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ONLINE LEARNING STABLE ADAPTIVE 
CONTROLLER FOR CHAOS CONTROL OF BLDC 

MOTOR 

ABSTRACT 

This thesis presents an online learning stable robust adaptive controller design for the 
chaos control of the brushless direct current (BLDC) motor. The proposed adaptive 
controller algorithm consists of a Wiener model-based controller with a nonlinear 
auto-regressive moving-average (NARMA) based artificial neural network (ANN), 
and a Hammerstein based plant model. The developed online learning closed-loop 
control system providing stability and robustness might be defined as an auto-
regressive moving average (ARMA) based system identification problem with 
partially known parameters. The proposed learning adaptive controller for chaos 
control of BLDC motor is achieved by four stages as follows; i) Hammerstein system 
identification is used to obtain a BLDC motor plant, ii) ANN is used for learning of 
the inverse of the nonlinear part of the identified plant by using NARMA model, iii) 
the unification of the linear controller and ANN part composes the Wiener model, iv) 
ARMA model of the closed-loop control system providing Schur stability conditions 
is constituted by both Wiener model-based controller and Hammerstein model-based 
plant. After the training phase of the ANN block, the inverse of the nonlinear part of 
the Hammerstein model identified BLDC plant called ANN block is combined with 
the ARMA linear controller for constituting the Wiener model as a controller. The 
proposed online learning controller is implemented for chaos control of the BLDC 
motor model and its real experimental setup. During the simulations and experimental 
scenarios, both the three-dimensional phase portrait and the largest Lyapunov 
exponent (LLE) are used to evaluate the controller performance for suppressing the 
chaotic behaviors of the BLDC. The performance of the proposed online learning 
adaptive controller showing well results is compared with the performance of the 
proportional-integral-derivative controller in terms of mean square error for tracking 
error and LLE.   

Keywords: Adaptive Control, BLDC Motor, Chaos Control, ANN
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FIRÇASIZ DC MOTORUN KAOS KONTROLÜ İÇİN 
ÇEVRİMİÇİ ÖĞRENEN KARARLI UYARLANIR 

KONTROLÖR  

ÖZET 

Bu tez, fırçasız doğru akım (FDA) motorunun kaos kontrolü için çevrimiçi öğrenen 
kararlı, gürbüz, uyarlanır bir kontrolör tasarımını sunmaktadır. Önerilen uyarlanır 
kontrolör algoritması, doğrusal olmayan özyinelemeli kayan-ortalama (DÖKO) 
tabanlı bir yapay sinir ağı (YSA) ile Wiener model tabanlı bir kontrolör ve 
Hammerstein tabanlı bir sistem modelinden oluşmaktadır. Kararlılık ve gürbüzlük 
sağlayan geliştirilmiş çevrimiçi kapalı döngü kontrolör sistemi kısmi bilinen 
parametrelerle özyinelemeli kayan-ortalama (ÖKA) tabanlı tanılama problemi olarak 
tanımlanabilir. FDA motorunun kaos kontrolü için önerilen öğrenen uyarlanır  
kontrolör tasarımı dört basamakta gerçekleştirilir: i) FDA motor modeli elde etmek 
için Hammerstein sistem tanılama kullanılır, ii) YSA, DÖKO modeli kullanarak, 
tanılanmış sistemin doğrusal olmayan kısmının tersinin öğrenilmesi için kullanılır, iii) 
doğrusal kontrolör ve YSA kısmının birleşimi Wiener modelini oluşturur, iv) Schur 
kararlılık koşullarını sağlayan kapalı döngü kontrol sisteminin ÖKA modeli, hem 
Wiener model tabanlı kontrolör hem de Hammerstein model tabanlı tesis tarafından 
oluşturulmuştur. Hammerstein model tanılanmış FDA sisteminin doğrusal olmayan 
kısmının tersi olan YSA bloğu eğitim aşamasından sonra ÖKO doğrusal kontrolörü ile 
Wiener model kontrölör oluşturmak için birleştirilir. Önerilen çevrimiçi öğrenen 
kontrolörü, FDA motor modelinin ve deneysel sisteminin kaos kontrolü için 
uygulanmıştır. Benzetim ve deneysel senaryolar sırasında, FDA motorunun kaotik 
davranış baskılama performanslarını incelemek için üç boyutlu faz portresi ve en 
büyük Lyapunov üsteli (EBLÜ) kullanılmıştır. İyi sonuçlar gösteren önerilen 
çevrimiçi öğrenen uyarlamalı kontrolcünün performansı, oransal-integral-türev 
kontrolör ile ortalama referans izleme ortalama kare hatası ve EBLÜ açısından 
karşılaştırılmıştır. 

 

Keywords: Uyarlanır Kontrol, Fırçasız Motor, Kaos Kontrol, YSA
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1. INTRODUCTION 

The purpose of designing a controller is to find an optimum control signal that provides 

the desired behaviours and/or stabilize a system. Adaptive controllers, which is an 

important research field in control systems, cope with the system disturbances effects 

such as the changing system parameters, noise, and aging factors [1]. There are many 

developed adaptive control methods in the literature. Narendra [2] reported stable 

adaptive direct and indirect controller methods for linear and nonlinear systems. The 

adaptive controller updates controller parameters in harmony with environmental 

changing conditions in an online manner. Blanchini et al. [3] proposed an adaptive 

controller scheme, which tunes the feedback gain considering the time derivative of a 

given Lyapunov function, showed the convenient stability conditions. Battistelli et al. 

[4] designed a supervisory adaptive switching controller for time-varying and 

disturbance-sensitive plants. Waegeman et al. [5] developed a control algorithm that 

is based on weight online learning network shared and consists of a limiter block to 

keep the system input values in the desired range. This network, which is based on the 

past values of input-output pairs, weights are used to construct another network to 

predict the future behaviours of the system and manipulate the system output in 

accordance with the time-varying parameters. Wang and Hill [6] proposed a 

deterministic adaptive controller mechanism to overcome unknown closed-loop 

system dynamics employing localized radial basis function neural networks. MIT Rule 

is developed to design autopilot systems for aircrafts, and might be used to design a 

controller scheme with model reference adaptive controller (MRAC) having a 

gradient-based algorithm for converging the behaviour to be controlled system to a 

reference model [7]. Lightbody and Irwin [8] proposed a neural direct MRAC control 

system by adjusting controller gains referencing a linear model. Vinagre et al. [9] 

developed a novel adaptation rule based on fractional order operators for MRAC 

systems. This method considers the higher order derivative terms of the adaptation 
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gain unlike the conventional MIT rule, thus rate of convergence to a reference model 

might be tuned. 

As for the artificial neural network (ANN) based system identification and adaptive 

controller design [10-21], Narendra and Mukhopadhyay proposed to use an online 

learning nonlinear auto-regressive moving-average (NARMA) based ANN model 

controller to satisfy the adaptiveness, and compared to the other models in the literature 

[10]. Taşören et al. [11] showed the online system identification method for a plant 

model with an ANN and the adaptive controller gains updated by a gradient method. 

Rahideh et al. [12] developed an online learning ANN-based adaptive inverse 

controller for a considered process. Wang et al. [13] developed a controller scheme 

using an ANN model to predict the appropriate controller gain parameters according 

to state space variables of the system. Uçak et al.[14] proposed a design of support 

vector regression based NARMA controller together with an online learning model 

which predicts the k-step ahead Jacobian matrix of the system. Gundogdu and Celikel 

[15] developed an ANN based NARMA model to control a position of stepper motor 

application. Akbarimajd and Kia [16] proposed two ANN based NARMA controllers 

to model linear and nonlinear behaviors of the system of the under actuated planar 

manipulator. Imtiaz et al. [17] presents a NARMA neuro controller for the temperature 

control of a nonlinear complex bioreactor. Necsulescu et al. [18] proposed to design a 

multi-input multi-output NARMA controller together with output redefinition 

algorithms. Kassem [19] proposed a maximum power point tracking technique for 

photovoltaic water pumping systems. Şahin [20] developed a learning feedback 

linearization method cascaded to NARMA-based multi-layer perceptron (MLP) ANN 

model to control the nonlinear systems. Bulucu et al. [21] proposed NARMA is based 

ANN used for the learning the inverse of the Hammerstein model nonlinear part of the 

MIMO twin rotor system. 

Online adaptive controller design based on to be controlled closed-loop system data is 

a current and challenging area of research in terms of both theoretical and practical 

applications [22-27]. Chen et al. [22] proposed to use a reinforcement learning-based 

controller providing the time derivative of a Lyapunov function ensuring the stability 

of an inverted pendulum system. Na et al. [23] transformed a robust control problem 

into a control problem and developed an online learning-based controller method for 
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uncertain systems. Şahin and Güzeliş [24] proposed an online learning auto-regressive 

moving-average (ARMA)-based controller which guarantees the closed-loop stability 

with Schur stability. Šafarič et al. [25] proposed a nature-inspired online adaptive 

controller method using an online learning ANN model. Rahman and Hoque [26] 

employed a self tuning ANN-based controller which updates the model weights as the 

controller gains. Halim and İsmail design a tree physiology optimization-based online 

tuning PID controller which is inspired by a plant growth system [27]. 

Chaos control methods providing stable limit cycle behavior for the controlled system 

take place in many significant studies of the literature of BLDC motor applications 

[28-35]. Hemati [28] showed the equivalence between the BLDC motor and the 

Lorenz system in terms of the open-loop system dynamics in 1994. Li and Chen [29] 

analyzed the Chen chaotic system dynamics and proposed the design of a linear 

feedback controller to control the system to its equilibrium points. Vaidyanathan et al. 

[30] proposed a novel nine-term chaotic system and computed the largest Lyapunov 

exponents (LLE) minimized by a sliding mode control scheme design. Harb and Jabbar 

[31] proposed to design a global state feedback linearization based controller to control 

the Hopf bifurcation and its chaotic behavior in a small power system. Rajagopal et al. 

[32] analyzed the complex dynamics of a fractional-order BLDC motor and 

investigated the results of three different controller techniques such as sliding mode 

control, robust control, and back-stepping control for the suppression of chaos. 

Uyaroğlu and Cevher [33] presented a sliding mode control method with the 

conventional proportional integral controller to stabilize the chaotic behavior of a 

single time-scale BLDC on the equilibrium point. Zribi et al. [34] proposed a controller 

technique that computes input signals that control the sum of all three Lyapunov 

exponents to be negative. Roy et al. [35] proposed a modified feedback control method 

that ensures the global stability to control the BLDC motor to its limit-cycle behavior. 

This thesis presents a NARMA-based stable adaptive robust controller design for a 

chaos control application of BDLC motor plant. This controller is an extended version 

of data driven ARMA-based online learning controller given in [24] which ensures the 

chaos control of BLDC motor with the closed-loop system guaranteeing Schur stability 

criteria. In order to fulfil the suppression of the BLDC motor chaotic behaviours, three 

time scales BDLC motor model [36] parameters are firstly estimated from the input-
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output data pairs obtained from areal BLDC motor. To estimate the model parameters, 

a linear regression-based algorithm is used as given in [37] and the obtained data is 

validated whether to mimic the real motor complex dynamics accurately. This analysis 

and validation of the three time-scales motor models are performed in the 

MATLAB/Simulink environment. To mimic the chaotic behaviours of BLDC motor, 

the external load torque circumstances are determined during the simulations and 

experimental tests and both the phase portraits and LLE of the obtained results is used 

to verification of the chaotified BLDC operating conditions. Three different chaos 

control experiments of the simulations are designed as follows: i) BLDC model is 

chaotified by an external load torque input, after 10 seconds the developed controller 

is switched on to test the chaos control of the system on its equilibrium point, ii) the 

developed controller and external load torque excitation launched simultaneously, the 

load torque excitation is switched off after 10 seconds, and the controller remains to 

track the desired trajectory for 10 seconds, and iii) the controller is launched for a 20 

seconds simulation, the external load torque excitation is launched after 10 seconds. 

The last experiment is performed on both the simulation and the real BLDC motor 

platform. Observed data are considered for the performance evaluations for real plant 

experiment. For the second and third experiments, both 𝑡𝑡𝑡𝑡𝑡𝑡ℎ and 𝑠𝑠𝑠𝑠𝑡𝑡 reference signals 

are used for the tracking motor speed control of the closed-loop system having a BLDC 

motor. In order to compare the performance results of the chaos control of the proposed 

NARMA based stable adaptive controller and the conventional PID controller, phase 

portrait and LLE are tested for suppressing the chaos on the BLDC motor existing. 

And also, the mean square error (MSE) evaluated as tracking speed error is performed 

for both the simulations and experimental tests. 

The remaining parts of this thesis are organized as follows: In Chapter 2, background 

on the model of BLDC motor having three time-scales and estimating the unknown 

model parameters, chaos control, system identification, ANN, MSE, and LLE are 

explained. Chapter 3 presents the proposed online learning stable adaptive controller 

and conventional PID controller design for the BLDC motor model and the real 

system. In Chapter 4, the simulation and experimental results of the comparison 

controller performances on the chaos suppression, the tracking reference are presented 
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for the three different experimental scenarios. The conclusions and future possible 

directions are given in Chapter 5. 
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2. MATERIALS AND METHOD 

In this chapter, system identification methods, ARMA and NARMA process models, 

ANN-based controllers, BLDC system modeling, and chaos control strategies are 

briefly presented in the following sub-chapters. 

2.1 System Identification 

The system identification is based on estimating dynamical system models via 

measured input-output data and/or signals from the real system or its model. The 

obtained system models might be represented as black-box models having no 

mathematical expressions whereas the grey box possessing partial expression which 

might be lied on differential or difference equations. The system identification 

parameters could be adjusted to minimize the identification error evaluated between 

the model and plant outputs. This minimization algorithm might be chosen as a 

deterministic and/or statistical-based method [38-40]. 

2.1.1 Wiener and Hammerstein identification 
A Wiener model might be defined as a series of successive connections between a 

linear dynamical block and a static nonlinearity, while the Hammerstein model might 

be defined as consecutive connections between a static nonlinearity and a linear 

dynamical block (Fig. 2.1) [41-43].  

 
 
Figure 2.1 Hammerstein and Wiener type plant models. 

    

Input 
Nonlinearity

Linear 
Model

Linear 
Model

Output 
Nonlinearity

𝑢𝑢 𝑡𝑡

𝑢𝑢 𝑡𝑡

𝑣𝑣 𝑡𝑡

𝑣𝑣 𝑡𝑡

𝑦𝑦 𝑡𝑡

𝑦𝑦 𝑡𝑡

Wiener Model System

Hammerstein Model System



9 
 

2.1.2 ARMA – NARMA models 
ARMA or NARMA system identification exploits a black-box identification approach 

by using input-output data pairs measured from the system [44-48]. The ARMA and 

NARMA model representations are given in Equation 2.1 and 2.2, respectively as 

follows; 

𝑦𝑦(𝑘𝑘) = �𝛼𝛼𝑖𝑖𝑦𝑦(𝑘𝑘 − 𝑠𝑠)
𝑁𝑁

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝑢𝑢(𝑘𝑘 − 𝑗𝑗)
𝑀𝑀

𝑗𝑗=0

 
 
(2.1) 

𝑦𝑦(𝑘𝑘) = ℎ[𝑦𝑦(𝑘𝑘 − 1),𝑦𝑦(𝑘𝑘 − 2), … 𝑦𝑦(𝑘𝑘 − 𝑁𝑁);𝑢𝑢(𝑘𝑘), … ,𝑢𝑢(𝑘𝑘 −𝑀𝑀)] (2.2) 

where 𝛼𝛼𝑖𝑖 𝜖𝜖 𝑹𝑹 and 𝛽𝛽𝑖𝑖 𝜖𝜖 𝑹𝑹 represents the 𝑠𝑠𝑡𝑡ℎ delay corresponded weight; 𝑁𝑁 and 𝑀𝑀 

represents the order of the AR and MA models, respectively; 𝑘𝑘 represents the time 

index; 𝑦𝑦(𝑘𝑘) represents the output signal; 𝑢𝑢(𝑘𝑘) represents the input signal in discrete 

time; ℎ(∙):𝑹𝑹𝑵𝑵+𝑴𝑴+𝟏𝟏 → 𝑹𝑹 is a nonlinear function which is employed to map from inputs 

to the output. 

2.1.3 ANN based identification 
ANN known as universal approximation might be used to identify a system of 

nonlinear and complex dynamics [47,49-51]. The ANNs having learning and 

generalization features have a significant role in system identification literature [52-

54]. The ANN-based serial-parallel identification method is widely used in system 

identification methods (Fig. 2.2). A single-input single-output (SISO) feedforward 

MLP ANN structure is used to train the inverse the static nonlinearity of Hammerstein 

model (Fig. 2.3). 
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Figure 2.2 Serial-parallel system identification. 

 

 
Figure 2.3 Cascaded ARMA and inverse ANN block. 

 

2.2 ANN Based Controller 

In the literature, it was reported that ANN-based controller design and analysis of 

learning performances on nonlinear complex dynamics under the parameter changes 

[55, 56]. The ANN-based controller might be divided into two groups as algebraic 

ANN and recurrent ANN architectures [55, 57]. The strategy to design the controller 

as a direct inverse control method is employed to construct an identity system based 

on the input to the output of the system (Fig. 2.4). That is to say, the inverse system 

approach might be done by matching the reference signal 𝑟𝑟(𝑘𝑘) to actual plant output 

𝑦𝑦(𝑘𝑘) as a unit system. Herein, an ANN model is trained for the inverse system and 

employed as a part of the controller structure. 

System

Model of 
ANN 

Identification

𝑧−1

𝑧−1
..

..

𝑢𝑢 𝑡𝑡 y 𝑡𝑡

𝑦𝑦� 𝑡𝑡

Linear ARMA Block Nonlinear Inverse 
ANN Block

Wiener Model
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Figure 2.4 ANN-based inverse controller. 

 

2.3 Adaptive Controllers 

The adaptive controllers are effective and strong methods for the nonlinear systems on 

disturbances effects such as the noise, parameter uncertainties, and parameter changes. 

The controller parameters are continuously updated after each pre-determined window 

or in each iteration to satisfy the adaptiveness [7, 58-62]. These updates might be 

matched as a batch mode or a mini-batch mode as a sliding window in terms of the 

supervised learning stages of the ANN. Self-tuning regulator (STR), which is one of 

the adaptive control methods, determines the plant model parameter via deterministic 

or stochastic estimation methods and provides to update the controller gains (Fig. 2.5) 

[63-66]. 

System

ANN controller
(inverse system)

ANN controller
(inverse system)

+
-

𝑟𝑟𝑘𝑘 𝑢𝑢𝑘𝑘 𝑦𝑦𝑘𝑘

𝑒𝑒𝑘𝑘
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Figure 2.5 STR block diagram representation. 

 

The MRAC is a kind of adaptive controller in which the desired controller design 

performance is determined according to a stable reference system (Figure 2.6) [67-70]. 

The overall MRAC system has a feedback-loop composed of a block of adjustment 

mechanism and a controller block. An adjustment mechanism called updating the 

controller parameters algorithm, considering the error, which is the difference between 

a desired and actual output of the closed-loop system, updates the adaptive controller 

parameters. This adaptiveness over error term might be generally obtained by using 

the gradient-based algorithms such as MIT rule and/or minimized Lyapunov based 

cost functions. 

 

Figure 2.6 Block diagram representation of a MRAC. 

 

Controller 
Parameters

Plant Parameter 
Estimation

Controller Plant

𝑟𝑟𝑘𝑘
𝑢𝑢𝑘𝑘 𝑦𝑦𝑘𝑘

specifications

Parameter 
Tuning

Plant

Model

Controller 𝑢𝑢𝑘𝑘 𝑦𝑦𝑘𝑘𝑟𝑟𝑘𝑘
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2.4 PID Controller 

The PID controller, which is the most commonly used in the industrial and academic 

research, exploits the tracking error calculating between the desired output and actual 

output of the closed loop system. In order to compute the control signal for the system 

to be controlled, the proportional, integral and derivative gains are evaluated with the 

closed-loop system error and these linearly weighted summations might be expressed 

in the following form; 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 �𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐾𝐾𝑑𝑑
𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

 
(2.3) 

where 𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 ,𝐾𝐾𝑑𝑑 are the controller gains; 𝑒𝑒(𝑡𝑡) is the tracking error calculating between 

the desired output and actual output of the closed loop system; 𝑢𝑢(𝑡𝑡) is the control 

signal [71].  

2.5 BLDC Motor Model 

The electromechanical dynamics of a BLDCM system might be described as given in 

[71] in the following form: 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑠𝑠𝑞𝑞 =

1
𝐿𝐿𝑞𝑞

[−𝑅𝑅𝑠𝑠𝑞𝑞 − 𝑡𝑡𝑛𝑛�𝐿𝐿𝑑𝑑𝑠𝑠𝑞𝑞 − 𝑘𝑘𝑡𝑡� + 𝑣𝑣𝑞𝑞 + 𝑢𝑢] 
 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑠𝑠𝑑𝑑 =

1
𝐿𝐿𝑑𝑑
�−𝑅𝑅𝑠𝑠𝑑𝑑 + 𝑡𝑡𝐿𝐿𝑞𝑞𝑛𝑛𝑠𝑠𝑞𝑞 + 𝑣𝑣𝑑𝑑� 

(2.4) 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑛𝑛 =

1
𝑗𝑗

[𝑇𝑇(𝐼𝐼,𝜃𝜃) − 𝑇𝑇𝑙𝑙(𝑡𝑡)] 
 

 

where 𝑠𝑠𝑞𝑞,𝑠𝑠𝑑𝑑, and 𝑛𝑛 are quadrature-axis current (q-axis), direct-axis (d-axis) current and 

rotation speed, respectively; 𝑢𝑢 is the control signal, 𝐿𝐿𝑞𝑞 and 𝐿𝐿𝑑𝑑 are the q-axis and d-axis 

inductances; 𝑅𝑅 stands for the winding resistance; 𝑡𝑡 is the number of permanent magnet 

pole pairs; 𝑘𝑘𝑡𝑡 is the permanent magnet flux constant; 𝑣𝑣𝑑𝑑 and 𝑣𝑣𝑞𝑞 represents the q-axis 
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and d-axis voltages, respectively; 𝑗𝑗 stands for the momentum of the inertia; 𝑇𝑇𝑙𝑙 is the 

external load torque input; 𝜃𝜃 is the angular displacement. 

In the sake of the simplicity, electromechanical system parameters of the BLDC motor 

model may be transformed into the state space representation called three time-scales 

BLDC motor model [36] via reducing the number of system parameters in the 

following form: 

𝜏𝜏1 =
𝐿𝐿𝑞𝑞
𝑅𝑅

, 𝜏𝜏2 =
𝐿𝐿𝑑𝑑
𝑅𝑅

, 𝜏𝜏3 =
𝑗𝑗𝑅𝑅
𝑘𝑘𝑡𝑡2

 (2.5) 

where 𝜏𝜏1 and 𝜏𝜏2 stands for the electrical time constants; and 𝜏𝜏3 is the mechanical time 

constant. Afterward, let’s rewrite Equation 2.4 yields the three time-scales BLDCM 

model via substituting Equation 2.5 which can be defined as: 

𝜏𝜏1
𝑑𝑑
𝑑𝑑𝑡𝑡
𝑥𝑥1 = 𝑉𝑉𝑞𝑞 − 𝑥𝑥1 − 𝑥𝑥2𝑥𝑥3 − 𝑥𝑥3 + 𝑢𝑢 

 

𝜏𝜏2
𝑑𝑑
𝑑𝑑𝑡𝑡
𝑥𝑥2 = 𝑉𝑉𝑑𝑑 + 𝑥𝑥1𝑥𝑥3 − 𝑥𝑥2 

(2.6) 

𝜏𝜏3
𝑑𝑑
𝑑𝑑𝑡𝑡
𝑥𝑥3 = 𝜎𝜎𝑥𝑥1 + 𝜌𝜌𝑥𝑥1𝑥𝑥2 − 𝜂𝜂𝑥𝑥3 − 𝑇𝑇𝐿𝐿�  

 

where 𝑥𝑥1 = 𝐿𝐿𝑞𝑞
𝑘𝑘𝑡𝑡√𝛿𝛿

𝑠𝑠𝑞𝑞 and 𝑥𝑥2 = 𝐿𝐿𝑑𝑑
𝑘𝑘𝑡𝑡𝛿𝛿

𝑠𝑠𝑑𝑑 stands for the q-axis and d-axis currents, 

respectively; 𝑥𝑥3 = 𝑛𝑛𝐿𝐿𝑞𝑞
𝑅𝑅√𝛿𝛿

𝑛𝑛 indicates the angular speed of the rotor; 𝑇𝑇𝐿𝐿�  is the external 

load torque excitation which may trigger out the chaotic dynamic behaviors; 𝜎𝜎, 𝜌𝜌 and 

𝜂𝜂 are the obtained model parameters which can be described as; 

𝜎𝜎 = 𝑡𝑡2,𝜌𝜌 = (1 − 𝛿𝛿)𝑡𝑡2, 𝜂𝜂 =
𝑅𝑅𝑏𝑏
𝑘𝑘𝑡𝑡2

, 𝛿𝛿 =
𝐿𝐿𝑞𝑞
𝐾𝐾𝑑𝑑

 (2.7) 

where 𝑏𝑏 is the viscosity damping coefficient; 𝑅𝑅𝑏𝑏 is the winding resistance; and the 𝑘𝑘𝑡𝑡 

is the load torque constant.  
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2.6 BLDC Motor Parameter Estimation 

The parameter estimation of the unknown system model is a significant process for the 

adaptive control design [7, 72-74]. The parameter identification of the BLDC motor 

might be employed by using the linear regression method, so let us take a linear time 

invariant (LTI) system formed as state space representation in the following form: 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡) 
 

 (2.8) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡)  

where 𝑥𝑥(𝑡𝑡) stands for the states, 𝑢𝑢(𝑡𝑡) is the input of the system, 𝑦𝑦(𝑡𝑡) is the output of 

the system, and 𝐴𝐴,𝐵𝐵, and 𝐶𝐶 stands for the system parameters as matrix and vectors. 

The LTI system given in Equation 2.8 may be sampled by zero-order-hold (ZOH) 

circuit with a period as ℎ, then the obtained discrete LTI system model is given in the 

following form: 

𝑥𝑥(𝑘𝑘ℎ + ℎ) = 𝐴𝐴𝑑𝑑(𝑘𝑘ℎ) + 𝐵𝐵𝑑𝑑𝑢𝑢(𝑘𝑘ℎ) 

𝑦𝑦(𝑘𝑘ℎ) = 𝐶𝐶𝐷𝐷𝑥𝑥(𝑘𝑘ℎ) 

(2.9) 

where 𝐴𝐴𝑑𝑑, 𝐵𝐵𝑑𝑑, and 𝐶𝐶𝑑𝑑 system parameters can be rewritten as follows 

𝐴𝐴𝑑𝑑 = 𝑒𝑒𝐴𝐴ℎ 

𝐵𝐵𝑑𝑑 = 𝐵𝐵� 𝑒𝑒𝐴𝐴𝐴𝐴𝑑𝑑𝑠𝑠
ℎ

0
 

𝐶𝐶𝑑𝑑 = 𝐶𝐶 

 

(2.10) 

 

Now, let us introduce a matrix 𝛹𝛹 is used to approximate the 𝐴𝐴𝑑𝑑 and 𝐵𝐵𝑑𝑑, this matrix 

defined as [37] in given in Equation 2.11 and 𝐴𝐴𝑑𝑑  and 𝐵𝐵𝑑𝑑 may be computed in the 

Equation 2.12. 

𝛹𝛹 = � ℎ𝐴𝐴𝐴𝐴𝑑𝑑𝑠𝑠
𝐴𝐴

0
≅�

𝐴𝐴𝑖𝑖ℎ𝑖𝑖+1

(𝑠𝑠 + 1)!

𝑛𝑛

𝑖𝑖=0

 (2.11) 

𝐴𝐴𝑑𝑑 = 𝐼𝐼 + 𝐴𝐴𝛹𝛹 
𝐵𝐵𝑑𝑑 = 𝛹𝛹𝐵𝐵 

(2.12) 
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The Euler forward difference equations used to solve the state space represented 

system borrowed from [75], which can be defined as: 

𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡

≅
𝑥𝑥(𝑡𝑡 + ℎ) − 𝑥𝑥(𝑡𝑡)

ℎ
 (2.12) 

Now, one can write the BLDC motor model as a state space representation in the 

following form: 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝑠𝑠𝐴𝐴𝑑𝑑
𝑠𝑠𝐴𝐴𝑞𝑞
� = �

𝑡𝑡11 𝑡𝑡12
𝑡𝑡12 𝑡𝑡22� �

𝑠𝑠𝐴𝐴𝑑𝑑
𝑠𝑠𝐴𝐴𝑞𝑞
� +  �𝑏𝑏11 𝑏𝑏12

𝑏𝑏12 𝑏𝑏22
� �
𝑢𝑢𝐴𝐴𝑑𝑑
 𝑢𝑢�𝐴𝐴𝑞𝑞� 

(2.13) 

where 𝑡𝑡𝑖𝑖𝑗𝑗 and 𝑏𝑏𝑖𝑖𝑗𝑗 are the model parameters constitute 𝐴𝐴 and 𝐵𝐵 matrices, respectively. 

These matrices may be rewritten in Equation 2.14 according to electrical circuit 

parameters of the BLDC motor. 

𝐴𝐴 = �
𝑡𝑡11 𝑡𝑡12
𝑡𝑡12 𝑡𝑡22� =

⎣
⎢
⎢
⎢
⎡ −

𝑅𝑅𝐴𝐴𝑑𝑑
𝐿𝐿𝑑𝑑

𝑛𝑛𝑟𝑟𝐿𝐿𝑞𝑞
𝐿𝐿𝑑𝑑

−
𝑛𝑛𝑟𝑟𝐿𝐿𝑑𝑑
𝐿𝐿𝑞𝑞

−
𝑅𝑅𝐴𝐴𝑞𝑞
𝐿𝐿𝑞𝑞 ⎦
⎥
⎥
⎥
⎤
 

 

𝐵𝐵 = �𝑏𝑏11 𝑏𝑏12
𝑏𝑏12 𝑏𝑏22

� =

⎣
⎢
⎢
⎢
⎡

1
𝐿𝐿𝑑𝑑

0

0
1
𝐿𝐿𝑞𝑞⎦
⎥
⎥
⎥
⎤
 

 

(2.14) 

 𝑢𝑢�𝐴𝐴𝑞𝑞 = 𝑢𝑢𝐴𝐴𝑞𝑞 − 𝑛𝑛𝑟𝑟𝜓𝜓𝑚𝑚  

 

From the Equation 2.13, the discrete of the LTI model might be rewritten in the 

Equation 2.15: 

�
𝑠𝑠𝐴𝐴𝑑𝑑[𝑡𝑡 + 1]
𝑠𝑠𝐴𝐴𝑞𝑞[𝑡𝑡 + 1]� = �

𝑡𝑡11𝑑𝑑 𝑡𝑡12𝑑𝑑
𝑡𝑡12𝑑𝑑 𝑡𝑡22𝑑𝑑

����������
𝐴𝐴𝑑𝑑

�
𝑠𝑠𝑑𝑑[𝑡𝑡]
𝑠𝑠𝑞𝑞[𝑡𝑡]� +  �

𝑏𝑏11𝑑𝑑 𝑏𝑏12𝑑𝑑
𝑏𝑏12𝑑𝑑 𝑏𝑏22𝑑𝑑

�
���������

𝐵𝐵𝑑𝑑

�
𝑢𝑢𝑑𝑑

 𝑢𝑢�𝐴𝐴𝑞𝑞� 
 

(2.15) 

Where 𝑡𝑡 is the discrete time, and the discretized model parameter matrices 𝐴𝐴𝑑𝑑 and 𝐵𝐵𝑑𝑑 

are defined as: 
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𝐴𝐴𝑑𝑑 = �
𝑡𝑡11𝑑𝑑 𝑡𝑡12𝑑𝑑
𝑡𝑡12𝑑𝑑 𝑡𝑡22𝑑𝑑

� = �𝑡𝑡11ℎ + 1 𝑡𝑡12ℎ
𝑡𝑡12ℎ 𝑡𝑡22ℎ + 1�

=

⎣
⎢
⎢
⎢
⎡−

𝑅𝑅𝐴𝐴𝑑𝑑
𝐿𝐿𝑑𝑑

ℎ + 1
𝑛𝑛𝑟𝑟𝐿𝐿𝑞𝑞
𝐿𝐿𝑑𝑑

ℎ

−
𝑛𝑛𝑟𝑟𝐿𝐿𝑑𝑑
𝐿𝐿𝑞𝑞

−
𝑅𝑅𝐴𝐴𝑞𝑞
𝐿𝐿𝑞𝑞

ℎ + 1
⎦
⎥
⎥
⎥
⎤
 

 

 (2.16) 

𝐵𝐵𝑑𝑑 = �
𝑏𝑏11𝑑𝑑 𝑏𝑏12𝑑𝑑
𝑏𝑏12𝑑𝑑 𝑏𝑏22𝑑𝑑

� = �𝑏𝑏11ℎ 𝑏𝑏12ℎ
𝑏𝑏12ℎ 𝑏𝑏22ℎ

� =

⎣
⎢
⎢
⎢
⎡

1
𝐿𝐿𝑑𝑑
ℎ 0

0
1
𝐿𝐿𝑞𝑞
ℎ
⎦
⎥
⎥
⎥
⎤
 

 

 

A linear regression method [76] is used to approach the input output of the real plant 

via linear combinations with the considered model parameters as follows: 

𝑦𝑦(𝑡𝑡) = 𝜑𝜑(𝑡𝑡)𝑇𝑇𝜃𝜃 (2.17) 

where the 𝑦𝑦(𝑡𝑡) is the output of the model, φ(t) is the regression vector which consists 

of the regressors as inputs, 𝜃𝜃 is the parameter vector of the system model. To find the 

motor model parameters by using the regression method, a shift operator is applied to 

the Equation 2.15 and the regression model is found as Equation 2.18. 

[𝑠𝑠𝐴𝐴𝑑𝑑[𝑡𝑡] 𝑠𝑠𝐴𝐴𝑞𝑞[𝑡𝑡]]�����������
𝑦𝑦(𝑡𝑡)

= [𝑠𝑠𝐴𝐴𝑑𝑑[𝑡𝑡 − 1] 𝑠𝑠𝐴𝐴𝑞𝑞[𝑡𝑡 − 1]     𝑢𝑢𝐴𝐴𝑑𝑑[𝑡𝑡 − 1] 𝑢𝑢𝐴𝐴𝑞𝑞[𝑡𝑡 − 1]]���������������������������������
φ(t)T ⎣

⎢
⎢
⎡
𝑡𝑡11𝑑𝑑 𝑡𝑡21𝑑𝑑
𝑡𝑡12𝑑𝑑 𝑡𝑡22𝑑𝑑
𝑏𝑏11𝑑𝑑 𝑏𝑏21𝑑𝑑
𝑏𝑏12𝑑𝑑 𝑏𝑏22𝑑𝑑 ⎦

⎥
⎥
⎤

���������
𝐵𝐵𝑑𝑑

 

 

(2.18) 

The BLDC motor model parameters can be derived from 𝜃𝜃 matrix in as follows: 

𝑅𝑅𝐴𝐴 =
2 − 𝑡𝑡11𝑑𝑑 − 𝑡𝑡22𝑑𝑑
𝑏𝑏11𝑑𝑑 + 𝑏𝑏22𝑑𝑑

 
 

𝐿𝐿𝑑𝑑 =
ℎ
𝑏𝑏11𝑑𝑑

 
(2.19) 

𝐿𝐿𝑞𝑞 =
ℎ
𝑏𝑏22𝑑𝑑
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2.7 Chaos Control 

Chaos control is a method, which suppresses and stabilizes the nonlinear complex 

behavior of a system caused by chaotic effects. As these effects might be observed in 

many systems, it is a common problem for a BLDC motor system in the literature [77-

80]. This method is employed to design a control law, which drives the system a limit 

cycle or an asymptotically stable equilibrium point from existing chaotic behavior, in 

time. Ren and Chen [77] proposed to use piecewise quadratic state feedback strategy 

to suppress chaotic behavior of a BLDC motor. Ott, Grebogi and Yorke (OGY) 

proposed a control method, also known as OGY method, for the control of chaotic 

systems [78]. Nazzal and Natsheh [79] designed a nonlinear Sliding-Mode controller 

for Chua’s circuit and Lorenz system and showed the effectiveness of the proposed 

method, but it is not a suitable method for real plant applications, such as a BLDC 

motor, due to the lack of an adjustable control parameter. Luo et al. [80] developed a 

radial basis function (RBF) ANN-based dynamic surface control (DSC) method for 

the control of chaos in BLDC motor. To observe and measure the chaotic behavior for 

a system, phase portrait and LLE might be investigated. Phase portraits are obtained 

by sketching the set of solutions of each dimension of a system (Figure 2.7). Herein, 

𝑥𝑥1 = 𝑠𝑠𝑞𝑞, 𝑥𝑥2 = 𝑠𝑠𝑑𝑑, and 𝑥𝑥3 = 𝑛𝑛 are quadrature-axis current (q-axis), direct-axis (d-axis) 

current and rotation speed, respectively. 

 

Figure 2.7 Strange attractor of a BLDC motor [28]. 
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The chaos presence in the considered dynamical system might be evaluated by using 

the largest Lyapunov exponent (which stands for LLE) that gives about the divergence 

along the trajectories depending on sensitive initial conditions and it provides to 

analyze the chaotification phenomena [81-83]. LLE measurements may define the 

behavior of the system as follows; i) A positive value of LLE shows that the system 

might be in chaotic behavior, ii) Zero value of LLE measurement may define the limit 

cycle behavior, and iii) A negative LLE value may define the stable dynamics of the 

system. It is obvious that 𝑛𝑛 different LLE might be computed for 𝑛𝑛 dimensional 

system. LLE may be computed via the developed algorithms from the time series data 

such as Rossenstein’s algorithm [81,84-90]. Let us define a 𝑋𝑋 matrix consists of a 

reconstructed trajectory of a single time series as follows; 

𝑋𝑋 = [𝑋𝑋1 𝑋𝑋2 ⋯𝑋𝑋𝑀𝑀−1 𝑋𝑋𝑀𝑀]𝑇𝑇 (2.20) 

where 𝑀𝑀 is the number of reconstructed trajectories. A time series, with 𝑁𝑁-

samples{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁}, 𝑋𝑋 for each time point 𝑖𝑖 as follows: 

𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖+𝑗𝑗 ⋯𝑋𝑋𝑖𝑖+(𝑚𝑚−2)𝑗𝑗 𝑋𝑋𝑖𝑖+(𝑚𝑚−1)𝑗𝑗] (2.21) 

where 𝑗𝑗 is the lag or delay of reconstruction; 𝑚𝑚 is the embedding dimension. Hence, 

𝑋𝑋 is a 𝑀𝑀 × 𝑚𝑚 matrix, and relation between constants are related as: 

𝑀𝑀 = 𝑁𝑁 − (𝑚𝑚 − 1)𝑗𝑗 (2.22) 

where j is the lag order corresponding to the point where the autocorrelation of the data 

might be maximum value. After reconstructing𝑋𝑋𝑖𝑖, the algorithm employs the nearest 

neighbor of each point along the trajectory. The nearest neighbor, 𝑋𝑋 �̂�𝚥 , might be 

computed via searching a point where the distance from the reference as 𝑋𝑋𝑗𝑗 to the 

trajectory is minimum. 𝑋𝑋 �̂�𝚥 might be computed as: 

𝑑𝑑𝑗𝑗(0) = min
𝑋𝑋𝚥𝚥�

��𝑋𝑋𝑗𝑗 − 𝑋𝑋�̂�𝚥�� (2.23) 
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where 𝑑𝑑𝑗𝑗(0) is the distance at initial conditions from the 𝑗𝑗𝑡𝑡ℎ point to its nearest 

neighbor. As a constraint to nearest neighbors, seperation of the points should be 

greater than the time series mean period as 𝑚𝑚𝑚𝑚 (i.e. |𝑗𝑗 − 𝚥𝚥̂| > 𝑚𝑚𝑚𝑚). Employing this 

constraint provides the consideration of each pair of neighbors around the initial 

condition for the different trajectories formed by each delayed state. LLE is denoted 

by 𝛾𝛾, and can be estimated computing the mean rate of the separation of the nearest 

neighbors (slope of the 𝑑𝑑 vector). In order to mimic the real plant conditions, such as 

electrical noise, for the simulation works, results are considered with the zero mean 

normal distribution. 
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3. ONLINE LEARNING WIENER-
HAMMERSTEIN BASED ADAPTIVE 
CONTROLLER FOR CHAOS CONTROL OF 
BLDC MOTOR 

The developed stable robust adaptive controller consists of a Wiener model-based 

controller with NARMA based ANN, and Hammerstein model of the BLDC motor 

plant. The data depended learning ARMA closed-loop control system ensuring the 

stability and robustness. Herein, the controller parameters might be determined as a 

system identification problem defined with partially known parameters of the closed 

loop system. The proposed learning adaptive controller for chaos control of BLDC 

motor is achieved by four stages as follows (Figure 3.1); i) Hammerstein system 

identification is used to obtain a BLDC motor plant, ii) ANN is used for learning of 

the inverse of the nonlinear part of the identified plant by using NARMA model, iii) 

the unification of the linear controller and ANN part composes the Wiener model, iv) 

ARMA model of the closed-loop control system providing Schur stability conditions 

is constituted by both Wiener model-based controller and Hammerstein model-based 

plant. Herein, once the training phase of the ANN block is completed, the inverse of 

the nonlinear part of the Hammerstein model identified BLDC plant called as ANN 

block might combined with the ARMA linear controller which can be defined as the 

Wiener model based controller. 

 

Figure 3.1  Block diagram representation of the pro closed-loop system. 

 

In Figure 3.1, the Hammerstein model based system [91] approximation where the first 

block in the BLDC system box where 𝑔𝑔(∙) block is used as the static nonlinearity 
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representation and 𝐵𝐵(𝑞𝑞)/𝐴𝐴(𝑞𝑞)  stands for the linear dynamical part. A Wiener type 

system [92] is composed of a two-degree of freedom ARMA controller and a nonlinear 

𝑔𝑔�−1(∙) block. This inverse of 𝑔𝑔(∙) nonlinearities are trained by NARMA based ANN 

model via supervised learning phase. Thus, cascading consecutive 𝑔𝑔�−1(∙) and 𝑔𝑔(∙) 

blocks might form a unity system. The linear plant parameters obtained as 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 are 

updated in each sliding window with a length of 𝐾𝐾 by minimizing an 𝜀𝜀-insensitiveness 

based loss function ℓ1,ε(∙,∙) which considers the distance between actual plant outputs 

and model [93].  Likewise, overall closed-loop system parameters obtained as 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛 

are updated in each sliding window with a length of 𝐿𝐿 by minimizing an 𝜀𝜀-

insensitiveness based loss function ℓ1,ε(∙,∙) which considers the output tracking error 

defined as distance between desired output and plant output. To ensure the closed-loop 

stability in the sense of Schur stability, the defined inequality constraint is employed 

while minimizing the output tracking error. Afterward the plant and the closed-loop 

identification procedures are performed, the proposed adaptive controller parameters 

may be computed by matching the algebraic equations of ARMA models by 

employing a method of solving Diophantine equation also known as Bezout’s identity 

[7]. 

3.1 Derivation of NARMA Based Adaptive Controller 

For a considered SISO plant as BLDC motor, the developed NARMA based stable 

robust adaptive controller derivation might be expressed as in the following form [21]: 

𝑦𝑦(𝑘𝑘) = �𝑎𝑎𝑛𝑛𝑦𝑦(𝑘𝑘 − 𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

+ �𝑏𝑏𝑛𝑛𝑔𝑔�𝑢𝑢(𝑘𝑘 − 𝑛𝑛)�
𝑀𝑀

𝑛𝑛=0

 
(3.1) 

where 𝑦𝑦(𝑘𝑘) is the actual plant output, 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 are linear plant parameters, 𝑔𝑔(∙) is a 

nonlinear function, 𝑢𝑢(𝑘𝑘) is the control signal. Equation. 3.1 can be rewritten in an 

implicit form by taking 𝑎𝑎0 = −1 as given in (Equation 3.2): 

�𝑎𝑎𝑛𝑛𝑦𝑦(𝑘𝑘 − 𝑛𝑛)
𝑁𝑁

𝑛𝑛=0

+ �𝑏𝑏𝑛𝑛𝑔𝑔�𝑢𝑢(𝑘𝑘 − 𝑛𝑛)�
𝑀𝑀

𝑛𝑛=0

= 0 
(3.2) 
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Herein, let us take two degrees of freedom controller can be defined as follows (i.e. 

the linear block of Wiener model): 

𝑢𝑢�(𝑘𝑘) = � 𝑓𝑓𝑚𝑚𝑢𝑢�(𝑘𝑘 −𝑚𝑚)
𝑃𝑃

𝑚𝑚=1

+ � 𝑐𝑐𝑚𝑚𝑟𝑟(𝑘𝑘 −𝑚𝑚)
𝑅𝑅

𝑚𝑚=0

+ � 𝑑𝑑𝑚𝑚𝑦𝑦(𝑘𝑘 −𝑚𝑚)
𝑄𝑄

𝑚𝑚=0

 
(3.3) 

where 𝑢𝑢�(𝑘𝑘) is the linear controller output; 𝑟𝑟(𝑘𝑘) is the reference signal; 𝑐𝑐𝑚𝑚,𝑑𝑑𝑚𝑚 and 𝑓𝑓𝑚𝑚 

are the controller parameters. Under the assumption that 𝑔𝑔�−1(∙) eliminates 𝑔𝑔(∙), and 

taking the 𝑓𝑓0 = −1, Equation 3.3 can be rewritten in an implicit form as given in (3.4): 

� 𝑓𝑓𝑚𝑚𝑢𝑢�(𝑘𝑘 −𝑚𝑚)
𝑃𝑃

𝑚𝑚=0

+ � 𝑐𝑐𝑚𝑚𝑟𝑟(𝑘𝑘 −𝑚𝑚)
𝑅𝑅

𝑚𝑚=0

+ � 𝑑𝑑𝑚𝑚𝑦𝑦(𝑘𝑘 −𝑚𝑚)
𝑄𝑄

𝑚𝑚=0

= 0 
(3.4) 

Equation 3.4 can be rewritten by taking the weighted sum of (3.2) with 𝑓𝑓𝑚𝑚 to obtain 

closed-loop system definition as given in (3.5): 

� 𝑓𝑓𝑚𝑚�𝑎𝑎𝑛𝑛𝑦𝑦(𝑘𝑘 −𝑚𝑚 − 𝑛𝑛)
𝑁𝑁

𝑛𝑛=0

𝑃𝑃

𝑚𝑚=0

                                          

+ � 𝑓𝑓𝑚𝑚�𝑏𝑏𝑛𝑛𝑔𝑔(𝑢𝑢(𝑘𝑘 −𝑚𝑚 − 𝑛𝑛))
𝑀𝑀

𝑛𝑛=0

𝑃𝑃

𝑚𝑚=0

= 0 

 

(3.5) 

By interchanging the the summation length in the second part of the Equation 3.5 and 

substituting into Equation 3.4: 

� 𝑓𝑓𝑚𝑚�𝑎𝑎𝑛𝑛𝑦𝑦(𝑘𝑘 −𝑚𝑚 − 𝑛𝑛)
𝑁𝑁

𝑛𝑛=0

𝑃𝑃

𝑚𝑚=0

+ �𝑏𝑏𝑛𝑛

𝑀𝑀

𝑛𝑛=0

�− � 𝑐𝑐𝑚𝑚𝑟𝑟(𝑘𝑘 −𝑚𝑚 − 𝑛𝑛)
𝑅𝑅

𝑚𝑚=0

− � 𝑑𝑑𝑚𝑚𝑦𝑦(𝑘𝑘 −𝑚𝑚 − 𝑛𝑛)
𝑄𝑄

𝑚𝑚=0

� = 0 

 

(3.6) 
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Herein, the closed loop system might be rewritten by using the input-output data of it 

in a simplified form by defining new parameters 𝛼𝛼𝑛𝑛 and 𝛽𝛽𝑛𝑛 in the following form:  

𝑦𝑦(𝑘𝑘) = �𝛼𝛼𝑛𝑛𝑦𝑦(𝑘𝑘 − 𝑛𝑛)
𝑁𝑁�

𝑛𝑛=0

+ �𝛽𝛽𝑛𝑛𝑟𝑟(𝑘𝑘 − 𝑛𝑛)
𝑀𝑀�

𝑛𝑛=0

 
(3.7) 

where 𝑁𝑁� =: max{𝑃𝑃 + 𝑁𝑁,𝑀𝑀 + 𝑄𝑄} and 𝑀𝑀� =: {𝑀𝑀 + 𝑅𝑅}. Linear controller parameters 

𝑐𝑐𝑚𝑚,𝑑𝑑𝑚𝑚,𝑓𝑓𝑚𝑚 in Equation 3.3 may be calculated considering the plant parameters 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 

and closed-loop system parameters 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛 by taking 𝑁𝑁 = 𝑀𝑀 = 𝑃𝑃 = 𝑅𝑅 = 𝑄𝑄 and 𝑁𝑁� =

𝑀𝑀� . Equation 3.7 might be matched Equation 3.6 in way of algebraic equality known 

as Diophantine Equations [7]: 

𝛼𝛼0 = 1 + 𝑎𝑎0𝑓𝑓0 − 𝑏𝑏0𝑑𝑑0  

𝛼𝛼𝑖𝑖 =:�𝑎𝑎𝑗𝑗𝑓𝑓𝑖𝑖−𝑗𝑗

𝑖𝑖

𝑗𝑗=0

−�𝑏𝑏𝑗𝑗𝑑𝑑𝑖𝑖−𝑗𝑗

𝑖𝑖

𝑗𝑗=0

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 ∈ {1,2,3, … ,𝑁𝑁} 
 

𝛼𝛼𝑖𝑖 =: � 𝑎𝑎𝑗𝑗𝑓𝑓𝑖𝑖−𝑗𝑗

𝑁𝑁

𝑗𝑗=𝑖𝑖−𝑁𝑁

− � 𝑏𝑏𝑗𝑗𝑑𝑑𝑖𝑖−𝑗𝑗

𝑁𝑁

𝑗𝑗=𝑖𝑖−𝑁𝑁

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 ∈ {𝑁𝑁 + 1,𝑁𝑁 + 2, … ,2𝑁𝑁} 
 

(3.8) 

𝛽𝛽𝑖𝑖 =:−�𝑏𝑏𝑗𝑗𝑐𝑐𝑖𝑖−𝑗𝑗

𝑖𝑖

𝑗𝑗=0

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 ∈ {1,2, … ,𝑁𝑁} 
 

𝛽𝛽𝑖𝑖 =:− � 𝑏𝑏𝑗𝑗𝑐𝑐𝑖𝑖−𝑗𝑗

𝑁𝑁

𝑗𝑗=𝑖𝑖−𝑁𝑁

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 ∈ {𝑁𝑁 + 1,𝑁𝑁 + 2, … ,2𝑁𝑁} 
 

 
3.2 Identification Phase 

System identification problems can be divided into two parts as batch mode learning 

and sliding window (online) mode learning, respectively. For the batch mode, the 

whole data set obtained from the plant input-outputs are considered for the 

identification phase. However, a predetermined length of sliding window which 
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contains the sampled input-output data as considered for the online identification 

phase, and keeps parameters updated. Identification phase of the plant parameters, in 

the form of Hammerstein type plant model, is performed for a sliding window 

[𝑘𝑘, 𝑘𝑘 − 𝐾𝐾 + 1]. A loss function (3.9) is minimized to reduce the identification error in 

terms of 𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛: 

1
𝐾𝐾
� ℓ1,ε

𝐾𝐾−1

𝑠𝑠=0

�𝑦𝑦𝑎𝑎(𝑘𝑘 − 𝑠𝑠),�𝑎𝑎𝑛𝑛𝑦𝑦(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛) + �𝑏𝑏𝑛𝑛𝑔𝑔�𝑢𝑢(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛)�
𝑁𝑁

𝑛𝑛=0

𝑁𝑁

𝑛𝑛=1

�

+ 𝜆𝜆 �𝑎𝑎𝑏𝑏�2
2
 

 

(3.9) 

 

where 𝜀𝜀-insensitive ℓ1,ε provides a robustness behavior agains plant uncertainties, 

noise and disturbances. 𝜆𝜆 parameter in (3.9) used as a regularization term to increase 

the generalization performance of the model, and �𝑎𝑎𝑏𝑏�2
2
 defines the Euclidean norm of 

the parameters. 𝜀𝜀-insensitive absolute loss function ℓ1,ε(∙,∙) is defined as follows: 

𝑓𝑓(𝑥𝑥) = �
|𝑦𝑦𝑎𝑎(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)| − 𝜀𝜀, 𝑖𝑖𝑓𝑓 |𝑦𝑦𝑎𝑎(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)| ≥ 𝜀𝜀

0, 𝑖𝑖𝑓𝑓 |𝑦𝑦𝑎𝑎(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)| < 𝜀𝜀 

 

3.3 Stable Robust Adaptive Controller Design Phase 

After the plant identification phase, the closed-loop system parameters as 𝛼𝛼𝑛𝑛 and 𝛽𝛽𝑛𝑛 

in Equation 3.7 are computed for a sliding window (online) identification procedure. 

The controller parameter identification procedure is implemented for a window 

[𝑘𝑘, 𝑘𝑘 − 𝐿𝐿 + 1]. A loss function ℓ1,ε(∙,∙) in terms of closed-loop system parameters 𝛼𝛼𝑛𝑛 

and 𝛽𝛽𝑛𝑛 is minimized to reduce reference tracking error: 

1
𝐿𝐿
�ℓ1,ε

𝐿𝐿−1

𝑠𝑠=0

�𝑦𝑦𝑑𝑑(𝑘𝑘 − 𝑠𝑠),�𝛼𝛼𝑛𝑛𝑦𝑦(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛) + �𝛽𝛽𝑛𝑛𝑟𝑟(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛)
2𝑁𝑁

𝑛𝑛=0

2𝑁𝑁

𝑛𝑛=1

�

+ 𝜆𝜆 �
𝛼𝛼
𝛽𝛽�2

2
 

 

(3.10) 
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After the plant identification phase, the closed-loop system parameters as 𝛼𝛼𝑛𝑛 and 𝛽𝛽𝑛𝑛 

in Equation 3.7 are computed for a sliding window (online) identification procedure. 

The controller parameter identification procedure is implemented for a window 

[𝑘𝑘, 𝑘𝑘 − 𝐿𝐿 + 1]. A loss function ℓ1,ε(∙,∙) in terms of closed-loop system parameters 𝛼𝛼𝑛𝑛 

and 𝛽𝛽𝑛𝑛 is minimized to reduce reference tracking error. 

𝛼𝛼0 > ⋯ > 𝛼𝛼2𝑁𝑁−1 > 𝛼𝛼2𝑁𝑁 > 0 (3.11) 

 

Both plant and closed-loop system parameters are computed for each 𝐾𝐾 

{[𝑢𝑢(𝑘𝑘 − 𝑠𝑠,𝑁𝑁],𝑦𝑦𝑎𝑎[𝑘𝑘 − 𝑠𝑠,𝑁𝑁]}𝑠𝑠=0𝐾𝐾−1 and 𝐿𝐿 {[𝑦𝑦𝑑𝑑(𝑘𝑘 − 𝑠𝑠,𝑁𝑁], 𝑦𝑦𝑎𝑎[𝑘𝑘 − 𝑠𝑠,𝑁𝑁]}𝑠𝑠=0𝐿𝐿−1 samples, 

respectively. Sample lengths 𝐾𝐾 and 𝐿𝐿 would not be choosed larger than the total 

number of poles and zeros 𝑀𝑀 + 𝑁𝑁 and 𝑀𝑀 + 𝑁𝑁 + 𝑃𝑃 + 𝑅𝑅 + 𝑄𝑄 of the corresponding 

structures Hammerstein plant and both plant and controller, respectively. 

For the adaptiveness, both plant and closed-loop system parameters are updated while 

the proposed algorithm is employed in online mode. Initial conditions of the proposed 

algorithm are chosen from batch mode learning results. 
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4. SIMULATIONS AND EXPERIMENTAL 
RESULTS 

The developed stable robust adaptive controller is tested by a BLDC motor model and 

its real plant in software-in-loop and prototyping mode, respectively [21,71]. There are 

three experimental scenarios to perform the developed controller performance for 

chaos control as follows: The first scenario employs a BLDC model chaotified by an 

external load torque input, after 10 seconds, the developed adaptive controller is 

switched on to perform the chaos control on its equilibrium point. The second scenario 

is that the developed controller and external load torque excitation launched 

simultaneously, the load torque excitation is switched off after 10 seconds, and the 

controller remains to track the desired trajectory for 10 seconds. The third scenario, 

which is implemented in both software-in-loop and prototyping mode, initiates the 

controller switched on and the external load torque excitation is applied from 10 to 20 

seconds. The developed adaptive controller is compared with conventional PID 

controllers are realized in MATLAB and Simulink numerical software environments. 

A simplified pseudo-code of the developed NARMA adaptive controller is given in 

Algorithm 1. 

Algorithm 1 Pseudo code of the proposed controller design. 

- Employee Hammerstein system identification, and obtain input-output paris 

of the nonlinear block 𝑔𝑔(∙) in Figure 3.1. 

- Construct 𝑔𝑔�−1(∙) (i.e. approximation of inverse ANN model 𝑔𝑔(∙) which is 

the nonlinear part of Wiener model. 

- Initialize: iteration index 𝑘𝑘, desired output𝑦𝑦𝑑𝑑(𝑘𝑘), actual output 𝑦𝑦𝑎𝑎(𝑘𝑘), 

control signal 𝑢𝑢(𝑘𝑘), identification sliding window length 𝐾𝐾 in Equation 3.9 

and controller design sliding window length 𝐿𝐿 in Equation 3.10. 

- Determine robustness and regularization parameters 𝜀𝜀 and 𝜆𝜆. 

- Repeat for each 𝑘𝑘: 

- Store the values of 𝑦𝑦𝑑𝑑(𝑘𝑘) … 𝑦𝑦𝑑𝑑(𝑘𝑘 − 𝐿𝐿),𝑦𝑦𝑎𝑎(𝑘𝑘) … 𝑦𝑦𝑎𝑎(𝑘𝑘 − 𝐿𝐿) 
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- Compute the plant parameters 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 by minimizing Equation 3.9 

- Compute system parameters 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛 by minimizing Equation 3.10 

- Compute the controller parameters 𝑐𝑐𝑚𝑚,𝑑𝑑𝑚𝑚 which guarantee Schur 

stability of the overall system, and 𝑓𝑓0 is initialized as −1 in line with 

Equation 3.4. 

- Compute control signal in Equation 3.3. Apply the control signal 

neural network 𝑔𝑔�−1(∙), and apply the network’s output to the plant. 

- Incrementation of the index: 𝑘𝑘 = 𝑘𝑘 + 1 

 

4.1 The obtained BLDC Motor Model 

The BLDC motor is one of the most popular benchmark experimental setup because 

of high torque, speed, and location control in the related literature [94-95]. BLDC 

motor possessing inherently nonlinear may show chaotic and complex behaviors under 

load torque conditions [96]. Three-time scales model of the experimental BLDC motor 

setup in Equation 2.6 is determined for the simulation studies. The obtained motor 

model is given as follows: 

0.0054
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥1 = −0.0093 − 𝑥𝑥1 − 𝑥𝑥2𝑥𝑥3 − 𝑥𝑥3 + 𝑢𝑢 

 

0.0050
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥2 = −0.0061 + 𝑥𝑥1𝑥𝑥3 − 𝑥𝑥2 

(4.1) 

0.0130
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥3 = 16𝑥𝑥1 + 1.516𝑥𝑥1𝑥𝑥2 − 𝑥𝑥3 − 𝑇𝑇𝐿𝐿�  

 

where 𝑥𝑥1 = 𝑖𝑖𝑞𝑞, 𝑥𝑥2 = 𝑖𝑖𝑑𝑑, and 𝑥𝑥3 = 𝜔𝜔 are quadrature-axis current (q-axis), direct-axis 

(d-axis) current and rotation speed, respectively. The time constants are estimated as 

𝜏𝜏1 = 0.0053, 𝜏𝜏2 = 0.0050 and 𝜏𝜏3 = 0.0130 by input-output data obtained from real 

BLDC motor by using a linear regression based parameter identification method given 

in Equation 2.19 in Sub-Chapter 2.6, and the other parameters 𝜎𝜎, 𝜌𝜌,𝑎𝑎𝑛𝑛𝑑𝑑 𝜂𝜂 are 
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borrowed from [28]. Adaquacy of estimated unknow model time constants are 

investigated by considering the [36]. 

4.1.1 Chaotic behaviors analysis of the developed BLDC motor model 
In order to investigate the nonlinear complex dynamics of the obtained three time-

scales BLDC motor model in Equation 4.1, the computational analyses are achieved 

by using the phase portrait and LLE computed with TISEAN 3.0.1 time series analysis 

toolbox borrowed from [97]. The solution of the motor model is computed with the 

initial conditions [𝑥𝑥1 𝑥𝑥2 𝜔𝜔]𝑇𝑇 = [1 0 0]𝑇𝑇 and 𝑇𝑇ℓ(𝑘𝑘) = 0 (i.e. when the torque is not 

applied) in Equation 4.1 where the input excitation is ignored. The obtained three-

dimensional phase portraits of the solution are sketched according to the state variables 

(Figure 4.1). The LLE of the angular speed named as 𝑥𝑥3 is computed as 𝛾𝛾𝜔𝜔 = 0.1232. 

 

Figure 4.1 Three dimensional phase portrait of the system with torque. 

 

Once 𝑇𝑇ℓ(𝑘𝑘) load torque excitation signal is applied to three time-scales BLDC motor 

model in Equation 4.1 by using the square wave sign with an amplitude of 4𝑉𝑉𝑝𝑝−𝑝𝑝 and 

frequency of 15 𝐻𝐻𝐻𝐻, the obtained three-dimensional phase portraits of the solution are 

sketched in Figure 4.2. The solution of the motor model is computed with the initial 

conditions [𝑥𝑥1 𝑥𝑥2 𝜔𝜔]T = [1 0 0]𝑇𝑇. The LLE of the angular speed named as 𝜔𝜔 is 

computed as 𝛾𝛾𝜔𝜔 = 0.5782. 
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Figure 4.2 Three dimensional phase portrait of the system with torque. 

 

When the obtained results are compared corresponding to whether the torque is applied 

in terms of both phase portraits and LLE values, it is obvious that the torque certainly 

triggers out the complex nonlinear dynamics known as chaotic behaviors of the 

developed BLDC motor model. 

4.2 Simulation Results 

In the simulation studies, the developed stable robust adaptive controller algorithm is 

applied to the speed control problem of the BLDC motor plant. The designed block 

diagram of the closed loop system is depicted in Figure 4.3. The output of the closed 

loop system is denoted as 𝑥𝑥3(𝑘𝑘) = 𝜔𝜔(𝑘𝑘) standing for the speed of the BLDC motor 

given in Equation 2.6. Now, let us write the loss functions as Equation 4.2 and 4.3 for 

the plant and closed-loop identification given in Equation 3.9 and 3.10, respectively. 

 

Figure 4.3 Block diagram of the closed-loop NARMA based control scheme. 
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1
𝐾𝐾
� ℓ1,ε

𝐾𝐾−1

𝑠𝑠=0

�𝑥𝑥3(𝑘𝑘 − 𝑠𝑠),�𝑎𝑎𝑛𝑛𝜔𝜔(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛) + �𝑏𝑏𝑛𝑛𝑔𝑔�𝑢𝑢(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛)�
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(4.2) 

1
𝐿𝐿
�ℓ1,ε

𝐿𝐿−1

𝑠𝑠=0

�𝑟𝑟(𝑘𝑘 − 𝑠𝑠),�𝛼𝛼𝑛𝑛𝜔𝜔(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛) + �𝛽𝛽𝑛𝑛𝑟𝑟(𝑘𝑘 − 𝑠𝑠 − 𝑛𝑛)
2𝑁𝑁

𝑛𝑛=0

2𝑁𝑁

𝑛𝑛=1

�

+ 𝜆𝜆 �
𝛼𝛼
𝛽𝛽�2

2
 

 

(4.3) 

In order to test the BLDC motor speed tracking performance of the proposed stable 

adaptive controller, the identification given in Sub-chapter 3.2 and the developed 

controller design given in Sub-chapter 3.3 are fulfilled as follows: The BLDC motor 

model degree is taken as 𝑁𝑁 = 𝑀𝑀 = 3 for the NARMA model in Equation 3.1. The 

estimation performance of the obtained model is computed as 98% MATLAB 𝑛𝑛𝑛𝑛ℎ𝑤𝑤() 

function for the Hammerstein model with 𝑚𝑚𝑤𝑤𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟 base function. After determining 

 𝑔𝑔(∙) block as the static nonlinearity of the Hammerstein model, the  𝑔𝑔�−1(∙) blocked 

as a static nonlinear part of Wiener model is implemented from the input-output data 

from the obtained nonlinearity via ANN having a single hidden layer of the 

feedforward architecture in Figure 3.1. In order to find the initial values of the plant 

parameters 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 in Equation 4.1 and the closed-loop system parameters 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛 in 

Equation 4.3, these loss functions are computed in a manner of batch mode for 𝐾𝐾 =

𝐿𝐿 = 5491. After determining the initial parameters of the sliding window named as 

online mode, the plant parameters 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 in Equation 3.1 with 𝑁𝑁 = 𝑀𝑀 = 3, the closed-

loop system parameters 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛 in Equation 3.7 with 𝑁𝑁� = 𝑀𝑀� = 6, and the adaptive 

controller parameters 𝑐𝑐𝑚𝑚,𝑑𝑑𝑚𝑚 in Equation 3.3 with 𝑄𝑄 = 𝑅𝑅 = 3 are simultaneously 

computed via minimizing the loss functions ℓ1,ε(∙,∙) in Equation 4.2 and Equation 4.3 

for the plant identification and closed-loop tracking error (Algorithm 4.1). During the 

online mode, the windows lengths of the plant and closed loop identifications in 

Equation 4.2 and 4.3 are chosen as 𝐾𝐾 = 𝐿𝐿 = 40, 𝜀𝜀 = 0.01 and 𝜆𝜆 = 0.05 by using the 

trial and error method. The sampling time is chosen as 0.001s.  
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Now, three different experimental scenarios are used to test the developed adaptive 

controller performance for chaos control of the BLDC motor model as follows: 

i) A BLDC model chaotified by an external load torque input, the developed 

adaptive controller is switched on to observe its performance after 10 

seconds.  

ii) The developed controller and external load torque excitation are launched, 

then the load torque excitation is switched off after 10 seconds, and it is 

observed whether the controller is tracking the desired trajectory.  

iii) The controller switched on initially and the external load torque excitation 

is applied from 10 seconds, and it is observed whether the controller is 

tracking the desired trajectory. 

4.2.1 Simulation results of experiment #1 
The first experimental scenario is that a BLDC model chaotified by an external load 

torque input and the developed adaptive controller is switched on to suppress the 

chaotic system behaviors (Figure 4.4). In order to compare the motor speed tracking 

performances of the developed adaptive controller with 𝐾𝐾 = 𝐿𝐿 = 40 and conventional 

PID controller with 𝐾𝐾𝑝𝑝 = 0.38 𝐾𝐾𝑖𝑖 = 65.96 𝑣𝑣𝑣𝑣 𝐾𝐾𝑑𝑑 = 0.0004 borrowed from [71], the 

desired output as 𝑟𝑟(𝑘𝑘) = 0 is applied to the closed-loop system. The comparisons of 

the obtained motor speed results are depicted in Figure 4.4a and b. As seen from these 

figures, the proposed adaptive controller works better than the conventional PID 

controller for the tracking reference in terms of transient behaviors. Time evolution of 

the BLDC motor plant, the closed-loop, and the controller parameters are depicted for 

𝑟𝑟(𝑘𝑘) = 0 reference signal in Figure 4.5a, b, and c. Moreover, the performance 

comparisons of the proposed adaptive and conventional PID controller are given in the 

Table 4.1 in terms of LLE and MSE. As seen from the table, although the obtained 

LLE performance results of the both controller are acceptable, it is obvious that 

proposed NARMA based adaptive controller shows better tracking error performance 

in terms of the MSE value as 0.0501. The phase portraits of the BLDC model state 

variable are given in Figure 4.6 where both controller results are acceptable and almost 

equal to each other. 
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(a) (b) 

Figure 4.4 The motor speed performance for: a) PID controller, b) the proposed 
adaptive controller.  

 

(a) 
 

(b) 

 
(c) 

Figure 4.5 Time evaluation of a) the plant model parameters, b) the closed-loop 
system parameters, and c) the developed controller parameters. 
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Table 4.1 Performance comparisons of PID and the developed adaptive controller. 
Controller LLE 

0-10 sec 10-20 sec 
MSE 

0-10 sec 10-20 
sec 

PID 3.9285 × 103 1.9865 × 103 Off 0.6665 

The developed adaptive 3.9285 × 103 1.9840 × 103 Off 0.0501 
 

 

 
(a) 

 
(b) 

Figure 4.6 Phase portrait of the BLDC state variables for a) PID controller, b) the 
proposed adaptive controller. 

  

4.2.2 Simulation results of experiment #2 
The second experimental scenario is that the developed controller and external load 

torque excitation are simultaneously launched, and then the load torque excitation is 

switched off after 10 seconds, and it is observed the tracking performance of each 

candidate controller (Figure 4.7). In order to compare the motor speed tracking 

performances of the developed adaptive controller with 𝐾𝐾 = 𝐿𝐿 = 40 and conventional 

PID controller with 𝐾𝐾𝑝𝑝 = 0.38,𝐾𝐾𝑖𝑖 = 65.96,𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑑𝑑 = 0.0004 borrowed from [71], 

the desired outputs as 𝑟𝑟(𝑡𝑡) = 40 sin(2𝜋𝜋𝜋𝜋𝑡𝑡) + 40 and 𝑟𝑟(𝑡𝑡) = 50tanh(𝑡𝑡) are 

sequentially applied to the closed-loop system. The comparisons of the obtained motor 

speed results are depicted in Figure 4.7a and b. As seen from these figures, the 

developed adaptive controller works better than the conventional PID controllers for 

the tracking reference in terms of transient behaviors. Time evolution of the BLDC 
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motor plant, the closed-loop, and the controller parameters are depicted in Figure 4.8a 

and b, respectively. Moreover, the performance comparisons of the proposed adaptive 

and conventional PID controller are given in the Table 4.2 in terms of LLE and MSE 

values. As seen from the table, although the obtained LLE results are acceptable as 

2.2337 × 10−4 and 0.0014, it is obvious that the proposed NARMA based adaptive 

controller shows better tracking error performance in terms of the MSE value as 

4.1839 and 0.0141 for the 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 𝑇𝑇𝑎𝑎𝑎𝑎ℎ references, respectively. The phase 

portraits of the BLDC model state variables are given in Figure 4.9 where the 

developed adaptive controller gives a narrow bounded solution set (i.e. almost a fixed 

point or a limit cycle) than the response of the PID controller. 

  

 

(a) 

 

(b) 

Figure 4.7 The motor speed tracking performances corresponding to 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 𝑇𝑇𝑎𝑎𝑎𝑎ℎ 
references for a) PID controller and b) the proposed adaptive controller. 
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(a) (b) 

Figure 4.8 Time evaluations of the plant model, the closed-loop system, and the 
developed controller parameters changes corresponding to the developed adaptive 
controller for a) 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 reference, and b) 𝑇𝑇𝑎𝑎𝑎𝑎ℎ reference. 
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Table 4.2 Performance comparisons of PID and the developed adaptive controller 
corresponding to 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 𝑇𝑇𝑎𝑎𝑎𝑎ℎ reference. 

Algorithm LLE 
0-10 sec 10-20 sec 

MSE 
0-10 sec           10-20 sec 

Sine Reference     
PID 1.3568 × 103 1.3602 × 103 144.9124 141.9718 

The developed adaptive 1.4047 × 103 1.3360 × 103 16.4561 4.1839 

Tanh Reference     
PID 1.6199 × 103 1.9703 × 103 11.7781 0.0189 

The developed adaptive 1.7100 × 103 1.9858 × 103 16.2972 0.0141 

 

  

(a) (b) 

Figure 4.9 Phase portrait of the BLDC state variables corresponding to 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 
𝑇𝑇𝑎𝑎𝑎𝑎ℎ references for a) PID controller and b) the proposed adaptive controller. 
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4.2.3 Simulation results of experiment #3 
The last experimental scenario is that the developed controller is switched on initially, 

after 10 seconds, the load torque excitation is applied to the BLDC motor model, and 

it is observed the tracking performance of each candidate controller (Figure 4.10). In 

order to compare the motor speed tracking performances of the developed adaptive 

controller with 𝐾𝐾 = 𝐿𝐿 = 40 and conventional PID controller with 𝐾𝐾𝑝𝑝 = 0.38,𝐾𝐾𝑖𝑖 =

65.96,𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑑𝑑 = 0.0004 borrowed from [71], the desired outputs as 𝑟𝑟(𝑘𝑘) = 40 +

40 𝑠𝑠𝑆𝑆𝑎𝑎(2𝜋𝜋𝜋𝜋𝑘𝑘)  and 𝑟𝑟(𝑘𝑘) = 50𝑡𝑡𝑎𝑎𝑎𝑎ℎ(𝑘𝑘) are sequentially applied to the closed-loop 

system. The comparisons of the obtained motor speed results are depicted in Figure 

4.10a, and b. As seen from these figures, the developed adaptive controller better than 

the conventional PID controllers for the tracking reference in terms of the steady state 

and transient behaviors. Time evolution of the BLDC motor plant, the closed-loop, 

and the controller parameters are depicted for 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 𝑇𝑇𝑎𝑎𝑎𝑎ℎ reference signals 

reference signals in Figure 4.11a and b, respectively. Moreover, the performance 

comparisons of the proposed adaptive and conventional PID controller are given in the 

Table 4.3 in terms of LLE and MSE. As seen from the table, the obtained LLE 

performance results showed that PID controller is able to obtain better performance 

results for slowly changing a reference as 𝑇𝑇𝑎𝑎𝑎𝑎ℎ. However, it is obvious that the 

proposed adaptive controller shows better than the PID controller in terms of the LLE 

and MSE error as 9.8333 × 10−4 and 20.4442, respectively, during the fast changing 

a reference as 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣. The phase portraits of the BLDC model state variable are given in 

Figure 4.12 where the proposed adaptive controller gives a less bounded solution set 

(i.e. almost a fixed point or a narrow limit cycle) than the response of the PID 

controller. 

 

 



39 
 

  

 
(a) 

 
(b) 

Figure 4.10 The motor speed tracking performances corresponding to 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 
𝑇𝑇𝑎𝑎𝑎𝑎ℎ references for a) PID controller and b) the proposed adaptive controller. 
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(a) (b) 

Figure 4.11 Time evaluations of the plant model, the closed-loop system, and the 
developed controller parameters changes corresponding to the developed adaptive 
controller for a) 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 reference, and b) 𝑇𝑇𝑎𝑎𝑎𝑎ℎ reference. 
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Table 4.3 Performance comparisons of PID and the developed adaptive controller 
corresponding to 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣, and 𝑇𝑇𝑎𝑎𝑎𝑎ℎ references. 

Algorithm LLE 
0-10 sec 10-20 sec 

MSE 
0-10 sec        10-20 

sec 
Sine Reference     

PID 1.3639 × 103 1.3742 × 103 41.2705 44.0881 

The developed adaptive 1.3622 × 103 1.3300 × 103 3.6000 20.4442 

Tanh Reference     
PID 1.9165 × 103 1.7019 × 103 0.0093 12.7527 

The developed adaptive 1.8660 × 103 1.6938 × 103 0.1370 24.0274 
 

  

 
(a) 

 
(b) 

Figure 4.12 Phase portrait of the BLDC state variables corresponding to 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 
𝑇𝑇𝑎𝑎𝑎𝑎ℎ references for a) PID controller and b) the proposed adaptive controller. 
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4.3 Experimental Results 

A real BLDC motor experimental setup is prepared as with hardware having 

mechanical design with electronics cards and software configurations. The 

experimental setup is given in Figure 4.13. The experiments are achieved with a 

MAXON BLDC motor EC 45 flat model (Table 4.4), data acquisition card, and a PC 

operation on Windows® environment having MATLAB/Simulink® software 

environment. In the mechanical design, a brake motor, which is used to generate load 

torque effects, connected in series to the BLDC motor via a pulley-belt. It has an 

Encoder HEDM-5505 is used to measure the angular speed of the motor. 

 

 

Figure 4.13 BLDC motor experimental setup. 
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Table 4.4 BLDC motor datasheet specifications [98]. 

Variables / parameters Value 

Nominal Voltage 24.0 𝑉𝑉 

No load speed 4370 𝑅𝑅𝑅𝑅𝑅𝑅 

No load current 75.3 𝑚𝑚𝑚𝑚 

Nominal speed 2850 𝑅𝑅𝑅𝑅𝑅𝑅 

Nominal torque 57.5 𝑚𝑚𝑚𝑚𝑚𝑚 

Phase to Phase Resistance 4.84 Ω 

Phase to Phase Inductance 2.24 𝑚𝑚𝑚𝑚 

Troque Constant 51.0 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚 

Speed Constant 187 𝑅𝑅𝑅𝑅𝑅𝑅/𝑉𝑉 

Mechanical Time Constant 17.2 𝑚𝑚𝑠𝑠 

Number of Phases 3 

Number of Pole Pairs 8 

 

In order to test the BLDC motor speed tracking performance of the proposed stable 

adaptive controller, the identification given in Sub-chapter 3.2 and the developed 

controller design given in Sub-Chapter 3.3 are fulfilled as follows: The BLDC motor 

model degree is taken as 𝑚𝑚 = 𝑅𝑅 = 3 for the NARMA model in Equation 3.1. The 

Hammerstein model is obtained from real BLDC motor plant via 𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑎𝑎𝑣𝑣𝑎𝑎𝑟𝑟 base 

function stands for  𝑔𝑔(∙) block. The inverse of the block as 𝑔𝑔�−1(∙) is implemented via 

ANN having a single hidden layer in Figure 3.1. In online mode, the plant parameters 

𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 in Equation 3.1 with 𝑚𝑚 = 𝑅𝑅 = 3, the closed-loop system parameters 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛 in 

Equation 3.7 with 𝑚𝑚� = 𝑅𝑅� = 6, and the adaptive controller parameters 𝑐𝑐𝑚𝑚,𝑎𝑎𝑚𝑚 in 

Equation 3.3 with 𝑄𝑄 = 𝑅𝑅 = 3 are simultaneously computed via minimizing the loss 

functions ℓ1,ε(∙,∙) in Equation 4.2 and Equation 4.3 for the plant identification and 

closed-loop tracking error (Algorithm 4.1). During the online mode, the windows 

lengths of the plant and closed loop identifications in Equation 4.2 and 4.3 are chosen 
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as 𝐾𝐾 = 𝐿𝐿 = 40, 𝜀𝜀 = 0.01 and 𝜆𝜆 = 0.01 by using the trial and error method. The 

sampling time is chosen as 0.001s.  

The experimental scenario is used to test the developed adaptive controller 

performance for chaos control of the BLDC motor model as follows: The controller 

switched on initially and the external load torque excitation is applied from 10 seconds, 

and it is observed whether the controller is tracking the desired trajectory. In order to 

compare the motor speed tracking performances of the developed adaptive controller 

with 𝐾𝐾 = 𝐿𝐿 = 40 and conventional PID controller with 𝐾𝐾𝑝𝑝 = 0.13,𝐾𝐾𝑖𝑖 =

0.15,𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑑𝑑 = 0.0001 computed by MATLAB PID Tuner, the desired outputs as 

𝑟𝑟(𝑘𝑘) = 650 + 150 sin(2𝜋𝜋𝜋𝜋𝑘𝑘) with 𝜋𝜋 = 0.13 𝑚𝑚𝐻𝐻 and 𝑟𝑟(𝑘𝑘) = 800tanh(𝑘𝑘) are 

sequentially applied to the closed-loop system. The brake motor, as a load torque 

exciation signal, is driven open-loop with an input this signal 𝑇𝑇�𝑙𝑙 = 12 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑟𝑟𝑣𝑣(2𝜋𝜋𝜋𝜋𝑘𝑘) 

Volt with 𝜋𝜋 = 0.75 𝑚𝑚𝐻𝐻. The comparisons of the obtained motor speed results are 

depicted in Figure 4.14a and b. As seen from these figures, the developed adaptive 

controller better than the conventional PID controllers for the tracking reference in 

terms of the steady state. Time evolution of the BLDC motor plant, the closed-loop, 

and the controller parameters are depicted for 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 and 𝑇𝑇𝑎𝑎𝑎𝑎ℎ reference signals in 

Figure 4.15a and b, respectively. Moreover, the performance comparisons of the 

proposed adaptive and conventional PID controller over measured system output are 

given in the Table 4.5 in terms of LLE and MSE values. As seen from the table, once 

the load torque exciation signal is applied to the closed-loop system, the obtained LLE 

and MSE performance results of the developed adaptive controller are better than the 

PID controller performance. The obtained LLE and MSE results of the developed 

adaptive controller are determined as 0.0114 and 824.1608 for 𝑆𝑆𝑆𝑆𝑎𝑎𝑣𝑣 references, 

respectively. The phase portraits of the BLDC model state variable are given in Figure 

4.16 where the proposed adaptive controller gives a less bounded solution set (i.e. 

almost a fixed point or a narrow limit cycle) than the response of the PID controller. 
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(a) 

 
 

(b) 

Figure 4.14 Experimental results of the motor speed tracking performances 
corresponding to 𝑆𝑆𝑆𝑆𝑆𝑆e and 𝑇𝑇𝑇𝑇𝑆𝑆ℎ references for a) PID controller and b) the proposed 
adaptive controller. 
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(a) 

 
(b) 

Figure 4.15 Time evaluations of the plant model, the closed-loop system, and the 
developed controller parameters changes corresponding to the developed adaptive 
controller for a) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 reference, and b) 𝑇𝑇𝑇𝑇𝑆𝑆ℎ reference. 
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Table 4.5 Performance comparisons of PID and the developed adaptive controller 
corresponding to the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑇𝑇𝑇𝑇𝑆𝑆ℎ reference. 

Algorithm LLE 
0-10 sec 10-20 sec 

MSE 
0-10 sec 10-20 sec 

Sine Reference     
PID 2.4534 × 10−4 0.0236 1632.5512 1374.7097 

The developed adaptive 0.0200 0.0114 979.8147 824.1608 

Tanh Reference     
PID 0.0229 0.0152 1697.6909 1444.3529 

The developed adaptive 0.0185 0.0155 300.1822 612.8824 

 

  

 
(a) 

 
(b) 

  

Figure 4.16 Phase portrait of the BLDC state variables corresponding to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 
𝑇𝑇𝑇𝑇𝑆𝑆ℎ references for a) PID controller and b) the proposed adaptive controller. 
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5. CONCLUSION 

In this thesis, an online learning model-based approach is proposed to suppress the 

nonlinear complex dynamics caused by the chaotic behavior, variation of the system 

parameters, and disturbance effects of the BLDC motor. Hence, a NARMA-based 

stable robust adaptive controller, which ensures the Schur stability criteria, is 

implemented for the simulated and real BLDC motor plant. To provide the chaotic 

behaviors of the BLDC motor during the simulations and experimental tests, the 

external load torque conditions are determined by using the three-time scales model 

parameters obtained with the linear regression method. Three different chaos control 

experiments of the simulations are designed as follows: i) BLDC model chaotified by 

an external load torque input, the developed adaptive controller is switched on to test 

its performance after 10 seconds. ii) The developed controller and external load torque 

excitation are launched, then the load torque excitation is switched off after 10 

seconds, and it is observed whether the controller is tackling the desired trajectory. iii) 

The controller switched on initially and the external load torque excitation is applied 

from 10 seconds, and it is observed whether the controller is tackling the desired 

trajectory. The last experiment is also performed on the real BLDC motor platform.  

As for the simulation results, in the first expeirment, the proposed NARMA based 

adaptive controller shows better tracking error performance in terms of the MSE value 

as 0.0501. In the second experiment, despite the fact that the obtained LLE results are 

acceptable as 2.2337 × 10−4 and 0.0014, it is obvious that the proposed NARMA 

based adaptive controller shows better tracking error performance in terms of the MSE 

value as 4.1839 and 0.0141 for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑇𝑇𝑇𝑇𝑆𝑆ℎ references, respectively. In the third 

experiment, the proposed adaptive controller shows better than the PID controller in 

terms of the LLE and MSE error as 9.8333 × 10−4 and 20.4442, respectively, during 

the fast changing a reference as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 

When it comes to the experimental results, the developed adaptive controller is tested 

for the third experiment. The obtained LLE and MSE results, which are obtained from 

measured system output during the experiment, of the developed adaptive controller 

are determined as 0.0114 and 824.1608 for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 references, respectively. The phase 

portraits of the BLDC model state variable are given in Figure 4.16 where the proposed 
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adaptive controller gives a less bounded solution set (i.e. almost a fixed point or a 

narrow limit cycle) than the response of the PID controller.  

According to overall evaluations of the obtained above results, the proposed NARMA-

based stable robust adaptive controller algorithm achieved successful results for the 

chaos control applications. As future directions of the study, a reinforcement learning-

based adaptive controller might be a new way of a suppression of chaotic behaviors. 
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