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Artificial Intelligence Based Resource Allocation in CF 

Networks 

Abstract 

With the rapid development of technology, cellular networks can no longer meet the 

demands of wireless networks. Communication systems need to be updated to ensure 

that every user equipment (UE) receives accurate and efficient service. Cell-free (CF) 

networks offer advantages over cellular networks, such as more flexible resource 

allocation, higher capacity, better coverage and lower interference. The deployment of 

multiple access points (APs) and flexible allocation of resources leads to higher 

network performance and efficiency. In addition, in CF networks, users can 

communicate with APs spreaded around them, achieving more homogeneous 

coverage. Reducing interference and utilizing resources more efficiently improve UEs 

experience and increases network capacity. In this thesis, two different resource 

allocation problems for CF networks have been investigated by exploring different 

machine learning and deep learning algorithms. In the first resource allocation 

problem, an efficient AP selection scheme has been explored by using and comparing 

different classification methods for the campus of Katip Celebi University. In the 

second resource allocation problem, power allocation has been studied to increase the 

total spectral efficiency (SE) of the CF networks. Three different machine learning 

(ML) techniques have been used to train the generated dataset addressing the convex 

optimization problem of SumSE power allocation. Deep Neural Network (DNN), 

Light Gradient Boosting Machine (LightGBM) and Convolutional Neural Network 

(CNN) are the ML models. ML models facilitate SE estimation based on channel gain 
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values. The numerically calculated SE values have been compared with the ML 

models. The comparisons lead to the recommendation of the best ML model. 

 

Keywords: CF, massive MIMO, interference, access point, power allocation, spectral 

efficiency 
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Hücresiz Ağlarda Yapay Zeka Tabanlı Kaynak Tahsisi 

Öz 

Teknolojinin hızla gelişmesiyle birlikte hücresel ağlar artık kablosuz ağların taleplerini 

karşılayamaz hale gelmiştir. Her kullanıcı ekipmanının (UE) doğru ve verimli hizmet 

almasını sağlamak için iletişim sistemlerinin güncellenmesi gerekmektedir. Hücresiz 

(CF) ağlar, hücresel ağlara göre daha esnek kaynak tahsisi, daha yüksek kapasite, daha 

iyi kapsama alanı ve daha düşük parazit gibi avantajlar sunar. Birden fazla erişim 

noktasının (AP) konuşlandırılması ve esnek kaynak tahsisi, daha yüksek ağ 

performansı ve verimliliğine yol açar. Buna ek olarak, CF ağlarında kullanıcılar 

etraflarına yayılmış AP'lerle iletişim kurabilir ve daha homojen bir kapsama alanı elde 

edebilir. Girişimin azaltılması ve kaynakların daha verimli kullanılması UE'lerin 

deneyimini iyileştirir ve ağ kapasitesini artırır. Bu tezde, farklı makine öğrenimi ve 

derin öğrenme algoritmaları keşfedilerek CF ağları için iki farklı kaynak tahsisi 

problemi incelenmiştir. İlk kaynak tahsisi probleminde, Katip Çelebi Üniversitesi 

kampüsü için farklı sınıflandırma yöntemleri kullanılarak ve karşılaştırılarak verimli 

bir AP seçim şeması araştırılmıştır. İkinci kaynak tahsisi probleminde, CF ağlarının 

toplam spektral verimliliğini (SE) artırmak için güç tahsisi incelenmiştir. SumSE güç 

tahsisinin konveks optimizasyon problemini ele alarak oluşturulan veri kümesini 

eğitmek için üç farklı makine öğrenimi (ML) tekniği kullanılmıştır. Derin Sinir Ağı 

(DNN), Işık Gradyanı Güçlendirme Makinesi (LightGBM) ve Evrişimsel Sinir Ağı 

(CNN) ML modelleridir. ML modelleri, kanal kazanç değerlerine dayalı SE tahminini 

kolaylaştırır. Sayısal olarak hesaplanan SE değerleri ML modelleri ile 

karşılaştırılmıştır. Karşılaştırmalar en iyi ML modelinin önerilmesine yol açmaktadır. 
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Chapter 1 

Introduction 

The increase in mobile communication today is staggering. In 2023, there are over 7.3 

billion mobile phone users in the world, which is more than 90% of the global 

population, as shown in Fig 1.1. As more individuals have access to mobile devices 

worldwide, this figure is only anticipated to increase in the upcoming years. The 

growth of mobile communication has been influenced by a variety of reasons. One 

factor is the falling cost of mobile devices. In recent years, the price of smartphones 

has come down significantly, making them more affordable for people in developing 

countries. Another factor is the expansion of mobile networks. In many parts of the 

world, mobile networks have been built out to provide coverage even in rural areas. 

 

Figure 1.1: Number of Mobile Users Worldwide from 2020 to 2026 [27] 
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In the study of [1], the APs selection problem has been investigated for CF-networks 

with various inputs and outputs. The APs are dispersed at random and serve a large 

number of users at the same time. Formulas are created to evaluate the effective 

channel gain from all users to all APs and the channel quality of each user in order to 

determine the two recommended metrics. Furthermore, these measures rely solely on 

large-scale damping coefficients that fluctuate extremely slowly over time. Then, 

based on these criteria, an algorithm is provided for ranking and connecting users to 

each AP. The simulation findings suggest that adopting the proposed approach, large 

CF MIMO systems perform better than previous schemes. Full connection between 

users and APs is frequently assumed in CF mass MIMO studies.  

In the study proposes of [2], a deep reinforcement learning based framework for 

dynamic AP activation in cell-free MIMO networks. The framework considers spatial 

user information and power consumption of APs and learns to select a subset of active 

APs that provide good service while saving power. The framework is implemented 

using a deep Q-network (DQN) agent. The DQN agent is trained using a dataset of 

historical user data and learns to map from the current state of the network to the 

optimal action to activate or deactivate an AP. It contains information about the state 

of the network, the location of users, the signal strength of APs and the power 

consumption of APs. The agent's action is to enable or disable an AP. 

In the study of [3], employing a minimal mean squared error (MMSE) receiver to 

suppress multi-user interference (MUI) has shown a large gain in capacity, but at the 

cost of high computational complexity and residual MUI amplification. A significantly 

lower complexity adaptive approach is proposed, where the central processing unit 

(CPU) iteratively removes the MUI without increasing the now term. It does this 

dynamically, using the available channel estimates information to combine the 

strongest AP signals selected for each user and perform the joint operation to 

simultaneously subtract the sum of the interference estimates from all other users. 

Signal-to-noise plus noise ratio (SINR) and complexity analyses with numerical 

results are presented to illustrate the superiority of this approach over state-of-the-art 

approaches. As an interesting alternative to MMSE-based CF massive MIMO, a novel 

low-complexity and high-capacity solution termed JAPSIC is shown, which employs 

the combined process of selective coupling of AP signals and multi-stage interference 
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cancellation. In the study of [3], the article also gave importance to the subject of 

interference cancellation compared to [1]. 

In the study of [4], a user-centric (UC) virtual cell method is provided for CF massive 

MIMO system, in which each user is serviced by a small number of APs.  For the great 

majority of users in the network, the UC method requires less backhaul overhead than 

the CF option and outperforms it in terms of attainable rate-per-user. A backhaul 

network connects the APs to a CPU, which receives soft predictions of data symbols 

received from all devices and sends data symbols to the APs to be forwarded to mobile 

stations (MSs). Neither beamforming vectors nor channel estimates are transmitted 

over the backhaul network. The CF technique, which is essentially an example of 

complete AP cooperation, beats a small cell system in terms of throughput with 95 

percent probability per user, according to the study given in [5]. In the study of  [5], 

CF presents a UC virtual CF massive MIMO strategy to address massive MIMO, 

which assumes that each AP serves only the most powerful MSs of the system. The 

CF massive MIMO design has been compared to a UC technique, in which each AP 

only decodes a pre-determined number of MS. The results reveal that the UC method 

beats the CF approach with simple estimate approaches, except for a small percentage 

of users with poor channel conditions. Adaptive MS-to-APs association rules based on 

current channel coefficient estimations may be a good solution to this problem. 

A promising solution for enhancing the spectral and energy efficiency of wireless 

communication networks is CF massive MIMO. In this architecture, many distributed 

APs work together to simultaneously service many UEs. One important problem in CF 

massive MIMO is power allocation, which aims to maximize the system performance 

by optimizing the transmit power at each AP. In recent years, ML techniques, 

especially deep learning, have been applied to power allocation in wireless 

communication systems, including CF massive MIMO. These techniques have shown 

promising results in improving the system performance and reducing the 

computational complexity compared to traditional optimization methods.  

In the study proposes of [45], corresponding policies for uplink power control and 

downlink power allocation in CF wireless networks. Both policies are based only on 

large-scale quantities and are expressed in closed form, so they are scalable. The uplink 

policy, which generalizes the fractional power control commonly used in cellular 
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networks, has a single parameter; by adjusting this parameter, the signal-to-

interference ratio (SIR) distribution experienced by users can be compressed or 

expanded, trading off average performance for fairness. The downlink policy dualizes 

the uplink solution and again includes two parameters allowing a trade off between 

average performance and fairness. In the study of [46], to achieve an energy efficient 

load balancing, we minimized the total downlink power consumption in APs by 

considering both their transmission power and hardware distribution. The formulated 

optimization problem is non-convex, but a globally optimal solution is nevertheless 

obtained by solving a mixed-integer quadratic cone program. Since the computational 

complexity is prohibitive for real-time implementation, two low complexity 

algorithms are also proposed that exploit the inherent group sparsity in the problem 

formulation and the optimized transmission powers. In the study of [47], the problem 

has been addressed by exploring the use of data-driven methods that can achieve near-

optimal performance with low computational complexity. Deep reinforcement 

learning is one of these methods. Two deep reinforcement learning power allocation 

methods, DQN and deep specific policy gradient, are explored. The goal is to 

maximize the total SE in CF massive MIMO operating in the microwave domain. In 

the study of [48], CF massive MIMO uplink is investigated. The focus is on a power 

allocation design problem that considers two conflicting metrics, sum rate and fairness. 

Different weights are assigned to sum rate and fairness depending on the requirements 

of the mobile operator. The knowledge of channel statistics is used to optimize the 

power allocation. It is proposed to use large-scale fading coefficients as input to a pair 

of delayed deep specific policy gradients. It ensures that it can efficiently solve the 

problem of optimizing nonconcave sum rate fairness trade-off. A use-and-then-forget 

(UatF) technique is then employed, which provides a closed-form expression for the 

achievable rate. 

1.1 Background 

1.1.1 Mobile Networks 

Mobile networks seek to give users access to various data services wirelessly from 

anywhere in the world through the provision of devices. For many years, the primary 

service provided by these networks has been phone conversations, but nowadays, data 
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packet transfer is the primary function. As a result, the data rate that can be transferred 

at different places within the coverage area determines the quality of service of modern 

networks. The propagation medium determines the wireless transmission range. A 

typical mobile network architecture consists of a collection of geographically spread 

transceivers from which the connected device can pick, because received signal 

strength diminishes second order or even faster with propagation distance. These are 

often installed in high areas to enable for unrestricted distribution over the region. Each 

transceiver shall be referred to as an AP and each user device as a UE in this 

monograph. 

1.1.2 Massive MIMO 

Massive MIMO is a communication system architecture using multiple antennas. In 

contrast to traditional MIMO systems, in massive MIMO the base station or AP can 

contain hundreds or thousands of antennas. The use of these multiple antennas 

provides a large capacity increase that also supports multi-user or multi-path 

communication. Massive MIMO is based on greatly improving the channel state and 

increasing SE. The use of multiple antennas allows to serve many users simultaneously 

and to create stronger channel matrix. This results in better diversity, reduced multi-

user interference and more efficient use of the transmission power spectrum. Massive 

MIMO has many advantages [22-26]. These include high SE, large capacity gains, 

energy efficiency, improved user experience and wide cell coverage. In addition, 

negative effects in the transmission channel such as noise, delay and multipath 

propagation can be reduced. 

The application areas of massive MIMO are quite wide. It is widely used in 5G and 

later generation wireless communication systems, in environments requiring heavy 

user traffic and large data transfer, smart cities, stadiums and airports where high 

capacity and performance are required. It also offers potential advantages in next-

generation applications such as wireless power transfer, Internet of Things (IoT) and 

self-driving cars. 
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1.1.3 Cellular Networks 

Modern cellular networks are separated into two types of infrastructure. These are edge 

and core. The edge network is made up of APs and other hardware pieces that 

communicate with UEs at the physical layer. All services sought by UEs are provided 

by the core network, including data packet routing and Internet access. Backhaul links 

connect the edge and the core, and they can be entirely or partly wireless. Fig 1.2 has 

been shown an example of Cellular massive MIMO. 

A major consequence of the rapidly decreasing received signal strength with 

propagation distance is that UEs close to an AP have a higher SNR. The typical 

distance between the cell center and cell boundary is 10,000 times (40 dB). 

Additionally, interference from nearby APs has an impact on UEs at the cell boundary. 

As a result, at some sites, the SINR may be considerably lower than the SNR. Due to 

the fact that data rate increases as SINR increases, there are large rate differences 

between each cell. 

 

Figure 1.2: Cellular massive MIMO 

Massive MIMO is a type of multi-user MIMO that is scalable. Both ends of the link 

must know the propagation channel, according to the strict Shannon theory, and dirty 

paper coding is necessary. These limitations, however, will always restrict the wireless 

system's realistic scale. Massive MIMO, on the other hand, just requires base stations 
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to be aware of propagation channels, replacing filthy paper encoding with basic linear 

precoding, and may be expanded to any degree. 

1.1.4 Cell-Free Networks 

CF networks are a different approach to wireless communications than traditional 

cellular networks. Instead of many small APs or base stations, the network uses a large 

number of APs with many low-power antennas. These APs are distributed in a spread-

out manner across the entire network area and share services between UEs. CF 

networks have different advantages than traditional cellular networks and aim to 

provide better capacity, better coverage and better user experience [15-20]. Fig 1.3 has 

been shown an example of CF massive MIMO. 

CF networks, unlike traditional cellular networks, use a communication model based 

on multiple antennas with centralized processing power and coordination. In these 

networks, the connections between APs and UE are realized using a programmable 

algorithm driven by a central controller. APs are low-cost APs distributed in clusters, 

each with multiple antennas. UEs are miniature antennas placed in close proximity to 

APs to perform functions such as signal boosting and noise reduction. Connections are 

realized through backhaul links, which allow APs to communicate with each other, 

and fronthaul links, which allow APs to serve UEs. Backhaul links enable APs to share 

data with a centralized location, while fronthaul links enable APs to communicate 

directly with UEs. In this way, CF networks offer a different communication 

environment from traditional cellular networks, providing advantages such as wider 

coverage, higher speeds and better spectrum efficiency. [3-5]. 
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Figure 1.3: CF massive MIMO 

Scalable multi-user MIMO is known as massive MIMO. Both ends of the link must 

know the propagation channel, according to the strict Shannon theory, and dirty paper 

coding is necessary. These limitations, however, will always restrict the wireless 

system's realistic scale. Massive MIMO, on the other hand, just requires base stations 

to be aware of propagation channels, replacing filthy paper encoding with basic linear 

precoding, and may be expanded to any degree. 

1.2 Resource Allocation 

Resource allocation is one of the major issues facing CF. The process of allocating 

resources, such as bandwidth, power, and time, to network users is known as resource 

allocation. Resource allocation in a CF is more complex than in traditional cellular 

networks because there are more APs and users to consider [9-13]. 

There are numerous methods for allocating resources in CFs. Some of the most popular 

methods are listed as follows: 

 Centralized resource allocation: In centralized resource allocation, a central 

controller is responsible for allocating resources to users. This approach is 

more efficient, but can also be more complex and less scalable. 
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 Distributed resource allocation: In distributed resource allocation, APs are 

responsible for allocating resources to users. This approach is less efficient, but 

can also be more scalable and more adaptable to changes in the network. 

 Hybrid resource allocation: Hybrid resource allocation combines centralized 

and distributed resource allocation. The best of both worlds may be provided 

by this strategy, but its implementation may be more difficult. The specific 

application and network requirements determine the resource allocation 

strategy to be used. However, all resource allocation strategies used in CF have 

as their main objective enhancing network performance and enhancing user 

experience. 

Resource allocation helps reduce congestion in CFs by ensuring that users have 

been allocated resources that are not currently in use. By ensuring that all users 

have access to the resources they require, it enhances fairness in CF. 

1.3 AP Selection 

AP selection in CF networks involves a different dynamic compared to cellular 

networks. In cellular networks, UEs are usually connected to only one cell and AP 

selection is more limited. However, in CF networks, there are multiple APs and UEs 

can communicate with the APs around them. Therefore, AP selection requires UEs to 

choose the most appropriate one among the available APs. This choice can be based 

on various factors, for example, the location of the UE, signal quality, interference 

level, traffic density and availability of resources. AP selection can be optimized to 

improve UE experience and network performance. In particular, APs that are closest 

to the UE's location and have high signal quality can be chosen to provide better 

coverage. At the same time, it is also important to evenly distribute traffic density by 

load balancing between APs. In this way, AP selection in CF networks differs from 

cellular networks as a more flexible and optimizable process [1],[3],[10]. 

AP selection in CF networks has been studied [21],[32] by researchers as an area that 

needs to be optimized with ML techniques . ML can improve the AP selection process 

by analyzing large datasets and learning patterns. For example, a ML model can be 

developed that evaluates a wide range of input parameters such as the location of the 
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UE, signal quality, traffic density, interference level and other environmental factors. 

Based on previously collected data, this model can predict the AP that will best suit 

the needs of UEs. Research shows that by using techniques such as various ML 

algorithms, artificial neural networks or decision trees, more intelligent and optimized 

decisions can be made in AP selection. This approach provides the potential to improve 

the UE experience and maximize network capacity by enhancing the performance of 

CF networks. 

1.4 Power Allocation 

 Power allocation in CF networks requires a different approach compared to cellular 

networks. In cellular networks, each cell has a specific power budget and power is 

allocated within this budget. However, in CF networks, there are multiple APs and 

resources are shared, making power allocation more dynamic and flexible. Power 

allocation provides an efficient distribution of power resources and optimizes the 

performance of the network. Power resources can be allocated intelligently, taking into 

account users' demands and environmental factors. This allows users to achieve better 

signal quality, faster data transfer and lower power consumptionIn comparison to 

cellular networks, CF networks' power distribution enables more effective use of 

power resources and raises the network's overall performance. It can also reduce 

interference and improve the user experience. Research shows that the power 

allocation process can be further optimized using methods such as ML and 

optimization techniques. As a result, power allocation in CF networks can enable more 

efficient and adaptive allocation of power resources, improving network performance 

and user satisfaction [45-50]. 

In CF networks, the power allocation process can be improved using ML approaches. 

ML, with its data analysis and learning capabilities, can be used to improve power 

allocation and optimize SE. Various power allocation methods include popular 

approaches such as max-min SE (maximum minimum spectral efficiency) and sumSE 

(sum spectral efficiency). 

The max-min SE method aims to maximize the targeted SE level while ensuring that 

users are equally served. In this method, ML algorithms optimize power allocation by 
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taking into account factors such as users' locations, signal quality and traffic density. 

This ensures an acceptable quality of service even for users with a weak signal. 

The SumSE method optimizes power allocation to maximize the total SE. ML 

algorithms efficiently allocate power resources by analyzing the different requirements 

of users, signal quality and traffic density. As a result, the network's overall data 

transmission rate rises and user experience is enhanced. In power allocation methods, 

ML can optimize power allocation by evaluating parameters such as user location, 

mobility status, traffic density, signal quality. By learning on large datasets, it can 

predict the optimal power level for users, thereby improving SE. ML assisted power 

allocation provides more efficient resource utilization, interference management and 

user experience in CF networks. 

1.5 Machine Learning Algorithms 

Software applications may now predict outcomes more accurately without having to 

be explicitly designed to do so thanks to a type of AI known as ML. In order to forecast 

new output values, ML algorithms employ historical data as input [28–29].  

There are numerous varieties of ML algorithms. Some of the most popular methods 

are listed as follows: 

 Supervised learning: The data sets used to train this kind of ML algorithm 

include both input and output values. The algorithm gains the ability to 

translate input values into output values. 

 Unsupervised learning: On data sets with only input values, this kind of ML 

algorithm is learned. Without any output values to act as a guide, the algorithm 

learns to spot patterns in the data. 

 Reinforcement learning: This particular ML system picks up new 

information through error. For executing actions that result in the intended 

consequences, the algorithm has received a reward. The algorithm gains the 

ability to operate in ways that maximize reward. 
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ML solutions are important for 6G systems, so as ML algorithms in CF networks help 

APs make better decisions about resource allocation and power control [30-32]. They 

identify the best AP resource distribution and power control based on the situation at 

hand and the actions of other network users by evaluating vast volumes of data.  ML 

algorithms also help in user assignment in CF networks. Thanks to their ability to learn 

from data, the UE can assign to the most appropriate AP and optimize the quality of 

service according to the needs of each user.  ML has been used to predict and manage 

channel conditions in CF networks. By analyzing channel condition information 

between APs, it is possible to predict future channel conditions and make resource 

allocation and power control decisions accordingly.  

1.5.1 Classification Methods 

ML classification methods are fundamental techniques used to categorize data into 

different classes or categories. These methods aim to learn patterns and relationships 

from labeled training data and apply that knowledge to classify new, unseen instances. 

ML offers various methods for solving classification problems. Among these methods, 

Decision Tree (DT), Gaussian Naive Bayes (GNB), Linear Discriminant Analysis 

(LDA), K-Nearest Neighbors (K-NN) and Support Vector Machine (SVM) models are 

important. 

SVM is a powerful classification method used to classify data into two or more classes. 

SVM classifies data points with a hyperplane and tries to achieve the best separation 

by achieving maximum marginal separation. DT uses a tree structure to solve a 

classification problem. Each internal node represents a feature and when branching, 

the feature that provides the best discrimination is selected. At the leaf nodes, the final 

classification is made. LDA is a method that aims to maximize the differences between 

classes in multivariate data sets. It tries to achieve a linear discrimination to classify 

data points. K-NN uses the k closest examples to classify an example. It predicts the 

class of the instance based on the majority of the classes of the k closest instances. In 

addition to being a simple and effective classification method, K-NN can also be 

customized by the choice of distance measure between data points. GNB is a form of 

Bayes' theorem used in classification problems. This method uses the assumption of 

independence between features and calculates the probability that the data point 
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belongs to each class. Classification methods can be chosen to suit different data 

structures and characteristics. Each approach has benefits and drawbacks, therefore it 

is best to select one based on the needs of the situation. 

1.5.2 Regression Methods 

ML regression methods are powerful algorithms used for predicting continuous 

numerical values based on input features. These methods aim to establish a 

relationship between the independent variables and the dependent variable by fitting a 

mathematical function to the training data. Some commonly used regression 

techniques include linear regression, polynomial regression, support vector regression, 

decision tree regression, random forest regression, and neural network regression. 

These methods employ various mathematical and statistical techniques to minimize 

the difference between the predicted values and the actual values, thereby optimizing 

the model's accuracy. Regression models are widely applied in various domains, such 

as finance, healthcare, economics, and engineering, to make predictions, estimate 

trends, and uncover hidden patterns in the data. By leveraging machine learning 

regression methods, researchers and practitioners can gain valuable insights and make 

informed decisions based on the predicted outcomes. 

Regression techniques consist of a set of algorithms where linear regression is the basic 

method used to model the relationship between dependent and independent variables. 

Polynomial regression is used to capture non-linear relationships, while support vector 

regression is an adaptation of support vector machines used in classification to 

regression problems. Decision tree regression uses a tree structure to predict the target 

variable based on independent variables, while random forest regression is an 

ensemble method consisting of multiple decision trees. Neural network regression is a 

multi-layered and complex model that is used to capture complex relationships 

between data. These regression techniques can be used for different data structures and 

problems, helping to make predictions and analysis. 

1.5.3 Deep Neural Networks 

DNN is an artificial neural network-based ML model and is used to solve complex 

problems [33]. This method uses a neural network structure with multiple hidden 
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layers and is capable of learning complex data patterns and relationships.  DNN can 

achieve high performance in feature extraction and prediction. 

DNN are a neural network model with a multilayer structure. The input layer receives 

data and starts processing the network. Successive hidden layers process the data to 

extract features and build more complex representations. Finally, the output layer 

produces the results. Each layer processes the data through the artificial neural cells 

they contain and performs learning by optimizing the weights. 

Numerous fields have effectively used DNN. It is utilized in a variety of applications, 

including automated driving, picture identification, natural language processing, voice 

processing, and financial forecasting. This algorithm, fed with large amounts of data, 

learns complex relationships in the data and can make predictions on new examples. 

CF networks aim to provide better wireless communication performance by using 

many APs.  Additionally applicable to CF networks, DNN is crucial to the decision-

making process. DNN can automatically optimize decisions such as resource 

allocation among APs, power control, and user assignment.  DNN can also be used for 

channel state estimation and management [34-36]. 

1.5.4 Convolutional Neural Network 

CNN is a deep learning model specifically designed for processing and analyzing 

visual data. In visual tasks including picture categorization, object identification, and 

face recognition, CNN have been employed successfully. This method has layers that 

perform local feature extraction and hierarchical learning within the data [37-38]. 

Convolution layers, activation functions, pooling layers, and fully linked layers make 

up CNN. Convolution layers allow filters (kernels) to move through the data and 

identify different features. Activation functions compress the convolution results and 

add non-linearity. Pooling layers are used for dimensionality reduction and 

highlighting important features. Fully connected layers are used for classification or 

prediction [39]. 

The success of CNN is achieved by learning their weights. Using large amounts of 

data, the network automatically learns the features in the data. Using the 



15 

 

backpropagation algorithm, the network's errors are reduced and the weights are 

updated. This improves the network's ability to make more precise and accurate 

predictions. The use of CNN in CF networks also has significant potential. In 

particular, when it comes to analyzing and processing visual data, the use of CNN can 

be important to achieve efficient results [40]. 

1.6 Organization of the Thesis 

The purpose of this thesis is to highlight the significance of resource allocation in CF 

networks and to suggest an ML based resource allocation strategy. In Chapter 2, 

supervised ML models have been proposed for AP selection in CF networks. 

Comparisons have been made using five different models. The accuracy of the results 

has been supported by the outputs from the Wireless InSite (WI). In Chapter 3, a 

dataset containing simulated results generated by applying the SumSE power 

allocation approach has been obtained via MATLAB. The dataset has been trained 

with ML, DNN and CNN artificial intelligence algorithms to predict the SEs of UEs 

at the new location. The simulation parameters and formulas before this estimation 

have been given in chapter 3. In chapter 4, the collected data has been compared with 

the simulation results using ML learning models. The ML models aims to eliminate 

the time taken during optimization by approximating the power allocation outputs. 

Conclusion and future plan have been described in chapter 5.  
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Chapter 2 

Machine Learning Based AP Selection 

in CF MIMO Networks 

In recent studies, many different artificial intellegent models have been used in CF 

networks. In the study of [2], a deep reinforcement learning-based framework for 

dynamic AP activation in cost-free MIMO networks is proposed. The framework 

considers spatial user information and power consumption of APs and learns to select 

a subset of active APs that provide good service while saving power. In the study of 

[51], graph neural network (GNN) based AP selection algorithm for CF massive 

MIMO systems. The GNN is used to learn the relationships between the APs and the 

UE, and it is used to predict the potential APs that can provide the best service to a 

UE. In the study proposes of [52], deep reinforcement learning approach for energy 

efficient AP selection in CF massive MIMO systems. The goal of the approach is to 

maximize the energy efficiency of the network while ensuring that all users have a 

minimum guaranteed rate 

In addition to other studies, supervised ML models have been used since the AP 

selection area is a specific university campus and the datasets can be collected with 

WI. In this chapter, ML based classification algorithm has been proposed for AP 

selection in CF MIMO systems. A ML classifier has been trained on a feature dataset 

that includes the location of the user, the locations of the APs, and the CSIs of the APs. 

The suggested technique is applicable to both indoor and outdoor locations where CF 

MIMO systems have been installed.  

The AP selection model has been analyzed and five different ML classification 

methods have been compared. Izmir Katip Çelebi University campus has been selected 

as the environment for the study and the output values have been obtained in the 
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simulation environment from the users and APs deployed on the campus. Numerical 

calculation results have been obtained from WI. The results have been analyzed by 

comparing the artificial ML techniques in the selection of APs with the throughput 

values obtained from numerical calculation. 

2.1 System Model 

In this section, the CF network system model has been introduced. The CF MIMO 

system has been implemented using M AP and K user TDD (M >>K). Table 2.1 lists 

the simulation's input and output parameters. The APs are 13.36 meters higher than 

the UEs and the UEs have been randomly distributed over a 1 km square area in the 

region. Since it is a CF network, the number of APs has been chosen more than the 

number of UEs. The antenna slots for each AP are half a wavelength long. In Fig 2.1, 

the CF network used in İzmir Katip Çelebi University (IKCU) campus has been drawn 

in three dimensions. 

Table 2.1: Simulation Parameters of the System 

Parameters Values 

Number of UEs (K) 10 

Number of APs (M) 25 

Number of antennas per AP (N) 100 

Bandwidth (B) 20 MHz 

Transmit input power 23 dBm 

Antennas spacing in each AP Half wavelength 

UE Height 1.64 m 

AP Height 15 m 

Noise Figure 7 dB 

Power Density -174 dBM/Hz 

Network area 1km x 1km 

Carrier frequency 1.9 GHz 
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Figure 2.1: AP and UE distribution on WI [21] 

2.1.1 Wireless InSite 

The WI program is a tool for designing and analyzing the performance of CF 

networks. The intricate designs and various CF network components are modeled 

and simulated using this application. In CF networks, multiple APs are deployed and 

these APs are placed in close proximity to user devices. The WI program is used to 

analyze network performance taking into account the placement and power 

allocation of these APs. 

The program can perform simulations using input parameters that represent real-

world scenarios. For example, factors such as the distribution of users, mobility 

status, traffic density are among the data entered into the WI program. Based on this 

data, the program can calculate performance metrics such as data transmission speed, 

capacity, latency in CF networks. 

One advantage of WI is that it can evaluate potential performance improvements in 

CF networks. By experimenting with different AP placements, power allocation 

methods and interference management strategies, it can identify the most suitable 

options to optimize the performance of the network. Furthermore, the program's 
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integration with ML techniques offers the potential to better optimize factors such as 

targeted efficiency in power allocation and user experience. 

The WI program expedites the design of CF networks while also making it possible 

to anticipate the network's performance. This enables operators to make more 

informed decisions about planning and optimizing their networks. 

2.1.2 Channel Model 

The signal at the user is calculated as follows: 

y = Hx + n (2.1) 

Where x is the Nt × 1 vector containing the AP signal, y is the Nr × 1 vector 

containing user signal, n is a vector of noise, and H is the Nt × Nr matrix of complex 

channel gains. Nr is the number of user antennas, and  Nt is the number of AP antennas. 

Gk[m] is the ratio of the power received by user antenna element k divided by the 

power radiated by AP antenna element m. θk[m] is the phase in radians of the voltage 

across a matched load at k under the same conditions. Note that Gk[m] and θk[m] 

include all of the propagation paths in a complex multi-path environment from AP 

antenna element m to user antenna element k summed coherently. 

The propagation factor (gk[m]) is defined as: 

gk[m] = √Gk[m] ei θk[m] (2.2) 

Closely associated with gk is the channel vector hk, an N-dimensional complex column 

vector (Nk × 1) given by hk =  gk
∗  where * denotes the conjugate transpose.  

Maximal Ratio Combining (MRC) has been used as the combining technique. With 

this technique, the user optimally combines the user voltages from all antenna elements 

using a weighting vector that adjusts both the phase and the magnitude to maximize 

the total SNR. 

The optimal weighting vector is linearly proportional to h: 
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w = h/norm (2.3) 

where norm is a scaling factor that normalizes the weighting vector so that Nr is 

obtained by adding the squares of the magnitudes. 

Interference power is defined as: 

PI,avg =  ∑
Pt,m

Nt,m
 [ ∑ ∑ [Hm,k,i]

2

Nt−1

i=0

Nr−1

k=0

 ]  / Nr

M−1

Nt,m

 (2.4) 

Noise is defined as: 

PN =  wTwσ2 (2.5) 

Total interference power is defined as: 

PI,total = wTw PI,avg (2.6) 

Weighting vector is then applied to the h-vector to compute the total received power: 

Pr =  
Pt

Nt
 [ ∑

|hk|2

norm

Nr−1

k=0

]

2

 (2.7) 

The SINR is the ratio of the received power from the transmitter to the sum of power 

from all interference sources and all noise sources. The ratio is given by: 

SINR(dB) = 10 log10(PR(i)) − 10 log10(PItotal
)

− 10 log10(PNtotal
) (2.8) 

where PR is the user power from the AP. PItotal
 is the total interference. PNtotal

 is the 

total noise. 

The channel capacity represents the maximum possible data transmission rate for a 

communication channel and is calculated using the Shannon-Hartley theorem: 
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𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐵 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅)  (2.9) 

where B is the channel's bandwidth. 

2.2 Dataset Creation 

When generating a dataset, it is important to determine which outputs to use as 

features. First of all, the x and y axis values of each user have been taken. The z-axis 

height value is not included in the dataset since it is assumed to be the same for each 

user. The capacity values of each user during communication with the APs have been 

included as 25 different features. A feature with the best capacity value has been added 

to track which AP the users have the best connection with.  

The output capacitance value and information on the modulation process have not been 

included in the dataset. The reason for this is to ensure the optimum value in feature 

values and to get more efficient results in ML training. After determining which feature 

values to use, the conditions under which the UE should establish the best connection 

with which APs in the dataset have been determined. The capacity value of the 

connection made by the users with each AP value has been compared with the best 

capacity value and the values between 1-25 have been given in the output column. For 

the UE that has the same capacity value with two different APs, selection has been 

made according to the distance difference. 

The reason for not using distance as a feature value is that users in close proximity 

may have lower capacity values due to buildings and environmental impacts. Since the 

decrease in capacity value has an inverse effect with respect to distance, the ML 

training has been incorrect. The data has been cleaned by making various adjustments 

and the AP selection model has been used for the training phase. Also, instead of taking 

the capacity value between users and each AP, only the capacity value with the best 

value has been taken. The comparison shows whether the reduction in the number of 

features leads to a better result for ML.  

Table 2.2 shows the correlation matrix created with 3 features. A correlation matrix is 

a table showing the correlation coefficients for various variables. The correlation 
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between all potential value matches in a table is shown in the matrix. When two 

variables have a positive correlation, their values rise or fall together. When two 

variables are negatively correlated, the value of one increases while the value of the 

other decreases.  The y-axis and output have been determined to be negatively 

correlated. It has been observed that there are just 28 features in the correlation matrix 

and feature correlations are low. ML has produced better results with low correlation 

values. 

Table 2.2: Correlation matrix for 3 features 

Model (3 features) X Y Capacity Best OUTPUT 

X 1 0.02 -0.07 0.06 

Y 0.02 1 -0.08 -0.72 

Capacity Best -0.07 -0.08 1 0.27 

OUTPUT 0.06 -0.72 0.27 1 

 

2.3 Dataset Training 

In this section, five different ML techniques for classification have been applied. The 

classification techniques are K-NN, SVM, LDA, GNB and DT. For each classification 

technique, two seperate situtation have been implemented. One scenario included the 

capacity values of all APs as a separate feature and the other scenario included only 

the best of the capacity values of all APs as a feature. The paired distribution of APs 

has been given in Fig 2.2. 
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Figure 2.2: Dataset output distribution 

2.3.1 K-Nearest Neighbors Model 

K-NN is a popular supervised learning technique for classification and regression 

issues. K-NN is a simple and efficient algorithm. Basically, it is based on the concept 

of similarity. The K-NN algorithm uses an approach based on neighboring data points 

to classify or predict a new data point. The labels or values of these neighboring data 

points are used to label or predict the value of the new data point. The determining 

parameters in K-NN include the K value, distance metric, data normalization and class 

weights. The K value determines how many neighboring data points are considered. 

The distance metric measures the similarity or dissimilarity between data points. Data 

normalization is used to bring data features to the same scale. Class weights are used 

to take into account the importance of different classes. The tuning of these parameters 

is performed by trial and error or hyperparameter optimization methods, depending on 

the problem domain and the characteristics of the data set. K-NN's versatility and ease 

of use make it suitable for a variety of situations. 
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Figure 2.3: K-NN Selection Diagram 

One of the most important parameters of K-NN is the K value. The K value determines 

how many neighboring data points are considered to classify or predict a new data 

point. The choice of K value affects the performance of the model and the bias-

variance trade-off. Small K values can lead to an overfitting model, while large K 

values can lead to an underfitting model. The K value is usually determined by trial 

and error or optimized by methods such as cross-validation. The K-NN selection 

diagram has been given in Fig 2.3. 

Commonly used distance metrics in K-NN include Euclidean distance and Manhattan 

distance. The Euclidean distance measures the linear distance between data points, 

while the Manhattan distance measures the total steps between data points on the 

vertical and horizontal axis. The qualities of the data collection and the issue domain 

influence the choice of distance measure. 

Data normalization is important to improve the performance of K-NN. Data 

normalization is used to bring data features to the same scale. In particular, 
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normalization is particularly effective in data sets with features on different scales. 

This is usually achieved by methods such as Min-Max normalization or Z-score 

normalization. 

A correlation matrix is a matrix used to measure the relationship between variables in 

a data set. It contains correlation coefficients that express the relationship of each 

variable with other variables. The correlation coefficient ranges from -1 to 1. A 

positive correlation coefficient shows a relationship between two variables in the same 

direction, whereas a negative correlation coefficient shows a relationship between two 

variables in the opposite direction. 

Confusion matrix is an evaluation tool used in classification problems. It is especially 

widely used in binary classification problems. Confusion matrix represents actual class 

labels and predicted class labels. The confusion matrix distribution for the K-NN 

model has been given in Fig.2.4. In order for the predictions to match the actual values, 

they need to be ordered diagonally. As can be seen in the matrix, the predicted AP 

selections have been correctly selected except for some deviations. 

 

Figure 2.4: Confusion Matrix for K-NN 
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2.3.2 Support Vector Machine Model 

SVM is a supervised machine learning model that performs well for classification and 

regression issues. SVM has a strong classification capability, especially for non-linear 

datasets. SVM aims to discriminate between classes with a hyperplane. The basic 

working principle of SVM is to create a hyperplane between classes by representing 

data points in a higher dimensional space. This hyperplane tries to provide the widest 

margin  between classes. Finding a hyperplane that best divides data points into classes 

is the goal of SVM. 

 

Figure 2.5: SVM Selection Diagram 

In Fig.2.5, there are two different classes, squares and stars. The main purpose of 

classification problems is to decide in which class the future data will be placed. In 

order to make this classification, a line is drawn separating the two classes and the 

region between ±1 of this line is called Margin. The wider the margin, the better two 

or more classes are separated. 
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Parameter C controls the error tolerance of the SVM. This parameter determines the 

trade-off between correct classification and marginal errors. Small C values allow a 

wider margin, while large C values focus on correctly classifying more data points. 

The C value is set to control the balance between overfitting and underfitting. 

SVM uses kernel functions to deal with datasets that are not linearly separable. The 

kernel function moves the data points to a higher dimensional space and makes it 

possible to create a linearly separable hyperplane. Different kernel functions, including 

RBF (Radial Basis Function), polynomial, and sigmoid, can be employed. Using a 

certain kernel function depends on the problem and the type of data set. 

Gamma is an important parameter for some kernel functions such as RBFGamma 

regulates how much each data point's neighbors are taken into account. A small gamma 

value leads to a large domain and a smoother hyperplane. A large gamma value gives 

more weight to close neighbors and creates a more complex hyperplane.  

The confusion matrix distribution for the K-NN model has been given in Fig.2.6. 

 

Figure 2.6: Confusion Matrix for SVM 
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2.3.3 Linear Discriminant Analysis Model 

The basic working principle of LDA is to represent data points in a subspace that 

maximizes the difference between classes in high-dimensional space. In this subspace, 

there is a line or plane that best captures the separation between classes. For the best 

class separation, this line or plane reflects the data points. 

The main steps of LDA first, the dataset and class labels are determined. Then, the 

means and distributions of the classes are calculated. Inter-class and intraclass 

distributions are calculated to obtain statistical values that measure the difference 

between classes and the similarity between data points. Finally, a plane or subspace is 

found that best separates using Fisher's discriminant and the data points are represented 

in this plane. In this way, a subspace that maximizes the separation between classes is 

obtained and classification is performed. 

In the LDA model, the specific parameters do not have to be set directly by the user. 

The reason for this is that LDA is basically a classification algorithm and the 

parameters are automatically calculated during the classification phase. The confusion 

matrix distribution for the K-NN model has been given in Fig.2.7. 
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Figure 2.7: Confusion Matrix for LDA 

2.3.4 Gaussian Naive Bayes Model 

GNB is widely used in supervised classification problems. The GNB model conducts 

classification by estimating the probabilities of data points belonging to classes, which 

is based on Bayes' Theorem. 

The GNB model uses data points and class labels. The model assumes that the features 

of the data points for each class fit a Gaussian distribution. This assumption defines 

that each feature is independent and defines the distribution of data points across 

classes. 

The basic steps of GNB are first to identify the training dataset and the relevant class 

labels. Then, the probabilities of each class are calculated. In this step, the class 

probabilities and the probabilities of the features of each class are estimated. Assuming 

that the features follow a Gaussian distribution, probabilities are calculated for each 

feature separately. The data points are then categorised as belonging to the class with 

the highest probability by using Bayes' Theorem to compute the probabilities of the 

data points' belonging to the classes. These steps constitute the classification process 

of GNB and provide a simple and fast classification. 

In the GNB model, there are no specific parameters that need to be adjusted directly. 

This is because, based on the model's assumptions, it assumes that the features are 

independent and fit a Gaussian distribution. However, there are some elements that 

have an impact on the model's performance. These include the nature of the dataset, 

the choice of features, class balance and sampling methods. The confusion matrix 

distribution for the GNB model has been given in Fig.2.8. 
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Figure 2.8: Confusion Matrix for GNB 

2.3.5 Decision Tree Model 

A DT classifies or predicts data points through a series of decision rules and branching 

operations. The working principle of the DT is as follows: First, the dataset and related 

class labels are identified. This tree branches recursively to find the best decision rule 

based on the features of the dataset. 

At each node, a feature and a threshold value are selected. Data points are split 

according to the decision rule at this node and directed to lower nodes. The splitting 

process aims to maximize the separation of features between classes. This process 

allows data points to be divided into homogeneous subgroups. 

Until the dataset is fully classified or a predetermined stopping criterion is met, the 

branching process keeps on. The halting criterion can be chosen in accordance with 

factors like the tree's depth, the required minimum number of samples, or an acceptable 

level of accuracy. 
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The tree structure created by the DT enables classification or regression estimation of 

data points. As a data point travels through the tree structure, it chooses a direction 

according to the decision rule at each node and eventually obtains a class label or 

prediction value. 

The DT is an interpretable model that is easy to understand. Moreover, it can be applied 

to categorical or numerical data and does not require scaling or normalization in the 

data preprocessing stage. The structure and balance of the data collection can affect 

how it overfits and how sensitive it is to overfitting. Therefore, it's crucial to carefully 

choose DT parameters such the tree size, node separation criterion, and stopping 

criterion. DT diagram is given in Fig 2.9 and confusion matrix is given in Fig. 2.10. 

 

Figure 2.9: Desicion Tree Diagram 
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Figure 2.10: Confusion Matrix for GNB 

2.4 Performance Results 

The outputs have been used in the comparisons are precision, recall, f1 score and 

accuracy. Precision is an indicator of the performance of a ML model. The model has 

established the characteristics of a successful prediction. Precision has been 

determined by dividing the total number of correct positive predictions by the number 

of genuine positives. Recall is a metric for how well a model detects real positives.  

The f1 score represents the harmonic mean of recall and precision. When recall and 

precision are both equally significant, the f1 score is employed. Similarly, accuracy is 

a metric for how frequently a model predicts properly. 
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Table 2.3: Classification techniques models outputs 

Model (28 features) Precision Recall f1 score Accuracy 

K-NN 0.94 0.94 0.94 0.938 

SVM 0.97 0.96 0.97 0.968 

LDA 0.93 0.91 0.91 0.911 

GNB 0.71 0.66 0.63 0.656 

DT 0.97 0.98 0.98 0.975 

Model (3 features) Precision Recall f1 score Accuracy 

K-NN 0.75 0.70 0.72 0.769 

SVM 0.58 0.58 0.57 0.695 

LDA 0.55 0.49 0.49 0.567 

GNB 0.60 0.59 0.58 0.602 

DT 0.64 0.59 0.60 0.676 

For each categorization technique, a model has been developed, and the outcomes have 

been shown in Table 2.3. The numerical calculation results show that SVM and DT 

approaches produced roughly comparable and superior outcomes when 28 

characteristics have been chosen. For this investigation, GNB's categorization 

approach has the worst mean.  

K-NN has produced the best results when 3 features have been selected. Despite the 

removal of 25 elements, a satisfactory result has been still achieved with an average 

accuracy of 76%. Although there is a margin of error, a faster system suggestion has 

been developed with less feature value since AP selection required to be made swiftly 

in communication systems. 

2.5 Conclusion 

The results obtained in the performance results section show that SVM and DT 

approaches produce similar and superior results when 28 features are selected. These 

approaches achieved better results than other categorization techniques in precision, 
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recall, F1 score and accuracy metrics. GNB's categorization approach produced the 

lowest average value for this study. 

In particular, the K-NN approach has produced the best results when 3 features have 

been selected. Despite removing 25 items, a satisfactory result has been obtained with 

an average accuracy of 76%. This shows that in communication systems that require a 

fast AP selection, it is possible to develop a faster system recommendation with fewer 

feature values. 

In CF networks, these results can contribute to important issues such as AP selection 

and resource allocation. SVM and DT approaches can help to select APs efficiently by 

providing better performance and accuracy. The ability of K-NN to achieve high 

accuracy using fewer features can be a valuable tool for fast AP selection. This can 

help perform optimization processes such as AP placement and resource management 

in CF networks more effectively.
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Chapter 3 

SumSE Power Allocation in CF 

massive MIMO 

In recent studies, many different power allocation methods have been used in CF 

networks. In the study of [47], the use of methods such as deep reinforcement learning 

to explore data-driven methods that can achieve near-optimal performance with low 

computational complexity is addressed. Two deep reinforcement learning power 

allocation methods, namely DQN and deep deterministic policy gradient have been 

investigated. The aim is to maximize the sumSE in CF MIMO systems operating in 

the microwave domain. In the study of [50], the uplink cell-free communication 

capable of device-to-device communication between external users and the base 

station is considered. By exploiting channel gain differences, external users and 

cellular users are multiplexed into the transmission power domain and scheduled non 

orthogonally with the same spectrum resources. Sequential interference cancellation 

is then applied to decode the message signals at the base station. An efficient deep 

reinforcement learning scheme is introduced to optimize the worst-case user rate 

through dynamic power allocation of both external and cellular users. Furthermore, 

compared the performance of the deep reinforcement learning scheme under zero 

forcing bundling and conjugate bundling methods. Simulation results confirm the 

effectiveness of the deep reinforcement learning method in guaranteeing user fairness 

by maximizing worst-case speed. 

In this chapter, Deep learning models are proposed for power allocation in CF 

networks. A dataset containing simulated results generated by applying the SumSE 

power allocation approach is obtained through MATLAB. The dataset is trained with 

ML, DNN and CNN artificial intelligence algorithms to predict the SEs of UEs at the 
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new location. Simulation parameters and formulas are given before this prediction. 

The system model introduced in section 3.1 for CF massive MIMO has been simulated 

using the SumSE power allocation methodThe system model and the channel model's 

input parameters are explained. How pilot assignment is performed and how UEs are 

distributed to APs is explained. The proposed SumSE power allocation method has 

been introduced in section 3.2. Calculations of the parameters used for SumSE power 

allocation are given. It is explained how to maximize SE and how to solve the convex 

optimization problem. The results obtained have been evaluated in section 3.3. 

3.1 System Model 

In this section, CF network system model is introduced.The CF MIMO system has 

been developed using L APs and K users TDD (L >>K). Table 3.1 provides the 

simulation's input settings. The APs are 10 meters higher than the UEs and UEs 

randomly distributed in a 1km square area in the region. Since it is a CF network, the 

number of APs is selected more than the number of UEs. The antenna slots for each 

AP are half wavelength long. 

Backhaul links are one of the key components of CF networks. These links are a 

communication line where APs are used for control and data transfer and are connected 

to a central control unit. Backhaul links enable information and resource sharing 

between APs and enable coordination of the network. These links are usually provided 

using high-capacity optical fiber or wireless communication technologies. 

Fronthaul links are the links that enable communication between APs and UEs. These 

links are used for APs to receive and transmit signals from UEs. Applications requiring 

real-time communication depend on fronthaul networks with high capacity and low 

latency. These links are usually provided via microwave or millimeter wave links. 

To achieve effective service, AP and UE deployments in CF networks must be 

properly designed. The placement of APs should be optimized taking into account their 

density and capacity requirements. Also, the connections of UEs to APs should be 

routed appropriately. This distribution affects the performance, capacity and coverage 

of the network. Backhaul and fronthaul links are important components that enable CF 
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networks to operate effectively. They enable data and control communication, 

coordinate the network and realize the interaction between user devices and APs. 

These connections must be dependable, with high capacity and minimal latency. In 

Fig. 3.1, the CF massive MIMO system has been shown. 

 

Figure 3.1: CF massive MIMO 
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Table 3.1: Simulation Parameters of the System 

Parameters Values 

Number of UEs (K) 20 

Number of APs (L) 50 

Number of antennas per AP (N) 10 

Bandwidth (B) 20 MHz 

Receiver noise power (𝜎𝑢𝑙
2 ) -94 dBm 

Maximum downlink transmit power 200 mW 

Antennas spacing in each AP Half wavelength 

Samples per coherence block (𝜏𝑐) 200 

Height difference between AP and UE 10 m 

Pathloss exponent () 3.67 

Number of pilots per coherence block (𝜏𝑝) 5 

Network area 1km x 1km 

Standard deviation of shadow fading (𝜎𝑠𝑓) 4 dB 

Carrier frequency 2 GHz 

 

3.1.1 Channel Model 

Typically, Rayleigh model is used for channel modeling in studies [41-44]. In this 

thesis, the Rayleigh channel model is also employed. A statistical model called 

Rayleigh fading depicts the signal variation brought on by many routes and reflections 

in a wireless channel. Due to the fluctuating channel conditions, this fluctuation 

happens in wireless communication. Rayleigh fading is caused by the phase 

differences of multiple paths created by the combination of signals operating at 

different frequencies. 

Multipath effects are highly noticeable in CF networks because they function in a 

setting where numerous antennas transmit signals using the same frequency in the 

same general area. These multipath effects are modeled and examined via Rayleigh 

fading. Rayleigh fading modeling should therefore be used for developing CF 

networks and evaluating their effectiveness. 
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The Rayleigh channel vector , 𝑔𝑘,𝑙 , is defined as: 

 𝑔𝑘,𝑙 =  𝛽𝑘,𝑙𝒇𝑘,𝑙 (3.1) 

Where 𝒇𝑘,𝑙 ∈ 𝐶1 𝑥 𝐿 is the small-scale fading vector. 

When it comes to wireless communications, small-scale fading describes the quick and 

brief changes between signals that reach the receiver. These fluctuations can be caused 

by factors such as environmental obstacles, multipath propagation, reflections, 

diffraction, etc. Small scale fading can cause sudden changes in signal strength and 

can lead to the appearance of bit errors. This type of fading is usually effective at 

distances of up to a few meters and usually changes very quickly. 

Large scale fading refers to slow and long-term changes in the overall level of signals 

reaching the receiver in wireless communications. This type of fading is typically 

caused by large-scale factors including the distance between the transmitter and 

receiver, the presence of barriers, and the terrain of the earth. Large scale fading is 

usually effective at greater distances and changes more slowly. This type of fading can 

cause an overall decrease or increase in signal strength and is usually effective in large 

areas such as CF networks. 

The large-scale fading coefficient between AP and UE , 𝛽𝑘,𝑙, , is defined as in dB:  

 𝛽𝑘,𝑙[𝑑𝐵] =  −30.5 − 36.7 log10 (
𝑑𝑘,𝑙

1 𝑚
) +  ℱ𝑘,𝑙 (3.2) 

Where the shadow fading is ℱ𝑘,𝑙~𝒩(0, 42) and  𝑑𝑘,𝑙 is the distance in meters between 

AP and UEs calculated by adding the height. 

Shadow fading represents signal attenuation caused by artificial or natural objects, 

usually environmental obstacles, buildings, trees, mountains, etc. The effects of 

shadow fading can vary depending on the locations of the user device and antennas, 

environmental factors and even changes over time. Therefore, shadow fading factors 

are taken into account in network design and signal strength management. 
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3.1.1.1 Channel Hardening 

Channel conditions in CF networks can frequently vary over time as a result of external 

factors including channel fading. However, with channel hardening, the statistical 

properties of channels change less over time and become more stable. This improves 

network performance and communication quality. In addition, Channel estimation 

improves the channel estimation process with less variability of channels. Information 

for channel estimate on UE is more trustworthy and accurate. This ensures efficient 

data transmission and low error rates. 

The effective channel is defined as:  

∑ ℎ𝑘,𝑙
H

𝑙 ∈ 𝑀𝑘

𝒘𝑘,𝑙 (3.3) 

Where the precoding vector is 𝑤𝑘,𝑙. 

The effective channel, computed in conjunction with channel hardening, is defined as 

the ability of the effective channel to remain almost constant even though the 

individual elements of the channel vectors change. In this case, the system can operate 

as if communicating over a deterministic channel, which improves communication 

performance. 

Precoding vectors used in the centralized operation 

𝒘𝑘𝑙 =  √𝜌𝑘𝑙√
𝑤𝑘𝑙

Ε {||𝑤𝑘𝑙||2}
 (3.4) 

Where 𝜌𝑘 > 0   denotes the total downlink power allotted by serving APs to k UEs.  

The precoding vector determines the shape, weights and phases used by the receiving 

antennas. In this way, the combination of incoming signals has been optimized, 

improving signal quality and improving the capacity of the channel. 

 

 



41 

 

3.1.1.2 Pilot Assignment 

Pilot assignment determines how pilot symbols of the user have been assigned by APs. 

Pilot symbols are used for operations such as channel state estimation, channel 

discovery and channel estimation. 

Pilot symbols are used by user devices to estimate the channel state in communication 

with APs. Channel estimation is the basis for operations such as data demodulation, 

error correction and power control based on adaptive algorithms. An accurate and 

efficient pilot assignment method improves channel estimation performance and 

enhances communication quality. 

The fundamental algorithm for pilot assignment consists of two parts. First, UEs with 

indices from 1 to 𝜏𝑝 are given mutually orthogonal pilot assignments: UE k utilizes 

pilot k for k = 1,…, 𝜏𝑝. Then, pilots are assigned sequentially to the remaining UEs, 

whose indices range from  𝜏𝑝 + 1 to K. The strongest AP in the area is first found by 

UE k. This AP's index is determined using the formulas below.The fundamental 

algorithm for pilot assignment consists of two parts. First, UEs with indices from 1 to  

𝜏𝑝 are given mutually orthogonal pilot assignments: UE k utilizes pilot k for k = 1,..., 

𝜏𝑝. Then, pilots are assigned sequentially to the remaining UEs, whose indices range 

from  𝜏𝑝 + 1 to K. The strongest AP in the area is first found by UE k. This AP's index 

is determined using the formulas below: 

 ℓ = argmax 𝛽𝑘,𝑙   (3.5) 

Given that it is predicted that AP l would significantly contribute to UE k's service, it 

is preferable to assign UE k to the pilot who exposes AP l to the least amount of pilot 

pollution. In light of this, the AP can total the 𝛽𝑖𝑙 average channel gains of the UEs 

allocated to each pilot t. The AP then determines the pilot index that minimizes pilot 

interference: 

 𝜏 = argmin ∑ 𝛽𝑖,𝑙

𝑘−1

𝑖=1
𝑡𝑖=𝑡

  (3.5) 
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The algorithm then moves on to the next UE after assigning this pilot to that one. 

Clusters can form once all UEs have been allocated to pilots. Each AP evaluates each 

pilot and determines the UEs utilizing that pilot who have the highest channel gain. 

3.2 SumSE Power Allocation 

Centralized downlink operation is an operation that manages the downlink 

transmission between APs and UEs in CF networks by a central controller. In this 

operation, channel state estimation is performed, resources are allocated and power 

assignment is performed. Furthermore, interference management is provided and the 

transmission process is centrally managed. Thus, the resources in the network are used 

more efficiently, interference is reduced and the targeted quality of service is achieved. 

To maximize the network's total performance and capacity, centralized control is used. 

The main objective of centralized downlink power allocation is to optimize 

communication quality by efficiently using the network's resources. This method 

performs power allocation by considering factors such as network topology and 

channel conditions. In order to reduce the time taken for power allocation, various 

power allocation proposals have been made using ML and more performant power 

allocation algorithms have been proposed [45-50]. Optimal power allocation between 

the network's APs and UEs takes into account the targeted quality of service and 

performance criteria. Centralized downlink operation can monitor all resources in the 

network and optimize power allocation. This results in more efficient use of power 

resources and energy savings. Centralized downlink power allocation optimizes power 

allocation to reduce interference. Interference can be caused by other APs or UEs 

operating in the same frequency band. Centralized downlink operation manages 

changes between the network's APs and UEs. When there are changes in the number 

of APs or UEs, the central authority can dynamically adjust the power assignment, 

ensuring the scalability of the network. 

The goal of Sum SE Power Allocation is to improve the network's overall SE. SE refers 

to the amount of information carried per unit bandwidth. In this method, the sum of 

the downlink powers of all the network's APs is maximized, while paying attention to 

the quality of service objectives of each user device. In the first step, the CPU estimates 
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the channel state through feedback from user devices or channel measurements. Based 

on the estimated channel states, an efficient power allocation is calculated for each AP 

to transmit to user devices. This calculation is based on SE parameters like error 

probability or channel capacity. Based on the calculated SE values, the amount of 

power to each AP is determined. These power amounts are fairly allocated among the 

APs in the network. During power allocation, power levels and resource allocations 

are optimized to reduce interference. This increases the quality of service of user 

devices in the network and improves communication performance. 

The SE in centralized downlink operation is defined as:  

 𝑆𝐸𝑘 =
𝜏𝑑

𝜏𝑐
log2(1 +  𝑆𝐼𝑁𝑅𝑘) 

𝑏𝑖𝑡

𝑠
/𝐻𝑧  (3.6) 

The section of each coherence block used for downlink data transmission is indicated 

by the pre-log factor 
𝜏𝑑

𝜏𝑐
 in equation (2.6). 

Where the effective SINR is defined as : 

 𝑆𝐼𝑁𝑅𝑘 =
|Ε {ℎ𝑘

H𝐷𝑘𝑤𝑘}|2

∑ Ε {|ℎ𝑘
H𝐷𝑖𝑤𝑖|2}𝐾

𝑖=1 −  |Ε {ℎ𝑘
H𝐷𝑘𝑤𝑘}|2 + σ2

  (3.7) 

∑ Ε {|ℎ𝑘
H𝐷𝑖𝑤𝑖|

2}𝐾
𝑖=1  is the total interference power. It is the sum of the inner products 

of the interference signals arriving at user k between the square of the channel 

estimates and the precoding and filter vectors of the other users. and σ2 represents the 

noise variance. |Ε {ℎ𝑘
H𝐷𝑘𝑤𝑘}|2 is the average effective channel's square. That is, the 

average power of the signal arriving at user k.  

The effective SINR in downlink data transmission is defined by expression (3.7). It 

also implies that the data signal can be encoded and the received signal can be decoded 

over such an AWGN channel, provided that the communication occurs with an SNR 

equivalent to the capacity of a deterministic single antenna single user AWGN 

channel. 

This statement applies to any choice of transmitter precoding vector and Dynamic 

Cooperation Cluster (DCC). It also holds true for any channel distribution not assumed 
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in this monograph's linked Rayleigh fading. Using Monte Carlo techniques, the 

expression can be calculated for any transmitter precoding vector. This means that a 

sampling average over a large number of random realizations is used to approximate 

each expectation. 

 𝑆𝐼𝑁𝑅𝑘(𝝆) =
�̃�𝑘𝜌𝑘

�̃�𝑘
𝑇𝜌 +  σ2

 (3.8) 

where �̃�𝑘is the intended signal's average channel gain and �̃�𝑘 is a vector that contains, 

for each interfering signal, the average channel gains.  

 �̃�𝑘 =
|Ε {ℎ𝑘

H𝐷𝑘�̅�𝑘}|2

Ε {||�̅�𝑘||}2
 , ∀𝑘 (3.9) 

 �̃�𝑘 =
|Ε {ℎ𝑘

H𝐷𝑘�̅�𝑘}|2

Ε {||�̅�𝑘||}2
−  �̃�𝑘 , ∀𝑘 (3.10) 

where {�̅�𝑘 : k = 1 , … ,K} indicates the set of vectors that are used to specify the axes 

of the primary precoding vectors.  

We first examine the downlink sumSE maximization problem for the centralized 

operation, which is defined as 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝜌 ≥ 0

 ∑ log2 (1 +
�̃�𝑘𝜌𝑘

�̃�𝑘
𝑇𝜌 + σ2

)

𝐾

𝑘=1

 

 

(3.11) 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝜌𝑘

𝑘 ∈ 𝐷𝑙

Ε {||�̅�′𝑘𝑙||
2}  ≤   𝜌𝑚𝑎𝑥 , 𝑙 = 1, … , 𝐿 

 

 

There are two parts that are important in the SE maximization problem. In the first 

part, the total SE is maximized, while in the second part it is subject to certain 

limitations. The dependent part is the total transmit power value. The power 

distribution is dependent on a specific total power since the total transmit power is 

constrained. 

In order to adapt the total SE to be maximized in (3.11) to the solution of a convex 

optimization problem, MSE has been used. When the MSE value is minimized, the 
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total SE is maximized. MSE is a statistical metric that assesses how closely a 

prediction model matches actual values. The average of the squares representing the 

discrepancies between actual and expected values is computed by the MSE. The 

prediction model is more accurate in predicting values when the MSE value is lower. 

The weighted MMSE approximation formula to the sum SE problem targeted at a 

channel user is defined as: 

 𝑒𝑘(𝜌𝑘 , 𝑢𝑘) =  𝑢𝑘
2(�̃�𝑘𝜌𝑘 + �̃�𝑘

𝑇𝜌 +  σ2) − 2𝑢𝑘√�̃�𝑘𝜌𝑘 + 1  (3.12) 

In a CF network architecture, the UE is served by many APs. scalar combining 

coefficient is used at the user's receiver side to ensure accurate combining of signals 

from multiple APs. scalar combining coefficient is determined by considering 

information such as the power levels and channel states of the signals sent by each AP. 

When combining signals at the user device's receiver, these coefficients are employed 

to generate a weighted combination of the signals from each AP. scalar combining 

coefficient aims to achieve better signal strength, noise reduction and overall 

communication performance at the user device's receiver by providing an optimal 

combination and aggregation of the targeted signals. 

The scalar combining coefficient is defined as:  

 𝑢𝑘 =  
√�̃�𝑘𝜌𝑘

�̃�𝑘𝜌𝑘 + �̃�𝑘
𝑇𝜌 +  σ2 

  (3.12) 

A model of the SumSe maximization problem has been given in fig 3.2. A convex 

optimization problem can be solved without a closed-form solution using either a 

specialized solver developed to take advantage of the peculiar structure of the problem 

at hand or a general purpose solver customized for a wide variety of situations. The 

first method is chosen for runtime effectiveness, whereas the second method is 

preferred for speedier code creation because it abstracts away more minute 

implementation details. In the simulation, the SDPT3 solver has been used in the CVX 

interface on MATLAB. Convex functions and constraints are the focus of the subfield 

of mathematical optimization known as convex optimization. Convex functions are 

functions whose second derivatives are positive semidefinite at every point and usually 
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have a single global minimum. Convex optimization problems aim to find the best 

solution under certain constraints to minimize or maximize such functions. SDPT3 is 

a tool developed to solve a convex optimization problem using a given mathematical 

model. It is specifically designed for solving non-binary quadratic semi-fractional 

programming problems and is effective in solving such problems. The SDPT3 solver, 

which is frequently employed in computing environments like MATLAB, can be 

utilized to resolve a variety of convex optimization issues. The solution stages of the 

maximization problem are as follows 

1. Set the (𝜖) accuracy value is 100. 

2. The initial power vector is determined for each user. (𝝆). 

3. In order for the solution to stop at a threshold value, the 𝜖 value must be 

between 0-0.2. 

4. Scalar combining coefficient (𝑢𝑘) value is calculated. 

 𝑢𝑘 =  
√�̃�𝑘𝜌𝑘

�̃�𝑘𝜌𝑘 + �̃�𝑘
𝑇𝜌 +  σ2 

   (3.12) 

 

5.  𝑑𝑘 =  1/𝑒𝑘 value is calculated. 

 𝑑𝑘(𝜌𝑘 , 𝑢𝑘) =  1/ (𝑢𝑘
2(�̃�𝑘𝜌𝑘 + �̃�𝑘

𝑇𝜌 +  σ2) − 2𝑢𝑘√�̃�𝑘𝜌𝑘 + 1)  (3.13) 

 

6.  The convex problem is solved using the calculated 𝑑𝑘 and 𝑢𝑘 values. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝝆 ≥ 0

 ∑ 𝑑𝑘𝑒𝑘 (𝝆, 𝑢𝑘)

𝐾

𝑘=1

 

  

(3.14) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝜌𝑘

𝑘 ∈ 𝐷𝑙

Ε {||�̅�′𝑘𝑙||
2}  ≤   𝜌𝑚𝑎𝑥, 𝑙 = 1, … , 𝐿 

 

7. Calculates the new 𝝆 value repeatedly until it meets the threshold value. 

8. When the threshold is achieved, the while loop is ended. 

9. Sum SE is calculated with the calculated optimal transmit power value. 
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 𝑆𝑢𝑚 𝑆𝐸 =  
𝜏𝑑

𝜏𝑐
 ∑ log2 𝑑𝑘

𝐾

𝑘=1

  (3.15) 
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Figure 3.2: Solving the sumSE maximization problem model 
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3.3  Performance Results 

 

Figure 3.3: SE performance of sumSE power allocation 

In this section, we have been taken numerical calculation the power allocation in the 

downlink operation of UEs randomly distributed in the area with APs in CF massive 

MIMO and obtain the results. Rayleigh channel model has been used for CF massive 

MIMO. In order to ensure proper pilot assignments, each pilot has been matched 

between APs and UEs respectively. More than one AP has been able to connect to 

each UE. UEs have not been idle because of the chance to connect with more than one 

AP. Channal gain, MSE and scalar combining coefficient values have been calculated 

for use in the sumSE maximization problem. The SDPT3 tool is used to solve the 

SumSE maximization problem. SDPT3 tool simulated on MATLAB. All parameters 

have been chosen to achieve the best results. When each simulation setup has been 

run, 20 UEs have been randomly distributed in the area and connected to the APs. As 

a result, the results obtained through MATLAB in each setup have been collected as a 

dataset. To more accurately assess the effectiveness of the sumSE power allocation 

approach, equal power allocation and Min-Max fairness (MMF) power allocation 

method have been compared in Fig. 3.3. Looking at the SE distributions, the sumSE 

power allocation method has obtained the most optimal results for the system model 



50 

 

used. In Chapter 4, ML, DNN and CNN models have been trained with the outputs 

from the sumSE maximization problem solution. After the training, comparisons have 

been made to obtain outputs faster without going into convex problem solving and to 

increase the accuracy by approaching the results in Chapter 4.  

3.4  Conclusion 

In the performance results section, numerical calculations on power allocation in the 

downlink transmission process of CF massive MIMO are performed and results are 

obtained. The Rayleigh channel model is used for CF massive MIMO. Each pilot has 

been mapped between APs and UEs to ensure proper pilot assignments. It has been 

made possible for multiple APs to connect to each UE. To more precisely evaluate the 

effectiveness of the sumSE power allocation approach, a comparison with equal power 

allocation and Min-Max fair power allocation methods has been performed. Looking 

at the SE distributions, the sumSE power allocation method achieved the most optimal 

results for the system model used. In Chapter 4, ML , DNN and CNN models have 

been trained with the outputs of the sumSE maximization problem solution. After 

training, comparisons have been made to obtain faster outputs without going through 

the convex problem solving process and to improve accuracy by approaching the 

results in Chapter 4. 

The SumSE power allocation method seems to provide the best results for the system 

model. This method provides better performance by providing an optimized 

distributed network structure in terms of SE. Compared to the equal power allocation 

and Min-Max fair power allocation methods, the sumSE power allocation method 

gives better results. Furthermore, ML, DNN and CNN models trained with the output 

of the sumSE maximization problem are investigated in Chapter 4 to produce faster 

results than the convex problem solving process. The work in this chapter 

demonstrates the usability of the sumSE power allocation method for power allocation 

of CF massive MIMO networks. 
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Chapter 4 

Machine Learning for SumSE Power 

Allocation in CF massive MIMO 

In this chapter, the system model introduced in chapter 3.1 for CF massive MIMO is 

used for the SumSE power allocation method to generate the dataset with the 

calculated sum SE outputs. The dataset created with the collected data has been trained 

with three different models. LightGBM, DNN and CNN models have been trained 

respectively. Section 4.4 compares the predicted artificial intelligence models with the 

sumSE values calculated with the optimization problem before. The aim of this chapter 

is to achieve prediction values that are closest to the simulated results. ML models aim 

to eliminate the time spent during optimization by approximating the power allocation 

outputs. 

Effective resource allocation in CF networks can have a significant impact on both the 

network's performance and the user experience. As a result, using ML techniques to 

resource allocation is crucial and has several benefits. Due to their capacity to construct 

and learn models based on significant amounts of data, ML algorithms are an effective 

tool for solving complicated and dynamic resource allocation problems for CF 

networks. 

By analyzing various parameters of the network, ML can generate optimized resource 

allocation decisions by taking into account user demands, channel status, traffic 

density and other factors. This can improve network performance, resulting in higher 

speeds, lower latency and better capacity. Furthermore, ML algorithms can track the 

network's dynamic nature and adjust resource allocation in real time, thus adapting to 

changing network conditions and user demands [28-29]. 
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Through patterns learned from large datasets, ML can also discover previously 

undetected patterns and identify areas where resource allocation is not optimized. This 

makes it possible to better utilize the network's capacity, increase energy efficiency 

and improve overall network performance. 

4.1 Dataset Creation 

When creating a dataset it is important to decide which outputs will be used as features. 

First, the x and y coordinates of the UEs and APs must be obtained. The way UEs and 

APs have been distributed over a 1km square area has already been mentioned. Since 

the height values of UEs and APs are the same, their height values have not been 

incorporated in the dataset. There are 50 APs at 50 different points where each UE can 

connect. For a more accurate approximation during training, the x and y coordinates 

of all APs have been added to the dataset. We need to specify which UE connects with 

which AP since not every UE connects with all APs. Using only the coordinates of the 

connected APs in the dataset may cause inaccurate training results because some UEs 

are connected to only one AP while other UEs may be connected to more than one AP.  

Another 50 features have been added to identify matching UEs and APs in the dataset. 

If a pilot assignment between the UE and the AP takes place, the column value is 

assigned as 1 and otherwise 0 if no connection has been established. Another important 

input value to be used during training is channel gain. In CF networks, power 

allocation means determining the energy levels of resources. In this context, channel 

gain is a crucial parameter for power allocation and has a significant impact on ML. 

The channel gains of the UEs between all APs have been added as input to the dataset. 

The average channel gain value calculated as the last input value. The selected inputs 

have been arranged according to the training outputs. The output value that education 

tries to achieve is SE. The SE value obtained from MATLAB outputs and calculated 

using the sumSE power allocation method is the output value.  

4.2 Dataset Training 

In this section, training has been performed using three different modeled datasets. In 

section 4.3 the results of all the obtained model results have been discussed. 
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4.2.1 LightGBM Model 

A high-performance method for learning from huge datasets is the ML model 

LightGBM. LightGBM, a member of the Boosting algorithm family, differs from other 

well-known algorithms by running more quickly and offering superior prediction 

skills. 

Gradient Boosting is a technique that is used by the tree-based LightGBM model. This 

approach combines weak learners like decision trees to create a potent prediction 

model. On massive datasets, LightGBM can swiftly construct these trees. LightGBM 

stands out for its capacity to process huge datasets quickly. It operates more quickly 

than other boosting algorithms and offers excellent performance even on huge datasets. 

Fast execution has been made possible by features like parallel computation, less 

memory utilization, and gradient calculations based on histograms. In terms of 

accuracy rate, mean absolute error, and other performance measures, LightGBM 

produces high-quality predictions. Additionally, it can be applied to a variety of 

applications, such as classification and regression. The user of LightGBM has access 

to a large number of parameters. The model's complexity, speed, and general 

performance can be affected by these parameters. By altering the parameters, the user 

can build a model that works for a given set of issues.  The use of categorical 

characteristics is made easier by a number of capabilities that LightGBM provides. To 

automatically process and appropriately encode categorical information, it makes use 

of a unique data structure. As a result, the model can make better use of categorical 

features. Architecture of LightBGM are given in Fig.4.1. 

 

Figure 4.1: Architecture of LightGBM 
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4.2.1.1 Parameter Optimization Selection 

LightGBM is a Gradient Boosting algorithm and can be configured with various 

parameters.  

Learning rate determines the learning rate used for each estimator. The learning rate 

regulates how much the error from previous trees is taken into consideration by each 

tree. Faster learning is made possible by a higher learning rate, although overlearning 

may become more likely. A lower learning rate allows learning in smaller steps and 

usually results in better generalization performance. The general rule is that a learning 

rate of 0.1 or less can be a suitable place to start. Nevertheless, adjusting this amount 

can be required depending on the dataset and the nature of the issue.  

N_estimators determines the number of trees to be created. Each tree is trained using 

the gradient descent algorithm, trying to correct the errors of the previous trees. Using 

more trees causes the model to become more complex and the training time to increase. 

However, it can reduce overlearning and leads to better performance. 

Colsample_bytree determines the proportion of feature subsets to use for each tree. 

The diversity of the trees can be increased by using this option. Random selection of 

different features can make the model more generalizable. The chosen value is often 

between 0.6 and 0.9, and it ranges from 0 to 1. A smaller value results in fewer features 

and more randomization. 

The maximum depth of each tree is determined by max_depth. As the tree depth 

increases, the model becomes more complex. Larger max_depth values provide more 

complexity and capacity, but can increase the risk of overlearning. It is generally 

recommended to initially choose a lower max_depth value and then make adjustments 

based on the model's performance to control overlearning. 

Subsample determines the sample rate to be used for each tree. This parameter allows 

the trees to be trained using a random subset of the data samples. A smaller subsample 

value will cause the trees to use fewer samples and provide more randomness. This 

can reduce overlearning, but can affect overall performance. 
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The model's parameters have been established in a variety of ways. First, manual 

experimentation has been used to try to boost accuracy rate as much as possible. 

Table 4.1: Performance outputs of the LightGBM model 

Name LightGBM XGBoost Ridge 

MSE 0.884935 0.947145 5.558148 

RMSE 0.940710 0.973214 2.357572 

FIT TIME 

(s) 

0.791953 1.556821 0.021464 

SCORE 

TIME (s) 

0.003146 0.004165 0.001403 

 

The MSE (Mean Squared Error) and RMSE (Root Mean Squared Error) values 

demonstrate how far off the forecasts are from the actual values. The forecast is more 

accurate the lower these values are. Fit Rime represents the training time of a model 

and is expressed in seconds. Score Time represents the scoring time of a model. 

Scoring time refers to the time required to make predictions of a model and is 

expressed in seconds. Another reason for using LightGBM is that it gives better results 

than other models as shown in Table 4.1. Compared to XGBoost and Ridge, the model 

building time has been shorter and the error rate has been lower. 

Various methods have also been used to make a better selection of parameters. The 

first method used for parameter optimization is the HyperParameter Optimization 

Model.  

For LightGBM or other ML models to perform better and produce the best results, 

hyperparameter tweaking is a key method. These optimization methods aim to achieve 

better generalization of the model, higher accuracy rates or lower error metrics by 

automatically adjusting hyperparameters. As a working principle, a range of 

hyperparameters to be optimized and a range of values that these hyperparameters can 

take are determined. According to the specified hyperparameter ranges, different 

combinations of hyperparameters are generated. These combinations are usually 

chosen randomly. For each hyperparameter combination, the LightGBM model is 
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trained and its performance is measured using an evaluation metric. After evaluating 

all combinations of hyperparameters, the set of components that performs best is 

chosen. 

Table 4.2: Performance outputs of the LightGBM model with HyperParameter 

optimization 

Name LightGBM 

MSE 0.859229 

RMSE 0.926946 

 

Comparing Tables 4.2 and 4.1 demonstrates that using the parameters selected via the 

HyperParameter optimization method yields results that are more precise.  

VotingRegressor model combines strengths from different algorithms by using a 

combination of basic regression models. A stronger generalization capability can be 

attained as a result of some of the flaws of a single model being compensated by 

multiple models. However, VotingRegressor's effectiveness is influenced by the 

quality of the base models selected, the combination technique, and the dataset's 

features. The LightGBM and XGBoost models used have been retrained by combining 

them with the Voting Regressor model. In the Voting Regressor model, each base 

regression model is trained on a specific part of the dataset. Each model can have 

different algorithms and parameters to capture different features and patterns of the 

dataset. Once training is complete, each baseline regression model makes predictions 

on the validation dataset or the test dataset used for cross-validation. Given this, 

VotingRegressor combines the predictions from each base model to generate a 

prediction value. 
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Table 4.3: Comparison of performance outputs of the VotingRegressor model 

Name LightGBM XGBoost VotingRegressor 

MSE 0.884935 0.947145 0.857355 

RMSE 0.940710 0.973214 0.925935 

FIT TIME 

(s) 

0.791953 1.556821 6.091772 

SCORE 

TIME (s) 

0.003146 0.004165 0.051715 

As seen in Table 4.3, the VotingRegressor model gave better results than the other two 

training outputs. Although VotingRegressor seems to have better performance, 

LightGBM is used in this study. LightGBM has faster prediction with much lower 

score and fit time than VotingRegressor. LightGBM has been used to take action as 

fast as possible for power allocation. 

4.2.1.2 Feature Importance for LightGBM 

Feature Importance is a method that evaluates the contribution of the features used in 

a ML model to the prediction of the target variable. Which input value is more 

important in the dataset used has been obtained with the Feature Importance method. 

The LightGBM calculates an importance score for each attribute after the training 

process. These scores reflect the contribution of the attributes in predicting the target 

variable. LightGBM calculates attribute importance with different metrics. There are 

two most commonly used metrics. Gain calculates the information gain of attributes 

in each tree. Information gain measures the reduction in prediction error achieved by 

using an attribute. A higher information gain indicates a more important attribute. Split 

calculates the level at which the attribute splits trees. Trees where attributes split at 

higher levels are considered more important attributes. The determined attribute 

importance scores offer a ranking of the traits' relative value. 

Feature importance weights obtained using LightGBM have been given in Fig.4.2. 

When the graph has been analyzed, the important feature is the average channel gain 

(�̃�𝑘) and the other important features are the channel gains made by the UEs with each 

AP. 
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Figure 4.2: Importance weights of features in LightGBM 

 

4.2.1.3 Analyzing Model Complexity with Learning Curves 

Analyzing Model Complexity with Learning Curves is a method for evaluating the 

complexity and generalization ability of a ML model. This technique in LightGBM 

demonstrates how the model's performance varies with the size of the training set. 

Learning curves quantify the model's performance across various training dataset 

sizes. These charts demonstrate how the model's training and validation errors vary as 

the training set's sample size rises. Learning curves have been used to determine 

whether the model is overfitting or underfitting.  

When creating learning curves, subsets of different sizes have been created by varying 

the size of the training set. Initially, the model is trained with a small training set and 

its performance is measured. Then, the training set size is expanded, and the model is 

retrained. This step is repeated with a certain amount of increase and learning curves 

are generated by measuring the performance of the training set of each size. The size 

of each training set, the model's training error and validation error are calculated. The 

validation error shows how well the model generalizes, while the training error shows 
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how well the model performs on the training set. These errors are usually calculated 

using error metrics such as MSE or RMSE. 

The calculated training and validation errors are visualized as learning curves. These 

curves show how the errors change with increasing training set sizeOverfitting is the 

term used when the model overfits the training set, resulting in a drop in training error 

and an increase in validation error. The validation error as well as the training error 

may be high if the model underlearns, which is known as underfitting. 

 

Figure 4.3: LightGBM model complexity for learning rate 
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Figure 4.4: LightGBM model complexity for n_estimators 

 

Figure 4.5: LightGBM model complexity for colsample_bytree 

The pattern of the training score and validation score curves reveals details about the 

model's capacity for generalization. Ideally, the validation score decreases during 

training to achieve a low error value, while the training score approaches 0. This is 

because the model fits the training dataset perfectly and predicts the training samples 

without error.  
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When the graphs in Fig.4.3, Fig.4.4 and Fig.4.5 are observed, it is seen that the 

Training score approaches zero. Validation score decreased in learning_rate and 

n_estimators graphs, while it increased in colsample_bytree. As a result, no overfitting 

or underfitting has been observed in LightGBM model. 

4.2.2 Multilayer Perceptrons Model  

MLP (Multi-Layer Perceptron) is a method used in deep learning and is a DNN model. 

The artificial neural network MLP has a hidden layer or layers between the input and 

output layers. 

4.2.2.1 Working Principle 

Each node in the MLP is typically completely linked, which means that it is connected 

to every node in the layer above. Each node first calculates a weighted sum of its inputs 

before applying an activation function to get the node's output. These outputs are 

passed to the nodes in the next layer and the process is repeated. 

Classification or regression issues are frequently resolved with MLP. The training 

process is performed by iteratively adjusting the weights and thresholds of the network 

and using optimization algorithms to minimize the error. By allowing the error to 

spread backwards across the network, the back-propagation technique updates the 

weights. The structure of MLP has been given in Fig 4.6. 
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Figure 4.6: Structure of MLP 

Incoming data is received by the input layer, which then transmits it to the intermediate 

layer. The following layer receives the incoming data. At least one intermediary layer 

varies depending on the situation, and the number is changed as necessary. Each layer's 

output serves as the following layer's input. The goal is thus accomplished. Every 

neuron in the layer below is linked to every other neuron. According to the issue, the 

layer's number of neurons is also decided. By processing the data from the preceding 

levels, the output layer determines the network's output. The number of elements in 

the output layer is the same as the number of the system's outputs. Data is brought in 

and sent to the intermediate layer by the input layer. The incoming data is passed on 

to the following layer. One or more intermediary layers vary depending on the issue 

and are added or removed as necessary. Each layer's output serves as the input for the 

one below it. The desired result is therefore achieved. Each neuron has connections to 

every other neuron in the layer below it. The problem also dictates how many neurons 

should be in the layer. The network's output is determined by the output layer, which 

processes data from the preceding layers. The system has an equal number of outputs 

as elements in the output layer. Weights and thresholds are initialized with random 

starting values. Random initialization allows the network to start the learning process 

from different points. Forward propagation is the process of applying input data to the 

network and calculating the outputs of each node. Using weights and thresholds, the 
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input data travels through the nodes in the hidden layers to the output layer. At each 

node, an activation function is applied after calculating the sum of the inputs. The 

activation function determines the output of the node. Different activation functions 

such as sigmoid, ReLU or tanh can be used. Backpropagation is the process of 

comparing the network's predictions with the actual outputs and calculating the error. 

The error is calculated using a loss function. The back-propagation algorithm allows 

the error to propagate backwards through the network and each weight and threshold 

value is updated with its margin of error. Optimization algorithms are used to reduce 

the network's errors and improve its performance. Methods such as Gradient Descent, 

Stochastic Gradient Descent (SGD) or Adam optimizer try to minimize errors when 

updating the weightsA certain number of times or until a predetermined stopping 

criterion is met, the forward propagation and backward propagation stages are 

repeated. At each iteration, the weights and thresholds of the network are updated. 

Once the training process is complete, the performance of the model is evaluated. 

Usually a separate validation dataset is used to calculate the model's accuracy, error or 

other performance metrics. 

4.2.2.2 Parameter Optimization Selection 

In the MLP model there are various parameters as in the LightGBM model. 

Batch size determines the size of each batch of data used during training. Batches are 

groups of instances used simultaneously to train the network. Instead of processing 

large data sets all at once, using batches of data speeds up the training process and 

optimizes memory usage. Batch size value has been set to 4 in the model. Choosing a 

small batch_size requires less memory usage and allows to update the network more 

frequently. This helps the model to learn faster and improve more quickly. It also 

prevents further adaptation of the model to the dataset and increases its generalization 

ability. 

Shuffle allows the dataset to be shuffled before each epoch. Shuffling randomly 

changes the order of the data samples and prevents the model from learning 

dependencies between samples. This helps the model to generalize better and not 

depend on the training data. 
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Determines the number of worker processes used during data loading. Worker 

processes perform data loading and processing in parallel, which reduces data loading 

time and speeds up the training process. Especially for large datasets, the use of 

multiple workers can be beneficial. Worker value has been set to 4 in the model.  Using 

multiple worker processes performs data loading in parallel, which speeds up data 

loading time. Especially when working with large data sets, processing data 

simultaneously reduces the total load time. Multiple worker processes can speed up 

data loading as well as data processing. Parallel execution of worker processes reduces 

computation time and speeds up the training process.  

MLP model has been optimized with the Adam optimizer.The Adam (Adaptive 

Moment Estimation) optimizer is an optimization algorithm used in the training of 

artificial neural network models such as MLP. During the training process, the Adam 

optimizer iteratively updates the network's weights in an effort to minimize error. This 

optimization algorithm adaptively estimates the momentum and RMS errors and 

updates the weights based on these estimates.  

Epoch value refers to the number of cycles in the training process of the MLP model. 

This value affects the training time, performance and learning ability of the model. 

Higher epoch values, while requiring longer training time, can increase the potential 

to achieve better model performance. However, too high epoch values run the risk of 

over-learning, while too low epoch values can prevent the model from learning fully. 

The epoch value is crucial for managing overlearning since selecting the ideal value 

enhances the model's capacity for generalization. The right epoch value should be 

determined by experimentation and adjusted to suit the needs of the model. In the MLP 

model, the epoch value is set to 100.  

4.2.3 Convolutional Neural Network Model  

Typically employed in image processing, CNN is a deep learning system that accepts 

images as input. This algorithm, which captures and classifies the features in images 

with different operations, consists of different layers. The image that passes through 

these layers, which are Convolutional Layer, Pooling, Flattering and Fully Connected, 

is subjected to different processes and becomes ready to enter the deep learning model. 

When creating CNN models, there is not much effort in data preprocessing compared 
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to classical ML algorithms since unstructural data is dealt with. Architecture of CNN 

model is given in Fig. 4.7. 

 

Figure 4.7: Architecture of CNN model 

4.2.3.1 Convolutional Layer 

Convolutional layer performs feature extraction by applying convolutional operations 

on the data in the CNN model. This layer detects local patterns and features in the data 

using matrices called filters or kernels. It provides translational invariance while using 

fewer parameters through parameter sharing. Dimensional reduction with stride and 

padding parameters. Add non-linearity with activation functions, allowing the model 

to learn complex relationships. In several disciplines, including image processing, 

audio processing and natural language processing, convolutional layers are a crucial 

element that is employed successfully. 

Conv1D (1-dimensional convolution)  refers to a type of convolution layer used in the 

CNN model. Conv1D is a layer that performs convolution operations on 1D data. It is 

typically used on 1D data sets such as text data or time series. This layer uses a filter 

or kernel to learn patterns to recognize in the data. 

4.2.3.2 Pooling Layer 

Like the convolutional layer, the pooling layer aims to reduce dimensionality. This not 

only reduces the computational power required, but also eliminates unnecessary 

features captured and focuses on more important features. There are two different 

pooling techniques generally used in CNN models. One of them is Max pooling and 
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the other is Average pooling. In the pooling layer, which has a kernel (filter) like in 

the convolutional layer, this kernel again travels over the image. But this time, the 

stated pooling technique is used instead of the convolutional process. Therefore, while 

using maximum pooling, the largest value in the filter's coverage area is used, and 

when using average pooling, the values in the filter are averaged. Important functions 

are provided but the size is reduced. 

4.2.3.3 Flattering Layer 

The Flattering Layer's sole responsibility is to prepare the input data for the Fully 

Connected Layer, the final and most crucial layer. Neural networks typically use a one-

dimensional array as its data input. This neural network's input is a one-dimensional 

array created from the matrices from the Convolutional and Pooling layer. 

4.2.3.4 Fully-Connected Layer 

In the Fully Connected layer, the input, which is a matrix that passes several times 

through the convolutional layer and the pooling layer, is transformed into a flat vector. 

After this stage, classical deep learning techniques are used. The features are stored in 

the nodes in the layers and the learning process is started by changing the weight and 

bias. In the CNN model, the epoch value has been set as 500.  

4.3  Performance Results 

The MSE, RMSE and MAE (Mean Absolute Error) Losses plots have been given in 

Fig 4.8, Fig 4.9 and Fig 4.10 for MLP model. The RMSE and MSE loss values 

approach zero as the epoch value increases, as observed in both figures. MLP model 

has been observed that as the loss values approach zero, the training progress correctly 

and the prediction values will give more accurate results. The MSE value is 0.9753 

and the RMSE value has an average value of 0.9367.  
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Figure 4.8 MSE Losses according to epoch values of the MLP model 

 

Figure 4.9 RMSE Losses according to epoch values of the MLP model 
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Figure 4.10 MAE Losses according to epoch values of the MLP model 

The MSE, RMSE and MAE Losses plots have been given in Fig 4.11, Fig 4.12 and 

Fig 4.13 for CNN model. According to the graph, the train error value approaches 0 

throughout the Epoch. The values have been analyzed by RMSE and MSE values. 

While the Validation loss value has decreased to 0.96, the Training loss value is 0.42. 

The MSE value is 0.912205 and the RMSE value has an average value of 0.9551.  

 

Figure 4.11 MSE Losses according to epoch values of the CNN model 
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Figure 4.12 RMSE Losses according to epoch values of the CNN model 

 

Figure 4.13 MAE Losses according to epoch values of the CNN model 

When the MSE and RMSE graphs for CNN and MLP models are compared, it is 

observed that the MLP model gives better results at low epochs. In addition, when the 

epoch value approaches 100, it is the MLP model that gets closer to 0. Since the error 

value of MLP is lower than CNN, it seems that it will perform better for prediction. 

The LightGBM model has been predicted and has been compared with the numerical 

calculation. The accuracy distribution of the model is given in Figure 4.14. The MSE 

value is 0.884935 and the RMSE value has an average value of 0.940710 for 

LightGBM model.  
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Figure 4.14 Comparison of numerical result and MLP model 

 

Figure 4.15 Comparison of numerical result and CNN model 
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Figure 4.16 Comparison of numerical result and LightGBM model 

In order to compare MLP, LightGBM and CNN models, all models have been 

predicted with the same 500 inputs from the dataset. The proximity of the 500 actual 

values are shown in the Fig 4.14, Fig 4.15 and Fig 4.16. When all three models are 

compared, it is calculated that CNN prediction values are more distant from the actual 

values. The margin of error of the predicted values in MLP and LightGBM models has 

been low. LightGBM model has obtained better results compared to other models. 

Table 4.4: Performance outputs of the LightGBM, MLP and CNN models 

Name LightGBM MLP CNN 

MSE 0.884935 0.9753 0. 912205 

RMSE 0.940710 0.9367 0.9551 

 

Table 4.5: The mean deviation of the LightGBM, MLP and CNN models 

Name LightGBM MLP CNN 

Deviation 0.025 0.27 1.26 
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LightGBM, MLP and CNN ML techniques have been proposed using the numerical 

calculations prepared in Chapter 3. In the dataset, the locations of UEs and APs, 

channel gains and pilot assigned APs are taken as input values and SE has been taken 

as output values. Careful attention has been paid to the choice of parameters for all 

ML models and the most accurate parameters have been selected. After the models 

have been created, a successful rate has been obtained in approaching convex 

optimization outputs via MATLAB. The best performing ML model has been the 

LightGBM and is given in Table 4.4. Table 4.5 have been shown the mean deviation 

of the models. The lowest deviation has been seen as LightGBM after MLP and CNN 

at last, respectively. CNN model has been particularly successful in convergence due 

to its success in image processing, it has lower performance than the other models. 

 

Figure 4.17 Comparison of numerical result and all models 

In Fig. 4.17, the numerical results and the prediction values of the models have been 

compared. The Cumulative Distribution Function (CDF) has been used to see the 

difference better. The closest model to the actual value is the LightGBM model. With 

the proposed models, it will now be possible to save time in power allocation. In 

addition, it will not be necessary to solve the convex optimization problem every time. 
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Power allocation will be achieved by obtaining results with only channel state 

information. 

4.4  Conclusion 

According to the results, the LightGBM model has the lowest MSE and RMSE values, 

meaning that it performed better than the other models. The MLP model performed 

second best, followed by the CNN model. There may be several reasons for the better 

performance of LightGBM. First, LightGBM is known for its low memory 

consumption and fast training. Therefore, it can work more efficiently on the dataset 

and produce faster results. Also, LightGBM has the ability to deal well with large data 

sets and can work effectively with low-dimensional data sets as well. 

While the MLP model performed well overall, the CNN model performed less well. 

This may be due to the fact that the nature of the data set and the characteristics of the 

problem are more suitable for the MLP model. Since MLP is a general-purpose deep 

learning model, it can handle a variety of data types and structures. CNN, on the other 

hand, is a model known to be particularly powerful in areas such as image processing. 

Therefore, the structure and features in the dataset may not allow the CNN model to 

fully utilize its potential. 

As a result, the LightGBM model performed the best because it can work more 

efficiently on the dataset, is fast and has low memory consumption. The MLP model 

emerged as a good alternative, but the CNN model is not fully compatible with the 

structure of the dataset. These results show that the dataset obtained with the sumSE 

power allocation method is more suitable for the characteristics of models such as 

LightGBM and MLP. 
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Chapter 5 

Conclusion and Future Work  

In this chapter, we provide a summary of the contributions made by this thesis and talk 

about some potential areas for further investigation. 

5.1  Conclusion 

In this thesis, AP selection and power allocation problems have been investigated. The 

first problem is the difficulty of AP selection due to the large number of APs in CF 

MIMO networks and the other problem is the complexity and solution time of convex 

optimization problems in power allocation. Different ML models have been used to 

solve both problems.  

For the first problem, five different machine learning techniques have been compared 

in order to make the best choice between the user equipment and APs installed on the 

IKÇU campus. While selecting the APs, a dataset has been created with the location 

and capacity values of each user and classification has been performed. As a result of 

the comparisons, the DT classifier method has been found to be the most efficient 

machine learning technique. Besides GNB, other machine learning techniques also 

gave good results.  

For the second problem, this paper has aimed to build a dataset of simulated results 

obtained by applying the SumSE power allocation approach in CF massive MIMO 

systems. This dataset is trained to predict UEs at new locations using ML, DNN and 

CNN and compared with simulation results. The results show that ML techniques are 

successful. Moreover, by using convex optimization method, the elapsed time is 

minimized and the computational burden is reduced. This study is an important step 
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towards evaluating the efficiency of power allocation and the performance of 

estimation algorithms in CF massive MIMO systems. The results of this study can 

provide guidance in designing and optimizing better CF communication systems and 

can make a significant contribution in providing improved performance and efficiency 

for future wireless communication networks. 

5.2  Future Work 

For future works, higher epoch values and larger model structures can be used to access 

more powerful computational resources. This can help to achieve better results by 

enabling a more comprehensive model to be trained. Furthermore, different 

hyperparameter settings and optimization techniques can be experimented with to 

improve model performance. 

In addition, a larger dataset can be collected or data from different data sources can be 

integrated. This can enable the model to perform better in more general and diverse 

scenarios. In the data collection process, it is important to ensure diversity to represent 

different user profiles and environmental factors. 

Field experiments can be carried out to assess and gauge the model's performance in 

actual applications. This is an important step to validate the usability and effectiveness 

of the model in practice. The feedback and use cases provided can be used to identify 

new research questions and enhancements for future work. Approaches that go beyond 

the model built with supervised learning, such as self-training and the use of more 

powerful computational resources, can be considered as future steps of the thesis work. 

Digital twin is a technology that represents a virtual copy of a physical asset and 

enables real-time data integration, analysis and simulation. This technology is used to 

understand and optimize the behavior of the real-world asset and evaluate future 

scenarios. Digital twin can be used in complex systems such as cell-free networks to 

address challenges such as resource allocation and performance improvement. 

In the future, critical issues such as resource allocation, capacity planning, energy 

efficiency optimization, mobility management, security and data privacy will be 
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addressed using digital twin technology in cell-free networks. Digital twin will 

optimize network performance with real-time data integration and analysis, predict 

future scenarios, and enable fault detection and troubleshooting. It will also develop 

learning models for better resource allocation through the integration of automatic 

learning and artificial intelligence. These studies will make cell-free networks more 

efficient, secure and scalable, and will play an important role in future wireless 

communication systems.



77 

 

  

References  

[1] Dao, H. T., & Kim, S. (2020). Effective channel gain-based access point selection 

in CF massive MIMO systems. IEEE Access, 8, 108127-108132. 

[2] Mendoza, C. F., Schwarz, S., & Rupp, M. (2021, November). Deep reinforcement 

learning for dynamic access point activation in cell-free MIMO networks. In WSA 

2021; 25th International ITG Workshop on Smart Antennas (pp. 1-6). VDE. 

[3] Shakya, I. L., & Ali, F. H. (2020). Joint Access Point Selection and Interference 

Cancellation for CF Massive MIMO. IEEE Communications Letters, 25(4), 1313-

1317. 

[4] Buzzi, S., & D’Andrea, C. (2017). CF massive MIMO: User-centric approach. 

IEEE Wireless Communications Letters, 6(6), 706-709. 

[5] Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). 

CF massive MIMO versus small cells. IEEE Transactions on Wireless 

Communications, 16(3), 1834-1850. 

[6] Zhang, J., Chen, S., Lin, Y., Zheng, J., Ai, B., & Hanzo, L. (2019). CF massive 

MIMO: A new next-generation paradigm. IEEE Access, 7, 99878-99888. 

 [7] E. Nayebi, A. Ashikhmin, T. L. Marzetta and H. Yang, "CF Massive MIMO 

systems," 2015 49th Asilomar Conference on Signals, Systems and Computers, 2015, 

pp. 695-699, doi: 10.1109/ACSSC.2015.7421222. 

[8] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base 

station antennas,” Wireless Communications, IEEE Transactions on, vol. 9, no. 11, pp. 

3590–3600, 2010. 



78 

 

[9] Chen, S., Zhang, J., Zhang, J., Björnson, E., & Ai, B. (2022). A survey on user-

centric CF massive MIMO systems. Digital Communications and Networks, 8(5), 695-

719. 

[10] Wei, C., Xu, K., Xia, X., Su, Q., Shen, M., Xie, W., & Li, C. (2022). User-centric 

access point selection in CF massive MIMO systems: A game-theoretic approach. 

IEEE Communications Letters, 26(9), 2225-2229. 

[11] Qiu, J., Xu, K., Xia, X., Shen, Z., & Xie, W. (2020). Downlink power optimization 

for CF massive MIMO over spatially correlated Rayleigh fading channels. IEEE 

Access, 8, 56214-56227. 

[12] Mai, T. C., Ngo, H. Q., & Duong, T. Q. (2020). Downlink spectral efficiency of 

CF massive MIMO systems with multi-antenna users. IEEE Transactions on 

Communications, 68(8), 4803-4815. 

[13] Zhang, J., Wei, Y., Björnson, E., Han, Y., & Jin, S. (2018). Performance analysis 

and power control of CF massive MIMO systems with hardware impairments. IEEE 

Access, 6, 55302-55314. 

[14] Nguyen, H. V., Nguyen, V. D., Dobre, O. A., Sharma, S. K., Chatzinotas, S., 

Ottersten, B., & Shin, O. S. (2020). On the spectral and energy efficiencies of full-

duplex CF massive MIMO. IEEE Journal on Selected Areas in Communications, 

38(8), 1698-1718. 

[15] Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2015, 

June). CF massive MIMO: Uniformly great service for everyone. In 2015 IEEE 16th 

international workshop on signal processing advances in wireless communications 

(SPAWC) (pp. 201-205). IEEE. 

[16] Xia, X., Zhu, P., Li, J., Wu, H., Wang, D., & Xin, Y. (2021). Joint optimization 

of spectral efficiency for CF massive MIMO with network-assisted full duplexing. 

Science China Information Sciences, 64, 1-16. 

[17] Ammar, H. A., Adve, R., Shahbazpanahi, S., Boudreau, G., & Srinivas, K. V. 

(2021). User-centric CF massive MIMO networks: A survey of opportunities, 

challenges and solutions. IEEE Communications Surveys & Tutorials, 24(1), 611-652. 



79 

 

[18] Miretti, L., Björnson, E., & Gesbert, D. (2022). Team MMSE precoding with 

applications to CF massive MIMO. IEEE Transactions on Wireless Communications, 

21(8), 6242-6255. 

[19] Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2017). 

On the total energy efficiency of CF massive MIMO. IEEE Transactions on Green 

Communications and Networking, 2(1), 25-39. 

[20] Nayebi, E., Ashikhmin, A., Marzetta, T. L., & Yang, H. (2015, November). CF 

massive MIMO systems. In 2015 49th Asilomar Conference on Signals, Systems and 

Computers (pp. 695-699). IEEE. 

[21] Demirel, M., & AYCAN, E. (2022). Machine Learning Based Classification 

Algorithm for AP Selection in CF MIMO Systems. Avrupa Bilim ve Teknoloji 

Dergisi, (39), 71-75. 

[22] Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An 

overview of massive MIMO: Benefits and challenges. IEEE journal of selected topics 

in signal processing, 8(5), 742-758. 

[23] Li, Q., Li, G., Lee, W., Lee, M. I., Mazzarese, D., Clerckx, B., & Li, Z. (2010). 

MIMO techniques in WiMAX and LTE: a feature overview. IEEE Communications 

magazine, 48(5), 86-92. 

 [24] Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). 

CF massive MIMO versus small cells. IEEE Transactions on Wireless 

Communications, 16(3), 1834-1850. 

[25] Ke, M., Gao, Z., Wu, Y., Gao, X., & Wong, K. K. (2020). Massive access in CF 

massive MIMO-based Internet of Things: Cloud computing and edge computing 

paradigms. IEEE Journal on Selected Areas in Communications, 39(3), 756-772. 

[26] Chen, S., Zhang, J., Björnson, E., Zhang, J., & Ai, B. (2020). Structured massive 

access for scalable CF massive MIMO systems. IEEE Journal on Selected Areas in 

Communications, 39(4), 1086-1100. 

[27] Ericsson, Ericsson Mobility Visualizer. Available: https://www.ericsson.com/en. 



80 

 

[28] Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements 

of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New 

York: springer. 

[29] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

[30] Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine 

learning (Vol. 4, No. 4, p. 738). New York: springer. 

[31] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. 

[32] Biswas, S., & Vijayakumar, P. (2021, March). AP selection in CF massive MIMO 

system using machine learning algorithm. In 2021 Sixth International Conference on 

Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 158-

161). IEEE. 

[33] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural 

networks, 61, 85-117. 

[34] Zhao, Y., Niemegeers, I. G., & De Groot, S. H. (2020). Power allocation in CF 

massive MIMO: A deep learning method. IEEE Access, 8, 87185-87200. 

[35] Rajapaksha, N., Manosha, K. S., Rajatheva, N., & Latva-Aho, M. (2021, June). 

Deep learning-based power control for CF massive MIMO networks. In ICC 2021-

IEEE International Conference on Communications (pp. 1-7). IEEE. 

[36] Zaher, M., Demir, Ö. T., Björnson, E., & Petrova, M. (2022). Learning-based 

downlink power allocation in CF massive MIMO systems. IEEE Transactions on 

Wireless Communications, 22(1), 174-188. 

[37] Salaün, L., & Yang, H. (2021, December). Deep learning based power control for 

CF massive MIMO with MRT. In 2021 IEEE global communications conference 

(GLOBECOM) (pp. 01-07). IEEE. 

[38] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification 

with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. 



81 

 

[39] Arasteh, M., Gharaei, N. Y., & Ardebilipour, M. (2022). Optimization of Spectral 

Efficiency in CF massive MIMO Systems Using Deep Neural Networks. arXiv 

preprint arXiv:2208.13727. 

[40] Bashar, M., Akbari, A., Cumanan, K., Ngo, H. Q., Burr, A. G., Xiao, P., ... & 

Kittler, J. (2020). Exploiting deep learning in limited-fronthaul CF massive MIMO 

uplink. IEEE Journal on Selected Areas in Communications, 38(8), 1678-1697. 

[41] Björnson, E., & Sanguinetti, L. (2020). Scalable cell-free massive MIMO 

systems. IEEE Transactions on Communications, 68(7), 4247-4261. 

[42] Bashar, M., Akbari, A., Cumanan, K., Ngo, H. Q., Burr, A. G., Xiao, P., ... & 

Kittler, J. (2020). Exploiting deep learning in limited-fronthaul cell-free massive 

MIMO uplink. IEEE Journal on Selected Areas in Communications, 38(8), 1678-1697. 

[43] Papazafeiropoulos, A., Ngo, H. Q., Kourtessis, P., Chatzinotas, S., & Senior, J. 

M. (2021). Towards optimal energy efficiency in cell-free massive MIMO systems. 

IEEE Transactions on Green Communications and Networking, 5(2), 816-831. 

[44] Interdonato, G., Ngo, H. Q., & Larsson, E. G. (2021). Enhanced normalized 

conjugate beamforming for cell-free massive MIMO. IEEE Transactions on 

Communications, 69(5), 2863-2877. 

[45] Nikbakht, R., Mosayebi, R., & Lozano, A. (2020). Uplink fractional power 

control and downlink power allocation for cell-free networks. IEEE Wireless 

Communications Letters, 9(6), 774-777. 

[46] Van Chien, T., Björnson, E., & Larsson, E. G. (2020). Joint power allocation and 

load balancing optimization for energy-efficient cell-free massive MIMO networks. 

IEEE Transactions on Wireless Communications, 19(10), 6798-6812. 

 [47] Zhao, Y., Niemegeers, I. G., & De Groot, S. M. H. (2021). Dynamic power 

allocation for cell-free massive MIMO: Deep reinforcement learning methods. IEEE 

Access, 9, 102953-102965. 



82 

 

[48] Palhares, V. M., Flores, A. R., & De Lamare, R. C. (2021). Robust MMSE 

precoding and power allocation for cell-free massive MIMO systems. IEEE 

Transactions on Vehicular Technology, 70(5), 5115-5120. 

 [49] Rahmani, M., Bashar, M., Dehghani, M. J., Xiao, P., Tafazolli, R., & Debbah, 

M. (2022, April). Deep reinforcement learning-based power allocation in uplink cell-

free massive MIMO. In 2022 IEEE Wireless Communications and Networking 

Conference (WCNC) (pp. 459-464). IEEE. 

[50] Xia, G., Zhang, Y., Ge, L., & Zhou, H. (2022, June). Deep reinforcement learning 

based dynamic power allocation for uplink device-to-device enabled cell-free network. 

In 2022 IEEE International Symposium on Broadband Multimedia Systems and 

Broadcasting (BMSB) (pp. 01-06). IEEE. 

[51] Ranasinghe, V., Rajatheva, N., & Latva-aho, M. (2021, December). Graph neural 

network based access point selection for cell-free massive MIMO systems. In 2021 

IEEE Global Communications Conference (GLOBECOM) (pp. 01-06). IEEE. 

[52] Ghiasi, N., Mashhadi, S., Farahmand, S., Razavizadeh, S. M., & Lee, I. (2022). 

Energy efficient AP selection for cell-free massive MIMO systems: Deep 

reinforcement learning approach. IEEE Transactions on Green Communications and 

Networking, 7(1), 29-41. 

[53] Zhao, Y. (2022). Power allocation in cell-free massive MIMO: Using deep 

learning methods (Doctoral dissertation, Ph. D. dissertation). 

  



83 

 

 

Curriculum Vitae 

Name Surname : Mert Demirel 

Education: 

2015–2021  İzmir Kâtip Çelebi University, Bachelor of Science in Electrical 

Electronics Engineering  

2021– …  İzmir Kâtip Çelebi University, Master of Science in Electrical 

Electronics Engineering 

 

Work Experience: 

2022 – …  Turkcell Global Bilgi – Software Developer  

 

Publications: 

1. Demirel, M., & AYCAN, E. (2022). Machine Learning Based 
Classification Algorithm for AP Selection in Cell-Free MIMO Systems. 
Avrupa Bilim ve Teknoloji Dergisi, (39), 71-75. 
 

 


