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NOMENCLATURE 

𝐴: Droplet volume per unit depth                𝜂: Fluid dynamic viscosity 

𝐵𝑜: Bond number                                        𝛾: Surface tension between interfaces 

𝐶𝑎: Capillary number                                  𝜆: Step steepness parameter 

𝑓: Film thickness                                         Π: Disjoining pressure 

𝒇: Force vector                                             𝜁: Interface measured from horizontal 

𝑓0: Precursor film thickness                         Subscripts                                                       

𝑔: Gravitational  acceleration                      𝐴: Advancing 

ℎ: Substrate topography function                𝑐: Critical 

ℎ𝑠: Step height                                             𝑐𝑔: Center of gravity 

𝒊: Unit vector along 𝑥-coordinate                𝐶𝐿: Contact line 

𝒋: Unit vector along y-coordinate                𝑒: Equilibrium 

𝐿: Domain length                                        𝑙𝑣: Liquid and vapor 

𝒏: Unit outward normal at the interface     𝑚: Mesoscopic 

𝑝: Pressure                                                  𝑅: Receding 

𝑞: Volume flow per unit depth                   𝑟: Residual 

𝑟0: Initial radius of curvature                     𝑟𝑒𝑡: Retention 

𝑆: Spreading parameter                              𝑠: Step 

𝑡: Time                                                       𝑠𝑙: Solid and liquid 

𝑢: 𝑥-component of velocity                       𝑠𝑣: Solid and vapor 

𝑉: Speed                                                    Superscripts 

𝜈: Droplet volume                                      𝑙: Liquid 

𝑥: 𝑥-coordinate                                          𝑠: Solid 

𝑦: 𝑦-coordinate                                          𝑣: Vapor 

Greek Letters                                            ~: Dimensional quantities 

𝛼: Substrate inclination angle               
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PINNING AND DEPINNING OF DROPLETS AROUND STEP 

GEOMETRIES  

ABSTRACT 

 

Droplets moving over inclined heterogenous substrates may pin around rough spots. 

A simplified model of one of these spots having a backward facing step geometry 

over a chemically homogeneous inclined substrate reveals that the step is responsible 

from the pinning-depinning of the leading edge of the droplet. We consider a two-

dimensional partially wetting droplet and model its motion by the evolution equation 

with a precursor film model. The phase diagrams formed define pinning-depinning 

transition curves determined by a simple force balance of retention forces due to 

hysteresis, step and gravitational force. For fixed 𝐵𝑜 number and inclination, we 

show that it is the slope of the step that determines transition. The existence of the 

multiple steps, however, alters this transition as the receding contact line may pin at 

the steps and leave residual droplets behind. Also we show that multiple droplets 

may help from pinning to depinning due to the increase in effective 𝐵𝑜 number. 
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DAMLACIKLARIN BASAMAK GEOMETRİLERİ ETRAFINDA 

TUTUNMASI VE KURTULMASI  

ÖZET 

Eğimli heterojen substratlar üzerinde hareket eden damlacıklar pürüzlü noktaların 

etrafına tutunabilir. Kimyasal olarak homojen eğimli bir substrat üzerinde geriye 

dönük bir basamak geometrisine sahip olan bu pürüzlü noktalardan birinin 

basitleştirilmiş bir modeli, basamak geometrisinin damlacığın öncü temas çizgisinin 

tutunmasından sorumlu olduğunu ortaya koymaktadır. İki boyutlu kısmen ıslanan bir 

damlacığın hareketini öncü film modeli kullanan film ilerleme denklemi ile 

modelliyoruz. Oluşturduğumuz faz diyagramları; histerezis, basamak ve yerçekimi 

kuvveti nedeniyle tutma kuvvetlerinin basit bir kuvvet dengesi ile belirlenen 

tutunma/tutunmama geçiş eğrilerini tanımlamaktadır. Sabit Bo sayısı ve eğim için, bu 

geçiş basamak eğimince belirlenmektedir. Bununla birlikte birden fazla basamağın 

varlığı, bu geçişi geri çekilen temas çizgisinin basamağa tutunması veya basamağın 

arkasında artık damlacıklar bırakacak şeklinde değiştirir. Ayrıca etkin Bo sayısının 

artması nedeniyle çoklu damlacıkların tutunmadan tutunmamaya doğru yardımcı 

olabileceğini gösteriyoruz. 
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1. INTRODUCTION 

Droplet motion is related to many industrial and technological applications and the 

understanding of the motion of droplets over surfaces related to these applications is 

crucial. The purpose may be obtaining clean surfaces, e.g. greenhouse covers [1] and 

car windows [2], [3], [4], or to keep droplets in place such as printing of electronics 

[5], [6], to promote the uphill droplet motion [7] or to increase the heat transfer 

efficiency [8], [9], [10]. 

Filtration [11], spraying [12], the formation of raindrops [13], agricultural coating 

applications [14] and inkjet printing process [15] include motion and coalescence of 

droplets. For example, line printing process includes coalescence of sessile drops and 

spreading. The shape and resolution of printed lines are determined by the motion of 

droplets. In this process, when the liquid droplets contact to one another, they are 

pulled together by surface tension force.  The coalescence continues until reaching an 

equilibrium shape to minimize its surface energy. Agricultural spraying process, to 

provide protectant pesticides due to environmental considerations, on a leaf requires 

a uniform coating over the leaf surface. If there exists any surfactant on the leaf 

surface, however, lowers the contact angle of the spray droplets make with the 

surface and the fluid is able to cover the leaf surface. 

Besides, many researchers have studied droplet motion in nature which they have 

become later inspiration for the design of new materials or structures [16], [17], [18], 

[19], [20]: for instance, Namib Desert beetles harvest droplets from the fog-laden by 

tilting their body towards the wind. Their wing surface consists of combined 

hydrophilic and hydrophobic bumps which allow them to coalesce small droplets 

into the bigger ones inside the fog to obtain drinking water [21], [22]. Similarly, the 

structure of the mosquito eyes (C. pipiens) has superhydrophobic anti-fogging 

property for maintaining a clear vision in dark areas. The re-entrant structures 

observed on the surface of lotus leaves have been discovered to be responsible from 

the unexpectedly high repellency. Surfaces having reentrant curvatures [23], [24], 

[25] allowing oleophobicity encounter pinning and depinning of the contact lines 

around some topographical heterogeneities. These structures let even the very low-
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energy liquids suspend and generate superrepellent substrates which can be used for 

oil-water seperation, electronics cooling by nucleate boiling, etc.  

In most of the aforementioned examples, the motion of droplets is susceptible to 

topographical and/or chemical heterogeneities which result in non-unique contact 

angles the droplet makes with the surface. To understand the behaviour of contact 

lines around structured substrates, we study the motion of droplets around inclined 

steps. The simple step structure allows us to mimic throughs and peaks. 

When a droplet meets the substrate, the triple line meets the substrate at an angle and 

the equilibrium interface takes spherical cap form in the absence of gravity to 

minimize its surface energy. A representative two-dimensional droplet sitting on a 

flat substrate is shown in figure 1.1. 

 

Figure 1.1 Two dimensional droplet sitting over a flat substrate. 

 

For atomically smooth and chemically homogeneous substrates, Young [26] 

developed an equation in order to relate equilibrium contact angle and surface 

energies at the interfaces by balancing tangential components of the surface energies 

at the three phase contact line. The equilibrium contact angle on the ideal substrate is 

given by 

 cos𝜃𝑒 =
𝛾𝑠𝑣−𝛾𝑠𝑙

𝛾𝑙𝑣
 (1.1) 

where 𝛾𝑠𝑣, 𝛾𝑠𝑙, 𝛾𝑙𝑣 are surface tensions at solid-vapor, solid-liquid and liquid-vapor 

interfaces, respectively and 𝜃𝑒 is the equilibrium contact angle. 
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When the substrate is not ideal, however, the contact angle deviates from its Young 

value. The measured advancing contact angle differs from the receding one, this 

difference is termed as contact angle hysteresis [27], [28], [29]. This can be due to 

chemical heterogeneity, roughness and adsorption into the surface which may alter 

the surface properties [30], [31]. Wenzel [32] developed an equation which includes 

contact angle, adhesion tension and surface tension of the wetted interface for 

chemically homogeneous but rough surfaces for a horizontal substrate by evaluating 

surface roughness factor and he observed that wetted area increases gradually during 

spreading process and it decreases the specific energy of the interface and rate of the 

decrease is rapid for rough surfaces. Let the differential surface energy variation per 

unit depth be 𝑑𝑊 due to the displacement of the contact line at amount of 𝑑𝑥. This 

variation has two contributions and defined as 

𝑑𝑊 = 𝑟(𝛾𝑠𝑣 − 𝛾𝑠𝑙)𝑑𝑥 − 𝛾𝑙𝑣cos𝜃∗𝑑𝑥 (1.2) 

where 𝑟 is the roughness factor defines as ratio of real surface area to apparent 

surface area and 𝜃∗ is the apparent contact angle. In equation (1.2), this change due 

to creation of new interface is defined as the net contribution to the surface energies. 

In the limit as 𝑑𝑥 → 0, 
𝑑𝑊

𝑑𝑥
→ 0, which is the minimization of surface energy, the 

apparent contact angle  is defined as 

cos𝜃∗ = 𝑟𝑐𝑜𝑠𝜃𝑒 . (1.3) 

For chemically heterogeneous surfaces, Cassie [33] developed an equation which 

includes apparent contact angle, adhesion tension and surface tension of the wetted 

and unwetted interfaces for chemically heterogeneous surfaces which by evaluating 

ratio of total wetted surface area to projected surface area to define apparent contact 

angle droplet makes with such substrate including air pockets. Let 𝜙 be the fraction 

of the projected area of the total projected area per depth of the wetted region and 

1 − 𝜙 be the fraction of the total projected area per depth of the unwetted region. 

Due to creation of new interfaces, the change in the surface energy per unit depth is 

then 
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𝑑𝑊 = 𝜙𝑟(𝛾𝑠𝑣 − 𝛾𝑠𝑙)𝑑𝑥 + (1 − 𝜙)𝛾𝑙𝑣𝑑𝑥 − 𝛾𝑙𝑣cos𝜃∗𝑑𝑥. (1.4) 

When 𝜙 → 1, this equation reduces to the Wenzel equation. In the limit as 𝑑𝑥 → 0, 

the apparent contact angle in the Cassie state is defined as  

cos𝜃∗ = 𝜙𝑟cos𝜃𝑒 + (1 − 𝜙). (1.5) 

It is observed, however, that for the same roughness factor, the measured contact 

angles may differ due to different topography. The advancing and receding contact 

lines over pillars do not behave in the same way as pored structures [34]. The 

classical Wenzel-state or Cassie-Baxter state relations are not sufficient to explain 

this discepancy as they both use averaging quantities for the effective interface 

energy. The existence of sub-micron scale concave surfaces, for example, alter the 

contact angles and hysteresis [24]. A simple way of visualization of hysteresis is the 

observation of droplet motion over tilted surfaces. Over an inclined flat substrate, the 

balance between gravitational and surface tension forces determines the shape of 

droplet; while the former pushes the droplet down the incline, the latter pulls the 

droplet against the gravity due to a retention force. The droplet takes an asymmetric 

shape having contact angles different from the equilibrium contact angle 𝜃𝑒 on a flat 

substrate. When the critical inclination angle is achieved, the droplet moves over the 

substrate; the leading edge of the droplet advances with an advancing contact angle 

𝜃𝐴 while its trailing edge recedes with an receding contact angle 𝜃𝑅 which is the 

dynamic component of the contact angle hysteresis originating from the droplet 

motion. The difference between these angles and Young angle depends on the 

Capillary number, 𝐶𝑎 is based on contact line speed defining the ratio of viscous 

forces to surface tension forces, and scales linearly with 𝐶𝑎1/3 which is given by the 

Cox-Voinov law [35], [36]. The ratio of gravitational to surface tension forces 

defined by the Bond number, 𝐵𝑜, is a critical control variable on the motion and 

shape of the droplet over inclined surfaces. The competing force between gravity and 

interfacial forces causing retention due to contact angle hysteresis determines both 

the shape and the motion. Furmidge [28], Macdougall and Ockrent [37] 

experimentally show that there exists a critical inclination angle, 𝛼𝑐, at which a 
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droplet starts moving, i.e. whenever the gravitational force acting on the droplet is 

equal or greater than the contact line retention forces due to surface tensions, it 

moves. This condition is provided by the tangential force balance acting on a droplet 

over a flat substrate and given by 

cos𝜃𝑅 − cos𝜃𝐴 =
𝜌𝑔𝐴

𝛾
𝑠𝑖𝑛𝛼𝑐 = 𝐵𝑜𝑠𝑖𝑛𝛼𝑐. (1.6) 

In equation (1.6), 𝐴 is droplet volume per unit depth for a two-dimensional droplet, 𝜌 

is the liquid density, 𝑔 is the gravitational acceleration and 𝛾 is the surface tension 

between liquid and vapor. Different variations of equation (1.6) are proposed to a 

specific problem and are validated by others [38], [39]. For small 𝐵𝑜sin𝛼 values, the 

two-dimensional droplets take almost circular arc shape, beyond a critical inclination 

angle, however, e.g. for fixed 𝐵𝑜, the droplet undergoes a wetting transition resulting 

with an elongated profile and completing this transition, it moves with a terminal 

speed [29], [40], [41]. 

The first problem in the modelling the motion of droplets over surfaces is the contact 

line singularity at the moving three phase contact lines. When a droplet moves over a 

surface, the no-slip boundary condition, which is a common usage for hydrodynamic 

approach, requires a moving viscous fluid to stick to the surface and the contact line 

has zero speed at this solid surface, if stationary. It is observed, e.g. in coating 

processes and wetting films, that three phase contact line (solid, liquid, and gas) 

advances or recedes, in other words contact line is not static and  there is a 

contradiction which violates the no–slip condition since displaced fluid particles  at 

the contact line must move relative to the solid surface. Also this boundary condition 

cause nonintegrable shear stress and viscous dissipation at the vicinity of three phase 

contact line. Therefore, singularity at the contact line  needs to be alleviated for 

proper investigation of contact line motion [42], [43]. Many mechanisms for 

relieving the dynamical singularity at the contact line region have been suggested 

and used in many studies, however, only some of them will be included for brevity. 

One of the relieving methods is slip models [41], [44], [45] where the no–slip 

condition is replaced by some  type of slip boundary condition. Dussan et al. [46] 
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show that to alleviate the singularity  and predict some measurable physical 

quantities, multi–valued velocity near the triple  line has to be relieved 

simultaneously which can be done by using any slip coefficient.  The origin of the 

slip velocity adjacent to the contact line and its theoretical analysis are  given in 

Ruckenstein and Dunn [47]. 

Another singularity alleviation method at the moving contact line is that the triple 

line is replaced with an apparent one and connected to a precursor film of constant  

thickness in front of the contact line at the mesoscopic length scale. At this scale, the  

molecular interactions matter: there exists a disjoining pressure Π(f) [48], where f  is 

the film thickness, with various models such as the ones derived from van  der Waals 

forces [49], [50] or diffuse interface  models [51]. If liquid film thickness is smaller 

than 100 nanometer, intermolecular forces due to attractive and repulsive interactions 

of liquid, solid and air molecules involving thin film exists apart from gravitational 

forces, capillary forces and surface tension forces and these forces per unit area is 

called as disjoining pressure isotherm which has three possible components. These 

components are van der Waals due to interaction of dipole molecules, electrostatic 

due to interaction of electrostatic layers under the thin liquid film and steric 

components due to interaction between liquid film surface and large molecules 

involved in this surface. Hamakar [52] compute London van der Waals forces 

between two sphere particles and details of this computation are given in Appendix 

A. Schwartz and Elley propose a disjoining pressure model which includes an power 

relation of disjoining pressure and film thickness according to basis of London van 

der Waals forces and given by 

Π =
𝐵

𝑓0
𝑛 [(

𝑓𝑜
𝑓

)
𝑛

− (
𝑓0
𝑓

)
𝑚

] (1.7) 

where 𝐵 is a positive constant, 𝑛 and 𝑚 are exponents and 𝑓0 is the precursor film 

thickness. Also they express that if a point which are taken from partially wetting 

system is far enough from the solid substrate, the contribution of London van der 

Waals component on disjoining pressure decreases, then it can be neglected. So in 

this state, we can determine Hamakar constant in terms of exponentials in the 
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disjoining pressure model and critical equilibrium contact angle by applying 

tangential force balance approach on the triple line. Because this state satisfy 

thermodynamically equilibrium condition and stability of thin film. 

𝐵 = 𝑓0
𝑛−1 (

(𝑛 − 1)(𝑚 − 1)

2(𝑛 − 𝑚)
) 𝛾𝜃𝑒

2. (1.8) 

To see the difference between slip and precursor models, Savva&Kalliadasis [53], 

Sibley et.al. [54] investigate these two models and constitute a connection between 

them by analyzing the contact line motion of two–dimensional spreading droplets. 

For spreading parameter 𝑆 < 0 (partial wetting), Navier–slip model and 

Ruckenstein-Dunn  model are taken for slip condition; whereas for the precursor film 

model, the disjoining  pressure term is taken separately for van der Waals model and 

Sharma model. Their  study show that modification of the model equations for 

precursor and slip model leads  to equivalent quasi–static limit which is a sign of 

same dynamics for different models.   

The motion of droplets on either inclined or rough surfaces needs a similar treatment 

of the advancing and receding contact lines. Savva & Kalliadasis [41], [55] work  on 

two dimensional droplets on heterogeneous surfaces (including both chemical and 

topographical) by addressing both horizontal and inclined surfaces. Using lubrication 

approximations, they model the droplet motion with a slip boundary condition. They 

review the static and dynamic behavior of the droplet motion and use a singular 

perturbation method in order to evaluate position of the moving drops. Without 

imposing the hysteresis effect a priori, equilibrium of droplets cannot be preserved 

over ideal surfaces, however, droplets can reach its equilibrium on the substrate 

having heterogeneities. They also review, the effect of topographical and chemical 

heterogeneities on the critical angle, for periodic, single–wavelength and small–

amplitude heterogeneities.   

Thiele [40] revise the analysis of the evolution of a two and three–dimensional  thin 

liquid films over tilted surfaces. In their model, they include a disjoining pressure 

which is formulated by a diffuse interface theory. They show that if inclination angle 
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increases, so does the speed of the contact line and diffuse interface thickness 

increases and it provides formation of a thinner drop and stronger oscillations.   

When the surfaces have topographical heterogeneities, the motion also depends on 

the defect parameters which may either cause the droplet to stick to it, or delay its 

motion. Park&Kumar [56] study on two–dimensional droplet, advancing over a 

surface having  a single defect tilted at a certain angle measured from their level 

surface. Unlike Savva &  Kalliadasis (2013), who work on the behaviour of droplets 

on tilted heterogeneous surfaces  having periodic structures,  focus on a single 

topographical defect  of Gaussian shape over a flat tilted substrate to examine the 

influence of pinning at the  defect by using lubrication equations utilizing precursor-

film model. They numerically observe that droplet pinning occurs at the point which 

has a minimum slope on the defect surface. If retention force due to the hysteresis is 

bigger than sliding forces, droplet remains pinned at a non–zero sliding angle. At this 

configuration, advancing contact angle is maximum and retention forces are 

maximized. Although they argue the effects of defect width, height and slope 

separately, varying either width or height changes the defect slope. Also they show 

that residual droplet formation on the substrate by setting proper geometric 

parameters which are height and width of the step and they explain that residual 

formation occurs due to interaction of defect surface and receding meniscus when 

inclination angle is above of a critical value.  

According to experimental study of Kalinin et.al. [57], pinning-depinning of a 

droplet is mostly determined by the slope of the topographical defect( the steepness 

of a step down of the rings with trapezoidal cross-sections), consistent with Gibbs 

inequality [58]. In general, as the slope of step increases, so does the apparent 

advancing angle. In other words, the strength of the pinning increases. Recently, 

Escobar et.al. [59] observe the contact line pinning at the side-walls of the concentric 

rings with which they explain the zipping-depinning mode of sessile microdroplets. 

We want to show pinning-depinning transition of two-dimensional droplet motion on 

an inclined surface which includes topographical heterogeneities by using lubrication 

theory with a precursor film approximation. These topographical heterogeneities on 

the solid surface can be created with numerous steps ups and downs. Experimental 
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studies showed that at the first time advancing edge of the droplet meets with 

maximum slope side of the defect surface and advancing edge moves faster with 

decreasing apparent contact angle. So, motion slows at receding edge of droplet in 

order to satisfy continuity of the motion. If retention forces dominate over the 

gravitational forces, droplet either pins or depins at this region. So we create 

topographical heterogeneities as the single backward facing step geometry and this 

simple geometry provides us explain this problem physically with all aspects and 

controllable slope with different step heights. We first study on pinning/depinning 

transition of the advancing side of the droplet. The phase diagrams of this transition 

reveal that the critical condition is determined by a simple force balance around the 

contact line of the droplet; the difference from the flat substrate is the retention force 

due the existence of topography change. The existence of roughness around the 

receding contact line, however, alters this transition as it may also pin at one of these 

spots and may leave residual droplets behind the forward-facing steps. Also we 

evaluate effect of multiple droplets on pinning-depinning trasition mechanism by 

considering effective 𝐵𝑜 number. 
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2. MODEL PROBLEM 

We evaluate the motion of droplets over inclined substrates having step-like 

structures in plane using lubrication approximation with precursor film model. Figure 

2.1 shows the schematic of the droplet over such an incline. We fix the coordinate at 

the substrate of level 𝑦 = 0. Denoting the dimensional quantities with tilde mark 

(~), we define the substrate by ℎ̃(𝑥̃) and the liquid-vapor interface of the droplet is 

defined by 𝜁(𝑥̃, 𝑡̃) measured from substrate level. The film thickness is defined as 

𝑓 = 𝜁 − ℎ̃. Away from the contact lines, the precursor film thickness is 𝑓0̃. 

 

Figure 2.1 Problem domain: droplet around an inclined step. 

 

The substrate is inclined at an angle 𝛼 as shown in figure 2.1 and gravitational 

acceleration 𝒈 = 𝑔(sin𝛼𝒊 − cos𝛼𝒋) acts downwards. The topography is defined 

using hyperbolic tangent function. 

ℎ̃(𝑥̃) =
ℎ̃𝑠

2
[1 − tanh (

𝑥̃ − 𝑥𝑠̃

𝜆
)] (2.1) 

where ℎ𝑠 is the step height, 𝑥𝑠 is the 𝑥 coordinate of the maximum absolute slope 

location and 𝜆 is the step steepness parameter; the smaller 𝜆 is, the steeper the step.  

We treat the fluid to be incompressible, Newtonian and non-volatile with uniform 

density 𝜌, dynamic viscosity 𝜂. We also treat the interfacial tension 𝛾 to be uniform 

between the interfaces. The motion of droplet over the substrate is governed by the 

continuity and linear momentum equations, respectively:  
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 ∇̃ ∙ 𝒖̃ = 0, (2.2) 

𝜌 (
𝜕𝒖̃

𝜕𝑡̃
+ 𝒖̃ ∙ ∇̃𝒖̃) = −∇̃𝑝̃ + 𝜂∇̃2𝒖̃ + 𝜌𝑔. (2.3) 

Here 𝒖̃ is the velocity vector defined in plane as 𝒖̃ = 𝑢̃𝒊 + 𝑣̃𝒋. For slender droplets 

and 𝑅𝑒 ≪ 1, we obtain lubrication equations (see Appendix B), the continuity is not 

altered, but the momentum equation (2.3), in its component form, reduces to  

𝜕𝑝

𝜕𝑥̃
= 𝜂

𝜕2𝑢̃

𝜕𝑦̃2
+ 𝜌𝑔sin𝛼, (2.4) 

𝜕𝑝

𝜕𝑦̃
= −𝜌𝑔cos𝛼. (2.5) 

The 𝑥̃-component of the film velocity can be obtained by integrating the 𝑥̃-

momentum in 𝑦̃. Here, we should note that 
𝜕𝑝̃

𝜕𝑥̃
 is not a function of  𝑦̃ as seen from 

equation (2.4). The velocity profile satisfying the no-slip at 𝑦̃ = ℎ̃ and vanishing 

shear stress at 𝑦̃ = 𝜁 is found to be 

𝑢̃ =
1

𝜂
(
𝜕𝑝

𝜕𝑥̃
− 𝜌𝑔sin𝛼) (

𝑦̃2

2
− 𝜁𝑦̃ −

ℎ̃2

2
+ 𝜁ℎ̃). (2.6) 

Here 𝑝 is the pressure and we determine its gradient using the normal force balance 

at the interface. Volume flow rate per unit depth, 𝑞̃, across the film thickness 𝑓 is 

computed by integrating the velocity profile 𝑢̃ from 𝑦̃ = ℎ̃ to 𝑦̃ = 𝜁: 

𝑞̃ = −
1

3𝜂
(
𝜕𝑝

𝜕𝑥̃
− 𝜌𝑔sin𝛼) (𝜁 − ℎ̃)

3
. (2.7) 

The interfacial momentum balance in the normal direction determines the pressure 

difference at the interface to be 
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𝑝𝑙 − 𝑝𝑣 = 𝛾𝛁̃ ∙ 𝒏 − Π.̃ (2.8) 

In equation (2.8), 𝑝𝑙 and 𝑝𝑣 are the interface liquid and vapor pressures, respectively. 

𝒏 is the unit outward normal at the interface and Π̃ is the disjoining pressure. For 

small slope interface the surface force due to variation of 𝑛 reduces to 𝛁̃ ∙ 𝒏 = −
𝜕2𝜁

𝜕𝑥2 

(see Appendix C). 

The pressure distribution within the fluid is obtained by integrating 𝑦̃ momentum 

given in equation (2.5) as 

𝑝 = −𝜌𝑔𝑦̃cosα + 𝑧(𝑥̃). (2.9) 

In equation (2.9), 𝑧(𝑥̃) is found by evaluating the pressure at the interface and using 

equation (2.8) as 

𝑧(𝑥̃) =  𝑝𝑣 + 𝛾𝛁̃ ∙ 𝒏 − Π̃ + 𝜌𝑔𝜁cosα. (2.10) 

If we combine equations (2.9) and (2.10) and assume vapor pressure to be uniform 

along the interface, the 𝑥̃ derivative of the pressure reduces to 

𝜕𝑝

𝜕𝑥̃
= −𝛾

𝜕3𝜁

𝜕𝑥̃3
−

𝜕Π̃

𝜕𝑥̃
+ 𝜌𝑔

𝜕𝜁

𝜕𝑥̃
cosα. (2.11) 

We replace the pressure gradient term in equation (2.7) with above and rewrite as 

𝑞̃ = −
1

3𝜂
(−𝛾

𝜕3𝜁

𝜕𝑥̃3
−

𝜕Π̃

𝜕𝑥̃
+ 𝜌𝑔

𝜕𝜁

𝜕𝑥̃
cosα − 𝜌𝑔sin𝛼) (𝜁 − ℎ̃)

3
. (2.12) 

The film evolution (see Appendix D) is governed by  

𝜕𝑓

𝜕𝑡̃
+

𝜕𝑞̃

𝜕𝑥̃
= 0 (2.13) 
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and using the definition of 𝑞̃ in equation (2.12), we obtain the evolution equation of 

the film thickness 𝑓: 

𝜕𝑓

𝜕𝑡̃
+

𝜕

𝜕𝑥̃

[
 
 
 
 
 
−

𝑓3

3𝜂
(𝜌𝑔 (

𝜕(𝑓 + ℎ̃)

𝜕𝑥̃
cos𝛼 − sin𝛼))

−𝛾
𝜕3(𝑓 + ℎ̃)

𝜕𝑥̃3
−

𝜕Π̃

𝜕𝑥̃ ]
 
 
 
 
 

= 0. (2.14) 

Because we initiate the droplet motion considering its shape to be a circular arc 

sitting over a flat substrate, we first define the geometry of the intial droplet as 

shown in figure 1.1. The radius of curvature of the initial droplet is 𝑟0, the 

equilibrium contact angle the droplet makes with the substrate is 𝜃𝑒. From geometry, 

the characteristic height of the droplet is ℎ0 = 𝑟0(1 − cos𝜃𝑒) and characteristic 

length of the droplet is 𝑙0 = 𝑟0𝑠𝑖𝑛𝜃𝑒; the volume per unit depth of the droplet is 

𝐴 = 𝑟0
2(𝜃𝑒 − sin𝜃𝑒). For small equilibrium contact angles, the droplet is slender:  

 
ℎ0

𝑙0
=

𝑟0𝑐𝑜𝑠(1−cos𝜃𝑒)

𝑟0𝑠𝑖𝑛𝜃𝑒
≪ 1. 

We non-dimensionalize equation (2.14) using the following scales: 

𝑥𝑠 = [
𝐴̃sin2𝜃𝑒

𝜃𝑒 − sin𝜃𝑒cos𝜃𝑒
]

1/2

, (2.15) 

𝑓𝑠 = [
𝐴̃(1 − cos𝜃𝑒)

2

𝜃𝑒 − sin𝜃𝑒cos𝜃𝑒
]

1/2

, (2.16) 

𝑢𝑠 =
𝛾(1 − cos𝜃𝑒)

3

3𝜂sin3𝜃𝑒
, (2.17) 

𝑡𝑠 =
3𝜂sin3𝜃𝑒

𝛾(1 − cos𝜃𝑒)3
[

𝐴̃sin2𝜃𝑒

𝜃𝑒 − sin𝜃𝑒cos𝜃𝑒
]

1/2

, (2.18) 
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𝑝𝑠 = 𝛾 [
(1 − cos𝜃𝑒)

2

𝐴̃sin4𝜃𝑒

]

1/2
3𝜂sin3𝜃𝑒

𝛾(1 − cos𝜃𝑒)3
[

𝐴sin2𝜃𝑒

𝜃𝑒 − sin𝜃𝑒cos𝜃𝑒
]

1/2

. (2.19) 

The non-dimensional evolution of the film, the tilde (~) mark is now dropped for 

dimensionless quantities, is then governed by 

𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑥

[
 
 
 
 −𝑓3 (𝐵𝑜 (cos𝛼

𝜕(𝑓 + ℎ)

𝜕𝑥
− 𝐸))

−𝛾
𝜕3(𝑓 + ℎ)

𝜕𝑥3
−

𝜕Π

𝜕𝑥 ]
 
 
 
 

= 0 (2.20) 

where 𝐸 =
sin𝛼sin𝜃𝑒

1−cos𝜃𝑒
 and 𝐵𝑜 is the Bond number defining the ratio of  gravitational to 

surface tension forces and defined as 𝐵𝑜 =
𝜌𝑔(𝑥𝑠)2

𝛾
. The boundary conditions are 

𝑓(0, 𝑡) = 𝑓0, (2.21) 

𝑓(𝐿, 𝑡) = 𝑓0, (2.22) 

𝜕𝑓(0, 𝑡)

𝜕𝑥
= 0, (2.23) 

𝜕𝑓(𝐿, 𝑡)

𝜕𝑥
= 0. (2.24) 

While the boundary conditions (2.21-2.24) define that the film goes to the precursor 

film thickness of 𝑓0 away from the droplet with the end points defined at 𝑥 = 0 and 

𝑥 = 𝐿, they enforce the film thickness to be uniform away from the droplet. 

The non-dimensional form of the disjoining pressure model is 

Π = Â [(
𝑓0
𝑓

)
𝑚

− (
𝑓0
𝑓

)
𝑛

] (2.25) 
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where Â is known as Hamakar constant defined as 

Â =
1

𝑓0
(

𝜃𝑒sin𝜃𝑒

1 − cos𝜃𝑒
)

2 (𝑚 − 1)(𝑛 − 1)

2(𝑚 − 𝑛)
. (2.26) 

The choice of the parameters 𝑚 and 𝑛 in this two –term disjoining pressure model 

affects the solution. Common choices for the parameters are the pairs (𝑚, 𝑛) =

(3,2), (𝑚, 𝑛) = (4,3) and (𝑚, 𝑛) = (9,3). The last two pairs increase Hamakar 

constant to 3Â and 4/3Â, respectively, for fixed 𝑓0 and 𝜃𝑒. When Â is large, the 

condition number of the resulting system gets bigger resulting with a slow 

convergence. With the two-term disjoining pressure model we used, when the film 

thickness 𝑓 falls below the precursor film thickness𝑓0, the film is repelled from the 

substrate by the repulsive force. When 𝑓 = 𝑓0, Π = 0. Both the variation of 

disjoining pressure and its energy density have higher gradients for the pairs (9,3) 

and (4,3) compared with (3,2) and they require better resolution, again with a 

slower convergence. A similar observation can be seen in Schwartz and Elley [50]. 

Because of these reasons, we use pair (𝑚, 𝑛) = (3,2). 

The choice of 𝑓0 also affects the solution. We check the effect of precursor film 

thickness by varying it from 𝑓0 = 0.01 down to 𝑓0 = 0.0005. The thicker precursor 

films do not predict the imposed contact angle while the one we used, 𝑓0 = 0.001, 

predict the contact angle within an error of 1°. Going further below to 𝑓0 = 0.0005 

does not vary the profile, but it has slower convergence compared with 𝑓0 = 0.01 as 

the Hamakar constant in the disjoining pressure scales as 𝑓0
−1

, which generates 

larger valuesv as 𝑓0 becomes smaller. Therefore, we pick 𝑓0 = 0.001. 
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3. NUMERICAL METHOD 

3.1. Weak Formulation and Numerical Solution Procedure 

To integrate the evolution equation given in equations (2.20-2.24), we use cubic 

finite element discretization in space and second order discretization in time. The 

evolution equation is valid in a domain Ω: 0 ≤ 𝑥 ≤ 𝐿. We approximate the test 

functions and 𝑓 from the same Hilbert-Sobolov space Ĥ1(Ω). We first convert the 

film evolution equation into a set of two coupled equations, both being second order, 

by letting 

𝜕2𝑓

𝜕𝑥2
− 𝑤 = 0, (3.1) 

𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑥

[
 
 
 
 −𝑓3 (𝐵𝑜 (cos𝛼

𝜕(𝑓 + ℎ)

𝜕𝑥
− 𝐸)) −

𝜕𝑤

𝜕𝑥

−
𝜕3ℎ

𝜕𝑥3
−

𝜕Π

𝜕𝑓

𝜕𝑓

𝜕𝑥 ]
 
 
 
 

= 0. (3.2) 

We obtain the weak form of the set of equations (3.1-3.2) by first multiplying with 

corresponding test functions, namely 𝑤̅ and 𝑓,̅ respectively; then integrating over the 

domain Ω and weakening the differentiability requirement using the fact that the test 

functions are chosen to be zero at any Dirichlet boundary condition: 

∫
𝜕𝑓

𝜕𝑥
Ω

𝜕𝑤̅

𝜕𝑥
𝑑𝑥 + ∫𝑤𝑤̅

Ω

𝑑𝑥 = 0, (3.3) 

∫
𝜕𝑓

𝜕𝑡
Ω

𝑓𝑑̅Ω + ∫

[
 
 
 
 𝑓3 (𝐵𝑜 (cos𝛼

𝜕(𝑓 + ℎ)

𝜕𝑥
− 𝐸)) −

𝜕𝑤

𝜕𝑥

−
𝜕3ℎ

𝜕𝑥3
−

𝜕Π

𝜕𝑓

𝜕𝑓

𝜕𝑥 ]
 
 
 
 

Ω

𝜕𝑓̅

𝜕𝑥
𝑑Ω = 0. (3.4) 
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We integrate in time using a second-order Crank-Nicolson scheme by setting the  

𝜃 = 1/2 on the standard 𝜃-scheme for the time 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1) and ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 

being the time step between the old time 𝑡𝑛 and the new time 𝑡𝑛+1 (see Appendix F). 

The coupled equation in this scheme become, 

𝜃

[
 
 
 
 ∫

𝜕𝑓𝑛+1

𝜕𝑥
Ω

𝜕𝑤̅

𝜕𝑥
𝑑𝑥 +

∫ 𝑤𝑛+1 𝑤̅̅̅

Ω

𝑑𝑥
]
 
 
 
 

+ (1 − 𝜃)

[
 
 
 
 ∫

𝜕𝑓𝑛

𝜕𝑥
Ω

𝜕𝑤̅

𝜕𝑥
𝑑𝑥 +

∫𝑤𝑛 𝑤̅̅̅

Ω

𝑑𝑥
]
 
 
 
 

= 0 (3.5) 

∫
𝑓𝑛+1 − 𝑓𝑛

Δ𝑡
𝑓𝑑̅Ω

+ θ

[
 
 
 
 

∫

[
 
 
 
 𝑓𝑛+13

(𝐵𝑜 (cos𝛼
𝜕(𝑓𝑛+1 + ℎ)

𝜕𝑥
− 𝐸)) −

𝜕𝑤𝑛+1

𝜕𝑥

−
𝜕3ℎ

𝜕𝑥3
−

𝜕Π𝑛+1

𝜕𝑓𝑛+1

𝜕𝑓𝑛+1

𝜕𝑥 ]
 
 
 
 

Ω

𝜕𝑓̅

𝜕𝑥
𝑑Ω

]
 
 
 
 

 

 

 

+(1 − 𝜃) 

[
 
 
 
 

∫

[
 
 
 
 𝑓𝑛3

(𝐵𝑜 (cos𝛼
𝜕(𝑓𝑛 + ℎ)

𝜕𝑥
− 𝐸)) −

𝜕𝑤𝑛

𝜕𝑥

−
𝜕3ℎ

𝜕𝑥3
−

𝜕Π𝑛

𝜕𝑓𝑛

𝜕𝑓𝑛

𝜕𝑥 ]
 
 
 
 

Ω

𝜕𝑓̅

𝜕𝑥
𝑑Ω

]
 
 
 
 

= 0 

(3.6) 

We use piecewise continuous cubic shape functions 𝜙𝑐 for the space discretization. 

We approximate 𝑓, 𝑤 and corresponding test functions in isoparametric domain by 

𝑓𝑛 = ∑𝑓𝑗
𝑛𝜙𝑗

𝑐
,  𝑤𝑛 = ∑𝑤𝑗

𝑛𝜙𝑗
𝑐,  

𝑓𝑛+1 = ∑𝑓𝑗
𝑛+1𝜙𝑗

𝑐
,  𝑤𝑛+1 = ∑𝑤𝑗

𝑛+1𝜙𝑗
𝑐,  
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𝑓̅ = ∑𝑓𝑖̅𝜙𝑖
𝑐
,  𝑤̅ = ∑ 𝑤̅𝑖𝜙𝑖

𝑐. (3.7) 

Substituting approximations in equation (3.7) into the weak form equation (3.5-3.6) 

for all possible test functions, we obtain a system of the form 𝑲(𝑢)𝑢 = 𝑹 to be 

solved for 𝑢, unknown vector comprising 𝑓 and 𝑤, and a residual vector of the 

unknown variables due to nonlinearity of the film evolution equation. We treat the 

nonlinearity at every time step using the Newton's method given in table 3.1. 

Table 3.1 Newton’s Algorithm. 

Newton’s Algorithm Table 

1:while  𝑒 > 𝑇𝑂𝐿 do 

2: 𝒖𝒎+𝟏 = 𝒖𝒎 − 𝑻(𝒖𝒎)−1𝒓(𝒖𝒎) 

𝑒 = ‖𝒖𝒎+𝟏 − 𝒖𝒎‖ 

3: 𝒖𝒎+𝟏 = 𝒖𝒎 

 

In this table, 𝒓 is the residual vector and defined as 𝒓(𝒖) = 𝑲(𝒖)𝒖 − 𝑹; 𝑻 is the 

tangent stiffness matrix and defined as 𝑻(𝒖) =
𝜕𝒓

𝜕𝒖
. We set the tolerance to be 10−12 

in the Newton's iteration.  

In figure 3.1, we show the convergence of the numerical method for the terminal 

shape of a droplet with 𝐵𝑜 = 0, 𝛼 = 0°, 𝜃𝑒 = 15°. The slopes of variation of two 

and infinity norm of errors with element size are around 3.5 as we use cubic finite 

element method. 
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Figure 3.1 Convergence of numerical method. 

Time element size and element sizes are determined by the independence of 

solutions from both Δ𝑡 and Δ𝑥. We typically set Δ𝑡 to 0.0005 and vary the distance 

between each space node from 1/600 to 1/1800 depending on the resolution. We use 

7th order Gauss rule of integration to compute all the integrals. The details of 

resulting system are given in Appendix E. 

3.2  Numerical Method Validation: Droplet Motion on Flat 

Substrates 

We devote this section to the validation of our solver analyzing droplet spreading 

over a flat horizontal surface and the motion of droplets over a flat inclined one.  

3.2.1 Spreading Droplets 

Tanner [60] and Mchale et al. [61] predict the motion of two-dimensional viscous oil 

drops over flat substrates. To a first approximation, the maximum droplet height 

decreases with time 𝑡 as 𝑡−1/7; to show this relation, we put a circular arc droplet 

onto a flat substrate making an initial angle of 𝜃 = 15° and let it spread till the 

contact angle reaches zero for high-energy surface. In figure 3.2(top), we show the 
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time history of maximum droplet height up to non-dimensional time of 𝑡 = 100 and 

observe the same power-law relation after 𝑡~1. Up to this time, the power-law 

relation does not hold because within this interval, the interface modifies itself to 

satisfy the evolution equation from an initially circular arc profile sitting over a flat 

precursor film of thickness 𝑓0; a similar observation is made by Schwartz&Elley [50] 

for the early time over which the initial droplet shape matters. 

We also check the dynamic variation of the advancing contact angle while the 

droplet spreads. When the droplet advances over an existing precursor film, the 

contact line is an apparent one, we measure it by finding locations of the maximum 

and minimum slopes of the droplet interface, draw a tangent line from this point the 

substrate and compute both angles and contact line positions where this line meets 

the substrate. The advancing contact angle differs from its Young value and is given 

as a function of 𝐶𝑎 by the Cox-Voinov model [35], [62]: 𝜃𝐴
3 = 𝜃𝑒

3 − 9𝐶𝑎𝑙𝑛(𝑥/

𝑙𝑚𝑖𝑐𝑟𝑜) with 𝑙𝑚𝑖𝑐𝑟𝑜 being a microscopic length-scale. This linear relationship 

between 𝜃𝐴
3 − 𝜃𝑒

3
 and 𝐶𝑎, for the current spreading droplet is validated as shown in 

figure 3.2(bottom). 
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Figure 3.2 (top) Time variation of maximum droplet height: two dimensional droplet 

spreading on a flat surface, see text for initial conditions; (bottom) speed of the 

advancing contact line of the spreading droplet. 
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3.2.2 Droplet Motion on Inclined Flat Substrates 

When a droplet is driven by gravity over a flat inclined substrate, its shape does not 

remain circular at all times. Here, we show the droplet wetting transition over a flat 

inclined substrate. In all cases, we set 𝜃𝑒 to 10°, 𝐵𝑜 to 0.75 and vary the inclination 

angle 𝛼 from 0° to 50°, in 10° increments. As shown in figure 3.3, for small 𝐵𝑜sin𝛼, 

droplet takes almost circular arc shape, surface tension forces determine the terminal 

shape. With increasing 𝐵𝑜sin𝛼, however, the droplet elongates forming a tail shape 

toward the rear end; for all cases, the droplets move with constant speed after gaining 

their terminal shapes. Thiele et al. [40], Savva&Kalliadasis [41] and Park&Kumar 

[56] observe similar transitions. Though the terminal shapes can be predicted with a 

steady model by changing the reference frame moving with the terminal contact line 

speed, we do not include it here as our focus in this paper is the motion around the 

step. 

 

Figure 3.3 Droplet wetting transition over an inclined flat substrate. 
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4. DROPLET MOTION AROUND INCLINED SINGLE 

STEP 

While a droplet moves over a surface, the contact lines may pin and depin around 

structures. As we stated earlier, to be able to analyze the motion of moving contact 

lines around such structures, we simplify the substrate topography having a single 

backward facing step as shown in figure 2.1 to mimic a smooth roughness. This 

simple geometry provides us with a controllable slope with different step heights and 

steepness parameters. 

We initialize the droplet motion by adding a circular arc droplet onto a precursor film 

thickness of 𝑓0 away from the step. Here, we should note that the initial circular arc 

approximation of the droplet profile is unsteady and it takes some time to reach an 

equilibrium shape. However, for fixed volume, the pinning-depinning transition is 

not affected by the initial profile's circular arc approximation other than the one 

obtained by the terminal profile of an initially circular arc sitting on flat substrate 

although it affects the time taken until the transition around the step occurs. The 

initial location of the droplet center is at 𝑥 = 1.1 whereas the step is located at 

𝑥 = 2.6. We consider a partial wetting fluid and set the equilibrium contact angle to 

𝜃𝑒 = 15°; this provides us with a slender droplet for which the long-wave 

approximation used in Chapter 2 is consistent. 

Considering a three-dimensional droplet on an inclined flat substrate shown in figure 

4.1 (top), the retention force parallel to the substrate can be computed by integrating 

the surface tension forces at the triple line along the contour of the droplet's contact 

with the substrate: 

𝒇𝑟𝑒𝑡 = ∮ (𝛾𝑙𝑣cos𝜃 + 𝛾𝑠𝑙 − 𝛾𝑠𝑣)𝒏𝑑𝑠 .
𝐶𝐿

 (4.1) 

In the case of two-dimensional droplet shown in figure 4.1 (middle), equation (4.1) 

reduces to 

𝒇𝑟𝑒𝑡 = −𝛾𝑙𝑣(cos𝜃𝑅 − cos𝜃𝐴)𝒊 . (4.2) 
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For a flat substrate as shown in figure 4.1 (middle), the critical condition for the onset 

of two-dimensional droplet motion occurs when 

𝛾𝑙𝑣(cos𝜃𝑅 − cos𝜃𝐴) = 𝜌𝑔𝐴sin𝛼𝑐 . (4.3) 

The term on the left-hand side of equation (4.3) is the retention force due to 

hysteresis and the one on the right side is the gravitational force on the droplet acting 

in the direction of motion. A similar equation is given by Furmidge [28] and 

Macdougall&Ockrent [37]. Whenever 𝛼 > 𝛼𝑐, the gravitational forces overcome the 

retention forces due to hysteresis and the droplet starts sliding. 

On flat substrate, for a three-dimensional droplet symmetric with respect to 𝑥-axis 

and when ∮ 𝒏𝑑𝑠 = 0
𝐶𝐿

 or for a two-dimensional droplet, the lateral force 

contributions due to tensions 𝛾𝑠𝑙 and 𝛾𝑠𝑣 cancel for a chemically homogeneous 

substrate. That is not the case around the step (figure 4.1 (bottom)): there, the lateral 

force of 𝛾𝑠𝑣 − 𝛾𝑠𝑙 at the receding contact line is bigger than the 𝑥-component of the 

force at the advancing contact line around the step which is (𝛾𝑠𝑣 − 𝛾𝑠𝑙)cos𝜃𝑠,𝐴 where 

𝜃𝑠,𝐴 is the angle of the step at the advancing contact line location measured from 𝑥-

axis (see the magnified region at the bottom of figure (4.1)). Summation of these 

two, where we replace 𝛾𝑠𝑣 − 𝛾𝑠𝑙 with 𝛾𝑙𝑣cos𝜃𝑒 by Young condition, results with an 

additional term due to existence of a step, and the balance between these retention 

forces and gravitational force determines the pinning and depinning of a droplet 

around the step: 

𝛾𝑙𝑣[cos𝜃𝑅 − cos𝜃𝐴 − cos𝜃𝑒(1 − cos𝜃𝑠,𝐴)]~𝜌𝑔𝐴sin𝛼 . (4.4) 
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Figure 4.1 (top) Three dimensional droplet sliding along inclined flat substrate, 𝒏 is 

the outward unit normal at the contact line which is tangent to the substrate; two 

dimensional droplet sliding along inclined (middle) flat substrate, (bottom) step; 𝒏 is 

the outward unit normal at the contact line which is tangent to the substrate. The step 

size is exaggerated compared with the droplet size to clarify the contact line region 

around the step. 

 

The advancing contact angle 𝜃𝐴 is the summation of the step angle 𝜃𝑠,𝐴 and 

mesoscopic angle 𝜃𝑚,𝐴 at the advancing contact line which are measured at the 

length scale of the step topography. In equation (4.4), we assume that the receding 
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contact line is away from the step, so that 𝜃𝑠,𝑅 → 0. In the limit as 𝜃𝑠,𝐴 → 0, the 

substrate is flat and 𝜃𝑚,𝐴 = 𝜃𝐴; we recover equation (4.3) when 𝛼 = 𝛼𝑐. 

To show that the balance given in equation (4.4) determines the pinning and 

depinning transition, we plot, in figure 4.2, the phase diagrams for three different 

steps. To form the diagrams, we run a set of numerical experiments in which we vary 

the 𝐵𝑜 and inclination angle 𝛼 for fixed droplet volume of unity in each case. The 

dark shaded region is pinning region while the light one is the depinning region and 

the droplet follows a pinning-depinning transition determined by a curve shown with 

dashed lines in all cases that we obtain by the balance of retention forces and 

gravitational force given in equation (4.4). The existence of precursor film ahead of 

the contact lines changes the definition of the triple lines and the angles they make 

with the substrate. To guarantee that the balance is computed correctly, we construct 

the transition curve using the right-hand side of equation (4.4). This transition line 

shifts upwards as the step becomes steeper (from (top) to (bottom) in figure 4.2). The 

circular and triangular marks correspond respectively to pinned and depinned 

droplets around the step. For clarity, we also show some cases which are around the 

transition lines to emphasize that both varying the 𝛼 for fixed 𝐵𝑜 and varying the 𝐵𝑜 

for fixed 𝛼 follow the transition. 
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Figure 4.2. Phase diagrams of pinning-depinning transition of a two dimensional 

droplet around a step height ℎ𝑠 = 0.05: (top) 𝜆 = 0.02 (middle) 𝜆 = 0.01 (bottom) 

𝜆 = 0.075; the seperators of the transitions shown as dashed black lines are obtained 

by plotting the force balance relation at the critical transition angle. The inclination 

angle 𝛼 is in degrees. The insets show the step profile for the corresponding 𝜆. 
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The retention force due to step is maximum whenever 𝜃𝑠,𝐴 is maximum. This point 

corresponds to the middle of the step, namely the point at which its absolute slope is 

maximum. In figure 4.3(a), the variation of the contact line location with 𝛼, for fixed 

𝐵𝑜, is shown. The advancing contact line pins around the step for 𝛼 < 𝛼𝑐 and its 

location gets closer to the mid-point of the step at which the retention force due to it 

is maximum. It is clear from the inset that the contact line location approaches 

middle of the step as 𝛼 → 𝛼𝑐. A similar observation is made around a Gaussian shape 

defect [56]. 

The contribution of the step to the retention force due to the term 𝑐𝑜𝑠𝜃𝑒(1 −

cos𝜃𝑠,𝐴) in equation (4.4) becomes more pronounced as the step becomes steeper. 

The changes in the receding contact angle with different steps is small compared 

with the changes at the advancing contact angle. This shows that the increase in the 

retention force with steeper step can be explained by a simple force balance around 

the advancing contact line. There, the magnitude of the upward retention force (in 

negative 𝒊-direction) is 

|𝒇𝑟𝑒𝑡,𝐴| = 𝛾𝑙𝑣(cos𝜃𝐴 − cos𝜃𝑒cos𝜃𝑠,𝐴) . (4.5) 

As the step becomes steeper, both 𝜃𝐴 and 𝜃𝑠,𝐴 increase in equation (4.5); however, 

the increase in 𝜃𝑠,𝐴 is more pronounced compared with the increase in 𝜃𝐴, as well as 

cos𝜃𝑠,𝐴 is multiplied with cos𝜃𝑒 < 1, showing that the retention force increases with 

steeper step. This is simply observable by comparing the contributions of the terms 

to the retention force just before the depinning transition. We take three 

representative cases in which the droplets are pinned and they are located just before 

the pinning-depinning transition curves of three different 𝜆 values (see figure 

4.2(top) for 𝐵𝑜 = 1.25, 𝛼 = 13.95°, figure 4.2(middle) for 𝐵𝑜 = 1.75, 𝛼 = 24° and 

figure 4.2(bottom) for 𝐵𝑜 = 1.75, 𝛼 = 37.52° ). We respectively measure the 

receding and advancing contact angles by calculating the maximum and minimum 

slopes of the interface 𝜁 (these are the apparent angles; the contact line locations are 

at the points where a tangent line to the interface meets the substrate at the 

corresponding angle locations). The measured receding contact angle contribution to 
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the retention force due to cos𝜃𝑅 remains nearly the same while advancing contact 

angle contribution increases as 𝜆 increases and retention force due the step existence 

increases the hysteresis. 

Up until the pinning occurs, the motion of the contact line is determined by the 

balance of viscous, capillary and retention forces. When we plot the advancing 

contact line locations, 𝑥𝐴,𝐶𝐿, against the time, they collapse onto each other when 

time is scaled with 𝐵𝑜sin𝛼 as shown in figure 4.3(b). The shaded region refers to the 

pinning while the other is the advancing of the contact line. This plot simply shows 

that the contact line Capillary number (based on contact line speed defined as 

𝐶𝑎 = 𝜂𝑉𝐶𝐿/𝛾) scales linearly with the 𝐵𝑜sin𝛼 up to pinning (shaded area in figure 

4.3(b)). A similar experimental observation can be seen in figure 2 of Podgorski et al. 

[63]. The variation of 𝑥-coordinate of the droplet's center of gravity follows a similar 

pattern compared with 𝑥𝐴,𝐶𝐿 except its location slowly varies after the advancing 

contact line is pinned because the receding contact line is still moving towards right. 
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Figure 4.3 (a) Pinned contact line locations as 𝛼 → 𝛼𝑐. We plot for 𝛼 10° to 13.95°, 
𝐵𝑜 = 1.25, 𝜃𝑒 = 15°, 𝜆 = 0.02. The circle on the step locates the maximum 𝜃𝑠. The 

inset shows the contact line position for the critical case, the dashed line is tangent 

line drawn from the minimum slope of the interface near the advancing contact line; 

(b) position of the advancing contact line near the step (left axis), 𝑥-coordinate of the 

center of gravity of droplet (right axis which shares the same range with 𝑥𝐴,𝐶𝐿 ); 

ℎ𝑠 = 0.05, 𝜆 = 0.01, 𝐵𝑜 = 0.25; ○: 𝛼 = 10°, ∇: 𝛼 = 20°, □: 𝛼 = 30°,  ☆: 𝛼 = 40°, 
◊: 𝛼 = 50°. 
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Though the phase diagrams are formed for three different step steepness parameter 𝜆,  

varying 𝜆 and/or step height ℎ𝑠 determines the slope. The step is defined by equation 

(2.1) with its steepest point at 𝑥𝑠. At this point the absolute slope is maximum with 

the value ℎ𝑠/(2𝜆). Varying only the step height ℎ𝑠 alters the slope; e.g. halving the 

step height from ℎ𝑠 = 0.05 to ℎ𝑠 = 0.025 halves the steepest slope. A case in which 

we set 𝐵𝑜 = 1.25, 𝛼 = 20° with ℎ𝑠 = 0.05 and 𝜆 = 0.01 pins at the step (see figure 

4.2(middle)). For this case, we halve only the step height and the droplet depins. The 

full set of runs for the step heights ℎ𝑠 = 0.025 and 𝜆 = 0.01, 0.0075 reveal that we 

obtain the same phase diagrams given in figure 4.2(top) and (middle), respectively. It 

is the slope of the step that determines the pinning-depinning transition within the 

parameters studied. We should note here that if the height of the defect is sufficiently 

small, the droplet may not pin [57]. 

Varying the equilibrium contact angle, on the other hand, modifies the phase 

transitions as it determines the upper and lower bounds of the receding and 

advancing angles, respectively: 𝜃𝑅 ≤ 𝜃𝑒 ≤ 𝜃𝐴. For the steepest step geometry, we 

form the transition curves for two different equilibrium contact angles below and 

above the 𝜃𝑒 = 15°: the dotted line in the dark shaded region of figure 4.2(bottom) is 

the transition curve obtained for 𝜃𝑒 = 10° while the dotted line inside the light 

shaded region is the transition curve obtained for 𝜃𝑒 = 20°. The transition curve 

shifts upwards for a higher equilibrium contact angle as it is more difficult for the 

advancing contact line to move forward. The reverse is true for smaller contact 

angles; the transition curve is shifted downwards enlarging the depinning region as it 

is simpler for the advancing contact line to move. 
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5. EFFECT OF MULTIPLE STEPS 

Over a rough surface, there exist step-ups and downs which alters the motion of the 

droplets. In this section, we mimic such a surface by combining the single step 

geometries to form substrates as shown in figure 5.1 with hatched region around 

𝑦 = 0.  

In the analysis of the single step geometry, we assume that the receding contact line 

is away from the step. When the receding contact line encounters such a step, 

however, it alters the pinning-depinning transition because the mesoscopic angle of 

the receding contact line will be affected by the non-zero slope surfaces. In the case 

of a backward facing step, the substrate slope increases the mesoscopic angle of the 

receding contact line. The increase in the retention force alters the pinning depinning 

transition of the droplet. If a droplet pins at such a surface, its pinning-depinning 

transition is determined by the balance of contact line forces and gravitational forces 

given by 

𝛾𝑙𝑣[cos𝜃𝑅 − cos𝜃𝐴 − cos𝜃𝑒(cos𝜃𝑠,𝑅 − cos𝜃𝑠,𝐴)]~𝜌𝑔𝐴sin𝛼 . (5.1) 

Here 𝜃𝑠,𝑅 is the substrate angle at the receding contact line and we recover equation 

(4.4) in the limit as 𝜃𝑠,𝑅 → 0. The positive contribution to the retention force occurs 

around a step down where the pinning of the receding contact line is expected. While 

a step down increases the mesoscopic angle of the moving contact lines, the reverse 

reduces it which helps the contact line motion. Decreasing the slope of step-downs 

compared with the step ups helps the motion of droplet over such a rough substrate. 

Figure 5.1 compares such an example. We take a representative droplet from the 

depinning region of the phase diagram shown in figure 4.2(top), namely we set 

𝐵𝑜 = 0.75 and 𝛼 = 40°. We, initially, place the droplet over the hills of the 

topography and let it slide. Different from the single step, the receding contact line 

alters the motion of the droplet. Making the backward-facing steps steeper (compare 

figure 5.1(top) and (middle)) impedes the motion. For a steeper backward facing step 

as shown in figure 5.1(top) compared with (middle), the receding contact line 

remains pinned longer at the steps. 
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Figure 5.1 Effect of substrate topography on the motion of droplet, (top) 𝜆 = 0.02 

for both step-ups and downs, (middle) 𝜆 = 0.04 for step-downs and 𝜆 = 0.02 for 

step-ups, (bottom) 𝜆 = 0.04 for step-downs and 𝜆 = 0.01 for step-ups; 𝐵𝑜 = 0.75, 

𝛼 = 40°. Same line types correspond to the same time for comparison. The inset 

shows the residual droplet behind a forward-facing step. 

 

For a sufficiently steep forward-facing steps, however, the receding contact line may 

leave a residual droplet behind the step as the film touches the step corner before the 

contact line is able to rise over it. It happens, for example, when we set 𝜆 = 0.01 or 
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below at the forward-facing steps as shown in the inset of figure 5.1(bottom). Though 

the computed volume of the residual droplets proves to be small compared with the 

unit droplet volume, we show that, for fixed maximum slope of the forward-facing 

step, the volume increases monotonically with step height. We change the substrate 

design having different heights from the aforementioned design over which residual 

droplets formation is observed. Figure 5.2 shows the steps having heights 1.25ℎ𝑠 and 

1.5ℎ𝑠 in (a), 1.75ℎ𝑠 and 2ℎ𝑠 in (b), 2.25ℎ𝑠 and 2.5ℎ𝑠 in (c) where ℎ𝑠 = 0.05. For 

fixed slope, the residual droplet volume increases as the step height increases. We 

plot, in figure 5.2(d), the variation of residual droplet volume, 𝜐𝑟, as function of the 

step height. For similar substrate designs corresponding to figure 5.1(b), we do not 

observe residual formation even at 2.5ℎ𝑠 because it is not only the step height which 

determines this formation but the slope of the steps. 
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Figure 5.2 Effect of step height on the residual droplet formation, (a) residual 

droplets behind step heights ℎ𝑠 = 0.0625 and ℎ𝑠 = 0.075, (b) residual droplets 

behind step of heights ℎ𝑠 = 0.0875 and ℎ𝑠 = 0.1, (c) residual droplets behind step of 

heights ℎ𝑠 = 0.1125 and ℎ𝑠 = 0.125, (d) residual droplet volume as a function of 

step height. 
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6. DEPINNING BY MULTIPLE DROPLETS 

Coalescence of droplets is related to many industrial applications and natural 

phenomena such as printing processes, filtration, agricultural/industrial coatings, 

raindrop formation, collecting water in desert conditions, etc. In printing [6], for 

example, the resolution of the printed lines is determined by the coalescence 

dynamics of droplets while in agricultural coating processes coalescence of smaller 

spray droplets to larger ones ends up with an inefficient coating of the leaf surface 

[14]. It is observed that the coarsening by small droplet coalescence over inclined 

substrates is different than horizontal ones [64], [65]. In this section, we simply 

demonstrate how smaller droplet's coalescence into larger one changes the pinning-

depinning transition. 

For a certain volume droplet which is pinned at the step, the pinning-depinning 

transition can be shifted upwards by addition of a second droplet. This scenario can 

be thought fo as the depinning of droplets on a window of a rainy day which were 

initially stuck to the pane [66]. In all the cases forming the phase diagrams in figure 

4.2, we set the volume of the droplet per unit depth to unity. When additional droplet 

is introduced into the domain, it slides down, meets first the receding contact line (its 

trailing edge) of the pinned droplet, then the two droplets coalesce and the new 

droplet is able to depin if the additional droplet volume is enough to shift the 

effective 𝐵𝑜 on the coalesced droplet into the depinning region. To show that, we 

consider one of the cases in which the droplet is pinned at the step. For example, the 

case of 𝐵𝑜 = 1.25 and 𝛼 = 50° is pinned as shown by the circle in figure 

4.2(bottom) of the steepest step considered. For this droplet to depin at the same 

inclination angle, the corresponding 𝐵𝑜 should be greater than 1.40, i.e. an addition 

of a droplet of the 1/8𝑡ℎ volume of the pinned droplet would suffice to exceed this 

limit (𝑥𝑠
2 → 1.125 making effective 𝐵𝑜 = 1.4062). We assume that the previous 

droplet motion leaves no residual behind and the upstream droplet starts moving over 

the pre-existing precursor film thickness of 𝑓0. In figure 6.1, we show the time 

history of the addition of a second droplet on the upstream and its coalescence with 

the pinned droplet. The coalescence helps depin because the effective 𝐵𝑜 on the 
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coalesced droplet is big enough to overcome the retention forces due to hysteresis. 

Mori et al. [67] experimentally observe similar behavior. 

 

Figure 6.1 Depinning by multiple droplets: time history of a droplet after 

coalescence from top to bottom; 𝐵𝑜 = 1.25, 𝛼 = 50°, 𝜆 = 0.0075, see text for 

details. 
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7. CONCLUSION 

We evaluate two dimensional droplet motion on an inclined and heterogeneous 

surface which includes single backward facing step or multiple steps in upward and 

downward direction for a partially wetting system. Structure of this solid surface 

cause contact angle hysteresis which includes deviation of contact angle from Young 

angle and pinning/depinning of droplet motion and droplet is pinned at the negative 

slope side of the solid surface physically, so we use single or multiple steps in order 

to demonstrate main physics of droplet motion. Our model problem is derived using 

lubrication theory and we obtain unsteady thin film evolution equation which is a 

fourth order nonlinear partial differential equation. Also we use precursor film 

approximation in order to remove the singularity ptoblem at the moving contact line. 

To integrate the governing equations, we have developed a cubic finite element 

solver and validate it against well known problems such as Tanner’s law and 

Cox&Voinov equation.  

The step geometry is determined by the step height and steepness parameter both 

determining its maximum absolute slope. The pinning of a droplet around a step 

simply shows that retention forces due surface energies dominate the gravitational 

forces and the balance between these determines the transition from a pinning to 

depinning regime. The phase diagrams obtained by numerical experiments clearly 

seperates this transition: a simple force balance of gravitational force acting on the 

droplet volume and the surface tension forces  around the contact line defines this 

seperator above which the droplet depins from the step. The use of single backward 

facing step geometry helps explaining the increase in retention force due to step  by a 

simple force balance argument made around the pinned contact line and for fixed 𝐵𝑜 

and 𝛼, we show that it is the slope of the step that determines this transition. Also we 

show that the existence of multiple steps may impede the motion of droplets because 

the receding contact line may pin at the backward-facing steps or leave residual 

droplet behind sufficiently steep forward facing steps and also we show that, for 

fixed slope the residual droplet volume increases with step height. At the end, we 

show that transition from pinning to deppinning of a droplet on a single backward 
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facing step by adding a second droplet and coalesced droplet is depinned if effective 

𝐵𝑜 achieves a critical value to overcome the retention forces. 

The results contribute to the understanding of the pinning-depinning of contact lines 

around step-like heterogeneities. Our two-dimensional problem can be extended to 

other two/three dimensional models and would motivate further experiments and 

design of new surfaces. 
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APPENDIX A: LONDON VAN DER WAALS FORCES 

Hamakar compute London van der Waals forces between two sphere particles which 

includes 𝑞 atoms per their volume. Energy transmitted due to this interaction is 

evaluated theoretically and experimentally by London [68] and Sokolov [69] and 

expressed as: 

𝐸 = −∫𝑑𝑉1 ∫
𝑞2𝜆

𝑟6
𝑑𝑉2 (A.1) 

where 𝑑𝑉1 and 𝑑𝑉2 are selected differential volumes for spheres, 𝜆 is London van der 

Waals constant and  𝑟 is distance between differential volumes. So he considers a 

sphere with a radius of 𝑅1 and center point of 𝑂 and second sphere with a radius of 𝑟 

and center point of 𝑃. This configuration is demonstrated by Hamakar [52] and in 

this configuration first sphere is cutted with second sphere and angle between 

perpendicular edge constituted surface from second sphere center point  and one 

edge of second sphere is defined as 𝜃0. So constituted surface can be formularized 

as: 

𝑆 = 2𝜋 ∫ 𝑟2sin𝜃𝑑𝜃,
𝜃0

0

 (A.2) 

𝑅1
2 = 𝑅2 + 𝑟2 − 2𝑅𝑟cos𝜃0, (A.3) 

𝑆 =
𝜋𝑟

𝑅
(𝑅1

2 − (𝑅 − 𝑟)2). (A.4) 

Also London van der Waals potential energy for a single atom  

𝐸 = −∫
𝑞𝜆

𝑟6
𝜋

𝑅+𝑅1

𝑅−𝑅1

𝑟

𝑅
(𝑅1

2 − (𝑅 − 𝑟)2)𝑑𝑟 ≈ −
𝑞𝑟𝜆

6

1

𝑟3
. (A.5) 

Similarly London van der Waals potential energy for total amount of atom between 

two flat plates which includes a distance d is formulated as: 
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𝐸 ≈ −∫
𝑞𝜆𝜋

6

∞

𝑑

1

𝑟3
𝑞𝑑𝑟 ≈ −

𝑞2𝜋𝜆

12𝑑2
≈ −

𝐴

12𝜋

1

𝑑2
, (A.6) 

and London van der Waals force can be computed by taking derivative of potential 

energy with respect to distance d : 

𝐹𝑤 =
𝐴

6𝜋

1

𝑑3
. (A.7) 

Equation (A.7) shows that London van der Waals component of disjoining pressure 

is proprtional to 
1

𝑑3. 
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APPENDIX B: LUBRICATION EQUATIONS 

We rewrite equations (2.2-2.3) in their open form as 

𝜕𝑢̃

𝜕𝑥̃
+

𝜕𝑣̃

𝜕𝑦̃
= 0, (B.1) 

𝜌 (
𝜕𝑢̃

𝜕𝑡̃
+

𝜕𝑢̃

𝜕𝑥̃
𝑢̃ +

𝜕𝑢̃

𝜕𝑦̃
𝑣̃) = −

𝜕𝑝

𝜕𝑥̃
+ 𝜌𝑔sin𝛼 + 𝜂 (

𝜕2𝑢̃

𝜕𝑥̃2
+

𝜕2𝑦̃

𝜕𝑦̃2
), (B.2) 

 

𝜌 (
𝜕𝑣̃

𝜕𝑡̃
+

𝜕𝑣̃

𝜕𝑥̃
𝑢̃ +

𝜕𝑣̃

𝜕𝑦̃
𝑣̃) = −

𝜕𝑝

𝜕𝑦̃
+ 𝜌𝑔cos𝛼 + 𝜂 (

𝜕2𝑣̃

𝜕𝑥̃2
+

𝜕2𝑣̃

𝜕𝑦̃2
). (B.3) 

 

To nondimensionalize, we use the following length, velocity, time and pressure 

scales as follows: 

𝑢̃ = 𝑢𝑢𝑠, (B.4) 

𝑣̃ = 𝑣𝑣𝑠, (B.5) 

𝑥̃ = 𝑥𝑥𝑠 , (B.6) 

𝑦̃ = 𝑦𝑦𝑠, (B.7) 

𝑡̃ = 𝑡𝑡𝑠 = 𝑡
𝑥𝑠

𝑢𝑠
, (B.8) 

𝑝 = 𝑝𝑝𝑠 = 𝑝
𝜂𝑢𝑠

𝑥𝑠
. (B.9) 

Putting scales into equation (B.1), we obtain 
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𝜕(𝑢𝑢𝑠)

𝜕(𝑥𝑥𝑠)
+

𝜕(𝑣𝑣𝑠)

𝜕(𝑦𝑦𝑠)
= 0 (B.10) 

Rearranging we obtain 

𝜕𝑢

𝜕𝑥
+

𝑣𝑠

𝑦𝑠

𝑥𝑠

𝑢𝑠

𝜕𝑣

𝜕𝑦
= 0. (B.11) 

𝑣𝑠 in equation (B.11) is determined by enforcing nondimensionalization laws as 

  

𝑣𝑠 =
𝑦𝑠𝑢𝑠

𝑥𝑠
. (B.12) 

Similarly, equation (B.2) can be rewritten as 

𝜌 (
𝜕(𝑢𝑢𝑠)

𝜕(𝑡𝑡𝑠)
+

𝜕(𝑢𝑢𝑠)

𝜕(𝑥𝑥𝑠)
𝑢𝑢𝑠 +

𝜕(𝑢𝑢𝑠)

𝜕(𝑦𝑦𝑠)
𝑣𝑣𝑠) = −

𝜕(𝑝𝑝𝑠)

𝜕(𝑥𝑥𝑠)
+ 𝜌𝑔sin𝛼 +  

𝜂 (
𝜕2(𝑢𝑢𝑠)

𝜕(𝑥𝑥𝑠)2
+

𝜕2(𝑢𝑢𝑠)

𝜕(𝑦𝑦𝑠)2
) (B.13) 

𝜌 (
𝑢𝑠

𝑡𝑠

𝜕𝑢

𝜕𝑡
+ 𝑢𝑠

𝑢𝑠

𝑥𝑠

𝜕𝑢

𝜕𝑥
𝑢 +

𝑢𝑠𝑣𝑠

𝑦𝑠

𝜕𝑢

𝜕𝑦
𝑣) = −

𝑝𝑠

𝑥𝑠

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔sin𝛼 +  

𝜂 (
𝑢𝑠

𝑥𝑠2

𝜕2𝑢

𝜕𝑥2
+

𝑢𝑠

𝑦𝑠2

𝜕2𝑢

𝜕𝑦2
) 

Simplyfying we obtain 

(B.14) 

𝜌𝑢𝑠2

𝑥𝑠
(
𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
𝑢 +

𝜕𝑢

𝜕𝑦
𝑣) = −

𝑝𝑠

𝑥𝑠

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔𝑠𝑖𝑛𝛼 +  
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𝜂𝑢𝑠

𝑦𝑠2 (
𝑦𝑠2

𝑥𝑠2

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) . (B.15) 

If we multiply all sides of equation (B.15) with  
𝑦𝑠2

𝜂𝑢𝑠, we obtain 

𝜌𝑢𝑠𝑥𝑠

𝜂
(
𝑦𝑠

𝑥𝑠
)

2

(
𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
𝑢 +

𝜕𝑢

𝜕𝑦
𝑣) = −

𝑝𝑠𝑦𝑠2

𝑥𝑠𝜂𝑢𝑠

𝜕𝑝

𝜕𝑥
+

𝑦𝑠2

𝜂𝑢𝑠
𝜌𝑔𝑠𝑖𝑛𝛼 +  

(
𝑦𝑠2

𝑥𝑠2

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) . (B.16) 

𝜌𝑢𝑠𝑥𝑠

𝜂
 term in equation (B.16) expresses Reynolds number which is the ratio of 

viscous forces to inertial forces and  inertial forces are negligible small according to 

viscous forces due to smaller droplet velocity and length scale, so Reynolds number 

is much smaller than 1. Also we know that 
𝑦𝑠

𝑥𝑠 ≪ 1 so we can neglect expressions 

which includes this term and equation (B.18) reduces to: 

−
𝑝𝑠𝑦𝑠2

𝑥𝑠𝜂𝑢𝑠

𝜕𝑝

𝜕𝑥
+

𝑦𝑠2

𝜂𝑢𝑠
𝜌𝑔𝑠𝑖𝑛𝛼 +

𝜕2𝑢

𝜕𝑦2
= 0. (B.17) 

The pressure scale is determined to be 

𝑝𝑠 =
𝜂𝑢𝑠𝑥𝑠

𝑦𝑠2 . (B.18) 

If we put this term in equation (B.17), we obtain nondimensional form of equation 

(B.2) as 

−
𝜕𝑝

𝜕𝑥
+

𝑦𝑠2

𝜂𝑢𝑠
𝜌𝑔𝑠𝑖𝑛𝛼 +

𝜕2𝑢

𝜕𝑦2
= 0. (B.19) 

If we dimensionalize equation (B.19), we obtain 
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−
𝜕 (

𝑝
𝑝𝑠)

𝜕 (
𝑥̃
𝑥𝑠)

+
𝑦𝑠2

𝜂𝑢𝑠
 𝜌𝑔sin𝛼 +

𝜕2 (
𝑢̃
𝑢𝑠)

𝜕 (
𝑦̃2

𝑦𝑠2)
= 0, (B.20) 

𝜕𝑝

𝜕𝑥̃
= 𝜌𝑔sin𝛼 + 𝜂

𝜕2𝑢̃

𝜕𝑦̃2
. (B.21) 

So, equation (B.2) is converted to equation (B.21) and if we apply same procedure on 

equation (B.3), we obtain 

𝜕𝑝

𝜕𝑦̃
+ 𝜌𝑔cos𝛼 = 0. (B.22) 
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APPENDIX C: INTERFACIAL MOMENTUM BALANCE 

We can define liquid-vapor interface as 𝑦̃ − 𝜁 and so, unit outward normal vector of 

droplet surface can be defined in terms of curl of this term and norm of the gradient 

of term in  𝑥̃ and 𝑦̃ direction. 

𝒏 =
∇̃ (𝑦̃ − 𝜁(𝑥̃, 𝑡̃))

|∇̃ (𝑦̃ − 𝜁(𝑥̃, 𝑡̃))|
 (C.1) 

∇̃ (𝑦̃ − 𝜁(𝑥̃, 𝑡̃)) = (
𝜕

𝜕𝑥̃
𝒊 +

𝜕

𝜕𝑦̃
𝒋) (𝑦̃ − 𝜁(𝑥̃, 𝑡̃)) (C.2) 

∇̃ (𝑦̃ − 𝜁(𝑥̃, 𝑡̃)) =
𝜕

𝜕𝑥̃
(𝑦̃ − 𝜁(𝑥̃, 𝑡̃)) 𝒊 +

𝜕

𝜕𝑦̃
(𝑦̃ − 𝜁(𝑥̃, 𝑡̃)) 𝒋 (C.3) 

∇̃ (𝑦̃ − 𝜁(𝑥̃, 𝑡̃)) =
𝜕𝑦̃

𝜕𝑥̃
𝒊 −

𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
𝒊 +

𝜕𝑦̃

𝜕𝑦̃
𝒋 −

𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑦̃
𝒋 (C.4) 

In this equation, we know that upper boundary of the liquid-air interface varies with 

only 𝑥̃ location and time, so we apply this information to in this equation, we obtain  

∇̃ (𝑦̃ − 𝜁(𝑥̃, 𝑡̃)) = −
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
𝒊 + 𝒋, (C.5) 

and norm of this term is 

|∇̃ (𝑦̃ − 𝜁(𝑥̃, 𝑡̃))| = √(
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
)

2

+ 1. (C.6) 

Then unit normal is found to be 
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𝒏 =
𝒋 −

𝜕𝜁(𝑥̃, 𝑡̃)
𝜕𝑥̃

𝒊

√(
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
)
2

+ 1

 
(C.7) 

We take divergence of  𝒏, we obtain these results: 

∇̃ ∙ 𝒏 = (
𝜕

𝜕𝑥̃
𝒊 +

𝜕

𝜕𝑦̃
𝒋) ∙

(

 
 
 −

𝜕𝜁(𝑥̃, 𝑡̃)
𝜕𝑥̃

√(
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
)
2

+ 1

𝒊 +
1

√(
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
)
2

+ 1

𝒋

)

 
 
 

, 

and rewrite as 

(C.8) 

∇̃ ∙ 𝒏 =
𝜕

𝜕𝑥̃

(

 
 
 −

𝜕𝜁(𝑥̃, 𝑡̃)
𝜕𝑥̃

√(
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
)
2

+ 1
)

 
 
 

+
𝜕

𝜕𝑦̃

(

 
 
 

1

√(
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
)
2

+ 1
)

 
 
 

. (C.9) 

In this equation, second term of the right hand side equates to zero because upper 

boundary of the interface vary with only 𝑥̃ location and time, equation (C.9) then 

simplifies to 

∇̃ ∙ 𝒏 =
𝜕

𝜕𝑥̃

(

 
 
 −

𝜕𝜁(𝑥̃, 𝑡̃)
𝜕𝑥̃

√(
𝜕𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃
)
2

+ 1
)

 
 
 

. (C.10) 

If we assume that droplet surface has a small slope,  (
𝜕𝜁̃(𝑥̃,𝑡̃)

𝜕𝑥̃
)
2

 is much smaller than 

𝜕𝜁̃(𝑥̃,𝑡̃)

𝜕𝑥̃
, equation (C.10) simplifies to 
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∇̃ ∙ 𝒏 = −
𝜕 𝟐𝜁(𝑥̃, 𝑡̃)

𝜕𝑥̃2
. (C.11) 
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APPENDIX D: FILM EVOLUTION EQUATION 

If we take derivative of volumetric flow rate per unit depth and apply Leibnitz 

theorem, 

𝜕𝑞̃

𝜕𝑥̃
=

𝜕

𝜕𝑥̃
∫ 𝑢̃

𝜁̃

ℎ

𝑑𝑦̃ (D.1) 

𝜕𝑞̃

𝜕𝑥̃
= ∫

𝜕𝑢̃

𝜕𝑥̃

𝜁

ℎ

𝑑𝑦̃ + 𝑢̃
𝜕𝜁

𝜕𝑥̃
 (D.2) 

If we combine equation (D.2) and dimensional continuity equation, we obtain these 

equations: 

𝜕𝑢̃

𝜕𝑥̃
= −

𝜕𝑣̃

𝜕𝑦̃
 (D.3) 

𝜕𝑞̃

𝜕𝑥̃
= −

𝜕𝑣̃

𝜕𝑦̃
+ 𝑢̃

𝜕𝜁

𝜕𝑥̃
 (D.4) 

and we can define liquid-air interface as a material, so its material derivative must be 

equal to zero. 

𝑑

𝑑𝑡̃
(𝑦̃ − (𝜁 − ℎ̃)(𝑥̃, 𝑡̃)) = 0 (D.5) 

𝑑𝑦̃

𝑑𝑡̃
−

𝜕(𝜁 − ℎ̃)

𝜕𝑡̃
− 𝑢̃

𝜕(𝜁 − ℎ̃)

𝜕𝑥̃
= 0 (D.6) 

In equation (D.6) term of  
𝑑𝑦̃

𝑑𝑡̃
 is the 𝑦-velocity of droplet, if this term is evaluated 

with kinematic relation and if we put this term into equation (D.6), we obtain 
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𝜕(𝜁 − ℎ̃)

𝜕𝑡̃
= 𝑣̃ − 𝑢̃

𝜕(𝜁 − ℎ̃)

𝜕𝑥̃
. (D.7) 

In this model problem 𝑦 velocity component is negligibly small compared with 𝑥 

velocity component, so equation (D.7) and (D.4) becomes: 

𝜕

𝜕𝑡̃
(𝜁 − ℎ̃) = −𝑢̃

𝜕(𝜁 − ℎ̃)

𝜕𝑥̃
 (D.8) 

𝜕𝑞̃

𝜕𝑥̃
= 𝑢̃

𝜕(𝜁 − ℎ̃)

𝜕𝑥̃
 (D.9) 

and if we combine these two equations using 𝑓 = 𝜁 − ℎ̃, we obtain unsteady film 

evolution equation: 

𝜕𝑓

𝜕𝑡̃
+

𝜕𝑞̃

𝜕𝑥̃
= 0. (D.10) 
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APPENDIX E: RESULTING SYSTEM 

If we put FEM approximations into the weak form equation (3.15-3.16), we obtain 

∫
(∑𝑓𝑗

𝑛+1ϕ𝑗
𝑐) − (∑𝑓𝑗

𝑛ϕ𝑗
𝑐)

𝑡𝑛+1 − 𝑡𝑛
(∑𝑓𝑖̅ϕ𝑖

𝑐
) 𝑑Ω +  

θ

[
 
 
 
 
 
 
 
 

∫

[
 
 
 
 
 
 
 
 (∑𝑓𝑗

𝑛+1ϕ𝑗
𝑐)

3

(𝐵𝑜 (cos𝛼
𝜕

𝜕𝑥
(∑(𝑓𝑗

𝑛+1ϕ𝑗
𝑐) + ℎ)) − 𝐸)

−
𝜕

𝜕𝑥
(∑𝑤𝑗

𝑛+1ϕ𝑗
𝑐) −

𝜕3ℎ

𝜕𝑥3
−

𝜕(∑Π𝑗
𝑛+1ϕ𝑗

𝑐)

𝜕(∑𝑓𝑗
𝑛+1ϕ𝑗

𝑐)

𝜕

𝜕𝑥

(∑𝑓𝑗
𝑛+1ϕ𝑗

𝑐) ]
 
 
 
 
 
 
 
 

Ω

𝜕𝑓̅

𝜕𝑥
𝑑Ω

]
 
 
 
 
 
 
 
 

+  

(1 − 𝜃)

[
 
 
 
 
 
 
 
 
 

∫

[
 
 
 
 
 
 
 
 
 (∑𝑓𝑗

𝑛ϕ𝑗
𝑐)

3

(𝐵𝑜 (cos𝛼
𝜕

𝜕𝑥
(∑(𝑓𝑗

𝑛ϕ𝑗
𝑐) + ℎ)) − 𝐸)

−
𝜕

𝜕𝑥
(∑𝑤𝑗

𝑛ϕ𝑗
𝑐) −

𝜕3ℎ

𝜕𝑥3

−
𝜕(∑Π𝑗

𝑛ϕ𝑗
𝑐)

𝜕(∑𝑓𝑗
𝑛ϕ𝑗

𝑐)

𝜕

𝜕𝑥
(∑𝑓𝑗

𝑛ϕ𝑗
𝑐)

]
 
 
 
 
 
 
 
 
 

Ω

𝜕𝑓̅

𝜕𝑥
𝑑Ω

]
 
 
 
 
 
 
 
 
 

= 0. (E.2) 

𝜃

[
 
 
 
 ∫

𝜕

𝜕𝑥
Ω

(∑𝑓𝑗
𝑛+1ϕ𝑗

𝑐)
𝜕

𝜕𝑥
(∑𝑤̅𝑖ϕ𝑖

𝑐) 𝑑𝑥 +

∫(∑𝑤𝑗
𝑛+1ϕ𝑗

𝑐) (∑𝑤̅𝑖ϕ𝑖
𝑐) 𝑑𝑥

Ω ]
 
 
 
 

+  

(1 − 𝜃)

[
 
 
 
 ∫

𝜕

𝜕𝑥
Ω

(∑𝑓𝑗
𝑛ϕ𝑗

𝑐)
𝜕

𝜕𝑥
(∑𝑤̅𝑖ϕ𝑖

𝑐) 𝑑𝑥 +

∫(∑𝑤𝑗
𝑛ϕ𝑗

𝑐) (∑𝑤̅𝑖ϕ𝑖
𝑐) 𝑑𝑥

Ω ]
 
 
 
 

= 0, (E.1) 
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We take summations outside of the integrals in equation (E.1-E.2) to obtain 

𝜃 (∑𝑓𝑗
𝑛+1 ∑𝑤̅𝑖 ∫

𝜕𝜙𝑗
𝑐

𝜕𝑥

𝜕𝜙𝑖
𝑐

𝜕𝑥
𝑑𝑥) +  

𝜃 (∑𝑤𝑗
𝑛+1 ∑𝑤̅𝑖 ∫𝜙𝑗

𝑐𝜙𝑖
𝑐 𝑑𝑥) +  

(1 − 𝜃) (∑𝑓𝑗
𝑛 ∑𝑤̅𝑖 ∫

𝜕𝜙𝑗
𝑐

𝜕𝑥

𝜕𝜙𝑖
𝑐

𝜕𝑥
𝑑𝑥) +  

(1 − 𝜃) (∑𝑤𝑗
𝑛 ∑𝑤̅𝑖 ∫𝜙𝑗

𝑐𝜙𝑖
𝑐 𝑑𝑥) = 0 (E.3) 

∑𝑓𝑗
𝑛+1 ∑𝑓𝑖̅ ∫𝜙𝑖

𝑐𝜙𝑗
𝑐𝑑Ω −

Ω

∑𝑓𝑗
𝑛 ∑𝑓𝑖̅ ∫𝜙𝑖

𝑐𝜙𝑗
𝑐𝑑Ω +

Ω

  

𝜃Δ𝑡 ∑𝑓𝑗
𝑛+1 ∑𝑓𝑖̅ ∫ (∑𝑓𝑗

𝑛+1𝜙𝑗
𝑐)

3

(𝐵𝑜 (cos𝛼
𝜕(𝜙𝑗

𝑐 + ℎ)

𝜕𝑥
 ))

Ω

  

𝜕𝜙𝑖
𝑐

𝜕𝑥
𝑑Ω − 𝜃Δ𝑡 ∑𝑓𝑗

𝑛+1 ∑𝑓𝑖̅ 

∫ (∑𝑓𝑗
𝑛+1𝜙𝑗

𝑐)
2

𝜙𝑗
𝑐 𝜕𝜙𝑖

𝑐

𝜕𝑥
(𝐵𝑜𝐸)𝑑Ω

Ω

 

 

−∑𝑤𝑗
𝑛+1 ∑𝑓𝑖̅ ∫

𝜕𝜙𝑖
𝑐

𝜕𝑥

𝜕𝜙𝑗
𝑐

𝜕𝑥
𝑑Ω − ∑𝑓𝑖̅ ∫

𝜕𝜙𝑖
𝑐

𝜕𝑥

𝜕3ℎ

𝜕𝑥3
𝑑Ω −  

∑Π𝑗
𝑛+1

∑𝑓𝑗
𝑛+1 ∑𝑓𝑗

𝑛+1 ∑𝑓𝑖̅ ∫
𝜕Π𝑛+1

𝜕𝑓𝑛+1

𝜕𝜙𝑖
𝑐

𝜕𝑥

𝜕𝜙𝑗
𝑐

𝜕𝑥
𝑑Ω + (1 − 𝜃)Δ𝑡  
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We define special expressions for integrals: 

∑𝑓𝑗
𝑛 ∑𝑓𝑖̅ ∫ (∑𝑓𝑗

𝑛𝜙𝑗
𝑐)

3

(𝐵𝑜 (cos𝛼
𝜕(𝜙𝑗

𝑐 + ℎ)

𝜕𝑥
 ))

Ω

  

𝜕𝜙𝑖
𝑐

𝜕𝑥
dΩ − (1 − 𝜃)Δ𝑡 (∑𝑓𝑗

𝑛)∑𝑓𝑖̅ 

∫ (∑𝑓𝑗
𝑛𝜙𝑗

𝑐)
2

𝜙𝑗
𝑐 𝜕𝜙𝑖

𝑐

𝜕𝑥
(𝐵𝑜𝐸)𝑑Ω −

Ω

 

 

∑𝑤𝑗
𝑛 ∑𝑓𝑖̅ ∫

𝜕𝜙𝑖
𝑐

𝜕𝑥

𝜕𝜙𝑗
𝑐

𝜕𝑥
𝑑Ω − ∑𝑓𝑖̅ ∫

𝜕𝜙𝑖
𝑐

𝜕𝑥

𝜕3ℎ

𝜕𝑥3
𝑑Ω −  

∑Π𝑗
𝑛

∑𝑓𝑗
𝑛 ∑𝑓𝑗

𝑛 ∑𝑓𝑖̅ ∫
𝜕Π𝑛

𝜕𝑓𝑛

𝜕𝜙𝑖
𝑐

𝜕𝑥

𝜕𝜙𝑗
𝑐

𝜕𝑥
𝑑Ω = 0 (E.4) 

𝐾𝑖𝑗 = ∫
𝜕𝜙𝑗

𝑐

𝜕𝑥Ω

𝜕𝜙𝑖
𝑐

𝜕𝑥
𝑑Ω (E.5) 

𝐿𝑖𝑗 = ∫𝜙𝑗
𝑐𝜙𝑖

𝑐

Ω

𝑑Ω (E.6) 

𝑀𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜙𝑗

𝑐)
2

𝜙𝑗
𝑐 𝜕𝜙𝑖

𝑐

𝜕𝑥Ω

𝑑Ω (E.7) 

𝑁𝑖𝑗 = ∫ (∑𝑓𝑗
𝑛+1𝜙𝑗

𝑐)
3

𝜙𝑗
𝑐 𝜕𝜙𝑖

𝑐

𝜕𝑥Ω

𝑑Ω (E.8) 

𝑂𝑖𝑗 = ∫
𝜕Π

𝜕𝑓

𝜕𝜙𝑖
𝑐

𝜕𝑥

𝜕𝜙𝑗
𝑐

𝜕𝑥Ω

𝑑Ω (E.9) 
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If we put these terms in equation (E.3-E.4), we simplify rewrite 

The resulting system is 

𝜃 (∑ 𝑓𝑗
𝑛+1 ∑𝑤̅𝑖 𝐾𝑖𝑗) + 𝜃 (∑𝑤𝑗

𝑛+1 ∑𝑤̅𝑖𝐿𝑖𝑗) +  

(1 − 𝜃) (∑𝑓𝑗
𝑛 ∑𝑤̅𝑖𝐾𝑖𝑗) + (1 − 𝜃) (∑𝑤𝑗

𝑛𝐿𝑖𝑗) = 0, (E.10) 

∑𝑓𝑗
𝑛+1 ∑𝑓𝑖̅ 𝐿𝑖𝑗 − ∑𝑓𝑗

𝑛 ∑𝑓𝑖̅ 𝐿𝑖𝑗 +  

𝜃Δ𝑡 ∑𝑓𝑗
𝑛+1 ∑𝑓𝑖̅ 𝐵𝑜cos𝛼𝑁𝑖𝑗 − 𝜃Δ𝑡  

∑𝑓𝑗
𝑛+1 ∑𝑓𝑖̅ 𝐵𝑜𝐸𝑀𝑖𝑗 − ∑𝑤𝑗

𝑛+1 ∑𝑓𝑖̅ 𝐾𝑖𝑗 −  

−
∑Π𝑗

𝑛+1

∑𝑓𝑗
𝑛+1 ∑𝑓𝑗

𝑛+1 ∑𝑓𝑖̅ 𝑂𝑖𝑗 +  

(1 − 𝜃)Δ𝑡 ∑𝑓𝑗
𝑛+1 ∑𝑓𝑖̅ 𝐵𝑜cos𝛼𝑁𝑖𝑗 − (1 − 𝜃)Δ𝑡  

∑𝑓𝑗
𝑛 ∑𝑓𝑖̅ 𝐵𝑜𝐸𝑀𝑖𝑗 − ∑𝑤𝑗

𝑛 ∑𝑓𝑖̅ 𝐾𝑖𝑗 −  

−
∑Π𝑗

𝑛

∑𝑓𝑗
𝑛 ∑𝑓𝑗

𝑛 ∑𝑓𝑖̅ 𝑂𝑖𝑗 = 0. (E.11) 

[
𝑆𝑖𝑗 −𝜃Δ𝑡𝐾𝑖𝑗

𝐾𝑖𝑗 𝐿𝑖𝑗
] [

𝑓
𝑤

] = [𝑅] (E.12) 
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where 𝑆𝑖𝑗 = 𝐿𝑖𝑗 + 𝜃Δ𝑡𝐵𝑜cos𝛼𝑁𝑖𝑗 − 𝜃Δ𝑡𝐵𝑜𝐸𝑀𝑖𝑗 + 𝜃Δ𝑡𝑂𝑖𝑗 and 𝑅 = 𝑓𝑗
𝑛𝐾𝑖𝑗. 

The unknown vector 𝑢 is 

We solve this non-linear system by Newton’s method and define residual as 

In the Newton’s iteretion method, root of a any function is obtained by drawing a 

tangent line at the intersect point of function with axis and this process is repeated by 

taking new point as intersect point at the previous step and it is shown that this points 

approaches the root of the function gradually, so this relation formulated by  

where 𝑘 and 𝑘 + 1 are the Newton iteration at the old and new step, respectively. 

Also we can define a tangent stiffness matrix as 

Then equation (E.15) turns into 

We continue iteration until until difference between value of unknowns at old and 

new Newton itereation step is less than a tolerance. 

𝑢 = [
𝑓
𝑤

]. (E.13) 

𝑟(𝒖) = 𝑆𝑖𝑗(𝒖)𝒖 − 𝑅. (E.14) 

𝑢𝑘+1 = 𝑢𝑘 −
𝑟(𝑢𝑘)

𝜕𝑟(𝑢𝑘)
𝜕𝑢

 (E.15) 

𝑻 =
𝜕𝑟(𝑢𝑘)

𝜕𝑢
. (E.16) 

𝑢𝑘+1 = 𝑢𝑘 − 𝑻−1𝑟(𝑢𝑘). (E.17) 

||𝑢𝑘+1 − 𝑢𝑘|| < 𝑇𝑂𝐿 (E.18) 
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We set the tolerance to be 10−12. 
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APPENDIX F: ORDER OF TIME INTEGRATION 

We integrate in time using Cranck-Nickolson method which is a second order time 

integration method. We integrate an equation of the form which is expressed by 

𝜕𝑓

𝜕𝑡
= 𝐹(𝑥, 𝑡) (F.1) 

and using standard 𝜃-scheme we approximate above (without considering the space 

discretization as this Appendix is devoted to the order of time integration) 

𝑓𝑛+1 − 𝑓𝑛

Δ𝑡
= 𝜃𝐹(𝑥, 𝑡𝑛+1) + (1 − 𝜃)𝐹(𝑥, 𝑡𝑛). (F.2) 

The local truncation error in this approxiamation is then 

𝜏(𝑥, 𝑡) =
𝑓𝑛+1 − 𝑓𝑛

Δ𝑡
− 𝜃𝐹(𝑥, 𝑡𝑛+1) − (1 − 𝜃)𝐹(𝑥, 𝑡𝑛). (F.3) 

If we expand  𝑓𝑛+1 and 𝑓𝑛 into Taylor series around 𝑡𝑛, we obtain 

𝑓𝑛+1 = 𝑓𝑛 + Δ𝑡
𝜕𝑓

𝜕𝑡
+

Δ𝑡2

2

𝜕2𝑓

𝜕𝑡2
+ 𝑂(Δ𝑡3),  

𝐹(𝑥, 𝑡𝑛+1) = 𝐹(𝑥, 𝑡𝑛) + Δ𝑡
𝜕𝐹

𝜕𝑡
+

Δ𝑡2

2

𝜕2𝐹

𝜕𝑡2
+ 𝑂(Δ𝑡3). (F.4) 

If we put these terms into the error definition with replacing 
𝜕𝑓

𝜕𝑡
 with 𝐹  from the 

equation (F.1), we obtain 

𝜏(𝑥, 𝑡) = Δ𝑡
𝜕

𝜕𝑡
(
1

2
𝐹 − 𝜃𝐹) + 𝑂(Δ𝑡2). (F.5) 
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When 𝜃 = 1/2, order Δ𝑡 terms are killed, so the Cranck-Nickolson method is 

𝑂(Δ𝑡2). 
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