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Estimation of the Synergistic Effect of Antimicrobial 

Peptides and Antibiotics by Machine Learning Models  

 

Abstract 

Urinary catheters are widely used in patients who cannot empty their bladder. 

However, catheter surfaces are suitable for the adhesion of microorganisms, and this 

causes various complications in the following periods. Various catheter materials and 

different surface modifications have been tried to prevent complications, but most of 

these approaches have failed, and some have shown various side effects. Therefore, 

new methods are needed for the prevention and treatment of complications. 

Antimicrobial peptides have recently become popular for their use because they have 

advantages such as a wide range of activity, and not causing drug resistance. 

However, they suffer from disadvantages such as stability and reduced activity when 

linked to the surface. Therefore, the combined use of two antimicrobial agents has 

become one of the research topics of interest. In this study, the synergistic effects of 

antimicrobial peptides and antibiotics on each other were investigated. Within the 

scope of the research, machine learning modeling was carried out, and it was aimed 

to predict the agents whose synergistic effects have not been proven. 

Keywords: Urinary catheters, antimicrobial peptides, antibiotics, machine learning, 

synergistic effect 
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Antimikrobiyal Peptid ve Antibiyotiklerin Sinerjistik 

Etkisinin Makine Öğrenmesi Modelleriyle 

Tahminlenmesi 

 

Öz 

Üriner kateterler mesanesini boşaltamayan hastalarda yaygın olarak kullanılmaktadır. 

Fakat, kateter yüzeyleri mikroorganizma adezyonuna uygunlardır ve bu durum, 

ilerleyen dönemlerde çeşitli komplikasyonlara neden olmaktadır. Komplikasyonların 

önlenmesine yönelik çeşitli kateter malzemeleri ve farklı yüzey modifikasyonları 

denenmiş, fakat bu yaklaşımların çoğu başarısız olmuş ve bazıları çeşitli yan etkiler 

göstermiştir. Bu nedenle, komplikasyonların önlenmesi ve tedavisi için yeni 

yöntemlere ihtiyaç duyulmaktadır. Antimikrobiyal peptidler geniş çaplı aktivite 

göstermeleri, ilaç direncine neden olmamaları gibi avantajlara sahip olmalarından 

dolayı kullanımları son zamanlarda popüler hale gelmiştir. Fakat, stabilite ve yüzeye 

bağlandıklarında aktivitelerinin azalması gibi dezavantajlardan muzdariplerdir. Bu 

nedenle, iki antimikrobiyal ajanın birlikte kullanımı ilgi çeken araştırma 

konularından biri haline gelmiştir. Bu çalışmada, antimikrobiyal peptidlerin ve 

antibiyotiklerin birbirleri üzerindeki sinerjistik etkileri araştırılmış, araştırmalar 

dahilinde makine öğrenmesi modellemesi yapılmış, ve sinerjistik etkileri 

kanıtlanmamış ajanların tahminlenmesi amaçlanmıştır.  

Anahtar Kelimeler: Üriner kateterler, antimikrobiyal peptidler, antibiyotikler, 

makine öğrenmesi, sinerjistik etki  
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Chapter 1 

Introduction 

1.1 Urinary Catheters and Associated Infections 

Urinary catheters are hollowed and moderately flexible tubes. They are designed 

with the intention of draining urine from the bladder  Despite the precautions aimed 

at avoiding contamination, catheters are prone to infections because they allow 

uropathogens to enter the urinary system, compromising the bladder's local host 

defense mechanisms  [1,2].  Infections and complications including encrustation, 

bacteriuria, bladder stones, septicemia, and endotoxic shock are caused by 

opportunistic pathogens, which are primarily fecal or skin microbiota from subjects 

that can get into the bladder via the catheter lumen or through the catheter — urethra 

interface[3–5].  Catheter-associated urinary tract infections (CAUTIs) account for 27 

percent of  hospital infections in industrialized nations, with over 1 million cases 

occurring in the United States and Europe [6,7].  

 

Figure 1.1 Pathogens that cause Urinary Tract Infections  
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The formation of biofilms is essential in infection development and progression. 

After the catheter is inserted, a film of organic molecules, electrolytes, and host 

proteins accumulates on the surface of the catheter, serving as a target for bacterial 

fimbrial attachment. Bacteria that are free-flowing, also called planktonic, can attach 

to the catheter surface [8,9]. The first contact between surface and bacteria is 

reversible because it is motivated by poor hydrophobic forces. Nevertheless, over 

time, the adhesion becomes irreversible because bacterial adhesins attach to their 

targets that are on the surface in addition to bacterial exopolysaccharide secretion, 

laying the foundation for the biofilm [10]. Quorum sensing through bacterial cell-to-

cell signaling leads to mature biofilm formation with intricate structures and 

intertwined channels that allow homeostasis [11]. Following that, the bacteria 

secured in the biofilm or portions of the biofilm can detach, turn into planktonic state 

and migrate elsewhere, colonize new environments and reinitiate the biofilm 

formation [12]. Biofilms are difficult to destroy because of their matrix chemistry 

and can promote transfer of genes between resistant and non-resistant bacteria, 

leading to a higher risk of antibiotic resistance development in biofilms than that in 

planktonic cells. As a result, biofilms serve as reservoirs for the proliferation of 

pathogens, infections, and the development of resistance [13,14]. Furthermore, 

biofilms provide survival benefits to bacteria by allowing them to avoid shear 

stresses and evade phagocytosis. 

 

Figure 1.2 Cycle of biofilm formation 

Biofilm 

Formation 
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1.2 Methods Tried to Prevent Biofilm Formation and 

Infections 

Microbial colonization on catheters is quite prevalent. To avoid such problems, 

scientists have developed many strategies for designing antimicrobial biomaterials. 

These methods are broadly classified as surfaces that repel protein and bacterial 

adsorption [15,16] and surfaces that are conjugated with antimicrobial compounds to 

induce cell death [14]. But, these methods have several limitations, such as 

inadequate antimicrobial agent concentration due to the biomaterials' low affinity for 

antimicrobial compounds, unspecific chemical reaction techniques for conjugation, 

narrow activity range, and cytotoxicity [17]. 

Silver has been shown to slow or prevent the formation of a biofilm. Particles of 

silver that enter the bacteria induce denaturation of cell proteins, leading to the 

dissociation of iron-sulfur clusters [18]. As a result, the iron component causes 

oxidative stress on pathogens, resulting in cell death. Multiple clinical studies have 

been conducted to date on the antibacterial efficiency of silver-coated catheters. 

However, studies revealed that silver-coated catheters were inefficient at preventing 

infections. Also, argyria as a result of extended use is one of the possible problems 

with silver coatings [19]. 

For biofilm prevention, urinary catheters coated with several antibiotics such as 

gentamicin, nitrofurazone, vancomycin, and rifampin have been developed. While 

this strategy was demonstrated to be successful for short-term application, it was 

complicated by the uncontrolled release profile of the antibiotic, which resulted in 

the release of high concentrations which may first harm the cells, and then it 

is followed by non-inhibitory concentrations. The release of antibiotics at suboptimal 

concentrations may raise the probability of drug-resistant microorganisms [20]. 

Given that this would not effectively kill all the bacteria, it will lead to a future 

infection that would be harder to eradicate because of resistance development. For 

these reasons, the application of antibiotics alone has limited effectiveness in 

preventing catheter-associated infections [6,21,22]. 
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Figure 1.3 Common anti-biofilm formation strategies 

Enzymes as key elements of antimicrobial coatings are being tested. Although the 

results demonstrated various advantages, antimicrobial enzymes have drawbacks 

such as protein denaturation under harsh conditions, and higher manufacturing and 

preparation costs as compared to antibiotic and silver coatings [18]. 

Bacteriophages are bacteria's natural predators. Bacteriophages selectively infect 

bacteria and disrupt numerous metabolic routes. Lytic phages penetrate, rapidly 

divide, and lyse bacteria. However, bacteriophages have a limited activity spectrum, 

and bacteria may develop resistance to them [23,24]. 

Slow release polymers (SRP) have been examined as a potential antibacterial agent 

source at sustained levels [25]. Because these substances are entirely soluble in water 

in their glassy form, they can release any components integrated into them over time 

[25]. However, they cause nonuniform release of the antimicrobial agent.  

Heavy metals, quaternary ammonium salts, and antimicrobial peptides are all 

potential candidates for bactericidal compounds loaded on drug carriers [26]. Heavy 

metals and quaternary ammonium salts, on the other hand, may have limited 

efficiency, a narrow antibacterial spectrum, significant cytotoxicity, and the potential 

for drug resistance. Antimicrobial peptides can overcome the restrictions outlined 

above [26–28]. 
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1.3 Antimicrobial Peptides 

Antimicrobial peptides (AMPs) are a subcategory of host defense peptides (HDPs). 

HDPs can demonstrate a wide range of actions, sometimes within the same short 

peptide [29]. The majority of these actions provide direct such as anti-biofilm and 

antimicrobial or indirect such as immunomodulatory/anti-inflammatory defense 

against pathogens. Despite their diverse origins and functions, most natural HDPs 

exhibit common characteristics [29,30]. The sequence is usually made up of 12–50 

amino acids. Their structure is related to a large number of hydrophobic residues and 

a net positive charge because of the presence of numerous cationic residues such as 

Arginine and Lysine, enabling them to fold into amphipathic forms [30].  AMPs can 

engage with bacterial membranes non-specifically due to their amphiphilic nature 

and positive charge, and AMPs have a low potential to induce drug resistance in 

bacteria [31].  

 

Figure 1.4 The main models of the action mechanisms of AMPs 

Maintaining peptide activity and stability under physiological conditions is a critical 

need for optimum efficacy. The AMP stability under physiological conditions is 

determined by their susceptibility to enzyme degradation and inhibition by proteins, 

salts, and ions found in the environment [32–34]. Bacteria may protect themselves 

from AMPs by producing peptide degrading enzymes.  Furthermore, mammalian 
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• Because of the parallel positioning of peptides regarding the lipid bilayer
surface as well as the peptide carpet formation, the membrane is
disrupted.
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digestive enzymes like chymotrypsin and trypsin can lead to amino acid cleavage 

that are critical for the function of peptides [33]. 

AMPs can be coated or incorporated on the surfaces via ionic, covalent, physical 

trapping, and hydrogen binding interactions. Under hydrophobic conditions, free-

form AMP with an amphipathic structure exhibits its highest antimicrobial activity. 

However, when the AMP is chemically bonded to the surface, it becomes less 

effective [35]. With varying degrees of effectiveness, several AMPs have been 

covalently linked onto the surface of diverse biomaterials. Nevertheless, the 

antimicrobial activities of many peptides are significantly reduced after being 

covalently linked onto the surface [14]. 

 

Figure 1.5 Widely used AMPs in medicine 
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adaptable to automated or semi-automated platforms, is cost-effective, and repeatable 

[37]. 

1.4 Artificial Intelligence 

The introduction of modern technology advances in artificial engineering has altered 

the prospects of biomedicine. The scale of human error has stimulated further 

investment in technological development in the areas of diagnostics and intelligent 

designs. In biomedical engineering, Artificial Intelligence (AI) subfields are being 

applied to solve complicated problems [38]. 

AI is the intelligence displayed by machines as opposed to natural intelligence 

displayed by human beings and other living things. In simpler terms, AI term is used 

when a machine demonstrates cognitive functions associated with human qualities 

such as learning, problem-solving, perception, reasoning and more [39]. 

1.5 Machine Learning 

Machine learning is a subfield of AI and is described as the algorithm studies that 

enable machines to make decisions and operate without being 

specifically programmed to do so. The goal of machine learning is to create 

algorithms that guide machines on how to access data and utilize it to learn a task 

[38].  

In accordance with the 5-step rule of Chou [40], the following five principles should 

be followed to develop a predictor : 

1. Creating or selecting a dataset in order to train & test the predictor 

2. Formulating the samples with a mathematical expression that properly 

reflects their intrinsic association with the target that will be predicted 

3. Introducing or developing an algorithm in order to operate the prediction  

4. Performing cross-validation tests to assess the predictor's expected accuracy  

5. Creating a public-accessible web service for the predictor  

The learning process begins with observing or data, which is then used to build a 

knowledge base and then using it to detect patterns and make decisions for problems 
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brought to it [41]. Learning is the most crucial part of this process. Based on the 

training set utilized and how it is interpreted for the learning process, learning can be 

categorized into two categories such as supervised, and unsupervised learning [38]. 

Table 1.1 Machine Learning Techniques and Principles 

Technique Working Principle 

Supervised 

Learning 

    Uses labeled example data from previous 

experiences to predict future events with new 

data. 

    A known dataset is investigated throughout the 

training process.  

    The learning algorithm generates a function to 

anticipate output values for the given problems. 

    Supervised learning can be divided into two 

kinds of problems: Classification and 

Regression. 

o Classification Algorithms : Linear 

Classifiers, Decision Trees, Support Vector 

Machines, and Random Forest. 

o Regression Algorithms : Logistic 

Regression, Linear Regression, and 

Polynomial Regression. 

Unsupervised 

Learning 

 Used for providing a form to random data 

and finding meaning in such data.  

 For training data, the algorithm learns from 

unlabeled examples and related target responses 

that include numerical values or text labels. 

 When faced with new problems, the scheme 

attempts to restructure the new data in the form 

of previously processed data, generating the 

same patterns as scanned in the training set to 

achieve the problem output. 
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Machine learning has been commonly used in the case of structural and functional 

characterizations of proteins and peptides [42,43]. The properties obtained from the 

primary structures of proteins and/or peptides are used to predict secondary/tertiary 

structures, and diverse functions of biomolecules such as anticancer, antibacterial, 

and biofilm inhibition. As protein/peptide descriptors for classification, grouping, 

and regression, a number of sequence-based features have been presented. The 

physicochemical characteristics such as polarity, hydrophobicity, molecular weight, 

and polarizability have been used in a variety of applications [44]. 

1.6 Computational Prediction of AMPs 

Progress in AMP studies has fueled ongoing efforts to develop computational 

approaches for accurate AMP prediction, with the goal of significantly reducing the 

effort and time required for experimental identification [45,46]. Computational 

prediction of AMPs provides a supportive technique to the time-consuming and 

labor-intensive experimental characterization of AMPs by shortlisting potential AMP 

candidates for later experimental validation [47]. To date, various computational 

methods for the assessment, prediction, and design of new AMPs have been 

developed. AMPer [48], AntiBP [49], CAMP [50], AVPpred [51], iAMP-2L [52], 

AntiBP2 [53], BIPEP [54], EFC-FCBF [55], AmPEP [56], ClassAMP [57], and 

DBAASP [58] are a few examples. The dataset size, quality of data, primary 

algorithms, extraction of features, feature selection methods, and evaluation 

techniques used by these systems vary significantly [47].  

Some databases are devoted to certain AMP classes. For instance, PhytAMP [59], 

AMSdb, PenBase [60], and BACTIBASE [61] are AMP databases from plants, 

eukaryotes, shrimps, and bacteria, respectively. While RAPD [62] is focused 

on recombinant AMPs, SAPD [63] is focused on synthesized AMPs. The Peptaibol 

Database [64] and the Defensin Knowledgebase [65] are focused on peptaibols, and 

defensins, respectively. These databases are quite helpful when searching for AMPs 

that belong to certain classes. 

The AntiBP server makes predictions about active AMPs utilizing Quantum 

Machines (QM), Artificial Neural Networks (ANN), and Support Vector Machines 
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(SVM) based on peptide sequence binary patterns [49]. The AntiBP2 server 

uses SVM to predict AMPs based on amino acid composition (AAC)-based 

properties [53]. 

CAMP is a pioneering tool that incorporates prediction algorithms such as SVM, RF, 

ANN, and Discriminant Analysis (DA) into the database [50]. For the training of the 

aforementioned predictors, the CAMP employs a variety of physicochemical 

features. CAMP has approximately three times the amount of sequences than APD 

[66] and provides extra information about taxonomy and activity. CAMP's data is 

split into datasets such as experimentally validated and predicted. On the test 

datasets, the prediction models achieved accuracies of 93.2 % in the case of RF, 91.5 

% in the case of SVM, and 87.5 % in the case of DA [67]. CAMP's search features 

allow you to search across all or each of the datasets.  

The AMPer has built Hidden Markov Models (HMMs) for each AMP class, 

including cathelicidins, defensins, and cecropins. The model is trained by using 

existing data from known class members [48]. 

The AVPpred web server is the first to predict antiviral peptides. This algorithm 

utilizes peptide sequence descriptors such as alignment and motif related 

characteristics, AAC,  and physicochemical properties to train an SVM classifier 

[51]. 

The ClassAMP algorithm employs RF and SVM to assess a peptide sequence's 

propensity for antifungal, antibacterial, and antiviral activities [57]. Aminoacid, 

dipeptide, tripeptide compositions, and other physicochemical properties were 

utilized as features to predict the activities, and three one-against-all classifiers were 

constructed [47]. 

The iAMP-2L is a two-level classifier based upon the pseudo amino acid 

composition (PseAAC) structure and fuzzy K-nearest neighbor algorithm. It first 

determines active AMP sequences and then assigns peptide functionality [52]. 

C-PAmP is a high-scoring database that involves predicted AMPs for a great number 

of plant species. C-PAmP includes 15,174,905 peptides that are 5 to 100 amino acids 

long and are derived from more than 33 thousand proteins [68]. This database 
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identified AMPs by using the PseAAC and five quantitative descriptors converted 

from 237 physicochemical amino acid descriptors [69–71]. 

ADAM is a public AMP database that was created to establish extensive associations 

between peptide sequences and the structures and to make it easy to view their 

relations. It contains 7,007 distinct peptide sequences and 759 structures. Also, it 

offers two computational tools for predicting AMPs based on HMM and SVM [72]. 

iAMPpred is a tool to predict antiviral, antibacterial, and antifungal peptides based 

on three categories of features such as compositional, structural, and 

physicochemical. It is built based on three SVM models. The information gain for 

each feature was computed to determine the significance of each feature in predicting 

antiviral, antibacterial or antifungal peptides [73]. 

MLAMP is a two-level AMP predictor based on unbalanced data sets. The predictor 

employs ML-SMOTE and gray PseAAC to predict AMPs and their functions. The 

RF algorithm is used at the first prediction level to predict if a peptide is an AMP or 

not. A classifier based on the RF algorithm is employed for the second level. ML-

SMOTE, an oversampling model, is applied to account for imbalanced functional 

types of AMPs [74]. 

MAMPs-Pred is another two-level model that uses the RF algorithm to predict AMPs 

and their functional characteristics. SVM-Prot was used to calculate 188 features for 

AMP prediction, which were based on eight types of amino acid characteristics 

and physicochemical properties. For data balance, random undersampling and 

weighted random sampling methods were utilized [75]. 

AMPfun is a web server for identifying AMPs and their activities based on their 

functions. It is a two-stage structure with three steps in each stage such as 

the calculation of the features, the selection of the features, and classification 

algorithm applications. For feature selection, the sequential forward selection 

technique was utilized, while RF was utilized as the prediction strategy [76]. 
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Table 1.2 Computational approaches for AMP prediction 

YEAR APPROACH  REFERANCE 

2007 AMPer  [48] 

2010 
CAMP 

Porto et al. 
 

[67] 

[77] 

2011 
Song et al. 

Torrent et al. 
 

[78] 

[79] 

2012 

ClassAMP 

CS-AMPPred 

Veltri et al. 

Fernandes et al. 

 

[57] 

[80] 

[81] 

[82] 

2013 
C-PAmP 

iAMP-2L 

Randou et al. 

 

[68] 

[52] 

[81] 

2014 DBAASP  [83] 

2015 
ADAM 

Camacho et al. 

Ng et al. 

 

[72] 

[84] 

[85] 

2016 MLAMP  [74] 

2017 
MOEA-FW 

iAMPpred 
 

[86] 

[73] 

2018 
AmPEP 

AMP Scanner V2 
 

[56] 

[87] 

2019 

APIN 

AMAP 

MAMPs-Pred 

dbAMP 

AMPfun 

 

[88] 

[89] 

[75] 

[90] 

[76] 

2020 
Deep-AMPEP30 

AMPlify 

Fu et al. 

 

[91] 

[92] 

[93] 

 

The use of catheters leads to bacterial colonization. The colonizing bacteria form a 

biofilm layer, which causes infections. Many methods have been tried to control and 

prevent CAUTIs, but these methods were unable to achieve the expected success as 

well as have shown various negative effects, such as the emergence of resistant 

organisms and toxicity. In addition, AMPs can exert a strong antimicrobial effect on 

pathogens that have multidrug resistance and cause nosocomial infections. But it has 

been proven in various studies that it is difficult to maintain the stability of AMPs in 

physical conditions and also that their activity decreases when they are bound to a 
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surface. For these reasons, it is expected that treatment will be more successful with 

the combined use of two antimicrobial agents and that the side effects caused by the 

use of high concentrations will decrease.  

Although there are many machine learning algorithms that predict various functions 

of AMPs, after a review of the literature conducted by us, it was found that there is 

no machine learning algorithm that predicts the synergistic effects of antibiotics and 

AMPs. Considering the lack of this issue in the literature, this study aims to predict 

the synergistic effect of various antibiotics with various AMPs by predicting the FIC 

index. The existence of such a model is thought to save researchers from wasting 

time and resources in the laboratory on an antibiotic - AMP combination that would 

not work.  

In this study, data on the interaction between antibiotics and AMPs were collected. 

Various preprocessing applications were performed on the data. Based on the final 

data, different classifiers and machine learning models were tested, and the final 

model was developed by choosing the classifier and the normalization method with 

the highest accuracy. The accuracy of the model was evaluated by interpreting it in 

terms of various parameters. As a result of the analyzes made, it was concluded that 

the predictive success of the model was high and that it gave promising results for 

future studies. 
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Chapter 2 

Materials & Methods 

2.1 Data Collection 

All data were collected from the DBAASP and DrugBank database. When 

collecting data from DBAASP database;  

1. Sequences containing intrachain and coordination bonds were excluded.  

2. Sequences containing unusual amino acids were excluded.  

3. The C terminal was determined to be H (without modification), and the N 

terminal was determined to be amide (NH2). Sequences with different 

terminal modifications were excluded.  

4. Sequences that are 90 percent or more similar to each other were excluded in 

order not to decrease the accuracy of the algorithm. 

 

Table 2.1 Selections made in the DBAASP peptide database 

Selection Criteria Selection 

Synthesis Type Synthetic & Ribosomal 

N Terminus Without N Terminus Modification 

C Terminus Amide (NH2) 

Unusual Amino Acid Without Modification 

Intrachain Bond Without Intrachain Bond 

Coordination Bond Without Coordination Bond 

Synergy All with data on Synergy 
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Table 2.2 Input names and Types 

INPUTS (Predictors) TYPE 

Sequence Length Numerical 

Molecular Weight of the Sequence Numerical 

Normalized Hydrophobicity Numerical 

Net Charge Numerical 

Isoelectric Point Numerical 

Penetration Depth Numerical 

Tilt Angle Numerical 

Disordered Conformation Propensity Numerical 

Linear Moment Numerical 

Amphiphilicity Index Numerical 

Average Hydrophilicity Numerical 

Ratio of hydrophilic residues to total 

number of residues 
Numerical 

Target Species Nominal 

Gram stain of the Target Species Nominal 

Antibiotic Name Nominal 

Gram stain of the species in which the 

antibiotic is active 
Nominal 

Class of the Antibiotic Nominal 

Molecular weight of the Antibiotic Numerical 

Charge of the Antibiotic Numerical 

LogP Numerical 

Water Solubility Numerical 

pKa Numerical 

Mechanism of Action Nominal 

Activity of the Peptide Alone (MIC) Numerical 

Activity of the Antibiotic Alone (MIC) Numerical 

 

Table 2.3 Output names and types 

OUTPUTS (Outcomes) TYPE 

Fractional Inhibitory Concentration 

(FIC) Index 
Numerical 
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The predictor variables adopted for this study are divided into three categories. The 

first category includes antimicrobial peptide characteristics such as sequence length, 

molecular weight, normalized hydrophobicity, net charge, isoelectric point, 

penetration depth, tilt angle, disordered conformation propensity, linear moment, 

amphiphilicity  index, average hydrophilicity, and ratio of hydrophilic residues / total 

number of residues (%). The second category includes antibiotic characteristics such 

as molecular weight, class, physiological charge, logP, water solubility, pKa and 

mechanism of action. Lastly, the third category includes bacteria characteristics such 

as Gram type, and MIC. 

Table 2.4 Predictor Categories and Characteristics 

Predictor Categories Predictor Characteristics 

Antimicrobial Peptide 

Length 

Molecular Weight 

Normalized Hydrophobicity 

Net Charge 

Isoelectric Point 

Penetration Depth 

Tilt Angle 

Disordered Conformation Propensity 

Linear Moment 

Amphiphilicity Index 

Average Hydrophilicity 

Ratio Of Hydrophilic Residues / Total 

Number Of Residues (%). 

Antibiotic 

Molecular Weight 

Class 

Physiological Charge 

LogP 

Water Solubility 

pKa  

Mechanism of Action 

Bacteria 
Gram Type 

MIC 

 

 



17 

 

Table 2.5 Numerical Values and Units 

Numerical Values Units 

Molecular Weight of the Sequence g / mol 

Molecular Weight of the Antibiotic g / mol 

Activity (MIC) µg / ml 

Activity of the Peptide Alone (MIC) µg / ml 

Activity of the Antibiotic Alone (MIC) µg / ml 

Water Solubility of the Antibiotic mg / ml 

For two antimicrobial agents (A and B) ;  

𝐹𝐼𝐶𝐴 =
𝑀𝐼𝐶(𝐴 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝐵)

𝑀𝐼𝐶(𝐴 𝑎𝑙𝑜𝑛𝑒)
 (2.1) 

 

𝐹𝐼𝐶𝐵 =
𝑀𝐼𝐶(𝐵 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝐴)

𝑀𝐼𝐶(𝐵 𝑎𝑙𝑜𝑛𝑒)
 

 

(2.2) 

𝐹𝐼𝐶𝐼𝑛𝑑𝑒𝑥 = 𝐹𝐼𝐶𝐴 + 𝐹𝐼𝐶𝐵 (2.3) 

         Table 2.6 Fractional Inhibitory Concentration Index Values and Their 

Indications 

Fractional Inhibitory Concentration (FIC) Index 

≤ 0.5 Synergism 

> 0.5  No Interaction 

2.2 Data Preprocessing 

2.2.1 Normalization 

Normalization is a scaling method in machine learning used during data preparation 

to adjust the values of numeric inputs in the dataset in order to use a similar scale 

[94]. 
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Despite the fact that there are many normalization methods in machine learning, 

Min-Max scaling and Standardization scaling are the most commonly used. The 

Min-Max scaling technique helps the dataset in shifting and rescaling the values of 

their attributes such that they range between 0 and 1. Standardization scaling, also 

known as Z-score normalization, is a method in which the values are centralized 

around the mean with a unit standard deviation, resulting in the attribute becoming 

zero and the resultant distribution having a unit standard deviation [95]. 

Maximum Absolute (Max Abs)  scaling operates by dividing each value by the 

largest value in that feature, regardless of its sign. This transformation provides a 

distribution with values ranging from -1 to 1 [96]. 

Robust data scaling or Robust standardization is a method for normalizing input 

variables in the presence of outliers. This method ignores the outliers from the 

calculations of the mean and the standard deviation, then scales the variable using the 

calculated values [96]. 

Data normalization was performed to improve model performance since magnitude 

range vary and can impact model optimization during training. With the four 

normalization methods mentioned above, models were developed separately and 

compared.  Their effects on the accuracy of the model were evaluated. 

2.2.2 One Hot Encoding 

Most of the machine learning algorithms cannot operate with nominal data, also 

called categorical variables. These data must be converted into numerical values. 

One Hot Encoding is a binary representation of categorical variables. To begin, this 

step requires translating the values to integer values. Later, integer values are 

represented in the form of binary vectors, with all values being zero except the 

integer index, which is labeled as 1 [94]. One Hot Encoding makes categorical data 

representation easier and more expressive. 
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2.2.3 Resampling 

If there is an imbalance in the instance numbers that constitutes a class in a dataset, 

the expected outcomes will be affected when used as training data for machine 

learning. To fix the imbalance in the training data, resampling is commonly 

employed, which balances the number of instances [97]. 

The Synthetic Minority Oversampling Technique (SMOTE) is a technique 

to increase the number of instances in a balanced manner in a dataset. The 

component generates new instances from existent minority instances that 

are provided as input [98].  

2.3 Data Splitting 

Data splitting is a method that is widely used in machine learning.  In order to 

train the model and test the performance, the data is split as training and test sets 

[94]. 

The goal of the rational splitting algorithms is to choose the most representative 

group for the training set. In order to select samples, the similarity between the data 

points or data distribution is used [99].  

Random splitting algorithms pick a number of samples randomly as the training set, 

while the remaining samples are used as the test set [99]. In this study, the dataset 

was randomly split into two sets: a training set (containing 75% of the data) that was 

used to train the model and a test set (containing 25% of the data) that was used to 

test the accuracy of the model. 

2.4 Model Development 

Decision Tree is a classifier in which internal nodes represent the features of 

datasets, branches represent decision rules, and leaf nodes represent the outputs. The 

purpose of employing a decision tree is building a training model which can predict 

the class and/or value of a target variable by learning basic decision rules from the 

training data [100]. Decision trees categorize samples by descending the tree from 
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the root to leaf/terminal nodes, with the leaf/terminal nodes providing the example's 

categorization. Each node represents a test case for variable, and each edge going 

down from the node represents one of the test case's possible answers. This recursive 

approach is repeated for each subtree [101].  

Light GBM (LGBM) is a gradient boosting framework based on the decision tree 

algorithm that can be used for classification, ranking, and a variety of other machine 

learning applications [102]. 

The Adaptive Boosting or shortly AdaBoost algorithm is a boosting approach used in 

Machine Learning as an ensemble method. The algorithm employs one-level 

decision trees called weak learners, which are successively added to the ensemble. 

Each model aims to correct the predictions generated by the model preceding it. This 

is accomplished by weighting the training dataset in order to focus more on training 

examples where previous models made prediction mistakes [103]. Adaptive Boosting 

is so named because the weights are re-assigned to each example, with larger weights 

applied to mistakenly categorized instances. Boosting method is regularly used to 

reduce bias and variation [104]. 

Extreme Gradient Boosting (XGBoost) is a Machine Learning technique that 

employs a gradient boosting (GB) framework. It may be used to solve problems 

including classification, ranking,  regression and user-defined prediction [105]. 

Gradient-boosted decision trees train an ensemble of superficial decision trees 

repeatedly, with each iteration utilizing the prior model's error residuals to fit the 

next model. The final prediction is the weighted total of all predictions. Boosting 

reduces bias and underfitting [106]. 

Rain Forest is a well-known machine learning algorithm, and it is a member of the 

supervised learning approach. It can be applied to regression and classification 

issues. RF uses decision trees on different subsets of the given dataset and averages 

the results to improve the accuracy of the prediction of the dataset [107]. 

SVM technique is applicable to both classification and regression problems. The 

SVM algorithm's goal is to identify a hyperplane in an N-dimensional space and 

clearly classify the data points [108]. 
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Despite its name, logistic regression (LR) is a classification model rather than a 

regression model. It  is also known as maximum-entropy classification (MaxEnt), the 

log-linear classifier, or logit regression. A logistic function is used in this model to 

describe the probability defining the probable outcomes of a single experiment [109]. 

Linear Discriminant Analysis (LDA) is a classifier that has a linear decision surface. 

The LDA classifier is appealing because it provides a closed-form solution that is 

simply computed, is intrinsically multiclass, has been demonstrated to operate well in 

practice, and does not have hyperparameters to modify [110]. 

The concept behind nearest neighbor approaches is to identify a preset number of 

training samples that are closest in proximity to a new point and anticipate the label 

based on them. The number of samples might be fixed, which is called k-nearest 

neighbor learning (KNN) [111], or variable depending on the density of points, 

which is called radius-based neighbor learning. 

Gaussian processes are a supervised learning approach that can be used to tackle 

regression and probabilistic classification issues. The GaussianProcessClassifier 

(GPC) uses Gaussian processes for classification, especially probabilistic 

classification, where predictions are in the form of class possibilities. GPC  can 

perform one-versus-one or one-versus-rest based training and prediction for multi-

class classification [112]. 

Naive Bayes techniques are a type of supervised learning algorithm that employ 

Bayes' theorem with the "naive" assumptions of conditional independence 

between feature pairs given the class variable value. They require little training data 

for estimating the required parameters, and these classifiers can be very fast when 

compared to more sophisticated algorithms. [113]. There are many types of naive 

bayes, including Gaussian Naive Bayes (GNB) and Bernoulli Naive Bayes (BNB). 

Bagging classifiers (BC) are ensemble meta-estimators that fit base classifiers on the 

original dataset subsets and aggregate their predictions through voting or averaging 

to generate a final prediction. BC is often used to minimize the deviation of a black-

box estimator by incorporating randomization into its building mechanism and then 

constructing an ensemble from it [114]. 
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Various models were developed using the algorithms described above. Accuracy 

scores were calculated and compared. Lastly, the algorithm with the highest score 

was chosen to develop the final model. 

2.5 Hyperparameter Tuning 

The process of determining the correct combination of hyperparameters that 

maximize the performance of a model is known as hyperparameter tuning. It works 

by running several trials in one training process. Once completed, the method will 

provide the set of hyperparameter values that are most suited for the model to 

provide optimal results [115]. 

2.6 Model Evaluation 

The Confusion Matrix was created to visualize the correct and incorrect predictions. 

The receiver operating characteristic (ROC) curve was drawn according to the True 

Positive Rate and False Positive Rate. The success of the model was evaluated with 

the F1 score, Accuracy, Recall, and Precision measures. Additionally, the importance 

of the features was examined and the most important features were determined. 
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Chapter 3 

Results 

3.1 Data Collection 

The data were collected from the DBAASP site by applying the necessary extraction 

criteria. Information on antibiotics was obtained from the DrugBank site. The FIC 

Index value was determined as the output.  

Rows with missing values were removed. In total, 407 rows of data were collected. 

Some values were given in µM, while others were given in µg/ml. Values given as 

µM were converted to µg/ml by calculations for unit integrity. Inputs were arranged 

so that all data in a column have the same unit. 

3.2 Data Preprocessing 

Due to the fact that some of the entries were nominal, the nominal data were 

converted to numerical data using the One Hot Encoding method. Since the big gap 

between the smallest and largest values would affect the accuracy of the model, the 

values were rescaled by the normalization method. To train the model and test its 

performance, data were divided into training and test sets by the data splitting 

method.  

Data distributions before SMOTE; 

While the number of those who showed synergism (≤ 0.5) was 199, the number of 

those who did not interact (>0.5) was 208. 9 new instances were generated with 

SMOTE. 
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Figure 3.1 Scatter Plot Matrix 

A scatter plot is a graph in which each value is illustrated by a dot. Scatter plots use 

dots to show how one variable affects another or the relation between them. Scatter 

plots plot data points on the x and y axes [116]. 
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Figure 3.2 Training data histogram 

A dimension is utilized to construct a histogram on each diagonal plot of the 

scatter matrix. A histogram is a type of 0D visualization that illustrates the data 

distribution that is on a single dimension. It displays the data distribution far more 

clearly and accurately than a plot of the dimension of data against itself. Histograms 

are useful for observing data distribution [117]. As can be seen in Figures 3.1 and 

3.2, the original data distributions are wide-ranging and imbalanced.  
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Figure 3.3 Correlation matrix 

A correlation matrix is a table that illustrates the correlation coefficients for 

variables. The matrix shows the correlation between all possible pairings in a table. It 

is a strong tool for summarizing large datasets as well as identifying and visualizing 

patterns in the data. As can bee seen from Figure 3.3, it comprises of rows and 

columns displaying the variables. The correlation coefficient is contained in each cell 

of the table. Coefficients range between -1 and 1 where -1 represents a totally 

negative linear correlation, 0 represents that there is no linear correlation, and 1 

represents a totally positive linear correlation. This means that the farther the 

coefficient from zero, the stronger the relationship between two variables. Looking at 

the figure, a strong positive correlation (0.95) was seen between the molecular 
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weight and length of AMP. However, a strong negative correlation (-0.98) was seen 

between the disordered conformation propensity and the normalized hydrophobicity 

of AMP, and also between the disordered conformation propensity and the 

amphiphilicity index of AMP (-0.83). There was a strong negative correlation (-0.65) 

between the charge and the logP value of the antibiotic, while a strong positive 

correlation (0.75) was observed between the charge and the pKa value of the 

antibiotic. In addition, a strong positive correlation was observed between the 

normalized hydrophobicity and amphiphilicity index of AMP (0.85), and between 

the charge and average hydrophilicity of AMP (0.71). 

 

Figure 3.4 Original data value distribution 

As can be seen from Figure 3.4, the original values were distributed over a wide 

range. Four different normalization methods, namely Z-score, Min-Max, Max-Abs, 

and Robust, were tried, and the data were fit into certain intervals specific to the 

method. 
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Figure 3.5 Normalized data by A) Z-score B) Min-Max C) Max-Abs D) Robust 

methods 

Looking at Figure 3.5D, it can be seen that the method that can normalize the data 

distribution to the narrowest area is the Robust method. The extremes of the values 

decrease the accuracy of the model. Therefore, the closer the values are to each other, 

in other words, if they are distributed over a narrow area, the more successful the 

model will be. For these reasons, the Robust method was chosen in model 

development. 

A B 

C D 
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Figure 3.6 Normalizer results 

Table 3.1 Normalizer accuracy scores 

Normalization  

Strategy 
Classifier Accuracy Scores 

Z-Score 

MLPC 0.732 ± 0.095 

Optimized-LGBMC 0.732 ± 0.096 

RFC 0.717 ± 0.115 

LGBMC 0.723 ± 0.098 

Min-Max 

MLPC 0.718 ± 0.109 

Optimized-LGBMC 0.744 ± 0.119 

RFC 0.717 ± 0.120 

LGBMC 0.730 ± 0.107 

Max-Abs 

MLPC 0.714 ± 0.108 

Optimized-LGBMC 0.729 ± 0.104 

RFC 0.714 ± 0.119 

LGBMC 0.732 ± 0.107 

Robust 

MLPC 0.739 ± 0.090 

Optimized-LGBMC 0.753 ± 0.097 

RFC 0.720 ± 0.095 

LGBMC 0.739 ± 0.106 

Looking at Figure 3.6 and Table 3.1, it was seen that the model using the LGMBC 

classifier and the Robust normalization method gave the highest accuracy score. 

Therefore, while developing the model, the model with the highest accuracy score 

was selected. 
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3.3 Model Development 

 

Figure 3.7 Accuracy scores of different classifiers 

17 different classifiers were tried, and the accuracy scores of the models developed 

with these classifiers were measured. It can be seen from Figure 3.7 and Table 3.1 

that the classifier with the highest accuracy score was LGBMC. For this reason, the 

LGBMC classifier was chosen for the model development. 

Table 3.2 Accuracy scores of the classifiers 

Model ACC Scores 

LR 0.667  ± 0.111 

LDA 0.682 ± 0.089 

GPC 0.739 ± 0.111 

XGBC 0.727 ± 0.129 

LGBMC 0.757 ± 0.103 

KNN 0.728 ± 0.094 

DTC 0.705 ± 0.094 

ETC 0.638 ± 0.116 

GNB 0.619 ± 0.107 

BNB 0.659 ± 0.150 

SVM 0.689 ± 0.116 

BC 0.741 ± 0.152 

ABC 0.701 ± 0.112 

HGBC 0.746 ± 0.124 

RFC 0.749 ± 0.121 

GBC 0.696 ± 0.116 

MLPC 0.753 ± 0.099 
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3.4 Model Evaluation 

 

Figure 3.8 A) Confusion matrix and B) ROC curve of the LGBMC model 

As can be seen from the Figure 3.8A, there were 55 data with an FIC index greater 

than 0.5 (No Interaction). The model predicted 43 of them correctly (true positive) 

and 12 of them incorrectly (false positive). Also, there were 49 data with an FIC 

index less than or equal to 0.5 (Synergism). The model predicted 37 of them 

correctly (true positive) and 12 of them incorrectly (false positive). If expressed as a 

percentage, the model correctly predicted 78.2% of the data with no interaction, and 

correctly predicted 75.5% of the data with synergistic effects. 

ROC curve is a graph that depicts model performance at all classification thresholds. 

This curve depicts two parameters: True Positive Rate (TPR), and False Positive 

Rate (FPR) [118].  AUC is an abbreviation for "Area Under the ROC Curve." AUC, 

in other words, measures the whole two-dimensional area under the ROC curve. 

AUC values vary from 0 to 1 [118]. As can be seen from the Figure 3.8B, the AUC 

value in this study was 0.807.  

The effect of the importance of predictors on the performance of the model was 

measured in terms of information gain. The initial accuracy of the model was 72.4%. 

After hyperparameter tuning was performed, the accuracy of the model reached 

75.4%. 

A B 
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Figure 3.9 Feature importance after one hot encoding 

The term "feature importance" refers to a class of strategies for giving scores 

to features in a predictive model, indicating the relative significance of features when 

making predictions. With the One Hot Encoding, all nominal inputs are converted to 

numerical inputs with the 1-0 encoding method. When One Hot Encoding is done, 

each line is converted to a column for encoding. In other words, each row becomes a 

feature. That is the reason there are so many features in Figure 3.9. The sum of the 

importance values of all the features in the Figure 3.9 is equal to 1. 
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Figure 3.10 Feature importance  

The sum of the feature importance values is equal to 1. As can be seen from Figure 

3.10, it was seen that the most important feature was the species in which the 

synergistic effect of antibiotic and AMP was investigated. The second and third most 

important features were the MIC values of the peptide and antibiotic when used 

alone. It was also seen that the least important features were the isoelectric point of 

the AMP, the charge of the antibiotic, and the gram type of the pathogen in which the 

antibiotic was active on. In addition, it was seen that the features of the antibiotic 

were more important. 
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Developed model was evaluated by calculating the Accuracy, Presicion, Recall 

(sentivity), and F1 Score values. 

Accuracy is a measure that describes the proportion of correct predictions among all 

predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁. 𝑜𝑓 𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=  

𝑁. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑆𝑖𝑧𝑒 𝑜𝑓 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
 (3.1) 

Where the number of correct predictions is equal to 80 and the size of the dataset is 

equal to 104 ; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
80

104
= 0,7692 ≈ 𝟎, 𝟕𝟕 

Precision is a measure of how many of the positive predictions made are correct, in 

other words, true positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑁. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑁. 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (3.2) 

In the case of Synergism, there are 37 correct predictions and 12 incorrect 

predictions; 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
37

49
= 0,755 ≈ 0,76 

In the case of No Interaction, there are 43 correct predictions and 12 incorrect 

predictions; 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
43

55
= 0,78  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
0,76 + 0,78

2
= 𝟎, 𝟕𝟕  
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Recall, also known as sensitiviy, is a measure of how many positive instances the 

classifier predicted correctly out of all the positive instances in the data. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑁. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑁. 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
𝑖𝑛 𝑡ℎ𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

 
(3.3) 

In the case of Synergism, there are 37 correct predictions and 12 incorrect positive 

predictions; 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
37

49
= 0,755 ≈ 0,76 

In the case of No Interaction, there are 43 correct predictions and 12 incorrect 

positive predictions; 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
43

55
= 0,78  

𝑅𝑒𝑐𝑎𝑙𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
0,76 + 0,78

2
= 𝟎, 𝟕𝟕  

F1-Score is a metric that combines precision and recall results. It is commonly 

referred to as the harmonic mean of the precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.4) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
0,77 𝑥 0,77

0,77 + 0,77
=  

1,186

1,54
= 𝟎, 𝟕𝟕 
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Chapter 4 

Discussions 

Fields et al. [119] have created a pipeline for the creation and testing of bacteriocin-

derived compounds that combines sequence-free bacteriocin prediction with machine 

learning and a biophysical feature filter to identify peptides that contain 20 amino 

acids and can be synthesized and tested for activity. They generated a total of 28,895 

20-mer potential peptides and rated them based on charge, as well as hydrophobic 

moment. They chose 16 sequences for synthesiss, then tested their antibacterial, 

cytotoxic, and hemolytic actions. Peptides with the highest  biophysical criteria 

scores demonstrated strong antimicrobial efficacy against Pseudomonas aeruginosa 

and Escherichia coli. Their combination strategy incorporates biophysical-based 

minimum region determination and machine learning to develop a novel 

methodology for discovering bacteriocin candidates suitable for rapid synthesis and 

assessment for therapeutic use. 

Because of their hemolytic toxicity, most AMPs used in clinical studies are 

administered topically.  Plisson et al. [120] constructed machine learning algorithms 

and outlier detection techniques to guarantee robust predictions for AMP discovery 

and the design of new peptides with lower hemolytic activity. Their best model 

predicted the hemolytic tendency of any peptide sequence with an accuracy of 95-

97%. Using multivariate outlier detection models, researchers discovered that 273 

AMPs could not be reliably predicted. Their combined strategy led to the design of 

507 peptides, identification of 34 AMPs that are not hemolytic, and the development 

of non-hemolytic peptide design guidelines. 

Li et al. [121] sought to identify factors regulating selectivity by correlating peptide 

sequence information with bioactivity data using the random forest algorithm. Out-

of-bag prediction generated satisfactory predictive models with accuracies in excess 
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of 0.80.  Model interpretation using variable significance metrics and partial 

dependency plots revealed that the distribution patterns and composition of 

molecular charge and solubility-related factors strongly influenced selectivity. 

Furthermore, because it appears to be similar selective mechanism based on charge-

solubility properties, the investigated target species had a great influence on how 

selectivity was achieved. 

Nagarajan et al. [122] employed a language model with long short-term memory 

(LSTM) to comprehend the arrangement as well as the frequencies of amino acids in 

known peptide sequences. They generated 10 peptides based on LSTM network 

output and tested these peptides against pathogens. All peptides demonstrated broad-

spectrum antimicrobial activity, confirming the validity of their LSTM-based design 

approach. Their two most effective AMPs were shown to be effective against 

multidrug-resistant (MDR) clinical isolates of Acinetobacter baumannii, Escherichia 

coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus. 

Peptides interacted with cell membranes and disrupted them, resulting in secondary 

gene regulatory effects. 

Xu et al. [47] gave a detailed survey of current methodologies for AMP identification 

and highlighted the variations between these methods. Furthermore, they assessed 

the prediction performance of the tools using an independent test datasets of 1536 

AMPs and non-AMPs. They also constructed six validation datasets based on six 

popular AMP databases and made comparisons between different computational 

approaches using these data sets. The results showed that amPEPpy outperformed the 

other evaluated methods in terms of prediction performance. Because the prediction 

performances of different approaches are impacted by the datasets used, they also 

performed cross-validation tests in order to compare several traditional machine 

learning algorithms on the same dataset. Cross-validation findings showed that SVM, 

RF, and XG Boosting outperformed other machine learning techniques and were 

frequently the algorithms of choice for several AMP prediction tools. 

There are several computational approaches for predicting AMPs. However, 

Vishnepolsky et al. [58] discovered that most of these approaches could only forecast 

if a peptide would have any antimicrobial potency, there are no tools that could 

predict antimicrobial efficacy against specific strains. They introduced a semi-
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supervised learning strategy using a clustering algorithm to predict the activity of 

linear AMPs against specific Gram-negative strains. The algorithm was capable of 

distinguishing peptides that are active against specific strains from those that are 

active but not against the specific strain under consideration. The present AMP 

prediction technologies were incapable of performing this task. 

Gull et al. [89] developed AMAP, a machine learning-based model to predict the 

biological activity of peptides, with an emphasis on antimicrobial activity 

predictions. AMAP improves on previous state-of-art methodologies by using multi-

label classification for predicting 14 distinct types of activities of a given peptide 

sequence. They conducted performance studies of the suggested method. AMAP was 

benchmarked using newly published experimentally validated peptides that were not 

part of their training set, in addition to performance comparisons with current AMP 

predictors. They also examined the features employed in this study, and their 

findings demonstrated that the suggested predictor is capable of accurately predicting 

the biological activity of new peptide sequences. 

Sharma et al. [123] developed the AniAMPpred model by taking into account all of 

the available AMPs from the animal world with lengths ranging from 10-200. The 

model identified probable antimicrobial proteins (PAPs) in animal genomes using a 

SVM algorithm. The findings demonstrated that the suggested model outperformed 

previous state-of-art classifiers, had high confidence in predictions, and could 

accurately classify AMPs and non-AMPs for a wide range of lengths. They identified 

436 PAPs in the Helobdella robusta genome. They also discovered similarities 

between PAPs and antimicrobial proteins from various animal species through 

detailed analysis. 

Antiviral peptides are a kind of AMP which has the potential to combat virus 

infection. Pang et al. [124] suggested a two-stage classification approach to predict 

antiviral peptides and their antiviral functional activities. The initial step was to 

distinguish the antiviral peptides from a large array of peptides that included not only 

non-AMPs but also AMPs that did not have antiviral functions. The second step was 

in charge of identifying one or more virus families as well as species that the 

antiviral peptide targets. Imbalanced learning was used to improve prediction 

performance. The model employed machine learning strategies that are based on 
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Shapley value to analyze how the descriptors affected the antiviral activities and 

used numerous descriptors to precisely display the peptide features. Lastly, the 

proposed model's evaluation performance indicated its capacity to forecast antiviral 

actions and their prospective functions against different virus families. 

In this study, the interaction between antibiotics and antimicrobial peptides was 

evaluated in terms of FIC index value. To summarize the steps followed, data were 

collected from various databases. Missing values have been removed. With the 

resampling, more specifically SMOTE technique, the sets with unbalanced data 

numbers were equalized in number. The wide data distribution was narrowed by the 

data normalization method. Nominal variables were converted to numeric values 

with one hot encoding method. Data were separated by data splitting method as 

training and test sets. Finally, various modeling algorithms were tried and the 

algorithm with the highest accuracy was selected. The model was developed with the 

selected algorithm and the success of the model was evaluated. 

A correlation matrix was created. If the values are very close to 1 and -1 in the 

correlation matrix, it is called the dependent variable. In other words, the two 

variables are highly dependent on each other. Dependent variables are undesirable as 

they will negatively affect the accuracy of the model and are usually removed from 

the model. All were included in this study. If the dependent variables are also 

removed, the high accuracy score already obtained in the model will increase even 

more. 

The original values were distributed over a wide range. There were both very high 

and very small values, which is something that would negatively affect the accuracy 

of the model. Therefore, normalization was required to narrow these ranges. The 

normalization method with the highest accuracy value was the robust method. For 

that reason, normalization was done by choosing the robust method. 

A model with 100% incorrect predictions has an AUC value of 0.0; one with 100% 

correct predictions has an AUC value of 1.0. That is to say, the closer the AUC value 

to 1, the better the performance of the model [118]. In our model, this value was 
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measured as 0.807. Since it is close to 1, it can be said that the success of the 

developed model is high.  

Looking at the feature importance data, it was seen that the most important feature 

was the pathogen type, as expected. Afterwards, the second and third most important 

features were the MIC values of AMP and antibiotic, respectively. This was also 

expected because the FIC index was determined as output, and according to the FIC 

index formula, the MIC values of the antimicrobial agents used are included in the 

formula. However, the surprising thing was that although the MIC values of the two 

agents were included in the formula, the correlation between them and the FIC index 

was low, even very close to zero. As the FIC value was calculated using the MIC 

values, they were expected to be dependent variables. 

It was also expected that the values were negative because the MIC values are in the 

denominator in the formula. In other words, an increase in MIC values causes a 

decrease in FIC value.  

To summarize, the predictive success of the model is high based on accuracy score 

and other calculated values. As mentioned, the success of the model will increase if 

the dependent variables are eliminated. 
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Chapter 5 

Conclusions 

Although the use of a urinary catheter becomes a necessity for bladder-related 

problems, infections cause many problems, such as blockage of catheters and kidney-

related problems if infections progress. Many methods have been tried to prevent 

these problems, but none of the methods have achieved satisfactory success.  

The use of antimicrobial agents in high concentrations can cause a lot of side effects. 

It has been proven in various studies that antimicrobial agents can have a synergistic 

effect on each other. For this reason, it is expected that the combined use of two 

antimicrobial agents, which have a synergistic effect on each other may prevent the 

toxic effects that may be caused by the use of antimicrobial agents in high 

concentrations.  

In this study, it is predicted that the use of antibiotics and antimicrobial peptides 

together will prevent the stability and decreased antimicrobial activity problems of 

antimicrobial peptides and the emergence of drug-resistant microorganisms caused 

by antibiotics.  

With the machine learning method, it is aimed to create a model with high predictive 

success and to prevent the loss of time and resources spent in laboratory experiments.  

Models were developed using the 17 different classifiers, and their accuracy was 

tested and compared. As a result of the comparisons made, LGBMC was determined 

as the classifier with the highest accuracy.  
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The model was created with the LGBMC algorithm using the robust scaling method. 

The accuracy result of the model was calculated as AUC. According to the results, it 

was seen that the accuracy of the model was high. In line with the satisfactory results 

obtained as a result of various tests, it is anticipated that this study will shed light on 

future studies. 

 

 

 

 

 

 

 

 

 



43 

 

 

References 

1.  Zhang S, Wang L, Liang X, Vorstius J, Keatch R, Corner G et al. Enhanced 

antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating 

for urinary catheters. ACS Biomaterials Science & Engineering 2019; 5(6): 

2804-14.  

2.  Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-

associated urinary tract infections due to Escherichia coli and Proteus mirabilis. 

Clinical Microbiology Reviews 2008; 21(1): 26-59.  

3.  Ramstedt M, Ribeiro IA, Bujdakova H, Mergulhão FJ, Jordao L, Thomsen P et 

al. Evaluating efficacy of antimicrobial and antifouling materials for urinary 

tract medical devices: Challenges and recommendations. Macromolecular 

Bioscience 2019; 19(5): 1800384.  

4.  Cortese YJ, Wagner VE, Tierney M, Devine D, Fogarty A. Review of catheter-

associated urinary tract infections and in vitro urinary tract models. Journal of 

healthcare engineering  2018; 2018.  

5.  Stickler DJ. Clinical complications of urinary catheters caused by crystalline 

biofilms: something needs to be done. Journal of Internal Medicine 2014; 

276(2): 120-9.  

6.  Singha P, Locklin J, Handa H. A review of the recent advances in antimicrobial 

coatings for urinary catheters. Acta biomaterialia 2017; 50: 20-40.  

7.  Saint S, Gaies E, Fowler KE, Harrod M, Krein SL. Introducing a catheter-

associated urinary tract infection (CAUTI) prevention guide to patient safety 

(GPS). American Journal of Infection Control 2014; 42(5): 548-50.  

8.  Ong C-LY, Ulett GC, Mabbett AN, Beatson SA, Webb RI, Monaghan W et al. 

Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role 

in biofilm formation. Journal of bacteriology 2008; 190(3): 1054-63.  

9.  Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically 

relevant microorganisms. Clinical Microbiology Reviews 2002; 15(2): 167-93.  

10.  Tenke P, Köves B, Nagy K, Hultgren SJ, Mendling W, Wullt B et al. Update on 

biofilm infections in the urinary tract. World Journal of Urology 2012; 30(1): 

51-7.  

11.  Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg 

EP. The involvement of cell-to-cell signals in the development of a bacterial 

biofilm. Science 1998; 280(5361): 295-8.  



44 

 

12.  Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 

Microbial biofilms. Annual Review of  Microbiology 1995; 49(1): 711-45.  

13.  Kho K, Cheow WS, Lie RH, Hadinoto K. Aqueous re-dispersibility of spray-

dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled 

anti-biofilm therapy. Powder Technology 2010; 203(3): 432-9.  

14.  Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. Covalent 

immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. 

Acta Biomaterials 2011; 7(4): 1431-40.  

15.  Buck ME, Breitbach AS, Belgrade SK, Blackwell HE, Lynn DM. Chemical 

modification of reactive multilayered films fabricated from poly(2-alkenyl 

azlactone)s: design of surfaces that prevent or promote mammalian cell 

adhesion and bacterial biofilm growth. Biomacromolecules 2009; 10(6): 1564-

74.  

16.  Harbers GM, Emoto K, Greef C, Metzger SW, Woodward HN, Mascali JJ et 

al.. A functionalized poly(ethylene glycol)-based bioassay surface chemistry 

that facilitates bio-immobilization and inhibits non-specific protein, bacterial, 

and mammalian cell adhesion. Chemistry of Materials: A Publication of the 

American Chemical Society 2007; 19(18): 4405-14.  

17.  Mishra B, Basu A, Chua RRY, Saravanan R, Tambyah PA, Ho B et al. Site 

specific immobilization of a potent antimicrobial peptide onto silicone 

catheters: evaluation against urinary tract infection pathogens. Journal of 

Materials Chemistry. B 2014; 2(12): 1706-16.  

18.  Majeed A, Sagar F, Latif A, Hassan H, Iftikhar A, Darouiche RO, et al. Does 

antimicrobial coating and impregnation of urinary catheters prevent catheter-

associated urinary tract infection? A review of clinical and preclinical studies. 

Expert Review of Medical Devices 2019; 16(9): 809-20.  

19.  Wang R, Neoh KG, Kang E-T, Tambyah PA, Chiong E. Antifouling coating 

with controllable and sustained silver release for long-term inhibition of 

infection and encrustation in urinary catheters. Journal of Biomedical Materials 

Research Part B: Applied Biomaterials 2015; 103(3): 519-28.  

20.  Walder B, Pittet D, Tramèr MR. Prevention of bloodstream infections with 

central venous catheters treated with anti-infective agents depends on catheter 

type and insertion time: evidence from a meta-analysis. Infection Control & 

Hospital Epidemiology 2002; 23(12): 748-56.  

21.  Zhu Z, Wang Z, Li S, Yuan X. Antimicrobial strategies for urinary catheters. 

Journal of Biomedical Materials Research Part A. 2019; 107(2): 445-67.  

22.  Hanna H, Bahna P, Reitzel R, Dvorak T, Chaiban G, Hachem R, et al. 

Comparative in vitro efficacies and antimicrobial durabilities of novel 

antimicrobial central venous catheters. Antimicrobial Agents and 

Chemotherapy 2006; 50(10) : 3283-3288. 



45 

 

23.  Morris Jr JG, Sulakvelidze A, Alavidze Z. Bacteriophage Therapy. 

Antimicrobial agents and Chemotherapy 2001; 45(3): 649-59.  

24.  Carson L, Gorman SP, Gilmore BF. The use of lytic bacteriophages in the 

prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. 

FEMS Immunology & Medical Microbiology 2010; 59(3): 447-55.  

25.  Gilchrist T, Healy DM, Drake C. Controlled silver-releasing polymers and their 

potential for urinary tract infection control. Biomaterials 1991; 12(1): 76-8.  

26.  Bagheri M, Beyermann M, Dathe M. Immobilization reduces the activity of 

surface-bound cationic antimicrobial peptides with no influence upon the 

activity spectrum. Antimicrobial agents and chemotherapy 2009; 53(3): 1132-

41.  

27.  Ferreira L, Zumbuehl A. Non-leaching surfaces capable of killing 

microorganisms on contact. Journal of Materials Chemistry 2009; 19(42): 7796-

806.  

28.  Willcox MDP, Hume EBH, Aliwarga Y, Kumar N, Cole N. A novel cationic-

peptide coating for the prevention of microbial colonization on contact lenses. 

Journal of applied microbiology  2008; 105(6): 1817-25.  

29.  Sun E, Belanger CR, Haney EF, Hancock RE. Host defense (antimicrobial) 

peptides. Peptide applications in biomedicine, biotechnology and 

bioengineering. Elsevier; 2018 ; 253-85.  

30.  Haney EF, Mansour SC, Hancock REW. Antimicrobial Peptides: An 

Introduction. Methods in Molecular Biology 2017; 1548: 3-22.  

31.  Dostert M, Belanger CR, Hancock REW. Design and Assessment of Anti-

Biofilm Peptides: Steps Toward Clinical Application. Journal of Innate 

Immunity 2019; 11(3): 193-204.  

32.  Maisetta G, Di Luca M, Esin S, Florio W, Brancatisano FL, Bottai D, vd. 

Evaluation of the inhibitory effects of human serum components on bactericidal 

activity of human beta defensin 3. Peptides 2008; 29(1): 1-6.  

33.  Mansour SC, Pena OM, Hancock RE. Host defense peptides: front-line 

immunomodulators. Trends in immunology 2014; 35(9): 443-50.  

34.  Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE. Impact of 

LL-37 on anti-infective immunity. Journal of leukocyte biology. 2005; 77(4): 

451-9.  

35.  Wang S-H, Tang TW-H, Wu E, Wang D-W, Liao Y-D. Anionic surfactant-

facilitated coating of antimicrobial peptide and antibiotic reduces biomaterial-

associated infection. ACS Biomaterials Science & Engineering 2020; 6(8): 

4561-72.  



46 

 

36.  Carmona-Ribeiro AM, de Melo Carrasco LD. Novel formulations for 

antimicrobial peptides. International journal of molecular sciences 2014; 

15(10): 18040-83.  

37.  Hall MJ, Middleton RF, Westmacott D. The fractional inhibitory concentration 

(FIC) index as a measure of synergy. Journal of Antimicrobial Chemotherapy 

1983; 11(5): 427-33.  

38.  Bhardwaj KK, Banyal S, Sharma DK. Artificial intelligence based diagnostics, 

therapeutics and applications in biomedical engineering and bioinformatics.  

Internet of Things in Biomedical Engineering. Elsevier 2019 ; 161-87.  

39.  Poole D, Mackworth A, Goebel R. Computational Intelligence: Oxford 

University Press, New York; 1998.  

40.  Chou K-C. Some remarks on protein attribute prediction and pseudo amino acid 

composition. Journal of theoretical biology 2011; 273(1): 236-47.  

41.  Hudson DL, Cohen ME. Neural networks and artificial intelligence for 

biomedical engineering. Wiley Online Library; 2000.  

42.  Bonetta R, Valentino G. Machine learning techniques for protein function 

prediction. Proteins: Structure, Function, and Bioinformatics 2020; 88(3): 397-

413.  

43.  Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GC. What can machine 

learning do for antimicrobial peptides, and what can antimicrobial peptides do 

for machine learning? Interface focus 2017; 7(6): 20160153.  

44.  Kavousi K, Bagheri M, Behrouzi S, Vafadar S, Atanaki FF, Lotfabadi BT, et al. 

IAMPE: NMR-assisted computational prediction of antimicrobial peptides. 

Journal of Chemical Information and Modeling 2020; 60(10): 4691-701.  

45.  Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, et al. 

Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial 

peptide. Nature 2007; 449(7162): 564-9.  

46.  Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for 

research and education. Nucleic acids research 2016; 44(D1): D1087-93.  

47.  Xu J, Li F, Leier A, Xiang D, Shen H-H, Marquez Lago TT, et al. 

Comprehensive assessment of machine learning-based methods for predicting 

antimicrobial peptides. Briefings in Bioinformatics 2021; 22(5): bbab083.  

48.  Fjell CD, Hancock RE, Cherkasov A. AMPer: a database and an automated 

discovery tool for antimicrobial peptides. Bioinformatics 2007; 23(9): 1148-55.  

49.  Lata S, Sharma BK, Raghava GP. Analysis and prediction of antibacterial 

peptides. BMC bioinformatics 2007; 8(1): 1-10.  

50.  Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and 

resistance. Pharmacological reviews 2003; 55(1): 27-55.  



47 

 

51.  Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly 

effective antiviral peptides. Nucleic acids research 2012; 40(W1): W199-204.  

52.  Xiao X, Wang P, Lin W-Z, Jia J-H, Chou K-C. iAMP-2L: a two-level multi-

label classifier for identifying antimicrobial peptides and their functional types. 

Analytical biochemistry 2013; 436(2): 168-77.  

53.  Lata S, Mishra NK, Raghava GP. AntiBP2: improved version of antibacterial 

peptide prediction. BMC bioinformatics 2010; 11(1): 1-7.  

54.  Fallah Atanaki F, Behrouzi S, Ariaeenejad S, Boroomand A, Kavousi K. 

BIPEP: Sequence-based prediction of biofilm inhibitory peptides using a 

combination of nmr and physicochemical descriptors. ACS omega 2020; 5(13): 

7290-7.  

55.  Veltri D, Kamath U, Shehu A. Improving recognition of antimicrobial peptides 

and target selectivity through machine learning and genetic programming. 

IEEE/ACM transactions on computational biology and bioinformatics. 2015; 

14(2): 300-13.  

56.  Bhadra P, Yan J, Li J, Fong S, Siu SW. AmPEP: Sequence-based prediction of 

antimicrobial peptides using distribution patterns of amino acid properties and 

random forest. Scientific reports 2018; 8(1): 1-10.  

57.  Joseph S, Karnik S, Nilawe P, Jayaraman VK, Idicula-Thomas S. ClassAMP: a 

prediction tool for classification of antimicrobial peptides. IEEE/ACM 

Transactions on Computational Biology and Bioinformatics 2012; 9(5): 1535-8.  

58.  Vishnepolsky B, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, 

Managadze G, et al. Predictive model of linear antimicrobial peptides active 

against gram-negative bacteria. Journal of chemical information and modeling 

2018; 58(5): 1141-51.  

59.  Hammami R, Ben Hamida J, Vergoten G, Fliss I. PhytAMP: a database 

dedicated to antimicrobial plant peptides. Nucleic acids research 2009; 37: 

D963-8.  

60.  Gueguen Y, Garnier J, Robert L, Lefranc M-P, Mougenot I, De Lorgeril J, et al. 

PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based 

classification and recommended nomenclature. Developmental & Comparative 

Immunology 2006; 30(3): 283-8.  

61.  Hammami R, Zouhir A, Ben Hamida J, Fliss I. BACTIBASE: a new web-

accessible database for bacteriocin characterization. BMC microbiology 2007; 

7(1): 1-6.  

62.  Li Y, Chen Z. RAPD: a database of recombinantly-produced antimicrobial 

peptides. FEMS microbiology letters 2008; 289(2): 126-9.  

63.  Wade D, Englund J. Synthetic antibiotic peptides database. Protein and peptide 

letters 2002; 9(1): 53-7.  



48 

 

64.  Whitmore L, Wallace B. The Peptaibol Database: a database for sequences and 

structures of naturally occurring peptaibols. Nucleic Acids Research 2004; 32: 

D593-4.  

65.  Seebah S, Suresh A, Zhuo S, Choong YH, Chua H, Chuon D, et al. Defensins 

knowledgebase: a manually curated database and information source focused on 

the defensins family of antimicrobial peptides. Nucleic acids research. 2007; 

35: D265-8.  

66.  Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic acids 

research. 2004; 32: D590-2.  

67.  Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a 

useful resource for research on antimicrobial peptides. Nucleic Acids Research 

2010; 38: D774-780.  

68.  Niarchou A, Alexandridou A, Athanasiadis E, Spyrou G. C-PAmP: Large Scale 

Analysis and Database Construction Containing High Scoring Computationally 

Predicted Antimicrobial Peptides for All the Available Plant Species. PLOS 

ONE 2013; 8(11): e79728.  

69.  Chou K-C. Prediction of protein cellular attributes using pseudo-amino acid 

composition. Proteins: Structure, Function, and Bioinformatics 2001; 43(3): 

246-55.  

70.  Chou K-C. Using amphiphilic pseudo amino acid composition to predict 

enzyme subfamily classes. Bioinformatics 2005; 21(1): 10-9.  

71.  Liu B, Liu F, Wang X, Chen J, Fang L, Chou K-C. Pse-in-One: a web server for 

generating various modes of pseudo components of DNA, RNA, and protein 

sequences. Nucleic acids research 2015; 43(W1): W65-71.  

72.  Lee H-T, Lee C-C, Yang J-R, Lai JZ, Chang KY. A large-scale structural 

classification of antimicrobial peptides. BioMed research international 2015.  

73.  Meher PK, Sahu TK, Saini V, Rao AR. Predicting antimicrobial peptides with 

improved accuracy by incorporating the compositional, physico-chemical and 

structural features into Chou’s general PseAAC. Scientific reports 2017; 7(1): 

1-12.  

74.  Lin W, Xu D. Imbalanced multi-label learning for identifying antimicrobial 

peptides and their functional types. Bioinformatics 2016; 32(24): 3745-52.  

75.  Lin Y, Cai Y, Liu J, Lin C, Liu X. An advanced approach to identify 

antimicrobial peptides and their function types for penaeus through machine 

learning strategies. BMC Bioinformaticsn 2019; 20(8): 291.  

76.  Chung C-R, Kuo T-R, Wu L-C, Lee T-Y, Horng J-T. Characterization and 

identification of antimicrobial peptides with different functional activities. Brief 

Bioinformatics 2019; bbz043.  



49 

 

77.  Porto WF, Fernandes FC, Franco OL. An SVM model based on 

physicochemical properties to predict antimicrobial activity from protein 

sequences with cysteine knot motifs.  Brazilian Symposium on Bioinformatics. 

Springer 2010; 59-62.  

78.  Wang P, Hu L, Liu G, Jiang N, Chen X, Xu J, et al. Prediction of antimicrobial 

peptides based on sequence alignment and feature selection methods. PloS one. 

2011; 6(4): e18476.  

79.  Torrent M, Andreu D, Nogués VM, Boix E. Connecting peptide 

physicochemical and antimicrobial properties by a rational prediction model. 

PloS one. 2011; 6(2): e16968.  

80.  Porto WF, Pires ÁS, Franco OL. CS-AMPPred: an updated SVM model for 

antimicrobial activity prediction in cysteine-stabilized peptides. PLoS One. 

2012; 7(12): e51444.  

81.  Randou EG, Veltri D, Shehu A. Systematic analysis of global features and 

model building for recognition of antimicrobial peptides. 2013 IEEE 3rd 

International Conference on Computational Advances in Bio and medical 

Sciences (ICCABS). IEEE; 2013; 1-6.  

82.  Fernandes FC, Rigden DJ, Franco OL. Prediction of antimicrobial peptides 

based on the adaptive neuro-fuzzy inference system application. Peptide 

Science 2012; 98(4): 280-7.  

83.  Vishnepolsky B, Pirtskhalava M. Prediction of linear cationic antimicrobial 

peptides based on characteristics responsible for their interaction with the 

membranes. Journal of chemical information and modeling 2014; 54(5): 1512-

23.  

84.  Camacho FL, Torres R, Pollán RR. Classification of antimicrobial peptides with 

imbalanced datasets. 11th International Symposium on Medical Information 

Processing and Analysis. International Society for Optics and Photonics; 2015;  

96810T.  

85.  Ng XY, Rosdi BA, Shahrudin S. Prediction of antimicrobial peptides based on 

sequence alignment and support vector machine-pairwise algorithm utilizing 

LZ-complexity. BioMed research international 2015.  

86.  Beltran JA, Aguilera-Mendoza L, Brizuela CA. Feature weighting for 

antimicrobial peptides classification: a multi-objective evolutionary approach. 

2017 IEEE International Conference on Bioinformatics and Biomedicine 

(BIBM). IEEE; 2017; 276-83.  

87.  Veltri D, Kamath U, Shehu A. Deep learning improves antimicrobial peptide 

recognition. Bioinformatics 2018; 34(16): 2740-7.  

88.  Su X, Xu J, Yin Y, Quan X, Zhang H. Antimicrobial peptide identification 

using multi-scale convolutional network. BMC bioinformatics 2019; 20(1): 1-

10.  



50 

 

89.  Gull S, Shamim N, Minhas F. AMAP: Hierarchical multi-label prediction of 

biologically active and antimicrobial peptides. Computers in Biology and 

Medicine  2019; 107: 172-81.  

90.  Jhong J-H, Chi Y-H, Li W-C, Lin T-H, Huang K-Y, Lee T-Y. dbAMP: an 

integrated resource for exploring antimicrobial peptides with functional 

activities and physicochemical properties on transcriptome and proteome data. 

Nucleic acids research 2019; 47(D1): D285-97.  

91.  Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep 

Learning . Nucleic Acids 2020; 20: 882-894. 

92.  Li C, Sutherland D, Hammond SA, Yang C, Taho F, Bergman L, et al. 

AMPlify: attentive deep learning model for discovery of novel antimicrobial 

peptides effective against WHO priority pathogens. BMC genomics 2022; 

23(1): 1-15.  

93.  Fu H, Cao Z, Li M, Xia X, Wang S. Prediction of anuran antimicrobial peptides 

using AdaBoost and improved PSSM profiles. Proceedings of the Fourth 

International Conference on Biological Information and Biomedical 

Engineering. 2020; 1-6.  

94.  Mirzaei M, Furxhi I, Murphy F, Mullins M. A machine learning tool to predict 

the antibacterial capacity of nanoparticles. Nanomaterials 2021; 11(7): 1774.  

95.  Fukunaga K. Introduction to statistical pattern recognition. Elsevier 2013.  

96.  Ahsan MM, Mahmud MAP, Saha PK, Gupta KD, Siddique Z. Effect of Data 

Scaling Methods on Machine Learning Algorithms and Model Performance. 

Technologies 2021; 9(3): 52.  

97.  Sasada T, Liu Z, Baba T, Hatano K, Kimura Y. A resampling method for 

imbalanced datasets considering noise and overlap. Procedia Computer Science 

2020; 176: 420-9.  

98.  Fernandez A, Garcia S, Herrera F, Chawla NV. SMOTE for Learning from 

Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. 

Journal of Artificial Intelligence Research 2018; 61: 863-905.  

99.  Birba DE. A Comparative study of data splitting algorithms for machine 

learning model selection 2020.  

100.  Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to 

decision tree modeling. Journal of Chemometrics: A Journal of the 

Chemometrics Society 2004; 18(6): 275-85.  

101.  Quinlan JR. Learning decision tree classifiers. ACM Computing Surveys 

(CSUR) 1996; 28(1): 71-2.  

102.  Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, vd. LightGBM: A Highly 

Efficient Gradient Boosting Decision Tree. Advances in Neural Information 

Processing Systems. Curran Associates, Inc.; 2017. 



51 

 

103.  Ying C, Qi-Guang M, Jia-Chen L, Lin G. Advance and prospects of AdaBoost 

algorithm. Acta Automatica Sinica. 2013; 39(6): 745-58.  

104.  Kim T-H, Park D-C, Woo D-M, Jeong T, Min S-Y. Multi-class classifier-based 

adaboost algorithm. International conference on intelligent science and 

intelligent data engineering. Springer 2011; 122-7.  

105.  Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM. Extreme gradient 

boosting as a method for quantitative structure–activity relationships. Journal of 

chemical information and modeling 2016; 56(12): 2353-60.  

106.  Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, vd. Xgboost: 

extreme gradient boosting. R package version 04-2. 2015; 1(4): 1-4.  

107.  Al-Mistarehi BW, Alomari AH, Imam R, Mashaqba M. Using Machine 

Learning Models to Forecast Severity Level of Traffic Crashes by R Studio and 

ArcGIS. Frontiers in Built Environment 2022. 

108.  Suthaharan S. Support vector machine. Machine learning models and 

algorithms for big data classification. Springer 2016; 207-35.  

109.  Wright RE. Logistic regression. Reading and understanding multivariate 

statistics. Washington, DC, US: American Psychological Association; 1995;  

217-44.  

110.  Balakrishnama S, Ganapathiraju A. Linear Discriminant Analysis - A Brief 

Tutorial. Institute for Signal and information Processing 1998; 1-8.  

111.  Jiang L, Cai Z, Wang D, Jiang S. Survey of Improving K-Nearest-Neighbor for 

Classification. Fourth International Conference on Fuzzy Systems and 

Knowledge Discovery. 2007; 679-83.  

112.  Hensman J, Matthews A, Ghahramani Z. Scalable Variational Gaussian Process 

Classification. Proceedings of the Eighteenth International Conference on 

Artificial Intelligence and Statistics 2015; 351-60.  

113.  Webb G. Naïve Bayes. 2016; 1-2.  

114.  Skurichina M, Duin RPW. Bagging for linear classifiers. Pattern Recognition. 

1998; 31(7): 909-30.  

115.  Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A. Hyperparameter 

tuning and performance assessment of statistical and machine-learning 

algorithms using spatial data. Ecological Modelling 2019; 406: 109-20.  

116.  Touchette PE, MacDonald RF, Langer SN. A Scatter Plot for Identifying 

Stimulus Control of Problem Behavior. Journal of Applied Behavior Analysis. 

1985; 18(4): 343-51.  

117.  Cui Q, Ward M, Rundensteiner E. Enhancing Scatterplot Matrices for Data with 

Ordering or Spatial Attributes 2006.  



52 

 

118.  Bradley AP. The use of the area under the ROC curve in the evaluation of 

machine learning algorithms. Pattern Recognition 1997; 30(7): 1145-59.  

119.  Fields FR, Freed SD, Carothers KE, Hamid MN, Hammers DE, Ross JN, et al. 

Novel antimicrobial peptide discovery using machine learning and biophysical 

selection of minimal bacteriocin domains. Drug Development Research 2020; 

81(1): 43-51.  

120.  Plisson F, Ramírez-Sánchez O, Martínez-Hernández C. Machine learning-

guided discovery and design of non-hemolytic peptides. Scientific Reports 

2020; 10(1): 16581.  

121.  Li H, Tamang T, Nantasenamat C. Toward insights on antimicrobial selectivity 

of host defense peptides via machine learning model interpretation. Genomics.  

2021; 113(6): 3851-63.  

122.  Nagarajan D, Nagarajan T, Roy N, Kulkarni O, Ravichandran S, Mishra M, et 

al. Computational antimicrobial peptide design and evaluation against 

multidrug-resistant clinical isolates of bacteria. Journal Biology Chemistry 

2018; 293(10): 3492-509.  

123.  Sharma R, Shrivastava S, Kumar Singh S, Kumar A, Saxena S, Kumar Singh R. 

AniAMPpred: artificial intelligence guided discovery of novel antimicrobial 

peptides in animal kingdom. Briefings in Bioinformatics 2021; 22(6): bbab242.  

124.  Pang Y, Yao L, Jhong J-H, Wang Z, Lee T-Y. AVPIden: a new scheme for 

identification and functional prediction of antiviral peptides based on machine 

learning approaches. Briefings in Bioinformatics  2021; 22(6): bbab263.  

 

 

 

 

 

 



53 

 

Appendix 

Publications from the Thesis 

Conference Papers 

1. Antimicrobial Peptide Conjugation on the Catheter Surfaces for the Control and 

Prevention of Catheter Associated Urinary Tract Infections , 5th International 

Conference on Medical Devices. 

 

 

 

 

 

 

 



54 

 

Curriculum Vitae 

Name Surname : Başak Olcay 

E-mail   : basak.olcayy@hotmail.com 

 

Education: 

2011 – 2014 Izmir Sasalı Anatolian Teacher High School 

2014 – 2015 Atakent Anatolian High School 

2018  (01 - 06) University Of Oulu, Faculty of Biochemistry and Molecular 

Medicine 

2015 – 2020 İzmir Kâtip Çelebi University, Dept. of Biomedical Engineering 

2020 – 2022 İzmir Kâtip Çelebi University, Dept. of Biomedical Engineering  

 

Work Experience: 

2018 (05 – 06) Internship - University of Oulu Faculty of Biochemistry and 

Molecular Medicine, Developmental Biology Laboratory, Oulu / FINLAND  

2019 (06 – 07) Internship - Gulhane Health Sciences Unıversity Medical Design 

and Production Center (METUM),  Ankara  / TURKEY 

 

 

Publications (if any): 

1. ÇEVІK, Ziyşan Buse Yarali; OLCAY, Başak; KARAMAN, Ozan. Determination 

of Optimum Concentration of NGR Peptide With Anticancer Effect On Breast 

Cancer Microtissue. In: 2020 Medical Technologies Congress (TIPTEKNO). IEEE, 

2020. p. 1-3. 

2. Antimicrobial Peptide Conjugation on the Catheter Surfaces for the Control and 

Prevention of Catheter Associated Urinary Tract Infections, Journal Of Intelligent 

Systems With Application, (At the printing stage) 


	First of all, I would like to thank my advisor Assoc. Prof. Dr. Ozan Karaman for the knowledge he has added to me, and for his support. The extensive knowledge he had has been very valuable to me in my work.

