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REHABILITATION SYSTEM DESIGN TO STRENGTH MUSCLE 

ACTIVITY ON LOWER ARM EXTREMITY USING REAL TIME EMG 

DATA 

ABSTRACT 

Medical rehabilitation methods aim to restore limb functions lost as result of illness, 

accident or injury. Nowadays, rehabilitation processes have been supported by 

electromyography (EMG) data in harmony with the developing technology. EMG is 

a method of measuring electrical signals taken from nerve and muscles by using 

surface, intramuscular and/or needle electrodes. In this thesis, the lower arm muscle 

rehabilitation system was designed to strengthen the lower arm muscle activity via 

obtaining real time EMG data from its muscle surface. It is aimed to increased hand 

functions by repeating the opening and closing movement of the hand with a 

modified available rehabilitation system. Therefore, the EMG signal required for 

control of rehabilitation system was obtained from lower arm muscle by using 

surface electrode. In order to design for a personal rehabilitation system, individual 

threshold was determined from EMG signal in the experimental set where a hand 

was opened and closed. The threshold value of one was determined from thirty 

different experiments with EMG records and the rehabilitation system performance 

was tested with another six different experiments. Several methods were used for the 

determination of the threshold values. Histogram, multiplication factor based 

standard deviation, wavelet threshold estimation methods were used in this thesis. 

Wavelet threshold estimation can be calculated with several methods such as 

universal, length modified universal, scale modified universal, global scale modified 

universal (GSMU), scale length modified universal, log scale modified universal and 

log variable modified universal. Performance analyses of threshold determination 

methods were performed in the time and frequency domain. Time domain based 

performance analyses were determined via mean square error, normalized mean 

square error, root mean square error, normalized root mean square, mean absolute 

value, zero crossing methods, signal to noise ratio (SNR) and execution time. 

Frequency domain based performance analysis was tested by using power spectral 

density methods. Performance tests of the rehabilitation system were tested with the 

real time EMG data. According to the results, it was observed that the threshold 

determination method obtained by GSMU method was better in terms of providing 

execution time, SNR and SD values compared to other methods. However, the 

histogram method gave better result providing desired velocity pattern. 
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GERÇEK ZAMANLI EMG VERİLERİNİ KULLARAK ALT KOL KAS 

AKTİVİTESİNİ GÜÇLENDİREN REHABİLİTASYON SİSTEM TASARIMI 

ÖZET 

Tıbbi rehabilitasyon metotları, hastalık, kaza veya yaralanma sonucunda kaybedilen 

uzuv fonksiyonlarının yeniden kazandırılmasını hedeflemektedir. Günümüzde 

gelişen teknolojiye uyumlu olarak rehabilitasyon süreçleri elektromiyografi (EMG) 

verileri ile de desteklenmeye başlamıştır. EMG sinir ve kaslardan yüzey, kas içi 

ve/veya iğneli elektrotlarla alınan elektriksel işaretleri ölçme yöntemidir. Bu tezde alt 

kol kas yüzeyinden elde edilen gerçek zamanlı EMG verileri ile alt kol kası 

rehabilitasyon sistemi tasarımlanmıştır. Mevcut değiştirilmiş bir rehabilitasyon 

sistemi ile elin açma ve kapama hareketleri tekrarlanarak el fonksiyonlarının 

arttırılması amaçlanmaktadır. Bu nedenle, rehabilitasyon sisteminin kontrolü için 

gerekli olan EMG sinyali alt kol kası üzerinden yüzey elektrotu ile alınmıştır. Kişisel 

bir rehabilitasyon sistemi tasarlamak için, bir elin açılıp kapatıldığı deney setinde 

EMG sinyalinden bireysel eşik seviyesi belirlenmiştir. EMG kayıtları 30 farklı 

deneyle yapılarak eşik değerleri hesaplanmış ve 6 farklı deney de sistemin testi için 

yapılmıştır. Eşik değeri hesaplanırken farklı eşik belirleme yöntemleri kullanılmıştır. 

Bu tezde; histogram, çarpım faktörü tabanlı standart sapma ve dalgacık eşik değeri 

tahmini yöntemleri kullanılmıştır. Dalgacık eşik belirleme tahmini; evrensel, 

uzunluğu değiştirilmiş evrensel, ölçeği değiştirilmiş evrensel, küresel ölçekte 

değiştirilmiş evrensel (GSMU), ölçek uzunluğu değiştirilmiş evrensel, logaritma 

ölçeği değiştirilmiş evrensel ve logaritma değişken değiştirilmiş evrensel yöntemlerle 

hesaplanabilmektedir. Eşik belirleme yöntemlerinin performans analizleri zaman ve 

frekans düzleminde yapılmıştır. Zaman düzlemi tabanlı performans analizleri 

ortalama kare hatası, normalize ortalama kare hatası, kök ortalama kare hatası, 

normalize kök ortalama kare hatası, ortalama mutlak değeri, sıfır nokta tespiti 

yöntemleri, işaret gürültü oranı (SNR) ve uygulama süresi ile belirlenmiştir. Frekans 

düzlemi tabanlı performans analizleri, spektral güç yoğunluğu yöntemi kullanılarak 

test edilmiştir. Elde edilen sonuçlara göre, GSMU yöntemiyle elde edilen eşik 

belirleme yönteminin hesaplama zamanı, SNR ve SD değerleri açısından diğer 

yöntemlere göre daha iyi olduğunu görülmüştür. Bununla birlikte, histogram yöntemi 

istenilen hız örüntüsünü sağlayarak daha iyi sonuç vermiştir. 
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1.  INTRODUCTION 

Medical rehabilitation is a good recuperation way of treatment for people who 

encounter stroke and/or disability. Rehabilitation treatment procedures mostly aim to 

restore desired skills of muscle movements and help the recovery of the neural 

system. In either cases rehabilitation methods differ from each other with respect to 

the target patient; for example, an old person, who suffer from a stroke, cannot eat, 

dress or take a bath without help, whereas, a young person in a post-surgery period 

can return to work and daily normal activities by the help of ongoing rehabilitation 

[1;2]. In the related literature, internet-based monitoring systems are widely used for 

rehabilitation as it helps physical therapists to remotely monitor and observe patient 

activities during the period of regaining muscle strength. Zheng et al. [3] proposed 

that system was implemented with a web-based monitoring tool providing both 

therapeutic and support information for rehabilitation system. A web based-

monitoring system allowed the physical therapist the ability to view the rehabilitation 

history of patient and provide feedback to the patient. Bae et al. [4] designed a 

network-based monitoring system which consists of wireless sensor modules, 

computers at local and remote sites connected via the internet. Kinematic 

information conductive towards rehabilitation was measured on human body by 

using wireless sensor module and the measured data was analyzed at local and host 

computers that were connected via internet. 

   

There are several reported studies about portable and home-based rehabilitation 

systems which help patients with undergoing disabilities to adapt their daily 

activities. Daponte et al. [5] designed and implemented home based rehabilitation 

system that revolves around the body as a sensor network for measuring the range of 

motion of patient during rehabilitation exercises. Dowling et al. [6], a rehabilitation 

system was implemented for adaptive home usage. Proposed system creates custom 

rehabilitation exercises for the patient utilizing real time data obtained by portable 

sensors. 
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Nowadays, rehabilitation systems and processes have been supported by the 

electromyography (EMG) data obtained from the patient in harmony with the 

developing technology [7;8].  

 

EMG, which is a diagnostic procedure of collecting and assessing situations of both 

skeletal muscles and related neural cells, is widely used as a biomedical signal for 

physical therapy and rehabilitation [9; 10]. EMG signal might be obtained by placing 

electrodes at intramuscular and/or surface of the muscle. Surface EMG (sEMG) is a 

widely used method that is carried out by placing electrodes at the surface of the 

muscle while intramuscular EMG utilizes needle electrodes or intramuscular 

electrodes [11;12;13]. EMG signals have been used in clinical trials, robotic 

applications, and rehabilitation systems. [14;15;16]. Processing EMG signals provide 

significant information about muscle function and help to diagnose various muscle 

and neural system diseases such as myopathy and amyotrophic lateral sclerosis 

(ALS) [17;18]. It is also possible to support any rehabilitation system by using 

valuable information obtained from EMG signals which allow the ability to control 

rehabilitation systems with various analysis methods. Polygerinos et al. [19] 

proposed an open loop sEMG logic method. The proposed method controls soft 

robotic glove by continuously monitoring and comparing the state of two muscle 

signals for three predefined conditions as flex, extend, and hold. Leonardis et al. [20] 

reported that the design of a bilateral training system for rehabilitation of hand 

grasping that utilizes robotic hand exoskeleton and online muscle contraction 

measurement by EMG. Herein, an artificial neural networks method was applied to 

EMG signal for the estimation of free hand grasping pressure. Lui at el. [21] 

designed and implemented an EMG-Accelerometer based upper limb rehabilitation 

system prototype. A feature extraction method was used in every frame of EMG data 

for quantifying muscle activities. In the studies of both Wang et al. [22] and 

Khushaba et al. [23], mechanical systems of the myoelectric prosthetic hand is 

controlled with feature extraction and classification methods.  

 

In the light of the above studies about EMG based hand rehabilitation systems, the 

thresholding detection is presented as a challenging issue determined from various 

analysis methods. In order to determine threshold value of hand movements, each 

hand should be tested in their open or closed conditions [24;25]. As a result, hand 
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movements can be classified with respect to the obtained threshold results. During 

the threshold determination process, EMG signals should be denoised and classified 

with time domain methods such as histogram, multiplication factor based standard 

deviation and wavelet threshold estimation. These classified thresholds values can be 

utilized for the activation of hand prosthesis and rehabilitation systems [26;27]. In 

the applications of rehabilitation systems, noise effects issue originated from real 

electrode measurements is a significant problem for EMG signal analysis. Herein, the 

wavelet denoising based estimation technique helps to eliminate this related noise 

[28;29]. 

 

Recently, the accuracy of the selection of optimal threshold determination and 

classification methods in biomedical applications has been widely studied. The effect 

of accuracy of threshold determination and classification methods is observed by 

performing performance analysis. Awal et al. [30] reported that performance 

analyses were performed to observe the accuracy of the threshold determination 

methods for electrocardiography denoising. Performance analyses were carried out in 

the time, frequency, and time-frequency domain by using statistical tools. Waris et 

al. [31] investigated the effect of each feature on classification error when the 

threshold is optimized for both surface and intramuscular EMG by computing mean 

absolute error, waveform length, zero crossing, slope sign changes, William 

amplitude and myopulse percentage rate. 

 

In this thesis, a pre-designed rehabilitation system was enhanced in order to improve 

muscle activity for lower arm extremity using real-time sEMG data. Throughout the 

thesis, once the real-time EMG data is obtained from the healthy hand during 

grasping movements (opening and closing movements), it is aimed to improve 

functions of the other hand with weak muscle activity. Herein, sEMG called as EMG 

is obtained from healthy lower arm muscles by using surface electrodes. In order to 

adapt the system as a custom rehabilitation device of each specific patient, EMG 

signal was acquired in the experimental set during the repetitive grasping motion of 

the hand and the individual threshold value was determined. During the 

determination phase of these threshold values 30 different experiments were carried 

out and another 6 different experiments were performed for testing the rehabilitation 

system. In the threshold determination stage, time domain analysis including 
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histogram, multiplication factor based standard deviation and wavelet threshold 

estimation methods. These methods might be evaluated via the hard or soft threshold 

algorithms borrowed from the related literature [30]. Time domain based 

performances of threshold determination methods were tested in terms of mean 

square error (MSE), normalized mean square error (NMSE), root mean square error 

(RMSE), normalized root mean square error (NRMSE), mean absolute value (MAV), 

zero crossings (ZC), signal to noise ratio (SNR), standard deviation (SD) and 

execution time. Likewise, power spectral density (PSD) was used for frequency 

domain based performances of threshold determination methods.  
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2.  BACKGROUND 

In this chapter, skeletal muscle anatomy and physiology, muscle contraction, EMG, 

and hand rehabilitation systems are briefly explained in the following sub-chapters. 

2.1 Skeletal Muscle Anatomy & Physiology 

Skeletal muscle might be defined as voluntary muscle. Skeletal muscle; is a muscle 

fiber with o long cylindrical cell structure containing many nuclei, mitochondria, and 

sarcomeres (Figure 2.1). Each muscle fiber is surrounded by endomysium that is a 

thin layer of connective tissue. Most of these muscle fibers are covered with a bunch 

of muscle. These muscles are grouped in a parallel arrangement that is called muscle 

fascicle. It is thicker than the epinimum that surrounds each of the bundle muscles. 

The type of tendon that encapsulates a large number of muscle fascicles within the 

external sheath is called epimysium [32]. 

 

 

 

Figure 2.1: Anatomical structure of skeletal muscle [32] 

 

Muscle fibers are classified by their histological appearance, shrinkage rates, and 

fatigue resistance. The slow twitch, or type I fibers, are thinner and deposited by a 

denser capillary web. It also appears red because it contains a large amount of 
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oxygen-binding protein myoglobin. Fast-twitch, also known as type II fibers, differ 

in fatigability.  

Physiological skeletal muscle contraction, the potential for membrane movement 

first occurs and spreads. In the meantime, the electrical energy generated is 

converted into an intracellular chemical signal, followed by the triggering of 

myofilament interaction, resulting in skeletal muscle contraction. The electrical 

energy generated during this process is converted into an intracellular chemical 

signal, followed by a skeletal muscle contraction by triggering myofilament 

interaction. The physiological structure of skeletal muscle is shown in Figure 2.2. 

Physiological skeletal muscle activity is occurred by a nerve impulse. The nerve 

input of the skeletal muscle fiber is taken from the center of the fibers known as 

motor end plates. The electrical neuronal impulse is amplified at the neuromuscular 

junction. The resulting generation of the endplate potential is the first step of muscle 

contraction [33]. 

 

 

Figure 2.2: Physical structure of skeletal muscle [34] 

2.1.1 Muscle contraction 

Muscle contraction is generated with an impulse from the motor neuron of the 

muscle. When the impulse reaches the motor unit muscle fibers, the reaction begins 

at each sarcomere between actin and myosin filament. This reaction causes muscle 
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and results in the sliding filament theory [35;36]. Muscle contraction consists of four 

distinct stages; these are given as follows;  

 Muscle activation: At this stage, the sarcoplasmic reticulum stimulates the 

motor nerve to secrete calcium into the muscle. 

 Muscle contraction: At this stage, calcium ions actin and myosin flow into 

the muscle cell. The actin and myosin cross bridges connected with energy. 

 Recharging: Energy is re-synthesized to provide strong binding of actin and 

myosin. 

 Relaxation: Relaxation occurs when stimulation of the nerve stops.  Calcium 

ions are pumped back into the sarcoplasmic reticulum and link between actin and 

myosin is broken. Actin and myosin return to state without stimulation of nerve and 

causing muscle relaxation. 

2.1.2 Myopathy 

Myopathy defined as muscle disease might be about weakness, inflammation, 

contraction, and/or paralysis diseases in the muscle fibers. In the related literature, 

myopathy has two types such as hereditary and acquired myopathy. Hereditary 

myopathies are caused by a genetic defect, for example, muscular dystrophies are 

related to a genetic defect of the X chromosome. However, acquired myopathies are 

caused by our body’s own system or accident and injury [36;37]. Myopathy could be 

diagnosed with blood tests and/or EMG data. To treat these myopathy diseases, 

medication, physical medicine and/or rehabilitation systems could be used by the 

doctors [37]. 

2.2 Electromyography (EMG) 

EMG signals measured from electrical activities of muscles might be used for a 

diagnostic procedure to assess the health of muscles and the nerve cells that control 

motor neurons. The measurement of EMG signal procedure is typically given in 

Figure 2.3. The EMG signal is obtained by using measuring electrodes placed on the 

muscle surfaces. It is measured as an electrical activity by using each muscle 

electrode according to the reference electrode. The amplifier circuit stages produce 

raw EMG signal data and eliminate noise signals by subtracting the signal from the 

reference electrode. The measured EMG signal might be represented as graphical 
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outputs, numerical values and/or sound messages [11;12] and a typical EMG signal 

record is shown in Figure 2.4.  

 

 

Figure 2.3: EMG recording procedure [38] 

 

 

Figure 2.4: Typical EMG record 

 

The obtained EMG signal might be used to detect abnormal electrical activities of the 

muscle that might bring about some diseases and illness such as muscular dystrophy, 

inflammation of muscles, pinched nerves, peripheral nerve damage (damage to 

nerves in the arms and legs), ALS, myasthenia gravis, disc herniation, etc. 

[11;12;17]. 

 



9 

 

2.2.1 EMG circuit 

EMG circuit basically consists of electrodes, amplifiers, and filters. EMG circuit 

diagram is shown in Figure 2.5 where pre-amplification, differential amplifiers 

bandpass filter, amplification, microcontroller and personal computer (PC) are 

constituted. A designed for EMG circuit scheme is given in Figure 2.6. Herein, the 

instrumentation amplifier is implemented with AD622 and differential amplifiers 

circuit is designed with LM324 and LM741. The AD622 based circuit amplifies the 

desired meaningful levels of the raw EMG signal measured from the electrodes.  

 

 

Figure 2.5: EMG circuit block diagram 

 

 

Figure 2.6: A part of the EMG circuit scheme 
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The EMG circuit might be used to measure several EMG measurement types such as 

sEMG, single fiber EMG (SFEMG), compound muscle action potential (CMAP), 

sensory nerve action potential (SNAP) and surface muscle recording. The SFEMG is 

an EMG measurement of the single muscle fiber by using needle electrodes. The 

CMAP measures action potentials from several muscle fibers in the same are by 

using surface electrodes. The SNAP is a measurement method that is obtained by 

electrically stimulating sensory fibers and recording nerve action potential at a point 

further along nerve [39]. 

 

The amplitude, filter setting, maximum frequency, and sampling frequency ranges of 

these EMG types are given in Table 2.1. The EMG signal has electrical potential 

ranges in amplitude from less than 50µV to several 300mV and frequency range 

from 2 Hz to more than 10 kHz [12, 39].  

Table 2.1: EMG standard [39] 

EMG TYPE AMPLITUDE 

(µV) 

FILTER 

SETING (Hz) 

MAX. 

FREQUENCY 

(kHz) 

SAMPLING 

FREQUENCY 

(kHz) 

EMG (sEMG) 50-300000 2Hz-10kHz 10 20-50 

SFEMG  300-10000 500Hz-5kHz 20 20-50 

CMAP 100-30000 2Hz-10kHz 5 10-25 

SNAP 0.1-100 5Hz-2kHz 5 10-25 

Surface muscle 

recording 
10-1000 20Hz-1kHz <1 

2-5 

 

2.3 Hand Rehabilitation and Its Physical Therapy  

The hand rehabilitation is a kind of physical therapy with hand and its upper 

extremities to provide the functional development of sensory and physical skills of 

the hand. Treatment of hand rehabilitation involves such application as computerized 

evaluation, education of the patient, control of pain, range of motion, soft tissue 

mobilization and flexibility and strengthening exercises. [20, 40, 41]. Methods of 

hand rehabilitation used in the treatment of many diseases such as myopathy, 

treatment of fraction and dislocation, nerve compression differ from patient to 

patient. To make an eligible treatment for personal hand rehabilitation, special hand 

exercises might be used (Figure 2.7). 
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Figure 2.7:Various hand exercises for hand rehabilitation (a) Hand open (b)Wrist 

flexion (c) Pronation (d) Hand close (e) Wrist Extension (f) Supination [28] 
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3.  MATERIAL & METHODS 

In this chapter, the design stages of the developed hand rehabilitation system are 

explained and given in Figure 3.1. Herein, the subsystems of the developed hand 

rehabilitation system can be grouped as mechanical structure, EMG circuit with 

sensors and EMG analysis methods such as time and frequency domains.  

 

 

Figure 3.1: The design stages of the develop system 

3.1 Mechanical Structure of the Designed System 

In order to implement the proposed methodology of this thesis, a single degree of 

freedom hand rehabilitation system (Figure 3.2) that was designed in the study of 

Gezgin et al. [42] was selected.  

 

 

Figure 3.2: Single degree of freedom hand rehabilitation system [42] 

 

As seen in Figure 3.3, the most critical part of the system is composed of a dual loop 

Watt II six-bar linkage mechanism. Dimensional parameters of the mechanism were 

synthesized by considering real-life fingertip trajectory data of the index finger that 

Mechanical 
structure

EMG signal 
analysis

EMG circuit 
with sensors
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was taken by utilizing motion capture cameras during successive hand grasping 

motion of adult subjects. As a result during rehabilitation treatment, the tip of the 

mechanism is able to follow the trajectory of index finger motion naturally. In order 

to attach the patient hand to the system, it also includes a hand attachment module 

that naturally adjusts the motions of the remaining fingers during the treatment. 

 

 

Figure 3.3: Watt II six bar linkage mechanism [42] 

 

Actuation of the system is carried out by a BLDC actuator that includes a built in 

gear box, a hall-effect sensor, and encoder. Using the supplied EPOS2 controller the 

rehabilitation system manages to simulate the grasping motion of the human hand 

during continuous rotation of the actuator. In the designed hand rehabilitation 

system, Maxon BLDC Motor and EPOS2 motor driver were used to control for 

mechanical structure [43;44]. 

3.1.1 Brushless DC (BLDC) motor  

The brushless DC motor (BLDC) is widely used as an electromechanical actuator in 

many engineering applications such as automotive, aerospace, robotics, medical, 

industrial automation, etc. [45;46;47;48]. BLDC motor is a type of synchronous 

motor which the magnetic field produced by the stator and rotor at the same 

frequency. The stator of the BLDC motor consists of windings called laminations, 

which are axially cut along the inner periphery and placed in slots. The stator 

winding is connected with different ways to give a different type of back 

electromotive force. These different ways give the simple control way for the users 

to speed and precise location of the rotor. The rotor of the BLDC motor consists of 

permanent magnet that can vary from two to eight pole pairs with alternate north and 

south poles. Topology and equivalent circuit of the BLDC motor are shown in Figure 
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3.4. When it compared with the other DC motors, BLDC motors have many 

advantages such as better speed-torque characteristics, high efficiency, high-speed 

ranges, long operation life, and silent operation. 

 

Figure 3.4: Topology and equivalent circuit of BLDC motor 

 

Once the BLDC motor triggers out to rotate its shaft, which commutates cycle 

electrically, each winding of the motor generates an electromotive force (EMF) 

voltage. It opposes the voltage supplied to the windings and its polarity of back EMF 

is in the opposite direction of energized voltage polarity. Furthermore, back EMF is 

depending on the angular velocity of the rotor, the magnetic field generated by rotor 

magnets and the number of turns in the stator windings. Hence, the rotational speed 

and location can be measured by Hall-Effect sensors and/or sensorless method which 

is the use of fictitious current vectors via state estimators [49;50;51;52]. The 

simplified electronics circuit with power transistors driver of the BLDC motor is 

shown in Figure 3.5. Dynamic mechanical and electrical equations of the BLDC 

motor nonlinear model is described in from Equation 3.1 to Equation 3.3 borrowed 

from [49]. 
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Figure 3.5: A typically driver circuit of the BLDC motor 
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where       are the fictitious inductances on the direct-axis and quadrature-axis, 

      are the direct-axis and quadrature-axis voltages,        are the direct-axis and 

quadrature-axis currents,   is the number of permanent pole pairs,   is the rotor 

angular speed,   is the winding resistance,   is the inertia momentum,     √
 

 
  ; 

   is the permanent magnet flux constant,   is the displacement variable and 

  [    ]
 
.   ( )  is the external torque caused by the friction imposed on the shaft 

of the motor.    ( )       ,   is the viscous damping coefficient,    is the 

external load. 

 

In this thesis, Maxon Brushless 357242 BLDC motor is used a motor with Hall-

Effect sensor to sense the rotor position. The snapshot of the BLDC motor integrated 

the hand rehabilitation designed system and its features are given in Figure 3.6 and 

Table 3.1, respectively.  
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Figure 3.6: Maxon Motor (357242) 

Table 3.1: Maxon Motor (357242) features [43] 

Gear Box 

Actuator 
Planetary Gearhead GP 42 C,  42 

mm, 3-15Nm, Ceramic version 

Motor EC 45  45 mm, Brushless, 250 

Watt, with Hall Sensor 

Sensor Encoder HEDL 9140, 500CPT, 3 

Channel, with Line Driver RS 422 

 

3.1.2 Motor driver 

The motor driver of the BLDC motor designed hand rehabilitation is EPOS2 driver 

in this system. EPOS2 driver has some advantages such as small size, full digital 

encoder, smart positioning controller with Hall-effect sensor and it can be integrated 

with Maxon Motor. EPOS2 motor driver can be operated via USB or RS232 

communication ports and CANopen network USB port of the motor driver is used 

for communication with the PC controlled with EMG signal analysis. 

 

 

Figure 3.7: PC connection with USB port of EPOS2 
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3.2 Embedded System Kit for EMG Signal 

The EMG measurement kit possesses sensors for gathering electrical signals of EMG 

generated by muscles and nerves. The measurement kit might be implemented with 

Arduino and/or similar microcontroller-based embedded systems [54;55]. The 

Arduino-based EMG sensor used in this thesis serves as a bridge connecting the 

human body and electronic components. The sensor measures small muscle electrical 

signals than amplified two times and filtered. The sensor output is recognized by 

Arduino. In standby mode, the output of the sensor is 1.5V. Once muscle contraction 

occurs, the output signal increases up to 3.3V. In this thesis, the real time EMG data 

is used for controlling hand rehabilitation system with Arduino based EMG 

measurement kit and surface electrode (Figure 3.8). 

 

 

Figure 3.8: EMG measurement kit with surface electrodes 

3.3 EMG Signal Analysis 

EMG signal analysis is usually used for physical therapy and rehabilitation systems 

[56;57]. It is necessary issue that threshold detection is determined from EMG signal 

analysis. In the related to the literature, EMG signal analysis-based thresholding 

detection can be performed with several analysis methods [28;31;58]. In Ref. [58], 

the histogram method was used for time domain threshold determination technique. 

Another threshold determination method was wavelet threshold estimation methods 

including both time-frequency components [28]. These threshold algorithms that are 

used for denoising, classification and control applications consists of soft and hard 

thresholding algorithm [28;30]. The hard and soft threshold algorithms are given in 
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Equation 3.4 and Equation 3.5, respectively, where   stands for the obtained EMG 

data and    stands for the threshold value. [30].  

 

  ( )  {
    | |    
     | |    

      (3.4) 

 

  ( )  {
                                    | |    
    ( )(| |    )   | |    

     (3.5) 

 

In this thesis, the hard thresholding procedure is used for the control of the hand 

rehabilitation system. Histogram method, multiplication factor based standard 

deviation method, and wavelet thresholding estimation methods are applied to 

receive real-time EMG data from the hand rehabilitation system. Herein, to 

determine the threshold level, EMG signals were denoised and classified with several 

methods such as histogram, standard deviation, and wavelet. After that, the 

classification of EMG signal might be used for controlling of rehabilitation systems 

and prosthesis application. 

3.3.1 Histogram method 

The histogram method, which is a kind of time domain analysis, is defined as a 

graphical representation of the frequency of the given data sequence determined with 

equal intervals [59]. To achieve the histogram method analysis, the amplitude is 

divided into equal intervals where the number of values is calculated. The results of 

this method are sketched on a graph showing the amplitude values in an axis-divided 

interval and the other axis shows the number of amplitude values in the intervals 

[58]. 

3.3.2 Multiplication factor based standard deviation method 

The SD method is a statistically way defined as a measurement of dispersion from 

the mean of the given data set. The SD is calculated via a square root value of 

variance. As for threshold detection for EMG signal with the SD method, in the 

literature, there are multiple ways of SD for obtained EMG data where a 

multiplication factor chosen as three or five folds. In Ref. [60], extracellular of neural 

activity was obtained at a multiplication factor based SD method by using the needle 

electrodes. In this thesis, the multiplication factor based SD method was applied in 
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real time EMG data by using the surface electrodes and the multiplication factor was 

selected as three and five folds. 
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where    stands for actual response of the test EMG data,   is the mean of  real time 

EMG signal and   is the length of the data. 

3.3.3 Wavelet threshold estimation method 

Wavelet transform can be defined in time - frequency components, however, in this 

thesis; it is used to find time components of a signal analyzed [61]. The wavelet 

transform produces a translation and a dilation of an instant window with the mother 

function  ( ) [62], it is defined as follows 

 

 (   )( )   
 
 

  (   (   ))     (3.8) 

 

where   is the width of the wavelet width and   is the position of the wavelet, both   

and   are integer that scale and dilate of this mother function. The wavelet function 

can be defined in the following form  

 

 ( )  ∑ (  )      (    )
   
        (3.9) 

 

where  ( ) and    stands for the mother function and the wavelet coefficients, 

respectively [63]. 

 

In this thesis, wavelet coefficients based on the threshold determination methods 

used with real EMG data are given as follows. i) Universal method is given in 

Equation 3.10 [28;64.], ii) Length modified universal (LMU) method is expressed in 

Equation 3.11  [28;65], iii) Scale modified universal (SMU) method is expressed in 
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Equation 3.12 [28;66], iv) Global scale modified universal (GSMU) method is given 

in Equation 3.13 [28;67], v) Scale length modified universal (SLMU) method is 

combined both LMU and SMU methods expressed in Equation 3.14 [28;66], vi) Log 

scale modified universal (LSMU) method is given in Equation 3.15 [28;68] and vii) 

Log variable modified universal (LVMU) method is given in Equation 3.16 where 

the constant   constant   value is associated to wavelet function and SNR, in this 

thesis, it is chosen as 3 [28;69]. 
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where    stands for sample size of a signal,   stands for 
      (|   |)

      
 with     which 

is the detail wavelet coefficient at scale level with   from 1 to 4,   stands for 4 which 

is the maximum level of scale,   stands for         and   stands for 3 as a constant. 

3.3.4 Performance evaluation 

After implemented the threshold determination methods, performances comparison 

of between the real-time test EMG data and the desired velocity response are 

evaluated. Performance evaluation methods consisting MSE, NMSE, RMSE, 

NRMSE, MAV, ZC, SNR, SD and the execution time of each method are computed 

for threshold determination methods are computed in the time domain [30, 31, 70]. 
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Similarly, the power spectral density (PSD) method is evaluated in the frequency 

domain [30, 70].  

3.3.4.1 Time domain based performance analysis 

In this subchapter, the time domain based performance analyses methods are given in 

detail while evaluating threshold determination methods. MSE is about the average 

squared difference errors given in a system. In this thesis, MSE is computed the 

average squared difference between the desired signal and actual signal. The desired 

signal is defined as the velocity response of test EMG data and the test data is 

defined as the actual or real response of test EMG data for MSE given in Equation 

3.17. The NMSE is also given in Equation 3.18. [30;71]. The RMSE is the square 

root of the difference between the desired signal and actual signal i.e. RMSE is the 

square root of MSE. It provides for computing the magnitudes of the error signal in 

Equation 3.19 [30;71]. The NRMSE is also given in Equation 3.20. As for another 

performance criteria in time domain, MAV is the average of the absolute value of 

signal which is given in Equation 3.21. In this thesis, MAV is computed by the 

average of absolute value of actual response of the test EMG data. MAV might also 

indicate muscle contraction levels [31;72]. 
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where  ( ) stands for the desired velocity response of test EMG data,   ( ) stands 

for actual response of the test EMG data and   is the length of the data. 
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The ZC is providing an approximate estimation property measures the number of 

zero crossings of the signal given in Equation 3.22 [31;70].  

 

   ∑ ,(  ( )   (   )   )  (|  ( )    (   )|   )-
   
     (3.22) 

 

where   ( ) is actual velocity response of test EMG data,   is the length of the 

data.  

 

The SNR measured in decibel (dB) is a rate the level of the signal to the level of 

noise. The higher SNR value gives that signal includes useful information while the 

negative value of SNR means that the noise is stronger than the signal. It is given in 

Equation 3.23 and Equation 3.24 as follows 

 

         .
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where         is the power of signal,        is the power of noise, SNR improvement 

is defined by [30]. In this thesis,           is the SNR of the desired velocity 

response of test EMG data and          is the SNR of the actual response of test 

EMG. 

 

The SD method that might be used both domains is a way to measure the dispersion 

from the mean of the given any data set. The SD is given in Equation 3.25 [73]. 
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        (3.25) 

 

where    stands for the actual response signal in the data set,   is the mean of the 

data set and   is length of data set. 
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3.3.4.2 Frequency domain based performance analysis 

In this subchapter, the frequency domain based performance analysis method is 

explained in detail while evaluating threshold determination methods. The PSD is a 

measuring way about power contents of the signal versus frequency. It can be found 

two ways given in Equation 3.26 and Equation 3.27 [73]. 

 

      ( )         {
 

  
|∫   ( ) 

       

  
  |

 

}  (3.26) 

 

where   ( ) is the average of Fourier transform magnitude square over   standing 

for time interval and   ( ) standing for the actual response signal.  
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where   ( ) is Fourier transform of the auto-correlation function,   ( ) is auto-

correlation of   ( ) standing for the actual response signal, and   
 ( ) is complex 

conjugate of   ( ). 

3.4 Software Implementation 

In this subchapter, software implementation of the designed hand rehabilitation and 

control systems are explained with Arduino and Matlab package programs and 

numerical analysis platform, respectively [74]. Arduino software is used for 

gathering the real-time EMG data from the hand rehabilitation system setup via 

Arduino hardware based EMG sensor. Matlab numerical analysis platform provides 

gathering, analyzing, processing and generating the meaningful outcomes as a 

control signal for the rehabilitation system. 

3.4.1 Arduino based software design 

Arduino is an open-source electronics hardware and software platform [75]. Arduino 

contains either an 8-bit or a 32-bit microcontroller and integrated development 

environment (IDE) that used to write and upload computer code using the C or C++ 

programming languages. The most popular Arduino boards can be used for many 
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electronics based projects [76]. In this thesis, ATmega328p based Arduino is used. 

The board has 14 digital input/output pins, of which six can be used as pulse width 

modulation (PWM) outputs. It has six analog inputs. Memory is 32KB of flash 

memory, 2KB of static random access memory and 1KB of electrically erasable 

programmable read memory [76].  

3.4.2 Matlab based software design 

Matlab providing a numerical analysis platform is a matrix-based language allowing 

natural expression of computational mathematics [77-78]. Engineers and/or scientists 

use Matlab programs because it includes mathematical tools, computation, algorithm 

development, modeling and simulation, data analysis, signal processing, the control 

systems, application development, graphical user interface (GUI) toolboxes and 

useful solutions with functions [77]. In this thesis, the Matlab R2017b version was 

used because previous versions of Matlab were not supported to EPOS2 motor 

controller. The MinGW-W64 compiler was used for building C and C++ applications 

[79]. 

 

 

Figure 3.9: A part of Matlab code for the designed system 
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4.  ENHANCEMENT OF A HAND REHABILITATION SYSTEM TO 

STRENGTHEN MUSCLE ACTIVITY ON LOWER ARM EXTREMITY 

USING REAL TIME EMG DATA 

In this chapter, enhancement of the existing hand rehabilitation system will be 

explained in detail by considering hardware and software stages (Figure 4.1). 

Hardware stage includes the mechanical structure and the electronic system hardware 

including microcontroller based Arduino electronics card with EMG measurement 

kit and BLDC motor driver called EPOS2 controller. Software stage includes the 

code written in Matlab and C programs. 

 

Figure 4.1: The design stages of the developed hand rehabilitation system 

4.1 Design of the Mechanical System 

As it was mentioned in previous chapters rehabilitation system that was utilized in 

this thesis is mainly composed a single degree of freedom Watt II six-bar linkage that 

was designed by using kinematic synthesis procedures [42]. In order to implement 

proposed methodologies, rehabilitation robot was enhanced as an EMG based 

system. Figure 4.2 shows the overall rehabilitation system with its main components. 

The mechanical system is controlled via Maxon BLDC with EPOS2 motor driver. 
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Figure 4.2: The snapshot of the mechanical system 

4.2 Software Design  

Software implementation to the target rehabilitation system was carried out by using 

Arduino IDE, Matlab, C program and MinGW-W64 compiler for the motor driver 

(Figure 4.3). Real-time EMG data was gathered via Arduino based EMG 

measurement kit. Obtained data was recorded and processed for signal processing in 

order to have meaningful outcomes in Matlab. EPOS2 motor driver of BLDC motor 

was controlled by Matlab and serial communication driver files and libraries were 

installed with Matlab-center. In this thesis, threshold determination methods were 

performed in Matlab environment with histogram, multiplication factor based 

standard deviation and wavelet threshold estimation methods. 

 

 

Figure 4.3: The software design of the developed hand rehabilitation system 
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5.  EXPERIMENTAL RESULTS 

In order to obtain experimental results of the developed EMG based hand 

rehabilitation system, real-time EMG data was gathered from the healthy arm of the 

volunteer by using Arduino based EMG sensor. Implemented experimental setup of 

the hand rehabilitation system can be seen in Figure 5.1 where the data was obtained 

from the surface of the lower arm muscles by using surface electrodes. Test 

procedure of experimental setup is also shown in Figure 5.2. In light of given 

procedural approach rehabilitation of the hand with decreased physical functions was 

aimed to be rehabilitated with EMG data obtained from healthy arm. 

 

    

         (a)        (b) 

Figure 5.1: The experimental setup of (a) the hand rehabilitation system (b) EMG 

sensors connected to the lower arm 
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Figure 5.2: Test procedure of experimental set 

 

Obtained real-time EMG data from the experimental setup of the hand rehabilitation 

system was processed via Matlab to determine the threshold values. To find out the 

suitable threshold determination values, 30 different experiments were performed 

under several muscle contractions such as relax, strength or exhausted in terms of 

hand open and close positions. During these experiments in order to determine the 

individual threshold value of a person who makes repetitive grasping motion, EMG 

signals were evaluated. One of the obtained real-time EMG data from these 

experiments can be seen in Figure 5.3.  
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Figure 5.3: One of the obtained real-time EMG data from the volunteer 

 

In these experiments, minimum of the individual threshold value was taken as the 

lower threshold when the hand was opened. Maximum value of the individual 

threshold value was also taken as the upper threshold value when the hand was 

closed. In light of this, if the received test EMG data is calculated as higher than the 

determined maximum threshold value, the maximum threshold value is updated as 

the value of the received test EMG data. However, the minimum threshold value was 

set to 0 value because of the hard threshold algorithm borrowed from [30]. 

 

After the determination of the minimum and maximum values of the individual 

thresholds, the BLDC motor whose velocity response lies between 0 and 1000 

revolutions per minutes (RPM) might be controlled. That is to say, minimum of the 

threshold value was set to 0 RPM whereas the maximum of the threshold value was 

set to 1000 RPM. One of the BLDC motor velocity responses can be seen in Figure 

5.4 as an example. According to the data obtained from the healthy arm, the 

rehabilitation of the unhealthy hand was performed.  
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Figure 5.4: One of the BLDC motor velocity responses obtained from the real-time 

EMG data 

5.1 Results of Threshold Determination Methods  

In this subchapter, performances of threshold determination methods were evaluated 

with histogram, multiplication factor based standard deviation and wavelet threshold 

determination methods. These methods are called as universal, LMU, SMU, GSMU, 

SLMU, LSMU and LVMU. Each method was performed via the hard threshold 

algorithm borrowed from [30] for the EMG data of 30 different experimental results 

while the hand was in closed position as the open hand position was set to the 0 

value. The values of the threshold determination methods were computed as the 

maximal values and the obtained results of them are shown in Table 5.1.  

Table 5.1: Results of threshold determination methods when hand is closed for each 

30 experiments 

Threshold Determination 

Method 

Threshold value (mV) 

Histogram method 304.6667 

Standard deviation method (x3) 9.6672 

Standard deviation method (x5) 16.1120 

Universal method 6.5399 

LMU 0.6540 

SMU (j=3) 4.6244 

GSMU 1.6350 

SLMU (j=3) 0.9249 

LSMU (j=3) 4.7175 

LVMU (j=3, d=3) 2.8317 
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In order to test the developed rehabilitation system performance, another 6 different 

experiments (named as from 31
st
 to 36

th
 data set) of the obtained EMG data from the 

experimental setup were used in order to determine the individual threshold values 

for each person for the personalized treatment. In the experimental setup, the results 

of the threshold determination methods for 31
st
 test EMG data are given in Table 5.2 

Multiplication factor based standard deviation methods (x3 and x5) are generally 

applied to the EMG data received by needle electrode, however, in this thesis, the 

multiplication factor based standard deviation was firstly applied to the EMG data 

received by surface electrodes. 

Table 5.2: Results of threshold determination methods for 31
st
 data set 

Threshold Determination 

Method 

Minimum threshold value 

(mV) 

Maximum threshold value 

(mV) 

Histogram method 295.5 327.5 

Standard deviation method 

(x3) 
3.3838 16.7628 

Standard deviation method 

(x5) 
5.6396 27.9380 

Universal method 3.4110 10.2330 

LMU 0.2418 0.7254 

SMU (j=3) 2.4119 7.2358 

GSMU 0.8527 2.5582 

SLMU (j=3) 0.3420 1.0259 

LSMU (j=3) 2.4604 7.3815 

LVMU (j=3, d=3) 1.4381 4.3142 

 

After the determination of the threshold values from the algorithms in Table 5.2, 31
st
 

data set from the hand rehabilitation system was used as the desired response named 

the real-time EMG data set, likewise, the actual response of the hand rehabilitation 

system is named as the velocity response for the BLDC response of the hand 

rehabilitation system. Both real-time test EMG data and velocity responses are 

depicted in Figure 5.5 in terms of the histogram and the multiplication factor based 

standard deviation methods. Similarly, both responses are depicted in Figure 5.6 in 

terms of the Wavelet threshold estimation methods. In this thesis, wavelet threshold 

estimation methods, “wavedec” command is used to find wavelet coefficient in 

Matlab. This command performs a 3-level wavelet decomposition of the signal using 

the order 1 Daubechies wavelet with the level 1 detail coefficient used. 
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Figure 5.5: Real time test EMG data and the velocity response of histogram and 

multiplication factor based standard deviation methods using EMG data of no.31 
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Figure 5.6: Real time test EMG data and the velocity response of wavelet threshold 

estimation methods using EMG data of no.31. 
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5.2 Performance Analysis 

After the determination of the threshold values from the algorithms in Table 5.2 for 

31
st
 data set from the hand rehabilitation system, performances comparison of 

between the real-time test EMG data and the desired velocity response were 

evaluated to compare their performances results. Results of the time domain based 

performance analyzes are given in Table 5.3 where the results of MSE, NMSE, 

RMSE, NMRS, MAV, ZC, SNR, SD and execution time were computed by using 

test EMG data set. ZC was computed as 0 for all methods i.e. the data sets does not 

have the sign change.  

 

The results of MSE shows that the histogram method has the lowest value as 112180 

while SLMU has the highest value as 484850. As for the NMSE results, histogram 

method has the lowest value as 0.0239 whereas the other methods are identically 

equal each other as nearly 0.54. When RMSE results of the threshold determination 

methods were compared with each other, histogram method results were better than 

the results of the other methods. Similarly, NRMSE value has the best result as 

0.0204 whereas the other methods are also identically equal each other as about 0.33. 

As for MAV results, the histogram method gives the better result than the other 

results because the result of the histogram method is nearly 223 mV and the closest 

value of threshold value 327 mV in Table 5.2 where, in this thesis, the MAV value is 

indicated the muscle contraction level. However, the SNR result of the GSMU 

method has the best performance value as 14.9418. When it is come to execution 

time evaluation of the threshold determination method in online method, a quick 

response of the method algorithms is important for evaluating the EMG signals so 

the results of the standard deviation method x3 and x5 have the minimum values as 

0.062 and 0.065 respectively. However, the other performance results of both 

standard deviation methods are not better than the histogram and GSMU method.  
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Table 5.3: The results of the time domain based performance analyses for EMG data of no.31 

Threshold 

Determination 

Method 

MSE NMSE 

 

RMSE NRMSE 

 

MAV SNR SD Execution 

Time (s) 

Histogram Method 112180 0.0239 324.8226 0.0204 223.3295 0.2798 143.2684 1.672 

Standard deviation 

method (x3) 

353600 0.56 587.0326 0.3374 868.9073 -3.8975 176.6785 0.062 

Standard deviation 

method (x5) 

353600 0.56 587.0326 0.3374 868.9073 -3.8975 176.6785 0.065 

Universal 364410 0.5393 601.9268 0.3214 850.8906 9.9520 276.547 0.215 

LMU 484400 0.5133 695.9668 0.3028 996.9266 -14.5601 76.0325 0.223 

SMU 302960 0.5565 550.4186 0.3340 812.8781 11.3298 273.4349 0.300 

GSMU 364410 0.5393 601.9268 0.3214 850.5961 14.9418 314.9794 0.240 

SLMU 484850 0.5134 696.2868 0.3024 996.9266 -13.8431 750.2003 3.816 

LSMU 484400 0.5138 695.9671 0.3028 996.9266 -14.5601 76.0325 0.270 

LVMU 364410 0.5393 601.9268 0.3214 850.8906 9.9520 276.247 1.756 
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As for the frequency domain based performance analysis, the responses of each 

method PSD were computed by using Welch’s method. Throughout the 

determination of the threshold values from the algorithms in Table 5.2 for 31
st
 data 

set from the hand rehabilitation system, responses comparison between the real-time 

test EMG data and the desired velocity response are depicted to compare their PSD 

performances responses each other in Figure 5.7 and Figure 5.8. PSD of the test 

EMG data shows that bandwidth is nearly 10Hz, however only PSD of histogram 

methods give the acceptable results nearly 10 Hz when the other methods responses 

are compared. In this thesis, PSD is computed with Welch’s method given in 

Equation 3.27. The input signal is divided into the longest possible segments to 

obtain as close to but not exceed 8 segments with a 50% overlap. Each segment is 

windowed with a Hamming window. The modified periodograms are averaged to 

obtain the PSD estimate. 

 

  

  

  

 

Figure 5.7: PSD of real time test EMG data and PSD of histogram and 

multiplication factor based standard deviation methods for using EMG data of no.31. 
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Figure 5.8: PSD of real time test EMG data and PSD of wavelet threshold estimation 

methods for using EMG data of no.31. 
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5.3 Proposed Hybrid Threshold Method and Performance Analysis 

According to the results of the performance analysis given in Table 5.3, it is obvious 

that none of threshold determination methods performs the best results for all 

performance criteria. Therefore, a hybrid method is proposed by selecting the 

methods that give good results from each different criteria of these threshold 

determination methods. The hybrid method is aimed to improve the criteria in which 

two methods yield poor results. Histogram method has been one of the preferred 

methods in hybrid method since it gives good results in MSE, NMSE, RMSE, 

NRMSE and MAV performance criteria. Although the SLMU method gave good 

results in SD criteria, it was not preferred in hybrid method because it gave bad 

results in execution time. In the hybrid method, instead of the SLMU method, the 

SNR criterion and the computational time GSMU method which is better than the 

SLMU method was preferred. In this proposed hybrid method, the results of the 

histogram and GSMU methods were normalized using the min-max normalization 

method. Then normalized data were collected at different rates to obtain a single 

data. These rates are respectively 50% histogram- 50% GSMU, 70% histogram-30% 

GSMU and 30% histogram-70% GSMU. Real-time test EMG data and velocity 

responses are shown in Figure 5.9 in terms of the hybrid methods. Result of 

performance analyses of hybrid method are given Table 5.4 where the results of 

MSE, NMSE, RMSE, NMRSE, MAV, SNR and execution time. 

 

The result of MSE compared with histogram, GSMU and other hybrid methods 

results, the 30% histogram- 70% GSMU hybrid method give the best result as 

111810. As for the NMSE results, the 30% histogram- 70% GSMU has the lowest 

value as 0.6958 whereas the other hybrid methods are identically equal each other as 

nearly 0.8. Similarly, the result of RMSE compared with histogram, GSMU and 

other hybrid methods results, the 70% histogram- 30% GSMU hybrid method gives 

the best result as value 121.7804. As for NRMSE results, the 70% histogram-30% 

GSMU hybrid method gives the better result than other hybrid method results. When 

MAV results of histogram, GSMU and hybrid methods were compared each other. In 

MAV results, when the histogram method gave the best result as 223mV, the 70% 

histogram- 30% GSMU hybrid method result was the closest result as value 

324.3068. However, the SNR result of the 30% histogram- 70% GSMU hybrid 
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method gives the best result than other hybrid methods. As for the SD results, the 

30% histogram- 70% GSMU hybrid method gives the best result as value 187.6036 

compared to other hybrid methods. When it is come to execution time evaluation of 

the hybrid methods, a quick response of the method algorithms is important for 

evaluating the EMG signals so the results of the 70% histogram- 30% GSMU hybrid 

method has the minimum values as 0.4524. 

 

As for the frequency domain based performance analysis, the responses of each 

method PSD were computed by using Welch’s method. Throughout the comparison 

of the responses between the real-time test EMG data and the desired velocity 

response of hybrid methods are depicted to compare their PSD performances 

responses to each other in Figure 5.10. PSD of the test EMG data shows that 

bandwidth is nearly 10 Hz; similarly, PSD of all hybrid methods gave the acceptable 

results nearly 10 Hz. 
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Figure 5.9: Real time test EMG data and the velocity response of hybrid methods 

using EMG data of no.31 
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Table 5.4: The results of the hybrid threshold methods for EMG data of no.31 

Rates MSE NMSE RMSE NRMSE MAV SNR SD Execution 

time(s) 

%50Histogram 

%50GSMU 

433110 0.8064 308.1138 0.1020 450.1247 0.3566 145.6917 0.5836 

%70Histogram 

%30GSMU 

148300 0.8774 121.7804 0.0633 325.3068 -0.0817 123.2166 0.4524 

%30Histogram 

%70GSMU 

111810 0.6958 334.3775 0.1658 576.6941 3.5244 187.6036 0.5454 

Histogram 112180 0.0239 324.8226 0.0204 223.3295 0.2798 143.2684 1.672 

GSMU 364410 0.5393 601.9268 0.3214 850.5961 14.9418 314.9794 0.240 
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Figure 5.10: PSD of real time test EMG data and PSD of hybrid methods for using 

EMG data no. 31 
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6.  CONCLUSIONS  

In this thesis, the developed hand rehabilitation system design and applications are 

performed to strengthen the activity of lower arm muscle by using real time EMG 

data. In the experimental setup, the EMG signal is measured when the hand is open 

and closed for determining individual threshold values. 30 different experiments are 

performed under several muscle contractions such as relax, strength or exhausted. To 

test the developed rehabilitation system performance, another 6 different experiments 

are performed to compare performances of the threshold determination methods. In 

the threshold determination phase, histogram, multiplication factor based standard 

deviation (SDx3 and SDx5) and wavelet threshold estimation methods where the 

hard threshold algorithm is used to find the upper and lower values of the threshold 

values. As for performances of threshold determination methods, MSE, NMSE, 

RMSE, NRMSE, MAV, ZC, SNR, SD and execution time are computed and 

compared their results each other. Histogram method shows good performances such 

as MSE, NMSE, RMSE, NRMSE and MAV stands for 112180, 0.0239, 324.8226, 

0.0204 and 223.3295, respectively. However, the SNR and execution time results of 

GSMU method stand for as 14.9418 and 0.240s which are better than the other 

methods, respectively. In the same way, histogram threshold method shows a good 

performance as nearly 10Hz for PSD responses. Hybrid method was developed 

according to performance analysis results. In this hybrid method, histogram method 

which gives good results in MSE, NMSE, RMSE, NRMSE and MAV criteria, and 

GSMU method which is good in SNR, SD and execution time criteria are used. 

Improvements were made in the criteria that both methods gave poor results. Hybrid 

method obtained with %30histogram-%70GSMU hybrid method gives better results 

in terms of MSE, NMSE, SNR and SD stands for 118810, 0.6958, 3.5244 and 

187.6036, respectively. Similarly, results of the RMSE, NRMSE, MAV and 

execution time compared hybrid methods; the %70histogram-%30GSMU hybrid 

method gives the best result as values 121.7804, 0.0633, 325.3068 and 0.4524 

respectively.  In conclusion, the histogram method might be used because it gives the 

closest response comparing with the desired velocity pattern named as the real-time 
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test EMG data. Therefore, the developed hand rehabilitation system might be used 

for individual treatment person. 
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