
 

 

 

Detection of Coal Fires in Soma with 

Landsat Temporal Thermal Images  

 

 
Submitted to the Graduate School of Natural and Applied Sciences 

in partial fulfillment of the requirements for the degree of  

Master of Science 

in Geomatics Engineering 

 

 

by 

Merve KÖŞKER 

 

Thesis Advisor: Prof. Dr. Özşen ÇORUMLUOĞLU 

 

June 2022



 

This is to certify that we have read the thesis Detection of Coal Fires in Soma with 

Landsat Temporal Thermal Images submitted by Merve KÖŞKER, and it has been 

judged to be successful, in scope and in quality, at the defense exam and accepted by 

our jury as a MASTER’S THESIS. 

 

 

 

APPROVED BY: 

 

 

 

Advisor:   Prof. Dr. Özşen ÇORUMLUOĞLU …………….. 

    İzmir Kâtip Çelebi University  

 

 

 

 

 

Committee Members: 

 

    Assist.Prof.Dr.Fatih TAKTAK  …………….. 

    Uşak University 

 

 

    Assist. Prof. Dr. Mehmet Güven KOÇAK  …………….. 

    İzmir Kâtip Çelebi University 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Date of Defense: June 02, 2022 



ii 

 

Declaration of Authorship 

I, Merve KÖŞKER, declare that this thesis titled Detection of Coal Fires in Soma 

with Landsat Temporal Thermal Images and the work presented in it are my own. 

I confirm that: 

• This work was done wholly or mainly while in candidature for the Master’s 

degree at this university.   

• Where any part of this thesis has previously been submitted for a degree or any 

other qualification at this university or any other institution, this has been 

clearly stated. 

• Where I have consulted the published work of others, this is always clearly 

attributed. 

• Where I have quoted from the work of others, the source is always given. This 

thesis is entirely my own work, with the exception of such quotations. 

• I have acknowledged all major sources of assistance. 

• Where the thesis is based on work done by myself jointly with others, I have 

made clear exactly what was done by others and what I have contributed 

myself. 

 

Signature: 

        

 

Date:    02.06.2022 

        

  



iii 

 

 

 

 

Detection of Coal Fires in Soma with Landsat Temporal 

Thermal Images  

 

Abstract 

Coal is one of the most important energy resources used in many countries for decades 

to produce energy. A type of fire called coal fires occurs when the coal surface is 

exposed to sunlight and in contact with oxygen for a long time in coal mine areas 

where coal is extracted. Coal fires are prevalent and critical incidents for most coal 

mining areas around the world. Various problems arise due to coal fires in coal mines. 

These problems affect many factors such as environment, society, economy and 

security directly or indirectly. Burning coal fire causes the formation of poisonous 

gases, particles and condensation by-products, making it a great disaster for the 

environment and nature. It should not be forgotten that coal fires, which irreversibly 

damage the surrounding geology, nature, soil and atmosphere, cause waste of valuable 

natural resources and economic losses. Investigating and monitoring the condition of 

coal mines is utterly useful and necessary. The fire crisis can be managed well by 

obtaining sufficient information on the status and magnitude of coal fires. The science 

of remote sensing has eased the identification and dynamic monitoring of coal fires in 

a wide coal mine area by using multi-temporal satellite image data. Soma (Manisa) 

coal mine area is chosen as the study area. To identify coal fires, retrieval of land 

surface temperatures (LST) of landsat satellite images are done. Firstly, the land 

surface temperatures (LST) were retrieved by using a single channel algorithm on the 

Landsat 5 TM thermal infrared band and Landsat 8 OLI/TIRS thermal infrared band. 
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Afterwards, a number of analyzes were done to check accuracy of the results. Finally, 

18 Landsat 8 OLI/TIRS land surface temperature (LST) images were mapped and 3 

period coal fire maps were created. 

 

Keywords: Remote Sensing, Soma, Coal Fires, Landsat Satellite Images, Land 

Surface Temperatures 
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 Landsat Temporal Termal Görüntüleri ile Soma'da 

Kömür Yangınlarının Tespiti 

 

Öz 

Kömür, pek çok ülkede on yıllardır enerji elde etmek amacıyla kullanılan önemli enerji 

kaynaklarından biridir. Kömür çıkarımı yapılan kömür madeni sahalarında kömür 

yüzeyinin güneş ışığına uzun bir süre maruz kalmasıyla ve oksijenle temas halinde 

olmasıyla birlikte kömür yangınları denilen yangın çeşidi ortaya çıkar. Kömür 

yangınları, dünya çapındaki çoğu kömür madeni alanı için yaygın ve kritik bir olaydır. 

Kömür madenlerindeki yangınlar nedeniyle çeşitli problemler ortaya çıkar. Bu 

problemler; çevre, toplum, ekonomi ve güvenlik gibi birçok unsuru doğrudan veya 

dolaylı bir şekilde etkiler. Yanan kömür yangını; zararlı gazların, partiküllerin ve 

yoğuşma yan ürünlerinin oluşmasına sebebiyet vererek çevre ve doğa için büyük bir 

felaket haline gelir. Etraftaki jeolojiye, doğaya, toprağa ve atmosfere geri 

döndürülemeyecek kadar büyük oranda zarar veren kömür yangınlarının değerli doğal 

kaynak israfına ve ekonomik kayıplara yol açtığı da unutulmamalıdır. Kömür 

madenlerinin durumunu araştırmak ve izlemek son derece yararlı ve gereklidir. Kömür 

yangınlarının durumu ve büyüklüğü ile ilgili yeterli bilgiye ulaşılarak yangın krizi iyi 

bir şekilde yönetilebilir. Uzaktan algılama bilimi, çok zamanlı uydu görüntüleri 

kullanarak geniş bir kömür madeni alanında kömür yangınlarının tanımlanmasını ve 

dinamik olarak izlenmesini kolaylaştırmıştır. Çalışma alanı olarak Soma (Manisa) 

kömür madeni sahası seçilmiştir. Kömür yangınlarını belirlemek için, landsat uydu 

görüntülerinin arazi yüzey sıcaklıklarının (LST) hesaplandı. İlk olarak, Landsat 5 TM 
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termal kızılötesi bandı ve Landsat 8 OLI/TIRS termal kızılötesi bandı üzerinde tek 

kanal algoritması kullanılarak arazi yüzey sıcaklıkları (LST) elde edilmiştir. Daha 

sonra, elde edilen sonuçların doğruluğunu araştırmak için çeşitli analizler yapılmıştır. 

Son olarak, 18 tane Landsat 8 OLI/TIRS arazi yüzey sıcaklık görüntüsü haritalandı ve 

3 periyotluk kömür yangını haritaları oluşturuldu. 

 

Anahtar Kelimeler: Uzaktan Algılama, Soma, Kömür Yangınları, Landsat Uydu 

Görüntüleri, Arazi Yüzey Sıcaklıkları 
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Chapter 1 

Introduction 

Coal is a sedimentary rock composed of organic and inorganic components that are 

formed as a result of the compression and solidification of plant residues and inorganic 

minerals under high pressure and temperature [1]. The accumulation of plants and trees 

remains in the swamps. Physical (pressure, precipitation, etc.) and chemical events 

(heat, degradation and transformation) occur for the carbonization process to take 

place. Eventually, the precipitation, alteration with chemical matters and physical 

effects over millions of years create coal. Geological time is one of the important 

parameters in the coalization process.  

The carboniferous, permian and crater-tertiary periods are the periods of the 

carbonization. The formation process of coal can be briefly summarized as follows:  

• The first phase is the accumulation and precipitation of plants, 

• The second phase is the biochemical and geochemical degradation, and 

• In the third phase, the physical, petrographic and chemical properties are 

formed by thermochemical transformations. 

The energy that plants absorbed from the Sun a very long time ago is derived from 

coal  [2].  Coal has many different application areas and it is a beneficial energy source 

for many industrial sectors. The mining industry, which contributes to the economy of 

many countries, unfortunately leads to the onset of environmental degradation due to 

various reasons such as coal fires. Mining activities cause friction and heat generation. 

The friction and heat make a coal fire, which is caused by the coal itself burning on its 

own [3].  
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1.1    Coal Fires 

Coal fires have become a phenomenon seen in plenty of coal mine areas where coal 

reserves are extracted. Coal fires, which are also referred to as coal seam fires, can 

form in underground habitats on the surface of the Earth [4]. The cause of coal fires is 

that coal oxidizes as a result of contact with oxygen and starts to burn spontaneously. 

It has been claimed that the spontaneous combustion potential of coal is effective in 

increasing the oxidation of coal at ambient temperatures [5]. The ignition or flash point 

of the coal takes place at the threshold temperature. Thus, coal starts to burn and coal 

fires materialize [6]. With coal emerging to the surface and oxygen absorption, the 

threshold temperature rises from 230 °C to 280 °C. Therefore, the reaction that occurs 

when coal reacts with oxygen is considered as an exothermic reaction. It is a great 

advantage that the high temperature difference caused by the presence of coal fires in 

coal mine areas can be used in determining the locations of coal fires [7]. Figure 1.1 is 

an image about coal combustion. 

 

Figure 1.1: Coal oxidizes as a result of contact with oxygen and starts to burn [8] 

Coal fires can cause higher temperatures on the land surface than the surrounding 

background. If the amount of heat which is released as a result of the reaction of coal 

with oxygen is not sufficiently dispersed, the coal temperature increases. When the 

increasing temperature reaches a certain value (threshold temperature interval), which 

is between 80°C-130 °C, the coal starts to burn [9-13]. The total temperature of a pixel 

varies according to the location, spread, surface type, and temperature of the coal fire 
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area and its surroundings. The temperature caused by surface coal fires is normally 

400°C higher than the background. The temperature change caused by underground 

coal fires varies depending on e.g. location, measuring time, weather conditions, etc. 

1.2    Spontaneous Combustion of Coal Fires 

Coal has a structure that can be easily ignited. It should not be forgotten that coal 

material is flammable. Coal fires are a type of event that occurs very frequently and 

should be taken seriously. One of the elements that contribute to the formation of coal 

fires is the spontaneous combustion of coal. The occurrence of coal fires depends on 

the presence of the following three factors in the same environment: temperature, fuel 

(in this case, coal), and, oxygen. 

 

The spontaneous combustion of coal can be examined on three different headings. 

These are coal properties, coal seam properties and external impacts. In addition, there 

are other factors that can be examined under subheadings which affect the spontaneous 

combustion of coal depending on these three main factors. Coal rank, inherent 

moisture content, sulfur content, ash content and maceral composition are among the 

factors that affect the properties of coal. The depth and thickness of the coal seam can 

cause the coal seam properties to change. Rainfall, wind, ambient temperature and 

humidity level are included in external factors affecting the spontaneous combustion 

of coal [13]. 

 

Coal fires gradually expand and sprawl on the land surface of coal dumps or coal seams 

as a result of spontaneous combustion over time. Such seriously spreading coal fires 

should be detected and controlled immediately [14,15]. The spontaneous combustion 

of coal can be natural (lightning, forest fires and peat fires) or human-induced (mining 

and domestic fires) [16]. This is especially valid for those arising in the underground 

coal seam. 

  

The contact of the coal material with oxygen triggers the spontaneous combustion of 

the coal. This is the main reason why the coal oxidation started. The formula of the 

coal oxidation (Equation 1.1) is given as follows [17]: 
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 Coal + O2 → CO2 + H2O + Heat (1.1) 

Fires caused by the spontaneous combustion of coal often start with massive 

temperature increases, which are referred as"hot spots" in the deepest parts of the coal 

beds. Herewith, the temperature of the coal tends to stay above the ambient 

temperature. The temperature of the coal gradually rises to a threshold temperature 

range of 80 °C to 130 °C. In this temperature range, carbon monoxide (CO) and 

hydrogen (H2) are produced. Eventually, a stable reaction occurs. This reaction is 

exothermic due to the temperature released as a result of the reaction. Once the 

threshold temperature is reached, the heat that is generated by the reaction rises at a 

rapid rate. The temperature of the coal continues to increase until it reaches the interval 

from 230 °C to 280 ºC. The temperature of the coal rises until combustion starts. The 

combustion and self-ignition of the coal ensue in flames. In a sense, the coal starts to 

burn.  Figure 1.2 summarizes the process of  spontaneous coal combustion. 

 

 
Figure Hata! Belgede belirtilen stilde metne rastlanmadı..2: Visual expression of 

spontaneous combustion of coal [18] 

 

The quality of the coal and the size of the particles affect the spontaneous combustion 

of the coal. For example, high ranking coals with high carbon content are very 

susceptible to burning [13]. The large surface areas of the coal particles also allow the 

combustion reaction to spread easily and quickly [19]. 
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Coal mining methods applied to extract coal cause cracks and fissures in the coal mine 

area. In this way, the air passes through these cracks and fissures to the coal seams and 

underground coal. Thus, coal fires occur. Local climatic conditions are another 

important factor that can change the balance in the reaction of coal with oxygen. These 

are some of the environmental factors that may come to mind in the oxidation reaction 

of coal [13]. 

1.3    Impacts of Coal Fires 

The spread of coal fires to the environment poses a great danger to people and other 

creatures living in the vicinity. Land subsidence, one of the adverse effects of coal 

fires, causes the land and vegetation cover to deteriorate. Besides, it causes noticeable 

damage to buildings, roads, railways and similar infrastructures. Figure 1.3 shows an 

example of coal fire incidents. 

 
Figure 1.3: Coal fires may cause serious problems to living life and nature [20] 

The impacts of coal fires have been determined by several studies, and it has been 

revealed that these impacts change the dynamics of nature, global and local 

environment, human health, the economy, social life and many other factors in many 

ways. Sulphur dioxide (SO2), nitrogen oxide (NO), carbon monoxide (CO), carbon 

dioxide (CO2), methane (CH4) [21] and similar greenhouse gases, windblown ash, 

smoke and dust could be released to nature through cracks and fissures in the coal mine 
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area. As a result of the burning of excess coal, land subsidence and collapse can be 

seen. Even desertification may occur after land subsidence, vegetation loss and even 

because of heat. Aside from the significant impact on an area and its surroundings 

where a coal fire broke out, the coal reserves in the coal mine area are greatly reduced 

and their economic contribution decreases. In the light of this information, it should 

be taken into account that coal fires adversely affect environment and may cause 

climate change, global warming, and similar horrible disasters that should be taken 

seriously depending on the increase in the temperature of the coal fire area. 

It is a fact that mining activities make economic contributions to the region where they 

operate. However, these activities also have negative effects on the environment in 

which they are located. Other than those mentioned above, there are also some other 

negative effects such as dust, noise, vibration, explosion, displacement and loss of 

water resources in open pits. In underground pits, negative effects such as the 

formation of degradation and the drainage of groundwater out of the pit occur. The 

negativities arising from coal preparation and washing activities are the effects of solid 

and liquid wastes to disrupting the ecological balance. Acid rain occurs as a result of 

the mixing of poisonous gases and other particles with the use of coal as fuel.  

Surface mining is an extremely prevalent type of mining that can be done in large 

areas. Examples of surface mining techniques are open-pit mining, mountain top 

removal mining, strip mining, etc. By applying surface mining procedures, soil and 

rock layers on a shallow ore deposit are removed from their places, thus providing 

access to the ore deposit. The disposal of unnecessary material removed during the 

excavation of the coal mine surface in surrounding areas leads to undesirable changes 

in the entire land cover and land use. For this reason, it is necessary to determine the 

areas where surface mining is applied to understand whether land cover and land use 

in the coal mine area and its surroundings have undergone any change. Determination 

of coal surface mining areas with satellite imagery also incorporates land use and land 

cover changes in mining areas; coal mine area monitoring; mine wastewater 

management; detection and monitoring of coal seams; reclamation of mined areas; and 

so on. 

Surface mining is considered to be very advantageous for mining industry. 

Nevertheless, it should not be widely used due to its negative effect to the vegetation 
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cover and the freshwater bodies and the damage in the ecological environment. The 

desertification of coal mine soil is another negative effect of surface mining [22,23]. 

Surface mining, which is applied in very large areas, causes a decrease in the yield of 

the mineral soil and a decrease in biological diversity [24]. In addition, forests are 

inevitably destroyed by open pit mining activities. In Figure 1.4, surface coal mining 

activities are shown. 

 

Figure 1.4: Surface Coal Mining Activities [25] 

Surface coal fires and underground coal fires are dangerous hazards that can occur in 

underground coal seams, stored coal piles, and on damaged surface dumps of many 

coal mine areas. Coal surface fires originating from open cast mining could cause a 

great disaster if not controlled. The continually burning coal fire in coal seams 

interrupts environmental, ecological, and social welfare activities. Surface temperature 

anomalies develop as a result of the release of heat and gases through cracks and 

fissures in the surface of the coal mine area. 

Surface coal fires can be detected from radiant temperature with derivation of a cut-

off temperature which is used for seperating coal mine fire pixels from non-coal mine 

fire pixels when thermal imagery is used. The cut-off temperature is controlled by 

temperature contrast between coal fire and several other elements such as rocks, 

vegetation, etc. This temperature contrast can be influenced by many related factors in 

the coal mine area, and these factors can be reproduced by giving examples such as 

variability of rock types, proportion of vegetation, intensity of coal fires. Figure 1.5 

shows an example of underground coal mine area. 
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Figure 1.5: Underground Coal Mining [26] 

In cases where surface coal mining methods are inadequate, underground mining 

methods come into play. Underground mining is a method carried out by opening one 

or more portals or shafts that reach deep coal seams, and thus extracting coal from 

underground. Underground coal mine fires are ignited by natural means or human 

error. These fires play an active role in the pollution of the atmosphere, acid rains, and 

the increase of coronary and respiratory diseases. Depletion of valuable and non-

renewable energy resources and destruction of floral and fauna habitats are due to these 

fires, and living life is threatened by temperature changes, landslide, land subsidence 

and pollution.  

1.4    Detection of Coal Fires by Remote Sensing 

Identification of coal fires is possible by detecting changes in land surface temperature 

values [16] because of the thermal anomalies. The surface emissivity of the land should 

be known so that more reliable land surface temperatures can be obtained from thermal 

infrared data. When coal fires do not dominate the coal mine and its surroundings, the 

land surface temperature is lower, so that high land surface temperatures indicate coal 

fires in coal mines and their surrounding areas. 

The use of remote sensing techniques for the detection of coal fires was first seen in 

the 1960s [27]. Spatial data has been collected with airborne and spaceborne 

techniques since the 1960s, thus this advancement has enabled us to identify and 

monitor coal fires in a quick way. Detection and monitoring of coal fires by remote 
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sensing data has gradually started to improve and develop with the contribution of 

research and studies over time. Black & white and color aerial photographs are used 

to identify coal fires by using airborne remote sensing techniques [27]. Spaceborne 

remote sensing utilizes spatial information from Landsat TM (Thematic Mapper), 

SPOT (Satellite Pour l’Observation de la Terre), CBERS (China–Brazil Earth 

Resources Satellite program), IKONOS, NOAA (National Oceanic and Atmospheric 

Administration), Quickbird and similar satellite and radar systems to detect and 

monitor coal fires [28-34]. The main reasons why remote sensing images have been 

mostly preferred in recent years are that satellite images can efficiently cover large-

scale areas and easily collect information about coal fires caused by spontaneous 

combustion in a large-scale mine area. In these ways, the remote sensing-based 

methods are better than traditional point-based geophysical exploration methods, and 

the remote sensing-based methods can be used to make up for the flaws in the 

traditional point-based geophysical exploration methods. 

Apart from remote sensing, many methods are used to detect coal fires in coal mines: 

Radon measurement technique, borehole temperature measurement technique, gas 

measurement technique, and so on. These methods are effectively implemented to 

determine the location, scope and trend of coal fire areas. 

Generally, three main methods are used to detect coal fires in coal mines: 

• borehole temperature measurements,  

• airborne remote sensing techniques, and  

• spaceborne remote sensing techniques. 

The borehole temperature measurement method is quite useful for detecting coal fires 

because the measured abnormally high temperatures helps to locate coal fires at close 

range. In order to detect the high temperatures caused by the fire, temperature 

measurements are made with a cabled thermocouple or thermometer in the borehole. 

In addition, this method allows direct measurement of coal fires. Unfortunately, the 

method of borehole temperature measurements is designed to collect the necessary 

amount of data for investigations in very small areas. Also, this method is very 

expensive when it is compared with image-based other coal fire detection methods. 
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The radioactive and resistivity methods are some of the several variants of the 

geophysical method. High temperatures are detected as a result of the alpha (α) particle 

being measured if the radioactive method is preferred. The presence of a large majority 

of alpha particles indicates where there are high temperatures, that is, where coal fires 

occur. In the resistivity method, the electrical resistance of the burned rocks is 

calculated by the electric poles. Thus, the obtained electrical resistance values can be 

compared with the electrical resistance of the rocks in the unburned state, and coal 

fires can be traced. Thermo-composition studies are also carried out in order to obtain 

information about the status of coal fires in areas where mines are concentrated. For 

this, thermal infrared cameras are acquired, and each pixel detected from the ground 

gives the temperature value of that place.  

The main weaknesses of the methods other than the remote sensing techniques, which 

were briefly introduced above, are that they prolong the data collection process, make 

it difficult to search for repetitive procedures, are not suitable for large areas, and so 

on. For this reason, remote sensing methods are among the most preferred methods in 

the investigation of coal fires, as they provide data entry for both narrow and large 

areas, which can be repeated in a short time. 

Airborne remote sensing is another method used in the detection of coal fires. The first 

use of these techniques took place in the United States around the 1960s [35]. The way 

that airborne remote sensing works is by using photographs to find things like coal 

fires. 

In the 1980s, with developing technology, coal fires began to be detected using space-

based remote sensing [36]. The advantages of this method are many and they can be 

sorted as follows: detecting the coal fires using multi-spectral and multi-temporal data 

is eligible, it gives opportunity to detect and monitor larger areas, and relatively more 

affordable. This study is focused on the space-based remote sensing techniques. In this 

study, satellite data is used as primary data to detect coal fires. 

Several types of image-based data have been used to locate and monitor coal fires in 

coal mines. A few examples of these types of data and their resolution qualities can be 

given as follows: 
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• low spatial resolution satellite images: the Advanced Very High Resolution 

Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS), 

• higher spatial resolution satellite images: Landsat TM, Landsat ETM+, Landsat 

8 OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) and the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), 

• high spatial resolution satellite images: the experimental Bi-spectral Infrared 

Detection (BIRD). 

There are many studies on coal fires detection and analysis.  Mishra et al. [37] used a 

threshold technique to extract the thermal anomalies in Jharia Coalfield to detect and 

analyze coal fires. The Landsat data were used to estimate temperatures of coal fires 

by comparing them to threshold temperatures that were found by using an iterative 

method to separate coal fire areas from other areas. They indicated that the most coal 

fire-affected areas lied in proximity to mapped fault zones; spatial distribution and 

extent of fire changed over time. Xue et al. [38] used an exclusion method and a 

multiple-factor analysis method involving land surface temperature (LST), burnt rocks 

and land use and land cover (LULC), for the purpose of detecting sponteneous 

combustion of coal. This combined method was applied to identify distribution of coal 

fire areas by using spatial overlay analysis in the ArcGIS program. Biswal and Gorai 

[39] indicated that the implementation of threshold temperature resulting from the 

sampling of radiant temperature data helped to detect the high-temperature fire zones 

indicative of coal fire pixels over the Jharia coalfield.  Mishra et al. [40] used Landsat 

7 ETM+ thermal band (band 6) data to derive the coal fire map and classify it into 

surface and subsurface fires. They indicated that the temperatures obtained with 

satellite images gave a scaled temperature variation as compared to the results obtained 

by thermal image cameras, indicating the surface and subsurface coal fires.  

Trinh and Zablotskii [41] used multi-temporal Landsat TM, ETM+ and Landsat 8 

thermal band data which were captured between 2007 and 2014. The spectral radiance 

and the brightness temperature were calculated. The emissivity of surface was 

determined to retrieve the land surface temperature (LST) by using normalized 
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difference vegetation index (NDVI) method which was developed by Valor and 

Caselles [42,43]. Gangopadhyay et al. [44] stated that the Landsat 5 TM thermal band 

(band 6) data could clearly reveal the investigated surface temperature anomalies 

which were developed because of coal fires. However, due to the lack of very high 

resolution of the Landsat 5 TM satellite image data, some high temperature areas not 

formed by coal fires may also be included in coal fires areas. The use of NDVI-induced 

emissivity can provide a more accurate and reliable land surface temperature (LST) 

calculation for all land cover types, given the effects of plant species, leaf water 

content, and viewing angle. Huo et al. [45] used Landsat TM and Landsat ETM+ 

thermal band (band 6) data to detect coal fires. According to the researchers, the pixel 

aggregated temperatures of surface coal fires sometimes do not reach the saturation 

temperature of the Landsat thermal channel (approximately 70 °C) and this situation 

causes difficulties on the subject of surface coal fires detection. Cracknell and Mansor 

[46] determined the sub-surface high temperature sources in Jharia coalfields by using 

medium resolution Landsat 5 TM data. The Landsat 5 TM thermal band (band 6) was 

used to find out where and how strong thermal anomalies were caused by coal fires in 

coal mines. 

Jiang et al. [47] reclaimed that remote sensing was a practical method for monitoring 

and studying areas of surface coal fires and coal fires that are very close to the surface. 

They also added that the geophysical exploration methods were the best choose for 

detecting deep and hidden coal fire areas. Mishra et al. [37] stated that China and India 

have studied coal fires with the application of airborne multispectral remote sensing 

methods since the 1980s. In addition, daytime airborne thermal infrared (TIR) and 

multispectral data were used to detect and map coal fires from the Jharia coalfield in 

India between 1984 and 1987 [48-51]. In airborne thermal remote sensing, the content 

of the data collected for the detection of coal fires is very valuable because it is not 

dependent on time, height and temperature. Therefore, the optimal image can be 

obtained with the highly distinguished areas of coal fire and other features and can be 

used to identify small coal fire ares. Besides, it has high spatial resolution due to 

positive effects of independence of flying height. Prakash et al. [52] used the Landsat 

5 TM thermal band (band 6) night-time data to detect surface and subsurface fires in 

Jharia coal mines of India. Prasun et al. [53] analyzed Landsat 5 TM thermal band 

(band 6) data for retrieval of land surface temperature (LST) along with the normalized 



13 

 

difference vegetation index (NDVI) to identify coal fires in the Raniganj coalbelt, 

India.  Chen et al. [54] processed multi-temporal thermal infrared data, high spatial 

resolution remote sensing data, and field measurements to detect coal mine fire areas 

in the Inner Mongolia Autonomous region in northern China. 

1.5    Objectives of The Thesis 

An important part of Turkey's coal reserves are located in Manisa's Soma district. The 

objectives of this thesis are given as follows: 

• to detect and monitor the areas of coal fires using multi-temporal Landsat 5 

TM thermal band (band 6) data and Landsat 8 OLI/TIRS thermal band (band 

10 and band 11) data;  

• to obtain land surface emissivity (LSE) from normalized difference vegetation 

index (NDVI); 

• to get information about land surface temperature (LST) of the study area; 

• to obtain temporal thermal maps of the coal fire areas in yearly intervals; 

• to investigate accuracy of Landsat 5 TM and Landsat 8 OLI/TIRS satellite data 

for identifying locations of coal fire areas. 
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Chapter 2 

MATERIALS AND METHODS 

The main purpose of this study is to detect and monitor coal fires that occur in the coal 

mine areas in Soma district of Manisa province. These fires threaten both the 

environment and daily life by causing drastic changes on the land surface. Thus, as a 

result of the effective use of remote sensing materials (spaceborne remote sensing 

products such as multitemporal Landsat 5 TM and Landsat 8 OLI/TIRS satellite data) 

and data processing programs (ERDAS Imagine, ArcGIS and, Google Earth), the land 

surface temperatures (LST) of the study area will be retrieved and the locations of 

thermal anomalies will be determined. Finally, the coal fires in Soma coal mine areas 

will be revealed. In addition, accuracies of the study results will be validated by 

applying a number of methods. The study consists of three stages: 

• Data acquisition  

• Data preprocessing 

• Data processing 

2.1    Study Area 

2.1.1     Geographic Location of Soma 

The study area is covered the region within the borders of Soma district of Manisa 

province. Soma is located in the north of the Aegean Region. Kırkağaç is in the east, 

Bergama in the west, Savaştepe (Balıkesir) and İvrindi in the north and Palamut 

subdistrict in the south of Soma. Soma, located in the northwest of the province, 

neighbors Kırkağaç in the east, Kınık and Bergama districts of İzmir in the west, 

Savaştepe and İvrindi districts of Balıkesir in the north and Akhisar in the south. Soma 
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is in the North Aegean Region, on the Akhisar-Bergama highway and on the Ankara-

İzmir railway. The district was established in Bakırçay valley, which is 160 meters 

above sea level. Soma is between 27.37 east longitude and 39.11 north latitude 

(39°11′N 27°37′E). The district has an average altitude of 175 meters and an area of 

about 826 km². In Figure 2.1, geographic map of Soma is presented. 

 

Figure 2.1: Geographic Location of Soma 

More than half of Soma's land structure is mountainous. The district is covered with 

dense, steep hills and high mountains to the south. In the east of Soma, there are high 

mountains, a few plateaus and some ridges suitable for settlement over time. There is 

Bakırçay in the west of Soma. With the effect of the streams fed by Bakırçay and the 

branches of these streams, the lands were divided, valleys and plains were formed at 

several points. The district is surrounded by mountains from the south, east, north and 

north east. The main plain of the district is Bakırçay plain, which is one of the 

numbered plains of the Aegean Region. This plain is located between Marda Mountain 

and Yunt Mountain. The most productive area of the district is Bakırçay plain. There 

are many large and small valleys in the district. The valleys with Maden and Sarıkaya 

creeks and Türkali Kovuk Creek can be given as examples of these valleys. 
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Characteristic Inner Aegean climate is observed in the basin. Summers are hot and dry, 

winters are cold and rainy. The temperature ranges from 25°C to 35 °C in summer and 

from -3°C to 10°C in winter. It is rainy in spring and autumn. It snows from time to 

time during the winter months. Soma is included in the Semi-humid Mediterranean 

climate zone. In this region, the winter season is the rainy season with an increase of 

frontal rain and the summer is the least rainy season. The warmest month is July. The 

average temperature of the region is around 23°C-24°C, and the temperature is low 

because it is frequently exposed to cold air currents from the Balkans in winter. The 

coldest month is January and has an average temperature of 3°C-5°C. Snowfalls are 

normal and frequent frost events are encountered in the region. A mediterranean 

climate effect is seen on flora. High places are usually covered with pine forests. There 

are cultivated and planted agricultural areas in low places and plains. 

2.1.2     Geological Structure of Soma 

The bedrock of the Soma Basin consists of paleozoic graywacke and mesozoic 

crystallized limestones. Neogene deposits overlie the foundation in a disharmonic 

way. These deposits are myocene basement series (M1), marl series (M2), limestone 

series (M3) and pliocene aged sandstone, mottled clay (P1) and marl-tuff (P2) series. 

Coal horizon has been formed in three layers. These layers are called main layer (KM1-

2), middle layer (KM3) and upper layer (KP1).  

The thickness of the M1 layer is between 50-200 meters. The thickness of the M2 layer 

is 100 meters and the thickness of the M3 layer is 50-60 meters. The thickness of the 

P1 layer is between 120-150 meters, the thickness of the P2 layer is 300-500 meters. 

The thickness of the KM2 layer varies between 15-22 meters. The thickness of the 

KM3 layers is between 6-10 meters. In addition, the thickness of the KP1 layer is 

around 7-8 meters. 

• Main layer; M1 is among the M2 formations. It is the most important coal layer 

of the basin. It has an average thickness of 20 meters and contains exploitable 

coal. It has a black bright color, conchoidal diffraction and a hard structure. 

The analysis values of coal can be specified as 12-14% water (humidity), 26-

28% ash, and 0.8-0.9% Sulphur (S). According to its location and level, the 

lower heating value ranges between approximately 3500-4500 K.Cal/Kg. 
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• The middle layer was formed in the upper levels of the M3 formation. It is not 

fertile because it has plenty of interruptions and is not continuous. It is partially 

produced in open pits. 

• The upper layer is located between the P1-P2 formations of the pliocene. It is 

rich in clay and low in calories. It is produced for thermal power plant in Deniş. 

The analysis values of the coal were measured as 20-25% water (humidity) 45-

50% ash. The lower heating value ranges between approximately 3500-4500 

K.Cal/Kg. In Figure 2.2, geological structure of Soma is given in sections. 

 

Figure 2.2: General Stratigraphic Sections for The Soma Coal Basin [55] 
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2.1.3     Coal Mining In Soma 

Soma is a town made famous for coal mining in Turkey. The basis of the district’s 

economy is lignite management and the developed sectors depend on this 

management. In the district, electrical energy is obtained from coal and coal takes the 

first place in the district’s economy. Lignite coal mining were started in Soma with the 

discovery of coal in 1913. There are Aegean Lignite Enterprise Regional Directorate 

(Ege Linyit İşletmeleri Genel Müdürlüğü) and TEAŞ (Türkiye Elektrik Üretim Şirketi) 

power plants in the district. Soma Thermal Power Plant (SEAS) (Soma Termik 

Santrali) meets the electricity needs of West and Northwest Anatolia from the shortest 

distance, thereby ensuring economic and social development in the region. There are 

not many agricultural areas due to the coal basins in Soma. 

 

Figure 2.3: Licensed Coal Mine Areas in Soma  
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The licensed coal mine areas can be listed as follows: 

• Deniş: Open-pit minig activities are ongoing. 

• Sarıkaya: In this field where open pit mining is carried out, underground 

management is also carried out with royalty method. 

• Işıklar: In this field where open pit mining is carried out, underground 

management is also carried out with royalty method. 

• Darkale: The underground management studies with royalty method were 

terminated in 2013. There is no mining activity. 

• Eynez: Open pit mining and underground mining operations are carried out 

with royalty method. 

• Deliimamlar: Underground management has been done with royalty method. 

Studies in this field have been terminated. There is no mining activity. 

In Figure 2.4-2.8, a number of photographs of Soma coal mine areas are presented 

[56].  

 
(a)                                                  (b) 

 

 
(c) 

Figure 2.4: (a) Deniş Bunker Area, (b) Deniş Open Pit Mining Area 1,  (c) Deniş 

Open Pit Mining Area 2 
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(a)                                                (b) 

Figure 2.5: (a) Soma Sarıkaya Telsiz Open Pit Mining Area 1, (b) Soma Sarıkaya 

Telsiz Open Pit Mining Area 2 

 

 
                                           (a)                                                  (b) 

 
(c) 

Figure 2.6: Soma Kısrakdere Işıklar Open Pit Mining Management, Soma Kısrakdere 

Işıklar Open Pit Mining Area 1, Soma Kısrakdere Işıklar Open Pit Mining Area 2 

 

 
                                      (a)                                                (b) 

 
                                           (c)                                           (d) 

Figure 2.7: (a) Soma Eynez Open Pit Mining Area 1, (b) Soma Eynez Open Pit 

Mining Area 2, (c) Soma Eynez Open Pit Mining Area 3, (d) Soma Eynez Open Pit 

Mining Area 4 
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(a)                                                (b) 

 
(c)                                                 (d) 

Figure 2.8: (a) Deniş Dedetaşı C Panel Open Pit Mining Area 1, (b) Deniş 

Dedetaşı C Panel Open Pit Mining Area 2, (c) Deniş Dedetaşı C Panel Open Pit 

Mining Area 3, (d) Soma Elmalı Mining Area 

2.2    DATA 

Thanks to remote sensing technology through sensors on the satellites, it has been 

possible to quickly and effectively map the dangers caused by a host of abnormally 

high temperatures such as coal fires, forest fires, oil well fires and volcanic eruptions. 

Various satellite images can be obtained for mapping processes of these events by 

using such as Landsat 4-5 TM, Landsat 7 ETM+, ASTER and MODIS satellite data 

without being on the event sites, which is generally extremely dangerous.   

The datasets used in this study were downloaded from the United States Geological 

Survey (USGS) website. The USGS website is a data resource website that provides 

free spatial data for remote sensing and similar scientific disciplines. In this study, 

Landsat 5 TM and Landsat 8 OLI/TIRS satellite images were used as primary data. 

Additionally, a map that gives information about the locations of coal mines and the 

institutions and organizations operating these mines is an important resource that can 

be looked at in the detection of coal fires that occur in coal mines. The data collected 

for this study given as follows: 

• Landsat 5 TM Satellite Data 

• Landsat 8 OLI/TIRS Satellite Data 
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• Spatial Distribution Map of Coal Mines in Soma Region as ancillary data in 

Portable Document Format (PDF) and Keyhole Markup Language (KMZ) 

format 

2.2.1     Landsat 5 TM 

 

Figure 2.9: Spectral Bands and Wavelengths of the Landsat 5 TM Satellite Sensor 

Landsat sensors, spectral channels and band-passes, superimposed on atmospheric 

transmission percentage (grey background). MSS: Landsat-1 through -5; TM: 

Landsat-4 and -5; ETM+: Landsat-7; OLI and TIRS: Landsat-8 [57] 

Landsat 5 TM satellite images are collected via the sensors on the Landsat 5 TM 

satellite, taking advantage of the technological privileges offered by remote sensing 

science. As it is seen Figure 2.9, Landsat 5 TM satellite images consist of six spectral 

reflection bands in total, respectively: 

• Band 1: 0.45 μm – 0.52 μm, 

• Band 2: 0.52 μm – 0.60 μm, 

• Band 3: 0.63 μm – 0.69 μm, 

• Band 4: 0.76 μm – 0.90 μm, 

• Band 5: 1.55 μm – 1.75 μm, and 

• Band 7: 2.08 μm – 2.35 μm. 
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They also contain a thermal infrared (TIR) band (band 6): 10.40 μm – 12.50 μm with 

a spatial resolution of 120 meters. Nevertheless, all the Landsat 5 TM products are 

resampled to 30 meters resolution. 

In most of wild fire studies on land surface, mostly SWIR (Shortwave Infrared) bands 

(band 5 and band 7) and TIR band (Band 6) data have been used as the main source 

for retrieving land surface temperature (LST) information [48,50,51,58,59,60,62]. As 

additional information, Landsat 5 TM sensors, which detect band 6 (10.40 μm – 12.50 

μm) and Band 7 (2.08 μm – 2.35 μm) wavelengths, can be particularly useful when 

working on areas where the possibility of fire is suspected. 

It can be said that the surface temperature above underground coal fires is less high 

due to the relatively low thermal conductivity of materials such as sandstone, shale, 

coal [52], which are frequently encountered in the coal mine area, compared to other 

materials in nature. Even if this is the fact, these low temperature values can easily be 

determined with thermal band (band 6) of Landsat 5 TM [60].  

For the measurements of higher temperature surface fires, especially if fires caused by 

volcanic eruptions in volcanic terrains are investigated, SWIR bands should be 

preferred because thermal band (band 6) is not very good at sensing temperatures 

above 68.00°C [63-68].  

The time interval of captured satellite images for the detection and mapping of coal 

fire areas is usually between 9.30 antimeridian (AM) and 10.30 antimeridian (AM) 

and were detected by sensors during daytime. In some studies, Landsat 5 TM thermal 

band (band 6) data which are detected at night have also been included in the detection 

of coal fires that continue to burn [69,17]. The presence of abnormally high 

temperature in an area without coal fire in the process of detecting land surface 

temperature (LST) with the effects of reflected sunlight in daytime satellite images 

may lead to deceptive results. Satellite images which are captured by sensors at night, 

on the other hand, provide an accurate detection of the radiation emitted by still 

burning coal fires, as they are independent of sunlight effects.  

This satellite was taken out of service in January 2013. The Landsat Enhanced 

Thematic Mapper Plus (ETM+) was launched on LANDSAT 7 as next LANDSAT 

mision’s satellite at 1999 after 15 years of LANDSAT 5 launch and the satellite data 
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collection has been being continued since 2013 with this satellite and even with 

LANDSAT 8. 

It has been acknowledged that Landsat TM thermal band (band 6) have been used in 

many studies to detect the traces of coal fires. The spatial resolution of the Landsat 

TM (band 6) data is 120 meters, and this resolution was believed to be difficult to 

detect small-scale coal fires in the depths of the ground [28]. Nevertheless, Landsat 6 

TM data makes it easy to research large, sloping and rocky (hard to reach) areas where 

fieldwork is often subtle and monitor burning rocks, sparse vegetation, vents, and 

fissures in coal mine areas [44].  

2.2.2     Landsat 8 OLI/TIRS 

The Landsat 8 OLI/TIRS satellite is also called as Landsat Data Continuity Mission 

(LDCM). The basic difference of Landsat 8 OLI/TIRS from Landsat 5 TM and Landsat 

7 ETM+ is that Landsat 8 OLI/TIRS contains two thermal infrared bands (TIR) 

between 10 µm and 12 µm. Landsat 8 OLI and TIRS satellite have eleven spectral 

bands and the data capture process takes place through these spectral bands which are 

given as follows: 

• Band 1: 0.43 μm – 0.45 μm 

• Band 2: 0.45 μm – 0.51 μm 

• Band 3: 0.53 μm – 0.59 μm 

• Band 4: 0.64 μm – 0.67 μm 

• Band 5: 0.85 μm – 0.88 μm 

• Band 6: 1.57 μm – 1.65 μm 

• Band 7: 2.11 μm – 2.29 μm 

• Band 8: 0.50 μm – 0.68 μm 

• Band 9: 1.36 μm – 1.38 μm 
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• Band 10: 10.60 μm – 11.19 μm 

• Band 11: 11.50 μm – 12.51 μm 

The spatial resolutions of band 1, 2, 3, 4, 5, 6, 7 and 9 are 30 meters, the spatial 

resolution of band 8 is 15 meters. In addition, Landsat 8 satellite incorporates a thermal 

sensor other than Operational Land Imager (OLI) that is called Thermal Infrared 

Sensor (TIRS). The TIRS thermal sensor consists of two thermal bands: Band 10 

(10.60 μm – 11.19 μm) and Band 11 (11.50 μm – 12.51 μm). In fact, TIRS thermal 

band images are stored in sensors with 100 meters of spatial resolution information, 

but images resampled to 30 meters are included in the data processing part. 

Table 2.1: Characteristics of Landsat 8 Satellite Bands (This table is prepared with the 

contributions of the earth observing system website.) [70] 

Sensor 
Type 

Band 
name 

Band 
number 

Wavelength 
(μm) 

Resolution 
(m) 

Band Applications 

OLI Coastal 1 0.43 - 0.45 30 Coastal and aerosol studies 

OLI Blue 2 0.45 - 0.51 30 Bathymetric mapping, 
distinguishing soil from 

vegetation, and deciduous 
from coniferous vegetation 

OLI Green 3 0.53 - 0.59 30 Emphasizes peak vegetation, 
which is useful for assessing 

plant vigor 

OLI Red 4 0.63 - 0.67 30 Discriminates vegetation 
slopes 

OLI NIR 5 0.85 - 0.88 30 Emphasizes biomass content 
and shorelines 

OLI SWIR 1 6 1.57 - 1.65 30 Discriminates moisture 
content of soil and 

vegetation; penetrates thin 
clouds 

 
OLI 

 
SWIR 2 

 
7 

 
2.11 - 2.29 

 
30 

Improved ability to track 
moisture content of soil and 

vegetation and thin cloud 
penetration 

OLI Pan 8 0.50 - 0.68 15 15 meter resolution, sharper 
image definition 

OLI Cirrus 9 1.36 - 1.38 30 Improved detection of cirrus 
cloud contamination 

TIRS TIRS 1 10 10.60 - 
11.19 

30 (100) 100 meter resolution, 
thermal mapping and 

estimated soil moisture 

TIRS TIRS 2 11 11.50 - 
12.51 

30 (100) 100 meter resolution, 
thermal mapping and 

estimated soil moisture 
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Thermal bands (TIR) data have proven themselves in obtaining highly accurate land 

surface temperature data (LST) with approximate scene size 170000 m north-south 

and 183000 m east-west. Additionally, SWIR 1 band (band 7) data is a powerful 

alternative to interpret high temperature objects by making temperature estimates [71]. 

The usage areas of Landsat 8 OLI/TIRS satellite data include land surface temperature 

(LST) detection, which requires band 10 and/or band 11 thermal band data [72]. 

Landsat 8 OLI/TIRS satellite still actively continues to provide remote sensing data. 

 

Figure 2.10: Spectral response for Landsat 4 TM6, Landsat 5 TM6, Landsat 7 ETM+ 

6, and Landsat 8 TIRS1 [73] 

The effective wavelengths are 11.154 μm for Landsat 4 TM6, 11.457 μm for Landsat 

5 TM6, 11.269 μm for Landsat 7 ETM+ 6, and 10.904 μm for Landsat 8 TIRS1, 

respectively given in Figure 2.10.  

2.3    Remote Sensing Techniques For Coal Fire Detection 

Remote sensing techniques began to be used in the United States in the 1960s for the 

first time in history, and coal fires in coal mines were first studied during those dates 

with these techniques. These studies were conducted by Greene et al. [74]. Since the 

thermal anomalies on the surface were quite enormous, they were easily detected by 

thermal infrared satellite images. By 1972, Ellyett and Fleming revealed the coal fires 

that took place in the coal mine in Australia with the help of an optical-mechanical 

sensor that detects the infrared wavelength [75]. Since the 1980s, the use of airborne 

and spaceborne sensors has increased, and the detection of coal fires by applying 

remote sensing techniques has become widespread in coal producing countries such as 

China and India. In recent years, researchers have achieved results successfully in 



27 

 

studies using Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI/TIRS, ASTER, MODIS, 

and similar satellite sensors to detect hot spots, surface and underground coal fires at 

abnormally high temperatures. 

Electromagnetic energy is measured by means of airborne or spaceborne systems. The 

measured electromagnetic energy allows to define and classify land surface properties. 

Thus, the properties of the objects on the land surface that radiate and reflect 

electromagnetic energy are obtained and the information about these objects can be 

examined. Coal fires, which are actively continuing, cause many changes in the land 

where they are located and the surrounding areas [76]: 

• the increase of temperature,  

• emission of smoking,  

• changes in colour of caprocks,  

• formation and deposition of new materials on the surface,  

• land cracking and subsidence at the surface. 

The characteristics of the changes can be identified by satellite remote sensing data 

and the thermal anomalies can be analyzed using satellite thermal infrared images. In 

the optical satellite image method, some situations that address the effects of coal fires 

can be given as rock assemblies that have been scorched by coal fires have a different 

reflection pattern (and spectral signature) compared to their natural state, and thus their 

detection can be made. Besides, fog, smoke and sulfur dioxide clouds with high density 

can be noticed in places where coal fires are occurred. 

The most important indication of coal fires in the matter of coal fire detection is the 

presence of abnormally high temperatures. The combustion heat of coal has the 

essential effect on the emergence of these thermal anomalies. The thermal anomalies 

provide answers to questions about the extent of the coal fire area, the intensity of the 

coal fire and the amount of coal loss. The thermal anomalies can be sensed by thermal 

infrared sensors of airborne/spaceborne platforms.  
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Waste materials in coal mines contain sufficient amount of coal and can react 

chemically with oxygen upon contact with air [17]. High heat transfer occurs due to 

heat conduction in untouched sections of coal seams and thermal anomalies ensue. 

Therefore, coal fires have the opportunity to spread over wider areas. The detection 

and monitoring of coal fires can be practised by a number of satellite sensors but it 

depends on several parameters: 

• the size of coal fire areas,  

• the spatial resolution of the satellite imagery,  

• the depth of coal fires,  

• the amount of difference between the temperature anomalies in the area of coal 

fires,  

• the temperature in the surrounding background,  

• the time of the satellite data acquisition (day, night, seasonal), and 

• weather conditions of the coal fire areas, etc.  

2.3.1     Optical Satellite Data 

Information about the surface of the Earth can be determined according to the spectral 

features, and it can be mapped by examining the Earth’s surface. If enough information 

about spectral features of the Earth’s surface is mastered, acquired remote sensing data 

can be used accurately and effectively. For this reason, it is necessary to understand 

the spectral features of the Earth’s surface and to know which factors affect these 

features. 

Spectral responses, also named as spectral signatures, are measured by sensors 

depending on numerous attributes and provide an understanding of the states of the 

object properties, for instance, land surface temperatures (LST). Grasping the nature 

of the land with remote sensing satellite data is essential both to reduce spectral 

variability as much as possible and to increase this spectral variability when required 

for certain cases [77] such as coal fire detection. 
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Temporal and spatial effects are important elements that contribute to the process of 

analyzing remote sensing data. Temporal effects occur when the spectral features of 

an object change depending on the time factor. Enlightening results can be found in 

coal fires according to temporal effects. For example, thermal anomalies caused by 

coal fires in coal mines may not be the same condition at different periods of time. 

Those changes will be reflected on the spectral features of the land surface of the coal 

fire area. 

Generally, when collecting data for coal fires in coal mines, care is taken to have 

satellite images obtained at night and/or during the winter, as thermal anomalies 

caused by coal fires are more pronounced at those times and this situation facilitates 

the detection of coal mine fires. The most suitable time interval for thermal 

temperature analysis is actually before dawn in the winter season since the effects of 

the Sun are more passive, the areas where coal fires are experienced are determined 

more accurately. 

One of the data types used in the detection of coal fires by pointing changes in the land 

surface is satellite optical data. This change determination can be made indirectly or 

directly, and the changes that have happened can be listed as follows: 

• the color changes of the caprocks, 

• the changes in terrain and relief, 

• the subsidences, 

• the cracks,  

• the fogs and smokes, 

• sulphur dioxide gas, etc. 

2.3.2     Thermal Satellite Data 

In the electromagnetic spectrum, the range between 3 μm and 60 μm has been 

determined as thermal infrared region. The range from 3 μm to 5 μm and from 8 μm 

to 12 μm spectrum values are mostly studied regions in remote sensing satellite data 
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researches. The remote sensing of object features by using thermal infrared is based 

on the principle that every matter above absolute zero, which is -273, emits radiation 

in the thermal infrared region of the electromagnetic spectrum [78].  

 

Figure 2.11: The Electromagnetic Spectrum [78] 

The interaction of an object with thermal infrared rays differs according to the 

properties of the surface of that object. These properties are the emissivity, geometry 

and temperature of the object. There are several satellite systems with thermal infrared 

sensors are summarized as follows: 

• NOAA with an Advanced Very High Resolution Radiometer (AVHRR): It has 

spectral bands in the thermal infrared region and these are channel 3 (3.55 µm 

- 3.93 µm), channel 4 (10.3 µm - 11.3 µm), and channel 5 (11.5 µm - 12.5 µm) 

on NOAA-7,9,11,12 & 14. The spatial resolution is 1.1 km at the lowest level. 

It variates to almost 8 km at the image border. 

• The ATSR (Along Track Scanning Radiometer) sensor on board the ESA ERS-

1 satellite: It has a spatial resolution of ≈1 km.  

• The is EOS with the Advanced Spaceborne Thermal Emission and Reflectance 

Radiometer (ASTER): It was launched in 1999. It senses the region of 8 µm 

and 12 µm with its five thermal infrared bands at 90 m resolution.  

• The Landsat 5 TM: It was launched on March 1, 1984. The 10.4 µm - 12.5 µm 

region of the electromagnetic spectrum is sensed by band 6 (thermal band) with 

the spatial resolution of 120 m.  
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• The Landsat 7 ETM+: It was launched on April 15, 1999. The band 6 Low and 

High gain (thermal band) senses the region between 10.40 µm and 12.50 µm 

of the electromagnetic spectrum with the spatial resolution of 60 meters.  

• The Landsat 8 TIRS: It was launched on February 11, 2013 and has two thermal 

band 10 and band 11. The band 10 TIRS 1 senses the 10.6µm-11.19µm region 

of the electromagnetic spectrum with the spatial resolution of 100 m. Also, the 

band 11 TIRS 2 senses the 11.5µm-12.51µm region of the electromagnetic 

spectrum with the spatial resolution of 100 m. 

The advantage of the spaceborne remote sensing for coal fire detection is that it is 

repeatable, cheaper, and provides processing of multi-band and multitemporal satellite 

data. The disadvantage is that the spatial resolution generally speaking is still very 

coarse. 

Examination of the coal fires may be difficult for a number of reasons. Especially, the 

size of the coal mine area and the land surface structure can make it difficult to 

examine. Landsat satellite images make easier to investigate the coal fires due to their 

good spatial and spectral resolutions and abilities to reach large areas [79,40,33]. It is 

stated that thermal infrared bands are more successful than optical bands in matter of 

the coal fire detection [50,80,44]. 

2.3.3    Thermal Infrared Data Used For Detecting Coal Fire 

Areas 

Thermal anomalies are the main symptoms in the detection of coal fires in coal mines, 

and these anomalies can be detected by analyzing thermal infrared data. The 

temperature values (extremely high temperatures) different from the underground air 

temperature normals are accepted as evidence for the presence of thermal anomalies, 

so the location of underground coal fires can be determined using thermal infrared 

remote sensing. In order to detect thermal anomalies on the land surface, some factors 

should be known. These factors can be listed as the resolution of the thermal infrared 

band images, the size of the area of thermal anomalies, and the difference between 

temperature anomalies in the area of coal fires and the temperature of the surrounding 

background [81]. It is recommended to learn some factors such as time of day, 



32 

 

time/date of year, weather conditions, slope directions and current surface types that 

are effective in determining the land surface temperatures (LST). The land surface 

temperatures of soils and rocks are low before dawn, at night, between night and 

morning, and in the early morning hours. Therefore, it is the best time to collect 

thermal data for analysis. Temporal, spatial and atmospheric factors affect the process 

of detecting thermal anomalies with thermal infrared images and the accuracy of this 

process. 
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CHAPTER 3 

DATA ACQUISITION AND 

PREPROCESSING 

As mentioned earlier, the data used in this study to investigate coal fires in coal mine 

areas of Soma region is as follows: Landsat 5 TM and Landsat 8 OLI/TIRS satellite 

images, coal mine distribution map of Soma region. Additionally, previous studies on 

the subject of coal fire detection in the literature are investigated in order to obtain 

sufficient information about the study. 

The Landsat 5 TM and Landsat 8 OLI/TIRS satellite images were collected from the 

USGS website by the author of this thesis. The map of the distribution of coal mines 

in the Soma region was taken from Ankara Cadastre General Directorate. This map 

has greatly contributed to the location of the coal mines in Soma and the visual 

interpretation of the coal mine areas. The Google Earth program was used to view this 

map in .kmz format to determine the boundaries of coal mine areas of Soma. 

In this study, the literature used to examine the fact that the coal that emerges in and 

around coal mines is spontaneously combusted. This literature information can be 

found in the references chapter. Erdas Imagine 2014, Arcmap 10.8 and Google Earth 

programs were used in this study to preprocess, process and analyze data and access 

the necessary information. 
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3.1    Landsat Data Acquisition 

Landsat 5 TM was a satellite that was launched into space on March 1, 1984. The 

Landsat 5 TM satellite also contained Multispectral Scanner (MSS) and Thematic 

Mapper (TM) sensor devices. This satellite obtained remote sensing satellite images 

consisting of six spectral bands with a spatial resolution of 30 meters for bands 

1,2,3,4,5 and 7, and one thermal band (band 6). The Landsat 5 TM satellite was used 

for satellite image data acquisition for a long time and was discontinued on June 5, 

2013. The image data download form this site and used in the study is summarized in 

the Table 3.1 and Table 3.2. 

Table 3.1: Qualifications of The Obtained Landsat 5 TM Satellite Data  

Sensor    Spectral Bands             Acquisition Time 

Landsat 5 TM         1,2,3,4,5,6,7  1985.08.02 

Landsat 5 TM  1,2,3,4,5,6,7  1986.09.13 

Landsat 5 TM  1,2,3,4,5,6,7  1987.08.08 

Landsat 5 TM  1,2,3,4,5,6,7  1988.07.25 

Landsat 5 TM  1,2,3,4,5,6,7  1989.08.29 

Landsat 5 TM  1,2,3,4,5,6,7  1990.07.31 

Landsat 5 TM  1,2,3,4,5,6,7  1991.07.18 

Landsat 5 TM  1,2,3,4,5,6,7  1992.09.06 

Landsat 5 TM     1,2,3,4,5,6,7  1993.08.24 

Landsat 5 TM     1,2,3,4,5,6,7  1994.09.28 

Landsat 5 TM     1,2,3,4,5,6,7  1995.07.29 

Landsat 5 TM     1,2,3,4,5,6,7  1996.08.16 

Landsat 5 TM     1,2,3,4,5,6,7  1997.09.04 

Landsat 5 TM     1,2,3,4,5,6,7  1998.08.06 

Landsat 5 TM 1,2,3,4,5,6,7      1999.07.24 

Landsat 5 TM 1,2,3,4,5,6,7      2000.07.10 

Landsat 5 TM 1,2,3,4,5,6,7      2001.07.29 

Landsat 5 TM 1,2,3,4,5,6,7      2002.07.16 

Landsat 5 TM 1,2,3,4,5,6,7      2003.08.20 

Landsat 5 TM 1,2,3,4,5,6,7      2004.09.07 

Landsat 5 TM 1,2,3,4,5,6,7      2005.07.08 

Landsat 5 TM 1,2,3,4,5,6,7      2006.09.13 

Landsat 5 TM 1,2,3,4,5,6,7      2007.08.31 

Landsat 5 TM 1,2,3,4,5,6,7      2008.08.01 

Landsat 5 TM 1,2,3,4,5,6,7      2009.07.19 
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Landsat 8 OLI/TIRS (Landsat Data Continuity Mission, LDCM) is a satellite launched 

on February 11, 2013 and developed as a collaboration between National Aeronautics 

and Space Administration (NASA) and the US Geological Survey (USGS). Landsat 8 

OLI/TIRS has two sensor devices: the Operational Land Imager (OLI) and the Thermal 

Infrared Sensor (TIRS). These two sensors procure satellite image data acquisition at 

a spatial resolution of  30 meters (visible, NIR, SWIR) 100 meters (thermal) and 15 

meters (panchromatic). 

Table 3.2: Qualifications of The Obtained Landsat 8 OLI/TIRS Satellite Data  

Sensor    Spectral Bands             Acquisition Time 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2013.07.21 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2013.07.30 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2013.08.15 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2014.07.08 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2014.10.21 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2014.11.06 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2015.07.20 

Landsat 8 OLI/TIRS  1,2,3,4,5,6,7,8,9,10,11  2015.07.27 

Landsat 8 OLI/TIRS   1,2,3,4,5,6,7,8,9,10,11  2016.07.13 

Landsat 8 OLI/TIRS   1,2,3,4,5,6,7,8,9,10,11  2016.07.22 

Landsat 8 OLI/TIRS   1,2,3,4,5,6,7,8,9,10,11  2016.07.29 

Landsat 8 OLI/TIRS   1,2,3,4,5,6,7,8,9,10,11  2016.08.07 

Landsat 8 OLI/TIRS   1,2,3,4,5,6,7,8,9,10,11  2017.07.09 

Landsat 8 OLI/TIRS   1,2,3,4,5,6,7,8,9,10,11  2017.07.25 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2017.09.02 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2018.07.03 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2018.08.13 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2019.07.06 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2019.07.31 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2020.07.01 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2020.07.17 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2020.07.24 

Landsat 8 OLI/TIRS    1,2,3,4,5,6,7,8,9,10,11       2020.09.03 

Remote sensing satellite images were collected as a result of the activities of Landsat 

5 TM and Landsat 8 OLI/TIRS satellites. These images are used in this study to 

calculate values of reflections, brightness temperatures, the normalized difference 

vegetation indexes (NDVI), land surface emissivity (LSE), and land surface 
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temperature (LST). Ultimately, they are processed to detect coal fires that occur in coal 

mines of Soma. 

3.1.1     Procedure For Downloading Landsat Data 

There are many websites that provide the opportunity to download satellite images 

obtained by remote sensing methods using Landsat satellites. In this study, Landsat 5 

TM and Landsat 8 OLI/TIRS satellite data to be used in the data processing phase were 

obtained freely from the USGS internet address (https://earthexplorer.usgs.gov/). In 

order to download data from this website, it is imperative to be a member of the 

website. 

For this study, 25 Landsat 5 TM satellite data and 23 Landsat 8 OLI/TIRS satellite 

data were downloaded in total as seen in Table 3.1 and Table 3.2. All downloaded 

Landsat 5 TM and Landsat 8 OLI/TIRS satellite data are Landsat Collection Level 1 

Tiers 1 (L1T1) data products. 

3.2    Landsat Image Data Preprocessing 

The main reason for preprocessing images using various data processing programs is 

to prepare the images for processing and to make the data manageable. Preprocessing 

of satellite images to be used in data processing is vital for determining and interpreting 

land surface features from satellite images. The flowchart of image preprocessing is 

shown in Figure 3.1. Image preprocessing procedure mainly consists of radiometric 

correction and subset. The radiometric correction and preprocessing have three parts:  

• Conversion of Digital Numbers (DN) to Top of Atmospheric Spectral Radiance 

(L𝜆),  

• Conversion of Spectral Radiance (L𝜆) to Reflectance (ρ) for reflectance bands, 

and  

• Conversion of Spectral Radiance (L𝜆) to Brightness Temperature (Tsensor).  

 

https://earthexplorer.usgs.gov/
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Figure 3.1: Flowchart of Image Preprocessing  
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3.2.1     Geometric Correction 

It is very important to record remote sensing satellite images with geometric correction 

because combining the geometrically corrected remote sensing data with the 

geographic information system allows the information to be interpreted correctly. 

Further, before dynamic monitoring using time series remote sensing satellite images, 

the obtained satellite data should be geometrically corrected. Landsat satellite image 

data used in this study were collected geometrically corrected. The Landsat 5 TM and 

the Landsat 8 OLI/TIRS satellite images were georeferenced to the UTM Zone 35N 

WGS 84 coordinate system. 

3.2.2     Radiometric Correction 

The radiation detected by the radiometers in satellites is measured depending on both 

surface parameters such as temperature and emission, and atmospheric effects. For this 

reason, it is difficult to accurately predict the land surface temperature (LST) in its raw 

form over the thermal band without any processing. As a result, the procedures of 

radiometric corrections were needed.  

The formulas of Conversion of Digital Numbers (DN) to Top of Atmospheric Spectral 

Radiance (L𝜆), Conversion of Spectral Radiance (L𝜆) to Reflectance (ρ) and 

Conversion of Spectral Radiance (L𝜆) to Brightness Temperature (Tsensor), which are 

the steps of radiometric corrections were organized as a single spatial model. Thus, the 

radiometric corrections of Landsat 5 TM and Landsat 8 OLI/TIRS satellite images 

were achieved simultaneously. The ERDAS Imagine 2014 data processing program 

was preferred to apply radiometric corrections.  

3.2.2.1      Conversion of Digital Numbers (DN) to Top of Atmospheric 

Spectral Radiance (L𝜆) 

The remote sensing satellite data are obtained by satellite sensors and stored in Digital 

Numbers (DN)s. Digital Numbers (DN) are used to represent uncalibrated pixels so 

that different brightness levels of any raster satellite image can be grouped.  
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Reflected solar rays are captured by the sensors of the Landsat 5 TM satellite. These 

solar rays are converted to radiance values and rescaled with 8-bit Digital Numbers 

(DN) from 0 to 255. Digital Numbers (DNs) can be converted into atmosphere 

reflectance values (Top of Atmosphere Reflectance) in two steps. The first step is 

converting the Digital Numbers (DNs) to radiance values and the second step is 

converting the radiance data to Top of Atmosphere (ToA) Reflectance. The formula 

of conversion of Digital Numbers (DN) to Top of Atmospheric Spectral Radiance (L𝜆) 

(Equation 3.1) is given as follows: 

 𝐿𝜆 =
𝐿𝑚𝑎𝑥𝜆 −  𝐿𝑚𝑖𝑛𝜆

𝑄𝑐𝑎𝑙𝑚𝑎𝑥 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛
(𝑄𝑐𝑎𝑙 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛𝜆 (3.1) 

where Lλ is spectral radiance at the sensor’s aperture [W/(m2.sr.μm)]; Qcal is quantized 

calibrated pixel value; Qcalmax is Maximum quantized calibrated pixel value 

corresponding to Lmaxλ;  Qcalmin is minimum quantized calibrated pixel value 

corresponding to Lminλ; Lmaxλ is spectral radiance at sensor that is scaled to 

DNmax [W/(m2. sr. μm)]; Lminλ is spectral radiance at-sensor that is scaled to 

DNmin [W/(m2. sr. μm)]. This formula was applied to the bands (from band 1 to band 

7) of all Landsat 5 TM satellite image data. The radiance scaling factors were provided 

in the metadata file of the Landsat 5 TM (10.45 μm - 12.42 μm). 

The Landsat 8 OLI/TIRS satellite data products consist of quantized and calibrated 

scaled Digital Numbers (DNs) which represent multispectral images obtained by the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These 

satellite data are collected by the Landsat 8 sensors in 16-bit unsigned integer format 

and rescaled according to the Top of Atmosphere (ToA) Reflectance. The fact that the 

Landsat 8 OLI sensor is highly accurate is a significant improvement that allows 

Landsat 8 OLI/TIRS satellite data to be rescaled from 0 to 65536 with 16-bit Digital 

Numbers (DNs). It should not be forgotten that the Landsat 8 OLI/TIRS satellite 

images are processed in units of absolute radiance using 32-bit floating-point 

calculations. These data were converted to Top of Atmosphere (ToA) Reflectance, 

instead of radiance, thus Digital Numbers (DNs) can be converted to Reflectance in 

one step. Accordingly, the Digital Numbers (DNs) were converted to spectral radiance 

using the following formula (Equation 3.2): 
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 𝐿𝜆 = 𝑀𝐿 . 𝑄𝑐𝑎𝑙 + 𝐴𝐿 (3.2) 

where 𝐿𝜆 is the spectral radiance received by the sensor (𝑊. 𝑚−2. 𝑠𝑟−1. 𝜇𝑚−1), 𝑀𝐿 

represents the band-specific multiplicative rescaling factor from the metadata, 𝑄𝑐𝑎𝑙 is 

the level 1 pixel value in DN (quantized and calibrated standard product pixel values 

in interger), 𝐴𝐿 is the band-specific additive rescaling factor. This formula was applied 

to the bands (band 2,3,4,5,6,10,7) of all Landsat 8 OLI/TIRS satellite image data. The 

radiance scaling factors were provided in the metadata file of the Landsat 8 OLI/TIRS 

satellite (10.60 μm – 11.19 μm) images. 

3.2.2.2      Conversion of Spectral Radiance (L𝜆) to Reflectance (ρ𝜆) 

Each pixel in satellite images is represented by a Digital Number (DN). Digital 

Numbers (DNs) are required to be converted into the Top of Atmosphere (ToA) 

Radiance values for the reflectance bands so that the satellite images can be readabily 

interpreted. Another reason for the Top of Atmosphere (ToA) Radiance conversion of 

Digital Numbers (DNs) is to be able to reduce and correct errors in the numbers of 

digital images. Thus, the interpretability and quality of remotely sensed satellite data 

were improved. Also, this situation should be taken into consideration when analyzing 

and comparing data sets of different time over multiple time periods. Each pixel has 

only a unique value recorded and these values do not include only the radiation 

reflected or emitted from the land surface. Moreover, these values include the radiation 

scattered and emitted by the atmosphere. In many study cases, actual land surface 

temperature (LST) values are a source for obtaining information about the temperature 

of the land surface and acting on many conclusions obtained using the information 

learned. Therefore, the conversion process of Digital Numbers (DNs) to the Top of 

Atmosphere (ToA) Radiance was implemented in order to reach real land surface 

values. The radiance rescaling coefficients were provided in the product metadata file 

(MTL file) of the Landsat images. The Landsat 5 TM band data were then converted 

from Spectral Radiance to Reflectance by using this formula (Equation 3.3) [82]: 

 𝜌𝜆 =
π. 𝐿𝜆. 𝑑2

𝐸𝑠𝑢𝑛𝜆 . 𝑐𝑜𝑠𝜃𝑠
 (3.3) 
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where ρλ is the reflectance measured at the satellite level (dimensionless), π is a 

mathematical constant approximately equal to 3.141592 (dimensionless), Lλ is the 

spectral radiance of the sensor (W. m−2. sr−1. μm−1), d is the Earth-Sun distance 

(astronomical units), Esunλ is exoatmospheric average solar irradiance 

(W. cm−2. sr−1. μm−1), and cosθs is solar zenith angle (degrees). 

3.2.2.3      Conversion of Spectral Radiance (L𝜆) to Brightness 

Temperature (BT) 

After the Digital Numbers (DNs) are converted to Radiance values, the Landsat 5 TM 

thermal band (band 6) and Landsat 8 OLI/TIRS thermal band (band 10) data should 

be converted from spectral radiance to Brightness Temperature (BT). The following 

formula (Equation 3.4) was used to convert Spectral Radiance to Brightness 

Temperature (BT) [83]: 

 
𝐵𝑇 =

𝐾2

ln [(
𝐾1

𝐿𝜆
) + 1]

− 273.15 
(3.4) 

where BT is top of atmosphere brightness temperature (K), 𝐿𝜆 is the spectral radiance 

at the sensor (𝑊. 𝑚−2. 𝑠𝑟−1. 𝜇𝑚−1), 𝐾1 and 𝐾2 stand for the band-specific thermal 

conversion constants from the metadata. The radiant temperature was revised by 

adding the absolute zero (approximately −273.15°C) to get the results in Celsius. 

3.2.2.4      Dark Object Subtraction (Histogram Minimum Method) 

The Dark Object Subtraction (DOS) method is an image-based atmospheric correction 

technique which depends on characteristics of satellite data. In addition, it has proven 

to be an effective method for correcting light distribution in remote sensing satellite 

data [84]. The steps of the Dark Object Subtraction (DOS) method were followed to 

eliminate the haze components [85]. Generally, physically-based atmospheric 

corrections are more successful than image-based atmospheric corrections and give 

more accurate results. Even so, the image-based atmospheric correction techniques are 

among the preferred correction techniques because they can also enhance the 

measurement of land surface reflection. The logic of the Dark Object Subtraction 
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(DOS) method can be summarized as follows [86]: It is known that very small amounts 

of matter on the Earth's surface are absolute black, so it can be said that increasing the 

reflectance rate from zero to one minimum percent improves the image quality. As a 

result of the shadowing of some pixels that make up the satellite data images, the 

information in those pixels cannot be fully perceived and atmospheric scattering (path 

radiance) is experienced while receiving data from the satellite in the process of remote 

sensing. The path radiance formula (Equation 3.5) is given as follows [87]: 

 𝐿𝑝 = 𝐿𝑚𝑖𝑛 − 𝐿1% (3.5) 

where Lmin is the total number of pixels that contain the same digital number as this 

value or have a lower digital number is 0.01% of the total number of pixels in the 

satellite image used. The radiance value represents the digital value corresponding to 

this percentage [88]. L1% (radiance of dark object) is the radiance obtained with this 

digital value (DNmin). Its reflectance value is 0.01.  

Reflectances of geographic objects in satellite image data created using remote sensing 

technology may be distorted due to atmospheric scattering and absorption and similar 

elements. Atmospheric correction is a kind of data preprocessing procedure that works 

with the drive to reverse the real reflectances of objects in nature. The presence of the 

atmosphere causes the radiant energy to be distributed among the detectors. However, 

the radiant energy cannot come into contact with the surfaces of geographic objects 

(the path radiance) Figure 3.2. The interaction of radiant energy with less shiny 

surfaces such as water bodies and vegetation [89] becomes more significant. 
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Figure 3.2: Illustration of the path radiances of the geographical objects [90] 

The substances called the haze component in the literature are formed by additive 

scattering in remotely sensed satellite image data. Atmospheric effects increase the 

haze values due to the atmospheric path radiation. The haze error prevent the satellite 

images from being analyzed correctly and must be eliminated before the satellite image 

can be processed. On the other hand, correcting the haze error precludes data loss. 

Atmospheric effects can be of a very pronounced or not obvious type. Examples of 

these atmospheric effects can be given as follows: 

• color shifts, 

• changes in overall scene brightness and, 

• losses in contrast. 

The most important atmospheric effects, which should be taken very seriously, do not 

affect all spectral regions to the same extent. Therefore, the interrelationships between 

spectral channels differ. This situation conceives critical problems in the application 

of vegetation indices and band ratios. 
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Figure 3.3: An illustration of solar radiation to explain atmospheric effects [91] 

In addition, atmospheric scattering beclouds responding illumination difference 

induced by irregular land surface topography. Consequently, the process of 

normalizing satellite data cannot be applied. Standardization of satellite data is 

important for issues such as mosaic construction and analysis of multi-temporal 

satellite image data. However, the standardization of satellite image data is also 

hampered by atmospheric influences. 

The Dark Object Subtraction (DOS) 1%  method hypothesizes that for the dark objects 

such as deep water and shadows, the lowest reflectance value throughout a scene will 

be 1%. In this way, the variation between this value and the actual Digital Numbers 

(DN)s measured for these dark objects could be attached to the additive effects of haze. 

For that reason, the haze error should be dissolved by subtracting this value from all 

layerstacked bands of the Landsat satellite images. By applying the Dark Object 

Subtraction (DOS) 1% method, the effects of additive path glare in all Landsat satellite 

images used for the study were eliminated [84]. 

The Dark Object Subtraction (DOS) 1% method is deemed necessary because it helps 

to prevent the relatively constant error, and the degrading or masking of the small 

brightness changes between pixels due to real differences [85]. The constant errors 

cause distortion in the ratio indices for the sensor and illumination differences. The 

degrating or masking of small brightness changes between pixels due to real 

differences is a factor that would adversely affect the biophysical modeling of satellite 

images [92]. The pixel values of the output images obtained after the application of 

the Dark Object Subtraction (DOS) 1% method drew near to the reflection values on 
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the land surface. After the Dark Object Subtraction procedure, the histogram values of 

Landsat 5 TM and Landsat 8 OLI/TIRS images were examined. 

 

Figure 3.4: An example image of the radiometrically corrected Landsat 5 TM and 

Landsat 8 OLI/TIRS satellite images 

When the radiometric corrections were completed, Landsat 5 TM and Landsat 8 

OLI/TIRS satellite images were sub-clustered using area of interest data (AOI) to limit 

the study area and extract administrative boundaries of Soma district. 

 
Figure 3.5: An subset image of the radiometrically corrected Landsat 5 TM and 

Landsat 8 OLI/TIRS satellite images 
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CHAPTER 4 

DATA PROCESSING 

The processing is the essential part of the study. Coal fires which are formed in the 

mine areas of Soma become detectable by retrieving land surface temperatures (LST). 

It can be said that places with higher temperature values w.r.t. the surrounding places 

with normal surface temperature values indicate coal fire areas. Therefore, the main 

purpose of the study is to locate the places with highest temperature values in the study 

area by analysing land surface temperatures (LST). The processed Landsat satellite 

images are examined and the areas where the coal fires take place and features are 

interpreted. The parts of the data processing are summarized in Figure 4.1:   

• Calculation of the Normalized Difference Vegetation Index (NDVI),  

• Estimation of Emissivity (LSE),  

• Retrieving the Land Surface Temperature (LST). 

4.1    Estimation of Land Surface Emissivity by Using 

Normalized Difference Vegetation Index (NDVI) 

As the vegetation cover and the amount of green plants in the region increase, the 

thermal emissivity of the surface objects in the region also increases. Due to this 

connection between land surface emissivity (LSE) and normalized vegetation index 

(NDVI), it is necessary to have information about the normalized vegetation index 

(NDVI) for estimating the land surface emissivity (LSE). 
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Figure 4.1: Flowchart of image processing 
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4.1.1     The Normalized Difference Vegetation Index (NDVI) 

The normalized difference vegetation index (NDVI) is one of the most applied 

vegetation index among other vegetation indexes. It is possible to analyze the spatial-

temporal changes of vegetation cover using the normalized difference vegetation index 

NDVI. According to several researchers, the normalized difference vegetation index 

(NDVI) is one of the main components that can be used to learn about the vegetation 

cover of a particular region by processing data obtained by remote sensing methods 

[93]. Vegetation indexes are frequently preferred concepts in researching the 

vegetation characteristics of a certain region.  Therefore, these indexes have been used 

in many studies and applications to improve vegetation characteristics.  

A number of vegetation indexes have interested with low red and high near infrared 

reflectance qualifications, especially the normalized difference vegetation index 

(NDVI) [94]. The relationship between the obtained energy and emitted energy by 

surface objects is estimated using the red and near infrared (NIR) bands within the 

scope of vegetation indexes [95]. The variations between the normalized difference 

vegetation index (NDVI) values depend on their relative reflectances in the red and 

NIR bands. The Landsat visible (red band) and near-infrared (NIR band) bands were 

necessary to investigate the Normal Difference Vegetation Index (NDVI). The red and 

near infrared (NIR) bands take non-identical reflectance values, so the estimated 

normalized difference vegetation index (NDVI) values differ according to 

characteristics of the landcover they are in. Surface water bodies and deep water areas 

have a higher reflectance rate in the visible region than the near infrared (NIR) region, 

so the normalized difference vegetation index (NDVI) value gets negative value in 

these kind of areas. The normalized difference vegetation index (NDVI) reflects 

similarly in the red and near infrared (NIR) zones in areas where rock fragments are 

common in flat areas of land and in soils where vegetation is weak. Hence, the 

normalized difference vegetation index (NDVI) is measured from a value that is very 

close to zero. Formula (4.1) is the formula used to calculate the normalized difference 

vegetation index (NDVI) values and is given below: 

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (4.1) 
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where RED and NIR are the spectral reflectance in red and near infrared band, 

respectively.  

The lowest normalized difference vegetation index (NDVI) value is -1 and the highest 

normalized difference vegetation index value is +1. Negative normalized difference 

vegetation index (NDVI) values could be the areas of water bodies, manmade 

(unnatural) structures, rocks, clouds, snow. The areas with bare soil generally fall 

within the 0.1-0.2 normalized difference vegetation index (NDVI) value interval. Also, 

plants have positive values between 0.2 and 1 values. NDVImax, NDVImin the 

normalized difference vegetation index NDVI values of vegetation and open soil. In 

general, a positive value for the normalized difference vegetation index (NDVI) is 

found to indicate green vegetation. Vegetation classification using the normalized 

difference vegetation index (NDVI) index is made according to certain criteria. These 

criteria are briefly summarized in the Table 4.1 below.  

Table 4.1:  The Interval of NDVI Values According to The Type of Land Cover 

Vegetation 

Types 

Class Definition NDVI Value 

 

Non-vegetation 

Barren areas 

Built-up areas 

Road networks 

 

-1 to 0.199 

Low vegetation Scrubs 

Grassland 

0.2 to 0.5 

High vegetation Forest  0.501 to 1.0 

 

In this table, the normalized difference vegetation index (NDVI) value ranges of low 

density vegetation areas, medium density vegetation areas and high density vegetation 

areas are clearly indicated. The normalized difference vegetation index (NDVI) index 

can also be applied to differentiate vegetation cover and soil class materials and to 

investigate whether plants are healthy [96]. In Figure 4.2, the correlation between plant 

health and bands of visible red and near-infrared that used for obtaining NDVI values 

is denoted. 
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Figure 4.2: Correlation of plant health and bands of visible red and near-infrared that 

used for obtaining NDVI values [97] 

Estimation of the land surface emissivity (LSE) by applying the normalized difference 

vegetation index (NDVI) information in the study of retrieving the land surface 

temperature (LST) has been examined by many researchers [43,42,88]. Assessment of 

land surface emissivity (LSE) extraction from the normalized difference vegetation 

index (NDVI) data is linked to five different conditions. These conditions can be 

explained as follows: 

• NDVI <0 condition: If the normalized difference vegetation index (NDVI) 

value are less than 0, the pixels are considered to be water pixels. 

• NDVI <0.2 condition: If the normalized difference vegetation index (NDVI) 

value is less than 0.2, the pixels are considered to be bare soil or built-up area 

pixels. 

• NDVI > 0.2 condition: If the normalized difference vegetation index (NDVI) 

value is greater than 0.2, the pixels are considered to be green plants pixels. 

• 0.2 < NDVI < 0.5 condition: If the normalized difference vegetation index 

(NDVI) pixels are between 0.2 and 0.5, the pixels consist of a mixture of bare 

soil and vegetation pixels.  

• NDVI > 0.5 condition: If the normalized difference vegetation index (NDVI) 

value is greater than 0.5, the pixels are generally considered to be dense 

vegetation pixels. 



51 

 

The normalized difference vegetation index (NDVI) has been used frequently both to 

conduct studies on land use and land cover (LULC) and to provide calculation of land 

surface temperature (LST) [98-101] because the normalized difference vegetation 

index (NDVI) individuates healthy vegetation pixels from dead vegetation pixels 

based on the chlorophyll aspect present in the plants and this fact makes the normalized 

difference vegetation index (NDVI) important. Estimating thermal emissivity on the 

land by averaging a series of point measurements has been found to be less reliable 

than satellite-based NDVI measurements [43]. Satellite-based NDVI measurements 

are more successful on finding actual thermal emissivity at a pixel level. 

In this study, the normalized difference vegetation index (NDVI) values of 25 Landsat 

5 TM and 23 Landsat 8 OLI/TIRS subset images, which were geometrically and 

radiometrically corrected, were calculated using the above-mentioned the normalized 

difference vegetation index (NDVI) formula (Equation 4.1). ERDAS Imagine 2014 

program was used for this calculation process and the normalized difference vegetation 

index (NDVI) formula was created and run as a model in model maker tool. The 

normalized difference vegetation index (NDVI) values calculated from Landsat 5 TM 

and Landsat 8 OLI/TIRS subset images are used in the estimation of land surface 

emissivity (LSE) in the next step. 

 

Figure 4.3: An example NDVI image which were generated by implementing 

Landsat 5 TM and Landsat 8 OLI/TIRS satellite images 
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4.1.2     The Land Surface Emissivity (LSE) 

Kinetic temperature of an object can be acquired from the thermal radiation data, if 

thermal emissivity of the object is known. The calculation of the land surface 

emissivity (LSE) enables higher accuracy temperature estimation with its thermal data. 

The thermal emissivity of the Earth's surface depends on three elements:  

• Water content of the surface materials,  

• Albedo of the surface materials, and  

• Vegetation cover. 

There is a relationship between the average value of thermal emissivity (ε) and the 

normalized difference vegetation index (NDVI) which was found by Van de Griend 

and Owe (1993). According to this relationship between the thermal emissivity and 

the normalized difference vegetation index (NDVI), the formula for estimating the 

land surface emissivity (LSE) (Equation 4.2) can be given as follows: 

 𝜀 = (1.0094 + 0.047) ∗ 𝑙𝑛 (𝑁𝐷𝑉𝐼) (4.2) 

 

The normalized difference vegetation index (NDVI) values calculated from 25 Landsat 

5 TM and 23 Landsat 8 OLI/TIRS subset images are used in the estimation of land 

surface emissivity (LSE). ERDAS Imagine 2014 program was used for this estimation 

process and the formula for estimating the land surface emissivity (LSE) was created 

and run as a model in model maker tool.  

4.2    Retrieval of The Land Surface Temperature (LST) 

Land surface temperature (LST) can be defined in the simplest way as the hotness of 

the Earth's surface. In the past studies, a group of sample points belonging to a 

particular area was calculated for the land surface temperature (LST) data. These 

points would then be interpolated into isotherms to get the field data.  It was difficult 

to make the land surface temperature (LST) retrieval of a certain area those days, but 
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with the invention of satellites and their high resolution sensors, the land surface 

temperature (LST) calculations using remote sensing methods and thermal band data 

started to be made easier and faster spatially. 

The surface temperature of the land (LST) can be measured by processing the data 

received by the satellites from the Earth’s surface within the possibilities provided by 

remote sensing science. The land surface temperature (LST) data is important because 

it enables the temporal and spatial properties of the land surface balance to be known 

and contributes to the realization of the change of this balance. 

The land surface temperature (LST) is emitted by the surface of the Earth. The land 

surface temperature (LST) is also a type of temperature usually measured in Kelvin 

but in this study, temperature measurements are made in Celcius. The increasing 

presence of greenhouse gases in the atmosphere in recent years is a fact that should be 

taken into account in the land surface temperature (LST) measurements. The negative 

effects of the increase of land surface temperature (LST) values on nature and life can 

be exemplified by a few examples:  

• the melting of glaciers and ice sheets in the polar region and the rise in sea 

levels and the increase in the frequency of natural disasters such as floods and 

tsunamis,  

• the rainfall above seasonal normals in places of monsoons,  

• the local climate changes, 

• the land use and land cover (LULC) change as a result of the influence of the 

vegetation cover of the land for natural and anthropogenic reasons, etc. 

All of the negative effects mentioned above are the consequences of an unacceptable 

increase in the land surface temperature (LST) values, but if it is to be interpreted from 

a different perspective, it is certain that these results will affect irreversiblely the land 

surface temperature (LST) values in the long term. As a result of which, the land 

surface temperature (LST) is an essential phenomenon that needs to be examined at 

regular intervals. 
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Various algorithms have been used to retrieve the land surface temperature (LST) as a 

result of processing satellite images obtained by remote sensing techniques. These 

algorithms can be listed as follows: 

• the single-channel algorithm 

✓ single-window algorithm 

✓ universal single-channel algorithm 

• mono-window algorithm 

• split-window algorithm 

• multi-channel algorithm 

In this study, the land surface temperature (LST) values of the 25 Landsat 5 TM and 

23 Landsat 8 OLI/TIRS images were retrieved by implementing the single-channel 

algorithm. The land surface temperature (LST) retrieval process was executed in 

ERDAS Imagine 2014 program and the formula that was applied to retrieve the land 

surface temperature (LST) was created and run as a model in Erdas model maker tool. 

4.2.1     The Single Channel Algorithm for The Retrieval of Land 

Surface Temperature (LST)  

Thermal band data is preferred in retrieving the temperature of the land surface because 

the maximum emission data from the Earth's surface is provided in the range of the 

thermal infrared (TIR) band [102]. The top of atmosphere (TOA) radiation is the 

radiance that leaves the Earth's surface after being modified due to the atmospheric 

effects. The thermal infrared (TIR) sensors measure the top of atmosphere (TOA) 

radiation to obtain thermal data. It is essential that two major issues are solved during 

the acquisition of the land surface temperature (LST) with sensors that collect thermal 

infrared data in satellites in terms of the accurate results of the data [103]: Atmospheric 

corrections to avoid effects caused by the atmosphere, and retrieving the land surface 

emissivity (LSE). 
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A lot of researches have been done to improve the acquisition of land surface 

temperature (LST) from satellite-based thermal infrared (TIR) data and significant 

progress has been made in this regard over past years. The three main land surface 

temperature (LST) retrieval methods can be given as follows [102]: 

• The single channel (SC) methods,  

• The multi channel methods, and  

• The multi angle methods. 

Different theories have been examined for each of the methods mentioned above and 

designed to generate the land surface temperature (LST) data, and different thermal 

band (TIR) data have been used according to the sensor properties. The single channel 

(SC) method uses a set of predictive atmospheric parameters to correct disturbances in 

a single thermal band (a single channel) due to atmospheric effects to retrieve the land 

surface temperature (LST) [104-106]. Unlike the single channel method, the multi-

channel method aims to reach the land surface temperature (LST) data by using various 

absorption in two different thermal infrared (TIR) channels [107,108,109,110,111,62]. 

The split window algorithm can be given as an example of the multi-channel methods. 

The multi-angle method, on the other hand, observes the Earth's surface differently 

than other methods, so the atmospheric absorption of this method varies due to its 

observing techniques [112]. 

Land surface temperature can be estimated using multifold time satellite images of 

Landsat datasets, which have medium resolution and are quite sufficient to provide 

data for long time intervals. In this way, many useful studies can arise on various 

environmentally focused topics such as spatial-temporal analysis of evapotranspiration 

and urban heat island development [113,114]. The single channel (SC) algorithm is a 

type of algorithm developed for calculating the temperature of the land surface. The 

basic functioning of the single channel (SC) algorithm is that the land surface 

temperature (LST) is retrieved by using a single thermal band data. The single channel 

(SC) algorithm is an algorithm which has an extremely simple structure and this 

algoritm provides results with good accuracy. The reason why the single channel (SC) 

algorithm is so widely used is that the algorithm requires a single thermal band to 
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retrieve the land surface temperature (LST) from a number of satelite images such as 

Landsat, MODIS, ASTER, etc. The single channel (SC) methods commonly used 

nowadays can be given as follows: 

• the radiative transfer equation (RTE) method, 

• the mono-window (MW) method that were designed by Qin et al. (2001) [115], 

and 

• the generalized single-channel (GSC) method proposed by Jiménez-Muñoz 

and Sobrino (2003) [106] and after that revised by Jiménez-Muñoz et al. (2009) 

[105]. 

It can be said that the fundamental difference between all three the above-mentioned 

LST retrieval methods is the atmospheric correction procedure. In the radiative transfer 

equation (RTE) method, corrections are made with the help of three different 

atmospheric parameters based on a particular radiative transfer model (for example 

MODTRAN) in order to eliminate the deterioration caused by atmospheric effects: 

atmospheric transmittance, downwelling atmospheric radiance and upwelling 

atmospheric radiance [116]. The mono-window algorithm (MW algorithm) is a kind 

of algorithm that can provide atmospheric correction using two different atmospheric 

parameters: atmospheric transmittance and effective mean atmospheric temperature. 

These two atmospheric parameters are adapted sequentially to atmospheric water 

vapor (AWV) content and near surface air temperature (NSAT) [117]. Three 

atmospheric functions are designed for the generalized single-channel (GSC) 

algorithm. These three atmospheric functions of the algorithm are thought to be due -

in theory- only to the atmospheric water vapor (AWV) substance [118,106].  

The atmospheric water vapor (AWV) and the near surface air temperature (NSAT) 

have an important role in atmospheric corrections as the determining factors in the 

radiative transfer equation (RTE), the mono-window (MW) and the generalized single-

channel (GSC) methods. Also, the atmospheric water vapor (AWV) and the near 

surface air temperature (NSAT) make the atmospheric corrections with simple and 

useful land surface temperature (LST) estimation formulas. Thus, the single channel 

(SC) method is referred to as a more preferred useful and practical method of obtaining 

the land surface temperature (LST). 
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A single channel algorithm which was proposed by Artis and Carnahan (1982) [119] 

is used in this study. The single channel algorithm does not require large amount of 

parameters for land surface temperature (LST) retrieval in contrary to the mono-

window algorithm [115] and the generalized single-channel method [106]. The 

formula of the single-channel algorithm (Equation 4.3) can be given as follows: 

 𝑇𝑠 =
𝑇𝑠𝑒𝑛𝑠𝑜𝑟

1 + (𝜆 ∗ 𝑇𝑠𝑒𝑛𝑠𝑜𝑟/𝜌) ∗ 𝑙𝑛𝜀
 (4.3) 

where λ is the wavelength of the emitted radiance which means the average 

wavelength. In this research, λ was accepted in the value of 11.45μm for Landsat 5 

TM thermal band (band 6) data and 10.895μm for Landsat 8 OLI/TIRS thermal band 

(band 10) data as average wavelength. ρ=h x c/j in m Kelvin, where h is Planck’s 

constant (6.626 × 10-34   J s), A commonly used approximation of Planck’s function 

specific to Landsat is given by G. Chander and B. Markham (2003) [120], c is the 

velocity of light (2.998 x  108 m/s), j is Boltzmann constant (1.38 x 10-23  J/K), and 

Tsensor is at-sensor brightness temperature in Kelvin. 

The use of a single wavelength value to retrieve land surface temperature (LST) from 

radiance with one sensor with a exact channel width (bandpass effects) were adopted 

by several researchers [121,122]. The formula (Equation 4.4) that calculates brightness 

temperature is given as follows: 

 𝑇𝑠𝑒𝑛𝑠𝑜𝑟 =
𝐾2

ln (1 + 𝐾1/𝐿𝑠𝑒𝑛𝑠𝑜𝑟)
 (4.4) 

where 𝐾1 is 607.76 W·m−2 · sr−1 · μm−1 and 𝐾2 = 1260.56 W·m−2 · sr−1 · μm−1   

for Landsat 5 thermal band (band 6) data. 𝐾1 is 774.8853 W·m−2  sr−1 · μm−1  and 

𝐾2 = 1321.0789 W·m−2 · sr−1 · μm−1 for Landsat 8 thermal band (band 10) data. 

These  𝐾1 and 𝐾2 constants were used to solve the bandpass effect. 

According to the results of some studies on land surface temperature (LST) retrieval, 

it was determined that when the consistency of Landsat 8 thermal bands (band 10 and 

band 11) was compared, band 11 showed more uncertainty than band 10 [71]. 

Therefore, one of the thermal band data used in this study, Landsat 8 OLI/TIRS images 

were studied with band 10 as the thermal band data. 
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4.2.1.1      The Computation of Simulated Single Image (SSI) of Landsat 

5 TM and Landsat 8 OLI/TIRS Land Surface Temperature (LST) Data 

There is relationship between land cover and land surface temperature. Especially, in 

places where there is little or almost no land cover, easily noticeable changes are 

observed in the land surface temperatures belonging these places. 

Objects are sampled as pixels in satellite image data of certain time series. To easily 

evaluate time series data as a single image without dealing the whole series of data, 

Çorumluoğlu [123] purposed a Simulated Single Image method. The pixels represent 

variability as the characteristics of the smallest parts of lands (SLA) in time. This 

representation therefore includes trend analyses. So, trend analysis is a type of linear 

regression analysis of a variable which is done depending on the time. All pixel values 

in the output image from the trend analysis allow observing the change trends over 

time in these smallest areas of lands (SLA). The changes are calculated for the entire 

study area using the pixel values in the satellite image data sets collected in different 

years (in this study, different data are used for each year). Variable Rate of Change 

(VCR) is described as the slope of a variable (here, LST) over time, which is found by 

using the values of the exact pixel in different satellite images and the linear regression 

equation. The least square method is implemented to calculate the regression slope. 

The trend/slope formula (Equation 4.5) is given as follows [123]:  

 
𝑆𝑙𝑜𝑝𝑒𝑘 =

𝑛 ∑ 𝑖 ∗ 𝑉𝑘𝑖 − (∑ 𝑖𝑛
𝑖=1 ) ∗ (∑ 𝑉𝑘𝑖

𝑛
𝑖=1 )𝑛

𝑖=1

𝑛 ∗ ∑ 𝑖2𝑛
𝑖=1 − (∑ 𝑖𝑛

𝑖=1 )2
, 

  𝑘(1, … , 𝑙), 𝑖 (1,2,3, … , 𝑛) 

        (4.5) 

where k is for variables, l is the total number of the variables (LST variable), LST, 

therefore k is 1 and Slopek is for slope of kth variable, Vki stands for kth variable’s pixel 

value in the ith time serious image and i stands for the number of sequential year 

and n is for the total number of years in the time series, in this study i is 25 for Landsat 

5 TM and 18 for Landsat 8 OLI/TIRS data.  

 𝑆𝐷𝑘 = √
∑ (𝑉𝑘𝑖 − 𝑚𝑘)2𝑛

𝑖=1

𝑛 − 1
         (4.6) 
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 𝑚𝑘 = (∑ 𝑉𝑘𝑖

𝑛

𝑖=1

)/𝑛         (4.7) 

where, mk is the mean value for each SLA in the study region computed from the pixel 

values through the entire time series data for the LST variable. 

The mean, standard deviation and trend images of all land surface temperature (LST) 

images in different time series are calculated as a single output image. Then, using a 

formula, the variation of the variable, in this case the land surface temperature (LST), 

is simulated into a single result image. The result image is called as a simulated single 

image (SSI) for whole land surface temperature (LST) images and it simulates all 

relevant time-related data [123]. This is explained by the fact that the single simulated 

image (SSI) includes the average (mean), trend, and range of variation of the time-

related data for the land surface temperature (LST) variable in terms of statistical 

values. In short, an SSI pixel value for a variable (LST) represents the serious images 

of the variable for a given time interval in pixels and stands as a single value 

statistically estimated from the slope, standard deviation and mean values of all-time 

related data for individual smallest land areas (SLA). Thus, it enables to examine the 

distribution of the variable (LST) in terms of time as a single image and simulates the 

properties of the smallest areas of land practically. The standard deviation refers to the 

range of data change relative to the mean value. The slope corresponds to the tendency 

of a set of data to change. 

 𝑆𝑆𝐼𝑘 = 𝑆𝑙𝑜𝑝𝑒𝑘 ∗ 𝑆𝐷𝑘 + 𝑀𝑘         (4.8) 

In this study, the land surface temperature (LST) images created by calculating from 

25 annual Landsat 5 TM satellite images containing spatial data for 25 consecutive 

years (from 1985 to 2009) were used to acquire simulated single image (SSI) data. 

First of all, the average (mean) and standard deviation values of these 25 Landsat 5 

TM land surface temperature (LST) images were found. Then, the slope of the 25 

Landsat 5 TM land surface temperature (LST) images were calculated based on the 

formula for the slope calculation.  
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Figure 4.4: The Simulated Single Image (SSI) of 25 Landsat 5 TM land surface 

temperature images and 18 Landsat 8 OLI/TIRS land surface temperature (LST) 

images (Band 10) 

The land surface temperature images were created by calculating from 18 annual 

Landsat 8 OLI/TIRS satellite images containing spatial data for 18 consecutive months 

of years (from 2013 to 2020) were used to acquire single simulated image (SSI) data. 

First of all, the average and standard deviation values of these 18 Landsat 8 OLI/TIRS 

land surface temperature (LST) images were found. Then, the slope of the 18 landsat 

8 OLI/TIRS land surface temperature (LST) images were calculated based on the 

formula for the slope calculation. There is a reason why Landsat 8 OLI/TIRS land 

surface temperature (LST) images and the single simulated image (SSI) were formed 

with the Landsat 8 OLI/TIRS satellite images obtained from different months of the 

same years. This is because Landsat 8 OLI/TIRS satellite was put into operation in the 

recent past, in 2013, and therefore does not have much annual data.  

The main reason for this process is to interpret the average (mean), standard deviation 

and slope (trend) of the images that contain the distribution information of the land 

surface temperatures (LST) of the satellite images collected by satellite sensors in 

different years by formed using single simulated image data. In this way, some kind 

of verification of the process can be made. In addition, the single simulated image 

(SSI) calculations were made for both Landsat 5 TM and Landsat 8 OLI/TIRS 

normalized LST images. However, the resulting output data were considered to be 

insufficient for other stages and were not included in the study. 

As a result, the annual Variable Rate of Change (VCR) of 25 Landsat 5 TM and 18 

Landsat 8 OLI/TIRS land surface temperatures (LST) were calculated. Each LST pixel 

value in the spatial images forming a pixel cube over the years specified in the study 
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simulated the trends of change, the standard deviation of change, and the average 

chance of the LST variable for each LSA. Since the created Landsat 5 TM land surface 

temperature (LST) images did not meet the expected accuracy sensitivity, further 

operations were continued with Landsat 8 OLI/TIRS land surface temperature (LST) 

images and simulated single images (SSI) from time series data. 

4.2.1.2    Evaluation of Landsat 8 OLI/TIRS Simulated Single Image (SSI) 

by Creating Threshold Value 

The lowest and highest temperature values of Landsat 8 OLI/TIRS single simulated 

images (SSI) were taken as basis and threshold values were determined in the range of 

10-15% for both band 10 and band 11. In this way, the areas with the highest 

probability of coal fires were located with more accurately and it became easier to 

focus on the areas with high temperatures that appeared outside the coal mine areas in 

the land surface temperature (LST) images. This process was executed in ArcGIS 10.8. 

data processing program. The generated images were saved in .kmz format and 

transferred to the Google Earth program, and the data showing the mining licenses in 

Soma were evaluated visually in the .kmz format. 

 

Figure 4.5: The LST SSI Band 10 and 11 Correlation 
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4.2.1.3      Normalized Land Surface Temperature Calculation 

After the land surface temperatures (LST) of Landsat 5 TM and Landsat 8 OLI/TIRS 

satellite images were retrieved using a single channel algorithm, the global minimum 

and global maximum values of the retrieved land surface temperature (LST) data were 

computed. In this way, the normalized land surface temperature (LST) values were 

calculated by adapting the global minimum and global maximum data to a certain 

formula. 

The normalization of the land surface temperatures means that the temperature values 

were scaled between the minimum values and maximum values in order to compare 

the land surface temperature (LST) data which were captured at different time 

intervals. The normalized land surface temperature (LST) (unitless) is estimated for 

each pixel of the land surface temperature (LST) data. The normalized land surface 

temperature formula (Equation 4.9) is defined as follows: 

 𝑇 ∗𝑠= (𝑇𝑠 − 𝑇𝑚𝑖𝑛)/(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) (4.9) 

where 𝑇𝑚𝑖𝑛 is global minimum of land surface temperature values, 𝑇𝑚𝑎𝑥 is global 

maximum of land surface temperature values. 

 

Figure 4.6: Normalized land surface temperature images of the Landsat 5 TM and 

Landsat 8 OLI/TIRS satellites 
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Figure 4.7: The Normalized LST SSI Band 10 and 11 Correlation of Landsat 8  

 

Figure 4.8: The Landsat 8 OLI/TIRS simulated single threshold LST image for Band 

10 
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Figure 4.9: The Landsat 8 OLI/TIRS simulated single threshold LST image for Band 

11 

 

Figure 4.10: The Landsat 8 Threshold Normalized LST SSI Band Correlation 

Graphic  
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A total of 5522 common pixels were detected for both Landsat 8 LST SSI Band 10 

threshold data and Landsat 8 LST SSI Band 11 threshold data. 911 pixels were located 

different from the Landsat 8 LST SSI Band 11 threshold data. In the Landsat 8 LST 

SSI Band 11 threshold value data, 2331 pixels are elsewhere than the pixels in Landsat 

8 LST SSI Band 10 threshold data. A total of 5379 pixels of Landsat 8 LST SSI Band 

10 threshold data and 6289 pixels of Landsat 8 LST SSI Band 11 threshold value data 

detected in the area covered by the coal mines. The Landsat 8 LST SSI Band 10 

threshold data has an accuracy of about 83.62 percent, while the Landsat 8 LST SSI 

Band 11 threshold data has an accuracy of about 80.08 percent. Also, the non-overlap 

ratio of Landsat 8 LST SSI Band 10 threshold data and Landsat 8 LST SSI Band 11 

threshold data has been calculated as approximately 67.39 percent. Therefore, the 

Landsat 8 LST SSI Band 10 threshold data which have higher accuracy value were 

preferred. 

 

Figure 4.11: The Normalized threshold LST simulated single image of Landsat 5 TM  
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Figure 4.12: Landsat 5 Band 6 and Landsat 8 TIRS Band 10 Correlation Graph of 

Normalized Threshold LST SSI values 

A number of 3178 common pixels were identified for both Landsat 5 TM LST SSI 

Band 10 threshold data and Landsat 8 LST SSI Band 10 threshold data. The correlation 

between the Normalized Landsat 5 TM LST SSI threshold image values and the 

Normalized Landsat 8 SSI LST Band 10 threshold image values is 97.03 percent. 

4.2.1.4 The Assessment of Hot Spots from The Landsat 8 OLI/TIRS SSI 

LST Data in the Licensed Coal Mine Areas in Soma 

As a result of processing the main data source Landsat 8 OLI/TIRS satellite images 

used in this thesis, land surface temperature (LST) retrievals were made and coal fires 

were thought to be active in regions with extremely high temperatures. Before 

performing the data processing, one of the thermal bands (Band 10) was layered 

together with the other bands during the merging of the satellite bands (Band 2, Band 

3, Band 4, Band 5, Band 6, Band 10 and Band 7). Thus, an analysis environment was 

created for the land surface temperatures (LST) obtained using a single thermal band 

algorithm and other bands. 

As mentioned above sections, several analyses have been made to place land parts with 

highest LST values in the region and thus, to reveal coal fire areas and then to 

investigate the accuracy of the processes done for retrieving the places with highest 

land surface temperature (LST). After the processes for Band 10, Band 11, another 
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thermal band of the Landsat 8 OLI/TIRS satellite bands, was combined with other 

bands by layer stacking (Band 2, Band 3, Band 4, Band 5, Band 6, Band 11 and Band 

7). Radiometric corrections were applied, NDVI, land surface emissivity (LSE), land 

surface temperature (LST) retrieval and SSI calculations were performed, respectively 

for 18 Landsat 8 OLI/TIRS satellite data as well. 

 

Figure 4.13: The SSI LST image from 18 Landsat 8 OLI/TIRS LST data using Band 

11 

In addition, the SSI values of the annual land surface temerature (LST) data for July, 

which have both Band 10 and Band 11 thermal bands, were calculated (Figure 4.14 a 

and b). Since the appropriate Landsat 8 satellite data for July 2014 could not be found, 

this year's data was not included in the data processing. In total, calculations were 

made for 7 years (2013, 2015, 2016, 2017, 2018, 2019 and 2020). The reason for 

choosing the same month is to question the accuracy of the results obtained by using 

data from different months. July was chosen because it is the common month for all 

data. Since there is no common month in the data of 2014 with other data, it was not 

included in the study. 
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(a)                                                     (b) 

Figure 4.14: The SSI LST images from 7 years of Landsat 8 OLI/TIRS LST data 

using Band 10 (a) and Band 11 (b) 

The next application in which the reliability of land surface temperature (LST) images 

is investigated is accuracy analysis, and it has been applied to SSI images obtained 

from 18 Landsat 8 OLI/TIRS land surface temperature (LST) data via ArcGIS data 

processing program. The results of the assessment analysis for hot spots falling in 

Licensed Coal Mine Areas in Soma were received as 87% for Band 10 and 89% for 

Band 11. These results show that some Licensed Coal Mine Areas are under coal fire 

threat. In Figure 4.15, red and yellow dots represent the threshold pixel distribution of 

Landsat 8 SSI LST values from Band 10 and Band 11. 

 

(a)                                                    (b) 

Figure 4.15: Assessment of licensed coal mine areas in Soma under coal fire threat 

by Landsat 8 OLI/TIRS SSI Data using Band 10 (red dots) (a) and Band 11 (yellow 

dots) (b) 
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(a) 

 

(b) 

 

(c) 

Figure 4.16: The Correlation Graphics of the 3 Landsat 8 OLI/TIRS Land Surface 

Temperature (LST) Data (a) 20130721, (b) 20160729 and (c) 20190731 
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Finally, for the accuracy analyses of the results above, the correlation between Landsat 

8 OLI/TIRS land surface temperature (LST) data from Band 10 and Band 11 (Figure 

4.15 a and b) were visualized by creating correlation graphics on excel. For this stage, 

3 Landsat 8 OLI/TIRS land surface temperature (LST) data were selected. The root 

mean square values and correlation equations between the data were also modelled. 

These accuracy graphics have shown that there is a balanced distribution between the 

accuracy of the land surface temperature (LST) data obtained by processing the 

Landsat 8 OLI/TIRS Band 10 and Band 11 thermal bands data. 
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Chapter 5 

Results and Discussions 

The aim of this study was to determine and examine the coal fires that occur in the 

coal mines of Soma by using the Landsat satellite bands and especially thermal band 

data collected by remote sensing techniques. 25 Landsat 5 TM and 23 Landsat 8 

OLI/TIRS satellite data were downloaded from USGS website as geometrically 

corrected. The downloaded Landsat satellite data were daytime data and these data 

were detected by Landsat satellite sensors between 08:00 and 10:00 time interval. 

Firstly, radiometric corrections were applied to the Landsat 5 TM and Landsat 8 

OLI/TIRS satellite data to prepare these data to data processing. Thus, the data 

preparation process of this study was completed, the data was made processable and 

the data processing step started. A single channel algorithm was chosen for the 

retrieval of land surface temperatures (LST). This algorithm was modeled both for the 

Landsat 5 TM and Landsat 8 OLI/TIRS satellite data by using ERDAS Imagine 2014 

data processing program. Normalized difference vegetation indexes (NDVI) of the 

Landsat 5 TM and Landsat 8 OLI/TIRS satellite data were calculated.  

After that, land surface emissivities (LSE) of the Landsat 5 TM and Landsat 8 

OLI/TIRS satellite data were estimated. Finally, the land surface temperatures (LST) 

were retrieved. The Landsat 5 TM land surface temperature (LST) data results were 

unworkable, so these data were eliminated from the study. The SSI images of Landsat 

8 OLI/TIRS land surface temperature (LST) data were created for both Band 10 and 

Band 11 thermal band data. The accuracy of the created land surface temperature 

(LST) and SSI image values were evaluated with various analyzes. At the end of the 

study, the 3-period coal fire maps were made from Landsat 8 OLI/TIRS data with Band 

10 to detect and monitor coal fires in the study area temporally. 
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The maps of 18 Landsat 8 OLI/TIRS land surface temperature (LST) data with Band 

10 were prepared and shown in Figure 5.1 below. In Figure 5.2, the map of Landsat 8 

OLI/TIRS SSI image, which were produced from 18 Landsat 8 OLI/TIRS land surface 

temperature (LST) data with Band 10, was presented. Besides, the map of Landsat 8 

OLI/TIRS SSI image, which were formed from 7 Landsat 8 OLI/TIRS land surface 

temperature (LST) data with Band 10 was given in Figure 5.3. 

 (a) (b) 

 (c) (d) 
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 (e) (f) 

 (g) (h) 
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(i) (j) 

(k) (l) 
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(m) (n) 

(o) (p) 
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(r) (s) 

Figure 5.1: The land surface temperature (LST) maps of 18 Landsat 8 OLI/TIRS data 

with Band 10 (a) 2013.07.21, (b) 2013.07.30, (c) 2014.10.21, (d) 2014.11.06, (e) 

2015.07.20, (f) 2015.07.27, (g) 2016.07.13, (h) 2016.07.22, (ı) 2016.07.29 (j) 

2017.07.09, (k) 2017.07.25, (l) 2018.07.03, (m) 2018.08.13, (n) 2019.07.06, (o) 

2019.07.31, (p) 2020.07.01, (r) 2020.07.17, and (s) 2020.07.24 

 

Figure 5.2: The map of Landsat 8 OLI/TIRS SSI image which were produced from 18 

Landsat 8 OLI/TIRS land surface temperature (LST) data with Band 10 



77 

 

 

Figure 5.3: The map of Landsat 8 OLI/TIRS SSI image which were produced from 7 

Landsat 8 OLI/TIRS land surface temperature (LST) data with Band 10 

The maps of 18 Landsat 8 OLI/TIRS land surface temperature (LST) data with Band 

11 were prepared and shown in Figure 5.4 below. In Figure 5.5, the map of Landsat 8 

OLI/TIRS SSI image which were produced from 18 Landsat 8 OLI/TIRS land surface 

temperature (LST) data with Band 11 was presented. Also, the map of Landsat 8 

OLI/TIRS SSI image which were formed from 7 Landsat 8 OLI/TIRS land surface 

temperature (LST) data with Band 11 was given in Figure 5.6. 

(a) (b) 
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(c) (d) 

(e) (f) 
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(g) (h) 

(i) (j) 
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(k) (l) 

(m) (n) 
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(o) (p) 

(r) (s) 

Figure 5.4: The land surface temperature (LST) maps of 18 Landsat 8 OLI/TIRS data 

with Band 11 (a) 2013.07.21, (b) 2013.07.30, (c) 2014.10.21, (d) 2014.11.06, (e) 

2015.07.20, (f) 2015.07.27, (g) 2016.07.13, (h) 2016.07.22, (ı) 2016.07.29 (j) 

2017.07.09, (k) 2017.07.25, (l) 2018.07.03, (m) 2018.08.13, (n) 2019.07.06, (o) 

2019.07.31, (p) 2020.07.01, (r) 2020.07.17, and (s) 2020.07.24 
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Figure 5.5: The map of Landsat 8 OLI/TIRS SSI image which were produced from 18 

Landsat 8 OLI/TIRS land surface temperature (LST) data with Band 11 

 

 

Figure 5.6: The map of Landsat 8 OLI/TIRS SSI image which were produced from 7 

Landsat 8 OLI/TIRS land surface temperature (LST) data with Band 11 

Finally, three different Landsat 8 OLI/TIRS land surface temperature (LST) data with 

Band 10 were chosen for analyzing the possibility of coal fires in the study area by 

depending on the time factor. These data were investigated according to 3-year 

intervals: 2013.07.21, 2016.07.29 and 2020.07.31 and coal fire maps were made by 

including the administrative boundaries of Soma and the licenced coal mine extraction 

area borders. The coal fire maps are shown in Figure 5.7 below. 
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(a) 
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(b) 
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(c) 

Figure 5.7: The three coal fire maps of Soma (a) 20130721, (b) 20160729 and (c) 

20190731 
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The relationship between the pixels obtained from The Landsat 8 SSI LST Band 10 

threshold value analysis (10-15%) and the threshold value pixels in the Landsat 8 LST 

Band 10 images belonging to three different years (2013.07.21, 2016.07.29 and 

2019.07.31) was examined. The following results were found: 

 

Figure 5.8: The Correlation Graphic of the Landsat 8 SSI LST Band 10 Threshold 

Values and the 2013.07.21 Landsat 8 LST Band 10 Threshold Values 

• The correlation between the Landsat 8 SSI LST Band 10 threshold image 

values and the 2013.07.21 Landsat 8 LST Band 10 threshold image values is 

approximately % 98.35 percent. 

 

Figure 5.9: The Correlation Graphic of the Landsat 8 SSI LST Band 10 Threshold 

Values and the 2016.07.29 Landsat 8 LST Band 10 Threshold Values 
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• The correlation between the Landsat 8 SSI LST Band 10 threshold image 

values and the 2016.07.29 Landsat 8 LST Band 10 threshold image values is 

approximately % 86.11 percent. 

 

Figure 5.10: The Correlation Graphic of the Landsat 8 SSI LST Band 10 Threshold 

Values and the 2019.07.31 Landsat 8 LST Band 10 Threshold Values 

• The correlation between the Landsat 8 SSI LST Band 10 threshold image 

values and the 2019.07.31 Landsat 8 LST Band 10 threshold image values is 

approximately % 91.11  percent. 

Thus, it has been proven that without analyzing each image one by one, a high 

correlation can be achieved with only the produced SSI image. Also, according to the 

Landsat 8 SSI LST Band 10 threshold image data, there are a total of 6303 pixels 

falling into the coal mine area. This number was determined as 9838 in the 2013.07.21 

Landsat 8 LST Band 10 threshold image data, 12244 in the 2016.07.29 Landsat 8 LST 

Band 10 threshold image data and 10901 in the 2019.07.31 Landsat 8 LST Band 10 

threshold image data. It is seen that this variable situation may have taken pixels other 

than possible fire pixels as a result of examining the threshold value images of three 

different years. 

As a result of the interpretation of the created coal fire maps, it can be emphasized that 

the potential coal fire areas shown in red are within the Soma licensed coal mine 

extraction areas shown in light orange in Figure 5.7. The reasons for the detection of 

hot spot areas in high temperature observed in areas without coal mine extraction areas 
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can be counted as the proximity of these areas to the city center and places where 

industrial activities are common. In places with low NDVI value, such as bare soil 

areas, the land surface temperature (LST) values were high, and in places with high 

NDVI value, such as forests and densely vegetated areas, the land surface temperature 

(LST) values were very low. 

According to the findings obtained as a result of the operations, the land surface 

temperature (LST) data obtained by using Landsat 8 Band 10 data were examined, and 

it was determined that the locations of the high temperature areas with the possibility 

of coal fires were similar to the data obtained by processing Landsat 8 Band 11 data. 

In order to easily distinguish possible coal fire areas, threshold values (LST) were 

determined according to the current relative land surface temperature values of the 

land. The range of these threshold values is between highest %10-15 of LST values in 

the whole region, and each pixel exceeding the threshold was perceived as indicating 

a possible coal fire. 

There are a number of  differences in the coal fire maps mapped at three-year intervals 

above. Among the primary reasons for these differences are the acquisition dates of 

Landsat satellite data, changing weather conditions, regional division of land cover 

into several classes, terrain types, thermal radiation affecting the land surface 

temperature (LST), underground coal fire burning situations, background temperatures 

of the study area, and so on. Some fire areas may not be noticed due to seasonal 

changes. The spatial resolution of thermal image data is a significant factor for 

determining the potential coal fire areas accurately. Landsat 8 OLI/TIRS thermal bands 

(Band 10 and Band 11) with 100 m spatial resolution were used for the study so that 

the areas smaller than 100x100 m SSA on the ground couldn't be identified. 

The Landsat 8 SSI Band 10 threshold coal fire pixel data, 20130721 Band 10 threshold 

coal fire pixel data, 20160729 Band 10 threshold coal fire pixel data, and 20190731 

Band 10 threshold coal fire pixel data were converted to .kmz format by using ArcGIS 

program to be opened on Google Earth application. It has been determined that the 

threshold coal fire pixels data were located on the Kısrakdere Open Pit Coal Mine area 

in Soma (Figure 5.11). 
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(a)                                                         (b) 

 
(c)                                                                    (d) 

Figure 5.11: The Google Earth display of Soma open pit mine and matching 

threshold coal fire pixels of (a) SSI Band 10 Threshold data, (b) 20130721, (c) 

20160729 and (d) 20190731 
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Chapter 6 

Conclusions 

Coal is a substance found in many countries, including our country, and is extracted 

from coal mines to obtain energy and to meet similar needs. The Soma district of 

Manisa province is also rich in coal reserves, and coal extraction has been done here 

for many years. Coal can be in the depths or surface of coal mines. Coal combustion 

can occur as a result of the extraction of coal from underground by various mining 

activities or while at the surface of the coal mine. Coal fire is an event that occurs due 

to contact with air (oxygen) and releases heat, and for this reason, temperatures higher 

than normal air temperatures can often be observed in areas where coal fires are 

experienced. Coal fires are very dangerous both for the area they are in and for the 

lives of people, and the locations of these fires must be identified and intervened upon, 

so the damage caused by the coal fires must be minimized. There are a number of tools 

and methods that can be used to detect coal fires. Field measurements made by 

applying field measurement methods in the coal mine areas provide a lot of 

information about the land temperatures of the area. However, remote sensing methods 

have started to be preferred with the fact that both the field measurements take a long 

time and cannot be easily performed in large areas, and the technology has gradually 

developed. It is estimated that the use of remote sensing technology in combination 

with geophysical methods in studies to be conducted on this subject will greatly 

increase the accuracy of the results. 

The main purpose of this thesis is to detect coal fires, which are caused by the contact 

of coal with oxygen in the coal mines in the Soma region and in the areas around the 

coal mines, by processing satellite images obtained by using remote sensing 

techniques. For this reason, Landsat 5 TM and Landsat 8 OLI/TIRS satellite image 

data were used. According to the results of the studies, Landsat 5 TM images were 



91 

 

excluded from this project because it was considered that the accuracy of the Landsat 

5 TM LST images was not sufficient for this project. In this study, land surface 

temperatures were calculated with an algorithm which uses single thermal band data 

(a single channel algorithm). Landsat 8 OLI/TIRS Band 10 data is main data of the 

project. Since Landsat 5 TM data could not be used, Landsat 8 OLI/TIRS Band 11 data 

as a second data type was included in the project, and each operation made for Landsat 

8 OLI/TIRS Band 10 was also applied to Landsat 8 OLI/TIRS Band 11 for validation.  

A total of 23 Landsat 8 OLI/TIRS data has been downloaded. The date range of these 

data is between 2013 and 2020. Before Landsat 8 OLI/TIRS data is processed, it has 

been subjected to a preparation stage called preprocessing, and the brightness 

temperatures of the pixels are displayed. Afterwards, the land surface emissivities of 

Landsat 8 OLI/TIRS data were calculated by using NDVI. And finally, by retrieving 

the land surface temperatures (LST), the pixels with the highest temperature which is 

the sign of coal mine fires, were determined. 

Each pixel is the smallest piece of data that represents the characteristic features of the 

geographic location it belongs to. The use of large amounts of data reveals the temporal 

change rate of the subject under investigation and contributes to the increase in the 

consistency and reliability of the data analysis. Therefore, the simulated single images  

(SSI) of Landsat 8 OLI/TIRS data with land surface temperatures were calculated. 

Threshold ranges (10-15%) of Landsat 8 LST SSI data were identified, as the pixel 

spacing with the highest temperature may represent the places where coal mine fires 

occur and spread. Normalized Landsat 8 LST SSI values were found for both Band 10 

and Band 11 in order to easily interpret the Landsat 8 LST SSI threshold data. 

Afterwards, these two data groups were overlapped to find out how accurate the 

Normalized Landsat 8 LST SSI Band 10 and Band 11 threshold values were. This 

method is quite necessary since field work cannot be done. As a result of this study, it 

was seen that the threshold values of Band 10 and Band 11 generally have the same 

pixels. In another application, it has been observed that Band 10 and Band 11 threshold 

pixels contain many common pixels corresponding to the Soma coal mines region. 

Accuracy and correlation analyses of Landsat 8 LST, Normalized Landsat 8 LST SSI, 

and Normalized Landsat 8 LST SSI Band 10 and Band 11 threshold data were made, 

and it was deduced that the two data types gave consistent results with each other. 
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Finally, coal mine fire maps were made with 3-year Landsat 8 LST Band 10 threshold 

data and the areas under the influence of possible coal mine fires were given visually. 

Landsat 8 LST SSI Band 10 images obtained by combining 18 Landsat 8 LST Band 

10 images were examined, and it was determined that this image has higher accuracy 

(about %64.07 percent) than other 18 Landsat 8 LST Band 10 images in determining 

the location of the fire pixels thought to belong to the fire areas. Normalized images 

of these images were created, and by this means, the temperature values were reduced 

to a certain range and data interpretation could be done easily.  

The Landsat 8 SSI LST Band 10 data is a highly preferable data type compared to the 

7 Landsat 8 LST SSI image obtained in the same month (July), because 7 Landsat 8 

LST SSI image was formed by the combination of 7 Landsat 8 LST Band 10 data and 

these were insufficient in the detection process of fire pixels. In addition, in the 7 

Landsat LST SSI Band 10 image, which consisted of not enough data groups, it was 

observed that there were also very high temperatures in the areas far outside the mining 

areas, which made the detection of mine fires difficult. In this study, the comparison 

of Band 10 and Band 11 bands, which are thermal bands, was also made using Landsat 

8 OLI/TIRS data, and Band 10 data outperformed Band 11. 
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