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Abstract 

This study proposes an appropriate optimization model for determining a new composite material's mechanical 

properties by neuro-regression analysis. This new composite material is obtained by combining hemp and 

polypropylene fibers. It was developed for the sector of upholstered furniture. First, different multiple regression 

models have been tried for input and output values. The R2
training, R2

testing, R2
validation, and minimum, maximum 

values were determined for each model. Then, the stochastic optimization approach is used to predict and optimize 

the mechanical properties of the new biocomposite system. Finally, multiple non-linear models determine the 

maximum tensile strength and elongation achievable within the constraints. It is found what the optimum input 

parameters are needed to achieve maximum tensile strength and elongation at break values of the material and 

that the type of scenario and the choice of constraints for design variables are critical in the optimization problem. 
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1. Introductıon 

A composite material is made up of two materials that have distinct physical and chemical properties. When 

they are combined, they form a specialized material to perform a specific function, such as becoming stronger, 

lighter, or more resistant to electricity. One constituent is called the reinforcing phase, and the one in which it is 

embedded is called the matrix [1]. The matrix is reinforced with an engineered, man-made, or natural fiber, 

particle, or flake form reinforcing material. The matrix covers the fibers from environmental and exterior damage 

and transmits the load between the fibers. In turn, the fibers yield strength and stiffness to the matrix, preventing 

cracks and fractures. 

Ciupan et al. [2] has studied the use of artificial neural networks (ANN) to predict certain mechanical properties 

of new composite material. The material is intended to be used to construct structural elements of upholstered 

furniture (chairs, armchairs, sofas) in place of wood. Ciupan and his group presented that optimizing these 

element's shapes using numerical simulation necessitates knowledge of the material's mechanical properties. 

These properties consist of tensile strength, elongation at break, Young's modulus, and Poisson's ratio. They 

conducted tests on the material samples and aimed to investigate how far ANN can predict the tensile strength 

and elongation at the break of the previously discussed composite material. Eventually, they concluded these 

results: In the case of elongation at break, the degree of fit between experimentally predicted output variables and 

those simulated using the ANN is greater than in the case of tensile strength. Throughout the recall phase, the 

outputs in group 2 represent the average values of the outputs used for training. For example, the simulated output 

(σM, ɛM) = (25.03, 3.13) that correlates to the input (1,0) is equivalent to the average of the outputs in the training 

set that correlates to the same input (1,0) and which were experimentally measured.  

A study about the standard test methods for polymer matrix composite materials [3] defines the in-plane tensile 

properties of polymer matrix composite materials reinforced with high-modulus fibers. A mechanical testing 

machine grips a thin flat strip of material with a constant rectangular cross-section and monotonically loads it in 

tension while recording load. This test method is intended to generate tensile property data for material 

specifications, R&D, quality assurance, and structural design and analysis. This study used an interlaboratory 

testing program in which nine different laboratories tested an average of five specimens from six different 

materials and lay-up configurations. This study produced precision statistics for tensile strength, modulus, and 

failure strain. The data was all normalized concerning an average thickness. The study states that the values of 

Sr/X and SR/X exemplify the repeatability and the reproducibility coefficients of variation, respectively. These 

averages allow for a relative comparison of the tension test parameters' repeatability (within laboratory precision) 

and reproducibility (between laboratory precision). 

Traditional modeling methods, such as response surface methodology, do not have the same advantages as 

neuro-regression analysis. Based on only the data, neuro-regression analysis can be used to model the behavior 

of complex systems [4]. On the other hand, RSM is based on model structure assumptions and requires coefficient 

estimation [5-9]. To maximize or minimize objective functions, stochastic optimization methods are used. 

Stochastic optimization is crucial in the analysis, design, and performance of modern systems [10].  
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The main goal is to use Neuro-Regression steps to create optimization models for determining the mechanical 

properties of new composite material. In practical experiments, it is critical to estimate accurate values expressed 

in tensile strength and elongation. The stochastic optimization approach is used to predict and optimize the 

mechanical properties of a material. Multiple non-linear models are used to determine the maximum tensile 

strength and elongation achievable within the constraints. 

 

2. Materials and Method 

 

2.1. Modeling 

In the modeling phase, a hybrid method is used to assess the accuracy of the predictions, which integrates the 

benefits of regression analysis and artificial neural networks. In this method, all of the data is divided into three 

sets, each containing 80%, 15%, and 5% of the total data, with the first portion used for training, the second for 

testing, and the third for validation. The objective of the training procedure is to minimize the error between the 

experimental and predicted values by adjusting the regression models and their coefficients, as shown in Table 1. 

The prediction results are then obtained by minimizing the effects of regression model discrepancies during the 

testing step. First, this procedure yields information about the prediction capacity of the candidate models. Second, 

the boundedness of the candidate models for prescribed values must be checked to determine whether or not the 

model is realistic. In this case, the maximum and minimum values of the models in the given interval for each 

design variable are calculated after obtaining the appropriate models in terms of R2
training, R2

testing, R2
validation. This 

procedure determines whether the chosen models meet the numerous criteria required for reality [11]. 

The logarithm cannot be used in the modeling of this study because some of the inputs take the value of 0. 

Also, it is not easy to understand some variables because they have a non-linear relationship. So, the hybrid models 

shown in Table 2 are tried to obtain better 𝑅2 values. 

 

2.2. Optimization 

A structure's optimization can be defined as achieving the best designs by reducing the specified single or 

multi-objective that corresponds to all constraints. There are two kinds of optimization techniques: traditional and 

nontraditional. Traditional optimization techniques, such as constrained variation and Lagrange multipliers, only 

apply to continuous and differentiable functions. Traditional optimization techniques cannot be used to solve 

engineering design problems due to their specificity. Stochastic optimization methods such as genetic algorithms 

(GA), particle swarm optimization (PS), and simulated annealing (SA) are advantageous in these cases. Because 

of the features of stochastic methods, correct solutions cannot be achieved, and using multiple methods with 

different phenomenological principles for the same optimization problem increases the solution's reliability [8]. 

This study's optimization scenarios include the following challenges: multiple non-linear objective functions, 

objective functions having many local extremum points, mixed-integer(discrete)- continuous nature of the design 

variables, non-linear constraints. To solve these optimization scenarios, Nelder-Mead Algorithm, Differential 

Evolution Algorithm, Simulated Annealing Algorithm, and Random Search Algorithm have been selected. For 

more information, please see the reference articles given in the subsections.  

 

Table 1. Multiple regression model types [11] 

Model Name Nomenclature Formula 

Multiple linear L a[1] + x1a[2] + x2 a[3] 

 

Multiple linear rational LR (a[1] + x1 a[2] + x2 a[3] )/ (b[1] + x1b[2] + x2 b[3] ) 
 

Second order multiple nonlinear SON a[1] + x1 a[2] + x1
2 a[3]+ x2 a[4]  + x1 x2 a[5]+ x2

2 a[6] 

 

Second order multiple non-linear 

rational 

 

SONR 

 

(a[1] + x1a[2] + x1
2a[3] + x2a[4] + x1x2a[5] + x2

2a[6]) / b[1] + x1b[2] + 
x1

2b[3] + x2b[4] + x1x2b[5] + x2
2b[6]) 

 

Third order multiple non-linear TON a[1] + x1 a[2] + x1
2a[3]  + x1

3a[4]+ x2a[5] + x1 x2a[6]+ x1
2 x2a[7] + x2

2 

a[8] + x1 x2
2 a[9] + x2

3 a[10] 

 

First order trigonometric multiple 

non-linear 

FOTN a[1] + a[2] Cos[x1] + a[3] Cos[x2] + a[4] Cos[x3] + a[5] Sin[x1] + a[6] 
Sin[x2] + a[7] Sin[x3] 
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First order trigonometric multiple 

non-linear rational 

FOTNR  (a[1] + a[2] Cos[x1] +a[3] Cos[x2]  + a[4] Sin[x1] +a[5] Sin[x2] ) / (b[1] 

+ b[2] Cos[x1] + b[3] Cos[x2] + b[4] Sin[x1] + b[5] Sin[x2]) 

 

Second order trigonometric multiple 

non-linear 

SOTN a[1] + a[2] Cos[x1] + a[3] Cos[x1]
2 + a[4] Cos[x2] + a[5] Cos[x1] 

Cos[x2] + a[6] Cos[x2]
2 + a[7] Cos[x3] + a[8] Sin[x1] + a[9] Cos[x1] 

Sin[x1] + a[10] Cos[x2] Sin[x1] + a[11] Sin[x1]
2 + a[12] Sin[x2] + a[13] 

Cos[x1] Sin[x2] + a[14] Cos[x2] Sin[x2] + a[15] Sin[x1] Sin[x2] + a[16] 
Sin[x2]

2  

 

Second order trigonometric multiple 

non-linear rational 

SOTNR (a[1] + a[2] Cos[x1] + a[3] Cos[x1]
2 + a[4] Cos[x2] + a[5] Cos[x1] 

Cos[x2] + a[6] Cos[x2]
2 + a[7] Sin[x1] + a[8] Cos[x1] Sin[x1] + a[9] 

Cos[x2] Sin[x1] + a[10] Sin[x1]
2  + a[11] Sin[x2] + a[12] Cos[x1] Sin[x2] 

+ a[13] Cos[x2] Sin[x2] + a[14] Sin[x1] Sin[x2] + a[15] Sin[x2]
2) / (b[1] 

+ b[2] Cos[x1] + b[3] Cos[x1]
2 + b[4] Cos[x2] + b[5] Cos[x1] Cos[x2] + 

b[6] Cos[x2]
2 + b[7] Sin[x1] + b[8] Cos[x1] Sin[x1] + b[9] Cos[x2] 

Sin[x1] + b[10] Sin[x1]
2 + b[11] Sin[x2] + b[12] Cos[x1] Sin[x2] + b[13] 

Cos[x2] Sin[x2] + b[14] Sin[x1] Sin[x2]  + b[15] Sin[x2]
2 ) 

 

First order logarithmic multiple 

nonlinear 

FOLN  a[1]+ a[2] Log[x1]+ a[3]Log[x2]  

First order logarithmic multiple non-

linear rational 

FOLNR (a[1] + a[2] Log[x1] + a[3] Log[x2]) / (b[1] + b[2] Log[x1] +  b[3] 

Log[x2]) 
 

Second order logarithmic multiple 

non-linear 

SOLN a[1] + a[2] Log[x1] + a[3] Log[x1]
2 + a[4] Log[x2] +a[5] Log[x1] 

Log[x2] +  a[6] Log[x2]
2   

 

Second order logarithmic multiple 

non-linear rational 

SOLNR 3(a[1] +a[2] Log[x1] + a[3] Log[x1]
2 + a[4] Log[x2] +  a[5] Log[x1] 

Log[x2] + a[6] Log[x2]
2) / (b[1] + b[2] Log[x1] + b[3] Log[x1]

2 + b[4] 
Log[x2]+ b[5] Log[x1] Log[x2] + b[6] Log[x2]

2) 

 

Table 2. Hybrid models 

Model Name Nomenclature Formula 

Hybrid H1 a[1] + 2 x1 a[2] + [x1] 
2 a[3] + 2 x2 a[4] + 2 x1 

x2 a[5] +[x2]2 a[6] + a[7] Cos[x1] + a[8] 

Cos[x1] 
2 + a[9] Cos[x2] + a[10] Cos[x1] 

Cos[x2] + a[11] Cos[x2]
2 

 

Hybrid H2 a[1] + x1 a[2] + x1
5 a[3] + x1

3 a[4] + 7x2 a[5]+ 

x1x2 a[6] +x1
4x2 a[7] + x2

6 a[8] + 12 x1 x2
2 a[9] 

+ x2
5 a[10]  

 

2.2.1  Nelder-mead algorithm 

The Nelder–Mead optimization algorithm is one of the most basic direct search methods. As a result, it is not 

necessary any derivative knowledge and begins with simplex to minimize the function. The iteration continues 

until the simplex becomes flat. This means that the function's resulting value is nearly identical at all vertices. The 

Nelder-Mead algorithm's iteration steps are ordering, centroid, and transformation [4]. 
 

2.2.2  Differential evolution algorithm 
Differential evolution algorithm is one of the appropriate stochastic optimization methods. The differential 

evolution algorithm's productive parameters are population size, crossover, and scaling factor. Thus, it deals with 

a population of solutions rather than iterating over them. Although it does not satisfy the global optimum points 

for all optimization problems, the differential evolution algorithm is proposed in the literature to be robust and 

efficient [11]. 

 

2.2.3 Simulated annealing algorithm 
The simulated annealing algorithm is another common search method that is based on the physical annealing 

of metal. During the melting process, the material shifts to a lower energy state and becomes tougher. Because of 

the algorithm's inherent structure, it is more effective at determining the global optimum. In addition, it can solve 

optimization problems that are continuous, mixed-integer, or discrete [12]. 

 

2.2.4 Random search algorithm 
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At this stage, the traditional random search algorithm employs a local optimization method from each starting 

point to approach a local extremum point. The proposed version of the algorithm includes some booster 

subroutines such as the conjugate gradient, principal axis, Levenberg Marquardt, Newton, QuasiNewton, and non-

linear interior-point method in the localization of the values of all variables for the objective function. This step 

evaluates the fitness function with symbolic variables, and the procedure is repeated several times. [12]. 

 
2.3. Problem Definition 

The appropriate model for determining the mechanical properties of new composite material is arranged by 

employing neuro-regression analysis. 

• The design variables, where x1: Layout of the layers, x2: Angle of the tensile (°) depicted in Table 3, is 

the data referenced from the main study.  

• 11 candidate functional constructs have been suggested to model the experimental data of new 

composite material have been tested for the appropriate ones in terms of R2
training, R2

testing, R2
validation values, 

and then boundedness of the functions is also checked. 

• Using the appropriate models, two distinct optimization strategies were implemented, and four different 

direct search approaches were used to solve these problems. 

 

2.4. Optimization Scenarios 

Scenario 1 

In this optimization problem, the objective functions define tensile strength and elongation of the material, the 

design variables are all supposed to be real numbers, and the search space is infinite. For this case, 1 < layout of 

the layers < 2 and 0 < angle of the tensile < 90. The main goal is to maximize the tensile strength and the elongation 

of the material. This approach can also be used to calculate the limits of the objective function. 

 

Table 3.  Tensile strength (Mpa),σM and elongation at break (%), ɛM of the new composite material prepared by different 

layout of the layers and angle of the tensile (°) [2] 

No. Layout of the 

layers 

Angle of the 

tensile (°) 

Tensile strength 

(Mpa), σM 

Elongation at break 

(%), ɛM 

1 1 0 19.90 3.01 

2 1 0 19.91 3.20 

3 1 0 22.00 2.65 

4 1 0 23.20 3.40 

5 1 0 23.50 2.74 

6 1 0 24.20 3.23 

7 1 0 25.40 3.35 

8 1 0 26.30 3.44 

9 1 45 13.50 2.58 

10 1 45 14.70 2.41 

11 1 45 14.75 2.63 

12 1 45 15.85 3.82 

13 1 45 16.60 3.65 

14 1 45 17.10 2.62 

15 1 45 17.30 3.44 

16 1 45 17.30 3.44 

17 1 45 17.30 3.44 

18 1 45 17.30 3.44 

19 1 45 17.30 3.44 

20 1 45 17.30 3.44 

21 1 45 17.30 3.44 

22 1 45 17.30 3.44 

23 1 45 17.30 3.44 

24 2 0 12.00 2.35 

25 2 0 13.30 1.68 

26 2 0 13.30 1.68 

27 2 0 13.30 1.68 

28 2 0 13.30 1.68 

29 2 0 13.30 1.68 

30 2 0 13.30 1.68 

31 2 45 18.50 2.30 

32 2 45 20.20 3.06 
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33 2 45 20.20 3.06 

34 2 45 20.20 3.06 

35 2 45 20.20 3.06 

36 2 45 20.20 3.06 

37 2 45 20.20 3.06 

38 2 45 20.20 3.06 

39 2 45 20.20 3.06 

40 2 45 20.20 3.06 

41 2 45 20.20 3.06 

42 2 45 20.20 3.06 

43 2 45 20.20 3.06 

44 2 45 20.20 3.06 

45 2 90 17.40 2.88 

46 2 90 19.50 3.62 

 

Scenario 2 

In addition to knowledge learned from scenario 1, a more applicable problem case must be introduced. For 

this reason, a new optimization problem is defined, which considers the maximization of the tensile strength and 

the elongation of the material. All design variables are presumed to be real numbers at the intervals: 1 < layout of 

the layers < 2 and 0 < angle of the tensile < 90. Moreover, to examine constructional and experimental constraints 

{strength, elongation} ∈ integers are appropriate. 

 

3. Result and Discussion 

In this study, 11 several regression models (Table 1) with two parameters have been tested for two outputs, 

and the results are listed in Table 4 and 5 in order to understand the model's capability to explain the process by 

estimating R2
training, R2

testing, R2
validation values for various regression models and the model’s functional limitation by 

estimating the maximum and minimum values created by the respective model. 

In Table 4, the suitability of the candidate models in terms of training, testing and validation coefficients, and 

boundedness, the following conclusions were made: Training coefficients of all models are quite high (>0.97) 

while the test and validation coefficients are very low (<0 & <0.77 respectively) for L and FOTN models. In 

addition, the testing and validation values of the LR model are not much but low (<85 both of them), so the LR 

model can not provide the appropriate model too. Therefore, 11 usable model in terms of fit capabilities at the 

first stage falls to 8. Furthermore, as previously stated, It is anticipated to satisfy the boundedness criterion for use 

in model optimization. From this point of view, models SON, TON, SOTN, and H2 are also not suitable. As a 

result, models SONR, FOTNR, SOTNR, and H1 satisfy all the desired criteria and are also regarded as more 

realistic. The limitations of the models: for SONR is -9.52x10
13 – 2.19x10

15, for FOTNR is -3.26x10
15 – 1.64x10

14, 

for SOTNR is -11.76 – 26.24 and for H1 is -19.09 – 29.11. Therefore, it was concluded that the H1 model function 

best describes the "tensile strength" parameter. 

A similar explanation can be made for Table 5: While 11 models may be suitable for training and testing 

coefficients for the "elongation at break," L, FOTN, FOTNR, SOTN, SOTNR, and H1 models are not available 

in terms of the third criterion, boundedness. Except for the three criteria given above, these five models, when it 

is discussed which one is more realistic, the H2 model in terms of simplicity, value range, and fit capabilities is 

more suitable than other models. Furthermore, alternative formulations such as LR, SON, SONR, and TON are 

available for use because they perform similarly. 

Table 4. Results of the Neuro-regression models for the tensile strength 
Models R2

training R2
testing R2

validation Max (MPa) Min (MPa) 

L1 0.97 −0.66 0.038 19.34 17.37 

LR1 0.99 0.72 0.77 18.20 13.31 

SON1 0.99 0.95 0.90 22.88 1.73 

SONR1 0.99 0.95 0.90 2.19 × 1015 −9.52 × 1013 

TON1 0.99 0.95 0.90 22.88 −0.94 

FOTN1 0.97 −0.73 0.094 23.15 18.37 

FOTNR1 0.99 0.95 0.99 1.64 × 1014 −3.26 × 1015 

SOTN1 0.99 0.95 0.90 22.88 −4.07 

SOTNR1 0.99 0.95 0.90 26.24 −112.67 

 

H1 

 

0.99 

 

0.95 

 

0.90 

 

26.11 

 

−19.04 

H2 0.99 0.95 0.90 22.00 1.39 

 

Table 5. Results of the Neuro-regression models for the elongation at break 
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Models R2
training R2

testing R2
validation Max (%) Min (%) 

L2 0.98 0.57 0.57 3.90 2.44 

LR2 0.98 0.87 0.85 3.33 1.85 

SON2 0.98 0.87 0.85 3.27 1.85 

SONR2 0.98 0.87 0.85 3.54 1.85 
TON2 0.99 0.87 0.85 3.36 1.85 

FOTN2 0.97 −0.73 0.094 23.15 18.37 

FOTNR2 0.99 0.87 0.85 3.92 × 1013 −3.87 × 1014 

SOTN2 0.99 0.95 0.90 22.88 −4.07 

SOTNR2 0.99 0.87 

 
 

0.85 3.91 × 1014 −4.05 × 1014 

H1 0.99 0.87 0.85 4.52 −0.59 

H2 0.99 0.87 0.85 3.56 2.97 

 

  In Table 6, the model of "tensile strength " H1 is taken as the objective function, and the results are listed for 

several optimization scenarios. This table uses DE, NM, SA, and RS algorithms for each scenario, and the results 

are compared. For example, all algorithms determined the maximum "Tensile Strength" value for the first scenario 

was 26.55, while the corresponding x2 variables of "Suggested Design" values differed. This gives us four 

different alternative input parameter triplets to obtain the highest tensile strength. In the second scenario, the 

problem description is similar, but the input parameters (Layout of the layers, angle of the tensile) are forced to 

be integers. Using the DE and SA algorithms, the maximum tensile strength value was reduced to 1%, and the 

input values were x1 = 1 and x2 = 44. 

Similarly, in Table 7, the model of "elongation at break " H2 is taken as the objective function, and the results 

are listed for two several optimization scenarios. This table involves the calculation based on DE, NM, SA, and 

RS algorithms for each scenario, and the results are compared. The maximum "Elongation at Break" value 

determined by all algorithms for the first scenario is 3.58, and the corresponding "Suggested Design" is the same. 

This gives us only one input parameter triplet to obtain the highest elongation at break. In the second scenario, 

the problem description is similar, but the input parameters (Layout of the layer, angle of the tensile) are forced 

to be integers. In this case, using the DE, NM, and SA algorithms,  the maximum tensile strength was reduced to 

8%, and the input values were x1 = 2 and x2 = 75. 
 

Table 6. Optimization problem results of the selected model for tensile strength 

 

Objective Function 

Scenario 

No 

 

Constraints 

Optimizaiton 

Algorithm 

Max Tensile 

Strength 

Suggested 

Design 

1.898150158244077 + 

1.4678873258539737 x1 + 
0.8469133355818345[x1]

2 + 

0.05490833491406189 x2 + 
0.10167237594192526 x1 x2 -

0.0016739290005225325 [x2]
2 -

4.67959362010483 Cos[x1] + 

10.99388196366126 Cos[x2] + 

18.894432221360166 Cos[x1] Cos[x2] 

 

1 

1 < x1 < 2, 

0< x2 < 90 
 

DE 
NM 

SA 

RS 

26.54 
26.12 

26.55 

26.53 

x1=1.0, x2=43.98 

x1=1.0, x2=62.83 

x1=1.0, x2=43.98 
x1=1.0, x2=50.26 

 

 
 

2 

 

1 < x1 < 2, 
0< x2 < 90, 

{x1, x2, x3} 

∈ Integers 

 

DE 
NM 

SA 

RS 

 

26.53 
23.13 

26.53 

22.27 

 

x1=1, x2=44 
x1=2, x2=69 

x1=1, x2=44 

x1=2, x2=57 

 

 

 

 

 

Table 7. Optimization problem results of the selected model for elongation at break 
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Objective Function 

Scenario 

No 

 

Constraints 

Optimizaiton 

Algorithm 

Max 

Elongation at 

Break 

 

Suggested Design 

 

18.56976245187751 + 

5.332625748774333 x1  - 

0.6897015434525597  x1
3- 

0.3255438000564282  x1
5 -

0.17116361963166152 x2 + 

0.011875685280791307 x1  x2 + 
0.018449736564968358 x1

4 x2 +  

0.00008170504540320082 x1 x2
2-

9.502786632380143×10-10x2
5-

7.268614002730438×10-12 x2
6 

 
 

1 

 
 

1 < x1 < 2, 

0 < x2 < 90 
 

 
DE 

NM 

SA 
RS 

 
3.58 

3.58 

3.58 
3.58 

 

 
x1=1.74, x2=69.56 

x1=1.74, x2=69.56 

x1=1.74, x2=69.56 
x1=1.74, x2=69.56 

 
 

2 

 
1 < x1 < 2, 

0< x2 < 90, 

{x1, x2, x3} 

∈ Integers 

 
DE 

NM 

SA 
RS 

 
3.50 

3.50 

3.50 
3.49 

 
x1=2, x2=75 

x1=2, x2=75 

x1=2, x2=76 
x1=2, x2=74 

 

4. Conclusion 

Designing optimal products from a new composite material necessitates a thorough understanding of the 

material's mechanical properties. Unfortunately, these properties are difficult to deduce from their constituents. 

Furthermore, the properties of the composite cannot be calculated using mathematical formulas from the 

properties of the constituents. As a result, they can only be determined experimentally using specialized machines 

and testing methods. 

This paper aims to show the possibility of using an optimization method to determine the mechanical properties 

of tensile strength and elongation at break for new composite material. Results show that the optimization method 

is convenient to choose an appropriate model for that kind of study. So, it can provide ease of solution to these 

studies.  Using the process variables, the optimization model is proposed to estimate the tensile strength and 

elongation at break. A novel model based on neuro-regression analysis methods to determine optimum mechanical 

properties has been introduced to eliminate this deficiency. First, a thorough investigation of non-linear multiple 

regression analysis was carried out, including rational forms for linear, quadratic, trigonometric, logarithmic. 

Second, the limitations of candidate models were validated in order to produce realistic values. Finally, several 

direct search methods were used, including stochastic approaches, during the optimization phase. Another 

indication that the choice of the objective function and constraints design variables becomes important in 

optimization problems. It is satisfying that the best result has been given from hybrid models rather than the 

standard models. 

The following conclusions can be reached after the modeling of the tensile strength, σM, and the elongation at 

break, ɛM: 

1) The 11 models are tried, and one appropriate model is found for two outputs. The 𝑅2 testing and 𝑅2 

validation values of the models are at the desired level.  

2) In addition, the maximum tensile strength and elongation at break values of the material were found.  

3) The input parameters were found, which is needed to achieve maximum tensile strength and elongation 

at break values of the material.  

4) The type of scenario and the choice of constraints for design variables are critical in the optimization 

problem. 
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APPENDIX 

Nomenclature Models 

L1 19.71182066869301  − 0.37026443768996825x1 − 0.017647348868625304x2  
LR1 −51.31976284522877 + 51.31976284523468x1 + 774503.1775437717x2/−3.854604998705042 +

3.8546049987053x1 + 42541.08885662762x2  
SON1 24.526185784658686  + 2.3350070372976797x1 − 3.9740499648135224x12 −

0.34202116402116317x2 + 0.2922984607984611x1x2 − 0.0020594837261504097x22  
SONR1 2218.5038106203615  + 8332.47861996536x1 − 5600.060243913964x12 + 31088.892439939827x2 +

1847.6990367776073x1x2 − 1574.950427859876x22/346.81933827792716  +
44.61861835370988x1 − 175.11902955653323x12 + 1196.1381419252248x2 +
501.84473556335837x1x2 − 88.848501524142x22  

TON1 20.94109188907611  + 4.5824368664639605x1 − 1.0712803912934319x12 −
1.5651055071037883x13 − 0.18033348484038514x2 + 0.04459740211289496x1x2 +
0.07264047537312718x12x2 − 0.0019446050613860057x22 + 0.0006617696125818712x1x22 −
0.000010654947332801006x23  

FOTN1 9.902429779197746  + 1.3032369041527805Cos[x1] − 0.6024526244055706Cos[x2] +
11.372423196615832Sin[x1] − 1.701292858920586Sin[x2]  

FOTNR1 −72.0344943619616 + 3086.5528215675718Cos[x1] + 68.68616422167281Cos[x2] +
330.4484534546959Sin[x1] − 834.7528817322325Sin[x2]/74.71611907347054  +
158.8667416923987Cos[x1] + 13.088655381978818Cos[x2] − 105.49720900069308Sin[x1] −
6.894967901990746Sin[x2]  

SOTN1 3.0460545502597487  + 0.6800626431272705Cos[x1] + 5.6052888673774355Cos[x2] +
9.949815188229488Cos[x1]Cos[x2] + 6.999132839176023Sin[x1] +
0.12042831374840418Cos[x1]Sin[x1] + 3.028187782163123Cos[x2]Sin[x1] +
4.570566768978463Sin[x2] − 10.530448906883716Cos[x1]Sin[x2] −
2.375890082747342Cos[x2]Sin[x2] + 2.8328197496013865Sin[x1]Sin[x2]  

SOTNR1 (1957.2500595090817 + 5961.234191177309Cos[x1] + 939.3962800588763Cos[x2] −
8450.710855836645Cos[x1]Cos[x2] + 987.6027093076096Sin[x1] +
3420.4660512907126Cos[x1]Sin[x1] − 699.6677723130807Cos[x2]Sin[x1] +
1375.5244699483446Sin[x2] − 1735.7546609202786Cos[x1]Sin[x2] −
7320.150314484926Cos[x2]Sin[x2] + 486.60921758147333Sin[x1]Sin[x2]) ⁄ (67.38342604363065 +
537.0007633750448Cos[x1] + 265.67098828479004Cos[x2] − 374.9260855810948Cos[x1]Cos[x2] +
236.3986433952951Sin[x1] − 286.1413334671107Cos[x1]Sin[x1] −
407.7703408734187Cos[x2]Sin[x1] + 4.457381391121794Sin[x2] +
99.66232882250745Cos[x1]Sin[x2] − 229.8443151710416Cos[x2]Sin[x2] −
78.61973683325331Sin[x1]Sin[x2])  

H1 1.898150158244077  + 1.4678873258539737x1 + 0.8469133355818345x12 +
0.05490833491406189x2 + 0.10167237594192526x1x2 − 0.0016739290005225325x22 −
4.67959362010483Cos[x1] + 10.99388196366126Cos[x2] + 18.894432221360166Cos[x1]Cos[x2]  

H2 18.56976245187751  + 5.332625748774333x1 − 0.6897015434525597x13 −
0.3255438000564282x15 − 0.17116361963166152x2 + 0.011875685280791307x1x2 +
0.018449736564968358x14x2 + 0.00008170504540320082x1x22 − 9.502786632380143 × 10−10x25 −
7.268614002730438 × 10−12x26  

L2 19.71182066869301  − 0.37026443768996825x1 − 0.017647348868625304x2  
LR2 −51.31976284522877 + 51.31976284523468x1 + 774503.1775437717x2/−3.854604998705042 +

3.8546049987053x1 + 42541.08885662762x2  
SON2 24.526185784658686  + 2.3350070372976797x1 − 3.9740499648135224x12 −

0.34202116402116317x2 + 0.2922984607984611x1x2 − 0.0020594837261504097x22  
SONR2 2218.5038106203615  + 8332.47861996536x1 − 5600.060243913964x12 + 31088.892439939827x2 +

1847.6990367776073x1x2 − 1574.950427859876x22/346.81933827792716  +
44.61861835370988x1 − 175.11902955653323x12 + 1196.1381419252248x2 +
501.84473556335837x1x2 − 88.848501524142x22  
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TON2 20.94109188907611  + 4.5824368664639605x1 − 1.0712803912934319x12 −
1.5651055071037883x13 − 0.18033348484038514x2 + 0.04459740211289496x1x2 +
0.07264047537312718x12x2 − 0.0019446050613860057x22 + 0.0006617696125818712x1x22 −
0.000010654947332801006x23  

FOTN2 9.902429779197746  + 1.3032369041527805Cos[x1] − 0.6024526244055706Cos[x2] +
11.372423196615832Sin[x1] − 1.701292858920586Sin[x2]  

FOTNR2 −72.0344943619616 + 3086.5528215675718Cos[x1] + 68.68616422167281Cos[x2] +
330.4484534546959Sin[x1] − 834.7528817322325Sin[x2]/74.71611907347054  +
158.8667416923987Cos[x1] + 13.088655381978818Cos[x2] − 105.49720900069308Sin[x1] −
6.894967901990746Sin[x2]  

SOTN2 3.0460545502597487  + 0.6800626431272705Cos[x1] + 5.6052888673774355Cos[x2] +
9.949815188229488Cos[x1]Cos[x2] + 6.999132839176023Sin[x1] +
0.12042831374840418Cos[x1]Sin[x1] + 3.028187782163123Cos[x2]Sin[x1] +
4.570566768978463Sin[x2] − 10.530448906883716Cos[x1]Sin[x2] −
2.375890082747342Cos[x2]Sin[x2] + 2.8328197496013865Sin[x1]Sin[x2]  

SOTNR2 (1957.2500595090817 + 5961.234191177309Cos[x1] + 939.3962800588763Cos[x2] −
8450.710855836645Cos[x1]Cos[x2] + 987.6027093076096Sin[x1] +
3420.4660512907126Cos[x1]Sin[x1] − 699.6677723130807Cos[x2]Sin[x1] +
1375.5244699483446Sin[x2] − 1735.7546609202786Cos[x1]Sin[x2] −
7320.150314484926Cos[x2]Sin[x2] + 486.60921758147333Sin[x1]Sin[x2])) ⁄ (67.38342604363065 +
537.0007633750448Cos[x1] + 265.67098828479004Cos[x2] − 374.9260855810948Cos[x1]Cos[x2] +
236.3986433952951Sin[x1] − 286.1413334671107Cos[x1]Sin[x1] −
407.7703408734187Cos[x2]Sin[x1] + 4.457381391121794Sin[x2] +
99.66232882250745Cos[x1]Sin[x2] − 229.8443151710416Cos[x2]Sin[x2] −
78.61973683325331Sin[x1]Sin[x2]))  


