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Classification of Hand Gestures Using Time-Frequency 

Analysis and Different Artificial Intelligence Methods  

 

Abstract 

Hand gesture-based systems are one of the most effective technological advances. 

Surface electromyography (sEMG) is utilized as a popular input data for gesture 

classification with elevated accuracy and advanced control capability. In this thesis, 

which is based on the classification performance of Hilbert-Huang spectrum (HHS) 

images obtained from Hilbert Huang Transform (HHT) of the sEMG of the gestures, 

an evaluation of the results of artificial intelligence (AI) methods on hand gesture 

classification using HHS image is presented. A dataset of 4-channel sEMG of seven 

hand movements was used. HHS images were obtained by applying HHT to sEMG 

signals. In hand gesture classification, six image features obtained from the gray-level 

co-occurrence matrix (GLCM) of HHS images were classified in machine learning 

(ML) and fuzzy logic (FL) models. The GLCM features were also extracted from the 

EMG and intrinsic mode functions (IMF) snapshots and classified in order to make 

comparisons within ML. In FL, the GLCM features were classified using two different 

clustering techniques, subtractive clustering (SC) and fuzzy c-mean (FCM) clustering. 

In addition, HHS images are used directly in deep learning (DL) models and classified 

into seven different convolutional neural networks (CNN) architectures based on the 

transfer learning method. Also, the effects of different IMF combinations and different 

signal lengths on classification performance were evaluated while generating HHS 

images. Three different AI methods were evaluated within themselves. According to 
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the results obtained within the scope of the study, it was determined that in all three 

AI methods, HHS images and features based on time-frequency analysis were 

successful in hand gesture classification and each of them could be used as an 

alternative method. 

 

Keywords: Hand gestures, time-frequency analysis, machine learning, deep learning, 

fuzzy logic  
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 Zaman-Frekans Analizi ve Farklı Yapay Zeka 

Yöntemleri Kullanılarak El Hareketlerinin 

Sınıflandırılması  

 

Öz 

El hareketi tabanlı sistemler, en etkili teknolojik gelişmelerden biridir. Yüzey 

elektromiyografisi (sEMG), yüksek doğruluk ve kontrol yeteneği ile hareket 

sınıflandırması için popüler bir veri olarak kullanılır. Hareketlerin sEMG'sinin Hilbert-

Huang Dönüşümü'nden (HHT) elde edilen Hilbert-Huang spektrumu (HHS) 

görüntülerinin sınıflandırma performansına dayanan bu tezde, yapay zeka (AI) 

yöntemlerinin HHS görüntüsü kullanarak el hareketi sınıflandırmasına ilişkin 

sonuçların değerlendirilmesi sunulmaktadır. Yedi el hareketine ait 4 kanallı sEMG veri 

seti kullanıldı. sEMG sinyallerine HHT uygulanıp HHS imgeleri elde edildi. El 

hareketi sınıflandırmada HHS görüntülerinin gri düzey eş oluşum matrisinden 

(GLCM) elde edilen altı imge özniteliği makine öğrenmesi (ML) ve bulanık mantık 

(FL) modellerinde sınıflandırılmıştır. ML'de kendi içinde karşılaştırma yapmak için 

GLCM öznitelikleri, EMG ve içsel mod fonksiyonu (IMF) ekran görüntülerinden 

çıkarılıp sınıflandırılmıştır. FL'de ise GLCM öznitelikleri azaltımlı ve bulanık c-

ortalama kümeleme teknikleri kullanılarak ayrı ayrı sınıflandırılmıştır. Bunlarla 

birlikte, derin öğrenme (DL) modellerinde HHS imgeleri doğrudan kullanılarak 

transfer öğrenimi yöntemine dayalı yedi farklı DL mimarisinde sınıflandırılmıştır. 

Burada ayrıca, HHS imgeleri oluşturulurken farklı IMF kombinasyonlarının ve farklı 
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sinyal uzunluklarının sınıflandırma performansına etkisi değerlendirilmiştir. Üç farklı 

AI yönteminin kendi içinde değerlendirilmesi yapılmıştır. Çalışma kapsamında elde 

edilen üç AI yönteminin sonuçlara göre, zaman-frekans analizine dayalı HHS imge ve 

özniteliklerinin el hareketi sınıflandırmada başarılı olduğu ve her bir yaklaşımın 

alternatif bir yöntem olarak kullanılabileceği belirlenmiştir. 

 

Anahtar Kelimeler: El hareketleri, zaman-frekans analizi, makine öğrenmesi, derin 

öğrenme, bulanık mantık  
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1 Introduction 

1.1 Hand Gesture Recognition 

State-of-the-art devices developed to facilitate and help human lives have spread to all 

areas of life. These areas are in a wide range from military and industrial to 

entertainment, and especially health. They have led to the need for effective interaction 

between people and themselves. Because they need to be able to perceive humans 

correctly to perform their functions. In order to do that, machines, computers, and 

robots must be able to receive correct input data from humans. This can be performed 

via human-machine interaction (HMI), human-computer interaction (HCI), and 

human-robot interaction (HRI) approaches [1]. Although they have systemic 

differences, they were basically developed for the same purpose. The common issue 

for all of them is how to ensure the interaction between humans and the system in the 

most effective and simple way.  

Amputee prostheses, rehabilitation and surgical robots, teleoperation in surgery, haptic 

systems, virtual reality applications, and exoskeletons can be given as examples of the 

systems that are most used in the mentioned interactions. The common characteristics 

of these examples is that they help human movements and actions [2]. It is the most 

logical way to use the most effective organ in movement and communication to ensure 

communication between people and these systems. Because the right interaction can 

be achieved with the right communication tool. Hands are one of the most effective 

communication tools in the human body, and they are also a significant element for 

control in the movement-based devices [3]. In the controlling of prostheses, medical 

robots, virtual reality, or smart system applications as seen in Figure 1.1, providing 

input data from the hand to the system is the most effective and easy approach for 

performing the planned action or movement [4,5]. 
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Figure 1.1: Examples of gesture-based systems: (a) EEG-based hand gesture 

recognition system [4],  (b) vision-based hand gesture recognition system [5] 

When hand gestures are used in the system interface, the user can use the device with 

the best performance with the help of the recognition of the desired movement by the 

system. Prediction of hand movement also ensures system security by minimizing 

latency for critical applications such as prosthetics and surgical robots [6]. Video-

based, acceleration sensor-based, acoustic-based, brain-signal-based 

(electroencephalography (EEG)), near-infrared (NIR)-based, or muscle signal-based 

(electromyography (EMG)) are used to predict hand movements as seen in Figure 1.1 

and Figure 1.2 [7]. In here, the use of biological signals (as seen in Figure 1.2) 

containing movement information is mostly used [8].  

 

Figure 1.2: A biological signal-based hand movement recognition system: (a) 

prosthesis control using different biological signals, (b) controlling algorithm for 

pattern recognition, (c) data collection from healthy muscles of amputee [8] 
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Muscle signals from biological signals are the most preferred input data. Muscles from 

biological elements in the body are the most basic element of the movement system 

and are directly responsible for the realization of movement [9]. They are one step 

ahead of other approaches in providing information about the movement. They contain 

the electrical muscle activity they produce while performing the movement and the 

information about the movement. Therefore, because EMG data contains information 

about muscles, it can be an effective input data for many hand gesture recognition 

applications [10].  

1.2 sEMG Signal and Analysis 

EMG is significant and effective data for other movement-based applications like 

disease diagnosis besides control and rehabilitation strategies as seen in Figure 1.3 

[11]. EMG signals can be collected using different approaches. While there are so 

many different types of data, EMG data is also divided into two groups according to 

the collection approach as noninvasive and invasive. The surface EMG (sEMG) is 

taken with electrodes placed on the skin surface as noninvasive way [12], and 

intramuscular EMG (iEMG) is taken with an electrode placed directly into the muscle 

with a needle or fine-wire as invasive way [13]. sEMG is more popular because it is a 

painless, non-invasive, and easily applicable method [12].   

 

Figure 1.3: EMG applications areas [11] 
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1.2.1 sEMG Generation 

The sEMG signal is the electrical activity generated by a contracting muscle, where 

there is a flow of ions. The rate of this flow is the electrical current and is measured in 

Amperes. The current within the muscle changes the electrical potential, and the 

difference in it between two locations of the muscle is evaluated in Volts. This voltage 

from the surface electrode is affected by the impedance or noises, and the changing its 

dispersion on the skin as a result of muscular activity is measured as the sEMG signal 

[14]. 

 

Figure 1.4: sEMG generation process [14] 

Motoneurons conduct the signals from the spinal cord to the muscles. A motoneuron 

is started, and it innervates an action potential across the muscle fiber membrane in 

each fiber. The motor unit (MU) action potential (MUAP) means to the electrical 

potential owing to activating the fibers [6]. sEMG is a total of action potentials 

produced by motor units within the electrode area on the skin as seen in Figure 1.4 

[14]. It is known that sEMG is used in many studies in the literature. In this thesis, 

sEMG data were also used.  

1.2.2 Mathematical Representation of sEMG Signal 

The fundamental model for the sEMG signal is defined as a sum of the MUAPs during 

the static contraction. EMG shows non-stationary characteristics like other biomedical 

signals. EMG is often defined as an interference signal due to the combine many 

different MU contributions. Depending on the muscle contracted and the intensity of 
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contraction, the number of stimulated motor units can reach huge numbers. The 

interference EMG signal here can be defined as in Equation (1.1): 

 𝑏(𝑡) = ∑ 𝑚𝘨(𝑡) = ∑ ∑ 𝛿(𝑡 − 𝑡𝘨ℎ) ∗ 𝑠𝘨(𝑡)

𝑇𝘨

ℎ

𝑅

𝘨

𝑅

𝘨

 
(1.1) 

where 𝑏(𝑡) is interference EMG, and consists of summation of MUAP trains, 𝑚𝘨(𝑡), 

each described as the time convolution among the discharge instants 𝛿(𝑡 − 𝑡𝘨ℎ) and 

the waveform 𝑠𝘨(𝑡) of the action potential of each single unit. 𝑅 corresponds to the 

number of MUs collected, and 𝑇𝘨 is the total of discharges (ℎ) for the 𝘨-th MU. In 

accordance with Equation (1.1), two principal welds clarify 𝑚𝘨(𝑡): the discharge 

instants 𝑡𝘨ℎ and the waveform representing the MUAP, 𝑠𝘨(𝑡). The mathematical 

explanation of collecting sEMG signal is shown in Figure 1.5, where the true signal 

and noise compose the recorded sEMG signal [15].  

 

Figure 1.5: Structure of the recorded sEMG: 𝑔(𝑡) is the recorded sEMG signal on 

which analysis is performed, 𝑥(𝑡) is the interested true signal, 𝑒(𝑡) is noise, and 

𝐻(𝑓) is the transfer function of the record tool [15] 

1.2.3 sEMG Signal Preprocessing and Analysis 

The biological signals need to be preprocessed and cleaned before they are used, and 

then various analysis approaches are applied to access the information inside them. 
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1.2.3.1 sEMG Preprocessing 

Depending on the used approach, the processed or raw sEMG signal itself can be a 

direct input to the system, or it can be represented by features or images extracted from 

the signal. Like any biological signal, sEMG signals include noises from environment. 

So in order to reach the relevant information in it, the signals should be cleaned of 

unnecessary information and noise [16]. By this, it is more advantageous in many ways 

to use the noise-free, that is processed version of the signal instead of the raw form. 

The data that has been cleaned and brought to a certain frequency range or the new 

data to be obtained from this data contains real movement information. Thus, the 

clearest and most accurate information about the movement can be reached. Noisy 

EMG signals have 50 Hz interference. This needs to be cleared with the notch filter. 

In addition, the frequency range of the EMG signal is generally accepted between 20–

500 Hz [17]. According to the application, the signals should be brought to the desired 

frequency range with a band-pass filter. An example procedure for this is demonstrated 

in Figure 1.6 [14]. 

 

Figure 1.6: An example of a raw sEMG with 50 Hz interference, the frequency 

response of a 50 Hz notch filter and a 20–500 Hz band-pass filter, and the resulting 

filtered signal, respectively [14] 

1.2.3.2 sEMG Signal Analysis 

In addition to the preprocessing processes of biological signals, more in-depth analysis 

can be provided with analysis approaches and various information about the signal can 

be obtained. EMG signal analysis can be performed in different domains. The analysis 

or useful information form can be obtained from the time domain (TD), frequency 

domain (FD), time-frequency (TF) domain (TFD), or fractional Fourier transform 

(FrFT) domain, etc. While TD demonstrates the changing of a signal over time, FD 
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demonstrated the signal's energy distribution over a range of frequencies. In TD, the 

computational complexity is lower. Root mean square value (RMS), zero crossing, and 

mean absolute value (MAV) are mostly used as TD features. FD features are mostly 

used for muscle fatigue analaysis. In FD, the power spectrum density (PSD) is mostly 

used [18]. The mean frequency and median frequency are examples of FD features. 

TFD possesses the ability to analyze varying frequency information at distinct time 

moments. Various time-frequency analysis (TFA) methods are applied to the signal to 

bring the it to TFD [9]. 

• Time-Frequency Analysis Methods 

The TFAs are studied in an extensive manner for distinct applications of biomedical 

signal processing. They make it possible to match a signal in the TD with a two-

dimensional (2D) function of time and frequency. They come from a time-varying 

spectrum and are called TF representations (TFR). In this way, the information on the 

frequency spectrum in a specific time range or where the signal in a specific frequency 

range is placed in time can be examined. The density or energy distribution may be 

observed visually. Recent studies used TF images in DL architectures and have 

obtained successful results. The Wavelet Transform (WT) [19], Gabor Transform (GT) 

[20], and Short Time Fourier Transform (STFT) [3] can be given as an example of 

conventional TFAs. Especially, it is known that Wavelet Transform is studied in a 

widespread manner for different purposes in biological signal processing [19]. In 

Figure 1.7, an example of nonstationary signal’s TD and FD forms, and TFR obtained 

from the WT is shown [21]. 
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Figure 1.7: The analysis of non-stationary signal using WT: (a) in TD, (b) in FD, and 

(c) a time-frequency map in TFD [21] 

Another TFA method, the Hilbert-Huang Transform (HHT) has been proposed to 

analyze non-stationary signals [22]. HHT consists of applying the Empirical Mode 

Decomposition (EMD) to the given signal, followed by obtaining Hilbert-Huang 

Spectra (HHS) of the extracted modes. The HHT is a data-adaptive approach that has 

important advantages in extracting the most appropriate features of short-time EMG 

signals for further processing. HHS images, an advanced representation of EMG in the 

joint TF plane, benefit from the advantage of utilizing 2D images in DL. Similarly, in 

this study, we evaluate the advantages of HHT in providing a high-resolution TF image 

over traditional methods such as the WT and STFT with its data-adaptive structure and 

multi-resolution ability [23]. In addition, the HHT-deep learning (DL) combination 

performs better than the STFT-based method for mining non-stationary features [24]. 
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1.3 Artificial Intelligence Approaches 

In order to provide interaction between human and devices, the processed EMG data 

must be classified in artificial intelligence (AI) models. There are several AI 

approaches for EMG classification. Machine learning (ML), deep learning, and fuzzy 

logic (FL) are the one of the AI approaches. These three approaches can be categorized 

in AI as seen in Figure 1.8.  

 

Figure 1.8: The schema of artificial intelligence methods based on this study 

Machine learning is one of the basic approaches in AI methods for EMG-based gesture 

classification. EMG is non-stationary, and ML is able to produce a remedy for its non-

stationary operations [25]. In order to be able to classify with ML models, feature 

extraction performed by an expert is required. A feature can be defined as a function 

of one or more measurements that specifies some measurable property of an object or 

image. The features obtained from the signal are also effective data representations. 

Features represent the classes they belong to and can be used as inputs to classifiers. 

ML models that use extracted features as input, although require an extra step and 

expert intervention, are more reasonable than other AI methods due to their 

computational cost and speed [6]. For this reason, it is often preferred because it 

provides classification success and low complexity advantages at the same time.  

Similarly, fuzzy logic for the classification of EMG of hand movements operates a 

similar process as ML. FL algorithms also need some numerical values, namely 

features, that accurately represent the EMG signals. The fuzzy logic system can 

classify a model of biological signals such as EMG. Unlike other approaches, it may 

be the preferred approach for EMG-based movement classification, with its operation 
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most similar to the human thought system [26]. For example, if the feature of a 

myoelectric signal is explained with a daily expression such as 'slightly high', the said 

value can be expressed and classified with the fuzzy membership values in the fuzzy 

set model.  However, the fixed membership functions (MF) in fuzzy logic delimit 

information more in the rule base than MF base. So, FL can suppose more memory 

and processing time [27]. In addition, there are more advanced systems consisting of 

a combination of fuzzy logic with neural networks. The features in several domains 

can be extracted from one-dimensional (1D) signals or from 2D images obtained by 

the conversion of EMGs, and are used in ML and FL. 

In addition to FL and ML, deep learning approaches, which have been very popular in 

recent years for many tasks, are also used in EMG classification. In addition to 

classification, DL is also used for many applications such as medical image 

segmentation and object detection. Besides, Convolutional Neural Networks (CNN) 

demonstrate outstanding performance in biomedical tasks with large image-based 

datasets [28]. DL can automatically extract features in their deep networks from data 

representations, eliminating the need for extra feature extraction and selection steps. 

For this, the generally preferred method is to express EMGs as images and classify 

them in deep network models. In addition, deep networks can use both the signal itself 

(like in Long-Short Term Memory (LSTM)), its pre-extracted features [29], and 

images as input data. Two-dimensional rather than one-dimensional representations of 

signals can be obtained by transforming EMGs into images. It is known that 2D 

representations improve classification performance thanks to the processing of spatial 

information [28,30]. Considering all this, DL can provide more advanced and highly 

accurate results than other methods. Therefore, it is very important to obtain the correct 

image representation of EMG signals and use it in deep networks. 

1.4 Hand Gesture Classification Studies in the 

Literature 

The studies in the literature are listed under three headings within the scope of the 

topics of this thesis: machine learning-based, deep learning-based, and fuzzy logic-

based studies. An example of hand gesture recognition system architecture is shown 

in Figure 1.9. 
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Figure 1.9: An example schema of EMG-based hand gesture recognition system [31] 

1.4.1 Machine Learning-based Studies 

ML-based classification approaches are mostly used in hand gesture classification. 

Tepe and Demir [32] performed real-time gesture classification of seven gestures. 

Several features were extracted to use in the support vector machine (SVM) model. 

They reached an accuracy of 95.83% for personalized data and reached the best 

average classification accuracy of 91.79% with mean absolute value for the 

generalized dataset. Briouza et al. [33] performed the comparison of two ML models, 

which were k-nearest neighbors (kNN) and SVM, using different feature 

combinations. From five TD features, they reached the best classification accuracy of 

78.56% in the SVM model using MAV, waveform length, and slope sign change. 

Nunez-Montaya et al. [34] proposed a classification approach to anthropomorphic 

robotic hands. They extracted 20 features from EMG signals and classified them into 

eight ML models. The highest accuracy of 84.78% was obtained by the multi-layer 

perceptron model. Karapinar Senturk and Bakay [35] classified seven gestures from 

UCI 2019 EMG dataset. Eight-channel data were classified in six different ML models, 

and Naïve Bayes (NB) obtained the highest accuracy of 96.43%. Gouda et al. [36] 

proposed a two-stage classification architecture to classify seven gestures. The 

architecture was composed of SVM and artificial neural networks (ANN) stages, and 

hand-crafted features of 2-channel EMG from the time domain and time-frequency 

domain were classified in it. They reached an average accuracy of 99.00%. Alguner 
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and Ergezer [37] aimed to prove entropy could be used only one feature for real-time 

classification using different sliding window lengths. They used Ninapro DB5 and 

SingleMyo datasets in different ML models. They reached the best validation accuracy 

with SVM. Also, the proposed globally parsed histogram (GPH) approach increased 

accuracy from 60.35% to 89.06%. Rabin et al. [38] classified six movements using the 

STFT features. They used kNN after implementing the PCA and obtained an accuracy 

of 77.30%. Devaraj and Nair [39] used the features from TD of seven movements. 

They reached an accuracy of 93.00% with the kNN. Shi et al. [40] classified TD 

features in the kNN, and reached a classification accuracy of 94.00%. Azhiri et al. [41] 

used Extreme Value Machine (EVM) to classify the reflection coefficients and 

obtained a classification accuracy of 91.00%. 

1.4.2 Deep Learning-based Studies 

DL-based studies can vary according to the input data. Toro-Ossaba et al.  [42] used 

pre-processed EMG signals as a direct input to the LSTM-RNN model. They 

performed only preprocessing and cleaning of EMGs. They used 4-channel EMG of 5 

gestures and reached an accuracy of 87.70% in real-time tests. Kim et al. [43] 

performed real-time hand gesture recognition to provide HRI. They reached an 

accuracy of 96.00% using the convolutional recurrent neural network (CRNN) for 10 

dynamic gestures in real-time. Gopal et al. [44]  presented a comparison study, which 

compared ML and DL models. 12-channel EMG of selected 10 gestures from the 

Ninapro dataset was used. They performed feature extraction from the time domain 

for ML-based models and used sEMG images for the DL model. They reached that 

DL and ensemble models were better than ML models. But for all cases, their 

classification accuracy remained below 90.00%. Gozzi et al. [45] performed the 

explainable AI (XAI)-based classification study. They aimed to obtain a deeper 

understanding of the importance of the hand-crafted ML features and features from the 

DL model. While 91.72% accuracy was obtained with SVM, they obtained values up 

to 97.00% with CNN. They proved that even with some complexity issues, the DL 

model is preferable to ML. Karnam et al. [46] proposed a hybrid CNN and Bi-LSTM-

based EMGHandNet for hand activity classification. They used five different 

databases and obtained the highest accuracy of 93.48% for six gestures with the UCI 

Gesture dataset. Nahid et al. [47] used two different EMG datasets to classify gestures 
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and control the prosthesis. Firstly, they applied Continuous Wavelet Transform (CWT) 

to EMGs to create images and then classified them in transfer learning (TL) and CNN-

LSTM-based models, like ResNet, AlexNet, etc. ResNet-18+LSTM model reached the 

highest accuracy of 99.83% for ten finger movements with the Rami Khusaba dataset. 

Gunes and Akkaya [48] classified 2-channel EMG signals of six hand movements. 

They applied CWT to the signals to convert them into scalogram images. Also, they 

performed different channel strategies during classification and classified channel-1 

data and channel-2 data in GoogLeNet, separately. They reached a higher accuracy of 

97.22% with channel-1. Oh, and Jo [49] classified 8-channel sEMG of six movements. 

They applied STFT, WT, and Scale Average Wavelet Transform (SAWT) to convert 

signals into images to give CNN. SAWT images achieved the best classification 

accuracy of 93.90%. Huang and Chen [50] performed a combination of CNN and 

LSTM to classify STFT spectrograms of EMGs. They reached a classification 

accuracy of 80.93%. Roy et al. [51] utilized the Cross-Wavelet Transform (XWT) 

spectrums in the CNN. They reached an accuracy of 97.60% for four gestures.  

Montazerin et al. [52] proposed a recognition architecture, which is vision transformer-

based hand gesture recognition (ViTHGR). In order to test their model, they used the 

128-channel High Density-sEMG (HD-sEMG) data of 65 gestures. They fed their 

model with three-dimensional (3D) images and their model reached the test accuracy 

of 84.62±3.07%.  

1.4.3 Fuzzy Logic-based Studies 

FL-based studies are not as common in the literature as ML and DL studies. However, 

various approaches have been tried for fuzzy-based gesture classification over the last 

decade. While the studies of the last 3 years for ML and DL were examined, the studies 

in the last decades for fuzzy are summarized in this section. Khezri and Jahed [53] 

designed a multi-stage sEMG pattern recognition system using a functional technique 

with improved performance at each step for prosthesis control. The hand movement 

commands were defined by the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

using sEMG signals. Time and time-frequency domains and their combinations are 

used as features of the sEMG. The proposed recognition model with ANFIS 

classification using combination features achieved an average classification accuracy 

of 92.00%. Balbinot and Favieiro [54] investigated the development and study of a 
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system that uses sEMG to characterize specific movements of the upper extremity. In 

order to recognize seven hand and arm movements, RMS values in the feature dataset 

obtained from 8-channel EMG of 30 subjects were used as input in a pattern 

recognition algorithm based on neuro-fuzzy, and the average accuracy value was 

obtained as 86.00%. Jahani Fariman et al. [26] proposed a technique that provides a 

simple and computationally efficient classification. Features of sEMG signals from 2 

muscles of 4 participants were extracted using a new combined time-domain feature 

extraction method. The fuzzy C-mean (FCM) clustering method and scatter plots were 

used to evaluate the performance of the proposed multi-attribute method against other 

proven multi-features. As a result of the classification of features in ANFIS and ANN, 

ANFIS showed higher classification accuracy of 88.90% with significant 

improvement in computation time. Control with sEMG signals can also be used in 

systems such as wheelchairs. Based on the need for low-cost wheelchairs for people 

with physical disabilities, Kaiser et al. [55] designed a solar-powered wheelchair. Raw 

sEMG signals of the arm muscles were used to move the wheelchair and the features 

extracted from the raw sEMG signals were classified by ANFIS and achieved 96.85% 

accuracy. Ulkir et al. [56] performed the extraction of the RMS, waveform length, and 

kurtosis features from the two-channel EMG and classified them using a Mamdani-

type fuzzy logic-based classification method. The classification process for two hand 

gestures was performed with an average accuracy of 92.13%. Caesarendra et al. [57] 

used ANFIS to classify five finger gestures. It reduced 16 features to three using 

principal component analysis (PCA) and achieved an average classification accuracy 

of 72.00%. Arozi et al. [58] performed the extraction of features from the signals to 

provide input for the prosthesis, and the features were classified in ANFIS. They 

reached an accuracy of 98.09%. With such studies, it has been emphasized that sEMG 

and fuzzy logic classification approaches can be used to perform wrist 

flexion/extension, forearm supination/pronation, and hand opening/closing 

movements of prosthetic devices. 
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1.5 Aim of the Study 

The aim of this study is to perform hand gesture classification by applying the TFA 

approach to three different artificial intelligence methods. When classifying hand 

gestures in ML and FL methods, it has been seen that the features of TD or FD are 

usually extracted from the signal and used in classification studies. There are also 

studies using TFD or other domain features. In addition, in recent years, it has been 

determined that images from TFA have been used in DL models. From this point of 

view, it is aimed to classify the EMGs of hand movements using the same data type 

(TFA-based) in all three artificial intelligence approaches and to evaluate the results. 

Since the ML and FL models cannot receive the image directly, an approach is planned 

in which the features extracted from the TFR images are input to these models, and the 

TFR images are given to the DL model as input. Hilbert Huang Transform was chosen 

as the TFA approach. TFA-image-based features are used for the first time in ML and 

FL, and HHT images are used for the first time in the DL models. 
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2 Materials and Methods 

In this study, three distinct AI approaches were applied to classify EMG data of hand 

gestures. In order to make an evaluation of AI methods, the TFA-based data is used in 

all three AI models. Hilbert-Huang Transform is used as a TFA technique. Depending 

on the structure of ML and FL models, hand-crafted features are extracted from TFA 

images and are given to models, and the HHT image data is directly given to the DL 

model. The schema of this thesis is shown in Figure 2.1. 

 

Figure 2.1: The schema of the method 

In here, HHT-based features and images are used as common data to evaluate the 

performance of the three main AI models. AI models have been evaluated within 

themselves. In order to evaluate machine learning in itself, classification is made using 

three different feature types. These are the TFR image-based features separately 

extracted from EMG snapshots, the intrinsic mode functions (IMF) snapshots, and the 

Hilbert-Huang spectrum images. The image features extracted from HHS images are 

classified using two different clustering techniques, which are Fuzzy C-mean and 
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Subtractive clustering (SC), for the fuzzy logic model. In the deep learning-based 

method, the images are compared by classifying them in different CNN models using 

different lengths of EMG segments, which are 200 ms and 250 ms. In addition, the 

performance of different IMF combinations is evaluated. 

2.1 sEMG Data 

Since this thesis is a continuation of the undergraduate graduation project, the data 

collected and published as a dataset during the undergraduate thesis process were used. 

The mentioned publicly available sEMG dataset [16] is used in this thesis. The data 

was collected considering the Helsinki Declaration, and ethical permission was 

granted by İzmir Kâtip Çelebi University. In the dataset (Version 1), there are signals 

from 30 healthy subjects, 15 female and 15 male considering equal gender distribution. 

An average age of 22.37 ± 1.47 was calculated for all subjects. The average weights 

of the female and male are 57.03 ± 5.39 kg and 69.6 ± 9.3 kg, and the average heights 

are 164 ± 6.13 cm and 173.67 ± 5.96 cm, respectively. sEMG signals were collected 

from the right hands in any case of the dominant hand, and three participants are left-

handed. All participants performed seven hand movements; the rest of the hand, the 

extension of the wrist, flexion of the wrist, ulnar wrist deviation, radial wrist deviation, 

punch (not too tight or loose), and fingers abduction (open hand), respectively as 

shown in Figure 2. 2.  

 

Figure 2. 2: Seven hand gestures: (a) Rest position, (b) Extension of wrist, (c) 

Flexion of wrist, (d) Ulnar deviation of wrist, (e) Radial deviation of wrist, (f) punch 

(grip), (g) open hand (abduction) 

The MP36 model BIOPAC® device was used for the data recording. the signals were 

recorded at a sampling frequency of 2 kHz using four Ag/AgCl surface bipolar 

electrodes. The approximate location of these channels, where each represents a 

muscle, is shown in Figure 2.3-(a). The muscles are flexor carpi radialis, extensor carpi 

radialis, flexor carpi ulnaris, and extensor carpi ulnaris as seen in Figure 2.3-(b). 
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Figure 2.3: Location of electrodes for posterior and anterior views of right arm: (a) 4-

channel and ground electrodes placement, and (b) muscles corresponding to 

electrode positions 

During the recording, the subjects performed seven hand movements with 6 s duration, 

and 4 s resting times in between gestures. In Figure 2.4, the timeline is demonstrated, 

where a cycle length is 74 s. A cycle begins with a 4 s rest. When the 6 s movement 

period started, each gesture was performed once and stayed in a steady state till the 

end of the movement period. Before taking the next gesture, there is a rest period of 4 

s again. Each cycle was repeated 5 times, with 30 s resting periods between them. The 

whole length of the signal is 490 s for each subject. 

 

Figure 2.4: Timeline of data collection procedure 

2.2 Pre-processing 

Analysis of EMG signals of movements consists of processing the signals, feature 

selection, determination of the classification algorithm and the obtained prediction 

accuracy. The first stage of this is the filtering and segmentation processes performed 

in the preprocessing stage. 
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2.2.1 Filtering 

While sEMG is one of the most effective methods of detecting hand movement, it 

suffers from some essential electrical noise from the environment such as electrical 

devices. It is also influenced by other biological signals originating from neighboring 

muscles or internal organs [59]. To extract precise information about a movement from 

the sEMG signal, filtering processes are applied to the signals, thereby removing 

irrelevant information [60]. Accordingly, a sixth-order Butterworth band-pass filter of 

5–500 Hz is applied to the recorded signals to eliminate the artifacts, and a second-

order notch filter at 50 Hz is applied to minimize the power-line interference [9]. 

Signals cleared in this way are taken for use in FL and DL [61,62]. In addition, in ML, 

a different approach is applied, and based on the view that the dominant EMG 

frequency was mostly above 50 Hz [63,64], a sixth-order Butterworth band-pass filter 

of 50–500 Hz, and a second-order notch filter at 50 Hz are applied to the same raw 

sEMG signals [65]. 

2.2.2 Segmentation 

Segmentation is used to describe periods of time when the muscle contracts and rests, 

which is performed to extract relevant and informational regions from the signal. In 

addition, it is very important in terms of replicating the data in the dataset and 

evaluating the method for use in real-time applications. Segmentation is performed by 

taking the 4 s steady-state period in the middle by not taking the 1 s transient states at 

the beginning and the end of the 6 s signal as seen in Figure 2.5. Because, it is 

considered that these periods, where the muscles stayed in the greatest contraction 

status as the essential sEMG of the concerned gestures. In similar studies [66], the 

steady-state periods provide more successful results because most of the myoelectrical 

activity occurs in those times. Thanks to this, the possible delays (owing to the 

transition) can be eliminated that can happen at the end and at the beginning. 
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Figure 2.5: Overlapping window process for steady-state EMG signal (s: shift length, 

w: window length) 

Relatively smaller window sizes (≤250ms) are chosen to demonstrate robustness and 

feasibility in online and real-time applications, such as to achieve lower variance in 

feature extraction steps and provide effective control of hand prostheses [67]. During 

the windowing phase, 200 ms windows with 75% overlap (150 ms overlapping) were 

used for ML and FL applications. For DL, two different windows, 200 ms and 250 ms, 

with 75% overlap (150 ms overlapping), were used to determine the optimum 

parameters and to examine the TF image-based classification performance. All 

operations were done in the MATLAB® R2021a (The MathWorks Inc., USA) 

environment. These processes are visualized in Figure 2.5, where s represents the shift 

length (50 ms) and w represents the window length (200 ms and 250 ms). A 200 ms 

segment obtained from a long 4 s steady state signal is shown in Figure 2.6. 
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Figure 2.6: Overlapping window process: (a) 4 s steady-state EMG signal, and (b) 

200 ms EMG segment 

2.3 Time-Frequency Analysis 

TFA techniques ensure to the investigation of the biological signal and represent it in 

the TF domain. TFA methods are used to acquire the distribution of signal energy over 

the TF domain. This provides the transformation of 1D biosignals into 2D TF images, 

which are a more efficient representation [51]. TFA allows us to determine when 

various signal frequencies are present by calculating a spectrum, usually at regular 

time intervals. When the signals are analyzed at certain time intervals, the frequency 

spectrum of the signals can be observed better. It is known that the spectral properties 

of the signal can be better studied in time and frequency planes if the signal analysis 

is performed using time and frequency-limited functions. TFA methods, which are 

frequently used in signal processing, allow matching a signal in the time domain with 

a function of time and frequency. These methods result in time-varying spectrum 

representations [22]. 

TF images can be convenient input for creating DL models or TF image features that 

contain both time and frequency information can be used in ML-based models. The 

state-of-the-art studies that used TF images in the CNN architectures have given 

successful results [68,69]. Various transformation techniques such as STFT, Fourier 

Transform (FT), WT, and Gabor transform are used in the signal analysis of distinct 

areas [20]. Considering the stationary and non-linear nature of biological signals, the 

correct information about the characteristic of the signal can be obtained by the 
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instantaneous frequency (IF) value, and this value can be best determined by Hilbert 

Transform (HT) and the characteristic information of the signal can be detected [22]. 

In this study, the HHT method is used as a TFA technique. The performances of ML, 

FL, and DL models are investigated. To use the new data obtained as a result of TFA 

in all AI models, TF images are then used in the pre-trained CNN models, and TF 

image-based features are used in ML and FL models.  It is briefly introduced the HHT 

method in the following. 

2.3.1 Hilbert Huang Transform 

HHT is an adaptable TFA technique utilized to acquire time-varying frequency 

characteristics of multi-component non-stationary biological signals. It supplies more 

meaningful and extremely localized signal representation in the TF domain. This 

representation is specifically called TFR, which is a result of the TFA techniques. 

Firstly, the application of the EMD algorithm to the signal allows the signal to be 

decomposed into intrinsic mode functions and instantaneous frequency information to 

be learned. Each IMF is a non-predefined function. IMFs are extracted from the EMG 

by the agency of the “sifting” algorithm in a data-driven way. The HT is applied to the 

selected IMFs to provide the IF and instantaneous amplitude (IA) of the modes. Then 

they are utilized for the composition of 3D TF spectrums as Hilbert Huang Spectrums 

[22]. In addition, the selection of IMF, which is an intermediate process in order to 

determine which of the IMFs resulting from EMD will apply HT, can also be 

considered as a part of this transformation. 

2.3.1.1 Empirical Mode Decomposition 

EMD ensures to decompose of the non-linear and nonstationary signal into a limited 

number of modes named IMFs [2,70]. Each IMF, which are primary oscillation 

function, should satisfy the following situations: 

• The zero crossings and extrema numbers should be equal or should differ at 

most by 1. 

• The upper and lower envelopes’ means should be 0. 
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The sifting process of EMD of the input signal 𝑥(𝑡) is explained below steps:  

Step 1. Acquire local maxima and minima values of the signal 

Step 2. Interpolating the local extrema places, calculate both lower 𝑒𝑚𝑖𝑛(𝑡) and 

upper 𝑒𝑚𝑎𝑥(𝑡) envelopes 

Step 3. Calculate 𝑎(𝑡) that is the average of the lower and upper envelopes 

 𝑎(𝑡) = [𝑒𝑚𝑖𝑛(𝑡) + 𝑒𝑚𝑎𝑥(𝑡)]/2 (2.1) 

Step 4. Compute the detail, 𝑑(𝑡), by subtracting the average 𝑎(𝑡) from the input 

signal 𝑥(𝑡) 

 𝑑(𝑡) = 𝑥(𝑡) − 𝑎(𝑡) (2.2) 

Step 5. The detail signal is checked to see if it fulfills the requirements of being 

an IMF or not. If so, 𝑑(𝑡) = 𝐼𝑀𝐹1(𝑡). If not, return to Step 1, and perform again 

the following steps substituting 𝑑(𝑡) for the input signal. 

Step 6. After calculating 𝐼𝑀𝐹1(𝑡), compute the residue 𝑟(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1(𝑡). 

If the calculated 𝑟(𝑡) owns more than one zero-crossing, return to the first step 

and calculate another IMFs till the stop criteria are accomplished [71]. All 

algorithm results in an addition of IMFs plus an 𝑟(𝑡) term that can be utilized to 

rebuild the signal as follows: 

 𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑢(𝑡) + 𝑟(𝑡)

𝑢

 (2.3) 

IMFs here are referred to as first-order IMFs. The whole unbundling process ends with 

a limited number of IMFs. The highest frequency oscillation in the EMG signal is 

symbolized by the first IMF, and the following contains lower frequency oscillations 

of the signal. The final 𝑟(𝑡) shows only the general trends of the signal [72]. The first 

six IMFs are shown as an example in Figure 2.7.  
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Figure 2.7: Implementation of EMD to the EMG signal, (a) 200 ms EMG signal, and 

(b) the visualization of obtained first six IMFs 

2.3.1.2 IMF Selection 

The selection of suitable IMFs for Hilbert Transform contributes positively to 

movement classification success [73]. There are many methods for IMF selection of a 

biological signal. Methods based on correlation, energy, probability distribution 

function (PDF), power spectral density, and statistical significance using t-tests are 

frequently used for the selection [74]. Among these methods, the method based on 

statistical significance provides effective results and is a suitable approach for EMG. 

In this method, in order to examine the statistical significance, the H value indicates 

whether the distribution of the data is normal or not, and the 𝑝-value (<0.05), which is 

accepted as the threshold specifying the statistical significance of the data. These 

values are calculated. When the 𝑝-value of the IMF is calculated, if it is greater than 

the threshold, the IMF has statistical significance (H = 0), otherwise, the IMF does 

not have a normal distribution (H = 1) [73]. In this study, the 𝑝 and H values of each 

IMF are calculated and ordered from largest to smallest. According to this order, three 

IMFs meeting the significance condition are selected. Figure 2.8 shows an example 

that the first three IMFs that meet the significance condition. HHS images that are 

created with different combinations of the most significant three IMFs are classified 

in DL architectures and the best performance is determined. 
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Figure 2.8: Statistically significant IMFs selection: (a) the first six extracted IMFs, 

and (b) the selected first three IMFs 

2.3.1.3  Hilbert Transform 

Hilbert Transform is the method used to obtain an analytical equivalent of a given 

signal and to demodulate signals. It is possible to create a 3D graph (time-frequency-

energy) containing time and frequency information. It is defined as the convolution of 

a given signal ℎ(𝑡) with 
1 

𝜋𝑡
, given by: 

 ℎ̂(𝑡) = 𝐻{ℎ(𝑡)} =
1

𝜋
∫

ℎ(𝜏)

𝑡 − 𝜏

∞

∞

𝑑𝜏 (2.4) 

where 𝐻{. } operator indicates the HT. 𝜏 is the formal variable for integration process. 

The analytical signal 𝑧(𝑡) corresponding to ℎ(𝑡) is obtained by: 

 𝑧(𝑡) = ℎ(𝑡) + 𝑗ℎ̂(𝑡) = 𝐴(𝑡)𝑒𝑗𝜃(𝑡) (2.5) 

where 𝐴(𝑡) and 𝜃(𝑡) correspond to the amplitude and the phase functions, 

respectively. The analytical signals possess one-sided spectra and can be utilized to 

describe the signal's instantaneous properties as follows: 

 𝐴(𝑡) = [ℎ(𝑡)2 + ℎ̂(𝑡)2]1/2 (2.6) 

 𝜃(𝑡) = arctan (ℎ̂(𝑡)/ℎ(𝑡)) (2.7) 
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𝜔(𝑡) =

𝑑𝜃(𝑡)

𝑑𝑡
 

 
(2.8) 

In the mentioned definitions, 𝐴(𝑡), 𝜃(𝑡), and 𝜔(𝑡) are instantaneous amplitude, 

instantaneous phase (IP), and instantaneous frequency, respectively [33]. After 

performing all steps for each IMF, a 3D spectrum 𝐻(𝜔, 𝑡) is created placing 𝐴(𝑡) at 

the appropriate location (𝜔(𝑡), 𝑡) in the TF plane [75]. HT operation for selected IMFs 

is shown in Figure 2.9. In summary, the HHS image, 𝐻(𝜔, 𝑡), is obtained by the 

following steps:  

• Estimation of the instantaneous properties of each selected IMF (𝐴(𝑡); 𝜃(𝑡); 

𝜔(𝑡)).  

• Generating the 3D representation of the amplitude placed in the TF plane, 

𝐻(𝜔, 𝑡). 

 

Figure 2.9: HHS generation: (a) the selected three IMFs, and (b) Hilbert-Huang 

Spectrum after application of Hilbert Transform 

2.3.2 TF Image Fusion and Snapshot Image Generation 

TFA processes for deep learning-based models are applied to 200 ms and 250 ms 

segments, separately. HHS images are obtained from each signal segment for four 

EMG channels. For the HHT implementation, the generated 3D HHS can be 

represented as a volume or a 2D image utilizing color mapping. That means were 

projected into 2D images. Hence, the instantaneous energy of segments turns into s a 

color representation in the 2D image. The color scale of entire images is normalized 

before the fusion to compose an equitable classification. The four channels 
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representing muscle were combined with the image fusion approach before being 

given to the DL-based models. 

In order to compare the performance of the features extracted from the HHS images 

for ML models, a snapshot of the 200 ms sEMG segment obtained as a result of 

windowing and a snapshot of three IMFs selected in the IMF selection stage are taken 

to extract image features from them. 

2.4 Feature Extraction for ML and FL 

A feature can be defined as a function of one or more measurements that specify some 

measurable pattern of an object or image. FL and ML methods require an additional 

feature extraction step from data before classification. This additional step aims to 

symbolize the signal or data in an informative and also minimal form. The 

classification of TFR images in an AI model calls for improved hardware. To 

accomplish the issue, distinct techniques are recommended to symbolize TFRs in a 

simplistic and low dimension condition.  

Efficient features represent specific characteristics of the classes they belong to and 

can be used as inputs to classifiers. In this thesis, gesture classification is performed 

utilizing the features extracted from the visualized HHS images. If the image features 

that can be obtained by various computational methods are carefully selected, they can 

present the characterization of the image and represent the maximum relevant 

information required for its analysis. In this study, features based on intensity 

histogram [76] and gray-level co-occurrence matrices (GLCM) [30] are used to 

symbolize HHS images. The GLCM approach [77], which calculates the occurrence 

of gray-level intensities in neighbor pixels, is utilized as a statistical approach to extract 

texture features from medical images. In detail, it performs measurement of the 

frequency with which pixels in a set direction and margin are existing in the image. 

Also, it investigates their spatial intercourse. GLCM composes a square matrix. The 

dimension of this matrix is equal to the gray levels’ number in the related image. All 

cells of GLCM correspond to the count of the co-occurring concerned gray levels [30]. 

The calculation of the GLCM matrix is given in Equation (2.9):  
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 𝐺∆𝑥,∆𝑦(𝑖, 𝑗) = ∑ ∑     {
      1, 𝐼(𝑥, 𝑦) = 𝑖, 𝑎𝑛𝑑

       𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑁

𝑦=1

𝑀

𝑥=1

 (2.9) 

where 𝐼 is a HHS image with the dimension 𝑀𝑥𝑁, and (𝑖, 𝑗) is the pixel value. (𝑥, 𝑦) 

is the spatial position in the image 𝐼. 𝐼(𝑥, 𝑦) is pixel value. ∆𝑥 and ∆𝑦 are spatial 

offsets, which takes 0 and 1 in this study, respectively. In GLCM, each pixel’s 

information is acquired with distance and angle orientations. Too close can produce 

homogeneity, while too far can produce information among pixels to be irrelevant. 

Therefore, calculating according to the angles determined by keeping the distance 

value at the optimum level provides reliable results [78].  

An example GLCM process is simply shown in Figure 2.10. In Figure 2.10, the 

distance between the interested pixel and that pixel's neighbor is defined as a 𝓅-by-2 

matrix of integers, where 𝓅 is the number of offsets. All rows in the matrix are two-

element vectors, [row offset, column offset], where they are rows number and columns 

number between interested pixel and neighbor, respectively. The vector defines the 

relation, of a pair of pixels. The offset is frequently stated as an angle. According to 

the example where distance is taken as default from ‘graycomatrix’ command in 

MATLAB®, the GLCM calculation process is visualized for four angles, which are 0º, 

45º, 90º, and 135º. 
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Figure 2.10: The visualization of GLCM process 

Extraction of features using GLCM and texture-based approaches ensures advantages 

in the classification of biomedical data [30,79]. When the image analysis approaches 

in the previous studies are investigated, it has been seen that it includes various 

statistical features such as mean, variance, entropy, etc. [80] In this study, intensity 

histogram and GLCM-based features are selected to use. For FL, mean, variance, 

skewness, kurtosis, energy, and entropy are calculated to classify. In ML, mean, 

variance, energy, entropy, contrast, and homogeneity features are used. ML and FL 

used four features in common, but two features were chosen differently. Assuming the 

pixel value 𝜌(𝑖, 𝑗) at the location (𝑖, 𝑗) of an 𝑀𝑥𝑁 size HHS image, the mentioned 

features can be calculated with the formulas shown in Table 2.1. The mentioned ML 

features are calculated for HHS images from 200 ms EMGs, snapshots of 200 ms 

EMGs, and selected IMFs extracted channel-wise EMD. The mentioned FL features 

are also calculated from HHS images from 200 ms EMGs. 
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Table 2.1: Intensity histogram and GLCM-based features 

Feature Definition Formula 

Mean (𝚖) 

It defines the average intensity level 

of an image as the sum of the pixel 

values divided by the number of 

pixels. 

𝚖 =
1

𝑀𝑁
∑ ∑ 𝜌(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 

Variance (𝝈𝟐) 

It is the square of the standard 

deviation (𝜎), representing the 

variation of intensities around the 

mean. 

𝜎2 =
1

𝑀𝑁
∑ ∑(𝜌(𝑖, 𝑗) − 𝚖)2

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 

Skewness (𝑺) 

It allows to characterize the degree of 

asymmetry of the pixel distribution 

around the mean value of the 

histogram. 

𝑆 =
1

𝑀𝑁

∑( 𝜌(𝑖, 𝑗) − 𝚖)3

𝜎3
 

Kurtosis (𝑲𝒓) 

It measures the peak value or flatness 

of the data relative to the normal 

distribution. 

𝐾𝑟 =
1

𝑀𝑁

∑( 𝜌(𝑖, 𝑗) − 𝚖)4

𝜎4
 

Energy (En) 

Energy is defined as uniformity and is 

in the range [0 1]. Returns the sum of 

the squares of the GLCM properties. 

𝐸𝑛 = ∑ ∑ 𝜌2(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 

Entropy (E) 
It is defined as a measure of how 

irregular or random an image is. 
𝐸 = − ∑ ∑ 𝜌(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑀−1

𝑖=0

log2 𝜌(𝑖, 𝑗) 

Contrast (Co) 

It specifies the measurement of the 

drastic alteration in gray level among 

neighboring pixels. 

𝐶𝑜 = − ∑ ∑ 𝜌(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑀−1

𝑖=0

(𝑖 − 𝑗)2 

Homogeneity (Ho) 
It represents the likeness in gray level 

among neighboring pixels. 
𝐻𝑜 = − ∑ ∑

𝜌(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁−1

𝑗=0

𝑀−1

𝑖=0
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2.5 Classification in AI models 

The classification step is aimed to use the HHS images and features in three AI 

approaches. In addition, each method is compared within itself by applying different 

approaches. The strategies followed in the method for the classification phase are 

explained below and the publications obtained separately by using each method during 

this study with their references are given: 

• For ML: Six image features extracted from HHS images of 200 ms EMG 

signals are classified in ML models. The classification performance of image-

based features extracted from EMG snapshots and IMF snapshots in ML is also 

evaluated [65]. 

• For FL: Six image features extracted from HHS images of 200 ms EMG signals 

are classified into FL-based architectures by applying two different clustering 

techniques, SC and FCM [61].  

• For DL: Different combinations of IMFs for HHS image generation are 

evaluated. HHS images of 200 ms and 250 ms EMG signals are classified 

separately in seven different popular deep network architectures [62]. 

2.5.1 Machine Learning 

ML is defined as predictive-based modeling. Varied ML methods are utilized to 

classify seven hand gestures. Before whole ML algorithms in the Classification 

Learner App (CLA) are tested with features, the feature selection method is applied to 

reduce dimensions and achieve the best performance. The principal component 

analysis method is applied to six features before the classification to represent whole 

features with the lowest variance.  

2.5.1.1 Feature Selection 

Data should be normalized before feature selection and dimensionality reduction. Data 

at different scales can cause misleading components. Normalization rescales the data 

between 0 and 1. In this work, z-score normalization is applied to the feature matrix 

so that each feature is included with a convenient effect. 
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When working with data, problems such as redundancy, overfitting and 

multicollinearity may occur during training. The model needs to work with optimum 

time and performance. To overcome the mentioned problems, feature selection and 

dimensionality reduction methods can be applied. In variable selection, the variable in 

the dataset is preserved or completely removed, while the number of variables is 

reduced by creating new variables consisting of a combination of existing variables in 

size reduction. PCA is a multivariate statistical analysis technique used to solve the 

aforementioned problems. The basic logic behind PCA is to represent 

multidimensional data with fewer variables by capturing the key features in the data. 

Hence, it provides the dimensionality reduction of the predictor space. 

PCA transforms a multivariate system consisting of many interrelated variables into a 

system consisting of fewer and unrelated new variables as linear functions of these 

variables, which can also largely explain the total change of the previous system. Each 

of the principal components obtained in PCA versus initial variables is a linear 

combination of the original variables. Therefore, each basic component contains a 

certain amount of information from all variables. Thanks to this feature, PCA provides 

size reduction by using the first 𝑚 important principal components instead of a 𝒹-

dimensional dataset. If the first 𝑚 principal components explain most of the total 

variance, the remaining (𝒹 − 𝑚) principal component can be neglected. Compared to 

classical variable selection techniques, information loss will be minimized with this 

method [65]. 

2.5.1.2 ML Models 

ML consists of four types of algorithms: supervised, semi-supervised, unsupervised, 

and reinforcement. For classification tasks, supervised learning is mostly preferred.  In 

this type of algorithm, data contains wanted inputs and outputs, and using this data ML 

model develops an approach to specify how to reach inputs and outputs. ML 

classification algorithms in MATLAB® CLA, which includes 29 different techniques 

like SVM, kNN, neural networks (NN), NB, Decision Trees (DT), Random Forest, 

linear discriminant analysis (LDA), and ensemble models, are utilized in this step. 

Most of them are supervised learning algorithms. LDA is a simple and efficient method 
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that has attracted significant notes in recent years. Linear Discriminant and Quadratic 

Discriminant are applied as an example of that model.  

SVM [81] is the most popular and effective ML approach utilized in gesture 

recognition. It is based on the logic of finding a hyperplane in a high-dimensional 

space that maximally separates the classes. It projects the low-size data to the high-

size feature area using kernels. The suitable hyperplane represents the biggest division 

or margin between the classes. Therefore, a hyperplane chosen which has the distance 

to the nearest data dot (support vectors) on all classes is maximized. It is called a 

maximum-margin hyperplane as shown in Figure 2.11. The algorithm tends to neglect 

the outliers and detects the ideal hyperplane that maximizes the margin. Its 

maximization provides stability to the model. In the SVM algorithm, first, the data in 

low space are transformed into higher dimension space with the non-linear transform 

methods. Then, the classification of data can be performed in accordance with linear 

separability [82]. The classification discriminant (𝘧) is demonstrated in Equation 

(2.10). 

 𝘧(𝑜𝗂) = 𝑠𝑔𝑛 [∑ 𝚢𝗃𝖺𝗃 𝖪(𝑣𝗃, 𝑜𝗂)

𝚜

𝗃=1

+ ƅ] (2.10) 

where 𝑜𝗂 is the data value to classify. 𝑣𝗃 is the support vector, and 𝚜 is the support 

vector’s number. 𝚢𝗃 is class of data 𝑣𝗃, which takes 1 or -1 as categories. 𝖺𝗃 is the 

Lagrange multiplier. 𝖪 is the kernel function that returns a number, which is the 

similarity metric, among the two vectors. According to that, 1 and 0 mean identical 

and different, respectively. The state is an inner product process, and the ƅ threshold 

value set is for classification. Linear SVM, Quadratic SVM, Cubic SVM, Fine 

Gaussian SVM, Medium Gaussian SVM, and Coarse Gaussian SVM are applied as an 

SVM model in this study.  
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Figure 2.11: An example visualization of classification of data using SVM 

The Naïve Bayes method [83] is a simple algorithm based on Bayes’ Theorem that can 

work on unstable datasets. It is a probabilistic classifier, and it can provide robust 

independency suppositions among the features. In addition, the distribution of features 

is significant for its classification performance. Utilizing Bayesian probability, 

Equation (2.11) can be written for NB classifier: 

 𝒫(𝒜|ℬ) =
𝒫(ℬ|𝒜)𝒫(𝒜)

𝒫(ℬ)
 (2.11) 

where 𝒫(𝒜|ℬ) is the posterior probability, and 𝒫(ℬ|𝒜) is called the likelihood or 

conditional probability of ℬ given 𝒜. 𝒫(𝒜) is the prior probability of 𝒜 in which no 

information of ℬ takes into account. 𝒫(ℬ) is the prior or marginal probability of ℬ 

that behaves as a normalizing constant [84]. Gaussian NB and Kernel NB models are 

selected to implement for gesture classification.  

DTs are decision-backing hierarchic and tree-like models. In a DT, internal nodes 

symbolize the features, and each branch and each leaf node symbolize the decision 

rules and the outcome, respectively. One of the nodes of DTs is the decision node, 

which is utilized to perform all decisions and possesses various branches. Another type 

of node is the leaf node, which is the decisions’ output and does not possess any more 

branches. It uses a graphical presentation to show the whole probable solutions to the 

related situation. Due to their structure, these types of algorithms are called decision 
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trees. The tree is split into subtrees depending on simple “Yes/No” questions [85]. Fine 

Tree, Medium Tree, and Coarse Tree are used to gesture classification.  

The kNN method [86] is another popular biomedical signal classification tool. A class 

is assigned to the data according to which class the nearest neighbors of the data in the 

vector formed by the independent variables belong. The Euclidean distance (𝑑) of each 

data point is calculated to define the nearest neighbor, this is shown in Figure 2.12. 

The aim is to obtain the least Euclidean distance. When the 𝖪 value, which is the 

considered neighbor number, rises, accuracy goes up. For the kNN classification, a 

threshold value is computed by the mean of the 𝖪 data dot, which is the nearest. The 

classification performance depends on distance, similarity, and threshold [87]. Fine 

kNN, Medium kNN, Coarse kNN, Cosine kNN, Cubic kNN, and Weighted kNN are 

applied as an example of that model.  

 

Figure 2.12: kNN algorithm: the distance between the selected point (yellow) and the 

neighbor points is calculated with the Euclidean distance formula, and the class is 

determined according to the proximity and abundance of the neighbors 

A neural network is a series of algorithms that seek to identify relationships in a dataset 

via a process that mimics how the human brain works. A neural network is formed by 

many artificial neurons. These neurons are referred to as units that are composed of a 

series of layers. Each layer is attached to each other. In these linkages, there are 

specific weights to define the impact of each unit on others. The model performs the 

learning process as the data progresses through the units within the network [88]. There 

are three types of layers, which are input, hidden, and output layers. Input layers admit 

input data in several formats from outside. Then, the accepted data pass through one 
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or various hidden layers, where the transformation of input into a valued data format 

is performed. It calculates the weighted sum by taking the information of entire 

neurons in the past layer. It transmits them to the further neurons. By appointing 

distinct weights to each input value, the input effect is optimized and performance 

improvement is made. Finally, the output layer ensures the final output of the model 

as a result of input data. Along with these, some parameters such as the number of 

hidden layers and neurons, epochs, etc. affect the performance of ANN [89]. An 

example ANN model is shown in Figure 2.13. Narrow, Medium, Wide, Bilayered, and 

Trilayered NN models are used to classify. 

 

Figure 2.13: An example of ANN structure with three hidden layers 

Ensemble methods utilize more than one learning algorithm to acquire preferable 

classification performance. It is expected to be better than the result of any algorithm 

using it alone. Ensemble Boosted Trees, Ensemble Bagged Trees, Ensemble Subspace 

Discriminant, Ensemble Subspace kNN, and Ensemble RUSBoosted Trees are used in 

this study. 
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2.5.2 Fuzzy Logic 

FL may perform the extraction of unrepeatable EMG features and imitate the intention 

for decision-making. Especially in prosthetic hands, it has been seen that FL-based 

classifiers are included due to their effect on movement classification processes [90]. 

The fuzzy inference system (FIS) was proposed by Zadeh in 1965 [91]. FL imitates 

the human brain's decision system in the form of if-then rules. There are two 

commonly used types of FIS, Mamdani, and Sugeno. In FIS, the inputs are blurred to 

a value in the range [0,1]. The state of belonging or not belonging to the cluster is 

gradual and characterized by the fuzzy membership function used to explain it and 

interpreted according to the if-then rules [55]. 

2.5.2.1 Adaptive Neuro-Fuzzy Inference System  

ANFIS is a multi-layered network structure that utilizes neural network learning 

algorithms and fuzzy logic. In other words, it can be said to be a feed-forward type 

ANN based on Takagi-Sugeno type FIS. It was first proposed in 1993 to provide the 

initial fuzzy system and mapping of the current input space to the output space [92]. It 

has an advanced structure for modeling nonlinear time series. The fact that Sugeno is 

more efficient and computationally efficient is one of the main reasons why Sugeno-

type FIS is used instead of Mamdani in ANFIS. When the resulting value is a linear 

equation, it is called a first-order Sugeno FIS. If the result is a constant coefficient, it 

is called a zero-degree Sugeno FIS. Assuming that the system contains two inputs 𝚡1 

and 𝚡2, and the rule base two fuzzy if-then rules of Takagi-Sugeno type, the 

representation of the rules can be expressed as: 

 

𝑅𝑢𝑙𝑒1: 𝐼𝐹 (𝚡1 = 𝙰1) 𝐴𝑁𝐷 (𝚡2 = 𝙱2)    
𝑇𝐻𝐸𝑁 𝚏1 = 𝚙1𝚡1 + 𝚚1𝚡2 + 𝚛1 

𝑅𝑢𝑙𝑒2: 𝐼𝐹 (𝚡1 = 𝙰2) 𝐴𝑁𝐷 (𝚡2 = 𝙱2) 

𝑇𝐻𝐸𝑁 𝚏2 = 𝚙1𝚡1 + 𝚚1𝚡2 + 𝚛2 , 

(2.12) 

where {𝚙𝚓, 𝚚𝚓, 𝚛𝚓} are linear parameters in the conclusion part of the FIS.  𝚡1 and 𝚡2 

are net inputs of node 𝚓; 𝙰𝚓 and 𝙱𝚓 are linguistic labels. 𝚏 is the overall output. The 

architecture of ANFIS consists of five layers shown in Figure 2.14.  
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Figure 2.14: The structure of ANFIS model 

Figure 2.14 shows the ANFIS structure. Each layer contains several nodes defined by 

the node function. Adaptive nodes represented by rectangles represent parameter sets 

that can be adjusted in these nodes, while fixed nodes represented by circles represent 

parameter sets fixed in the system. Output data from nodes in previous layers are inputs 

in the current layer [53]. Accordingly, what the layers mean is explained in detail 

below [93]. 

Layer 1. Establishes the degree of membership of a linguistic label. Each node 

of this layer is an adaptive node with the membership grade of fuzzy set. 

Layer 2. The node of this layer is labeled as Π. Calculation of the firing strength 

of each rule, which is the representation of node output, by multiplication, is 

done. Here, any T-norm operator, which makes a fuzzy AND, can be utilized as 

the node function. 

Layer 3. The node of this layer is labeled as 𝖭. Calculation of the ratio of the 

firing strength of rule 𝚒 is performed. This layer’s output is named normalized 

firing strength, 𝑊𝚒
̅̅ ̅̅ .  

 𝑊𝚒
̅̅ ̅̅ =

𝑊𝚒

𝑊1+𝑊2
, 𝚒 = 1,2 (2.13) 
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Layer 4. Calculation of the contribution of each rule 𝚒 to the overall output is 

performed with the operation of 𝑊𝚒
̅̅ ̅̅ 𝚏𝚒. 

Layer 5. Lastly, calculates the overall output as the sum of each rule’s 

contribution. The overall output is shown in Equation (2.14): 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝚏 = ∑ 𝑊𝚒
̅̅ ̅̅

𝚒=1

𝚏𝚒 (2.14) 

ANFIS implements a hybrid learning algorithm, which is a combination of “gradient 

descent” and “least-squares” methods, to update model parameters. Each epoch of this 

hybrid learning process consists of a forward and backward pass. In the forward pass 

of the hybrid learning procedure, the loop goes forward until the output, layer 4, and 

the resulting parameters are defined by the least squares method. In the backward pass, 

the error signal propagates backward and the antecedent parameters are updated with 

gradients [92]. The mentioned training step is the number of iterations in the training 

of ANFIS. This number varies according to the dataset studied to reach fault tolerance, 

which is a training stop criterion related to the size of the error. In this study, ANFIS 

architecture is trained using Fuzzy Logic Toolbox in MATLAB®. Here, two clustering 

techniques, SC and FCM, are applied and the parameters of the ANFIS architecture 

are determined. 

2.5.2.2 Clustering Techniques  

Clustering is a data segmentation process that offers many benefits when predicting 

and analyzing specific problems. Different clustering algorithms are used to 

automatically generate Gaussian membership functions. Two of these algorithms are 

fuzzy C-means and subtractive clustering. Although different in implementation, both 

techniques create fuzzy if-then rules. SC has the learning capability that can solve 

complex problems without formulating them. In addition, while determining the 

number of clusters and cluster centers, it offers a fast and one-pass algorithm. FCM, 

on the other hand, provides high-accuracy results for the dataset and informs that a 

data point may belong to more than one cluster [90,94]. Considering the success of the 

SC in difficult problems and the success of FCM in data where precise boundary 
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determination is difficult, and considering similar studies [26,53], it promises success 

in gesture classification. For this study, two clustering techniques are discussed. 

• Subtractive Clustering 

SC is a fast and one-way technique for estimating the number of clusters in a dataset 

and the location of cluster centers. It is an extension of the mountain clustering 

technique and makes sense to apply this method when the number of clusters cannot 

be determined precisely. In the SC method, each data point is assumed to be a potential 

cluster center, and a measure of the probability of each point in determining the cluster 

center is calculated [94]. If a specified point has many neighboring points, it is 

considered a point with high density. In this case, the density of all points is calculated 

and the point with the highest density is defined as the first cluster center. This process 

continues by updating the density of the points so that the points adjacent to a cluster 

center do not become a new center. The SC function returns the cluster center in a 

matrix, and the rows in this matrix contain the position information of the cluster 

centers. This function, which also provides the number of clusters, also returns a vector 

containing sigma values, which defines the range of influence of a cluster center.  

For mathematical explanation, suppose that dataset 𝒳 consists of 𝓃 samples expected 

clustering, 𝒳 =  (𝓍1, . . . , 𝓍𝓃). It is supposed that every sample 𝓍𝒾 is a possible cluster 

center and has the surrounding exemplars’ density (𝒟𝒾) following Equation (2.15): 

 𝒟𝒾 = ∑ 𝑒−𝛼||𝓍𝒾−𝓍𝓏||2
𝓃

𝓏=1

 , 𝛼 =
4

𝓇𝒶
2 , (2.15) 

where 𝓇𝒶 is a positive constant. If 𝓍𝒾 possesses many neighbor exemplars, it’ll possess 

a high density. It is needed to compute the density of whole exemplars and the data 

dot with the maximum density 𝒟𝒸1 is chosen to happen the initial cluster center 𝓍1
∗. In 

order to refrain the neighbor data dots of the cluster center be a recent center, the whole 

exemplars’ density should be updated following: 

 𝒟𝒾 = 𝒟𝒾 − 𝒟𝒸1𝑒−𝛽||𝓍𝒾−𝓍1
∗||

2
 , 𝛽 =

4

𝓇𝒷
2 , (2.16) 
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where 𝓇𝒷 is a positive constant, and in general higher than 𝓇𝒶. It is repeated the above 

steps of acquiring a recent center and replacing densities till 𝒟𝒸𝑘 < 𝜖𝒟𝒸1, where 𝜖 is a 

certain fraction [94]. An example application of the output of SC is shown in Figure 

2.15.  

 

Figure 2.15: An example subtractive clustering result of data 

Cluster predictions from there can be used to start ANFIS. SC parameters are set from 

the parameter screen in the ANFIS interface in MATLAB®. While applying the SC 

method, the range of influence, squash factor, accept ratio, and reject ratio parameters 

are used. The range of influence indicates the radius of a cluster, while the squash 

factor is used to suppress the potential of the far points of the cluster, which is used to 

multiply the radius values that determine the neighborhood of a cluster center. Accept 

ratio determines the potential of the first cluster center, and high values indicate high 

potential to become a cluster center. The reject rate determines the potential of the first 

cluster center and those below this value are rejected as cluster centers. In this study, 

these parameters are adjusted to give the best classification result. 

• Fuzzy C-Mean Clustering  

FCM suggests that each data point belongs to clusters defined by the metrics 

determined by their degree of membership. The data to be clustered and the number of 

clusters is the parameters of the function. The function starts with the first guess, but 

the guess is most likely incorrect. However, the function assigns each data point a 

membership degree of the set and updates it iteratively. This process moves the cluster 

centers to the proper location. Mentioned iteration is accomplished by minimizing the 

distance from a data point to the cluster center, which is valued in accordance with the 

membership degree of that data point. During reiterations, the function turns the matrix 

of the final cluster centers, the final MF matrix, and the target values [94]. As a result 

of these processes, highly accurate and approximate cluster centers are obtained. 
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FCM separates a collection of 𝘯 vectors 𝗑𝘪, 𝘪 = 1, … , 𝘯 into fuzzy sets, and specifies a 

cluster center for all sets in the way that the objective function of dissimilarity 

measurement is diminished. 𝘪 = 1, … , 𝖼 are optionally selected from the 𝘯 points. The 

stages of the FCM are, clarified briefly: 

First, all cluster’s centers 𝖼𝘪, 𝘪 = 1, … , 𝖼  are chosen in a random way from the 𝑛 

data exemplars {𝘹1, 𝘹2, … , 𝘹𝘯}. 

Secondly, the membership matrix (𝜇) is calculated with Equation (2.17) 

 
𝜇𝗂𝗃 =

1

∑ (
𝑑𝗂𝗃

𝑑𝗄𝗃
)

2/(𝔪−1)
𝖼
𝗄=1

 , (2.17) 

where 𝜇𝗂𝗃 symbolizes the degree of membership of object 𝗃 in cluster 𝗂. 𝔪 

represents the degree of fuzziness (𝔪 > 1). 𝖽𝘪𝘫 is the Euclidean distance between 

c𝗂 and 𝗑𝗃. 

Thirdly, the objective function can be computed with Equation (2.18): 

 𝐽(𝑈, 𝖼1, … , 𝖼𝖼) = ∑ 𝐽𝘪 = ∑. ∑ 𝜇𝘪𝘫
𝔪𝖽𝘪𝘫

2

𝗇

𝘫=1

𝖼

𝘪=1

𝖼

𝘪=1

. (2.18) 

The process continues until it falls below a certain threshold. In the final step, the new 

𝖼 fuzzy cluster centers 𝘤𝘪, 𝘪 = 1, … , 𝘤 are obtained by Equation  

(2.19) [95]: 

 
𝖼𝗂 =

∑ 𝜇𝘪𝘫
𝔪𝗑𝗃

𝘯
𝘫=1

∑ 𝜇𝘪𝘫
𝔪𝘯

𝘫=1

 

 

(2.19) 

An example application of the output of FCM is shown in Figure 2.16 [96]. All steps 

of FCM are applied to divide data into a number of MFs with distinct centers. Every 

MF is trained by the ANFIS. The parameters (FCM options) in the ANFIS system are 

as follows and these parameters are set in the interface to give the highest ACC: 
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i. The exponent value for the fuzzy partition matrix (𝑈), 

ii. The maximum number of iterations, specified as a positive integer, 

iii. Minimal improvement in objective function between two consecutive 

iterations, designated as positive scalars. 

iv. Indicator indicating whether to display the objective function value after each 

iteration. 

 

Figure 2.16: An example output of FCM clustering [96] 

2.5.3 Deep Learning 

Deep Learning is a machine learning method. Like the ANNs in ML, it consists of 

neurons, just like the human brain. All neurons are interconnected, and this structure 

creates a layered structure. In networks that basically consist of input, hidden, and 

output layers, the number of hidden layers on which mathematical calculations are 

made for deep networks is more than one. That means DL networks are defined as 

multi-layered (more than 3), deep, and over-complicated transcriptions of the basic 

ANN in ML. The deep neural network structure in DL is called Convolutional Neural 

Network. 

2.5.3.1 Architecture of CNN 

A characteristic CNN architecture mimics the visual cortex. In addition to the input 

and output layers, it implicates three main hidden layer structures, which are 

convolutional, pooling, and fully connected (FC) layers. The furthest illustrative 

features of input images can be extracted via some filters in the convolutional layer 
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and then selected by the pooling layer. The convolutional layers contain the activation 

function, which performs certain mathematical processes on it, like ReLU (rectified 

linear unit). The class can be eventually specified in the FC layer. Whole operations 

are managed on width, height, and depth for an entry image. In this way, the processing 

of input is performed in various layers to define ultimate class labels. A visual of a 

sample study summarizing the CNN model structure is given in Figure 2.17 [97]. 

 

Figure 2.17: An example CNN architecture for image classification [97] 

A detailed description of the main layers and other operations, which are dropout, 

activation function, and batch normalization are presented below. 
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• Convolution Layer 

The convolutional kernel performs by splitting the input image into small segments. 

The place, where input is taken from in the neuron, is named as receptive field. Filters 

scan the image and estimate the possibility of its class [98]. In there, a group of filters 

(with the size of 𝑀x𝑀) is used to apply 2D convolution to the image. They slide over 

the image, and the dot product is obtained between the filter and image parts. An 

activation function, ReLU, provides the transformation of all negative values to 0 [99]. 

After the image passes from this layer, a feature map, which gives information about 

the image, is created. Convolution is represented mathematically as Equation (2.20). 

 𝑓𝑙
𝑘(p, q) = ∑ ∑ i𝔠(x, y). el

k

x,y𝔠

(u, v) (2.20) 

In there, 𝑓𝑙
𝑘(p, q) represents the (p, q) element of the feature matrix. 𝔠 is the channel 

index, and 𝑙 is the layer number. In addition, x and y represent that xth and yth 

coordinate under consideration of the image. 𝘐𝔠 is the input image tensor. 𝔦𝔠(x, y) is a 

component of  𝘐𝔠, which is component-wise performed multiplication by e𝑙
𝑘(u, v) sign 

(or index) of 𝑙𝑡ℎ layer’s 𝑘𝑡ℎ convolutional kernel 𝑘𝑙. The output of the feature map is 

𝐹𝑙
𝑘 = [𝑓𝑙

𝑘(1,1), … , 𝑓𝑙
𝑘(p, q), … , 𝑓𝑙

𝑘(P, Q)], where P and Q represent the number of 

rows and columns of feature matrix, respectively [100]. An example of a convolution 

operation is visualized in Figure 2.18. 

 

Figure 2.18: Convolution operation 
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• Pooling Layer 

The main function of this layer is to reduce computational costs and discard 

unnecessary information by performing operations on the convolved feature maps 

obtained in the convolution layers. In doing so, it reduces the connections between 

layers. This layer reduces the size of the feature maps as a result. This also provides to 

decrease overfitting issues. With these operations, there is a bridge function between 

the Convolutional and FC layers. There are several types such as Max Pooling, which 

takes the largest value, and Sum Pooling, which takes the sums of the elements [99].  

 𝑍𝑙
𝑘 = 𝑔𝑝(𝐹𝑙

𝑘) (2.21) 

Equation (2.21) shows the pooling operation in which 𝑍𝑙
𝑘 represents 𝑙𝑡ℎ layer’s pooled 

feature-map for 𝑘𝑡ℎ input feature-map 𝐹𝑙
𝑘, while 𝑔𝑝(. ) is the pooling operation. An 

example of these two pooling operations is shown in Figure 2.19. 

 

Figure 2.19: Max Pooling and Sum Pooling operations 

• Fully Connected Layer 

FC layers are usually positioned before the output layer and form the last layers of a 

CNN. Their main purpose is to connect neurons between two distinct layers. Before 

the FC layer, the image taken from the layer is flattened and the flatted vector is then 

fed to the FC layers where mathematical operations are performed. They consist of 

weights and biases along with neurons. As you pass through these layers, the 

classification process begins. The reason why connected layers are used here provides 

better performance when they are connected to each other in binary form. 
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• Dropout 

When features are directly connected to the FC layer, training data may also cause 

overfitting problems and reduce performance. Therefore, it allows for adding a dropout 

layer and arranging the network structure. Here, a few neurons are dropped from the 

networks during training, reducing the size of the model and simplifying it [100]. 

• Activation Function 

An activation function is one of the most significant issues of the CNN model. It is 

used to learn and make inferences about the sustained and complicated relationship 

between variables in model networks. For this, it decides where the information will 

go, that is, it performs the decision of which information should be kept and fire, and 

which should not. It provides non-linearity of the network. ReLU, Softmax, tanH, and 

Sigmoid are some of the most preferred activation functions. The activation function 

for a convolved feature map is specified as follows: 

 𝑇𝑙
𝑘 = 𝑔𝑎(𝐹𝑙

𝑘) (2.22) 

where 𝑔𝑎 is the activation function, which provides nonlinearity, 𝐹𝑙
𝑘 symbolizes 

convolution output, and 𝑇𝑙
𝑘 is the transformed output [100]. An example of the 

application of ReLU to the matrix is given in Figure 2.20. 

 

Figure 2.20: An example of application of activation function, ReLU, to matrix 
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• Batch Normalization 

It is a normalization method performed among the layers in place of the raw data. It is 

performed throughout small batches in place of the whole data and provides speed 

training. It also uses high learning rates that ensure an easy learning process. It is 

applied to the output of neurons before the activation function applies. The output to 

be obtained by adding batch normalization to a neuron is formulated in Equation 

(2.23): 

 𝑁𝑙
𝑘 = (

𝐹𝑙
𝑘 − 𝑚𝑧

s𝑧
) ⋅ 𝛾 + 𝛽 (2.23) 

where 𝑁𝑙
𝑘 is the Batch Normalization output, 𝑚𝑧 is the mean of the output of the 

neuron, s𝑧 is the standard deviation (SD) of the neurons’ output. 𝛾 and 𝛽 are learning 

parameters of normalization. These parameters shift SD and mean, respectively [100]. 

2.5.3.2 Transfer Learning 

Classic CNNs tend to raise computational costs and complexity. They still can be 

suffering from bias and overfitting issues. To avoid computational costs and 

complexity issues dropout functions, and batch normalizations can be used as 

mentioned before. In addition to them, approaches such as residual networks, and 

Transfer Learning are alternatives to further refine models. TL is based on the 

approach of utilizing the knowledge learned by pre-trained models in other datasets. It 

allows to be use of features obtained by pre-trained models, weights, etc. for another 

classification. Therefore, the CNNs are trained with large datasets like ImageNet 

which contain a variety of images [101], and become a pre-trained model.  

In TL-based applications, the network behaves as a steady feature extractor, when the 

dataset contains a few numbers of data and possesses a similar to ImageNet. Also, the 

network ensures to do fine-tuning of the network, if the dataset contains a huge number 

of data and possesses similar to ImageNet, the latest layer in pre-trained CNN is 

removed, and the weights are tuned utilizing backpropagation (BP). In another 

situation, if the dataset contains a large amount of data, and does not possess similar 

to ImageNet, the training of the model is performed, commencing from the initial layer 



49 

 

or ImageNet’s pre-trained weights [102]. Then, the extracted features are used to be 

fed to a classifier function such as Softmax for the classification of labels. An example 

of the TL process from a study [103] is shown in Figure 2.21. 

 

Figure 2.21: An example of medical image classification using TL from a study 

[103]  

 In the literature, various CNN models based on the pre-trained approach have been 

offered as a TL approach. AlexNet and ResNet architectures can be served as one of 

these models that offer high classification accuracy [30]. Furthermore, it is reported 

that these models can be beneficial for the TFR image-based classification [68]. The 

seven well-known and most preferred CNNs, which are AlexNet, SqueezeNet, 

GoogLeNet, VGG-16, VGG-19, ResNet-34, and ResNet-50, are selected to classify 

hand gestures [30,68,104]. All of them are pre-trained with the ImageNet dataset. The 

usage of TF image provides an input naturally consisting of time, frequency, and 

spatial information of biomedical signal, EMG. Considering these, these architectures’ 

ability to individuate patterns in IF, and define the non-stationary structures of sEMGs 

are the motivation for using them in DL-based classification. In these models, only the 

last layers are rebuilt to maintain their output labels (7×1) for training the HHS images 

with the seven architectures mentioned above. The other layers are frozen to hold the 

architectures in the original build. The used CNN architectures and their properties are 

listed in Table 2.2. 
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Table 2.2: Characteristics of seven CNNs utilized in this study 

Networks Depth Parametera Input Size Output Size Description 

AlexNet 8 62 227-by-227 7-by-1 
Conv:5 – 

FC:3 

SqueezeNet 18 1.3 227-by-227 7-by-1 
Conv:18 – 

FC:0 

GoogLeNet 22 7 224-by-224 7-by-1 
Conv:21 – 

FC:1 

VGG-16 16 140 224-by-224 7-by-1 
Conv:13 – 

FC:3 

VGG-19 19 145 224-by-224 7-by-1 
Conv:16 – 

FC:3 

ResNet-34 34 22 224-by-224 7-by-1 
Conv:33 – 

FC:1 

ResNet-50 50 26 224-by-224 7-by-1 
Conv:49 – 

FC:3 

a Parameters > 106, Conv: Convolutional, FC: Fully Connected. 

In Table 2.2, the depth, number of parameters, input and output sizes, and description 

of the layers of the models are given. AlexNet was recommended by Alex Krizhevsky 

[101]. It is a feedforward CNN and is trained with millions of images of a hundred 

classes. The first convolutional window in the model starts with the size of (11×11) 

and decreases to (3×3) as it progresses through the layers. ReLU activation function 

is used in AlexNet. VGG-16 was recommended by Simonyan and Zisserman. Using 

small (3×3) convolution filters, VGG-16 is improved and deeper than AlexNet. Like 

AlexNet, it is trained with millions of images belonging to a thousand classes. The 

deeper version of VGG-16 is VGG-19, which possesses three more convolutions 

(weight) layers. VGG architectures use ReLU as an activation function [105].  

SqueezeNet is a squeezed (compact) CNN. It has been developed in order to obtain a 

network model that requires less memory in embedded systems, can be transmitted 

more easily on the computer, and has fewer parameters. Therefore, it provides less 

computational cost. Having 1.3 million parameters, it is the model with the least 

number of parameters compared to the others. It starts with a convolution layer and 

then eight fire modules come, resulting in a last convolution layer [106]. The 
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GoogleNet was developed based on the overfitting problem that occurs as the depth 

increases [107]. This architecture has filters of different sizes. In this respect, the 

expansion of the networks is carried out rather than the deepening. Three filters, (1×1), 

(3×3), and (5×5), are applied to the inputs. 

ResNet or residual networks are based on residual learning, which can simplify the 

training of networks [108]. In residual learning, shortcut links bypass one or more 

layers, allowing inputs to propagate more quickly through these links between layers. 

The whole type of ResNets, which change depending on layer number, possess their 

certain residual block. ResNet-34 has 34 layers, and ResNet-50, which is a deeper 

version of ResNet-34, has 50 layers. However, they possess a distinct residual block 

plan. In the residual block of the ResNet-34 model, data passes through the (3×3) filter 

twice, but the ResNet-50 model has bottleneck constructions, where data sequentially 

passes through filters (1×1), (3×3), and (1×1). The reason for this construction is 

network deepens. Because of deepness cause increasing the number of weights and 

computational costs. Thanks to bottleneck construction, the operation’s speed rises by 

reducing the computation load and not losing important information [109]. An 

example of building block and residual blocks of ResNet-34 and ResNet-50 are drawn 

and shown in Figure 2.22 based on the study [109].  

 

Figure 2.22: Residual blocks of ResNet-34 and ResNet-50 

The architecture of all these seven models used in this study is given in Figure 2.23 

below. Re-drawings of them were made for this study based on examples of 

architectures from the study [110] for AlexNet, the study [106] for SqueezeNet, the 

study [111] for GoogLeNet, the study [110] for VGG-16 and VGG-19, and the study 

[109] for ResNet-34 and for ResNet-50. 
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Figure 2.23: The seven CNN architectures used in this study 
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2.6 Performance Evaluation 

The confusion matrix (CM) of each method is obtained from the classification results. 

Confusion matrices are useful in analyzing the classification process and the resulting 

outputs. Evaluation metrics can be calculated using these matrices, and it allows 

comparison by expressing the analysis in numerical values. In the performance 

evaluation step, several statistical metrics are calculated for each AI approach. 

Classification accuracy (ACC), and F1-score are calculated for each AI method and 

their different version applications. The area under the receiver operating characteristic 

curve (ROC-AUC) is calculated for both DL and ML models. These metrics are shown 

in the following Equation (2.24) and Equation (2.25): 

 ACC =
TP + TN

P + N
=

TP + TN

TP + TN + FP + FN
 

(2.24) 

 𝐹1 − Score =
2 ∙ TP 

2 ∙ TP + FP + FN 
 (2.25) 

FP and TP symbolize false and true positives, and FN and TN symbolize false and true 

negatives, respectively. The cross-entropy loss function (ℋ(𝙿, 𝚀)), and mean squared 

error (MSE) are computed for each DL classifier [10,28,30]. The evaluation metrics 

of the DL architectures are described in the following Equation (2.26) and Equation 

(2.27): 

 ℋ(𝙿, 𝚀)) = − ∑ 𝙿(𝚊) ∙ log 𝚀(𝚊)

𝚊

 (2.26) 

 𝑀𝑆𝐸 =
1

𝚗
∑ (𝚠𝚝 − 𝚠�̂�)2

𝚗

𝚝=1
 (2.27) 

where 𝚗 is the number of data points, and 𝚠 and �̂� are the actual and predicted values 

for the point 𝚝, respectively. In the cross-entropy loss, 𝙿 symbolizes objective 

distribution, 𝚀 represents the proximate of objective distribution, and 𝚊 becomes the 

number of all classes. 

 



54 

 

Various metrics have been calculated to evaluate the FL models since they have 

structural differences compared to other methods. In addition to ACC and F1-Score, 

sensitivity, specificity, and precision are also calculated according to Equation (2.28), 

Equation (2.29), and Equation (2.30), respectively. In addition to these, different 

criteria are also used to evaluate the results of the two FL clustering operations. The 

coefficient of correlation (R), root mean squared error (RMSE), mean absolute error 

(MAE), and coefficient of determination (R2) values are calculated for SC and FCM-

based methods according to the following Equation (2.31), Equation (2.32), Equation 

(2.33), and Equation (2.34), respectively. 

 Sensitivity =
TP

GP + FN
 (2.28) 

 Specificity =
TN

TN + FP
 (2.29) 

 Precision =
TP

TP + FP
 (2.30) 

 𝑅 =
𝚗 ∑ 𝓋𝓀 − ∑ 𝓋 ∑ 𝓀

[[𝚗 ∑ 𝓋2 − (∑ 𝓋)
2

][𝚗 ∑ 𝓀2 − (∑ 𝓀)
2

]]1/2
 (2.31) 

 𝑅𝑀𝑆𝐸 = √
1

𝚗
∑(𝓀𝑖 − �̂�)2

𝚗

𝑖=1

 (2.32) 

 𝑀𝐴𝐸 =
1

𝚗
∑ |𝓀𝑖 − �̂�|

𝚗

𝑖=1

 (2.33) 

 𝑅2 = 1 −
∑(𝓀𝑖 − �̂�)2

∑(𝓀𝑖 − �̅�)2
 (2.34) 

In above equations, the predicted value of 𝓀 is expressed by �̂�, and the mean value of 

𝓀 by �̅�. 𝚗 is the number of data points. 
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2.7 Statistical Analysis  

In this study, statistical analysis is performed. First statistical analysis is performed for 

IMF selection. The second analysis is to statistically compare all conducted 

classification approaches. The classification accuracy of the whole scenarios of FL, 

ML, and DL models are evaluated separately based on a cross-validation (CV) strategy 

utilizing a one-way analysis of variance (ANOVA) method with Dunn's posthoc tests. 

The k-fold CV strategy is used in the ML and FL models, and the stratified k-fold CV 

(SKCV) strategy is used in the DL models. The k value is taken as 5 for all models.  
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3 Results 

3.1 Results of preporcessing of sEMG Signal 

Preprocessing steps were applied in MATLAB® to obtain noise-free signals containing 

movement information from the 490 s long EMG signals obtained from the dataset. 

sEMG signals applied with a Bandpass filter and Notch filter were taken to the desired 

frequency range and cleaned from environmental noise. Two different filtered sEMG 

signals were obtained depending on the frequency range. The filtered 4-channel EMG 

signals obtained from seven gestures as a result of applying a 5-500 Bandpass filter 

and 50 Hz Notch filter are shown in Figure 3.1.  

 

Figure 3.1: The plotting of 4-channel filtered sEMG signal of seven hand gestures 

The same segmentation processes were applied to signals with the range of 5-500 Hz 

and 50-500Hz, separately. Considering the delays that may have occurred during the 
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realization of the movement, the 1 s at the beginning and the end of the signal were 

discarded from the 6 s signal, and the signal was taken as a 4 s segment from the steady 

state moment. Then, the overlapping window was applied to four channels of each 

movement with rectangular windows of 200 ms and 250 ms in 50 ms increments to 

increase the number of data and to comply with the time limitation for real-time 

applications. In this way, a total of 77 (for 200 ms) and 76 (for 250 ms) sEMG 

segments were obtained from the 4 s segments of a channel. This process was applied 

to the signals in each channel. For each channel, 80850 segments (30 subjects × 5 

repetitions × 7 gestures × 77 segments) for 200 ms long and 79800 segments for 250 

ms long (30 subjects × 5 repetitions × 7 gestures × 76 segments) were obtained. 

Examples of 250 ms-long multi-channel sEMG segments of the Rest state and 

Extension gesture are shown in Figure 3.2, respectively. 

 

Figure 3.2: 250 ms-long multi-channel sEMG segments of (a) Rest state, and (b) 

Extension gesture 

3.2 Image Generation 

All processes at this stage were performed in MATLAB®. The segmented four-channel 

sEMG signals of seven gestures were converted into the TF domain using HHT. In the 

HHT implementation, IMFs were extracted using the EMD algorithm.  
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3.2.1 Results of IMF Selection 

In order to identify the most distinctive IMFs of the EMD method, two distinct 

experimental strategies were carried out while generating HHS images. The IMF 

selection procedure is conducted with a classification experiment that follows a 

statistical method. In the statistical analyses, the generated various number of IMFs 

were evaluated whether ones are normally distributed. The statistical analysis results 

revealed that all of the first three IMFs were statistically normally distributed (𝑝>0.05), 

and almost all of the three IMFs were also normally distributed (𝑝>0.05) in the whole 

dataset. Additionally, the obtained results are in line with the previously reported state-

of-the-art studies. It has been reported that the higher frequency components of the 

sEMG spectrums may contain useful information and may provide a significant 

contribution to the classification of different gestures [112]. Also, since the top IMFs 

contain the higher frequency component, they may well represent distinct information 

when the muscles are steady-state and oscillations are higher. As such, the normally 

distributed three IMFs were considered for the following analyses.  

It can be visually noticed that the oscillations are slowed down in the IMF3-based HHS 

and the resolution is dropped at lower oscillations. The first three IMFs found to be 

statistically more significant were used to generate HHS images using the 𝑓𝑠 as 2000 

Hz. For ML and FL implementation, the obtained HHS images of 4 channels were 

used separately in the feature extraction stage ignoring titles, and axis labels. 

According to the IMF selection results, HHS images created using the first three IMFs 

obtained from 200 ms long segments were used for ML and FL studies. An example 

of these images is shown in Figure 3.3.  
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Figure 3.3: The whole process of obtaining HHS images using first three IMFs of 

EMG signal: (a) 200 ms sEMG signal, (b) first six IMFs, (c) selected first three 

IMFs, and (d) HHS image using first three IMFs 

The generated 3D HHS using the first three IMFs can be represented as a volume or a 

2D image using a color mapping. The processes of generation of 2D color-mapped 

images of 200 ms-long segments are shown in Figure 3.3. Hence, the instantaneous 

energy of sEMG segments becomes a color representation in the 2D image. The color 

scale of all TF images is normalized to create a fair classification.  

After the normally distributed IMFs were selected, their different combinations are 

generated as IMF1, IMF2, IMF3, IMF1-2, IMF1-3, and IMF1-to-3. To be more precise, 

IMF1-3 stands for HHS formed by using IMF1 and IMF3, and IMF1-to-3 stands for HHS 

formed by using IMF1, IMF2, and IMF3. These different combinations were used in 

DL models. The 2D HHS images generated using IMF1 and IMF3 with 250 ms-long 

segments are shown in Figure 3.4-(a) and Figure 3.4-(b), respectively. 
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Figure 3.4: HHS images generated using (a) IMF1 and (b) IMF3 with 250 ms-long 

segments 

3.2.2 Results of Different Length HHS Images 

For the DL application, TF image acquisition was applied for 200 ms and 250 ms 

signals separately. 200 ms and 250 ms HHS images of the extension movement are 

given in Figure 3.5. In DL, 200 ms and 250 ms lengths were compared according to 

different IMF combinations.  

 

Figure 3.5: HHS images of the extension movement using first three IMFs of (a) 200 

ms, and (b) 250 ms segments 

3.2.3 Results of TF Image Fusion  

For DL, HHS generated using 4-channel sEMG segments were combined into a series 

of images, ignoring titles, and axis labels. Thus, while the temporal and spectral 

information provided by each channel is preserved separately because of the 

advantages of TFA methods, the jointly spatial information is also preserved by 

multiple channels represented as a fused image. The channel placement in the fused 

image represents the spatial information, while the color information is the expression 
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of the spectral energy value of the sEMG signals. Besides, there is a requirement for 

joint coordination of information of several muscles in order to distinguish the 

corresponding gesture from sEMG signals because the multi-channel sEMG signals 

are mutually relevant. Thus, the generated multi-channel combined spectral image may 

offer different visualization for each gesture. Also, this representation may enable the 

extraction of implicit correlations between the multi-channel sEMG signals. Hence, it 

may enhance the ability of feature expression of EMG signals because valuable spatial 

information is preserved. Moreover, if additional EMG channels are provided, the 

proposed method can be easily evolved by adding TF images of additional channels to 

the main fused spectral image. Eventually, each class includes an equal number of 

images resulting in a balanced dataset, and the separate 4-channel images and the fused 

TF images have modeled the output with corresponding gestures. Therefore, the train 

and test datasets are channel-wise scaled to zero-mean and unit variance. An example 

fused image created by combining the HHS images of four channels is shown in Figure 

3.6. The dotted white stripes and channel names here are used to describe the image 

[62]. 

 

Figure 3.6: Fusion image of four channel 
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3.2.4 Results of HHS Images of Different Gestures 

The fused images given as input to the deep networks are the contiguous aligned 

versions of the clean TF images. Significantly different HHS images were obtained for 

each movement. As an example, the rest and extension movement are visualized here. 

3D HHS representations obtained from 250 ms-long sEMG segments of Rest state and 

Extension gestures using the first-three IMFs are demonstrated in Figure 3.7-(a) and 

Figure 3.7-(b), and the 2D color-mapped images of corresponding HHS are 

demonstrated in Figure 3.7-(c) and Figure 3.7-(d), respectively. In those 2D TF 

images, the x and y axes represent time and frequency, and the 𝑧-axis represents the 

instantaneous energy of sEMG segments in the 3D HHS. It can easily be noticed that 

there is a significant visual difference between the two gestures in the images.  

 

Figure 3.7: 3D HHS representations: (a) 250 ms-long sEMG segments of Rest state 

and (b) 250 ms-long sEMG segments of Extension gesture using the first-three IMFs. 

(c) 2D color-mapped images of corresponding HHS of Rest, and (d) 2D color-

mapped images of corresponding HHS of Extension 
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3.2.5 Results of Snapshot Images 

In addition, in ML application, snapshot images of 200 ms EMG signal and first three 

IMFs were taken to be used in comparison with TF images’ performance. As an 

example of them, the images in Figure 3.8-(a) and Figure 3.8-(b) can be given. Totally, 

80850 snapshots were obtained from EMG signal segments and the first three IMFs, 

and HHS, separately [65]. 

 

Figure 3.8: Snapshot image examples: (a) EMG, and (b) IMFs 

3.3 Feature Matrix Generation 

As a result of applying HHT to 200 ms EMG segments, HHSs were obtained and six 

features of the spectra were extracted with MATLAB®, considering the principle of 

image-based feature extraction from these spectra. At this stage, colored HHS images 

were first converted to grayscale, and then GLCM was calculated. Six features 

expressing different statistical measures of GLCMs were calculated for each AI 

method. With the dataset created using six features extracted from the spectrum 

images, a new information representation using the time series analysis method was 

obtained. An 80850×24 dataset was created, with the twenty-four columns (6 features 

x 4 channels) being the feature (input) column.  

In ML and FL applications, mean, variance, energy, and entropy features were 

common, but two of the six features were different. While skewness and kurtosis were 

used as the fifth and sixth features in ML, contrast and homogeneity were used in FL. 

In addition, different strategies were tried on the dataset. For the ML model, each 

feature was represented channel-wise. In addition, all these GLCM feature extraction 
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processes are repeated for snapshot images of EMG and IMFs for use in ML, and a 

feature matrix of the same dimensions was obtained. For FL, each feature value 

obtained from the four channels was then averaged for data reduction purposes and the 

number of columns was reduced to 6. Feature matrices were normalized before being 

used in ML and FL. These data were separated as 80% (64680) for training and 20% 

(16170) for testing. 

3.4 Results of ML-based Classification 

After the implementation of dimensionality reduction, five features are determined by 

the PCA except for the mean. The 5-fold CV technique was used to prevent overfitting. 

It provided an accuracy value of over 83.20% in 28 of 29 ML models. An accuracy 

value of 60.80% was obtained only in the Coarse Tree model. The average of the 

accuracy values obtained from all models is over 86%. The five highest accuracy 

values in Table 3.1 were obtained with Cubic SVM (90.87%), Quadratic SVM and 

Medium Gaussian SVM (89.70%), Ensemble Bagged Trees (89.60%), and Ensemble 

Subspace kNN (89.40%), respectively. When the models were examined in terms of 

type, DT-based models achieved the lowest classification performance (approximately 

77.00% on average). The highest classification performance was achieved by SVM-

based models with an average value of 89.20%. After SVMs, NNs and discriminant 

analysis-based models were found generally more successful (ACC of >87.00%). 

Table 3.1: The accuracy values of highest five ML models for HHT-based features 

Method Model ACC (%) 

HHT-based GLCM 

Features 

Cubic SVM 90.87 

Quadratic SVM 89.70 

Medium Gaussian SVM 89.70 

Ensemble Bagged Trees 89.60 

Ensemble Subspace kNN 89.40 

The best performance results for the three ML approaches were given in Table 3.2. 

The EMG and IMF snapshot-based approaches were behind the HHT-based approach 

in all tested ML methods. In EMG signal-based approach, the best validation ACC 

was obtained as 71.34% by Random Forest. The F1-score was 70.89% and the mean 
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AUC was 0.78. In the IMF-based approach, the best validation ACC was obtained as 

82.13% by Bagged Trees with five features. The F1-score was 82.74% and the mean 

AUC was 0.90. Here, the feature extraction approach by using the first-three IMFs 

increased 10.79% of the classification performance compared to the signal-based 

approach. The GLCM-based HHS features achieved the highest ACC 90.87% with the 

Cubic SVM method. The ACC values of punch, flexion, open hand, and ulnar 

deviation were obtained above 92.00%, whereas other gestures have ACC values 

above 80.00%. The average F1-score was calculated above 90.84%. When the AUC 

values were examined, the mean AUC was ~1 for the Cubic SVM. The precision, 

recall, and specificity of the model were obtained as 91.14%, 90.87%, and 98.48%, 

respectively [65]. 

Table 3.2: Classification results of the three different approaches for ML 

Method Model ACC (%) F1-Score (%) AUC 

EMG Snapshots 
Random 

Forests 
71.34 70.89 0.78 

IMF Snapshots Bagged Trees 82.13 82.74 0.90 

HHS Images Cubic SVM 90.87 90.84 ~1 

In addition, an error analysis between gestures for HHS-based method was performed 

using the confusion matrix in Figure 3.9. 

 

Figure 3.9: Confusion Matrix of HHS-based classification for ML 
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3.5 Results of FL-based Classification 

The dataset was prepared to be trained with the k-fold CV method in ANFIS 

architecture and the k value was chosen as 5. Before classification, SC and FCM 

clustering techniques were applied to the new dataset consisting of six features of the 

images, respectively. Hybrid optimization was applied for both methods, and the epoch 

number was accepted as 100 and the error tolerance value as 0 during the training 

process. In FCM, the parameters calculated using the 'genfis' command were 

transferred to the ANFIS interface. Since cross-validation was performed in both 

clustering methods, the parameters that gave the best results for each repetition and the 

MF numbers were determined and applied to the data. 

The total data (80850×24) was divided into five equal pieces (P1, P2, P3, P4, P5) with 

16170 lines of data in each part. Which parts are used as training and test data, MF 

numbers (number of rules) obtained as a result of the entered clustering parameters 

and providing the best classification result are shown in Table 3.3. For SC, the values 

of the range of influence, squash factor, accept ratio, and reject ratio parameters are 

given in Table 3.3, with their original order in the ANFIS interface. For FCM, the 

fourth parameter (iv) of it takes the value of true or false, and in this study, the true or 

false status of this parameter is shown with '0' and '1'. By considering the range of 

values that other FCM parameters can take, the parameters that are most suitable for 

the dataset and give the best results were determined and applied for each repetition 

[61]. These parameters are listed as (i, ii, iii, iv), respectively, Table 3.3. Membership 

functions change depending on parameters and pieces of total data. 

 

 

 

 

 

 

 

 

 

 



67 

 

Table 3.3: Applied parameters for SC and FCM methods 

Method Repetition Training Sets Test Set Parameters MF Number 

SC 

1 P2, P3, P4, P5 P1 0.24 / 1.3 / 0.4 / 0.395 30 

2 P1, P3, P4, P5 P2 0.26 / 1.0 / 0.4 / 0.395 38 

3 P1, P2, P4, P5 P3 0.24 / 1.4 / 0.4 / 0.395 25 

4 P1, P2, P3, P5 P4 0.3 / 1.33 / 0.4 / 0.395 16 

5 P1, P2, P3, P4 P5 0.3 / 1.33 / 0.4 / 0.395 19 

FCM 

1 P2, P3, P4, P5 P1 1.5 / 85 / 0.001 / 0 18 

2 P1, P3, P4, P5 P2 1.5 / 85 / 0.001 / 0 16 

3 P1, P2, P4, P5 P3 1.5 / 85 / 0.001 / 0 26 

4 P1, P2, P3, P5 P4 1.5 / 85 / 0.001 / 0 17 

5 P1, P2, P3, P4 P5 1.5 / 85 / 0.001 / 0 16 

The ANFIS network structure with 19 rules (with MF) created in MATLAB® for one 

of the best repetitions in the CV is shown in Figure 3.10 as an example. 

 

Figure 3.10: An example of ANFIS model with 19 rules resulting from classification 

Confusion matrices of each repetition were obtained from the classification results. 

Classification results were visualized in matrix form as a true class and predicted class. 

The confusion matrices of the first iterations of the test data of the models are shown 

in Figure 3.11 for SC and in Figure 3.12 for FCM. Within the 16170-test data, there 
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are 2310 data for each movement. Sensitivity, specificity, precision, accuracy, and F1-

Score metrics were calculated for each repetition of each clustering method using the 

values in the confusion matrices, and their averages are shown in Table 3.4. 

 

Figure 3.11: Confusion matrix of first iterations of the test data for SC 

 

 

Figure 3.12: Confusion matrix of first iterations of the test data for FCM 
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Table 3.4: The results of evaluation metrics for each repetition of clustering methods 

Method Repetition  
Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

ACC 

(%) 

F1-Score 

(%) 

SC 

1 94.70 99.12 94.81 94.70 94.69 

2 95.18 94.07 94.00 94.62 94.59 

3 94.52 92.90 92.76 93.69 93.63 

4 94.93 92.76 92.58 93.82 93.74 

5 92.58 90.53 90.29 91.53 91.42 

Average 93.61 93.67 92.89 93.88 94.38 

FCM 

1 92.39 98.73 92.50 92.39 92.35 

2 92.45 89.96 89.80 91.18 91.11 

3 92.38 91.63 91.53 92.00 91.95 

4 93.22 90.42 90.11 91.77 91.64 

5 91.99 89.77 89.49 90.85 90.72 

Average 91.55 91.64 90.69 92.10 92.49 

Table 3.4 presents an evaluation on the basis of repetition. When all metrics are 

examined, it is seen that SC offers better performance. Its average values of sensitivity, 

specificity, and precision were obtained as 93.61%, 93.67%, and 92.89%, respectively. 

In addition, the averages of ACC and F1-score were calculated as 93.88% and 94.38%, 

respectively. However, the averages of ACC and F1-score for FCM were calculated 

as 92.10% and 92.49%, respectively. It is seen that there is a difference of almost ~2% 

between the average metric values of the FCM and the SC values. 

When an evaluation is made on the basis of movement, classification values for each 

hand movement have been obtained differently from each other, as seen in the 

confusion matrices. The matrices in Figure 3.11 and Figure 3.12 belong only to the 

first iteration, and the average values calculated from the test data results of the SC-

ANFIS and FCM-ANFIS methods were examined for each movement when the 

matrices obtained in the other iterations were included. The highest accuracy values 

were obtained with punch movement as 99.00% for SC-ANFIS and 97.10% for FCM-

ANFIS. After punch, flexion movement achieved over 95.00% accuracy (98.36% for 

SC and 95.97% for FCM). According to the performance values, open hand, resting, 
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and radial deviation movements, respectively, provided over 93.00% accuracy for both 

clustering methods. Finally, the movements that offered the least classification 

accuracy in both clustering methods were ulnar deviation (89.87% for SC and 88.57% 

for FCM) and extension (88.27% for SC and 82.81% for FCM), respectively [61]. In 

order to evaluate the performance of both methods (SC-ANFIS and FCM-ANFIS), R, 

RMSE, MAE, and R2 values calculated separately for training and test data are 

presented in Table 3.5. 

Table 3.5: The results of R, RMSE, MAE, and R2 values for training and test data 

Model  R RMSE MAE R2 

SC (Training) 0.9919 0.8318 0.1937 0.9841 

SC (Test) 0.9624 0.8973 0.2671 0.9327 

FCM (Training) 0.9828 0.8796 0.3296 0.9658 

FCM (Test) 0.9554 0.9098 0.3858 0.9136 

 

3.6 Results of DL-based Classifications 

The TF images of Hilbert-Huang spectra were resized to the input dimension of each 

TL-based architecture with a high DPI resolution. Each TF image was generated in its 

natural shape with a blue background to represent the lowest energy levels, and devoid 

of axis labels, title, and colorbar to ignore unnecessary pixels that do not carry 

information about the sEMG signals. The parameters for HHS-based architectures are 

described in the previous section. SKCV is adopted to minimize sampling bias and to 

evaluate the robustness of the proposed models [30]. SKCV was used to provide 

population-based inference and the generalization for the trained model. The SKCV 

strategy was utilized based on a subject-correlated approach where the trained model 

contains a mixed as well as an equal amount of data from all subjects.  

In the training phase, the pre-trained architectures with the ImageNet dataset are re-

trained with mentioned CV strategy. The fold value k was taken as 5. In this CV, the 

whole TF image dataset is indiscriminately allocated as training and testing image 

subsets. Therefore, 80% of the total images were utilized to train and 20% of images 

were utilized to test the models in each fold. It should be noted that each fold has an 
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equal number of training, validation, and test data from each subject as well as each 

class in the SKCV. Thus, each fold represents the entire dataset without overlapping 

and the test data is never used in the training phase. In order to prevent bias, data is 

randomly shuffled before the CV strategy is processed. CV strategy revealed the 

results were robustly evaluated and the trained models were not overfitted.  

During the training phase, all layers of the pre-trained architectures were frozen and 

exactly preserved, except the output layer, which was modified as 7x1 to classify 7 

different gestures. Additionally, the hyperparameters were determined with manual 

tuning based on several empirical trials. Adam Optimizer was used with a batch size 

of 64, and 10-3 learning rate. The epoch value has been set at 50 to observe 

classification performance in all architectures under the same conditions. Finally, the 

Softmax function is used to normalize the outputs. All procedures were conducted on 

an Nvidia GeForce RTX 2080 TI GPU with 64 GB RAM using Keras libraries with 

backend TensorFlow 2.8, cuDNN 8.1, and Cuda 11.2.  

3.6.1 Classification Results of IMF and WL Combination 

HHS images generated from mentioned IMF combinations were empirically tested to 

choose the best combination. In the preliminary experiments, 250 ms-long sEMG 

segment length and ResNet-50 architecture were selected because while 250 ms 

window length (WL) was reported as the top limit value for online tasks and yielded 

better performance among the other WLs [67], ResNet-50 achieved better 

classification performance among the other deep networks [68]. Additionally, the 

effects of varieties of CNN architecture on classification performance were also 

examined in the following experiments. The comparison of HHS method test results 

of 12 different classification models obtained by using ResNet-50 architecture is 

shown in Figure 3.13.  
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Figure 3.13: The test results of different IMF combinations using ResNet-50 model 

Here, the results are obtained for different combinations with the SKCV strategy and 

it was also examined the WL variation effect on the classification performance to 

select the best WL-IMF combination. In line with this aim, sEMG segments (200 and 

250 ms) were considered, then HHT was applied to these segments to generate HHS 

images. Accordingly, overall results revealed that the best ACC values were achieved 

by IMF1-to-3, which achieved the best ACC for 250 ms. Among all IMF and WL 

combinations, IMF1-to-3 achieved the highest average ACC of 93.75% with 250 ms 

length, while IMF3 yielded the lower ACC in all cases. The worst ACC was 68.79% 

in 200 ms WL with IMF3. According to obtained results, the ACC values increased as 

the WL increased, regardless of the changing IMF combinations in all cases. However, 

considering that WLs under 250 ms can be used in real-time applications [67], 250 ms 

is the border of this and can be used for classification. Due to the superior performance 

provided by IMF1-to-3 and 250 s-long sEMG segments than other real-time WL limits, 

this combination is used in the rest of the experiments. The increase in ACC at larger 

WLs may be associated with increased resolution, which is correlated with changing 

sample size. 



73 

 

3.6.2 Classification Results of CNN Models 

Finally, in order to choose the best CNN model in the classification of gestures, 7 

different CNN architectures were re-trained with the TL method. The average SKCV 

results obtained using 250 ms-long sEMG segments and IMF1-to-3 are presented in 

Table 3.6. In feeding the TL models with HHS using SKCV, the average AUC values 

are yielded in the range of 0.84-0.97. Considering the average validation accuracy, 

only four architectures; GoogLeNet, VGG-19, ResNet-34, and ResNet-50, yielded 

over 90.00% accuracy. Best performances are obtained by two ResNet architectures. 

While ResNet-34 achieved ~2% better validation accuracy (92.23%) than VGG-19 

and GoogLeNet, it still falls behind ResNet-50. Notice that the best average training 

ACC and validation ACC are 96.12% and 93.75±1.71%, respectively, by using the 

pre-trained ResNet-50 model. Also in this model, the training loss is 0.023 and the 

validation loss is 0.044. The AUC is 0.97, the F1-score is 93.98%, and MSE is 0.321. 

In the statistical tests, while no significance (p=0.378) was found between ResNet 

models, both outperformed (𝑝<0.05) other architectures [62]. 

Table 3.6: Classification results of seven CNN architectures using first three IMFs of 

250-ms sEMG segments 

Network tACC vACC t Loss v Loss MSE F1 AUC 

AlexNet 82.31 81.56 0.215 0.255 0.587 82.59 0.86 

SqueezeNet 81.93 80.73  0.195 0.259 0.576  79.33 0.84 

GoogLeNet 91.34 90.36  0.131    0.117 0.521  90.77 0.92 

VGG-16 86.77  85.38  0.146    0.195   0.541 85.41 0.89 

VGG-19 92.56   90.65   0.098    0.136   0.484  90.15 0.92 

ResNet-34 96.05  92.23  0.046 0.089 0.356 93.12  0.95 

ResNet-50 96.12  93.75  0.023  0.044 0.321  93.98 0.97 

*Loss: Cross-Entropy Loss, all ACC, PRE, and F1-Score values are given as percentage.                                 

t: Training and v: Validation phase. 
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4 Discussion 

Three different artificial intelligence approaches were compared with other methods 

within themselves. 

4.1 Evaluation of ML-based Classification Results 

According to the results in Table 3.1, the three best classifications were obtained with 

SVM-based models. The SVM method offered better results than other ML models. 

Although there were misclassified gestures, the margin in the SVM model better was 

able to determine the boundaries between classes. In addition, a large dataset was 

created with the HHS-based features obtained by data transformation in this study, and 

the advantage of SVM to work with large datasets was effective in obtaining good 

results here. Also, it does all this with less memory requirement. In addition to all 

these, it has the capacity for generalization and fights the overfitting issue better [113]. 

Generally, it is compared to ANN, but as in this example, SVM models gave better 

results.  

As the performance metrics of all the approaches given in Table 3.2 are compared, it 

is noticed that the TFR-based approach outperforms the time-domain EMG signal and 

IMF-based approaches [114]. Besides, using the GLCM of TFR for feature extraction 

has been shown to be an effective approach for hand gesture classification with sEMG 

signals. The GLCM-based HHS features preserve the information acquired from HHT 

that determines the intrinsic features of short EMG signals, signal frequency 

characteristics, and also the changing of FD characteristics over time [115]. 

When the classification performances of the movements are examined, the 

misclassification rate is higher between extension and flexion, radial deviation and 
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ulnar deviation, extension, and radial deviation, and rest and flexion than in other 

combinations. The reason for this may be related to the similar contraction while 

performing the different gestures [3]. For instance, when the hand is during the radial 

deviation, the hand may sometimes be in a form similar to the extension due to the 

anatomical structure. This may have caused a similar contraction in the muscles. 

Hence, the distinguishment between HHS of these gestures may reduce due to this 

issue. Similarly, tend of EMG activity of radial and ulnar deviation was approximated, 

and muscle activation was similar in the related channels and amplitude levels. This 

may have caused the misclassification of these gestures. Rather than this 

misclassification, the overall performance is remarkable. 

4.1.1 Comparison with State-of-the-Art Studies 

To assess the effectiveness of HHS-based image features on classification 

performance, it is summarized the performance results of some recent studies 

published in the literature in Table 4.1. Huang et al. [116] applied a binary tree (BT) 

based SVM method to classify 13 movements. They collected the data from more 

channels and fewer subjects compared to the presented study. Despite using 10-fold 

cross-validation, they achieved a 2.67% lower ACC than this study's best model. 

Similarly, Rabin et al. [38] obtained 13.57% less ACC with STFT-based methods. A 

multi-channel study by Sattar et al. [117], which performed 10-fold cross-validation 

and classified fewer movements, obtained ~0.17% less ACC than the HHS-based 

method with half the number of subjects. Also, Kukker et al. [118] used HHT and 

ANN for movement recognition but, they used IMF1-based TD features and yielded 

an average ACC of 86.20%. Similarly, the study of Benalcázar et al. [119], which used 

the dynamic time warping algorithm and more channels obtained low ACC compared 

to this study.  

Some studies have reported more successful results on the classification. Devaraj and 

Nair [39] and Mahmood et al. [120] used TD features in the kNN method and achieved 

a classification ACC of 93.00% and 98.90% ACC, respectively. Qi et al. [121] used a 

combination of TD and FD features and reached 95.10% ACC with the GRNN 

method. In the study of Laksono et al. [122], the combination of Teager–Kaiser energy 

operator (TKEO) and kNN was used for EMG data classification with TD features. 
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Some of these reported studies suffer from some limitations even though they have 

reported remarkable results. Some of them used an unbalanced dataset, others datasets 

suffer from subject-biased, and some of them consider only a few gestures. As a result, 

it has been concluded that the proposed method may be an effective alternative 

approach for feature extraction from sEMG signals in hand gesture recognition. 

Table 4.1: Comparison Table of ML Studies 

Study Year Mov.  Ch.  Subj. Model Method Val. 
ACC 

(%) 

F1 

(%) 

[118] 2016  6 2 10 ANN 

IMF1-

based 

features 

TTS  86.20 N/A 

[116] 2017  13 16 8  BT-SVM  
TD 

features  

10-

fold 
88.20 N/A 

[121] 2019 9 16 1 GRNN 

TD and 

FD 

features 

TTS 95.10 N/A 

[39] 2020  7 8 32 kNN 
TD 

features  
TTS 93.00 N/A 

[38] 2020 6  2 5 kNN 
STFT-

based 

10-

fold  
77.30 N/A 

[120] 2021 18 8 3 Fine kNN 
TD 

features 
TTS  98.90 N/A 

[122] 2021 3  3 5 
TKEO+Subspace 

kNN 

TD 

features  
TTS  96.67 N/A 

[117] 2021 4 8 15 kNN 
TD 

features 

10-

fold 
90.70 N/A 

This 

Study 
2022 7 4 30 Cubic SVM 

HHT 

features 

5-

fold 
90.87 90.84 

*Mov.: Movement, Ch.: Channel, Subj.: Subject, Val.: Validation, TTS: Train-Test Split. 

4.2 Evaluation of FL-based Classification Results 

When the results obtained were evaluated, better results were obtained with the SC-

based method for each movement. When comparing the seven hand gestures, the best 

classified gesture is the punch gesture. However, the success of other hand movements 

is not much different from the success of it. Considering the high level of muscle 

activation in punch movement compared to other movements, a more distinctive 

pattern may have been obtained in the signals generated as a result of the movement 

and therefore in the HHS images compared to other movements. For this reason, it is 

thought that the features extracted from the images of this movement can be 
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distinguished better than other movements. It has been observed that the proposed 

classification system provided different accuracy values for different movements. In 

this case, the situation of misidentification and classification has an effect. Due to the 

nature of the movement, the number, and type of muscles involved in each movement, 

or the similarity between the movements vary. This may be the reason for the 

variability in classification performance. The variability can be minimized by 

providing EMG from a relevant and appropriate number of muscles, better 

preprocessing, and using a large dataset. For example, movements with the same 

primary activation muscles can be considered similar [53]. According to these, it is 

thought that the mentioned conditions may have an effect on misclassification cases. 

The RMSE and MAE values in Table 3.5 show that the SC-ANFIS model 

classification estimates are closer to the experimental value compared to the FCM-

ANFIS model. In the R correlation coefficients, since it is known that values close to 

1 indicate a direct relationship between the variables, it reveals that the SC has a better 

relationship with the input data than the FCM. Similarly, in the coefficient of 

determination R2, which tests the suitability of the obtained regression equation to the 

data, it is seen that the SC method is superior to FCM for the test data. 

4.2.1 Comparison with State-of-the-Art Studies 

In order to evaluate the results of the proposed gesture recognition system, a 

comparison with some FL-based studies carried out in recent years was made. In order 

to obtain a complete, comprehensive, and fair comparison between FL-based classifier 

methods, Table 4.2 was created including the number of individuals, muscle types, 

number of hand movements, number of features used, and other factors. However, SC 

and FCM-based methods applied in this study were compared among themselves and 

then with other literature studies. The proposed method has been shown to be superior 

according to the complexity level, the number of hand gesture classes, the number of 

muscles, the number of features, and the number of people in the dataset. It is seen that 

this study is more comprehensive than most of the data used in the studies in Table 

4.2, in terms of the dataset structure. However, when comparing the types of features 

used, other studies have extracted features directly from the time domain of the signal 

[26,53,54,56] or from TFRs [53]. In this study, an F1-Score of 94.38% (SC) and an 
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accuracy percentage of 93.88% (SC) are presented with the classification method 

performed using the features extracted from the TF spectrum images obtained after the 

signal analysis method (HHT). In the study of Balbinot and Favieiro [54], although the 

number of subjects was the same as in this proposed study and 8 electrodes were used, 

it is thought that there may be insufficient information in the data representation, since 

only the RMS value was used as a feature, and the classification was based on a single 

parameter. Although the study of Khezri and Jahed [53] gave high accuracy, it was 

insufficient in terms of the number of people and the number of electrodes like other 

studies. Because, as it is known, the increase in the number of muscles measured signal 

increases in direct proportion to the accuracy value [123]. 

Table 4.2: Comparison table of the current FL studies in literature 

Study Year Classifier Gesture Subject  Channel  Feature  
ACC  

(%) 

[53] 

 

2011 
Sugeno  

(SC-ANFIS) 
6 4 2 4 92.00 

[54] 2013 
Sugeno  

(Neuro-Fuzzy) 
7 30 8 1 86.00 

[26] 2015 
Sugeno  

(FCM-ANFIS) 
4 4 2 6 88.90 

[55] 2016 
Sugeno 

(ANFIS) 
4 1 2 4 96.85 

[56] 

 

2017 
Mamdani 

(Fuzzy Logic) 
2 1 2 3 93.12 

[57] 2018 
Sugeno 

(ANFIS) 
5 1 8 13 72.00 

[58] 2020 
Sugeno 

(ANFIS) 
7 - 8 1 98.09 

[124] 2022 
Genetic Fuzzy 

Classifier  
3 36 8 1 67.00 

Proposed 

Method 
2022 

Sugeno  

(SC-ANFIS 

and FCM-

ANFIS) 

7 30 4 6 
SC-ANFIS: 

93.88  

FCM-ANFIS: 

92.10 

When the other methods in Table 4.2 were examined in terms of the number of people, 

it was seen that only one person's data were used in the studies [55–57]. This situation 

has made the methods and results open to discussion, even though the accuracy values 

of the mentioned studies are high. The performance values obtained in these studies 

may only be suitable for modeling for personal use. Otherwise, the created model may 
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be insufficient to test new data. In the study of Arozi et al. [58], which classified the 

same number of movements as this study using only one feature, although a high 

accuracy was obtained, information about the number of subjects was not presented. 

In addition, various FL approaches applied in studies cause different results. Unlike 

other studies, the study of Ulkir et al. [56] used Mamdani-type fuzzy logic system. For 

this reason, fuzzy rules were created manually by considering features and movements. 

Although the result of the mentioned study is remarkable, ANFIS is preferable to 

create the rules in its own networks instead of manually creating the rules as applied 

in other approaches. In that point, since Mamdani type classification is not suitable for 

multiple datasets, Sugeno-based ANFIS facilitates system creation. In the study of 

Palmer and Cohen [124], unlike other studies, a genetic fuzzy classifier was developed, 

and three movements were classified, and 67.00% test ACC was obtained. However, 

that study also used the Mamdani type inference system and the test accuracy obtained 

confirms the knowledge that the Mamdani type classification is not suitable for 

multiple datasets. In addition, the performance values obtained are quite low compared 

to other studies.  

The two clustering methods were used separately in previous studies (study [53] (SC) 

and study [26] (FCM)). In this study, clustering methods were used with the same 

dataset and thus a comparative approach was presented for two different methods. 

Khezri and Jahed [53] obtained higher accuracy using SC-ANFIS than Kaiser et al., 

who used FCM-ANFIS [55]. In this proposed study, a similar situation was tested on 

the same dataset. The results confirm that the SC-based method is more successful 

than FCM. The main reason for this situation; may be due to the fact that the FCM is 

stuck at local minimum points and cannot handle outliers in the data [125]. In addition, 

the obtained results support the usability of TF images created by HHT in classification 

studies. 

 

 



80 

 

4.3 Evaluation of DL-based Classification Results 

In this section, the classification results of DL-based approaches are evaluated in four 

subtitles. 

4.3.1 Evaluation of IMF and WL Results 

Movement-based muscle contraction naturally increases the frequency and amplitude 

of EMG signals. In the HHS approach, distinct combinations are predominantly 

selected from the first IMFs due to the fact that the first IMFs extracted by the EMD 

algorithm consist of higher frequencies, and the frequency content decreases as the 

IMF number increases. Further, first-several normally distributed IMFs, have been 

utilized for feature extraction and classification in many studies employing EMD 

[2,118]. In observations of this study, the IMF1-based HHS image represents the 

energy density at higher frequencies and provides more resolution compared to the 

IMF3-based HHT image when examined in terms of both instantaneous energy and 

instantaneous frequency. The important point here is how the instantaneous energies 

may better represent the gesture in the HHS images. The effect of the IMF 

combinations and segment length on the classification performance was examined. In 

the individual IMF combinations (IMF1, IMF2, and IMF3), the accuracy decreased as 

the IMF number increased. This indicates that the discrimination ability of the model 

performs better at higher frequencies. When multiple IMF combinations are used, 

classification performance is better than for all individual combinations. Thus, it turns 

out that IMFs perform better in multiple combinations. In the limit range for online 

tasks (150-250 ms WL), the best performance was obtained using IMF1-to-3 at 250 ms. 

It should be noted that no statistical significance was found between both. The 

classification results of the selection of the best IMF combination are in line with the 

findings of state-of-the-art studies mentioned in the previous section. It is concluded 

that IMFs obtained by EMD should be tested to ensure whether are normally 

distributed before analyses, and it is recommended that only normally-distributed 

IMFs may be used in the HHT to preserve significant features in the TF domain. 

Furthermore, IMF1 individually outperformed other individual IMFs at all WLs and 

the statistical tests revealed this significance. However, all multiple combinations of 
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IMFs yielded better performance than IMF1 in all cases. Therefore, the results have 

emphasized the usage of a combination of IMFs rather than individually. Nevertheless, 

IMF selection tasks require specific attention and need to be further investigated. 

Another parameter is the selection of signal segment length, which may directly affect 

classification performance. Recent studies [49,67,126] suggested 150-250 ms as the 

limits for use in the real-time task. While the attraction is to reduce the response time 

for actions of actuators in the real-time task, it brings the challenges of extracting 

distinct information from sEMG with smaller WLs. It should be noted that TFA 

methods provide significant information from signals while the resolution in TF 

images may be associated with sample size. Therefore, choosing the optimum segment 

length becomes important. The selection of the appropriate WL is also related to the 

used feature extraction method. Therefore, the effect of WL size should be investigated 

by considering the feasibility of online tasks, the high volume of data required by DL 

architectures, and the feature extraction method. The overall implication obtained in 

this study is that it would be appropriate to select the larger possible WL using a sliding 

window due to the TFA methods requiring larger WLs to increase resolution as well 

as DL architectures requiring larger volume data to increase classification 

performance. The obtained findings encourage the implications. As the sEMG segment 

length variation experiment is considered, the worst ACC values were yielded at the 

smaller WL of 200 ms. Moreover, it can be easily noticed the visual differences 

between the smaller WLs (Figure 3.5-(a)) and larger WLs (Figure 3.5-(b)). As such, 

WL directly affects the instantaneous energy density in TFA methods. Hence, the 

overall accuracy tends to increase as the window size extends. As a result, 250 ms WL 

is selected for use in TFA methods considering the online tasks and classification 

performance. 

4.3.2 Evaluation of Results of CNN Models 

It is also investigated the CNNs' performance. Among the CNN models in Table 3.6, 

SqueezeNet was the only architecture with an F1-score value below 80%. Nonetheless, 

no statistical significance (𝑝= 0.735) was found between the AlexNet and SqueezeNet. 

The only advantage of SqueezeNet is the lightweight model compared to others. A 

significant validation accuracy difference of about 13% was between SqueezeNet and 
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ResNet-50. For all other metrics, SqueezeNet also presented worse performance than 

the other architectures. Similar ACCs were yielded for AlexNet. Even though the 

AlexNet has many trainable parameters, the performance was not yielded as other 

networks like VGGs due to its depth (8). The ACCs of GoogLeNet and VGG-19 were 

close to each other and outperformed VGG-16, but not as well as residual network-

based architectures. VGG-19 obtained only 0.29% higher accuracy than GoogLeNet. 

Their AUC values are equal to each other but far from the ideal values. Also, there is 

a big difference in cross-entropy loss values compared to residual networks. As seen 

in Table 3.6, the highest classification results were obtained with the ResNet-based 

architectures. It was observed that ResNet-50 achieved better accuracy with a 

difference of 1.52% compared to ResNet-34. ResNet-50 achieved lower values for 

cross-entropy loss and MSE, providing better performance. They achieved an F1-score 

of above 93% and provided an above 3.21% significance from GooLeNet and VGG-

19. But there is no statistical significance (𝑝=0.378) was found between each other.  

Although ResNets use fewer parameters compared to other architectures such as 

VGGs and AlexNet, they may offer better classification accuracy because of 

containing shortcuts and more layers in their structure. The overall ACC values 

increased as the network complexity and the number of layers further increased. It is 

concluded that traditional CV methods such as the SKCV may be useful to compare 

the performance of the feature extraction and classification approaches. Also, the 

architecture selection may be conducted with supporting from experimental outcomes 

and considering the complexity of the features, the volume of the dataset, and the 

number of classes. The results revealed the significance of using task-specific 

architecture and calculating robust metrics in performance evaluation. Eventually, the 

achieved better performance by residual network-based structures among other 

architectures was in line with recent studies [47,68,104]. 

4.3.3 Gesture-based Evaluation 

Evaluating the average results of the HHT-based approach, the pre-trained ResNet-50 

model yielded over 98% accuracy in classifying Rest, Extension, Flexion, and Ulnar 

Deviation. However, the average ACC values were about 90% for radial deviation, 

punch, and open hand, respectively. Some movements are misclassified and the 
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maximum miss-classification rates of 9.42% and 7.73% were obtained for punch and 

open hand, respectively. The reason may be that similar muscles exhibit similar 

activation when the EMG signals are measured during some gestures or dominant 

activation of multiple channels may be observed simultaneously during the punch and 

open hand movements. Therefore, this may be observed in the HHS images and lead 

to similarity, hence miss-classification. In addition, in this study's data collection 

procedure consisting of five repetitions, the participants' muscle fatigue in the last 

repetitions while performing the movements may have been effective in the activity of 

the muscles. As a result, no miss-classification occurred greater than 10% in a single 

gesture class. 

4.3.4 Comparison with State-of-the-Art Studies 

In Table 4.3, recent state-of-the-art studies using DL are summarized considering their 

best classification performance to compare with this work in terms of the number of 

classes, channels, participants, WLs, used deep architectures, the signal processing 

method of the input data, CV strategy, and accuracy. The performance of the deep 

model may be directly affected by the number of EMG channels, participants, WLs, 

and classified movements. The proposed method aims to enhance the classification 

performance while not increasing the training cost. In the study of Shanmuganathan et 

al. [127], EMG signals were collected from 2-channel. This may result in insufficient 

EMG signal information obtained from the muscles responsible for contraction and 

relaxation events because many muscles may be responsible for only one hand gesture. 

Thus, the classification performance may be reduced. Similarly, in the study of 

Savithri et al. [128], using a lower number of participants and fewer channels may 

have affected the classification performance. In the study of Nahid et al. [47], LSTM-

ResNet-18 combination and CWT were used which achieved higher performance than 

the HHT-based approach but tested with a little amount of data in terms of the number 

of channels (2) and subjects (8). In the study of Oh and Jo [49], 8-channel EMG signals 

from only 3 participants were considered. Similarly, the number of participants and 

EMG channels directly affected the classification performance.  
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Table 4.3: Comparison table with recent DL studies 

Study Year Mov. Ch.  Subj.  WL Network Feature  CV 
ACC  

(%) 

[126] 2018 6 8 7 150 
Single-Layer 

CNN 
Raw EMG k-fold 96.70 

[129] 2019 7 8 17 260 ConvNet CWT k-fold 98.31 

[130] 2019 6 8 20 50 
Five-Layer 

CNN 
PSD TTS 99.00 

[50] 2019 17 12 40 300 CNN+LSTM Spectrogram N/A 80.93 

[131] 2020 6 16 10 N/A 
Deep BP-

LSTM 
TD Features TTS 92.00 

[47] 2020 10 2 8 250 
ResNet-18 

+LSTM 
CWT TTS 99.83 

[51] 2020 2 4 52 N/A GoogLeNet XWT TTS 97.60 

[132] 2020 7 8 17 260 EMGNet CWT TTS 98.61 

[133] 2020 6 8 6 500 CRNN SAWT TTS 92.50 

[72] 2020 17 12 40 100 CNN+LSTM 
EMG  

Signal 
TTS 98.01 

[127] 2020 4 2 10 1000 R-CNN WPT TTS 96.48 

[128] 2021 6 2 1 N/A 
4-Layer 

CNN 

EMG  

Image 
N/A 91.66 

[49] 2021 6 8 3 200 
2-Layer 

CNN 
SAWT TTS 93.90 

[46] 2022 6 8 36 50 Hybrid CNN EMG Signal TTS 93.48 

[134] 2022 29 10 27 100 DCN 
Signal 

Image 
TTS 79.54 

This 

Study 
2022 7 4 30 250 ResNet-50 HHT SKCV 93.75 

*Mov.: Movement, Ch.: Channel, Subj.: Subject, WL: Window Length, CV: Cross-Validation, TTS: 

Train-Test Split, R-CNN: Region-based CNN, DCN: Deformable convolutional network, WPT: 

Wavelet Packet Transform. WL values are given as ms. 
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As the number of channels increases, more information about the movement may be 

obtained, but it is important to keep the channel number at an optimum level. Not only 

the processing of extra input causes a computational load on the system but also may 

cause the system overfitting. This may have resulted in lower than the expected ACC 

despite the use of multiple channels in the study of Wang et al. [131]. In order to find 

the optimum number of channels, it is necessary to determine the muscles responsible 

for hand movements obtained from the forearm. The four muscles responsible for the 

forearm gestures considered in this study were determined by expert physicians. 

Additionally, in the study of Roy et al. [51], 4-channel EMG data (similar to the 

proposed study) of 52 participants (more than in this study) was used, and better 

accuracy values were obtained when compared with the proposed study. However, it 

should be noted that the mentioned study classifies fewer movements (4) in contrast 

to the proposed work. In the study of Wang et al. [134] among the studies in Table 4.3, 

was considered the highest number of movements (29 movements). Also, they analyze 

27 participants' EMG data using 10-channel information. As a result, worse ACC 

yielded with this combination. In the study of Karnam et al. [46], a classification task 

was conducted with 8-channel data of 36 subjects who performed 6 movements. The 

obtained ACC was about 93%. Besides the input data generation processes, choosing 

dataset parameters by considering mentioned acquisition criteria may increase both the 

success and effectiveness of the deep model. 

In addition, when the HHT-based method is compared to the conventional TFAs, 

several TFA-based studies [23] state that HHT provides better results and speed than 

CWT in recognition cases. On the other hand, HHT depends on an adaptive mode 

decomposition approach and preserves the IF of each mode, resulting in an improved 

TF resolution. In this study, recorded EMG signals are represented in the TF domain 

with a high localization by using the EMD and HHT to capture the time and frequency 

characteristics of sEMG segments simultaneously. TF representations contain more 

significant information than the time-domain IMFs of the signals. Therefore, it is 

concluded that HHS images resulting from HHT, provide essential information for 

hand gesture classification. As a result, the trained models avoid high variance and 

overfitting. Moreover, conducted comprehensive experiments, a robust CV strategy, 

and statistical tests supported this study's claims. 
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Since sEMG data is collected from the skin surface with very low impedance, the 

quality of the collected signals is important to provide accurate results in classification. 

Signal collection tools have various parameters, from the filter applied to the sampling 

frequency. For instance, although it is a practical tool, the Myo-Armband (Thalmic 

Labs Inc.) has a low sampling frequency (e.g., 100 Hz or 200 Hz) and this may cause 

some limitations when data processing. It should be noted that the valuable 

information obtained from EMG signals is at higher frequency bands (up to 500 Hz) 

for gestures [112]. Also, its fixed wearable structure may cause inconsistency in fitting 

each user's relevant muscles. Therefore, studies in [126,129,130,132,133] using this 

data collection procedure may not include the more relevant information provided by 

the higher sampling rate and sensitive location of the muscles, as in the present study. 

Another important parameter is the size of the window when segmenting the sEMG 

signal. The widespread acceptance for real-time tasks is WL must be kept below the 

time delay of 250 ms [47,67]. The selection of WL is required specific attention. In 

Table 4.3, while some studies [50,127,129,132,133] conducted the analyses using WL 

above 250 ms, some of them [51,128,131] did not provide this important information. 

Moreover, in the studies [46] and [130], only 50 ms WL was selected. Although 

providing little delay time is attractive, considering the sample size only a 50 ms 

window may not consist of the distinct information for gesture classification. 

Therefore, it is investigated the effect of the two WL variations on classification 

performance in this study. According to the findings, HHT may be the lead in real-

time applications considering the WL requirement, performance, and computational 

time. 

Additionally, ResNet-50 outperforms a successful performance in the classification of 

TF spectra with a huge dataset among the other DL architectures. ResNets are different 

from conventional sequential architectures and ensure the training of networks with 

greater depth. As the layer's number rises, CNN's training becomes harder, and the 

ACC attains saturation, then starts to fall. During training in ResNet, it utilizes the 

short-cuts linkages straight commission the entry not solely to following contiguous 

but further to forth latter one. It describes the extracting of input features learned by 

that layer. Hence, the evanescence challenge of the gradients is averted with the re-

utilizing activation of the preceding layer. In addition, the used ResNet-50 shows 

significantly lower training loss in all of these CNNs. Also, it has the ability to be 
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generalized with the validation data. This demonstrates that it addresses the 

degradation issue, and operates to acquire accuracy gains from rising deepness. This 

explains why ResNets have better classification performance than other CNN 

architectures in this study. Another aspect, as stated in the study of Kukker et al. [118], 

CNN-based approaches present a successful approach compared to ML techniques in 

problems that contain too much data and require diversity in the data, as in the 

proposed method. 

Finally, almost none of the studies summarized in Table 4.3 evaluate test data with a 

robust CV technique. Many of them adopted arbitrary test data with a non-robust train-

test split (TTS) method [28]. This situation may result in the trained models with bias 

and high variance. Also, no CV strategies were reported in the studies [50,128]. In a 

preliminary study of this thesis, EMD was applied to the EMG signals, and the first 

three IMF time-amplitude waveform images were separately granted as input to the 

DL architecture [2]. In the mentioned study, it was investigated which IMF carries 

more meaningful information in the EMG signals for hand gesture recognition. In the 

first three IMFs, a classification success of more than 97 was obtained. This aspect 

supports this study’s IMF selection criteria. Nevertheless, no cross-validation strategy 

was carried out where the presented results show only training results. Therefore, the 

trained model suffers from uniformity and bias. In another preliminary study of this 

thesis [3], the STFT was utilized to originate sEMG spectrograms for the training of a 

deep network. Similarly, no cross-validation strategy was conducted, the trained 

models were not robust and also suffer from bias and uniformity. These studies 

examine the capability of TF images and the EMD method with deep learning 

techniques in hand gesture classification. In addition, while the traditional deep 

learning approach was adopted in both of the above preliminary studies, the advantage 

of transfer learning was used in this study. Hence, the training time and computational 

costs were reduced. 

Here, the aim of the DL-based classification part is to take specific notice of the HHT 

method used for representing 1D EMG signals as 2D TF images. These images 

represent gesture-induced energy distribution and may provide close to ideal 

representations of the signal on the joint TF plane via HHT. Combining these TF 

representations with CNN's success in 2D image classification may allow for 
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promising gesture classification performance. Although the accuracy rates obtained in 

some of the above-mentioned studies were higher, the proposed method is more robust 

in testing new incoming data. It is concluded that the HHT method offers a promising 

and advantageous approach to creating informative images for the application of deep 

learning methods for 1D biological signals. 
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5 Conclusion 

In this thesis, the performance of the TFA method in different AI approaches for 

gesture classification is presented. The high-resolution sEMG signals measured from 

the 4 forearm muscles of 30 subjects were recorded for the classification of 7 hand 

gestures. sEMG signals were converted to HHS images by applying HHT. These 

images and obtained features from them were classified into AI models. This study 

presents an alternative feature extraction approach based on image features obtained 

from GLCM of HHS images, which have not been used in hand gesture recognition 

for EMG-based AI systems before. The extracted six GLCM-based features were 

obtained using 200 ms-long sEMG signals. These features are classified into ML and 

FL models. In this respect, it has enabled the classification problem to be handled with 

a different and original point of view than other studies.  

In ML results, by comparing the classification accuracy of two different feature 

extraction approaches, it is demonstrated that the GLCM-based approach is able to 

preserve the pattern embedded in the TFR of the sEMG signal related to the hand 

gesture. After PCA, five HHS image-based features yielded an accuracy of 90.87% 

from the Cubic SVM model, and it showed better performance than the GLCM 

features of snapshot images of EMG and IMF. Considering the reduced computational 

load in the training and prediction of the ML models, it is concluded that GLCM-based 

feature extraction from HHS images has remarkable success in the ML-based 

classification of hand gestures for myoelectric-based devices.  

The proposed FL-based models differ from FL-based studies with similar datasets in 

that they use more features for classification. Six GLCM features obtained from HHS 

images were subjected to two different clustering methods and the success of 

clustering methods on classification was also examined. It was observed that the SC-
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ANFIS (93.88%) based system achieved higher accuracy for recognizing each of the 

seven selected hand gestures compared to FCM-ANFIS (92.10%). When the 

classification performance is compared among the movements, it has been determined 

that the fist and flexion movements give more successful results than the other 

movements. In the proposed method, F1-score values for SC and FCM for seven hand 

movements were obtained as 94.38% and 92.49%, respectively. As a result, with the 

proposed study, a more comprehensive classification approach and evaluation is 

presented compared to the FL methods in the literature. It has been seen that the 

proposed method can be used effectively in the classification of complex hand 

movements. It has been shown that neural-fuzzy-based methods can provide good 

classification capability and be an alternative approach for non-invasive sEMG-based 

biological systems. 

Unlike ML and FL, HHS images are used directly in DL models. The useful 

combination of HHT and TL is performed in the classification of hand gestures for the 

first time in the scope of this thesis. The spatial fusions of spectral images of sEMG 

segments obtained by the HHT were used for the training of various pre-trained CNN 

architectures. The effects of various WLs and different CNNs on classification 

performance are examined. IMF selection for HHS is also comprehensively discussed. 

The experimental results are evaluated with the SKCV strategy. The results revealed 

that the proposed method yields outstanding classification capability while not 

increasing the computational cost. The best performance of the HHT was achieved 

with an average F1-Score of 93.98% and average accuracy of 93.75% with the ResNet-

50-based TL model using IMF1-to-3 and 250 ms-long sEMG segments within the real-

time analysis limits. It is emphasized that the value of using normally distributed IMFs, 

and the selection of the largest possible WL to increase resolution in TF images. It is 

demonstrated that the HHT-TL combination has the potential to be an alternative 

feature extraction approach for the classification of non-stationary and nonlinear 

biosignals. 

In this study, the use of HHT as TFA and its obtained HHS images and GLCM features 

of HHS images for gesture classification has provided an alternative classification 

approach to applications related to stationary and nonlinear biological signals that are 

difficult to analyze such as EMG. Although each model has its own positive and 
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negative aspects, it was the first time to use data from the same time-frequency 

analysis-based approach in three different AI models. When the results were compared 

in general, it was seen that the highest values were obtained with FL, and DL obtained 

a result very close to it. Although ML achieves lower accuracy than the other two 

methods, considering all processes, it has been seen to be a more advantageous method 

in terms of complexity and time. Because, while both FL and DL methods offer high 

accuracy, they perform more complex operations and require more time and hardware. 

Considering all this, machine learning that offers relatively low accuracy can be 

preferred by keeping complexity at an optimum level in real time applications. For 

higher accuracy, approaches such as DL can be applied. 

It is a study that provides important information about the successful performance of 

the same TFA-based data, which is the Hilbert-Huang Spectra obtained by the Hilbert-

Huang Transform. Each hand gesture classification model performed in three different 

artificial intelligence approaches using TFA has proven to be a successful and 

noteworthy alternative approach. 
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