

Inventory and Asset Tracking

Application

Software Engineering

Term Project

by

Aıda Ulutaş

Y220240040

Advisor: Prof. Dr. Femin Yalçın Küçükbayrak

January, 2024

i

Inventory and Asset Tracking Application

Abstract

The Inventory and Asset Tracking Application is a user-friendly web tool designed to help

organizations keep track of their assets. It simplifies the process of managing and

organizing different resources, making it easier for businesses to handle their belongings

efficiently. With a straightforward interface and easy-to-use features, the app aims to

improve how organizations handle their assets, providing a convenient solution for

modern and reliable asset management.

The application employs the .NET and .NET Core frameworks, with a focus on ASP.NET,

Entity Framework, and SQLite for backend development and a layered architecture with

MVC for frontend development. The project is organized into distinct modules, namely

"DemirbasApp" and "DemirbasData," reflecting the separation of web-related

functionality and data-related operations.

“DemirbasApp” module encapsulates the controllers, views, and other components

responsible for handling user interactions and presenting data to the users. The structure

includes models, controllers, views, areas, and configuration files.

The data module encompasses the data context, models, and identity-related

functionalities. The underlying database interactions are managed through Entity

Framework, with a focus on SQLite as the database provider.

Keywords: inventory and asset, C#, .NET Core, Entity Framework, SQLite.

ii

Envanter ve Demirbaş Uygulaması

Öz

"DemirbasApp", organizasyonların demirbaşları takip etmelerine yardımcı olmak için

tasarlanmış kullanıcı dostu bir web aracıdır. Farklı kaynakları yönetme ve düzenleme

sürecini basitleştirerek, işletmelerin demirbaşlarını verimli bir şekilde yönetmelerini

kolaylaştırır. Basit bir arayüz ve kullanımı kolay özelliklerle, uygulama organizasyonların

varlıklarını nasıl yönettiğini geliştirmeyi amaçlar.

"DemirbasApp" projesi, organizasyon bağlamında demirbaşların etkili bir şekilde

yönetimi için tasarlanmış kapsamlı bir web uygulamasıdır. Uygulama, backend

geliştirmede ASP.NET, Entity Framework ve SQLite'e odaklanan .NET ve .NET Core

çerçevelerini kullanırken, frontend geliştirmede katmanlı bir mimari ve MVC'ye

odaklanır.Proje, "DemirbasApp" ve "DemirbasData" olmak üzere ayrı modüllere

ayrılmıştır, bu da web ile ilgili işlevselliği ve veri ile ilgili işlemleri yansıtmaktadır.

“DemirbasApp” modülü, kullanıcı etkileşimlerini yöneten ve verileri kullanıcılara sunan

denetleyicileri, görünümleri ve diğer bileşenleri içerir. Yapı, modelleri, denetleyicileri,

görünümleri, alanları ve yapılandırma dosyalarını içerir. Veri modülü, veri bağlamını,

modelleri ve kimlikle ilgili işlevselliği içerir. Temel veritabanı etkileşimleri, Entity

Framework üzerinden yönetilir ve veritabanı sağlayıcısı olarak SQLite'a odaklanır.

Anahtar Kelimeler: demirbaş, C#, .NET Core, Entity Framework, SQLite.

iii

Acknowledgment

I extend my sincere gratitude to the university professors for their invaluable insights and

guidance throughout my academic journey. A special thanks to Professor Femin Yalçın

Küçükbayrak for her support and mentorship during the term project. My appreciation

also goes to my fellow students for their collaboration and shared experiences.

Last but not least, I express my thanks to my family for their continuous encouragement,

understanding and belief in my abilities.

iv

Table of Contents

Abstract .. i

Öz .. ii

Acknowledgment ... iii

List of Abbreviations... vi

List of Figures .. vii

1 Introduction ... 1

2 Technological Stack ... 3

2.1 Backend Development .. 3

2.1.1 C# Programming Language ... 3

2.1.2 .NET and .NET Core Frameworks .. 4

2.1.3 ASP.NET Core .. 4

2.1.4 Entity Framework .. 5

2.1.5 ORM (Object Relational Mapping) ... 5

2.1.6 Relational Database ... 6

2.1.7 SQLite .. 6

2.1.8 OOP(Object Oriented Programing) ... 6

2.2 Frontend Development .. 7

2.2.1 Razor .. 7

2.2.2 CSS (Cascading Style Sheets) ... 7

2.2.3 HTML (Hypertext Markup Language) .. 7

2.2.4 Bootstrap .. 7

v

2.2.5 jQuery .. 8

2.3 Architecture ... 8

2.3.1 Web Layer .. 8

2.3.2 Data Layer .. 8

2.3.3 Layer Architecture with MVC ... 8

3 Project Structure ... 10

3.1 Data Layer ... 10

3.1.1 Models .. 11

3.1.1.1 BaseEntity Model ... 12

3.1.1.2 ItemType Model ... 13

3.1.1.3 Item Model ... 13

3.1.1.4 Department Model .. 15

3.1.1.5 Employee Model... 15

3.1.1.6 DeliveryHistory Model ... 16

3.1.2 Data Context .. 18

3.1.2.1 Constructor ... 19

3.1.2.2 DbSet Properties ... 19

3.1.2.3 Model Configuration .. 19

3.1.3 Entity Framework Identity Provider .. 20

3.1.4 Migration .. 20

3.2 Web Layer ... 21

3.2.1 Controllers .. 21

3.2.1.1 Constructor ... 22

3.2.1.2 Home Controller ... 23

3.2.1.3 ItemType Controller ... 24

vi

3.2.1.4 Item Controller ... 31

3.2.1.5 Department Controller .. 40

3.2.1.6 Employee Controller ... 43

3.2.1.7 DeliveryHistory Controller ... 47

3.2.2 Areas .. 48

3.2.3 Program.cs ... 48

References ..

vii

List of Abbreviations

OOP Object Oriented Programming

ORM Object Relational Mapping

MVC Model-View-Controller

CSS Cascading Style Sheet

HTML Hyper Text Markup Language

SQL Structured Query Language

API Application Programming Interface

CRUD Create, Read, Update, Delete

viii

List of Figures

Figure 3.1 Project Structure .. 9

Figure 3. 2 Base Entity Model ... 11

Figure 3.3 ItemType Model ... 12

Figure 3.4 Item Model.. 13

Figure 3.5 Department ... 14

Figure 3.6 Employee Model ... 15

Figure 3.7 DeliveryHistory Model .. 16

Figure 3.8 DataContext ... 17

Figure 3.9 Controllers ... 20

Figure 3.10 Example of Constructor and Dependency Injection 21

Figure 3.11 HomeController ... 22

Figure 3.12 Home/Index Page Final Output ... 23

Figure 3.13 ItemTypeController Index Action ... 23

Figure 3.14 ItemTypeController/ Index View .. 24

Figure 3.15 ItemTypeController /Index/Final Output ... 25

Figure 3.16 ItemTypeController-/Create Action .. 26

Figure 3.17 ItemTypeController/Create Action View .. 26

Figure 3.18 ItemTypeController/Create Action .. 27

Figure 3.19 ItemTypeController-Update Action .. 28

Figure 3.20 ItemTypeController/Update View ... 28

ix

Figure 3.21 ItemTypeController- Update Action Final Output 29

Figure 3.22 ItemTypeController/Delete Action .. 29

Figure 3.23 ItemController/Index Action ... 30

Figure 3.24 ItemController- Index Final Output ... 30

Figure 3.25 ItemController/Create Action .. 31

Figure 3.26 ItemController/Create Action Final Output ... 32

Figure 3.27 ItemController/Update Action ... 33

Figure 3.28 ItemController/Update Action Final Output .. 33

Figure 3.29 ItemController/UnassignedItemList Action .. 34

Figure 3.30 ItemController/UnassignedItemList Final Output 35

Figure 3.31 ItemController/AssignedItemList Action .. 35

Figure 3.32 ItemController/AssignedItemList Action .. 36

Figure 3.33 ItemController/ AssignItem Action ... 36

Figure 3.34 ItemController/AssignItem Action Final Output ... 37

Figure 3.35 ItemController/Assign Action ... 37

Figure 3.36 ItemController/Unassign Action .. 38

Figure 3.37 DepartmentController/Actions .. 40

Figure 3.38 DepartmentController/Index Final Output .. 41

Figure 3.39 Create Page .. 41

Figure 3.40 Update Page ... 41

Figure 3.41 Create Page .. 41

Figure 3.42 EmployeeController Actions ... 44

Figure 3.43 Create Final Output ... 45

Figure 3.44 Update Final Output ... 45

Figure 3.45 DeliveryHistoryController/Index Action ... 46

x

Figure 3.46 DeliveryHistory/Index Final Output .. 47

Figure 3.47 Program.cs .. 49

1

Chapter 1

Introduction

In the environment of the modern and dynamic business world, effective asset

management is a crucial element of corporate and organizational success. Monitoring,

registering, and optimizing the use of company resources can be challenging and time-

consuming. The "Inventory and Asset Tracking Application" is a comprehensive system

for handling the assets throughout their lifecycle in a company.

Traditional methods of manual tracking are error-prone and can’t keep pace with fast-

paced business environment where high productivity is crucial.

Lack of asset tracking system can result in serious issues such as maintaining inaccurate

and out-of-date inventory records. It also provides better inventory control as changes

occur, plus it makes easier the accounting period at the end of the fiscal year.

If your records aren’t up-to-date, you may risk financial losses, time loss and wasted

resources due to incorrect and incomplete information.

Misleading information can also lead to delays and it can be time-consuming when

locating specific assets. The purpose of the "Inventory and Asset Tracking Application"

is to enable easy and trustworthy process of registration and tracking of company assets.

It is built in a Layered architecture using Relational Database to provide registration and

tracking of company assets.

It also simplifies the onboarding process of new employees and it documents the items

allocated to each employee, including dates, devices and additional details.

2

At the beginning of an employee’s exit process, the IT personnel manages and confirms

the return of listed items.

The application stores warranty periods of electronic devices, repair information, previous

users and usage duration.

In the further chapters we will look into the details of the "Inventory and Asset Tracking

Application," exploring its architecture, functionality, implementation details, and the

benefits it brings to organizations striving for excellence in asset management.

3

Chapter 2

Technological Stack

The "Inventory and Asset Tracking Application" is developed using technological stack

that ensures efficiency, scalability and integration. The primary technologies used include

the following:

2.1 Backend Development

2.1.1 C# Programming Language

C# is a versatile and powerful Object-Oriented Programming (OOP) language commonly

used for building the backend of applications. It offers a clear program structure,

facilitating code reuse and reducing development costs. With scalability and easy

maintenance, C# serves as a solid foundation for a wide range of projects.

Designed to seamlessly integrate with the .NET framework, C# supports the development

of diverse applications, including Windows applications and web-based systems. Its

adaptability makes it suitable for both small-scale and large-scale projects.

C# continues to evolve with new features, such as LINQ, a powerful querying tool

enhancing the manipulation of collections and databases. Supporting event-driven

programming, C# is well-suited for developing graphical user interfaces (GUIs) and

responsive applications.1

1 Microsoft, “A Tour of C# Language”, https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

4

It is versatile and can be used for various application types, including mobile applications,

desktop applications, web applications, web sites, games, database applications.

2.1.2 .NET and .NET Core Frameworks

The application benefits from .NET and .NET Core Framework and comprehensive tools

and libraries, which provides an environment that supports cross-platform deployment,

scalability, security and integration. .NET Core enables better maintainability, updating

and extending without affecting the entire system. On the other hand, .NET enables

integration with other Microsoft technologies.

The .NET ecosystem provides a rich set of libraries, tools, and frameworks that facilitate

rapid development. This includes support for database interactions, web development

(ASP.NET), and various other functionalities that are crucial for an asset tracking

application.2

2.1.3 ASP.NET Core

ASP.NET Core is a cross-platform, open-source framework, allowing developers to build

applications that run on Windows, Linux, and macOS. ASP.NET Core embraces the MVC

architectural pattern for building web applications (MVC: Models, Views, Controllers).

ASP.NET Core unifies the MVC and Web API frameworks, simplifying the development

of both web pages and web APIs within the same application. ASP.NET Core integrates

with Entity Framework Core, a lightweight and extensible version of Entity Framework,

for data access and database interactions. Besides MVC, ASP.NET Core introduces Razor

Pages, feature in ASP.NET used to create dynamic web pages with C# programming.3

2 Radix, “.NET Core vs .NET Framework”, https://radixweb.com/blog/net-core-vs-net-framework
3 Microsoft, “Overview of ASP.NET Core”, https://learn.microsoft.com/en-us/aspnet/core/introduction-to-

aspnet-core?view=aspnetcore-8.0

5

2.1.4 Entity Framework

Entity Framework is an open-source ORM framework for .NET applications. It simplifies

database interaction, data storing and retrieving and allows automated way to store and

access data. It is an ORM framework that facilitates the mapping of object-oriented

domain models to a relational database, eliminating the need for manual SQL queries.

Entity Framework Core supports both Code-First (defining entities in code and generating

the database schema) and Database-First (reverse engineering entities from an existing

database) approaches. Entity Framework Core includes a migration system that simplifies

the process of evolving the database schema over time, making it easier to manage changes

in the application.

It supports a variety of relational database providers, including SQL Server, PostgreSQL,

MySQL, SQLite, and more. 4

2.1.5 ORM (Object Relational Mapping)

ORM is a technique that connects object-oriented programming (OOP) to relational

databases. It creates a structured map of objects and how they are related to different

tables. With ORM, programmers can interact with and manipulate objects without the

need to worry about the specifics of how these objects are related to their data origins.

When the application modifies data objects, ORM automatically generates the necessary

SQL code for the relational database to handle data changes. ORM manages the mapping

details between objects and databases, hiding changing interfaces from developers. ORM

allows for incorporating new technologies and capabilities without requiring changes to

the application code.5

4 C# Corner, “Entity Framework Using C#”, https://www.c-sharpcorner.com/article/entity-framework-

introduction-using-c-sharp-part-one/
5 The Server Side, “Object-Relational Mapping”, https://www.theserverside.com/definition/object-

relational-mapping-ORM

6

2.1.6 Relational Database

A relational database is a type of database that uses tables to organize and store data. In a

relational database, data is organized into rows and columns, where each row represents

an individual record with a unique ID called the key, and each column represents a specific

attribute or field of the record.

SQL is a language used to interact with relational databases. It allows performing

operations like querying, updating, and managing the data. 6

2.1.7 SQLite

SQLite is an embedded, server-less relational database management system known for its

simplicity and efficiency. It operates directly on ordinary disk files, making it lightweight

and easy to manage. It is open-source, cross-platform, and does not require a separate

server process. SQLite supports parallel work on multiple databases, and its commands

are similar to standard SQL.7

2.1.7 OOP (Object- Oriented Programing)

Object-Oriented Programming (OOP) is a computer programming model that revolves

around the concept of "objects." In object-oriented programming, classes serve as

blueprints, defining attributes and methods. Objects are instances of these classes,

representing specific data, while methods encapsulate object behaviors, attributes store

the object's state. There are four pillars of OOP: encapsulation, inheritance, and

polymorphism. Object-oriented programming (OOP) offers several benefits, including:

modularity, code reusability, maintenance, flexibility and scalability and more. 8

6 Oracle, “What is a Relational Database”, https://www.oracle.com/database/what-is-a-relational-

database/#:~:text=A%20relational%20database%20is%20a,of%20representing%20data%20in%20tables
7 SimpliLearn, “What is SQLite”, https://www.simplilearn.com/tutorials/sql-tutorial/what-is-

sqlite#:~:text=SQLite%20is%20an%20embedded%2C%20server,than%20other%20database%20manage

ment%20systems
8 Tech Target, “Object-Oriented Programing”,

https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP

7

2.2 Frontend Development

Frontend development in the "Inventory and Asset Tracking Application" involves the use

of several technologies and tools to create a user-friendly and responsive interface. Here's

a brief overview of each component.

2.2.1 Razor

Razor is a view engine used with ASP.NET to create dynamic web pages. It allows

embedding C# code within HTML markup. 9

2.2.2 CSS (Cascading Style Sheets)

CSS is a styling language that controls the presentation of HTML elements. It is used to

enhance the visual appearance of the application, providing layout and design.10

2.2.3 HTML (Hypertext Markup Language)

HTML is the standard markup language for creating web pages. It structures the content

on the frontend, defining elements such as headings, paragraphs, and images.11

2.2.4 Bootstrap

Bootstrap is the most popular CSS Framework. It includes pre-designed components and

styles, making it easier to create a consistent and visually appealing UI.12

9 Code Academy, “What is ASP:NET Razor Pages?”, https://www.codecademy.com/article/what-is-asp-

net-razor-pages
10 Tutorials Point, “What is CSS”, https://www.tutorialspoint.com/css/what_is_css.htm
11 W3Schools, “HTML Introduction”, https://www.w3schools.com/html/html_intro.asp
12 W3Schools, “What is Bootstrap”, https://www.w3schools.com/whatis/whatis_bootstrap.asp

8

2.2.5 jQuery

Query is a lightweight, JavaScript library that simplifies tasks like HTML document

traversal, event handling, and animation.13

2.3 Architecture

Layered architecture involves breaking down the application into layers, each with

different responsibilities and functionality. Adhering to a layered architecture, this

application is organized into two separate layers: web layer and data layer, each with

specific responsibilities and design.

2.3.1 Web Layer

Web Layer is responsible for handling user interactions and communication with backend.

Usually and also in this project web layer include Controllers and Views.

2.3.2 Data Layer

Data Layer is responsible for data storage and interaction with database and it includes

Models.

2.3.3 Layered Architecture With MVC

MVC is an architectural pattern that separates application into three logical components

with different responsibilities (business, presentation and data logic).

1. Model (data logic)

Model is directly connected to database and it handles adding and retrieving data.

It is a bridge between Controller and database, it listens to Controller’s instructions

13 W3Schools, “jQuery Introduction”, https://www.w3schools.com/jquery/jquery_intro.asp

9

and it structures data in the requested form. When a request comes from the

Controller the Model interacts with database and responses back to the Controller.

2. View (presentation logic)

View component controls data presentation (HTML, CSS) to users. It is the

frontend of the User Interface (UI). It presents data based on the User’s action. It

represents the current Model state but it never communicates with the Model, it

sends data to the Controller and receives data from the Controller.

3. Controller (business logic)

Controller is the brain component, it handles the communication between the

Model and View. It takes commands from the User through the View layer and

sends them to the Model where the request is processed. Then it collects data from

the Model and sends it to the View. 14

14 GeeksFofGeeks,”MVC Framework Intoruction”, https://www.geeksforgeeks.org/mvc-

framework-introduction/

10

Chapter 3

Project Structure

3.1 Data Layer

Figure 3.1: Project Structure

The data layer is responsible for the management of data, interacting with the database,

and handling data-related operations. The web layer interacts with the data layer by calling

methods in the controllers, which, in turn, interact with the DataContext to perform CRUD

(Create, Read, Update, Delete) operations on the database.

11

This separation of responsibilities between the web and data layers follows the principles

of a typical MVC (Model-View-Controller) architecture, promoting modularity,

maintainability, and scalability in your application.

Components of Data Layer:

1. Models

Models define the structure of the application's data. They represent entities and

relationships, serving as the blueprint for database tables.

2. DataContext

The DataContext acts as a bridge between application and the database. It includes DbSet

properties for each model and configurations for data access.

3. Migrations

Migrations represent the versions of database schema and they are used to manage

changes of the database schema over time. They allow evolving of the database structure

with each change in the data model.

4. Identity

If an application involves user authentication and authorization, it needs to have an

Identity folder containing user-related entities, configurations, and services.

3.1.1 Models

Located in DemirbasApp/DemirbasData/Model folder (see Figure 3.1) this section

contains the data models representing entities within the application. These models define

the structure and relationships of data.

12

3.1.1.1 BaseEntity Model

BaseEntity Model serves as a foundation model for objects in the application. It

encapsulates common attributes shared by multiple entities thus reducing repetition,

promoting consistency, useability and easy maintainability. Other entities within the

application inherit the common properties of this model, which allows them to focus on

their unique entity properties.

Properties of BaseEntity Model (See Figure 3.2)

• “Id” of int type serves as a unique identifier.

• “Create Date” of DateTime type represents date and time when the entity was

initially created.

• “Update Date” keeps track of date and time of the entity’s last update.

• “IsDeleted” of bool type indicates if the entity has been marked as deleted. It

supports soft deletion without permanent removement from the database.

• “IsActive” of bool type refers to entity’s current state in the system.

Figure 3. 2: Base Entity Model

13

3.1.1.2 ItemType Model

ItemType Model represents a category in the application facilitating the organization and

classification of items. It extends the “BaseEntity” inheriting attributes for identification

and tracking.

Properties of ItemType Model (See Figure 3.3)

• “Name” of string type represents the name of the item type.

• “Description” of string type giving additional details about the type.

• “Item” of ‘List<Item>’ type meaning it has a one-to-many relationship with

“Item” model and it represents a collection of items associated with item type.

Figure 3.3: ItemType Model

3.1.1.3 Item Model

Item Model represents the individual item within the application. It captures essential

details such as name, description, category (via ItemType), serial number, and the

employee assigned to an item. It inherits common attributes from the BaseEntitiy.

14

 Properties of Item model See Figure 3. 4) :

• “Name” represents the name or title of the item. Type: string.

• “Description” of string type, offers additional details about the item.

• ItemType: Type: ItemType. This property establishes a relationship with

the "ItemType" model, representing the category to which the item

belongs.

• “ItemTypeId” of int type, stores the identifier of the associated item type,

establishing a link between the item and its category.

• “SerialNumber” of string type represents the serial number assigned to the

item.

• “Employee”: Type: Employee. It establishes a relationship with the

"Employee" model, representing the individual assigned to the item.

• “EmployeeId”: Type: int?. It stores the identifier of the associated

employee, linking the item to its responsible individual.

Figure 3.4: Item Model

15

3.1.1.4 Department Model

Department Model represents a department or organizational unit within the application.

Extending the BaseEntity model, it inherits common attributes.

Properties of Department Model (See Figure 3. 5)

• “Name” : type: string, represents the name or title of the department.

Figure 3.5: Department Model

3.1.1.5 Employee Model

Employee Model represents an individual employee within the application. Extending the

BaseEntity model, it inherits common attributes for identification, timestamps, and status

tracking. Properties of Employee Model (See Figure 3.6):

• “Name” of string type represents the first name of the employee.

• “Surname” of string type represents the last name or surname of the employee.

• “Department”: type: Department. It establishes a relationship with the

"Department" model, representing the department to which the employee belongs.

16

• “DepartmentId” of int type stores the identifier of the associated department,

linking the employee to their respective department.

• “Email” of string type represents the email address of the employee.

Figure 3.6: Employee Model

3.1.1.6 DeliveryHistory Model

The DeliveryHistory model represents the history of item deliveries and returns within the

application. Extending the BaseEntity model, it inherits common attributes for

identification, timestamps, and status tracking.

Properties of DeliveryHistory Model (See Figure 3.7):

• “DeliveryDate”: type: DateTime, represents the date and time when the item was

delivered.

• “ReturnDate”: type: DateTime represents the date and time when the delivered

item was returned.

17

• “Employee”: Type: Employee, establishes a relationship with the "Employee"

model, representing the employee involved in the delivery and return.

• “EmployeeId”: type: int, stores the identifier of the associated employee, linking

the delivery history to the involved employee.

• “Item”: type: Item, establishes a relationship with the "Item" model, representing

the item that was delivered and returned.

• “ItemId”: type: int, stores the identifier of the associated item, linking the delivery

history to the item.

• “Department”: type: Department, establishes a relationship with the "Department"

model, representing the department associated with the delivery history.

• “DepartmentId”: type: int?, stores the identifier of the associated department,

providing additional context to the delivery history record.

Figure 3.7: DeliveryHistory Model

18

3.1.2 Data Context

The Data module plays a crucial role in managing the persistence layer of the application.

At its core is the DataContext (See Figure 3.8), which acts as the bridge between the

application and the underlying database. The DataContext orchestrates data access, entity

relationships, and database operations, making it a critical component of the application's

data layer.It extends the IdentityDbContext, integrating Identity functionality for user and

role management into the core data operations.It inherits from the Entity Framework's

DbContext class, providing a powerful framework for interacting with the database.15

Figure 3.8: DataContext

15 Microsoft, “Get started with EF Core in an ASP:NET MVC web App”, https://learn.microsoft.com/en-

us/aspnet/core/data/ef-mvc/intro?view=aspnetcore-8.0

19

3.1.2.1. Constructor

A constructor is a special method that is used to initialize objects (See Figure 3.8, lines:

15-19). It is called when an object of a class is created.

The constructor of DemirbasContext initializes the context with the provided

DbContextOptions. This is crucial for establishing the connection to the database.

3.1.2.2 DbSet Properties

A DbSet (See Figure 3.8, lines: 21-25) represents the collection of all entities in the

context, or that can be queried from the database, of a given type. DbSet objects are created

from a DbContext using the DbContext.Set method.

The DbSet properties represent the entities mapped to database tables. Each property

corresponds to a table in the database, facilitating data access and manipulation.

3.1.2.3 Model Configuration

The OnModelCreating (See Figure 3.8, lines: 28-35) method is overridden to provide

additional configuration for the data model. In this case, it ensures that cascade delete

behavior is restricted for all relationships, preventing unintended data loss.

When creating a model, there may be additional features we want in the database. For

example, if we want to create an index for the 'createdate' column in the 'Item' table and

perform searches based on the date, or if we want it to come in a sorted order, we define

these features here.

20

3.1.3 Entity Framework Identity Provider

Entity Framework Identity is a feature of Entity Framework that extends its capabilities

to include user and role management. By integrating EFIdentity, you gain the ability to

perform authentication and authorization checks easily. It supports features like user login

and logout.

EF Identity includes built-in security features, such as account lockout, two-factor

authentication, and token-based authentication. These features enhance the security of

user accounts.16

3.1.4 Migration

Migrations in this project serve the purpose of managing and versioning the database

schema. They enable developers to evolve the database structure over time, reflecting

changes in the application's data model.

Migrations are created to capture changes in the data model, such as adding new entities,

modifying existing ones, or altering relationships.

Also, migrations are applied to update the database schema.

Migrations are named descriptively to reflect the changes they introduce. Meaningful

names provide clarity on the purpose of each migration.

16 Microsoft, “Introduction to Identity on ASP:NET Core”, https://learn.microsoft.com/en-

us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio

21

3.2 Web Layer:

The web layer is the part of your application that handles user interactions, presentation,

and communication with users. It typically consists of controllers, views, and any client-

side. Components of Web Layer:

• Controllers handle incoming HTTP requests, process the input, and interact with

the data layer to retrieve or modify data. They orchestrate the flow of the

application.

• Views represent the user interface and display data to users. They receive input

from controllers, presenting information in a format suitable for a user.

• In the Area section of the application, we can access and manage various account-

related features. This includes actions such as logging in, logging out, and other

account management functionalities such as password change and security.

• “appsettings.json” is a configuration file containing settings that can be accessed

by the web layer. It's used to configure various aspects of the application.

• Program.cs is the entry point for your application. It configures and starts the

application.

3.2.1 Controllers

Six controllers in this ASP.NET application handle user interactions, data flow, and

application logic effectively (See Figure 3.9).

Figure 3.9: Controllers

22

3.2.1.1 Constructor

The constructor, explained once here, plays a crucial role and will be implemented in

every controller to initialize essential components.

A constructor in C# is a special method that gets executed when an instance of a class is

created. The purpose of the constructor is to receive an instance of Context through

dependency injection. This enables the controller to interact with the underlying database

when handling requests related to a controller.

Dependency injection is a design pattern where dependencies of a class are provided

externally rather than being created within the class itself. In this case, the

DemirbasContext dependency is injected into the controller.

The ItemTypeController constructor initializes an instance of the controller and

establishes a connection to the data layer through the DemirbasContext. This constructor

follows the dependency injection pattern, taking a DemirbasContext parameter (See

Figure 3.10).17

Figure 3.10: Example of Constructor and Dependency Injection

17 Microsoft, “Constructors (C# Programing Guide), https://learn.microsoft.com/en-

us/dotnet/csharp/programming-guide/classes-and-structs/constructors

23

3.2.1.2 HomeController

The HomeController serves as the entry point for your application's web layer. It is

responsible for handling requests related to the home page, privacy page, and error views.

The controller contains the [Authorize] attribute, indicating that access to its actions

requires authentication.

HomeController Actions Overview (See Figure 3.11)

• Index: handles requests for the home page. It returns a view representing the main

landing page of the application.

• Privacy: handles requests for the privacy page. It returns a view representing the

privacy policy or related information.

• Error: is responsible for rendering error views.

See Figure 3.11: HomeController

24

Rendering of Home/Index Page (See Figure 3.12)

Figure 3.12: Home/Index Page Final Output

3.2.1.3 ItemTypeController

The ItemTypeController is responsible for handling requests related to item types in your

application. It interacts with the DemirbasContext to perform CRUD operations on the

ItemType entity. In the following sections of ItemTypeController, I will provide detailed

Views for the Create and Update actions. Please note that the Views for other controllers

will be represented more generally, as they share the same code structure.

ItemTypeController Actions Overview:

Index Action (See Figure 3.13)

The Index action retrieves a list of non-deleted item types from the database and passes

the result to the corresponding view.

Figure 3.13: ItemTypeController Index Action

25

ItemTypeController - Index View (Figure 3.14)

Figure 3.14: ItemTypeController/ Index View

26

 Rendering of ItemTypeController/Index (Figure 3.15)

Figure 3.15: ItemTypeController /Index/Final Output

ItemTypeController- Create Action (See Figure 3.16)

HTTP GET is responsible for handling HTTP GET requests to display the form for

creating a new item type. Explanation:

• When a user navigates to the "Create Item Type" page, this action is triggered.

• It returns the associated view (Create.cshtml), allowing users to input information

for a new item type.

HTTP POST is responsible for handling HTTP POST requests to process the form

submission and create a new item type. Explanation:

• After a user submits the "Create Item Type" form, this action is triggered.

• It receives the form data as a parameter (ItemType ItemTypeModel).

• The new ItemTypeModel is added to the ItemTypes collection in the database

context (_context).

• The changes are saved to the database using _context.SaveChanges().

• The action then redirects the user to the "Item Types" index page (Index action).

27

Figure 3.16: ItemTypeController-/Create Action

Bellow you can see ItemTypeController- Create Action View (Figure 3.17)

Figure 3.17: ItemTypeController/Create Action View

28

ItemTypeController- Rendering Create Action Page

Figure 3.18: ItemTypeController/Create Action

ItemTypeController-Update Action (See Figure 3.19)

HTTP GET handles HTTP GET requests to display the form for updating an existing item

type. Explanation:

• When a user navigates to the "Edit Item Type" page, this action is triggered with

the id parameter representing the ID of the item type to be updated.

• It retrieves the existing item type from the database using Find(id) and passes it to

the associated view (Update.cshtml).

• Users see a pre-filled form with the details of the selected item type, ready for

modification.

HTTP POST handles HTTP POST requests to process the form submission and update an

existing item type. Explanation:

• After a user submits the "Edit Item Type" form, this action is triggered with the

updated ItemTypeModel.

• It updates the corresponding item type in the ItemTypes collection of the database

context (_context).

• The changes are saved to the database using _context.SaveChanges().

• The action redirects the user to the "ItemTypes" index page (Index action) after a

successful update.

29

•

Figure 3.19: ItemTypeController-Update Action

Bellow you can see ItemTypeController-Update Action View (Figure 3.20)

Figure 3.20: ItemTypeController/Update View

30

ItemTypeController- Rendering Update Action Page

Figure 3.21: ItemTypeController- Update Action Final Output

ItemTypeController- Delete Action (See Figure 3.22)

HTTP GET handles HTTP GET requests to display a confirmation page for deleting an

item type. Explanation:

• When a user navigates to the "Delete Item Type" page, this action is triggered with

the id parameter representing the ID of the item type to be deleted.

• It retrieves the existing item type from the database using Find(id).

• The IsDeleted property of the item type is set to true, marking it for deletion.

• The changes are saved to the database using _context.SaveChanges().

• The action redirects the user to the "ItemTypes" index page (Index action) after a

successful deletion.

Figure 3.22: ItemTypeController/Delete Action

31

3.2.1.4 ItemController

ItemController Actions Overview

Index Action (See Figure 3.23)

HTTP GET handles HTTP GET requests to display the list of items.

Explanation:

• The action retrieves a list of items from the database using _context.Items.

• The Include method is used to eagerly load related entities (Employee and

ItemType) to avoid N+1 query issues.

• Items marked as deleted (IsDeleted == true) are excluded from the result.

• The list of items is passed as the model to the associated view (Index.cshtml).

Figure 3. 23: ItemController/Index Action

Bellow you can see Rendering of ItemController/Index Page

Figure 3.24: ItemController- Index Final Output

32

ItemController- Create Action (See Figure 3.25)

HTTP GET handles HTTP GET requests to display the form for creating a new item.

Explanation:

• The action retrieves a list of available item types from the database using

_context.ItemTypes.

• The Where clause filters out item types marked as deleted (IsDeleted).

• The list of item types is added to the ViewBag to make it available in the associated

view (Create.cshtml).

• The action returns the view, presenting the form for creating a new item.

HTTP POST handles HTTP POST requests to process the form submission and create a

new item. Explanation:

• When a user submits the form for creating a new item, this action is triggered.

• The ItemModel parameter represents the data submitted through the form.

• The new item is added to the Items collection in the database context (_context).

• The changes are saved to the database using _context.SaveChanges().

• The action redirects the user to the "Item Index" page (Index action) after a

successful creation.

Figure 3.25: ItemController/Create Action

33

ItemController- Create Action Rendering Page

Figure 3.26: ItemController/Create Action Final Output

ItemController- Update Action (See Figure 3.27)

HTTP GET handles HTTP GET requests to display the form for updating an existing item.

Explanation:

• The action retrieves a list of available item types from the database using

_context.ItemTypes.

• The Where clause filters out item types marked as deleted (IsDeleted).

• The list of item types is added to the ViewBag to make it available in the associated

view (Update.cshtml).

• The action retrieves the existing item with the specified id from the database using

Find(id).

• The item is passed to the view, allowing users to edit its details.

HTTP POST handles HTTP POST requests to process the form submission and update an

existing item.

34

Explanation:

• After a user submits the form for updating an item, this action is triggered.

• The ItemModel parameter represents the updated data submitted through the form.

• The existing item in the database is updated with the new values from ItemModel.

• The changes are saved to the database using _context.SaveChanges().

• The action redirects the user to the "Item Index" page (Index action) after a

successful update.

Figure 3.27: ItemController/Update Action

ItemController- Rendering Update Action Page (Figure 3.28)

Figure 3.28: ItemController/Update Action Final Output

35

ItemController- Delete Action

HTTP GET handles HTTP GET requests to display a confirmation page for deleting an

item. Explanation:

• When a user navigates to the "Delete Item" page, this action is triggered with the

id parameter representing the ID of the item to be deleted.

• It retrieves the existing item from the database using Find(id).

• The IsDeleted property of the item is set to true, marking it for deletion.

• The changes are saved to the database using _context.SaveChanges().

• The action redirects the user to the "Item Index" page (Index action) after a

successful deletion.

ItemController- UnassignedItemList Action (Figure 3.29)

HTTP GET handles HTTP GET requests to display a list of unassigned items.

Explanation:

• The action retrieves a list of items from the database using _context.Items.

• The Include method is used to eagerly load related entities (ItemType and

Employee) to avoid N+1 query issues.

• Only items with a null value for the EmployeeId property (unassigned items) are

included in the result.

• The list of unassigned items is passed as the model to the associated view

(UnassignedItemList.cshtml).

Figure 3.29: ItemController/UnassignedItemList Action

36

ItemController- Rendering UnassignedItemList Action Page (Figure 3.30)

Figure 3.30: ItemController/UnassignedItemList Final Output

ItemController- AssignedItemList Action (See Figure 3.31)

HTTP GET handles HTTP GET requests to display a list of assigned items.

Explanation:

• The action retrieves a list of items from the database using _context.Items.

• The Include method is used to eagerly load related entities (ItemType and

Employee) to avoid N+1 query issues.

• Only items with a non-null value for the EmployeeId property (assigned items) are

included in the result.

• The list of assigned items is passed as the model to the associated view

(AssignedItemList.cshtml).

Figure 3.31: ItemController/AssignedItemList Action

37

ItemController- Rendering AssignedItemList Action Page (Figure 3.32)

Figure 3.32: ItemController/AssignedItemList Action

ItemController- AssignItem Action (Figure 3.33)

HTTP GET handles HTTP GET requests to display the form for assigning an item to an

employee. Explanation:

• The action retrieves a list of available employees from the database using

_context.Employees.

• The Where clause filters out employees marked as deleted (IsDeleted).

• The list of employees is added to the ViewBag to make it available in the associated

view (AssignItem.cshtml).

• The ItemId is added to the ViewBag to capture the ID of the item being assigned.

Figure 3.33: ItemController/ AssignItem Action

38

ItemController – Rendering AssignItem Action Page

Figure 3.34: ItemController/AssignItem Action Final Output

Item Controller – Assign Action (See Figure 3.35)

HTTP GET handles HTTP GET requests to process the assignment of an item to an

employee. Explanation:

• The action retrieves the item with the specified itemId from the database using

FirstOrDefault.

• The EmployeeId property of the item is updated with the new value (Employeeid).

• A new DeliveryHistory record is created to log the assignment details.

• The changes are saved to the database using _context.SaveChanges().

• The action redirects the user to the "Unassigned Item List" page

(UnassignedItemList action) after a successful assignment.

Figure 3.35: ItemController/Assign Action

39

Item Controller – Unassign Action (See Figure 3.36)

HTTP GET handles HTTP GET requests to process the unassignment of an item from an

employee. Explanation:

• The action retrieves the item with the specified itemId from the database using

Find.

• The EmployeeId property of the item is set to null to indicate that it is unassigned.

• The associated DeliveryHistory record is retrieved using FirstOrDefault based on

the item and employee IDs.

• The ReturnDate property of the delivery history is updated to record the

unassignment date and time.

• The changes are saved to the database using _context.SaveChanges().

• The action redirects the user to the "Item Index" page (Index action) after a

successful unassignment.

Figure 3.36: ItemController/Unassign Action

40

3.2.1.5 DepartmentController

The DepartmentController manages CRUD operations for departments. Its actions are

similar to previous controllers, handling index listing, creation, updating, and deletion of

department records. DepartmentController Actions (See Figure 3.37)

Index:

• Displays a list of departments that are not marked as deleted.

• Retrieves the list from the database using _context.Departments and filters out

deleted departments.

• Renders the list in the associated view (Index.cshtml).

Create (GET):

• Displays the form for creating a new department.

• Renders the form in the associated view (Create.cshtml).

Create (POST):

• Handles the form submission for creating a new department.

• Adds the new department to the database using _context.Departments.Add.

• Saves changes to the database using _context.SaveChanges.

• Redirects the user to the "Index" page after a successful creation.

Update (GET):

• Displays the form for updating an existing department.

• Retrieves the department with the specified ID from the database using Find.

• Renders the form pre-filled with department details in the associated view

(Update.cshtml).

Create (POST):

• Handles the form submission for updating an existing department.

41

• Updates the existing department in the database using

_context.Departments.Update.

• Saves changes to the database using _context.SaveChanges.

• Redirects the user to the "Index" page after a successful update.

Delete:

• Marks the department with the specified ID as deleted.

• Retrieves the department from the database using Find and sets IsDeleted to true.

• Saves changes to database using _context.SaveChanges and redirects to "Index".

Figure 3.37: DepartmentController/Actions

42

Similar to other controllers, these actions follow a common pattern for handling CRUD

operations. The associated pages for these actions (Index.cshtml, Create.cshtml,

Update.cshtml) are below:

Rendering Index Page (Figure 3.38)

Figure 3.38: DepartmentController/Index Final Output

Rendering Create Page (Figure 3.38) Rendering Update Page (Figure 3.39)

Figure 3.39: Create Page Figure 3.40: Update Page

43

3.2.1.6 EmployeeController

The EmployeeController manages CRUD operations for employees. Similar to previous

controllers, it handles actions for listing employees, creating new employees, updating

employee details, and marking employees as deleted.

EmployeeController Actions (See Figure 3.41)

Index:

• Displays a list of employees with associated department information.

• Retrieves the list from the database using _context.Employees.

• Eagerly loads the associated department information using Include.

• Filters out deleted employees with Where.

• Renders the list in the associated view (Index.cshtml).

Create (GET):

• Displays the form for creating a new employee.

• Retrieves a list of available departments from the database using

_context.Departments.

• Renders the form in the associated view (Create.cshtml) and includes the list of

departments in the ViewBag.

Create (POST):

• Handles the form submission for creating a new employee.

• Adds the new employee to the database using _context.Employees.Add.

• Saves changes to the database using _context.SaveChanges.

• Redirects the user to the "Index" page after a successful creation.

Update (GET):

• Displays the form for updating an existing employee.

• Retrieves the employee with the specified ID from the database using Find.

44

• Retrieves a list of available departments from the database using

_context.Departments.

• Renders the form pre-filled with employee details and includes the list of

departments in the ViewBag.

• Renders the form in the associated view (Update.cshtml).

Update (POST)

• Handles the form submission for updating an existing employee.

• Updates the existing employee in the database using _context.Employees.Update.

• Saves changes to the database using _context.SaveChanges.

• Redirects the user to the "Index" page after a successful update.

Delete:

• Marks the employee with the specified ID as deleted.

• Retrieves the employee from the database using Find and sets IsDeleted to true.

• Saves changes to the database using _context.SaveChanges.

• Redirects the user to the "Index" page after a successful deletion.

45

Figure 3.41: EmployeeController Actions

46

EmployeeController Rendering Index Page (Figure 3.42)

Figure 3.42: EmployeeController/Index Final Output

Create Rendering Page (Figure 3.42) Update Rendering Page (Figure 3.43)

Figure 3.43: Create Final Output Figure 3.44: Update Final Output

47

3.2.1.7 DeliveryHistoryController

The DeliveryHistoryController manages the viewing of delivery history records. It

includes an action to list delivery history records, providing details about the employees,

items, and departments involved in each delivery. The DeliveryHistoryController focuses

on providing a read-only view of the delivery history records. Additional actions for

creating, updating, or deleting delivery history records can be added if needed.

Actions:

Index (See Figure 3.45)

• Displays a list of delivery history records.

• Retrieves the list from the database using _context.DeliveryHistories.

• Eagerly loads associated employee, item, and department information using

Include.

• Filters out deleted delivery history records with Where.

• Renders the list in the associated view (Index.cshtml).

Figure 3.45: DeliveryHistoryController/Index Action

48

DeliveryHistory Rendering Index Page (Figure 3.46)

Figure 3.46: DeliveryHistory/Index Final Output

3.2.2 Areas

The "Identity" folder within the "Areas" directory serves as the dedicated location for the

Entity Framework Core Identity Provider to handle user authentication and authorization

processes. This includes the implementation of essential functionalities such as login, reset

password, logout, and registration.

3.2.3 Program.cs

The Program.cs (See Figure 3.47) sets up an ASP.NET Core application with MVC,

Identity, SQLite database, Razor Pages, and various middleware for routing,

authentication, and authorization.

Service Configuration:

• ‘AddControllersWithViews’: Adds MVC services to the application.

• ‘AddDbContext<DemirbasContext>’: Configures the application to use the

‘DemirbasContext’ for database operations, with SQLite as the database provider.

49

Identity Configuration:

• AddIdentity<ApplicationUser, ApplicationRole>: Configures Identity services

using custom ApplicationUser and ApplicationRole classes.

• AddEntityFrameworkStores<DemirbasContext>: Specifies that Identity data

should be stored in the DemirbasContext database.

• AddDefaultUI() and AddDefaultTokenProviders(): Configures Identity to include

default UI and token providers.

Razor Pages Configuration:

• AddRazorPages(): Adds Razor Pages services to the application.

Application Configuration:

• app.Environment.IsDevelopment(): Checks if the application is running in the

development environment.

Middleware Configuration:

• UseExceptionHandler: Configures exception handling to redirect to the error page

in non-development environments.

• UseHsts(): Configures HTTP Strict Transport Security (HSTS) for enhanced

security.

Routing and Authorization:

• UseHttpsRedirection(): Redirects HTTP requests to HTTPS.

• UseStaticFiles(): Configures the application to serve static files.

• UseRouting(): Configures routing for the application.

• UseAuthentication() and UseAuthorization(): Enable authentication and

authorization.

Endpoint Mapping:

50

• MapControllerRoute: Defines a default route for MVC controllers.

App Run:

• app.Run(): Runs the application.

• This Program.cs sets up an ASP.NET Core application with MVC, Identity,

SQLite database, Razor Pages, and various middleware for routing, authentication,

and authorization. It's a typical configuration for a web application.

Figure 3.47: Program.cs

51

References

Microsoft. “A Tour of the C# Language.” Accessed 30 January 2024.

https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

Radixweb. “.NET Core vs .NET Framework: Which Beats the Other in App

Development?”. Accessed 30 January 2024. https://radixweb.com/blog/net-core-

vs-net-framework

Microsoft.” Overview of ASP.NET Core”. Accessed 30 January 2024.

https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-

core?view=aspnetcore-8.0

C#Corner. “Entity Framework Using C#”. Accessed 30 January 2024. https://www.c-

sharpcorner.com/article/entity-framework-introduction-using-c-sharp-part-one/

TechTarget/The Server Side. “Object-Relational Mapping”. Accessed 30 January

2024. https://www.theserverside.com/definition/object-relational-mapping-ORM

Oracle. “What is a Relational Database”. Accessed 30 January 2024.

https://www.oracle.com/database/what-is-a-relational-

database/#:~:text=A%20relational%20database%20is%20a,of%20representing%20data

%20in%20tables

SimpliLearn. “What is SQLite”. Accessed 30 January 2024.

https://www.simplilearn.com/tutorials/sql-tutorial/what-is-

sqlite#:~:text=SQLite%20is%20an%20embedded%2C%20server,than%20other%20data

base%20management%20systems

https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://radixweb.com/blog/net-core-vs-net-framework
https://radixweb.com/blog/net-core-vs-net-framework
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-8.0
https://www.c-sharpcorner.com/article/entity-framework-introduction-using-c-sharp-part-one/
https://www.c-sharpcorner.com/article/entity-framework-introduction-using-c-sharp-part-one/
https://www.theserverside.com/definition/object-relational-mapping-ORM
https://www.oracle.com/database/what-is-a-relational-database/#:~:text=A%20relational%20database%20is%20a,of%20representing%20data%20in%20tables
https://www.oracle.com/database/what-is-a-relational-database/#:~:text=A%20relational%20database%20is%20a,of%20representing%20data%20in%20tables
https://www.oracle.com/database/what-is-a-relational-database/#:~:text=A%20relational%20database%20is%20a,of%20representing%20data%20in%20tables
https://www.simplilearn.com/tutorials/sql-tutorial/what-is-sqlite#:~:text=SQLite%20is%20an%20embedded%2C%20server,than%20other%20database%20management%20systems
https://www.simplilearn.com/tutorials/sql-tutorial/what-is-sqlite#:~:text=SQLite%20is%20an%20embedded%2C%20server,than%20other%20database%20management%20systems
https://www.simplilearn.com/tutorials/sql-tutorial/what-is-sqlite#:~:text=SQLite%20is%20an%20embedded%2C%20server,than%20other%20database%20management%20systems

52

Tech Target. “Object-Oriented Programing”. Accessed 30 January 2024.

https://www.techtarget.com/searchapparchitecture/definition/object-oriented-

programming-OOP

Code Academy. “What is ASP:NET Razor Pages?”. Accessed 30 January 2024.

https://www.codecademy.com/article/what-is-asp-net-razor-pages

Tutorials Point. “What is CSS”. Accessed 30 January 2024.

https://www.tutorialspoint.com/css/what_is_css.htm

W3Schools. “HTML Introduction”. Accessed 30 January 2024.

https://www.w3schools.com/html/html_intro.asp

W3Schools. “What is Bootstrap”. Accessed 30 January 2024.

https://www.w3schools.com/whatis/whatis_bootstrap.asp

W3Schools. “jQuery Introduction”. Accessed 30 January 2024.

https://www.w3schools.com/jquery/jquery_intro.asp

GeeksForGeeks. ”MVC Framework Intoruction”. Accessed 30 January 2024.

https://www.geeksforgeeks.org/mvc-framework-introduction/

Microsoft. “Get started with EF Core in an ASP:NET MVC web App”. Accessed 30

January 2024.

https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/intro?view=aspnetcore-8.0

Microsoft. “Introduction to Identity on ASP:NET Core”. Accessed 30 January 2024.

https://learn.microsoft.com/en-

us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio

Microsoft. “Constructors (C# Programing Guide). Accessed 30 January 2024.

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-

structs/constructors

https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.codecademy.com/article/what-is-asp-net-razor-pages
https://www.tutorialspoint.com/css/what_is_css.htm
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/whatis/whatis_bootstrap.asp
https://www.w3schools.com/jquery/jquery_intro.asp
https://www.geeksforgeeks.org/mvc-framework-introduction/
https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/intro?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors

