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Abstract 

Global crises are increasing day by day due to the rapid depletion of energy supplies around the planet. One 

of the goals of engineering is to prevent this situation by developing innovative solutions to this rapid energy 

consumption that has disappeared in the world. A solution could be to reduce the energy consumption of the 

machines that are used during production. In this study, a new design technique based on the neuro-regression 

approach and non-linear regression modeling was offered as an alternative to Taguchi design to reduce energy 

consumption. Thus, a cutting parameter optimization model was created to examine the effects of the constraint 

conditions on energy consumption. The cutting power, the surface roughness of the part, and tool life were 

handled as objective functions(constraint conditions). First of all, the multiple non-linear regression modeling 

was created using design variables in end milling . These design variables were determined as spindle rotational 

speed, feed rate power, radial cut depth, axial cut depth, and cutting speed. Then, objective functions were 

brought to the proper minimum optimal levels due to this optimization modeling. As a result of the 

optimization model built with design variables, accurate modeling was achieved in this work by studying 

several optimization models utilized to optimize the minimum objective functions, which play a significant 

role in reducing energy consumption in end milling. After the optimization, the maximum value was found as 

110.791. At the end of the study, some options of direct search method to maximize and minimize results were 

applied. 

Keywords: End milling; energy efficiency; optimization.  

1. Introduction 

The industrial sector has been pushed to cut energy consumption and enhance energy efficiency since natural 

energy resources have been depleted due to rising global energy crises and the resulting climate change. 

Manufacturing is one of the most energy-consuming industries, so there is much potential for energy-saving 

options to think about, analyze, and test. Energy resources must be used correctly in the manufacturing industry, 

and energy efficiency must be continuously improved. For example, a suitable energy-oriented machine tool 

component design or better machine usage, both in terms of machining strategy and process parameter selection, 

can save energy in machine tools [1]. 

Machining is a significant part of the manufacturing industry, which is one of the most critical industries. 

Machining is generally defined as removing material in the form of chips from a workpiece or part. A mechanical 

part can be machined using different techniques without significant differences in final results. However, 

machining methods such as end milling play a significant role in producing and shaping parts. End milling can be 

used to produce slots, shoulders, die cavities, contours, profiles, and other milling parts. It is widely used to create 

auto parts, aircraft parts, etc. Machine tools are the primary electricity-consuming devices in milling processes, 

and they are also the source of carbon dioxide emissions [2]. 

For this reason, end milling machines consume so much energy. Therefore, studying energy parameters is 

important since cutting parameters in end milling can enhance energy efficiency. Several studies on optimizing 

cutting parameters have been published in this field; several of them used surface roughness, cutting force, cutting 

power, tool life, and material removal rate as optimization criteria [3].  

There are many combinations of parameters, such as feed rate, spindle speed, axial or radial depth of cut, to 

achieve varied results in terms of machined surface quality and tool wear, depending on the machining goal and 

the choice of cutting tool [4]. In addition, each combination of cutting parameters will provide a varied surface 

roughness and lifetime of the tool [5].  

One way to increase energy efficiency is to increase the machine tool's lifetime and achieve minimum surface 

roughness and cutting power consumption. Many different studies have been conducted to reach these results. 

Different optimization methods were used in these studies.  

Velchev et al. [6] presented an approach to optimize cutting parameters to minimize direct energy consumption 

during turning. Negrete-Compesto [7] optimized the cutting parameters (cutting speed, cutting depth, and feed 

rate) for minimizing electrical energy consumption in turning of AISI 6061 T6 by the Taguchi method.  
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Mativenga and Rajemi [8] established an energy consumption model for a single pass turning process, 

including energy during machine setup, machining, tool change, and tool production. The energy model could 

derive the optimal tool for economic life and cutting speed under a minimum energy criterion. Their model can 

be improved if machine stand-by power was not used to replace power consumption during their study's tool-

changing operations. The minimum energy criterion introduced is exploited to improve and apply a methodology 

for optimum cutting conditions' selection. 

The paper by Rajemi et al. [9] aims to improve a novel model and technique for optimizing the energy footprint 

for a machined product.  They introduced the essential parameters in minimizing energy use and therefore 

reducing the energy cost and environmental footprint.  

Asilturk et al. [10] applied response surface methodology to optimize cutting parameters (spindle speed, feed, 

depth of cut, and tool radius) and developed a surface roughness model of medical alloy machined on a CNC 

lathe. 

 In work presented by Bhushan [11], the optimization of turning cutting parameters to minimize electrical 

energy consumption and maximize tool life was presented. The response surface methodology (RSM) was applied 

to establish the cutting parameters' electrical energy consumption and tool life models. Results of the research 

work showed that electrical energy consumption could be reduced by 13.55%, and tool life can be increased by 

22.12% with the optimized cutting parameters. Li et al. [12] integrated Taguchi, the response surface methodology 

and multi-objective particle swarm optimization to optimize energy saving parameters and selected specific 

energy consumption to evaluate energy efficiency. The results showed that feed rate is the most significant factor 

for minimizing electrical energy consumption. A higher feed rate provides minimum electrical energy 

consumption. 

The main objective of this paper is to minimize the surface roughness and cutting power of the tool and 

maximize the lifetime of the machine tool by using a new neuro-regression analysis for improving energy 

efficiency in end milling. Furthermore, the direct search approach, modified versions of the Nelder-Mead 

algorithm have been thoroughly tested and shown. 

2. Materials and Methods  

2.1. Optimization 

The notion of optimization, which is the inherent attribute of achieving the best or most beneficial (minimum 

or maximum) outcome from a given situation, has enormous significance in human affairs and natural laws. Since 

the beginning of civilization, the human species has faced countless technological obstacles, including 

determining the best answer to various issues such as control technologies, power sources constructions, economic 

applications, mechanical engineering, and energy distribution, amongst others. Optimization problems are 

ubiquitous in science, and even in our daily lives, we optimize how we get to work every morning or how we 

should navigate to a new place. There is an objective you want to either maximize or minimize in an optimization 

problem, and there may be constraints within which you need to operate. This shows how design optimization 

may aid not just in the human activity of producing optimal designs for products, processes, and systems but also 

in the understanding and analysis of mathematical and physical phenomena and the solution of mathematical 

problems. [13] 

2.1.1. Regression analysis 

Regression analysis is one of the reliable tools frequently used in economics, science, and engineering. 

Regression analysis allows us to determine which variables have an effect on the subject we are studying. It helps 

us determine whether we should improve or ignore these variables. The purpose of regression analysis is to express 

the response variable as a function of the predictive variables. The duality of the fit and the accuracy of the result 

depend on the data used [14]. 
Regression analysis can be examined in different categories according to the number and linearity of the 

predictive variables: Simple and multiple regression;  linear and non-linear regression. The most common form 

of regression analysis is linear regression, it is a model that assesses the relationship between a dependent variable 

and an independent variable. Multiple linear regression analysis is essentially similar to the simple linear model, 

except that multiple independent variables are used in the model. When the model function is not linear in the 

parameters, an iterative procedure must minimize the sum of squares. This introduces many complications, which 

are summarized in differences between linear and non-linear least squares [15]. 
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2.1.2. Neuro-regression approach 

To increase the accuracy of the predictions, a technique that combines the strengths of regression analysis and 

Artificial Neural Network (ANN) is utilized in the modeling step. With this approach, all the data in our table are 

divided into training, testing, and validation, approximately 80%, 15%, and 5%. However, it is used by choosing 

an appropriate regression model. If we have only one variable, the simple regression model is used here. If there 

is more than one variable, a multiple regression model is used. If the variables contain non-linear terms, the non-

linear regression model should be used. First, in the training part, the coefficients in the regression model are 

adjusted to minimize the error between the experimental and predicted values. Then, the inconsistencies of the 

regression model in the testing part and the validation part are minimized, and estimated results are tried to be 

reached. After obtaining the appropriate values, each variable's maximum and minimum values in the given ranges 

are calculated [14, 15]. 

In the Mathematica code, some terms are used. "Length" will give you the number of data sets in the 

experiment. The sum of squares total, denoted SST, is the squared differences between the observed dependent 

variable and its mean. The sum of squares error or SSE is the summation of each element's testing and prediction 

response data. "Ybar" is the mean of the training data [15] 

2.1.3. Regression models 

In this study, different models were used to reach the appropriate values. Some of them are multiple linear 

regression, and some are non-linear regression models. The table below contains these models. 

 

Table 1. Regression models name with nomenclature – formula. [14, 15] 
 

Model Name 

 

Nomenclature 

 

Formula 
Multiple Linear L a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x4 

  
Multiple Linear 

Rational 

LR (a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x4)/(b[1] + b[2] x1 + b[3] x2 

+ b[4] x3 + b[5] x4) 
  

Second Order 

Multiple 

Nonlinear 

SON a[1] + 2 x1 a[2] + x1^2 a[3] + 2 x2 a[4] + 2 x1 x2 a[5] + x2^2 a[6] + 2 

x3 a[7] + 2 x1 x3 a[8] + 2 x2 x3 a[9] + x3^2 a[10] + 2 x4 a[11] + 2 x1 

x4 a[12] + 2 x2 x4 a[13] + 2 x3 x4 a[14] + x4^2 a[15] 

  
Second-Order 

Multiple 

Nonlinear 

Rational 

SONR (a[1] + 2 x1 a[2] + x1^2 a[3] + 2 x2 a[4] + 2 x1 x2 a[5] + x2^2 a[6] + 2 
x3 a[7] + 2 x1 x3 a[8] + 2 x2 x3 a[9] + x3^2 a[10] + 2 x4 a[11] + 2 x1 

x4 a[12] + 2 x2 x4 a[13] + 2 x3 x4 a[14] + x4^2 a[15])/(b[1] + 2 x1 b[2] 

+ x1^2 b[3] + 2 x2 b[4] + 2 x1 x2 b[5] + x2^2 b[6] + 2 x3 b[7] + 2 x1 
x3 b[8] + 2 x2 x3 b[9] + x3^2 b[10] + 2 x4 b[11] + 2 x1 x4 b[12] + 2 x2 

x4 b[13] + 2 x3 x4 b[14] + x4^2 b[15]) 

  
Third Order 

Multiple 

Nonlinear 

TON a[1] + a[2] 3 x1 + a[3] 3 x1^2 + a[4] x1^3 + a[5] 3 x2 + a[6] 6 x1 x2 + 

a[7] 3 x1^2 x2 + a[8] 3 x2^2 + a[9] 3 x1 x2^2 + a[10] x2^3 + a[11] 3 

x3 + a[12] 6 x1 x3 + a[13] 3 x1^2 x3 + a[14] 6 x2 x3 + a[15] 6 x1 x2 
x3 + a[16] 3 x2^2 x3 + a[17] 3 x3^2 + a[18] 3 x1 x3^2 + a[19] 3 x2 

x3^2 + a[20] x3^3 + a[21] 3 x4 + a[22] 6 x1 x4 + a[23] 3 x1^2 x4 + 

a[24] 6 x2 x4 + a[25] 6 x1 x2 x4 + a[26] 3 x2^2 x4 + a[27] 6 x3 x4 + 
a[28] 6 x1 x3 x4 + a[29] 6 x2 x3 x4 + a[30] 3 x3^2 x4 + a[31] 3 x4^2 + 

a[32] 3 x1 x4^2 + a[33] 3 x2 x4^2 + a[34] 3 x3 x4^2 + a[35] x4^3 

  
Fourth Order 

Multiple 

Nonlinear 

FON a[1] 1 + a[2] 4 x1 + a[3] 6 x1^2 + a[4] 4 x1^3 + a[5] x1^4 + a[6] 4 x2 + 

a[7] 12 x1 x2 + a[8] 12 x1^2 x2 + a[9] 4 x1^3 x2 + a[10] 6 x2^2 + a[11] 

12 x1 x2^2 + a[12] 6 x1^2 x2^2 + a[13] 4 x2^3 + a[14] 4 x1 x2^3 + 
a[15] x2^4 + a[16] 4 x3 + a[17] 12 x1 x3 + a[18] 12 x1^2 x3 + a[19] 4 

x1^3 x3 + a[20] 12 x2 x3 + a[21] 24 x1 x2 x3 + a[22] 12 x1^2 x2 x3 + 

a[23] 12 x2^2 x3 + a[24] 12 x1 x2^2 x3 + a[25] 4 x2^3 x3 + a[26] 6 
x3^2 + a[27] 12 x1 x3^2 + a[28] 6 x1^2 x3^2 + a[29] 12 x2 x3^2 + 

a[30] 12 x1 x2 x3^2 + a[31] 6 x2^2 x3^2 + a[32] 4 x3^3 + a[33] 4 x1 

x3^3 + a[34] 4 x2 x3^3 + x3^4 + a[35] 4 x4 + a[36] 12 x1 x4 + a[37] 
12 x1^2 x4 + a[38] 4 x1^3 x4 + a[39] 12 x2 x4 + a[40] 24 x1 x2 x4 + 

a[41] 12 x1^2 x2 x4 + a[42] 12 x2^2 x4 + a[43] 12 x1 x2^2 x4 + a[44] 

4 x2^3 x4 + a[45] 12 x3 x4 + a[46] 24 x1 x3 x4 + a[47] 12 x1^2 x3 x4 
+ a[48] 24 x2 x3 x4 + a[49] 24 x1 x2 x3 x4 + a[50] 12 x2^2 x3 x4 + 

a[51] 12 x3^2 x4 + a[52] 12 x1 x3^2 x4 + a[53] 12 x2 x3^2 x4 + a[54] 

4 x3^3 x4 + a[55] 6 x4^2 + a[56] 12 x1 x4^2 + a[57] 6 x1^2 x4^2 + 
a[58] 12 x2 x4^2 + a[59] 12 x1 x2 x4^2 + a[60] 6 x2^2 x4^2 + a[61] 12 

x3 x4^2 + a[62] 12 x1 x3 x4^2 + a[63] 12 x2 x3 x4^2 + a[64] 6 x3^2 

x4^2 + a[65] 4 x4^3 + a[66] 4 x1 x4^3 + a[67] 4 x2 x4^3 + a[67] 4 x3 
x4^3 + a[68] x4^4 
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First Order 

Trigonometric 

Multiple 

Nonlinear 

FOTN a[1] + a[2] Cos[x1] + a[3] Cos[x2] + a[4] Cos[x3] + a[5] Cos[x4] + a[6] 

Sin[x1] + a[7] Sin[x2] + a[8] Sin[x3] + a[9] Sin[x4] 

First Order 

Trigonometric 

Multiple 
Nonlinear 

Rational 

FOTNR  a[1] + a[2] Cos[x1] + a[3] Cos[x2] + a[4] Cos[x3] + a[5] Cos[x4] + 

a[6] Sin[x1] + a[7] Sin[x2] + a[8] Sin[x3] + a[9] Sin[x4])/(b[1] + b[2] 

Cos[x1] + b[3] Cos[x2] + b[4] Cos[x3] + b[5] Cos[x4] + b[6] Sin[x1] + 
b[7] Sin[x2] + b[8] Sin[x3] + b[9] Sin[x4]  

Second Order 
Trigonometric 

Multiple 

Nonlinear 

SOTN a[1] + 2 a[2] Cos[x1] + a[3] Cos[x1]^2 + 2 a[4] Cos[x2] + 2 a[5] 
Cos[x1] Cos[x2] + a[6] Cos[x2]^2 + 2 a[7] Cos[x3] + 2 a[8] Cos[x1] 

Cos[x3] + 2 a[9] Cos[x2] Cos[x3] + a[10] Cos[x3]^2 + 2 a[11] Cos[x4] 

+ 2 a[12] Cos[x1] Cos[x4] + 2 a[13] Cos[x2] Cos[x4] + 2 a[14] Cos[x3] 
Cos[x4] + a[15] Cos[x4]^2 + 2 a[16] Cos[x5] + 2 a[17] Cos[x1] Cos[x5] 

+ 2 a[18] Cos[x2] Cos[x5] + 2 a[19] Cos[x3] Cos[x5] + 2 a[20] Cos[x4] 

Cos[x5] + a[21] Cos[x5]^2 + 2 a[22] Sin[x1] + 2 a[23] Cos[x1] Sin[x1] 
+ 2 a[24] Cos[x2] Sin[x1] + 2 a[25] Cos[x3] Sin[x1] + 2 a[26] Cos[x4] 

Sin[x1] + 2 a[27] Cos[x5] Sin[x1] + a[28] Sin[x1]^2 + 2 a[29] Sin[x2] 

+ 2 a[30] Cos[x1] Sin[x2] + 2 a[31] Cos[x2] Sin[x2] + 2 a[32] Cos[x3] 
Sin[x2] + 2 a[33] Cos[x4] Sin[x2] + 2 a[34] Cos[x5] Sin[x2] + 2 a[35] 

Sin[x1] Sin[x2] + a[36] Sin[x2]^2 + 2 a[37] Sin[x3] + 2 a[38] Cos[x1] 

Sin[x3] + 2 a[39] Cos[x2] Sin[x3] + 2 a[40] Cos[x3] Sin[x3] + 2 a[41] 
Cos[x4] Sin[x3] + 2 a[42] Cos[x5] Sin[x3] + 2 a[43] Sin[x1] Sin[x3] + 

2 a[44] Sin[x2] Sin[x3] + a[45] Sin[x3]^2 + 2 a[46] Sin[x4] + 2 a[47] 

Cos[x1] Sin[x4] + 2 a[48] Cos[x2] Sin[x4] + 2 a[49] Cos[x3] Sin[x4] + 
2 a[50] Cos[x4] Sin[x4] + 2 a[51] Cos[x5] Sin[x4] + 2 a[52] Sin[x1] 

Sin[x4] + 2 a[53] Sin[x2] Sin[x4] + 2 a[54] Sin[x3] Sin[x4] + a[55] 
Sin[x4]^2 + 2 a[56] Sin[x5] + 2 a[57] Cos[x1] Sin[x5] + 2 a[58] Cos[x2] 

Sin[x5] + 2 a[59] Cos[x3] Sin[x5] + 2 a[60] Cos[x4] Sin[x5] + 2 a[61] 

Cos[x5] Sin[x5] + 2 a[62] Sin[x1] Sin[x5] + 2 a[63] Sin[x2] Sin[x5] + 
2 a[64] Sin[x3] Sin[x5] +2 a[65] Sin[x4] Sin[x5] + a[66] Sin[x5]^2  

First Order 

Logarithmic 
Multiple 

Nonlinear 

FOLN a[1] + a[2] Log[x1] + a[3] Log[x2] + a[4] Log[x3] + a[5] Log[x4] + a[6] 

Log[x5] 

Second Order 
Logarithmic 

Multiple 

Nonlinear 

SOLN a[1] + 2 a[2] Log[x1] + a[3] Log[x1]^2 + 2 a[4] Log[x2] + 2 a[5] 
Log[x1] Log[x2] + a[6] Log[x2]^2 + 2 a[7] Log[x3] + 2 a[8] Log[x1] 

Log[x3] + 2 a[9] Log[x2] Log[x3] + a[10] Log[x3]^2 + 2 a[11] Log[x4] 

+ 2 a[12] Log[x1] Log[x4] + 2 a[13] Log[x2] Log[x4] + 2 a[14] Log[x3] 
Log[x4] + a[15] Log[x4]^2 + 2 a[16] Log[x5] + 2 a[17] Log[x1] 

Log[x5] + 2 a[18] Log[x2] Log[x5] + 2 a[19] Log[x3] Log[x5] + 2 a[20] 

Log[x4] Log[x5] + a[21] Log[x5]^2 

 

2.1.4. Problem definition 

The main problem in this study is to obtain suitable results due to optimizing the objective functions used to 

increase energy efficiency. Tables 2-4 give the information about the results of surface roughness and cutting 

power of the machine, the lifetime of the machine, and constraints of design variables of objective functions, 

respectively. Surface roughness and cutting power should be minimized, and the lifetime of the machine should 

be increased. These outputs depend on some predictive variables. As a result of controlling these predictive 

variables, maximum or minimum values of outputs can be reached. These constraint (predictive) variables are 

feed rate, spindle speed, axial and radial depth of cut, and cutting speed. Output 1 (surface roughness) and output 

2 (cutting power) have the same constraint variables. These variables are feed rate, spindle speed, axial and radial 

depth of cut. The constraint variables of output 3 (lifetime of the machine) are feed rate, spindle speed, axial and 

radial depth of cut, and cutting speed. Output 1 and output 2 have 25 different data sets; Output 3 has nine different 

data sets. Therefore, appropriate data must be captured for these output values. For this purpose, at the end of the 

neuro-regression approach, the R2
training value must be greater than 0.90, the R2

testing value must be greater than 

0.85, and finally, the R2
validation value must be greater than 0.85 to fit the accurate model. If we obtain these values, 

the appropriate model is considered to have been reached. 
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Table 2. Data table of output 1 (surface roughness) and output 2 (cutting power). [2] 

 

No. 

n 

(r/min) 

vf 

(mm/min) 

ap 

(mm) 

ae 

(mm) 

Ra 

(µm) 

Power 

(kW) 

1 800 240 0.5 2 2.141 0.020 

2 800 290 1 3 2.793 0.060 

3 800 340 1.5 4 2.837 0.100 

4 800 380 2 5 3.512 0.200 

5 800 420 2.5 6 4.013 0.300 

6 1200 240 1 4 2.171 0.069 

7 1200 290 1.5 5 2.331 0.134 

8 1200 340 2 6 2.424 0.244 

9 1200 380 2.5 2 1.924 0.119 

10 1200 420 0.5 3 2.187 0.047 

11 1600 240 1.5 6 2.024 0.140 

12 1600 290 2 2 1.897 0.086 

13 1600 340 2.5 3 1.799 0.155 

14 1600 380 0.5 4 2.17 0.060 

15 1600 420 1 5 2.373 0.150 

16 2000 240 2 3 1.533 0.143 

17 2000 290 2.5 4 1.565 0.253 

18 2000 340 0.5 5 1.684 0.068 

19 2000 380 1 6 1.76 0.178 

20 2000 420 1.5 2 1.741 0.113 

21 2400 240 2.5 5 1.497 0.290 

22 2400 290 0.5 6 1.728 0.115 

23 2400 340 1 2 1.415 0.085 

24 2400 380 1.5 3 1.321 0.185 

25 800 240 0.5 2 2.141 0.020 

 

 

 

 
Table 3. Output 3 ( lifetime of machine tool )Tlife. 

 

No. 

n 

(r/min) 

vf 

(mm/min) 

ap 

(mm) 

ae 

(mm) 

Vc 

(m/s) 

Tlife 

(min) 

1 1300 120 2.5 3 0.816 80 

2 1300 140 3 6 0.816 62 

3 1300 180 3.5 9 0.816 53 

4 1700 120 3 9 1.068 49 

5 1700 140 3.5 3 1.068 55 

6 1700 180 2.5 6 1.068 50 

7 2100 120 3.5 6 1.319 20 

8 2100 140 2.5 9 1.319 30 

9 2100 180 3 3 1.319 25 
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Table 4. Constraints of design variables. 

Constraints of Design Variables 

For Output 1 (Surface Roughness) and 

Output 3 (Cutting Power) 

Constraints of Design Variables 

For Output 3 (Lifetime of Machine) 

800 < Spindle Rotation Speed (n) < 2400 1300 < Spindle Rotation Speed (n) < 2100 

240 < Feed Rate (vf) < 420 120 < Feed Rate (vf) < 180 

0.5 < Radial Cut Depth (ap) < 2.5 2.5 < Radial Cut Depth (ap) < 3.5 

2 < Axial Cut Depth (ae) < 6 3 < Axial Cut Depth (ae) < 9 

 0.816 < Cutting Speed (Vc) < 1.319 

 

2.1.4.1. Optimization process of problem 

The neuro-regression approach should be used as a first step. The data sets of the outputs should be divided 

into 80%, 15%, and 5% as training, testing, and validation randomly. Then the appropriate regression models 

should be used respectively. In this study, non-linear regression modeling was used for three different outputs. 

The suitable models for outputs 1-3 are the second-order non-linear, third-order non-linear, and second-order 

trigonometric non-linear regression functions. Then, the regression coefficients were calculated in line with the 

regression analysis. Mathematica’s NonlinearModelFit solver was applied to each model. Some values were 

obtained as a result of the applied neuro-regression approach. Then, the maximum or minimum desired values of 

the objective functions were calculated. The modified versions of the Nelder-Mead algorithm have been 

thoroughly tested on output 1 and output 2 to minimize their results and output 3 to maximize its result more and 

shown in different scenarios. 

3. Result and Discussion 

In this study, the neuro-regression approach was used. Different trials have been made to achieve appropriate 

results. Moreover, as a result of these trials, suitable models have been reached in order to reach the minimum 

and maximum values of the objective functions. Inputs and outputs are taken from tables as experimental data 

sets. It is known that constraint variables directly affect the results of the objective function. In addition to this, 

appropriate values were tried to be reached as a result of each model. Our first output, the second order non-linear 

regression model, which gives the most relevant results among the different models, was found suitable and 

applied for the surface roughness value. As a result of different models applied for our second output, cutting 

power, the third-order non-linear regression model gave appropriate results. Minimum values have been found 

for these two objective function values considering different scenarios.  

Table 5. Results of output 1. 

Model of Output 1 R2
training R2

testing R2
validation Maximum Minimum 

SON 0.997314 0.927675 0.883081 4.83422 -2.97059 

 

Table 6. Results of output 2. 

Model of Output 2 R2
training R2

testing R2
validation Maximum Minimum 

TON 1 0.90423 0.942348 0.488696 0.0275759 

 

Table 7. Results of output 3. 

Model of Output 3 R2
training R2

testing R2
validation Maximum Minimum 

L 1 0.1505 0.646551 80.2801 15.1206 

SON 1 0.7819 -0.08065 80.6516 15.1206 

TON 1 0.2675 -1.09194 92.2776 3.67565 

FOLN 1 -0.3127 -0.02565 85.6958 0.225738 

SOLN 1 0.6429 0.619779 88.2654 8.67709 

FOTN 1 0.0351 0.708655 87.8171 -0.536101 

SOTN 1 -1.4135 0.768006 102.188 9.56213 

HYBRID 1 0.4996 0.996241 110.791 2.43927 
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Eight different models have been implemented for the third output, the lifetime of the machine. Due to the limited 

data set of the objective function, relevant results could not be reached. For this reason, the second-order 

trigonometric non-linear regression model, which is the modeling that gives the closest results we want to obtain, 

was used. The following tables show the appropriate models for objective functions and their resulting values, 

R2
training, R2

testing, R2
validation.Results are maximized and minimized for the best models. As a result of these 

processes, suitable design variables were determined to bring each output to appropriate values. For each model, 

the design variables required to achieve optimum results are given in Table 8-10. 

Table 8. Design variables values for output 1. 

Model for Output 1 Design Variables Values for Nminimize 

SON 
    

 

Table 9. Design variables values for output 2. 

Model for Output 2 Design Variables Values for Nminimize 

TON     

 

Table 10. Design variables values for output 3. 

Model for Output 3 Design Variables Values for Nminimize 

SOTLN 
  

 
  

 

Table 11. Results of optimization based on Modified Nelder-Mead algorithm for output 1. 

Model for 

Output 1 

Scenario 

Number 

Algorithm 

options 
Outputs 

Design 

Variables 

 

 

 

SON 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

 

 

 

 

Default -2.97059 ,  

Random Seed → 200 -2.97059  

Contract Ratio → 0.10 -2.97059  

Reflect Ratio → 2 -2.97059  

2 

 

 

 

 

 

 

Default -1.04013  

Random Seed → 200 -1.04013  

Contract Ratio → 0.10 -1.04013  

Reflect Ratio → 2 -1.04013 , , ,  

3 

 

 

 

 

 

Default 
 

,  

,  

Random Seed → 50 
 

, , 

,  

Contract Ratio → 0.9 
 

, , 

,  

Reflect Ratio → 2 
 

,  

,  
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Table 12. Results of optimization based on Modified Nelder-Mead algorithm for output 2. 

Model for 

Output 2 

Scenario 

Number 

Algorithm 

options 
Outputs 

Design 

Variables 

 

 

 

 

 

 

 

 

 

 

 

TON 

 

 

 

 

1 

 

 

 

 

 

Default 
     

Random Seed → 111 
     

Contract Ratio → 0.9 
    

Reflect Ratio → 2 
    

2 

 

 

 

 

 
 

 

Default 
     

Random Seed → 111 
    

Contract Ratio → 0.7 
    

Reflect Ratio → 2 
    

3 

 

 

 

 

 

 

Default 
 

  

  

Random Seed → 50 
 

  

  

Contract Ratio → 0.5 
 

  

  

Reflect Ratio → 1 
 

  

   

 

 

 

 

Table 13. Results of optimization based on Modified Nelder-Mead algorithm for output 3. 

Model for Output 3 
Scenario 

Number 

Algorithm 

options 
Outputs 

Design 

Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

Default 110.791  

 

Random Seed → 111 110.791  

 

Shrink Ratio → 1 110.791  

 

Expand Ratio → 3 110.791  

 
 

2 

 

 

 

 

 

 

 
 

Default 98.3408  

 

Random Seed → 300 98.3534  

 

Shrink Ratio → 3 98.3534  

 

Expand Ratio → 3 98.3534  

 

4. Conclusion 

This study aimed to increase the machine's life span while minimizing the surface roughness and cutting power. 

There were four different variables and 25 data sets for surface roughness and cutting power. For the life span, 

there were five different variables and 9 data sets. The aim here was to reach a suitable regression model that can 

give us the necessary optimum output values depending on the variables. The neuro-regression approach obtained 

an appropriate regression model so that the R2
training value must be greater than 0.90, the R2

testing value must be 

greater than 0.85, and finally, the R2
validation value must be greater than 0.85. For output 1 (surface roughness), 

these values were obtained conveniently as 0.997314, 0.927675, and 0.883081 for R2
training, R2

testing, and R2
validation,  

respevtively. As the desired values were found to be suitable, the second-order non-linear regression model was 
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used. After the optimization, the minimum value was found -2.97059.  

For output 2 (cutting power), these values were obtained as R2
training is equal to 1, R2

testing equals 0.90423, and 

R2
validation equals 0.94235. As the desired values were found to be suitable, the third-order non-linear regression 

model was used. After the optimization process , the minimum value was found as 0.0275759. For output 3 

(lifetime of the machine), these values were obtained as R2
training is equal to 1, R2

testing is equal to 0.4996, and 

R2
validation is equal to 0.996241. An accurate model could not be reached due to the scarcity of a number of data 

sets for output 3. Instead, a model was used in which the values closer to the desired values are provided. As the 

desired values were found to be closer, the second-order trigonometric non-linear regression model was used. 

After the optimization, the maximum value was found as 110.791. At the end of the study, some options of the 

direct search method to maximize and minimize results were applied. After applied some scenarios, it has been 

seen that the third scenario is more suitable for output 1 and output 2, and it has been seen that the first scenario 

is more suitable for output 3.  
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APPENDIX 

 
Model Name 

For Output 1  

Model 

 

SON 

−6.509885663403495 + 0.005618299339813021x1 − 3.177186608513434 × 10−7x12 + 0.044188550823988065x2 − 0.00001925906852920848x1x2 − 0.000045373242358123256x22 − 4.828733842049232x3 + 0.0013505663904117497x1x3 +
0.012871712805669044x2x3 − 0.5974390681670687x32 + 0.3084440279573145x4 − 0.0001638361563178854x1x4 + 0.0005907347821132539x2x4 − 0.053084237534413624x3x4 − 0.009306210170207618x42  

 

Model Name 

For Output 2 

Model 

 

 
TON 

0.0873885736338913 + 0.00002303413484075954x1 − 2.472633303621079 × 10−8x12 + 1.901217799089097 × 10−11x13 − 0.00011773726012124803x2 + 9.271486175818838 × 10−9x1x2 − 1.709038139214161 × 10−10x12x2 −
4.579728866634524 × 10−7x22 + 9.684495546735244 × 10−11x1x22 + 1.930501597745149 × 10−9x23 − 0.020880825356986286x3 + 0.000021022527585904126x1x3 − 3.431749926300749 × 10−9x12x3 − 0.00006880981775731341x2x3 +
1.2381322305199 × 10−7x1x2x3 + 2.531771100982355 × 10−7x22x3 − 0.01704700883302848x32 − 0.000006308008574305507x1x32 + 0.000011876273887436986x2x32 + 0.0037771244976612574x33 + 0.0000795324182137095x4 +
0.000002339053662878461x1x4 + 3.547220566752366 × 10−9x12x4 − 0.00004285498644654708x2x4 + 3.68911641138247 × 10−8x1x2x4 − 3.11930870044312 × 10−7x22x4 − 0.003852659541721482x3x4 +
0.000001461440134025731x1x3x4 + 0.000009925109721374419x2x3x4− 0.0011541084133987402x32x4 + 0.0015191113584700662x42 − 0.000002448557820791596x1x42 + 0.0000360448905660144x2x42 +
0.0024467728436591216x3x42 − 0.001172013876941x43  

 

Model Name 

For Output 3 

Model 

L 198.69752228249897 − 0.021872444963457895x1 − 0.2098362545789043x2 − 14.689949495039151x3 + 0.046687461628923115x4 − 34.924242558607936x5  

SON 64.64181129905197  + 0.014496276936404161x1 − 0.000006176621808466241x12 + 0.12513812861414014x2 − 0.000045885621883926725x1x2 − 0.0004157216592296709x22 + 10.266290320622979x3 − 0.0014366289458181746x1x3 −
0.01944343400322525x2x3 − 0.34088885496069x32 + 3.1801123453702664x4 + 0.000744889105442118x1x4 − 0.004855967937663978x2x4 − 0.5082296220692951x3x4 − 0.4210065345862815x42 + 23.04638571573809x5 −
0.009850257650718444x1x5 − 0.07317520758202213x2x5 − 2.2979404074579386x3x5 + 1.1871412946005615x4x5 − 15.708776136010252x52  

TON 29.893416052350194 + 0.009998210925432327x1 + 9.376243055860865 × 10−7x12 − 1.618567835027597 × 10−9x13 + 0.08706345078529117x2 + 0.000012266608043995348x1x2 − 1.382244525610618 × 10−8x12x2 +
0.00009893619374389213x22 − 1.169847073579434 × 10−7x1x22 − 0.000001049713657160243x23 + 6.749036088653819x3 + 0.0016134269352232533x1x3 − 5.231257594690665 × 10−7x12x3 + 0.011705349758856239x2x3 −
0.000004647476975322477x1x2x3 − 0.00004890410134454004x22x3 + 1.0986152072047146x32 − 0.00004068640862146888x1x32 − 0.0013582576962779232x2x32 + 0.033642863393302753x33 + 1.9292715836575525x4 +
0.0007827780599396093x1x4 + 6.157699555843764 × 10−8x12x4 + 0.0027208841720602426x2x4 − 4.687682771145666 × 10−7x1x2x4 − 0.000016309169038364794x22x4 + 0.17863089390260406x3x4 −
0.000016366069153634542x1x3x4 − 0.0010496122326251554x2x3x4 − 0.05254895658354053x32x4 − 0.0493071567430364x42 − 0.0000392236769705405x1x42 − 0.0006867757799132519x2x42 − 0.04433749007359964x3x42 −
0.023347007155944934x43 + 15.904266395356187x5 + 0.0014855044925990678x1x5 − 0.000002579588672612522x12x5 + 0.01947007270661679x2x5 − 0.000022031814737786293x1x2x5 − 0.000186455414983069x22x5 +
2.564600271016065x3x5 − 0.0008350400272385637x1x3x5 − 0.007417199206766824x2x3x5 − 0.06604840572904243x32x5 + 1.2459646316622992x4x5 + 0.00009763750207265046x1x4x5 − 0.000746984439577417x2x4x5 −
0.026183754379352983x3x4x5 − 0.062378910659629486x42x5 + 2.3534753013457177x52 − 0.004111205141820419x1x52 − 0.03511677644440617x2x52 − 1.332922694384214x3x52 + 0.1548134057316448x4x52 − 6.552197319709215x53  

FOLN 45.90174309425046  + 6.166940354629804Log[x1] + 6.75342737350235Log[x2] − 58.46700292964906Log[x3] − 9.162245880230312Log[x4] − 104.1950039454285Log[x5]  
SOLN 13.521477710151082 + 1.8019277442891868Log[x1] + 0.23921348829604344Log[x1]2 + 2.272941128627296Log[x2] + 0.30268754648928725Log[x1]Log[x2] + 0.37330579473965075Log[x2]2 + 3.2634283187566187Log[x3] +

0.4323933826400694Log[x1]Log[x3] + 0.2944387382572189Log[x2]Log[x3] − 5.581917444517096Log[x3]2 + 0.36856740788861364Log[x4] + 0.07472954482071655Log[x1]Log[x4] − 0.10582033908667163Log[x2]Log[x4] −
5.31571810653157Log[x3]Log[x4] − 3.6916571182915106Log[x4]2 − 50.98377870921349Log[x5] − 6.966087885114664Log[x1]Log[x5] − 8.0553545871115Log[x2]Log[x5] − 15.365463543423846Log[x3]Log[x5] +
37.66337831228693Log[x4]Log[x5] − 107.59435628174604Log[x5]2  

FOTN 10.64081282241565  + 5.034370478891869Cos[x1] + 5.257553787711318Cos[x2] − 10.820874858752916Cos[x3] − 2.6575799620321767Cos[x4] + 23.40478067680203Cos[x5] − 17.964586796717672Sin[x1] − 0.11024584068657649Sin[x2] +
23.65088730257444Sin[x3] + 5.42737821990518Sin[x4] + 11.4753228Sin[x5]  

SOTN 2.1268778951890837 + 1.0817233708633547Cos[x1] + 3.6445800900623873Cos[x1]2 + 0.3880832315407555Cos[x2] + 3.304927252Cos[x1]Cos[x2] + 5.2056Cos[x2]2 − 2.261725936207216Cos[x3] − 1.325791Cos[x1]Cos[x3] −
0.2787001Cos[x2]Cos[x3] + 2.335767Cos[x3]2 − 0.9418334606330854Cos[x4] − 3.33052Cos[x1]Cos[x4] − 2.220531592Cos[x2]Cos[x4] + 1.0549779Cos[x3]Cos[x4] + 2.3010Cos[x4]2 + 4.175128Cos[x5] + 2.51310Cos[x1]Cos[x5] +
1.486520Cos[x2]Cos[x5] − 4.646382Cos[x3]Cos[x5] − 2.399166459Cos[x4]Cos[x5] + 6.50245Cos[x5]2 − 2.1200571Sin[x1] − 2.8746Cos[x1]Sin[x1] − 1.4208Cos[x2]Sin[x1] + 1.982694Cos[x3]Sin[x1] + 1.0817273Cos[x4]Sin[x1] −
6.309403629Cos[x5]Sin[x1] + 2.2206202Sin[x1]2 − 0.5198319Sin[x2] + 2.2207702Cos[x1]Sin[x2] + 4.4370Cos[x2]Sin[x2] + 0.64428Cos[x3]Sin[x2] − 1.334958Cos[x4]Sin[x2] − 0.402099036Cos[x5]Sin[x2] − 0.2044859Sin[x1]Sin[x2] +
3.1245758Sin[x2]2 + 3.9929145Sin[x3] + 0.3146275Cos[x1]Sin[x3] + 3.3513020Cos[x2]Sin[x3] − 4.5746521Cos[x3]Sin[x3] − 0.7033Cos[x4]Sin[x3] + 6.52852Cos[x5]Sin[x3] − 6.86444229Sin[x1]Sin[x3] + 1.415727Sin[x2]Sin[x3] +
9.3460Sin[x3]2 + 2.032636Sin[x4] + 8.4765371Cos[x1]Sin[x4] + 4.2485003Cos[x2]Sin[x4] − 2.4465862𝐶os[x3]Sin[x4] − 7.4238472Cos[x4]Sin[x4] + 4.7515586Cos[x5]Sin[x4] − 4.00293Sin[x1]Sin[x4] + 1.83231Sin[x2]Sin[x4] −
5.021096Sin[x3]Sin[x4] + 15.25544Sin[x4]2 + 2.407062Sin[x5] + 1.02498Cos[x1]Sin[x5] + 0.18563Cos[x2]Sin[x5] − 2.50865Cos[x3]Sin[x5] − 0.88696Cos[x4]Sin[x5] + 5.3772Cos[x5]Sin[x5] − 2.033612Sin[x1]Sin[x5] − 0.760593Sin[x2]Sin[x5] +
4.974744Sin[x3]Sin[x5] + 1.88647Sin[x4]Sin[x5] + 2.5913Sin[x5]2  

HYBRID 16.59202757244946  + 0.03173224x2 − 0.0001105735x22 + 2.6612967x3 − 0.004938x2x3 − 0.0779593x32 + 0.50618x4 − 0.0030x2x4 − 0.2226835641837039x3x4 − 0.163622x42 + 6.661x5 − 0.0145x2x5 − 0.2780144954732378x3x5 +
0.051825641727912805x4x5 − 2.668534322994205x52 + 15.996592242917572Cos[x1] − 0.008617296752240735x2Cos[x1] + 2.774913789008801x3Cos[x1] − 2.18612688614873x4Cos[x1] + 7.627534289932837x5Cos[x1] +
60.149392252627514Cos[x1]2  

 

 


