically significant WT-based time-frequency domain features
distribution over 19 EEG channels was investigated for subject-dependent and subject-
independent finger movement classifications in Table 3.24 and Table 3.25. For

subject-independet finger movement classification, it has been observed that in
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selecting statistically significant features with ANOVA, entropy values are focused on
in different frequency bands such as delta, theta, alpha, and beta EEG subbands.
Among the 19 EEG channels, it was observed that no statistically significant features
were selected from some channels. Although more statistically significant feature
selections were made from certain features and channels in feature selection with
ANOVA, it could not improve the classifier performance. The highest accuracy value
of subject-independent classification was obtained using all WT-based time-frequency

features.

In subject-dependet finger movement classification, statistically significant WT-based
time-frequency features were indicated and selected intensively and balancedly from
19 EEG channels and 15 different features. In fact, it has been observed that feature
selection that does not depend on a specific channel or feature group, performed with
ANOVA, improves classifier performance. The highest classification performances in
subject-dependent analyzes were obtained with ANOVA-selected WT-based time-

frequency features.

Table 4.25: Channel-based ANOVA-selected statistically significant feature
distribution for subject-dependent finger movement classification in WT-based time-
frequeny domain feature set.
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Table 4.26: Performance results (%) for finger movement classification using all
features of non-linear feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I) )
subjects

Decision Tree 29.17 30.83 29.17 3417 2833 3417 3333 2417 25.26

Discriminant Analysis 2500 33.33 4167 30.17 3083 3500 2667 34.17  27.24

Naive Bayes 30.83 3250 30.83 3333 2583 3167 30.00 27.50 23.14
SUPDQW Vector 3250 39.17 40.00 4333 3750 3583 30.00 35.83 30.90
Machine

k-Nearest Neighbours ~~ 28.33 3250 3667 3667 3250 3500 28.33 3333  30.64

Ensemble Learning 30.83 3667 4417 3833 3750 3583 3000 3333 2981

Neural Networks 31.67 3500 45.00 3583 30.83 36.67 26.67 30.83 29.36
Kernel Approximation 26.67 2833 3250 3167 24.17 2833 2833 24.17 26.09

Table 4.27: Performance results (%) for finger movement classification using PCA-
selected features of non-linear feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I) .
subjects

Decision Tree 26.67 2333 2833 36.67 25.00 3167 21.67 21.67 23.85

Discriminant Analysis 2500 2167 2750 3417 2167 3333 2333 3333 1929

Naive Bayes 29.17 2250 2583 36.67 2833 2833 25.00 27.50 22.63
Suppqrt Vector 26.67 2333 3333 39.17 2083 3333 2417 25.83 21.92
Machine

k-Nearest Neighbours ~ 28.33 2667 20.17 3583 2667 36.67 2750 2667 2481

Ensemble Learning 3083 2417 2667 36.67 2833 3250 2417 2833 2269

Neural Networks 28.33 26.67 2833 35.00 25.00 3250 26.67 26.67 25.06

Kernel Approximation 20.00 21.67 26.67 39.17 2250 26.67 1833 18.33 22.56

The performance results of all non-linear feature set-based classification with various
classifiers are reported in Tables 4.26-4.29. The performance results reveal that NN
algorithm achieved 45.00% accuracy utilizing all non-linear features obtained from
Subject C (S3). However, the higher accuracy value (50.00%) of all non-linear feature
set-based classifications is achieved using ANOVA-selected non-linear features
Subject E (S4) and SVM classifier. In subject-independent analysis, the best result is

achieved using ANOVA-selected non-linear features and SVM algorithm with
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accuracy of 31.79%. On the other hand, 30.90% accuracy is achieved using all non-

linear features by the SVM algorithm.

Table 4.28: Performance results (%) for finger movement classification using

ANOVA-selected features of non-linear feature set.

All
Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I) .

subjects
Decision Tree 3417 2583 29.17 4167 2333 30.83 3333 2833 24.42
Discriminant Analysis 30.00 3750 45.00 46.67 3250 33.33 23.33 30.00 27.05
Naive Bayes 28.33 3333 30.83 4250 29.17 35.00 33.33 2833 21.73
Support Vector 3417 3833 4333 50.00 3500 3417 29.17 33.33 31.79
Machine
k-Nearest Neighbours 31.67 3583 33.33 4333 3083 3250 30.83 28.33 28.27
Ensemble Learning 30.00 36.67 39.17 4583 40.83 35.83 30.83 30.83 27.69
Neural Networks 30.83 3750 40.00 4250 3167 3833 30.83 3500 29.62
Kernel Approximation 2417 3000 3333 3833 1750 28.33 29.17 2750 26.54

Table 4.29: Performance results (%) for finger movement classification using both
ANOVA and PCA selected features of non-linear feature set.

All
Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I) )
subjects

Decision Tree 28.33 20.83 35.00 3417 2583 21.67 2417 20.83 24.04
Discriminant Analysis 30.00 21.67 30.83 3417 20.83 2750 19.17 30.83 20.58
Naive Bayes 2750 20.83 3583 36.67 26.67 30.83 2250 29.17 21.73
Support Vector 30.83 2250 3833 39.17 20.83 25.83 23.33 30.00 21.79
Machine

k-Nearest Neighbours 29.17 2750 3833 36.67 26.67 29.17 31.67 25.83 24.68
Ensemble Learning 31.67 2417 35.00 3833 2333 2833 30.83 30.83 24.04
Neural Networks 31.67 25,83 40.00 3500 2750 2417 3250 29.17 23.72
Kernel Approximation 2417 2500 3583 3833 16.67 2583 2333 13.33 21.35

The selected statistically significant nonlinear domain features distribution over 19

EEG channels was examined for subject-dependent and subject-independent finger
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movement classifications in Table 3.30 and Table 3.31. For subject-independet finger
movement classification, it has been observed that in selecting statistically significant
features with ANOVA, SD and SD1/SD: values where lag=1 were mostly selected as
statistically significant features in most of the channels. Among 19 EEG channels, the
distribution of statistically significant non-linear feature is balanced. With anova,
balanced statistically significant feature distribution on these two non-linear features
and in all channels increased the classifier performance. The highest accuracy value of
subject-independent classification was obtained using ANOVA-selected non-linear

features.

Table 4.30: Channel-based ANOV A-selected statistically significant feature
distribution for subject-independent finger movement classification in non-linear
domain feature set.

Channels
112 )| 3|4 |5|6|7 |89 |10|11|12| 13| 14 16 (17 |18 | 19| T

Fid

Table 4.31: Channel-based ANOVA-selected statistically significant feature
distribution for subject-dependent finger movement classification in non-linear
domain feature set.

Fu Channels

1 [2 [3 4[5 7J6 [7 89 [10]1aJ12]13[14a[15]16[17]18[19] T
Pr 13 |3 |5 |3 |3 |3 |2 |4 |3 |4 |4 |3 |6 |4 |3 |4 |3 |24 66
P18 |8 |7 |8 |1 |1 |3 |5 |4 |6 |6 |7 |4 |4 |4 |5 |8 1|25 96
P36 |6 |5 |5 |1 |1 |3 |3 |2 |4 |6 |4 |4 |3 |2 2|6 |34 70
Pe 7 |7 |6 |6 |6 |6 |8 |7 |6 |7 |8 |8 |6 |7 |5 |6 |7 |6 |8 127
T |24 |24 2322|1111 |16 19|15 |21 |24 |22 | 20|18 |14 |17 |24 | 13| 21| 359

In subject-dependet finger movement classification, statistically significant non-linear

features were indicated and selected intensively and balancedly from 19 EEG channels
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and 4 different features. The feature selection that does not depend on a specific
channel or feature group, performed with ANOVA, improves classifier performance.
The highest classification performances in subject-dependent analyzes were obtained

with ANOVA-selected non-linear features.

Table 4.32: Performance results (%) for finger movement classification using all
features of combined (TD+FD+WT) feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8() )
subjects

Decision Tree 30.00 36.67 3500 4333 3250 3333 29.17 3417 31.20

Discriminant Analysis 2667 2833 4417 4250 2750 3250 2417 2417 3240

Naive Bayes 28.33 3333 3833 4250 29.17 29.17 20.83 3250 26.20
Suppqrt Vector 33.33 50.00 5750 5167 39.17 45.00 2833 4250 37.00
Machine

k-Nearest Neighbours ~ 36.67  38.33  49.17 4083 3417 39.17 3167 3417 3230

Ensemble Learning 31.67 4167 4417 5333 3333 4333 2833 3583  34.70

Neural Networks 3250 4417 5333 55.00 39.17 5000 3250 39.17 34.70

Kernel Approximation 30.00 24.17 2833 4333 2833 3333 2583 25.00 25.40

Table 4.33: Performance results (%) for finger movement classification using PCA-
selected features of combined (TD+FD+WT) feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7T(H) s8(l) .
subjects

Decision Tree 2500 19.17 3083 3583 26.67 30.83 20.83 24.17 22.80

Discriminant Analysis ~ 30.00  23.33 2750 3500 2500 29.17 1917 2167  20.90

Naive Bayes 2333 2333 26.67 3500 20.83 2750 25.00 23.33 22.10
Support Vector 2750 19.17 31.67 3333 25.00 2833 2333 21.67 19.60
Machine

k-Nearest Neighbours ~ 25.83  19.17 2833 3750 2833 26,67 2750 2667  24.00
Ensemble Learning 3000 2167 2750 3667 27.50 29.17 20.00 2417  22.80
Neural Networks 2500 1333 2833 3083 2750 27.50 20.83 2333  22.80

Kernel Approximation 2250 16.67 16.67 16.67 20.83 25.83 2417 21.67 22.10
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Table 4.34: Performance results (%) for finger movement classification using
ANOVA-selected features of combined (TD+FD+WT) feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8() )
subjects

Decision Tree 29.17 3500 35.00 44.17 2833 3333 25.00 30.00 30.30

Discriminant Analysis ~ 29-17 1833 2583 3833 3250 3583 1500 3167 3420

Naive Bayes 2750 3417 36.67 40.83 3167 31.67 30.00 30.83 27.10
SUPDQI"[ Vector 35,83 55.83 55.00 50.00 39.17 4833 3333 37.50 38.70
Machine

k-Nearest Neighbours 2917 4500 4500 4167 3583 4167 3333 3167  32.90
Ensemble Learning 31.67 5333 5167 5083 4250 4667 29.17 4583 3550
Neural Networks 3750 5417 5583 5417 4333 4750 3083 3500  36.10

Kernel Approximation 26.67 29.17 26.67 3167 26.67 2583 20.00 20.83 26.10

Table 4.35: Performance results (%) for finger movement classification using both
ANOVA and PCA selected features of combined (TD+FD+WT) feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(l) .
subjects

Decision Tree 2750 15.83 26.67 3417 2083 29.17 25.00 21.67 23.40

Discriminant Analysis ~ 28.33  18.33 2917 3667 2000 3500 2417 2083  19.80

Naive Bayes 28.33 1833 2750 36.67 2250 3333 20.00 20.83 21.40
SUPPQ"t Vector 2750 2250 2750 34.17 2583 2833 2250 20.00 20.90
Machine

k-Nearest Neighbours 3167 1667 2833 3500 2500 3000 26.67 2583  21.80
Ensemble Learning 2833 1833 2917 3583 2083 3583 2500 2583 2340

Neural Networks 29.17 1917 2583 36.67 2500 3750 21.67 20.00 2450

Kernel Approximation 18.33 16.67 16.67 16.67 23.33 1500 20.00 16.67 22.50

In order to analyze the effect of different feature sets on finger movements
classification, and compare these approaches, we investigated the combination feature
set including time-domain, frequency-domain, and WT-based time-frequency

features. The performances of classification performed using this combination set are
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given in Tables 4.32-4.35. The higher accuracy value (57.50%) of all combination set-
based classifications is achieved all features of the combination set obtained from
Subject C (S3) and SVM classifier. However, ANOVA-selected features of Subject B
(S2) with SVM algorithm and Subject C (S3) with NN algorithm yielded accuracy of
55.83%. In subject-independent analysis, the best result is achieved using ANOVA-
selected the combination set features and SVM algorithm with accuracy of 38.70%.
On the other hand, 37.00% accuracy is achieved using all the combination set features
by the SVM algorithm. The results of all classifications performed using the

combination set-based approaches are provided in Table 4.32-4.35.

Table 4.36: Performance results (%) for finger movement classification using all
features of combined (TD+FD+WT+P) feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(I .
subjects

Decision Tree 28.33 3333 3500 36.67 36.67 3750 30.83 35.83 30.30

Discriminant Analysis 2583 3167 4333 3833 2000 3750 24.17 2417  32.50

Naive Bayes 26.67 34.17 36.67 3583 2750 3500 31.67 33.33 27.10
SUPPQ"t Vector 30.00 4833 55.00 50.00 38.33 4250 26.67 41.67 37.60
Machine

k-Nearest Neighbours 2917 43.33 4750 4500 3083 3917 2917 3250 3210
Ensemble Learning 2750 40.83 4167 5500 36.67 4250 2833 4083  36.20
Neural Networks 31.67 4250 5583 5583 3583 4417 2750 4083  34.40

Kernel Approximation 28.33 29.17 2833 36.67 30.00 2333 2083 2583 26.00

We investigated the effect of another combination, which is denoted as
TD+FD+WT+P, including our previous combination set features with non-linear
features. The performances of classification performed using this combination set are
given in Tables 4.36-4.39. The higher accuracy value (59.17%) of all combination set-
based classifications is achieved ANOVA-selected features of the combination set
obtained from Subject E (S4) and SVM classifier. However, all features of
combination set of Subject C (S3) and Subject E (S4) with NN algorithm yielded

accuracy of 55.83%. In subject-independent analysis, the best result is achieved using
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Table 4.37: Performance results (%) for finger movement classification using PCA-
selected features of combined (TD+FD+WT+P) feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(l) )
subjects

Decision Tree 2833 1750 30.83 3750 26.67 2833 26.67 16.67 22.90

Discriminant Analysis ~ 28.33 2083 2750 3417 2500 2417 1833 2000  19.60

Naive Bayes 30.83 2333 26.67 3417 20.83 25.00 2583 21.67 21.50
SUDPQ” Vector 26.67 20.00 31.67 33.33 2417 2833 24.17 20.00 19.60
Machine

k-Nearest Neighbours ~ 31.67 2333 2833 3833 2833 2500 2500 2500  24.30
Ensemble Learning 30.83 2083 27.50 3500 27.50 2417 30.00 21.67  23.30

Neural Networks 30.83 2250 2750 41.67 26.67 2583 2250 25.00 24.70

Kernel Approximation 28.33 16.67 16.67 16.67 21.67 16.67 19.17 21.67 22.60

Table 4.38: Performance results (%) for finger movement classification using
ANOVA-selected features of combined (TD+FD+WT+P) feature set.

All

Models S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(l) ]
subjects

Decision Tree 30.00 41.67 36.67 40.00 3083 36.67 30.83 35.00 30.40

Discriminant Analysis 2500 1583 3583 3500 3667 24.17 2167 3167 3440

Naive Bayes 28.33 39.17 3500 4333 3167 31.67 3167 35.00 26.90
SUPDQ” Vector 36.67 46.67 56.67 59.17 41.67 5167 3250 37.50 39.30
Machine

k-Nearest Neighbours 3167  41.67 4333 4500 2917 4583 3167 3417 3330
Ensemble Learning N/A 4500 5000 5250 4250 4417 3417 4083 3580
Neural Networks N/A 4667 5583 5750 4500 49.17 3000 4083  37.20

Kernel Approximation N/A 25.00 2417 3833 2333 2750 2250 20.83 26.00

ANOVA-selected the combination set features and SVM algorithm with accuracy of
39.30%. On the other hand, 37.60% accuracy is achieved using all features of the
combination set by the SVM algorithm. The results of all classifications performed

using the combination set-based approaches are provided in Table 4.36-4.39. The
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results of two different feature sets reveal that the success of finger movement

classification improved with including of non-linear features especially in ANOVA-

selected features-based approaches.

Table 4.39: Performance results (%) for finger movement classification using both
ANOVA and PCA selected features of combined (TD+FD+WT+P) feature set.

Models

All

S1(A) S2(B) S3(C) S4(E) S5(F) S6(G) S7(H) S8(l) iect
subjects

Decision Tree
Discriminant Analysis

Naive Bayes

Support Vector
Machine

k-Nearest Neighbours
Ensemble Learning
Neural Networks

Kernel Approximation

2500 1417 2750 4333 20.83 2333 25.00 17.50 22.60

30.83 1833 2750 3167 20.00 2833 2417 1833 19.70

26.67 1833 29.17 3417 2250 21.67 1750 20.00 21.80

2833 1833 30.00 3500 2583 2583 2250 21.67 19.90

2583 1750 30.00 40.83 25.00 2417 25.83 23.33 22.80

31.67 1833 2750 4000 20.83 2833 21.67 2250 23.50

29.17 1750 29.17 3833 2417 2583 2417 20.00 23.40

1750 16.67 16.67 16.67 20.00 2333 16.67 16.67 22.80

Table 4.40: Finger movement classification performance (%) of ITD based feature

sets using the Decision Tree classifier.

Components

s1 S2 S3 S4 S5 S6 S7 S8 All
@ 6 © 6 F @ () (1) subjects

PRC1

PRC2

PRC3

PRC1-PRC2

PRC1-PRC3

PRC2-PRC3
PRC1 to PRC3

ANOVA+PRC1-t0-PRC3

29.17 2750 35.00 3250 29.17 25.83 31.67 2750 25.83
26.67 2833 26.67 30.00 26.67 30.83 30.00 3250 20.63
2417 2833 26,67 3417 2917 2083 2833 27.50 21.77
26.67 26.67 26.67 3750 2750 29.17 3250 30.00 23.13
26.67 30.83 30.00 3417 2750 29.17 2917 30.00 24.79
3583 26.67 26.67 3583 25.00 2583 2333 2417 22.71
2750 30.00 2833 36.67 26.67 2750 36.67 2250 23.54
30.83 30.00 3583 4417 26.67 2750 3417 2750 24.06

EEG Features

ANOVA+EEG Features

30.00 26.67 3250 3583 25.00 30.00 25.83 27.50 25.31
2333 3083 3500 3833 2167 30.00 2500 30.83 23.33

Classification results of ITD-based approaches are given in Tables 4.40-4.47. The
effects of selected three PRCs (PRC1, PRC2, and PRC3) and their binary combinations

107



(PRC1-PRC2, PRC1-PRC3, and PRC2-PRC3) and triple combination (PRC1-to-3) are
investigated with 8 different classifiers. Additionally, the effect of ANOVA test-based
feature selection is investigated with EEG-based feature set and PRC1-to-3 feature set.
In these tables, PRC1, PRC2, or PRC3; indicate that the features for classification are
evaluated by utilizing the related PRC. The features are calculated using all three PRCs
are indicated as PRC1-to-3. The binary combination features are calculated utilizing;
PRCL1 and PRC2 is denoted as PRC1-PRC2, PRC1 and PRC3 is denoted as PRC1-
PRC3, and PRC2 and PRC3 is denoted as PRC2-PRC3, respectively.

Table 4.41: Finger movement classification performance (%) of ITD based feature
sets using the Linear Discriminant Analysis classifier.

Components S1 S2 S3 S4 S5 S6 s7 ) ATII
(A) (B) (©) (E) (F) (©) (H) () subjects
PRC1 2583 2833 3333 2750 2417 30.83 2750 26.67 26.25
PRC2 2417 2833 30.00 4000 2417 30.83 2750 27.50 24.79
PRC3 2750 2500 3250 2750 3167 3167 2167 2583 29.17
PRC1-PRC2 3167 2583 3500 3417 2750 2667 2167 2250 29.38
PRC1-PRC3 3167 2667 3833 4333 .3583 3083 2500 29.17 29.90
PRC2-PRC3 3250 2583 2833 2750 2583 2583 3250 25.83 28.85
PRC1 10 PRC3 31.67 2500 26.67 33.33 2917 2500 20.83 25.00 30.83

ANOVA+PRCI-t0-PRC3 3833 40,00 37.50 4750 3583 28.33 28.33 30.00 33.54

EEG Features NNA NA NA NA NA NA NA NA N/A
ANOVA+EEG Features NNA NA NA NA NA NA NA NA N/A

Table 4.40 reports the classification results of ITD-based approaches using DT
classifier. The best classification result is achieved using ANOVA selected features of
PRC1-to-3 set obtained from Subject E (S4) with accuracy of 44.17%. The highest
accuracy values are calculated using ITD-based approaches in all subjects. However,
in Subject B (S2), the highest accuracy value of 30.83% is achieved in feature sets of
PRC1-PRC2 and ANOVA-selected EEG features. Table 4.41 reports the classification
results of ITD-based approaches using LDA classifier. The best classification result is
achieved using ANOVA selected features of PRC1-to-3 set obtained from Subject E
(S4) with accuracy of 47.50%. We aimed to investigate the effect of 1TD-based
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approaches, but we could not effective comparison with EEG-based approaches.
Since, the feature sets of EEG-based approaches are not applicable to LDA classifier.

Table 4.42 reports the classification results of ITD-based approaches using NB
classifier. The best classification result is achieved using EEG features obtained from
Subject E (S4) with accuracy of 40.83%. We aimed to investigate the effect of ITD-
based approaches and EEG-based approaches the results reveal that ITD-based
approaches provided the highest classification performances in all subjects except
Subject A (S1), Subject E (S4), and subject-independent condition. However, in
Subject C (S3), the highest accuracy value of 34.17% is achieved in feature sets of
ANOVA-selected PRC1-t0-3 and ANOVA-selected EEG features.

Table 4.42: Finger movement classification performance (%) of ITD based feature
sets using the Naive Bayes classifier.

Components s1 S2 S3 4 S5 S6 S7 S8 All
(A) (B) (©) (B) (F) G) (H) O subjects
PRCL 2250 30.83 3250 3500 2500 2750 3000 3167  20.94
PRC2 2750 2500 2917 3417 2417 2417 2417 2583  19.38
PRC3 2667 2250 2500 32.50 30.83 2500 2333 3250 2031
PRC1-PRC2 2417 2667 2917 3083 2750 2250 3083 2500  22.19
PRC1-PRC3 2667 2667 3333 3750 3833 3000 2917 2333 2094
PRC2-PRC3 2917 2500 3083 3000 3167 2500 2167 2750  21.15
PRC1 to PRC3 2333 3000 3083 3583 2333 2750 2333 2750  23.96
ANOVA+PRCIt0-PRC3  30.83 3500 3417 3917 3167 3583 3083 3083 2281
EEG Features 3167 3083 2833 4083 2667 2250 2083 2167 2542

ANOVA+EEG Features 3250 2583 3417 4000 2750 29.17 1917 21.67 23.23

Table 4.42 reports the classification results of ITD-based approaches using NB
classifier. The best classification result is achieved using EEG features obtained from
Subject E (S4) with accuracy of 40.83%. We aimed to investigate the effect of ITD-
based approaches and EEG-based approaches the results reveal that ITD-based
approaches provided the highest classification performances in all subjects except
Subject A (S1), Subject E (S4), and subject-independent condition. However, in
Subject C (S3), the highest accuracy value of 34.17% is achieved in feature sets of
ANOVA-selected PRC1-to-3 and ANOVA-selected EEG features.
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Table 4.43: Finger movement classification performance (%) of ITD based feature
sets using the Support Vector Machine classifier.

ST sz s3__ s4__ s5  s6  s7 S8 Al
Components .

A) (B) © (E) (F) G) (H) M subjects
I 2017 3583 4083 4000 3000 3833 4000 3250  30.00
PRCa 2250 2583 3417 3500 3000 3583 3167 2417 2573
PRCa 3167 2917 3000 4000 3333 2017 2833 2667  27.08
PRCLPRC2 3167 3167 4417 4000 2417 3333 3917 2750 3052
RCLPRCS 3583 3833 4167 4750 3833 3500 3167 2917 3219
PRC2.PRCS 2017 3250 3917 3750 3833 3083 3500 3250 2813
PRC1 to PRC3 2750 3750 4500 4917 3333 3833 3500 3583 3063
,:lR\)I;)S\/A+PRCl e 4000 4500 4917 4917 3583 3667 3917 3667  34.48
EEG Features 3000 4167 3833 4500 3250 3333 2017 2917 3146

ANOVA+EEG Features 2750 4167 4333 4750 3417 3333 3000 29.17 33.65

Table 4.43 represents the classification results of ITD-based approaches using SVM
classifier. The best classification result is achieved using ANOVA-selected PRC1-to-
3 features obtained from Subject E (S4) and Subject C (S3) with accuracy of 49.17%.
Additionally, the same classification result is achieved using PRC1-to-3 features
obtained from Subject E (S4). The experimental results reveal that ITD-based
approaches provided the highest classification performances in all subjects.

Table 4.44: Finger movement classification performance (%) of ITD based feature
sets using the k-Nearest Neighbours classifier.

Components s1 S2 S3 S4 S5 S6 s7 S8 ATII
(A) (B) © (E) (F G) (H) (M subjects
PRCI 2417 3833 3500 3583 2917 3417 3250 3750  29.90
PRC2 2333 2500 2667 3333 3167 3000 2833 2333  23.02
PRC3 3333 2500 3417 3833 2833 3000 2583 3000  26.88
PRC1-PRC2 3250 3083 3417 3667 2667 3250 3083 30.83  28.54
PRCI.PRC3 3167 2917 3917 4667 3250 3417 2917 3083  29.48
PRC2-PRC3 3250 2667 3250 3583 3250 3500 2833 2667  26.25
PRC1 to PRC3 2833 3083 3500 4417 2583 3167 3083 3250  26.88

ANOVA+PRC1-to-PRC3  35.83 39.17 4333 4583 35.00 3417 36.67 3583 30.00

EEG Features 30.00 33.33 3333 4333 26.67 2917 31.67 30.00 27.81
ANOVA+EEG Features 30.00 33.33 40.83 40.00 3167 31.67 29.17 3250 28.64
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Table 4.44 represents the classification results of 1TD-based approaches using k-NN
classifier. The best classification result is achieved using PRC1-PRC3 features
obtained from Subject E (S4) with accuracy of 46.17%. The experimental results of k-
NN classifications reveal that ITD-based approaches provided the highest

classification performances in all subjects.

Table 4.45 represents the classification results of ITD-based approaches using EL
classifier. The best classification result is achieved using ANOVA-selected PRC1-to-
3 features obtained from Subject E (S4) with accuracy of 55.00%. The experimental
results of EL classifications show that ITD-based approaches provided the highest
classification performances in all subjects.

Table 4.45: Finger movement classification performance (%) of ITD based feature
sets using the Ensemble Learning classifier.

Components S1 S2 S3 S4 S5 S6 7 S8 ATII
(A) (B © (E) (F (G) H) (1) subjects
PRCL 2917 3250 4167 3583 2917 3500 3750 3417  29.69
PRC2 3083 3000 3667 3833 2833 3167 2917 30.00 25.10
PRC3 2917 3250 3417 4167 27.50 3250 2750 2917  26.46
PRCI.PRC2 3250 3417 4000 4167 3333 2917 3333 3250 28.85
PRC1-PRC3 3583 3667 4000 4333 3417 3417 3833 3583 3156
PRC2-PRC3 3667 2917 3750 4500 31.67 3000 2833 30.83  29.06
PRC1 to PRC3 3417 3500 4083 4750 3250 30.83 36.67 3167  32.08

ANOVA+PRCl-to-PRC3  35.83 40.83 50.83 55.00 3750 36.70 41.67 39.17 32.60

EEG Features 30.83 4000 4333 39.17 3583 36.67 26.67 31.67 29.06

ANOVA+EEG Features 29.17 38.33 4583 39.17 3500 3500 2750 35.00 27.60

Table 4.46 summarizes the classification results of ITD-based approaches using NN
classifier. The best classification result is achieved using ANOVA-selected PRC1-to-
3 features obtained from Subject C (S3) with accuracy of 53.33%. We aimed to
investigate the effect of ITD-based approaches and EEG-based approaches the results
reveal that ITD-based approaches provided the highest classification performances in

111



all subjects except Subject I (S8). However, in Subject G (S6), the highest accuracy
value of 38.33% is achieved in feature sets of both ANOVA-selected PRC1-to-3 and
ANOVA-selected EEG features.

Table 4.46: Finger movement classification performance (%) of ITD based feature
sets using the Neural Networks classifier.

Components st  s2 s3 sS4 S5  S6 ST S8 All
w B © 6 6G (© H () subjects
orC1 3333 2917 3083 3017 2333 3333 3167 2917 2625
PRC2 2500 2500 3167 3167 2583 2583 2583 3000 2448
bR 3250 2083 3583 3500 3000 2583 3250 2833  25.94
PRCLPRCD 2750 3000 4333 4250 3333 3083 27.50 2667 2875
PRCLPRCS 3417 3250 4083 4250 3500 3000 3167 3167  30.94
PRC2.PRCS 2017 2917 3750 3500 3417 3583 3167 3083  28.96
PRCL to PRC3 3000 3333 4583 4833 3750 3250 30.00 3417 2027

ANOVA+PRC1toPRC3 3417 4250 53.33 4583 3750 3833 3500 3167  31.88

EEG Features 2833 3583 4250 3917 3500 2917 2667 3250  28.96
ANOVAGEEG Features  25.83 3500 4167 4250 36.67 3833 2333 3500  30.42

Table 4.47: Finger movement classification performance (%) of ITD based feature
sets using the Kernel Approximation classifier.

S1 S2 S3 S4 S5 S6 S7 S8 All
Components i

@w 6 © 6 (F) © () (1) subjects
PRC1 20.00 25.00 2583 2417 26.67 25.83 30.83 20.83 23.33
PRC2 26.67 2500 2333 30.00 2333 1750 2333 24.17 19.27
PRC3 2750 20.00 2750 3583 21.67 2250 21.67 2250 21.88
PRC1-PRC2 2250 2167 2083 2250 1917 1917 26.67 25.00 19.58
PRC1-PRC3 2583 2417 2750 39.17 2750 2250 29.17 20.00 24.48
PRC2-PRC3 2500 20.83 2750 3333 20.00 2333 2167 19.17 24.27
PRC1 to PRC3 2417 2417 2750 40.83 15.00 25.83 25.00 25.83 23.33
ANOVA+PRC1 —to- 21.67 1833 26.67 31.67 19.17 2250 2250 25.83 21.88
PRC3
EEG Features 2583 25.00 3833 3250 25.00 30.00 2750 29.17 24.17

ANOVA+EEG Features  29.17 2250 3417 3667 27.50 2667 2000 2667 2531
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Table 4.47 summarizes the classification results of ITD-based approaches using KA
classifier. The best classification result is achieved using PRC1-to-3 features obtained
from Subject E (S4) with accuracy of 40.83%. We aimed to investigate the effect of
ITD-based approaches and EEG-based approaches, the results reveal that EEG-based
approaches provided the highest classification performances in all subjects except
Subject E (S4) and Subject H (S7). On the hand, the same highest accuracy values
(25.00% and 27.50%) are calculated using both ITD-based and EEG-based approaches
for Subject B (S2) and Subject F (S5).
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Figure 4.3: The comparision of the effects of PRC1-to-3 and ANOVA-selected
PRC1-t0-3 based on the EL classification.

ITD-based approaches revealed that the best classification results are achieved using
ITD-based features (especially in ANOVA-selected PRC1-to-3) features in most of
the classifiers except NB and KA classifiers. Therefore, our presented different
combinations of PRCs are improved the classifiers performance. Additionaly, when
we compared the effectiveness of PRC1-to-3 and ANOVA-selected PRC1-to-3, we
observed that ANOVA-selected features obtained better results and improved

classifier performances. The highest accuracy value of ITD-based approaches is
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achieved using ANOVA-selected PRC1-to-3 features and EL classifier as shown in
Figure 4.3. On the other hand, the highest classification performances are calculated
using ITD-based features obtained from Subject E (S4). Therefore, the experimental
noted that ITD is an effective time-frequency representation model for classification
of finger movement and provides better results than our first time-frequency
representation model (WT). It can be used as an effective feature extraction method to

analyze time-frequency domain of EEG signals in different EEG-based analysis.

The selected statistically significant ITD-based time-frequency distribution was
examined in 19 EEG channels. The list of ITD-based time-frequency features with
their abbreviations is available in Table 4.48. Channel-based ANOVA-selected
statistically significant ITD-based time-frequency domain feature distribution for
subject-dependent finger movement classification is given in Table 4.49. Among 30
different ITD-based features, some features such as sample entropy, Hjorth parameters
(Mobility), and Hjorth parameters (Complexity) for PRC1, PRC2, and PRC3 were
mostly indicated and selected as statistically significant features on almost all channels
and 8 subjects. When the effect of the channels on the selection of statistically
significant features was examined, it was observed that there was a balanced
distribution and a large number of significant features were selected in many subjects
from all channels. As a result, feature selection from all channels and certain features
with ANOVA improved the classification performance in all classifiers except NB and
KA.

Table 4.48: ITD-based time-frequency domain features.

ITD-based time-frequency domain features
I Power for PRC1 116 | Hjorth parameters (Complexity) for PRC2
I | Mean for PRC1 Iz | First higher order moment for PRC2
Is | Sample entropy for PRC1 15 | Second higher order moment for PRC2
14+ | Hjorth parameters (Activity) for PRC1 l19 | Third higher order moment for PRC2
Is | Hjorth parameters (Mobility) for PRC1 120 | Fourth higher order moment for PRC2
Is | Hjorth parameters (Complexity) for PRC1 21 | Power for PRC3
I, | First higher order moment for PRC1 I | Mean for PRC3
Is | Second higher order moment for PRC1 .3 | Sample entropy for PRC3
Is | Third higher order moment for PRC1 24 | Hjorth parameters (Activity) for PRC3
10 | Fourth higher order moment for PRC1 s | Hjorth parameters (Mobility) for PRC3
I | Power for PRC2 126 | Hjorth parameters (Complexity) for PRC3
I, | Mean for PRC2 7 | First higher order moment for PRC3
13 | Sample entropy for PRC2 I3 | Second higher order moment for PRC3
14 | Hjorth parameters (Activity) for PRC2 29 | Third higher order moment for PRC3
15 | Hjorth parameters (Mobility) for PRC2 I3 | Fourth higher order moment for PRC3
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Table 4.49: Channel-based ANOV A-selected statistically significant feature
distribution for subject-dependent finger movement classification in ITD-based time-
frequency domain feature set.

Fu Channels

1 2 3 4 5 6 7 ] 8 9 1w J1uuJ12]13]J1a]J15]16e]17 18] 19 T
Iy 3| 2 1] 2] 2 2 | 3|3 |2|1|4|2|1|2|3]|2]S: 38
I2 2 | 21| 2 2 | 1| 2| 4|34 |3]4]|3]|]1]|3]|3]|1]1 42

I3 5 6 3 3 2 4 2 5 4 5 6 6 5 5 3 4 5 4 4 81

17 1 1 1 1 1 1 1 1 1 3 3 2 1 2 1 21
Is 1 1 1 1 1 1 1 1 1 3 3 2 1 2 1 21
lo 1 1 1 1 1 1 1 1 1 3 3 2 1 2 1 21
l1o 1 1 1 1 1 1 1 1 1 3 3 2 1 2 1 21

l2 3 2 1 1 1 1 1 1 1 1 13

l13 5 5 6 6 5 5 5 5 6 4 7 6 4 8 5 3 7 5 4 101

l1a 2 4 3 4 1 1 2 3 3 4 3 4 6 4 2 4 4 2 1 57

l17 1 3 2 1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44
l1s 1 3 2 1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44
l1o 1 3 2 1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44
l20 1 3 2 1 3 4 2 1 3 1 2 3 5 1 3 3 3 3 44
121 7 7 2 5 2 4 2 3 1 3 4 3 2 4 6 2 2 59
I22 6 5 1 2 1 2 1 1 4 1 1 3 1 29

l24 7 7 1 5 2 5 2 2 4 3 3 2 4 5 2 2 56

l2s 7 6 5 4 4 4 3 7 5 3 5 7 2 5 6 4 6 7 3 93

l27 7 7 2 4 4 2 2 1 4 2 2 1 6 2 46

l2g 7 7 2 4 4 2 2 1 4 2 2 1 6 2 46

l29 7 7 2 4 4 2 2 1 4 2 2 1 6 2 46

130 7 7 2 4 4 2 2 1 4 2 2 1 6 2 46

T 1- 1- 78 | 88 [ 73 |79 [ 70 | 92 |70 |77 | 78 | 1- 1- 1- 62 | 84 | 1- 9% | 71 1727
22 | 30 17 | 09 | 11 21

Channel-based ANOVA-selected statistically significant 1TD-based time-frequency
domain feature distribution for subject-independent finger movement classification is
given in Table 4.49. Among 30 different ITD-based features, some features such as
sample entropy for PRC1, PRC2, and PRC3, Hjorth parameters (Mobility) for PRC2
and PRC3, and Hjorth parameters (Complexity) for PRC1, PRC2, and PRC3 were
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mostly indicated and selected as statistically significant features on almost all
channels. When the effect of the channels on the selection of statistically significant
features was examined, it was observed that there was a balanced distribution and a
large number of significant features were selected from all channels. Therefore, feature
selection from all channels and certain features with ANOVA improved the
classification performance in all classifiers except NB and KA.

Table 4.50: Channel-based ANOVA-selected statistically significant feature
distribution for subject-independent finger movement classification in ITD-based
time-frequency domain feature set.

Fiq Channels |
1 2 3 4 516 7 8 9 10 | 11 [ 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 T
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=
[$;]
N
w
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In our performed finger movement classification analyzes, we investigated the effects
of different feature extraction approaches and PCA-based and statistically
significance-based feature selection methods. We performed time-domain, frequency-
domain, WT-based time-frequency domain, and non-linear feature sets. In addition to
these feature set, we investigated two different combinations of these features to
improve classifier performance. A total of six feature set are created and analyzed
separately. We presented four different approaches using PCA and ANOVA test for
each feature set to reveal effectiveness of ANOVA test. These approaches are (i) all
features, (ii) PCA-selected features, (iii) ANOVA-selected features, and (iv) ANOVA
and PCA selected features from corresponding feature set. The presented approaches
are analyzed using various classifiers, separately. Hence the effects of different feature
sets and feature selection methods are analyzed for finger movement classification. In
addition to our WT-based time-frequency analysis, we performed another time-
frequency representation (ITD) model to compare their effectiveness for classification
finger movement. In this approach we investigated effects of the selected PRCs (PRC1,
PRC2, and PRC3) and their different combinations. We also used ANOVA test to
improve classifier performance. The obtained 1TD-based feature sets are classified
using different machine learning algorithms. In order to demonstrate the improvements
of utilizing ITD approaches, the same features were calculated from the EEG signal

itself, and classification step is repeated.

We applied the proposed 5 different feature extraction approaches for classification of
NoMT condition and five finger movements Ml tasks of 19-channel EEG signals after
obtaining of 1 sec MI EEG segments. A total of 24 time-domain, 15 frequency-domain,
15 WT-based time-frequency domain, 10 different and 4 non-linear features are
evluated from each EEG segment. These time-domain, frequency-domain, WT-based
time-frequency domain, ITD-based time-frequency domain, and non-linear feature
sets, their two different combination feature sets, and their features selected feature
sets of all feature sets were classified utilizing DT, DA, NB, SVM, k-NN, EL, NN,
and KA. The performances of different feature sets and the effectiveness of PCA and

ANOVA were investigated and compared.

Among all feature sets, performance of WT-based time-frequency feature set was

observed to be poor for finger movement classification and the performance of
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combination feature sets was found to be higher especially for SVM and EL classifiers.
The highest accuracy value (59.17%) is achieved using ANOVA-selected
TD+FD+WT+P and SVM algorithm. We observed that our Poincare measures-based
non-linaer features are improved the classifier performance when these features
included the first combination feature set including time-domain, frequency-domain,
and WT-based time-frequency features. The highest accuracy values in different
feature sets are generally obtained using SVM and EL algorithms. Additionally, we
investigated the effect of ANOVA-based feature selection and observed that the
classification performances of ANOVA-selected features are generally improve the
classification performance determining discriminative features for finger movement

classification.

In addition, we investigated ITD-based time-frequency features for finger movement
classification. Experimental results performed with different ITD-based feature sets
revealed that the combinations of the different PRCs improve classifier performance
and the highest classification performances are obtained using ANOVA-selected
PRC1-to-3 features. ANOVA test-based feature selection process helps improve the
classification performance. To reveal the effect of ITD approaches, when we compared
ITD-based approaches and EEG-based approaches, we observed that highest accuracy
values are mostly achieved using ITD-based approaches in all classifiers except NB
and KA classifiers. On the other hand, we compared our two time-frequency
representation models (WT and ITD), the classification performances of 1TD-based
approaches are higher than WT-based approaches. Therefore, we noted that ITD
algorithm is an effective time-frequency representation model and carries the most
useful information than WT-based approaches for classification of finger movement.
Thus, the encouraging results of ITD-based feature extraction, the combination of
different feature extraction methods and statistically significance-based feature
selection showed that the proposed approaches may be used for EEG-based analysis.

The performance of the proposed methods for finger movement classification is
compared with the success of the finger movement classification studies performed
using same data set in literature (given in Table 4.51). In some studies [22, 66], subject-
independent analysis was performed. When these studies are examined, higher

performance values are reported than our proposed methods. However, in [22], using
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Table 4.51: Performance comparison of finger movement classification studies.

Number

Ref. SUbJ.e.Ct of Number Feature Classifier Accuracy (%)
condition of classes
channels
EEG time series
[22] SI/8 19 5 Noise addition CNN 57.50
Sliding window
[71] SD/4 19 5 CSsP Random forest 51.00-56.00
[721 SD/4 19 5 cspP Autonomous 74.61-77.75
deep learning
Multi-class CSP
[73] SD/8 19 5 SVM 23.90-58.30
Complex fourier amplitudes
EEG sunbbands power
[66] SD/8 19 5 Forier transform amplitudes SVM 20.00-60.00
EEG time series
EEG sunbbands power
[66] SI/8 19 5 Forier transform amplitudes SVM 43.00
EEG time series
[69] SD/8 4 5 Spectrogram features SVM 21.20-66.60
[67] SD/4 4 5 EEG time series Deep learning 80.10-91.70
[70] SD/8 4 5 EMD BiLSTM 66.00-76.13
TD SVM 36.20
FD+ANOVA SVM 30.45
WT EL 26.60
This
SI/8 19 6 P+ANOVA SVM 31.79
study
TD+FD+WT+ANOVA SVM 38.70
TD+FD+WT+P+ANOVA SVM 39.30
ITD+ANOVA SVM 34.48
TD+ANOVA SVM 33.30-57.50
FD+ANOVA EL 29.17-55.00
WT+ANOVA SVM 25.83-36.67
This sD/8 19 6 P+ANOVA SVM 29.17-50.00
study
TD+FD+WT+ANOVA SVM 35.83-55.83
TD+FD+WT+P+ANOVA SVM 32.50-59.17
ITD+ANOVA EL 35.83-55.00

of CNN architecture increased complexity of classification process. In other studies

[66, 67, 69, 70-73], subject-dependent analysis was performed. In some of these

studies [67, 69, 70], the channel reduction is performed and only 4 out of 19 EEG

channels selected. Among these studies, in [67, 70], higher performance values are

presented than our proposed study. In [67], in addition to channel reduction, EEG data

of only 4 subjects was used and their approaches inludes higher computational
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complexity due to training time of deep learning approach. In another study [70],
BILSTM structure which increased classifier complexity was used for classification.
In [66], all channels and all subjects were used as our analysis for their subject-
dependent study and the highest accuracy value of 60.00% was achieved, but it has
also been observed that accuracy value of 20.00% was achieved in some subjects. In
[71, 73] all EEG channels are used as our analysis, but the classification results of our
methods are higher than these studies. In fact, in [71], EEG data of only 4 subjects
were used. In another study [72], subject-dependent analysis was performed using
deep learning structure and EEG data of only 4 subjects. Their experimental results
were higher than our experimental results. However, their analysis includes higher
complexity than our proposed methods. Our studies include low computational
complexity in terms of feature extraction, feature selection, and classification methods.
In addition, our statistically significance feature distribution examinations in different
feature sets revealed that the statistically significant feature density selected from the
channels and the selected feature types may vary in different feature sets. Therefore,
in each study, significant and relevant feature types and channels can be determined
by first extracting features from all channels and using ANOVA-based feature
selection, and the study can continue with these channels and features. These analyzes
are included in detail in our studies. Since our studies did not focus on the same
channels in all feature sets, feature extraction, feature selection and classification
processes were continued by using the information of all channels. Using different
approaches, the promising classification results were achieved in finger movement

classification studies.
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Chapter 5

Conclusion

The accurate decoding of MI tasks plays an important role in BCI design in order to
improve ADL of indivuduals who exposure motor impairment. There are different
neuroimaging methods to provide electrophysiologic activity of the brain for BCI
studies. Despite various brain imaging modalities, the EEG signal based BCI system
design has mostly performed due to its low cost and ease of recording, high temporal
resolution. However, EEG signals have non-linear and non-stationary characteristic
structure and these drawbacks make MI EEG classifications is quite difficult task.
Hence, the various methods have been introduced to accurate decoding of MI EEG
signals with high-quality processing of EEG signals in the literature. This thesis aimed
to propose various feature extraction methods with different feature selection methods
and machine learning algorithms by using EEG signals of two different MI task

classification, extremity movement and finger movement.

Firstly, the extremity movement task classification approaches are presented. In this
thesis, four different feature extraction methods that can be utilized in the classification
of binary-class (right hand and left hand) and four-class (right hand, left hand, both
feet, and tongue) extremity movements have been introduced with the combination of
22-channel EEG signals and machine learning algorithms. An open-available BCI
Competition 1V-lla dataset was used for EEG signal analysis in the extremity
movement task classification studies. Before feature extraction step, 3 sec Ml EEG
segments are decomposed from EEG signals which belongs to four different class
categories. Then, 24 diferent time-domain, 15 FFT-based frequency domain, 15 WT-
based time-frequency, and 4 Poincare plot-based non-linear features are calculated for
each EEG segments. This process is performed for all 22 EEG channels. Four different
feature sets including time-domain, frequency-domain, time-frequency domain, and

non-linear are provided. In addition to these sets, two combination feature sets of
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different features are created and analyzed for investigation of effects of different
feature sets. The first combination feature set consists of time-domain, frequency-
domain, and time-frequency domain features, while the second one includes all
features of first combination with addition of non-linear features. Additionaly, the
statistically significance-based feature selection methods such as the independent t-
test and ANOVA test are used to improve classifier performance selecting relative and
discriminative M1 EEG features for binary and multiple extremity movement task
classifications, respectively. The effect of ANOVA and the independent t-test is
investigated separately in each feature set. For four-class extremity movement task
classification, the six obtained feature sets are classified by a total of 30 different
classification processes according to the eight basic classifiers, while for binary
classifications, a total of 31 classification processes are performed with the addition of

LR-based classification process.

In our simulations for the binary-class extremity movement task classification, the
highest classification accuracy value was obtained by using non-linear feature set
approach where the relavent information about MI tasks may be supplied more clearly.
When we analyzed the effect of all feature sets, performance of time-frequency feature
set was observed to be poor for binary-class extremity movement task classification
and the performance of non-linear feature sets was found to be higher especially for
all classifiers except NB. Additionally, among two different combination sets, the
highest value was achieved with the first combination set. Note that, working with the
independent t-test as feature selection method, generally improved the classifier
performance in all feature sets except time-domain feature set. When we observed the
effect of 9 classifier algorithms, DA algorithm achieved the highest accuracy of
binary-class extremity movement task classification with using non-linear feature set.
However, the highest accuracy value in different feature sets is generally obtained by
EL algorithm-based classifications (shown in Figure 3.3a and Figure 3.3b).

In our simulations for the multi-class extremity movement task classification, the
highest classification accuracy value was obtained by the second feature set
(TD+FD+WT+P+ANOVA) approach where the relavent information about M1 tasks
may be supplied more clearly. Among four feature sets (time-domain, frequency-

domain, time-frequency domain, and non-linear), performance of time-frequency
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feature set was observed to be poor for four-class extremity movement task
classification the performance of non-linear feature sets was found to be higher
especially for SVM and EL classifiers. The most successful non-linear feature set is
“All lags” non-linear feature set including all non-linear features which are calculated
for 10 different lag conditions. It was shown that, despite the high classification
performance of the SVM algorithm with the non-linear feature set among the four
feature sets, it did not perform the same better performance with the combination
feature set. In addition, we observed that the highest performance in the proposed
approaches was generally achieved with the EL algorithm in the classifications
performed on all features sets (time-domain, frequency-domain, time-frequency
domain, and combination sets) except the non-linear feature sets (as shown in Figure
3.4a and Figure 3.4b). The experimental results performed using ANOVA-selected
feature sets revealed that ANOVA is improved the classifier performance in all
proposed feature sets determining discriminative and informative MI EEG features

from the corresponding feature sets.

In the second section of thesis, various feature extraction approaches and two different
feature selection methods such as ANOVA and PCA have been presented to classify
the EEG signals of finger movements. The subject-dependent and subject-independent
finger movement classification analyzes are performed. An open-available large
electroencephalographic MI dataset was used for EEG signal analysis in the finger
movement classification studies. NOMT and 5F 19-channel EEG signals are used for
our analysis. 100 sample determined for each class category and a total of 600 sample
used for feature extraction step to provide balanced data distribution. As our previous
feature extraction step performed for the extremity movement task classification, the
same six feature sets are extracted from EEG signals of finger movements and NoMT
condition. In feature selection, PCA-based feature selection is added to process to
reveal effect of ANOVA test. In this direction, four different feature sets generated
based on different feature selection methods, ANOVA and PCA, from our six feature
sets. These generated features sets are (i) all feature set, (ii) PCA-selected feature set,
(iii) ANOVA-selected feature set, and ANOVA and PCA-selected feature set from the
corresponding feature set (TD, FD, WT, P, TD+FD+WT, and TD+FD+WT+P). These
feature sets are evaluated utilizing 30 different classification processes according to

the eight basic classifiers. In addition to all feature sets, ITD-based approach is used
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to obtain time-frequency features as alternative to WT-based time-frequency features.
In this process, PRCs are extracted from each EEG segments using ITD. To defining
of informative PRC is important step in this process. We used energy-based
examinations to define PRCs and selected first three PRCs for our analysis due to their
high-frequency content. 10 different ITD-based time-frequency features are evaluated
from the corresponding PRCs. In addition to first three PRCs (PRC1, PRC2, and
PRC3), different binary-combinations of PRCs (PRC1-PRC2, PRC1-PRC3, and
PRC2-PRC3) and their triple combination (PRC1-to-3). To reveal the effect of ITD,
the same features from EEG segments itself without application of ITD. Additionaly,
ANOVA-based feature selection is performed for PRC1-to-3 and EEG-based feature
sets to improve classifier performance. A total of 8 ITD-based feature sets and 2 EEG-
based feature sets are classified with 30 different classification processes under eight

classifiers algorithms.

The simulation results revealed that WT-based time-frequency feature set-based
classifications obtained worse accuracy values and the combination feature set
(TD+FD+WT+P) achieved better results for finger movement classification. The
highest accuracy value (59.17%) is calculated utilizing ANOVA-selected
TD+FD+WT+P feature set and SVM algorithm. The results noted that our Poincare
measures-based non-linaer features are improved the classifier performance when
these features included the first combination feature set (TD+FD+WT) including time-
domain, frequency-domain, and WT-based time-frequency features. On the other
hand, the results show that ANOVA-selected statistically significant features are
generally improve the classification performance obtaining informative features in all
feature sets for finger movement classification. When we analyzed the simulation
results of ITD-based approaches, we observed that the combinations of the different
PRCs obtain better results and the highest classification performances are achieved
utilizing ANOVA-selected PRC1-t0-3 features. ANOVA-based feature selection
generally improves the classifier performance in both PRC1-to-3 feature set and EEG-
based feature set. We compared the ITD-based and EEG-based approaches, the results
noted that highest accuracy values are mostly calculated utilizing 1TD-based
approaches in all classification algorithms except NB and KA classifiers. Although
WT-based approaches have been mostly used in classification of MI signals in the

literature, in our study, ITD-based time-frequency approaches provide better results
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than WT-based time-frequency approaches for finger movement classification. Hence,
the results demonstrate that ITD-based approaches, which obtain the time-frequency
representation of EEG signals, can be used successfully in discrimination of finger

movements.
The objectives, which are provided in our thesis, are summarized as follows;

e Various feature extraction approaches such as time-domain, frequency-
domain, WT-based time-frequency domain, ITD-based time-frequency
domain, non-linear features and their different combinations are investigated
and the advantages this Poincare plot-based non-linear features and the
combinations sets are presented in deatil for binary and multiple extremity

movement task classification and finger movement classification.

e In addition to the literature studies which has been mostly performed using
spatial features such as CSP and its different versions, Poincare plot measures-
based non-linear feature extraction has been proposed and the effect of
different lag values are investigated. It has been shown that the successful

classification results were achieved using Poincare plot measures.

e It has been noted that the ITD method can be utilized successfully in the

classification of finger movement.

e Different combinations of PRCs extracted using ITD approach are investigated
for the first time with various classifier algorithms for the classification of Ml

tasks and successful performance evaluation results are achieved.

e The simulation results performed with the statistically significance-based
feature selection methods (ANOVA test and the independent t-test) reveal that
they improved the classifier performance selecting relative and discriminative
features and it can be used as feature selection method in EEG-based MI task

classification.

e The channel-based distributions of statistically significant features determined
by the statistically significance-based feature selection method were examined

for both extremity movement task and finger movement classifications. The
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results revealed that the statistically significant feature density selected from
the channels and the selected feature types may vary in different feature sets.
Therefore, instead of eliminating the channels at first, it was concluded that
extracting features from all channels and then determining significant and
relevant EEG channels and features by statistically significance-based feature
selection method is an effective way.

In the literature, the performances of the machine learning algorithms that were
not analyzed before were calculated in terms of MI task classification and the
most successful classification algorithm was found to be the SVM and EL

lassifiers.

In the literature, passive mode (NoMT condition) has ignored for finger
movement classification studies, we presented a six-class finger movement
classification study including of EEG signals which belong to NoMT class to
provide a more realistic BCI design for indivuduals, who suffering from motor

disabilities to the author's best knowledge.
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