

IZMIR KATIP CELEBI UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DEVELOPMENT OF A SURGICAL NAVIGATION

PROCEDURE FOR COCHLEAR MICROROBOT OPERATIONS

M.Sc. THESIS

Tuğrul USLU

Department of Mechanical Engineering

Thesis Advisor:

Assoc. Prof. Dr. Erkin GEZGİN

JANUARY 2021

2
0

2
1

IZ
M

IR
 K

A
T

IP
 C

E
L

E
B

I U
N

IV
E

R
S

IT
Y

T

. U
S

L
U

 ii

IZMIR KATIP CELEBI UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DEVELOPMENT OF A SURGICAL NAVIGATION

PROCEDURE FOR COCHLEAR MICROROBOT OPERATIONS

M.Sc. THESIS

Tuğrul USLU

Y180217005

0000-0002-2154-9268

Department of Mechanical Engineering

Thesis Advisor: Assoc. Prof. Dr. Erkin GEZGİN

JANUARY 2021

 iii

İZMİR KATİP CELEBİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

KOKLEAR MİKROROBOT OPERASYONLARI İÇİN BİR

CERRAHİ NAVİGASYON YÖNTEMİNİN GELİŞTİRİLMESİ

YÜKSEK LİSANS TEZİ

Tuğrul USLU

Y180217005

0000-0002-2154-9268

Makine Mühendisliği Ana Bilim Dalı

Tez Danışmanı: Doç. Dr. Erkin GEZGİN

OCAK 2021

 iv

Tuğrul USLU a M.Sc. student of IKCU Graduate School Of Natural And

Applied Sciences, successfully defended the thesis entitled “DEVELOPMENT OF

A SURGICAL NAVIGATION PROCEDURE FOR COCHLEAR

MICROROBOT OPERATIONS” which he prepared after fulfilling the

requirements specified in the associated legislations, before the jury whose signatures

are below.

Thesis Advisor :

Assoc. Prof. Dr. Erkin GEZGİN

İzmir Kâtip Çelebi University

Jury Members :

Asst. Prof. Dr. Duygu ATCI

İzmir Kâtip Çelebi University

Asst. Prof. Dr. Özgün SELVİ

Çankaya University

Date of Defense : 15.01.2021

 v

To my family and friends

FOREWORD

First and foremost, I would like to thank my advisor, Erkin GEZGİN, who kindled

my passion for robotics, and offered me excellent guidance with patience and respect

since my undergraduate years. Also I would like to thank all of my labmates at the

Medical Robotics Laboratory at the İzmir Katip Çelebi University for all the support

they provided me.

This thesis was supported by The Scientific and Technological Research Council of

Turkey. Project No: 218E055

January 2021

Tuğrul USLU

vi

TABLE OF CONTENTS

FOREWORD . vi

LIST OF TABLES . ix

LIST OF FIGURES . xii

ABSTRACT . xiii

ÖZET . xiv

1 INTRODUCTION . 1

1.1 Motion Capture Systems . 2

1.2 Medical Usage . 4

2 SURGICAL NAVIGATION SYSTEM 6

3 TRACKING SYSTEM CALIBRATION PROCEDURE 9

4 DEFINITIONS OF DATA AND STREAMING 13

5 REGISTRATION OF ANY ARBITRARY REFERENCE WITH TRACK-

ING SYSTEM REFERENCE . 16

5.1 Need for Registration . 17

5.2 Analytical Approach . 18

5.3 Least Squares Approach . 21

6 VERIFICATION OF TRACKING SYSTEM CALIBRATION 24

6.1 Reference Mock-Up Model and Verification Methodology . . 24

6.2 Design of Rigid Body Markers 31

6.3 Calibration of Pointer Tool 37

6.3.1 Spin calibration 39

6.3.2 Pivot calibration 40

6.4 Design Improvements of Pointer Tool 41

6.5 Calibration and Verification Studies 42

7 REGISTRATION BETWEEN TRACKING SYSTEM MEASUREMENT

SPACE AND MACRO MANIPULATOR WORKSPACE 49

7.1 Compensation for Possible Apparatus Length Uncertainty . . 53

8 HARDWARE VERIFICATION . 56

vii

9 CONCLUSIONS . 60

REFERENCES . 63

APPENDIX . 63

APPENDIX A . 64

APPENDIX B . 86

APPENDIX C . 91

APPENDIX D . 97

CURRICULUM VITAE . 103

viii

LIST OF TABLES

2.1 Motion Capture Cameras Technical Specifications. 7

6.1 Reference Mock-up Model Tower Heights. 28

6.2 CNC Manufacturing Parameters. 30

6.3 Marker Design Constraints. 35

6.4 Marker Rotation Calibration Results. 43

6.5 Marker Pivot Calibration Results. 44

6.6 Results of Verification Study (Fixed Mock-up Model). 46

6.7 Results of Verification Study (Mobile Mock-up Model). 47

6.8 Results of Verification Study (Broken Tracking System Calibration). . 48

ix

LIST OF FIGURES

1.1 Example of Pattern Marker. 3

1.2 Visual Taken From a Motion Tracking Camera While Two Marker

Sphere Centroids Being Detected. 3

1.3 Sphere Marker Position Detection. 4

2.1 Optitrack V100R2 Motion Capture Cameras and Motive Tracker Soft-

ware. 6

2.2 Passive Infrared Reflective Spheres and Requirements of Tracking. . . 6

2.3 Optihub2 and Tracking System Connections Schematic 7

3.1 Classical Surgical Navigation Systems (NDI, Atracsys). 9

3.2 Optitrack Calibration Tool CW-500. 10

3.3 Application of Calibration on Motion Tracking Cameras. 10

3.4 Camera Lens Distortions and Third Dimensional Motion Capture Vol-

ume. 11

3.5 Result Screen of Tracking System Calibration. 11

3.6 Tracking System Reference Defining Frame. 12

4.1 An Example of A Rigid Body Defined Within Software. 13

4.2 Data Stream Thorough NatNet. 14

4.3 3D Slicer Software. 14

4.4 Data Stream Between Motive Tracker and 3D Slicer Software. 15

5.1 An Application of Surgical Navigation. 16

5.2 Real Object (Patient / Workspace) and Virtual Object (Image). 17

5.3 View in R Space, R and V Space, V Space Before Registration. 17

5.4 View in R Space, R and V Space, V Space After Registration. 18

5.5 Determining Relation Between Reference Systems (2 Points). 19

5.6 Determining Relation Between Reference Systems (4 Points). 20

5.7 Distortion Caused by Analytic Solution in Real Applications. 20

6.1 Measurement of Fiducial Points with Respect to Tracking System Ref-

erence. 25

x

6.2 Reference Mock-up Model (First Prototype). 25

6.3 Warping and Cracks on First Prototype of Mock-up Model. 26

6.4 Reference Mock-up Model (Second Prototype). 27

6.5 Observed Deflection of Second Prototype of Mock-up Model. 27

6.6 Reference Mock-up Model (Third Prototype). 28

6.7 Siemens SinuTrain Coding and Emulation Interface. 29

6.8 Grooving Parallel to X and Y axis. 30

6.9 Adjusting Tower Heights. 30

6.10 Markings Created on Tower Top Surfaces and Fully Done Reference

Mock-up Model. 31

6.11 Rigid Body Markers on Several Pointer Tools and Infrared Reflective

Spheres (IZI Medical, BRAINLAB). 32

6.12 Utilization of Markers During Calibration Verification. 32

6.13 T0416 Precise Cylindrical Shafted Dead Center Which is Used as a

Part of Measurement tool. 33

6.14 General Geometry of Rigid Body Markers. 34

6.15 Designed Pointer Tool and Mock-up Model Marker Dimensions (mm). 36

6.16 Some Measurement Tip Holder Parts of Pointer Tool. 36

6.17 Prototypes of Pointer tool Marker and Mock-up Model Marker. 36

6.18 Demonstration of Taking Measurement From Mock-up Model. 37

6.19 Orientation of Rigid Body Marker at Point of Definition. 38

6.20 Rotation of Pointer Tool Along Spin Axis and 3D Slicer Visualization. 39

6.21 Spherical Movement of Pointer Tool with Pointer Tip as Isopoint and

3D Slicer Visualization. 40

6.22 First prototype of Pointer Tool and Separate Parts. 41

6.23 Updated Design of Pointer Tool. 42

6.24 Pointer Tool and Macro Manipulator Spin Calibration Assembly. . . . 43

6.25 Apparatus Manufactured for Pivot Calibration and Process of Calibra-

tion. 44

6.26 Placement of Mock-up Model and Process of Measurement. 44

6.27 Algorithm of Software Created for Measurement and Verification Stud-

ies. 45

6.28 Taking Measurement on Mobile Mock-up Model. 47

7.1 Robot Manipulator and Tracking System References. 49

7.2 Robot Manipulator with Designed Apparatus. 50

7.3 Volume Created for Determining Point Position Set. 51

xi

7.4 Path Followed by Manipulator with Apparatus During Measurement

of Points. 51

7.5 Gradient of Error at Points of Point Position Set. 52

7.6 Gradient of Error at Points of Point Position Set with Euler Angles. . . 53

7.7 Fiducial Registration Error (FRE) with Respect to Emulated Apparatus

Length. 54

7.8 Fiducial Registration Error (FRE) with Respect to Emulated Apparatus

Length Overlapped by Fitted Polynomial. 55

7.9 Gradient of Error at Points of Point Position Set. 55

8.1 Robot Manipulator with Designed Part. 56

8.2 ROS and 3D Slicer Interface. 57

8.3 Visuals From Virtual Environment at Some Key Moments. 58

8.4 Corresponding Movements of Robot Manipulator. 59

xii

DEVELOPMENT OF A SURGICAL NAVIGATION
PROCEDURE FOR COCHLEAR MICROROBOT

OPERATIONS

ABSTRACT

By the help of technological advances such as the development of computer and imaging tech-

nologies, surgical navigation has started to be used rapidly in medical literature. It is one of

the recent methods used to track surgical tools inside the operation volume. In light of vital

advantages as operation safety, minimally invasive application compatibility, reduction of oper-

ation times and reduced post operation complication risks, surgical navigation has been rapidly

adopted throughout the relevant fields. Considering these, this study proposes both creation

of a surgical navigation system utilizing free and open source software and a low cost motion

tracking system, and a verification method to check validity of navigation system calibration.

Also this study discussed feasibility of an analytical approach to one of the most important steps

of surgical navigation as registration and presented a real world example of distortions might

be caused by discussed analytical approach. Throughout the study, various tools related to

surgical navigation and a solid model with known dimensions are designed and manufactured.

Designed tool’s precision then tested by performing calibration procedures and error values

of these calibrations are examined. Then solid model was placed inside a capture volume in

which the motion cameras are able to provide position measurements with help of designed

tools. Carrying out point based registration method with least squares approach by taking nec-

essary measurements, relation between the model reference and measurement space reference

was calculated by means of a transformation matrix. This procedure is also applied in a cap-

ture volume with known broken calibration and on a solid model with movement compensation

provided by previously designed tools. Later in the study an industrial robot manipulator arm

was integrated to the navigation system and its implementation was verified with an navigation

application utilizing designed solid model.

Keywords: medical robotics, surgical navigation, point based registration, motion capture

xiii

KOKLEAR MIKROROBOT OPERASYONLARI
İÇİN BİR CERRAHİ NAVİGASYON YÖNTEMİNİN

GELİŞTİRİLMESİ

ÖZET

Bilgisayar ve görüntüleme teknolojilerinin gelişmesiyle medikal alanda hızla kullanılmaya

başlayan cerrahi navigasyon, operasyon hacminin takibinin sağlanmasında kullanılan güncel

medikal yöntemlerden biridir. Uygulama esnasında cerrah ve hastaya sağladığı, operasyon

güvenliği, minimal invaziv uygulama uyumluluğu, operasyon sürelerinin ve uygulama son-

rası komplikasyon risklerinin azaltılması gibi önemli avantajlar ışığında cerrahi navigasyon

ile takip, ilgili alanlarda hızlı bir şekilde benimsenmiştir. Bu çalışma, özgür ve açık kaynak

yazılımları ve düşük maliyetli hareket takip sistemi içeren bir cerrahi navigasyon sistemi, ve

navigasyon sisteminin geçerliliğini denetleyecek bir doğrulama yönteminin oluşturulmasını

içermektedir. Ayrıca bu çalışma da cerrahi navigasyonun en önemli adımlarından biri olan

eşleştirme prosedürünün analitik çözüm yöntemi ile gerçekleştirilmesinin uygulanabilirliği tartı-

şılmış ve tartışılan analitik çözüm yönteminin gerçek bir uygulamada oluşturabileceği bozul-

malar gösterilmiştir. Çalışma boyunca, cerrahi navigasyon sırasında kullanılmak üzere çeşitli

araçlar ve ölçüleri bilinen bir katı model tasarlanmış ve üretilmiştir. Tasarlanan araçların has-

sasiyeti üzerlerinde kalibrasyon prosedürleri uygulanarak bulunan hata değerleri ile incelenmiş-

tir. Daha sonra ise katı model hareket yakalama kameralarının takip edebildiği ilgili uygu-

lama hacmine yerleştirilmiş, ve ilgili ölçümler yapılarak en küçük kareler yaklaşımı ile nokta

tabanlı eşleştirme yöntemi uygulanmış, cerrahi navigasyon için gerekli olan gerçek model

referansı ile hareket yakalama kameralarının yer aldığı ölçüm uzay referansı arasındaki ilişki

bulunmuştur. Bu prosedür hareket yakalama kameralarının kalibrasyonunun bozuk olduğu bi-

linen bir uygulama hacminde, ayrıca katı modelin hareketlerinin tasarlanan araçlar yardımıyla

kompanse edildiği bir uygulama hacminde uygulanmıştır. Çalışmanın sonraki aşamasında bir

endüstriyel robot, oluşturulan cerrahi navigasyon sistemine entegre edilmiş ve tasarlanan katı

model yardımı ile entegrasyonun başarısı bir cerrahi navigasyon uygulamasıyla doğrulanmıştır.

Anahtar Kelimeler: medikal robotik, cerrahi navigation, nokta bazlı eşleştirme, hareket yaka-

lama

xiv

1. INTRODUCTION

The most important fact that increases success of surgical operations is the quality of

visual feedback the doctor is getting from the workspace. In open surgical operations

naked eye vision of the surgeon can be enhanced by surgical lamps and eyeglasses

with loupes to catch details that can be missed with naked eye in natural lighting con-

ditions. However in minimally invasive operations like laparoscopic surgeries, due to

workspace being a closed space, these solutions are rendered ineffective. In these op-

erations, visual feedback to the doctor is provided by endoscopic cameras positioned

in the workspace. However some factors as loss of depth in 2d vision, camera/monitor

resolution limits, physically unreachable positions by endoscopic cameras and need

to clean optics due to internal bleeding and other bodily fluids indicates weaknesses

of the endoscopic cameras. By the help of advancing technology high resolution en-

doscopic systems started to be used in surgical operations but these systems cannot

provide permanent solutions to every flaw listed above. In modern times surgical nav-

igation methodologies started to appear in many scientific studies to provide doctor

with visual feedback in minimally invasive operations.

Basically, positions and orientations of surgical tools are tracked with optical or elec-

tromagnetic methods in real time and streamed to virtual environment in surgical nav-

igation methods where visual data obtained with surgical vision technologies from

related workspace visualized during operation in virtual environment with or without

support of augmented reality. Thus virtual feedback from the workspace can be pro-

vided to operating surgeon. Some factors effecting operation efficiency might be listed

as,

• Motion capture hardware used during operation and its official software provided

by manufacturer,

• Calibration procedure included motion capture software to calculate positions

and orientations of tracked rigid bodies,

• Data types provided by software to users and ability to collect these data in a

processable way,

• Ability to calculate relations between surgical workspace, virtual environment

and surgical tool reference coordinate systems with collected data.

1

1.1 Motion Capture Systems
Navigating any object through space with precision and accuracy, the object’s posi-

tion and orientation in space must be known. There are many approaches to measure a

body’s position and/or orientation in space. Most common types of motion capture sys-

tems utilized in surgical navigation can be categorized by methods they use to achieve

results and can basically be listed as electromagnetic (also can be called magnetic),

ultrasonic, and optical.

Electromagnetic method uses one generated electromagnetic field for each indepen-

dent axis on space (three for spatial space). A receiver placed onto the desired object

can measure sum of these fields and this sum can be used to determine position of this

receiver in space. Ultrasonic systems use sound waves as medium of motion capturing.

These sound waves are generally outside of human hearing frequency range for ultra-

sonic systems and emitted directly into an area of interest by transmitters. Echoes of

these sound waves as they travel thorough area of interest can be observed by receivers

and utilized in calculating desired positions and/or orientations. Optical motion track-

ing systems utilize light waves as medium of motion capture and can be categorized

as marker-based and markerless systems. Markerless optical motion capture systems

utilize heavy image processing in their calculations. Although these systems are con-

venient as they do not require extra equipment like markers, they lack in precision

compared to marker-based optical systems. Marker-based optical motion capture sys-

tems depend on special equipment called markers to track an objects position and/or

orientation in space. These markers vary in methodologies of which these marker-

based system use in their calculations. Most common marker types are pattern type and

sphere type markers. Pattern type markers are made of asymmetric patterns shown in

figure 1.1 and generally used in augmented reality applications. Motion tracking with

sphere type markers utilizes active (light-emitting) or passive (light-reflecting) spheres

in position and/or orientation calculations. Passive spheres are generally coated with

a reflective material and externally illuminated to provide better visibility for motion

capture cameras. At least two motion capture cameras are required for calculating

position spheres in space.

2

Figure 1.1. Example of Pattern Marker.

Motion capturing with optical systems with sphere markers starts with calibrating mo-

tion capture cameras. Calibration calculates visual distortion in motion capture cam-

eras and relative positions and orientations of each motion capture camera with respect

to each other. From each camera images are captured simultaneously and fed into

image processing to calculate centroid of projection of sphere in screen area of each

camera as shown in figure 1.2. If local distortions of motion capture cameras are low,

centroids of sphere projections can be assumed as centroids of spheres.

Figure 1.2. Visual Taken From a Motion Tracking Camera While Two Marker Sphere
Centroids Being Detected.

From this point, lines to centroid positions can be constructed from local camera

references while keeping visual distortions calculated in calibration phase in mind.

Two constructed lines from different motion capture cameras l1 =
[
0 0 0

]T
+

p
[
a b c

]T
and l2 =

[
0 0 0

]T
+ p

[
d e f

]T
can be placed in space by uti-

lization of relative position and orientations of motion capture cameras utilizing C1

C2R

rotation matrix and C1

C2t translation as shown in equation 1.1, also calculated in cali-

3

bration phase. Any collision of lines within a tolerance is a detected position (Figure

1.3).

l12 = −C1

C2t+ p(C
1

C2R
[
d e f

]T
+ C1

C2t) (1.1)

Figure 1.3. Sphere Marker Position Detection.

Two lines from one local camera frame will only collide at origin of local camera frame

which is a trivial solution. This is the reason why at least two (stereo) motion capture

cameras are required to measure position of a sphere marker in space.

1.2 Medical Usage
Medical procedures especially in head region of patient requires precision and non-

invasiveness that in fact difficult for an human to provide. On the other hand, robotics

and surgical navigation can provide precise, accurate, non-invasive operations. Before

the advent of computers, a neurosurgical procedure named stereotaxy was developed.

Stereotaxy requires the exact localization and targeting of intracranial structures for the

placement of electrodes, needles, or catheters. Initially, this problem was addressed us-

ing anatomical drawings as an atlas for intracranial target planning and with the help of

mechanical head frames attached to the patient’s skull. The planned target could then

be transferred onto the actual intraoperative patient setup [1]. Later medical imag-

ing methods such as Computer Tomography (CT) and Magnetic Resonance Imaging

(MRI) used for third dimensional mapping of the parts of the patient.

Surgical navigation can be achieved by different approaches, most commonly by us-

ing electromagnetism, ultrasound waves or by using light waves, to capture and relay

patient’s anatomy and the surgeon’s precise movements in relation to the patient, to

4

computer monitors in the operating room. By using light waves, optical motion cap-

turing can be done using cameras and special selected points. By tracking positions

and orientations of patient and surgical tools, tools’ relative position and orientation

can be transmitted in virtual space.

In order to use surgical navigation methods effectively in surgical operations relations

between different reference coordinate systems (patient, motion capture system, surgi-

cal tool reference coordinate systems etc.) should be known with precision. Accord-

ingly in related literature many different approaches has been suggested. Arun, Huang

and Bolstein [2] have described how the relation between two coordinate systems may

be calculated using least squares method. The writers have taken advantage of a point

cloud, every element of which known according to both coordinate systems, in their

work. Hong and friends [3] have developed a robust method of calculating a trans-

formation that describes relation between workspace and virtual environment by using

fiducial points taken from surface of the body of patient. In their future work [4] they

reduced surgical navigation registration error by the help of an ultrasonic based motion

capture system to add fiducial points found inside of the patient body to their recom-

mended method. Same writer and friends have successfully performed operations like

inner ear surgery [5], chest surgery [6] and bone surgery [7] with related methodology.

Fitzpatrick, West and Maurer [8, 9] have estimated target registration error (TRE) val-

ues from known fiducial registration error (FRE) or fiducial localization error (FLE)

values.

Although there exist limited literature regarding with the advances of surgical nav-

igation, its usage continually increases by the technological advances and ongoing

researches.

This thesis tries to focus on the utilization of low cost motion capture systems for

surgical navigation in operations that requires high precision as cochlear microrobot

operations. Throughout the thesis, methodologies to relate various reference frames

inside the operation workspace were discussed and implemented to the motion capture

system by using mostly open source software. Also a design of mock-up model was

proposed in order to verify the calibration of the motion capture cameras. At the end of

the thesis, using the acquired knowledge, 6 degree of freedom robot manipulator was

implemented to the setup and its usage was verified for future macro-micro surgical

navigation purposes.

5

2. SURGICAL NAVIGATION SYSTEM

In scope of this work, low cost Optitrack motion capture system is planned to be used

for real-time acquisition of position and orientation data of any arbitrary rigid bodies

in space. System includes three Optitrack V100R2 infrared cameras to be used for

navigation in measurement space and official software (Motive Tracker). Time coupled

tracking data of rigid bodies obtained by official software processing visual data being

streamed from the cameras (Figure 2.1).

Figure 2.1. Optitrack V100R2 Motion Capture Cameras and Motive Tracker
Software.

Motion capture cameras whose important technical properties are presented in table

2.1 are able to track positions of infrared reflective spheres passively reflecting infrared

light and positioned in measurement space.

Figure 2.2. Passive Infrared Reflective Spheres and Requirements of Tracking.

6

Table 2.1. Motion Capture Cameras Technical Specifications.

Optitrack V100R2

Visual Sensor Lenses, Filter and
Light Source Other

Pixel Size:
6µm× 6µm

Lens: 4.5mm F1.6 Dataport: USB 2.0

Sensor Size:
4.5mm× 2.88mm

Horizontal Field of
View: 64◦

Power: 5V 490mA

Resolution 640× 480
(0.3 MP)

Vertical Field of View:
35◦

Dimensions:
45.2mm× 36.6mm×

74.7mm
Frames per Second:

25, 50, 100
Filter: 800nm Infrared

longpass
Weight: 0.1kg

Delay: 10ms
Light Source: 26 LED,

850nm Infrared
-

Snapshot Speed: 20µs
minimum

- -

At this point, while one infrared reflective sphere is enough to track position of any

arbitrary point with respect to tracking system reference (K), orientation and position

of an arbitrary rigid body can only be calculated by at least three infrared reflective

spheres positioned in an asymmetrical arrangement (Figure 2.2).

Important elements required for performing tracking like power management, synchro-

nization and computer connection of the cameras are managed by Optihub 2 center

hub. Center hub and related schematic of connection are shown in figure 2.3

Figure 2.3. Optihub2 and Tracking System Connections Schematic

In scope of this work, official software of utilized tracking system, Optitrack Motive

Tracker version 1.7.2 is used for calculating spatial positions of passive infra reflective

sphere and positions and orientations of rigid bodies described by three or more in-

7

frared reflective spheres by processing visual data being acquisitioned from cameras.

Related software is also have the ability to stream these position an orientation data to

third party applications in real time through NatNet protocol by providing a module

and an application programming interface (API). Details of the usage of this data will

be given in throughout the thesis.

8

3. TRACKING SYSTEM CALIBRATION PROCE-
DURE

The tracking system can track infrared reflective sphere positions in three dimensional

workspace by utilization of at least two motion capture cameras. In classical surgi-

cal navigation systems, motion capture cameras providing stereo vision are fixed in a

rigid frame. Due to this fact, related systems can be merchandised pre-calibrated by

respective manufacturers (Figure 3.1).

Figure 3.1. Classical Surgical Navigation Systems (NDI, Atracsys).

But within the scope of the thesis, as opposed to the classic merchandised solutions,

motion capture cameras of optical tracking system are placed in environment by the

user. This provides user with the big advantage of adjusting relative positions of motion

capture cameras to provide better fit workspace, however vision distortion, and position

and orientation between cameras are not known during setup of the optical tracking

system. Due to this fact, before usage, a procedure of calibration must be applied to the

optical tracking system, finding relations between cameras and their optical distortions.

Optical tracking system’s official software Optitrack Motive Tracker provides software

calibration solution of Optitrack’s optical tracking system by help of some specialized

hardware requirements. A metal tool containing three infrared reflective spheres whose

positions are precisely known relative to each other is provided as hardware require-

ment of calibration procedure. Relative distances between infrared reflective spheres

can be changed to other predefined distances on same or different tool also provided

by manufacturer to better fit the desired workspace (Figure 3.2).

9

Figure 3.2. Optitrack Calibration Tool CW-500.

During calibration procedure, calibration tool should be gently moved in workspace

in such orientations that infrared reflective spheres on the tool can be in front of the

motion capture cameras. Whole workspace should be scanned and sampled with move-

ments of the calibration tool while ensuring all infrared reflective spheres are visible

for each motion capture camera (Figure 3.3).

Figure 3.3. Application of Calibration on Motion Tracking Cameras.

Each motion capture camera collects visual samples in process to calculate their related

position, orientation and optical distortion. two dimensional visual data collected from

each motion capture cameras are utilized together with the known distances of the

infrared reflective spheres on the calibration tool in creation of a workspace where

all relations of the cameras are known by the software with a determined error value

(Figure 3.4).

10

Figure 3.4. Camera Lens Distortions and Third Dimensional Motion Capture
Volume.

Software outlines all the results obtained from calibration process and presents to the

user. Figure 3.5 shows sample calibration outline performed in laboratory.

Figure 3.5. Result Screen of Tracking System Calibration.

11

It should be pointed out that the three dimensional motion tracking workspace refer-

ence (tracking system reference) is arbitrarily decided by the the software and every

calibration relations are defined by this reference (K). Motive Tracker software al-

lows user to define tracking system reference by using a official hardware although

this method is not used in the thesis for sake of not adding extra uncertainties (Figure

3.6).

Figure 3.6. Tracking System Reference Defining Frame.

12

4. DEFINITIONS OF DATA AND STREAMING

In scope of the thesis, tracking systems official software Optitrack Motive Tracker 1.7.2

is utilized as a base of measurement of workspace tracking data. Related software, in

real-time, processes visual two dimensional images acquired from calibrated motion

capture cameras to calculate infrared reflective sphere positions defined by tracking

system reference in the workspace. By creating a point cloud with asymmetric config-

uration of three or more infrared reflective spheres, real time orientation data alongside

the center of point cloud position can also be acquired by defining related geometry as

a rigid body in the official software (Figure 4.1).

Figure 4.1. An Example of A Rigid Body Defined Within Software.

Although Optitrack Motive Tracker is a proprietary software, It allows real time stream-

ing of the data calculated inside software to third party applications with NatNet mod-

ule. NatNet module send packets of data over network using NatNet protocol. NatNet

protokol enables streaming of infrared reflective sphere positions, defined rigid body

positions, and orientations and positions of infrared reflective spheres that defines the

rigid body. While it is not possible to easily distinguish between infrared reflective

spheres, sphere that is defined in a rigid body can be distinguished by related rigid

body’s label (Figure 4.2).

13

Figure 4.2. Data Stream Thorough NatNet.

In surgical navigation performed in scope of this thesis, free and open source software

3D Slicer [10] figure 4.3 is used in parallel to the Motive Tracker. 3D Slicer is mainly

specialized for medical image informatics, image processing, and three-dimensional

visualization, also can be extented to be utilized in surgical navigation using SlicerIGT

[11] extension.

Figure 4.3. 3D Slicer Software.

NatNet protocol is not supported by 3D Slicer. Due to this fact 3D Slicer is not able

to get the data being streamed from Motive Tracker directly. With this reason also free

and open source software Plus ToolKit [12], a collection of many applications and li-

14

braries for data collection, processing, calibration and real time positioning, vision and

other sensor data collection, is used for establishing communication between 3D Slicer

and Motive Tracker. Plus Toolkit software can translate data being streamed from Mo-

tive tracker to OpenIGTLink protocol, which can be used in 3D Slicer software with

SlicerIGT extension (Figure 4.4).

Figure 4.4. Data Stream Between Motive Tracker and 3D Slicer Software.

Plus ToolKit only officially supports streaming from Motive Tracker versions 1.10.3

and above. Since Motive Tracker software at the laboratory is version 1.7.2, source

code of the Plus ToolKit is modified and made able to understand data encoded in

NatNet protocol used by related version of the Motive Tracker.

15

5. REGISTRATION OF ANY ARBITRARY REFER-
ENCE WITH TRACKING SYSTEM REFERENCE

Previous sections declares that after calibration procedure, tracking system reference is

created automatically by Motive Tracker or manually by user using a official hardware

tool. Measurement data taken from motion tracking system are given relative to the

tracking system reference in surgical navigation applications. Related reference system

is the most basic property of the created third dimensional motion tracking volume.

This volume includes a local volume shown in the figure 5.1. Each action to be tracked

is performed in this local volume which has its own reference.

Figure 5.1. An Application of Surgical Navigation.

In surgical navigation application, the target with local reference is positioned inside

third dimensional motion tracking volume with a specific orientation. Since surgical

navigation application is executed on related target, a registration procedure should be

performed on local system reference (Y) and tracking system reference (K), calculat-

ing a transformation matrix (KY T) in order to provide visual feedback operator surgeon.

In this way, any rigid body (surgical tool etc.) used by surgeon that is tracked with re-

spect to tracking system reference can be described with respect to target reference. In

scope of this thesis, analytical approach and least squares approach are considered for

registration procedure.

16

5.1 Need for Registration
In order to explain why registration is needed for surgical navigation a basic navigation

scenario is constructed as follows, two identical objects can be arbitrarily placed in

space, one of these objects can thought to be real object while other one is it’s virtual

image. The only difference between these objects are the real object is described by R

reference coordinate frame and Virtual Object is described by V reference coordinate

frame (Figure 5.2)

Figure 5.2. Real Object (Patient / Workspace) and Virtual Object (Image).

If a probe is taken to an arbitrary P point on real object, on R space it can be seen

touching P point on real object. However in V space, probe will be seen far away

from P ′ point which is the corresponding point of the P point on virtual object. If

R and V space are viewed together, the error can be clearly seen in figure 5.3 and a

observer in V space cannot tell which point the probe is touching on real object.

Figure 5.3. View in R Space, R and V Space, V Space Before Registration.

By applying a C transformation to V space, Any arbitrary P point in R space can be

mapped to it’s corresponding P ′ point in V space. Objective of registration is finding

the C transformation that relates R and V space with minimal error.

17

Figure 5.4. View in R Space, R and V Space, V Space After Registration.

5.2 Analytical Approach
Relation of an arbitrary point with respect to two reference systems is shown in equa-

tion 5.1.

[
Kρ

1

]
= K

Y T

[
Y ρ

1

]
(5.1)

In equation 5.1, Kρ =
[
Kρx

Kρy
Kρz

]T
and Y ρ =

[
Y ρx

Y ρy
Y ρz

]T
are

position vectors defining related points with respect toK and Y reference systems. KY T

transformation matrix includes K
Y R =

[
Kx̂Y

K ŷY
K ẑY

]
rotation matrix that

defines relative orientation between references and KρY =
[
KρY x

KρY y
KρY z

]T
translation vector that defines relative distance vector between origins of references.

(Equation 5.2)

K
Y T =

[
K
Y R

KρY

0 0 0 1

]
(5.2)

As seen on equation 5.2, KY T transformation matrix consist of twelve parameters, nine

of these are included in K
Y R rotation matrix and rest of these are from KρY translation

vector. In order to K
Y T transformation matrix to be numerically expressed, all of these

parameters must be calculated. Due to this reason twelve independent equations in-

cluding these parameters are needed. Using unit vectors in K
Y R, which are orthogonal

with respect to each other, six equations can be obtained. (Equation 5.3)

Kx̂Y .
Kx̂Y = 1, K ŷY .

K ŷY = 1, K ẑY .
K ẑY = 1

Kx̂Y .
K ŷY = 0, Kx̂Y .

K ẑY = 0, K ŷY .
K ẑY = 0

(5.3)

18

Six more equations that are still needed can be obtained by placing position vectors

in equation 5.1, the position vectors are extracted from two arbitrary points in space

whose positions are known with respect to both references. To summarize briefly, in

theory two arbitrary points from workspace and whose positions vectors are known

with respect to both references are enough to calculate relation between reference sys-

tems. (Figure 5.5)

Figure 5.5. Determining Relation Between Reference Systems (2 Points).

But rotating one or both of the references according to the axis defined by utilized

arbitrary points will not affect related point positions. Due to this reason there exists

infinite solutions for desired K
Y T transformation matrix provided by stated theoreti-

cal approach. Even through every possible solution will perfectly match two utilized

points, in a real application, calculation of KY T transformation matrix using only two

points will cause high errors in navigation stage where any other point is transformed

to local reference using equation 5.1 due to orientation uncertainty. These errors can

be reduced by eliminating orientation uncertainty by using more points.

For the sake of utilizing more arbitrary points in calculation of KY T transformation ma-

trix, six equations obtained from K
Y R rotation matrix properties (equation 5.3) will

not be used. In this condition, to calculate related transformation matrix, number

of independent equations should be increased back to twelve. Therefore four ar-

bitrary points in space whose positions are known with respect to both references

(Kρi, Y ρi i = 1, 2, 3, 4) should be utilized in equation 5.1 (Figure 5.6).

19

Figure 5.6. Determining Relation Between Reference Systems (4 Points).

At this point, presented analytical solution assumes all points taken from workspace

and utilized in equation 5.1 are measured with respect to both reference systems with-

out any error. However in real applications measurement errors are unavoidable due

to uncertainties of manufacturing, motion capturing and human input so unfortunately

usability of this methodology with high precision is low. Uncertainties in measurement

and not using constraint equations obtained from orthogonality of KY R rotation matrix

for sake of utilizing four arbitrary points will cause vector components of calculated

rotation matrix to deviate from being unit vector. Thus related rotation matrix will have

non unity determinant. This fact will certainly cause distortions (shear and zoom) in

registration and, by extension, in workspace (Figure 5.7).

Figure 5.7. Distortion Caused by Analytic Solution in Real Applications.

In light of this, least squares approach is decided to be utilized instead of analytical

approach due to the factors discussed.

20

5.3 Least Squares Approach
Although relation of a random point cloud to any arbitrary two reference systems is

described in equation 5.1, It is not suitable to use same equation a point cloud taken

from an environment with measurement uncertainties. In this case, relation between

two position sets (Kρi, Y ρi i = 1, 2, ..., n), obtained from n points measured from

both references, is defined by equation 5.4

[
Kρi

1

]
= K

Y T

[
Y ρi

1

]
+

[
ei

0

]
i = 1, 2, ..., n (5.4)

where ei is error vector caused by uncertainties in measurement environment. If equa-

tion 5.4 is rearranged by separating transformation matrix into rotation matrix and

translation vector equation 5.5 will be formed.

Kρi = K
Y R

Y ρi + KρY + ei i = 1, 2, ..., n (5.5)

Rearranging equation 5.5, error vector can be defined as (5.6)

ei = Kρi − K
Y R

Y ρi − KρY i = 1, 2, ..., n (5.6)

Objective of approach is to used for determining relation between references, least

squares method, is to minimize square sum of error vectors (equation 5.7) by obtaining

eligible rotation matrix K
Y R and translation vector KρY .

Σe2i =
n∑
i=1

∥∥∥Kρi − K
Y R

Y ρi − KρY

∥∥∥2 (5.7)

If the rotation matrix and translation vector that provides minimum sum of error squares

value is shown as K
Y R

′ and KρY
′ respectively, centroid of Kρi i = 1, 2, ..., n position

set (Kρ) and centroid of the position set Kρi
′
i = 1, 2, ..., n (Kρ′) obtained from

equation 5.8 are equal to each other [2].

Kρi
′
= K

Y R
′ Y ρi + KρY

′
i = 1, 2, ..., n (5.8)

Definitions of related parameters are shown in equation 5.9

21

Kρ = Kρ
′

Kρ =
1

n

n∑
i=1

Kρi

Kρ
′
=

1

n

n∑
i=1

Kρi
′
= K

Y R
′ Y ρ+ KρY

′

Y ρ
′
=

1

n

n∑
i=1

Y ρi
′

(5.9)

At this point by demeaning positions sets, two parameters shown in equation 5.10 will

be obtained

Kqi = Kρi − Kρ

Y qi = Y ρi − Y ρ
(5.10)

Then equation 5.7 can be rewritten using these parameter as equation 5.11

Σe2i =
n∑
i=1

∥∥∥Kqi − K
Y R

Y qi

∥∥∥2 (5.11)

Consequently, problem of least squares approach is reduced to

• calculation of KY R
′ rotation matrix that minimizes equation 5.11,

• calculation of KρY
′ translation vector using found K

Y R
′ rotation matrix.

Given steps below, detailed derivation described in [2], should be followed to obtain
K
Y R

′ rotation matrix and KρY
′ translation vector that relates position sets (Kρi, Y ρi i =

1, 2, ..., n) obtained from measuring n points in space.

• Centroids Kρ and Y ρ are calculated from position sets expressed by different

references Kρi and Y ρi i = 1, 2, ..., n.

• 3x3 H matrix is calculated by utilizing calculated centroids and position sets

obtained from equation 5.10 (equation 5.12)

H =
n∑
i=1

Y qi
Kqi

T
(5.12)

22

• Singular value decomposition is performed on calculated H matrix (equation

5.13).

H = UλV T (5.13)

• K
Y R

′ rotation matrix is calculated by using equation 5.14.

K
Y R

′
= V UT (5.14)

• KρY
′ translation vector is calculated by using equation 5.15.

KρY
′
= Kρ− K

Y R
′ Y ρ (5.15)

As a result of related procedure K
Y T transformation matrix that minimizes square sum

of error can be easily constructed using K
Y R

′ rotation matrix and KρY
′ translation vec-

tor.

23

6. VERIFICATION OF TRACKING SYSTEM CAL-
IBRATION

As can be seen, motion tracking system, region of surgical operation, virtual environ-

ment and obtaining relations between related coordinate frames with minimal error are

the most important factors in performing surgical navigation procedures effectively.

The transformations relating these coordinate frames are obtained by performing reg-

istration on measured position sets of fiducial points from different reference frames.

Errors in registration, surface in transformations relating references and directly effect

precision of navigation. Basically these errors are produced from calibration of motion

tracking system and pointer tool, consistency between real model (workspace), where

operation being performed on and virtual model where navigation being performed

on, and right selection of fiducial points by operator. At this point a preoperation ver-

ification methodology should be created for minimizing uncertainties produced from

related factors or determining main source of errors. By considering calibration of

motion tracking system is closest factor to navigation hardware, focus of the created

methodology should be verification of the calibration results. Accordingly a mock-

up model is manufactured to be used in calibration verification of Optitrack V100R2

motion capture cameras.

6.1 Reference Mock-Up Model and Verification Methodol-
ogy
A rigid mock-up model with markings on known fiducial point coordinates defined

from own reference system should be used for verification of tracking system calibra-

tion. Within scope of created methodology and procedure of verification, positions of

markings on the rigid mock-up model will be measured from tracking system reference

by utilizing a pointer tool and motion tracking system software. (Figure 6.1)

24

Figure 6.1. Measurement of Fiducial Points with Respect to Tracking System
Reference.

From this point, half of obtained points and their precisely known related pair’s co-

ordinates on mock-up model will be used in registration with least squares approach

and transformation matrix that provides minimal registration error. Utilizing obtained

transformation matrix, square mean error of registration will be calculated and so reg-

istration error (Fiducial registration error - FRE) will be found. After this stage, rest

of the obtained points and their respective pairs on mock-up model will be used for

calculating target registration error (TRE) using same transformation matrix obtained

before. Both error values being in accepted interval will point to the fact of calibration

of tracking system is sufficient.

Rapid prototyping methodology (3D printing) is used for manufacturing first design

iteration of mock-up model. Figure 6.2 shows first mock-up model designed and man-

ufactured.

Figure 6.2. Reference Mock-up Model (First Prototype).

25

There are 11 × 11 fiducial point markings on two sides of the mock-up model. Also

cylindrical slot for holder and connection point for rigid body markers are added into

the design. However, in the mock-up model designed using 3D model design, It has

been observed that there are cracks and warpings induced by rapid prototyping system

and the measurement uncertainties caused by these. The relevant mechanical defects

shown in figure 6.3 prevented the produced mock-up prototype model from being used

as a calibration mock-up reference.

Figure 6.3. Warping and Cracks on First Prototype of Mock-up Model.

Also an unpredictable design error stands out in same prototype. There are enough

number of fiducial points to be used in registration but these fiducial points are placed

in only two planes. Procedure of calibration verification will be carried out in a three

dimensional volume. Dependence of two planes serves as a disadvantage for obtain-

ing meaningful fiducial (FRE) and target (TRE) registration errors. At this point It is

decided to make changes in related design.

Second designed prototype mock-up model is shown in figure 6.4. Fiducial points

are placed on towers of differing lengths for avoiding having all fiducial points on

26

same plane. This configuration enabled fiducial point selection from different planes.

Also small cross sections used for minimizing mechanical defects caused from rapid

prototyping system.

Figure 6.4. Reference Mock-up Model (Second Prototype).

Cylindrical slots for holder and connection point for rigid body markers can be clearly

seen in figure. Although no visible mechanical defects were observed on prototype

mock-up model, during registration deflection of the towers were observed.

Figure 6.5. Observed Deflection of Second Prototype of Mock-up Model.

As it can be clearly seen from figure 6.5, occurred deflection proves that the design is

prone to user caused measurement uncertainties during verification procedure. Due to

this reason second manufactured mock-up prototype was decided to be not suitable as

a calibration mock-up reference.

Additional uncertainties are introduced to verification methodology, independent of

design, in both prototyping stages. In both reference mock-up prototypes, rapid pro-

totyping methodology was utilized for manufacturing. For interest of reducing uncer-

tainties caused from manufacturing and usage of reference mock-up model, Güngör

27

Makine GM MILL CNC 3-axis processing system is decided to be utilized in man-

ufacturing instead of rapid prototyping system. In this context, based on previous

designs, related reference mock-up model is updated to latest design.

Figure 6.6. Reference Mock-up Model (Third Prototype).

three dimensional design procedure of reference mock-up model can be seen in figure

6.6. In total 6×6 towers with dimensions of 10×10×30 mm are obtained from a rigid

body with dimensions 100 × 100 × 70 by creating five equally spaced canals on both

x and y axis and from surface of the rigid body, with 30 mm depth and 8 mm width.

In this way centers of top surfaces of towers can be used as fiducial point locations.

Each tower height should be differentiated without depending on a specific parameter

to avoid problem of having all fiducual points on same plane. Accordingly heights of

each tower decided by creating a randomized matrix of shape 6× 6 with each element

of which being an integer between 1 and 30. table 6.1 shows value of each randomized

element with their x and y axis rank as shown in figure 6.6.

Siemens SinuTrain emulation software, which is fully compatible with Siemens Sinu-

meric 828D controller, is utilized in programming and emulation stages of CNC based

manufacturing of designed reference mock-up model (Figure 6.7). Possible problems

that might arise in part manufacturing were observed and manufacturing risks were

reduced to minimum by the usage of emulation software with same CNC software as

controller.

Table 6.1. Reference Mock-up Model Tower Heights.

Rank 1 2 3 4 5 6
1 19 17 8 29 15 24
2 26 7 28 13 22 23
3 11 16 12 22 8 21
4 4 18 10 28 17 20
6 26 15 17 20 6 26
7 18 11 5 28 20 18

28

Figure 6.7. Siemens SinuTrain Coding and Emulation Interface.

An aluminum block is selected to be used as base material of reference mock-up model

considering ease of processing, resistance to corrosion and low density. Programming

that done in Siemens Sinutrain emulation software was transferred to Siemens Sin-

unumeric 828D controller, and manufacturing process is started after fixing bulk part

to CNC machine (Figure 6.8-6.9). CNC parameters used in manufacturing process

were given on table 6.2.

29

Table 6.2. CNC Manufacturing Parameters.

Parameter Specification
Cutting Tool M6 End Mill
Lathe Speed 2000 rotations/minute
Feed Speed 0.5 mm/tooth
Tolerance 0.001 mm

Figure 6.8. Grooving Parallel to X and Y axis.

Figure 6.9. Adjusting Tower Heights.

30

After completing design and manufacturing process of reference mock-up model, with-

out taking model from CNC (without shifting coordinate frame), markings of depth

0.025 mm were created on geometrical middle points of top surfaces of towers with

random heights to allow comfortable position measurement with pointer tool consider-

ing geometrical middle points of top surfaces of towers are fiducial locations. M1.6X4

centering drill bit is utilized in creating these markings and manufacturing procedure

of reference mock-up model is completed (Figure 6.10).

Figure 6.10. Markings Created on Tower Top Surfaces and Fully Done Reference
Mock-up Model.

6.2 Design of Rigid Body Markers
Tracking of any rigid body in operation workspace by motion tracking system requires

rigid body markers. Rigid body markers is a geometrical tool containing three or

more passive reflecting or active light emitting spheres (Figure 6.11) in a asymmetric

arrangement used for position tracking of points in optical motion tracking systems

(motion capture cameras), like of which utilized in this thesis. By fixing rigid body

marker on a rigid body, real time position and orientation tracking of related rigid

body can be performed. Basically this procedure can be summarized as adding a refer-

ence system on any rigid body that is desired to be tracked. Software creates reference

systems automatically for each rigid body marker by processing data obtained from

tracking system. Tracking system is sensing light originated from light emitting (ac-

tive) or light reflecting (passive) spheres positioned on rigid body marker in a special

geometry.

31

Figure 6.11. Rigid Body Markers on Several Pointer Tools and Infrared Reflective
Spheres (IZI Medical, BRAINLAB).

As noted in calibration verification methodology, fiducial point positions of mock-up

model positioned inside workspace must be measured with respect to tracking system

reference to be able to verify calibration. In accordance to this process, two different

rigid body markers should be used for tracking both mock-up model and pointer tool

(Figure 6.12).

Figure 6.12. Utilization of Markers During Calibration Verification.

Calibration verification and measurement process is clearly shown in figure 6.12. Po-

sitions and orientations of marker references that is assembled to pointer tool (I) and

mock-up model (Mi) can be measured by tracking system software with respect to

tracking system reference (K). Transformation matrices KI T and K
MiT can be easily ob-

tained. Pointer tip reference (U), which is known with respect to pointer tool reference,

can be described with respect to tracking system reference by the utilization of related

transformation matrices (Equation 6.1).

32

[
KρU

1

]
= K

I T

[
IρU

1

]
[
MiρU

1

]
= K

MiT
−1

[
KρU

1

] (6.1)

Thereby pointer tip point can be utilized for measuring fiducial point positions on

markings of mock-up with respect to mock-up rigid body marker reference (Mi).

Since geometry structure of mock-up model is precisely known with respect to model

reference (M), transformation matrix M
MiT can be found utilizing least squares ap-

proach discussed in section 5.3. Fiducial (FRE) and target (TRE) registration errors

between measured and real mock-up fiducial point positions can be calculated using

this transformation matrix.

Geometrical precision of pointer tip and distinguishability between rigid body markers

by system software during tracking are crucial. Uncertainties will certainly arise in

verification and registration procedures in case of geometrical defect of pointer tip or

interference of rigid body markers by system software. For this reason, pointer tip

precision, which is important for verification and navigation efficiency, is enhanced

bt the usage of T0416 precise cylindrical shafted dead center with integrateable rigid

body marker.

Figure 6.13. T0416 Precise Cylindrical Shafted Dead Center Which is Used as a Part
of Measurement tool.

Tracking multiple rigid bodies simultaneously in workspace by tracking system re-

quires each geometry created by infrared reflective spheres, positioned on each defined

rigid body marker, to be different for all possible rigid body poses. Rigid body markers

with similar geometrical positioning of reflective spheres cannot be distinguished from

each other by tracking system. Therefore geometries of rigid body markers should be

designed with this fact in mind. In literature, mostly marker designs presented by track-

33

ing system manufacturers are being used, and there are a limited number of works that

are published on distinguishable marker designing. In this thesis, rigid body markers

are designed according to specified constraints of related works [13, 14].

General marker design is shown in figure 6.14. Total number of reflective spheres is

n and each reflective sphere defined as mi i = 1, 2, . . . , n. Each possible pair of

reflective spheres creates a segment (di), and total number of segments (S)

S =
n(n− 1)

2
(6.2)

is calculated using equation 6.2.

Figure 6.14. General Geometry of Rigid Body Markers.

Before continuing into marker design, design constraint of minimum (dmin) and max-

imum (dmax) lengths of segments should be decided. Tracking system accuracy in-

creases as segment lengths increases however considering limited workspace caused

by the nature of operations, maximum length should be kept within the constraints of

work. For each tracking system, considering reflective spheres and differentiating seg-

ments, minimum length difference (∆dmin) and minimum angle difference (∆αmin)

parameters were provided. Accordingly procedure steps given below should be fol-

lowed for marker design.

• Total number of segments calculated utilizing equation 6.2 considering number

of reflective spheres to be used.

• Segment length are chosen considering determined limits dmin ≤ di ≤ dmax i =

1, 2, . . . , S.

• Check each difference of length between segments are not shorter than segment

minimum length difference (∆dmin) |di−dj| ≥ ∆dmin i, j = 1, 2, . . . , S & i 6=
j.

34

Designed rigid body marker is able to be defined to tracking system after the procedure.

Same procedure steps should be followed for any additional rigid body marker desired

to be used in tracking system. However additional procedure steps for two rigid body

markers should be applied for tracking system to distinguish these rigid body markers.

• List segment line lengths of both designed markers d1i, d2j i = 1, 2, . . . , S1, j =

1, 2, . . . , S2.

• Similar segments are found between markers by utilizing hardware segment min-

imum length difference (∆dmin) |d1i − d2j| ≥ ∆dmin i = 1, 2, . . . , S1 j =

1, 2, . . . , S2.

• Considering segment pairs on same marker, angle between segments are calcu-

lated for both markers θ1ij = ∠ db1i, d
b
1j , θ2ij = ∠ db2i, d

b
2j i, j = 1, 2, . . . , p & i 6=

j

• Check absolute difference between calculated pairs are not smaller than hard-

ware segment minimum angle difference (∆αmin) |θ2ij − θ1ij| ≥ ∆αmin

Rigid body markers designed by this procedure are distinguishable by the tracking

system in the same workspace.

Optimal number of reflective spheres for single plane (every reflective sphere are po-

sitioned on a single plane) markers is between three and six. There can be seen a

decrease of target registration error (TRE) by increasing number of reflective spheres

on a marker however marker design also gets more complicated as number of reflec-

tive spheres on the tool increases. Most significant decrease of registration error is

obtained by increasing number of reflective spheres to four from three [13]. Con-

sidering existing marker designs in literature and specifications of Optitrack V100R2

infrared cameras, constraints of marker designs are decided and shown in table 6.3.

Table 6.3. Marker Design Constraints.

Total Infrared
Reflective

Sphere
Number (n)

Minimum
Segment

Length (dmin)

Maximum
Segment

Length (dmax)

Hardware
Segment

Minimum
Length

Difference
(∆dmin)

Hardware
Segment

Minimum
Angle

Difference
(∆αmin)

4 50 mm 100 mm 5 mm 2◦

Accordingly rigid body markers for both pointer tool and mock-up model are designed

by utilizing related procedure with design constraints (Figure 6.15) and prototypes of

rigid body markers are manufactured (Figure 6.16-6.17).

35

Figure 6.15. Designed Pointer Tool and Mock-up Model Marker Dimensions (mm).

Figure 6.16. Some Measurement Tip Holder Parts of Pointer Tool.

Figure 6.17. Prototypes of Pointer tool Marker and Mock-up Model Marker.

36

6.3 Calibration of Pointer Tool
If designed markers and mock-up model are to be used in tracking system verification

procedure, tip position of pointer tool, which will be utilized in position measurement,

is need be known with respect to pointer tool rigid body marker reference.

Figure 6.18. Demonstration of Taking Measurement From Mock-up Model.

Mock-up fiducial point position measurement is shown in figure 6.18, also previously

mentioned need of defined pointer tip position can be seen. Transformation matri-

ces K
I T and K

MiT are known since designed markers are distinguishable, definable by

tracking system.

However the transformation matrix K
U T that defines position of the pointer tip and ori-

entation of pointer tool with respect to the tracking system reference (K), which rep-

resents relation between pointer tip point reference (U) and tracking system reference,

should be known in order to measure positions of fiducial points on mock-up model

and visualize pointer tool in virtual environment correctly during surgical navigation.

To calculate related transformation matrix,

K
U T = K

I T
I
UT (6.3)

equation 6.3 can be utilized. But transformation matrix I
UT that defines relation be-

37

tween pointer tool rigid body marker reference (I) and pointer tip point reference (U)

should be known. Related transformation matrix can be found by the utilization of two

different methods.

First method is based on precise knowledge of geometry parts of pointer tool assembly

(rigid body marker, dead center). Considering centroid point of the reflective spheres

of rigid body marker is recognized as the origin point of reference, tracking system

defines reference orientation as same as tracking system reference (K) orientation at

the point of definition (Figure 6.19)

Figure 6.19. Orientation of Rigid Body Marker at Point of Definition.

This property allows to define orientation of the pointer tool by simply holding tool in a

specific orientation when tracking system defines the rigid body marker of the pointer

tool. Knowing orientation, pointer tip point position can be obtained from known

geometry of pointer tool. However user error in orientating pointer in related orienta-

tion and tracking system’s measurement uncertainty in defining rigid body marker will

greatly affect precision or complicate calculation process of obtained I
UT transforma-

tion matrix. Therefore I
UT transformation matrix that relates pointer tool rigid body

marker reference (I) and pointer tip point reference (U) is calculated utilizing, second

method, pointer tool calibration. Basis of related procedure consists of two stages,

which are pivot calibration and spin calibration. Both of these stages are executed

utilizing SlicerIGT extension of 3D Slicer software.

38

6.3.1 Spin calibration
Spin calibration objective is to describe the zU axis of the pointer tip point reference

(U) with respect to pointer tool reference (I). Cylindrical measurement tip spin axis

(m) is coincident with zU axis. Utilizing this fact the I
UR rotation matrix between

pointer reference and pointer tip point reference can be calculated. Spin calibration

ensures that orientation of pointer tool is consistent with the orientation of pointer tool

in virtual environment. pointer tip point position with respect to pointer reference is

the most important parameter for performing measurement on a point with pointer tool.

During spin calibration, pointer tool is rotated along cylindrical measurement tip spin

axis with minimal deviation, and orientation information during rotation is sampled by

SlicerIGT (Figure 6.20).

Figure 6.20. Rotation of Pointer Tool Along Spin Axis and 3D Slicer Visualization.

Sample orientations are collected from pointer tool reference and after collection of

samples in a set amount of time SlicerIGT calculates spin axis of the cylindrical mea-

surement tip with a root mean square (RMS) error produced from axis deviations

and/or geometrical defects in pointer tool. Spin axis is calculated as a unit vector with

respect to tracking system reference (K). Since K
I T transformation matrix is known,

calculated unit vector can be easily described by pointer tool reference (I). (Equation

6.4)

[
I ẑU

1

]
= K

I T
−1

[
K ẑU

1

]
(6.4)

x and y axis placement of pointer tool tip point reference are insignificant since pointer

tool model in virtual environment is assumed to be symmetrical in x and y axis. At this

point IUR =
[
x̂ ŷ I ẑU

]
rotation matrix is obtained with compatible values to

I ẑU axis. After this step, pointer tip point position with respect to pointer tool reference

39

(I) should be calculated with pivot calibration to construct IUT transformation matrix.

6.3.2 Pivot calibration
Objective of pivot calibration is to determine pointer tip point position with respect to

pointer tool reference (I) which is the origin point of pointer tip reference (IδU). Since

pivot calibration is directly related to the point measurement procedure, precision of

calibration is very important for both navigation and verification stages. During pivot

calibration, pointer tool is moved like a platform of spherical mechanism where posi-

tion of pointer tip point is fixed. SlicerIGT samples orientation of pointer tool reference

with respect to tracking system reference during this movement (Figure 6.21).

Figure 6.21. Spherical Movement of Pointer Tool with Pointer Tip as Isopoint and
3D Slicer Visualization.

Assuming pointer tool as a rigid body, unchanging position on pointer tool refer-

ence with respect to tracking system reference during calibration movement should be

pointer tip point position. Samples collected are utilized by SlicerIGT in calculating a

point with least root mean square (RMS) value considering position change. Similar

to section 6.3.1, calculated vector can be easily described by pointer tool reference (I)

since K
I T transformation matrix is known. (Equation 6.5)

[
IδU

1

]
= K

I T
−1

[
KδU

1

]
(6.5)

As mentioned before, main objective of pointer tool calibration is to find I
UT transfor-

mation matrix that describes relation between pointer tool reference (I) and pointer tip

reference (U). Thereby K
U T transformation matrix required in verification procedure

can be calculated utilizing equation 6.3. At this point IUT transformation matrix can be

constructed utilizing both spin and pivot calibration results. (Equation 6.6)

40

I
UT =

[
I
UR

IδU

0 0 0 1

]
(6.6)

6.4 Design Improvements of Pointer Tool
As seen in figure 6.22, total of three parts are used in first prototype construction of

pointer tool. These parts are precise measurement tip, measurement tip holder and

rigid body marker.

Figure 6.22. First prototype of Pointer Tool and Separate Parts.

However this design suffered from unwanted deformations and joint gaps. These facts

undermined rigidity of the pointer tool during measurement and navigation. At this

point a new design is utilized to keep pointer tool more resistant to deflections caused

by user and reduce the distance between rigid body marker and pointer tip. Keeping

this distance short ensures positional error of pointer tip caused by orientation noise

of the rigid body marker will be lower. New modified design can be seen in figure

6.23. Measurement tip holder and rigid body marker are merged into a single part with

objective of also supporting rigid body marker with the shaft of precise measurement

tip.

41

Figure 6.23. Updated Design of Pointer Tool.

6.5 Calibration and Verification Studies
Firstly, spin calibration was performed to start tracking system verification method-

ology of proposed procedure after completing design and manufacturing of required

tools. The most important consideration at this point is the fact that since the pointer

tool is rigid, performing pointer tool calibration once is enough as long as no shape

modification performed on pointer tool or rigid body marker of pointer tool is not re-

defined in tracking system software. IδU translation vector and I
UR rotation matrix will

still be valid after any change on workspace. First calibration of pointer tool should be

performed on a tracking system with known validity. Accordingly, Optitrack V100R2

motion capture cameras are calibrated with official software before the procedure and

ensured constancy of positions of motion capture cameras during procedure.

Spin calibration is performed using KUKA KR6 R900 SIXX industrial robot con-

sidering difficulty of user performing spin calibration of pointer tool while manually

keeping spin axis stable by hand. By contrast pivot calibration only requires stability of

single point (pointer tip point) during motion and accordingly can be more easily per-

formed by hand. A fixture part is designed to match spin axis of pointer tool with the

joint axis of the last joint of industrial manipulator. After the assembly, spin calibration

is completed by only rotating related axis (Figure 6.24).

42

Figure 6.24. Pointer Tool and Macro Manipulator Spin Calibration Assembly.

Result of spin calibrations performed by the manipulator and the hand manually for 10

tries are shown in table 6.4. As can be seen in table, tries with lowest root mean square

(RMS) values were extracted by unit spin axis calculation of SlicerIGT software was

obtained by utilizing the manipulator.

Table 6.4. Marker Rotation Calibration Results.
Test Number 1 2 3 4 5 6 7 8 9 10 Mean

Manuel Calibration
RMS Value (10−3 mm) 4.21 1.94 4.03 4.05 4.76 3.75 2.63 3.57 2.44 3.13 3.45

Manipulator Assisted
Calibration RMS Value

(10−3 mm)
2.26 2.37 2.12 2.69 2.61 2.77 2.39 2.26 2.35 2.80 2.46

As mentioned before, Pointer tool should perform a spherical movement while keeping

pointer tip as center and fixed point during pivot calibration. Executing this movement

with a manipulator requires knowledge of position of pointer tip in connection fixture

and ability to describe distance of this point to isopoint of the manipulator. Since

designed prototype is manufactured by using rapid prototyping, the uncertainties of

dimensions and distances are inevitably effect calibration. Due to those reasons pivot

calibration is decided to be performed by hand by the help of a manufactured basic

apparatus with a stitch to block displacement of pointer tip (Figure 6.25).

43

Figure 6.25. Apparatus Manufactured for Pivot Calibration and Process of
Calibration.

Results of 10 trials of pivot calibration were shown in table 6.5. As can be seen in re-

lated table, low values of root mean square (RMS) errors indicate that pivot calibration

of pointer tool is successfully performed.

Table 6.5. Marker Pivot Calibration Results.
Test Number 1 2 3 4 5 6 7 8 9 10 Mean

Manuel Calibration
RMS Value (10−3 mm) 72.00 78.05 68.54 60.50 92.59 79.08 90.43 94.33 79.31 64.42 77.92

I
UT transformation matrix was obtained by pointer tool calibrations and next stage,

verification of tracking system calibration, was commenced. At this point, without in-

terrupting present calibration of tracking system, mock-up model was placed in mea-

surement space and all measurements were taken from marks of 0.025 mm depth on

geometrical middle points of top surfaces of towers, which are determined to be fidu-

cial points (Figure 6.26).

Figure 6.26. Placement of Mock-up Model and Process of Measurement.

During procedure, fiducial points were measured by collecting 100 position samples

from each point and averaging the samples. This was done to reduce system uncertain-

ties in calculating fiducial registration error (FRE) and target registration error (TRE)

values. A program was written using Python programming language [Appendix A] to

perform measurement/verification stages and related algorithm is shown in figure 6.27.

44

Figure 6.27. Algorithm of Software Created for Measurement and Verification
Studies.

45

In first phase of the study, mock-up model was assumed to be fixed in position and ori-

entation and fiducial point positions on mock-up model are measured with respect to

tracking system reference. All measured fiducial point positions (KρiU i = 1, 2, 3, . . . , 36)

were utilized together with corresponding and precisely known fiducial point positions

with respect to mock-up model reference (MρiU i = 1, 2, 3, . . . , 36) to perform reg-

istration with least squares methodology described in section 5.3 and M
K T transfor-

mation matrix that gives least square error was obtained. Thus related fiducial reg-

istration error (FRE) was calculated. Afterwards same procedure was repeated with

only random half of the measured fiducial point positions and M
K T transformation ma-

trix was recalculated. Unused fidual point’s positions with respect to model reference

(MρjU j = 1, 2, 3, . . . , 18) were calculated utilizing equation 6.7.

[
MρjU

1

]
= M

K T

[
KρjU

1

]
(6.7)

Results obtained from equation 6.7 were compared with corresponding known fiducial

point positions with respect to model reference and from the distance between each

pair target registration error (TRE) was calculated. Results of performed verification

were shown in table 6.6 for five tries.

Table 6.6. Results of Verification Study (Fixed Mock-up Model).

Test Number 1 2 3 4 5
36 Fiducial Points FRE = TRE (10−3 mm) 200.63 209.25 230.28 236.64 236.27

18 Fiducial Points FRE (10−3 mm) 206.81 203.69 243.57 178.01 207.88
18 Fiducial Points TRE (10−3 mm) 201.89 220.83 218.78 304.72 274.75A
36 Fiducial Points TRE (10−3 mm) 204.37 212.43 231.51 249.54 243.62
18 Fiducial Points FRE (10−3 mm) 202.49 210.75 244.52 204.98 227.00
18 Fiducial Points TRE (10−3 mm) 210.31 211.48 224.10 268.48 254.42B
36 Fiducial Points TRE (10−3 mm) 206.44 211.11 234.53 238.85 241.10
18 Fiducial Points FRE (10−3 mm) 158.27 199.50 205.12 173.83 233.12
18 Fiducial Points TRE (10−3 mm) 257.74 232.69 266.51 297.80 250.63C
36 Fiducial Points TRE (10−3 mm) 213.87 216.73 237.80 243.82 242.03

As can be seen in table, acceptable low values of calculated errors indicates tracking

system calibration is sufficient. Also three different random fiducial point selections

(Experiment A, B, C) is shown in table 6.6. Although fiducial registration error (FRE)

and target registration error (TRE) calculated with the half of fiducial points can be

lower then overall fiducial registration error (FRE) of all 36 fiducial points, target reg-

istration error (TRE) calculated with all 36 fiducial points is always higher than overall

fiducial registration error (FRE). This fact indicates validity of verification study.

46

In second stage of study, mock-up rigid body marker was deployed to take measure-

ments on mobile mock-up model (Figure 6.28). Following a similar procedure, fidu-

cial point positions measured with respect to mock-up rigid body marker reference

(MiρkU k = 1, 2, 3, . . . , 36) were utilized together with precisely known fiducial

point positions (MρkU k = 1, 2, 3, . . . , 36) to calculate M
K T transformation matrix

that gives least square error using registration methodology. Thus fiducial registration

error (FRE) is calculated.

Figure 6.28. Taking Measurement on Mobile Mock-up Model.

Shown results for five trials in table 6.7, when analyzed, show consistency with previ-

ous experiment.

Table 6.7. Results of Verification Study (Mobile Mock-up Model).

Test Number 1 2 3 4 5
36 Fiducial Points FRE = TRE (10−3 mm) 295.44 255.84 232.30 307.73 248.30

18 Fiducial Points FRE (10−3 mm) 299.94 225.23 215.95 299.88 233.47
18 Fiducial Points TRE (10−3 mm) 297.33 293.06 275.45 324.04 273.21A
36 Fiducial Points TRE (10−3 mm) 298.64 261.36 247.49 312.19 254.12
18 Fiducial Points FRE (10−3 mm) 280.06 248.97 249.90 267.09 235.75
18 Fiducial Points TRE (10−3 mm) 317.09 279.89 216.14 359.89 270.04B
36 Fiducial Points TRE (10−3 mm) 299.15 264.88 233.63 316.91 253.48
18 Fiducial Points FRE (10−3 mm) 321.97 216.44 196.77 318.37 261.53
18 Fiducial Points TRE (10−3 mm) 271.90 309.08 268.80 307.21 245.91C
36 Fiducial Points TRE (10−3 mm) 297.99 266.81 235.55 312.84 253.84

Related procedure was repeated on fixed mock-up model in a environment with inten-

tionally broken tracking system calibration to prove validity of suggested calibration

verification procedure. Results were shown in table 6.8 for five trials.

47

Table 6.8. Results of Verification Study (Broken Tracking System Calibration).

Test Number 1 2 3 4 5
36 Fiducial Points FRE = TRE (10−3 mm) 2845.4 2750.7 2786.6 2303.5 2175.1

18 Fiducial Points FRE (10−3 mm) 3348.2 2752.2 3292.8 2703.1 2258.2
18 Fiducial Points TRE (10−3 mm) 2621.2 2784.6 2374.5 1913.7 2110.3A
36 Fiducial Points TRE (10−3 mm) 3006.7 2768.5 2870.6 2341.9 2185.5
18 Fiducial Points FRE (10−3 mm) 3311.8 2491.6 1987.5 2519.3 2247.4
18 Fiducial Points TRE (10−3 mm) 2561.3 3052.4 3451.0 2159.5 2132.8B
36 Fiducial Points TRE (10−3 mm) 2960.4 2786.2 2816.0 2346.3 2190.9
18 Fiducial Points FRE (10−3 mm) 1947.6 2058.1 1876.3 1830.0 2220.6
18 Fiducial Points TRE (10−3 mm) 3583.7 3444.4 3542.4 2870.3 2150.2C
36 Fiducial Points TRE (10−3 mm) 2884.1 2837.2 2834.5 2407.0 2185.7

Inspecting values shown in related table, it can be seen that substantially higher error

values were obtained from the environment with broken tracking system calibration.

In turn, this fact supports validity of verification procedure.

48

7. REGISTRATION BETWEEN TRACKING SYSTEM
MEASUREMENT SPACE AND MACRO MANIPU-
LATOR WORKSPACE

In scope of this thesis, six degrees of freedom KUKA KR6 R900 SIXX serial robot

manipulator was deployed in surgical navigation study. K
RT transformation matrix

that relates manipulator reference (R) and tracking system reference (K) should be

calculated for successful utilization of serial robot manipulator (Figure 7.1).

Figure 7.1. Robot Manipulator and Tracking System References.

In this context least squares methodology (theoretical background can be seen in sec-

tion 5.3) was decided to be utilized.

Related procedure requires point position sets described with respect to both references
KρPi and RρPi i = 1, 2, 3, . . . , n to be constructed. With this purpose in mind

an apparatus, containing infrared reflective sphere on tip point, was designed to be

assembled on the last joint axis of serial robot manipulator. Position of the infrared

reflective sphere on apparatus then can be tracked by tracking system (Figure 7.2).

49

Figure 7.2. Robot Manipulator with Designed Apparatus.

In constructing point position sets, steps described below were followed.

• Moving apparatus tip point to an arbitrary position with respect to manipulator

reference.

• After movement is completed, measuring position of infrared reflective sphere

with motion capture cameras with respect to tracking system reference

Official controller of serial robot manipulator (KRC4) was utilized to give movement

to the apparatus tip in order to position it to an arbitrary point with respect to manipu-

lator reference. Inverse and forward kinematic solutions of 6 degree of freedom robot

manipulator are embedded inside official KUKA system software. Thus forward kine-

matic solution of end effector pose with respect to manipulator reference can be read

after system actuators are driven via controller. In addition, it is sufficient to send the

end effector pose to the system software as an alternative. Thus, the necessary actu-

ator angles will be calculated by the official system software using integrated inverse

kinematic solution and manipulator movement will be realized.

In the first trial of the study, robot axes was moved manually by the help of the con-

troller to random positions in workspace. Related positions of the infrared reflective

sphere at the tip of apparatus was obtained with respect to both references by the help

of Motive Tracker and KUKA system software. However this method was proved to be

infeasible due to reasons of being slow and not suitable for collection of a substantial

number of points, and difficulty of constraining taken positions in a workspace. Later,

it was decided to take point sets from a cuboid volume that encompasses head volume

of an adult person and inside space that is accessible to manipulator (Figure 7.3).

50

Figure 7.3. Volume Created for Determining Point Position Set.

As shown in figure 7.3, cuboid volume with dimensions of 219.2× 144.8× 232 mm is

positioned in workspace of manipulator. For positioning apparatus tip, a 12× 12× 12

three dimensional cubic grid of points, with a total of 1728 points, were fitted inside

the cuboid volume with a homogeneous distribution. Total volume then divided into 36

sub-volumes and inside each sub-volume, order of apparatus tip arrivals at the points

were randomized to avoid any bias that might be caused by the sequence during point

collection. Also, by randomizing point orders within sub-volumes instead of whole

volume, average distance traveled between two points by apparatus tip was shortened

and in turn average time required for each position measurement was reduced. Path

followed by apparatus tip is shown in figure 7.4, path inside each sub-volume is shown

with different color.

Figure 7.4. Path Followed by Manipulator with Apparatus During Measurement of
Points.

Similar to study on mock-up model, 100 position samples were collected by track-

ing system at each point. In K
RT transformation matrix calculation procedure, related

point’s position with respect to tracking system reference is defined as average of these

position samples. The procedure calculating relation between manipulator reference

(R) and calibrated tracking system reference (K) was implemented as a software (Ap-

51

pendix B) utilizing open-source robotics framework Robot Operating System (ROS)

and performed automatically by implemented software. Required communication be-

tween software in process of sending target positions to KUKA system software was

constructed by utilization of open-source KukaVarProxy [15] software.

After {KρPi} and {RρPi} i = 1, 2, 3, . . . , 1728 point position sets were constructed,

utilizing equations 5.10 - 5.15, KRT transformation matrix that gives least square er-

ror was calculated. Since position uncertainty of utilized manipulator (±0.03 mm) is

much lower than measurement uncertainty of tracking system (±0.3 mm), it was as-

sumed that manipulator is moved to defined point without error. Errors (ei) were cal-

culated between each point position pair in sets of point positions known with respect

to manipulator reference (RρPi) and point positions that were measured with respect to

tracking reference and transformed to manipulator reference with K
RT transformation

matrix (K∗ρPi) (Equation 7.1)

[
K∗ρPi

1

]
= K

RT

[
RρPi

1

]
ei = |KρPi| − |K∗ρPi|

(7.1)

Gradient of errors (mm) at each point can be clearly seen in figure 7.5.

Figure 7.5. Gradient of Error at Points of Point Position Set.

Fiducial registration error (FRE), which is equal to mean root square of errors of posi-

tions calculated using K
RT transformation matrix, was calculated to be 0.350 mm. This

indicates feasibility of surgical navigation with possessed hardware and within defined

volume.

52

7.1 Compensation for Possible Apparatus Length Uncertainty
In section 7, apparatus length between robot manipulator end effector base and cen-

troid of sphere apparatus was manually measured with a precise caliper ruler and each

position in {KρPi} i = 1, 2, 3, . . . , 1728 point position set were visited utilizing this

measured length as an offset in a fixed orientation. {RρPi} i = 1, 2, 3, . . . , 1728 point

position set constructed with this procedure will valid as long as centroid position of

sphere apparatus is perfectly known. In case of this measurement being imperfect,

{RρPi} point position set will drift in direction of fixed orientation set in position mea-

surement procedure. This possibility of error should be considered.

Like in section 7, a 6×6×6 three dimensional cubic grid of points, with a total of 216

points, were fitted inside of cuboid volume, that encompasses head volume of an adult

person and inside space that is accessible to manipulator, with a homogeneous distri-

bution. Total volume then divided into 8 sub-volumes and inside each sub-volume,

order of apparatus tip arrivals at the points are randomized. As key consideration, each

position in {RρPi} i = 1, 2, 3, . . . , 216 point position set was also given a set of Eu-

ler angles for each point as
[
± π

36
± π

36
± π

36

]
in radians. Then 100 position samples

were collected by tracking system at each point. Related point position with respect

to tracking system reference was defined as average of these position samples. After

related position measurements were completed, utilizing equations 5.10 - 5.15, KRT

transformation matrix that gives least square error was calculated.

Errors (ei) were calculated utilizing equation 7.1. Gradient of errors (mm) at each point

was constructed and is shown in figure 7.6

Figure 7.6. Gradient of Error at Points of Point Position Set with Euler Angles.

53

Fiducial registration error (FRE) was calculated to be 1.945 mm, which is considerably

higher than fiducial point error found in section 7. Reason of this is the fact that Euler

angles given to each point broke homogeneity of error caused by fixed angles which in

turn caused drift in measured positions.

The fact of fiducial registration error (FRE) was found to be considerably higher points

to possibly of there was some uncertainty in manual apparatus length measurement. In

response to this fact, an algorithm was developed and implemented as a Python pro-

gram to compensate this uncertainty [Appendix C]. The program written can emulate

different apparatus lengths and perform error calculation as each Euler angle given to

each point position is known. The algorithm of the written program can be given as,

• Emulate each apparatus length and calculate fiducial registration error (FRE)

from a given range,

• Fit a polynomial to fiducial registration error (FRE) with respect to emulated

apparatus length data,

• Calculate emulated apparatus length with minumum fiducial registration error

(FRE) as effective length of apparatus from fitted polynomial.

Graph of raw data is given in figure 7.7,

Figure 7.7. Fiducial Registration Error (FRE) with Respect to Emulated Apparatus
Length.

Sixth order polynomial 2.628× 10−5x6−9.151× 10−3x5+1.321x4−1.013× 102x3+

4.354× 103x2−9.941× 104x+9.426× 105 was fitted to raw data. Graph of raw data

overlapped by fitted polynomial is given in figure 7.7,

54

Figure 7.8. Fiducial Registration Error (FRE) with Respect to Emulated Apparatus
Length Overlapped by Fitted Polynomial.

At this point, effective length of apparatus was found to be 56.156 mm from roots of

the polynomial. Gradient of error shown in figure 7.9 is found by inserting effective

length to gradient of error calculation procedure.

Figure 7.9. Gradient of Error at Points of Point Position Set.

Fiducial registration error (FRE), calculated with effective length, was found to be

0.403 mm, which is comparable to the fiducial registration error (FRE) found in section

7. Thus the method proposed for the compensation of length uncertainty that may

occur during tool tip measurements was proved to be effective.

55

8. HARDWARE VERIFICATION

At this point, studies done in previous sections were utilized in performing navigation

on mock-up model with robot manipulator. Firstly, a part to be assembled to the end

effector of robot manipulator was designed (figure 8.1). Main criteria considered in

this design is safety. Related part was designed to be easily breakable in situations of

undesirably high forces that might be applied by robot manipulator to mock-up model

due to few millimeters of navigation error.

Figure 8.1. Robot Manipulator with Designed Part.

Navigation procedure was implemented as a Robot Operating System (ROS) node in

Python programming language [Appendix D], interfacing with 3D Slicer (via ros igtl bridge

[16]), Optitrack Motive Tracker (via Plus Toolkit, ros igtl bridge) and KUKA KR6

R900 SIXX industrial robot (via KukaROSOpenComm [17]) (Figure 8.2).

56

Figure 8.2. ROS and 3D Slicer Interface.

Written ROS node utilizes calibration data calculated in sections 6.3, 6.5 and 7.1 as it

streams robot manipulator end effector position and orientation to 3D Slicer in real-

time. Opaque virtual model of the end effector represents current position and orienta-

tion of robot end effector. Path planning was done by operator with 3D Slicer software.

Target orientation and position of robot end effector was visualized as half transparent

visual model of robot end effector. Operator is able to manipulate target position and

orientation with respect to mock-up model reference as desired (Figure 8.3).

57

Figure 8.3. Visuals From Virtual Environment at Some Key Moments.

Target position and orientation data is continuously being streamed to written ROS

node, in turn written ROS node sends these positions and orientations to robot ma-

nipulator to be executed as movements. In figure 8.4, each row show execution of

movement to corner fiducial point positions of mock-up model. Result of each move-

ment is shown as close-up images in last column. As can be seen in figure 8.4, results

of hardware verification procedure were promising.

58

Figure 8.4. Corresponding Movements of Robot Manipulator.

59

9. CONCLUSIONS

Throughout the thesis, a low cost motion tracking system was utilized together with

free and open source software to create a surgical navigation system which was aimed

to be effective in robotic surgical operations especially targeted for cochlear microrobot

operations. Facts like,

• low error values found at each step,

• ability to stream position and orientation data of tools and workspace in virtual

space,

• successful integration of a macro manipulator to the system,

• successful path planning performed in 3d Slicer,

• and also successful execution of this path my macro manipulator

indicates that designed surgical navigation system gives promising results to be used

in cochlear microrobot operations. It is clear that low error values in tables 6.4-6.7

suggests successful design and manufacturing of mock-up model and pointer tools.

This fact already set validity of verification methodology described in section 6.

Also as seen in the close-up images of the final hardware verification procedure from

figure 8.4, it is clear that operator was able to move end effector of robot manipula-

tor to desired positions successfully. This fact clearly points to the success of finding

required relation between robot manipulator reference (R) and tracking system refer-

ence (K), that mapped motion capturing workspace to robot manipulator workspace;

pointer tool reference (I) and pointer tool rigid body marker reference (U), which ef-

fects fiducial point position measurement with respect to tracking system reference (K)

and directly calibration of patient (in this case mock-up model); mock-up rigid body

marker reference (Mi) and mock-up model reference (M), which described fiducial

point positions with respect to tracking system reference (K).

In future works, described and verified surgical navigation methodology will be ap-

plied to a constructed cochlea model and a graphical user interface will be designed

for better usability of the proposed navigation system. Also an end-effector for robot

arm might be designed for measuring target registration error values during surgical

navigation application shown in figures 8.3 and 8.4. These error values might include

60

error from geometrical defects of model which was assumed to be non-existent during

this study.

61

REFERENCES

1. Mezger U, Jendrewski C, and Bartels M. Navigation in surgery. Langenbeck's
Archives of Surgery 2013 Feb; 398:501–14. DOI: 10.1007/s00423-013-
1059-4

2. Arun KS, Huang TS, and Blostein SD. Least-Squares Fitting of Two 3-D Point
Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 1987
Sep; PAMI-9:698–700. DOI: 10.1109/tpami.1987.4767965

3. Cho B, Oka M, Matsumoto N, Ouchida R, Hong J, and Hashizume M. Warning
navigation system using real-time safe region monitoring for otologic surgery.
International Journal of Computer Assisted Radiology and Surgery 2012 Nov;
8:395–405. DOI: 10.1007/s11548-012-0797-z

4. Jeon S, Park J, Chien J, and Hong J. A hybrid method to improve target reg-
istration accuracy in surgical navigation. Minimally Invasive Therapy & Allied
Technologies 2015 Mar; 24:356–63. DOI: 10.3109/13645706.2015.
1020555

5. Hong J, Matsumoto N, Ouchida R, Komune S, and Hashizume M. Medical Nav-
igation System for Otologic Surgery Based on Hybrid Registration and Virtual
Intraoperative Computed Tomography. IEEE Transactions on Biomedical Engi-
neering 2009 Feb; 56:426–32. DOI: 10.1109/tbme.2008.2008168

6. Tomikawa M, Hong J, Shiotani S, Tokunaga E, Konishi K, Ieiri S, Tanoue K,
Akahoshi T, Maehara Y, and Hashizume M. Real-Time 3-Dimensional Virtual
Reality Navigation System with Open MRI for Breast-Conserving Surgery. Jour-
nal of the American College of Surgeons 2010 Jun; 210:927–33. DOI: 10.
1016/j.jamcollsurg.2010.01.032

7. Cho HS, Park YK, Gupta S, Yoon C, Han I, Kim H-S, Choi H, and Hong J.
Augmented reality in bone tumour resection. Bone & Joint Research 2017 Mar;
6:137–43. DOI: 10.1302/2046-3758.63.bjr-2016-0289.r1

8. Fitzpatrick JM, West JB, and Maurer CR. Derivation of expected registration
error for point-based rigid-body registration. Medical Imaging 1998: Image Pro-
cessing. Ed. by Hanson KM. SPIE, 1998 Jun. DOI: 10.1117/12.310824

9. Fitzpatrick JM, West JB, and Maurer CR. Predicting error in rigid-body point-
based registration. IEEE Transactions on Medical Imaging 1998; 17:694–702.
DOI: 10.1109/42.736021

62

https://doi.org/10.1007/s00423-013-1059-4
https://doi.org/10.1007/s00423-013-1059-4
https://doi.org/10.1109/tpami.1987.4767965
https://doi.org/10.1007/s11548-012-0797-z
https://doi.org/10.3109/13645706.2015.1020555
https://doi.org/10.3109/13645706.2015.1020555
https://doi.org/10.1109/tbme.2008.2008168
https://doi.org/10.1016/j.jamcollsurg.2010.01.032
https://doi.org/10.1016/j.jamcollsurg.2010.01.032
https://doi.org/10.1302/2046-3758.63.bjr-2016-0289.r1
https://doi.org/10.1117/12.310824
https://doi.org/10.1109/42.736021

10. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S,
Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV,
Pieper S, and Kikinis R. 3D Slicer as an image computing platform for the Quan-
titative Imaging Network. Magnetic Resonance Imaging 2012 Nov; 30:1323–
41. DOI: 10.1016/j.mri.2012.05.001

11. Ungi T, Lasso A, and Fichtinger G. Open-source platforms for navigated image-
guided interventions. Medical Image Analysis 2016 Oct; 33:181–6. DOI: 10.
1016/j.media.2016.06.011

12. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, and Fichtinger G. PLUS: Open-
Source Toolkit for Ultrasound-Guided Intervention Systems. IEEE Transactions
on Biomedical Engineering 2014 Oct; 61:2527–37. DOI: 10.1109/tbme.
2014.2322864

13. Brown A, Uneri A, and Silva TD. Design and validation of an open-source library
of dynamic reference frames for research and education in optical tracking. Jour-
nal of Medical Imaging 2018 Feb; 5:1. DOI: 10.1117/1.jmi.5.2.021215

14. Pintaric T and Kaufmann H. A rigid-body target design methodology for optical
pose-tracking systems. Proceedings of the 2008 ACM symposium on Virtual re-
ality software and technology - VRST '08. ACM Press, 2008. DOI: 10.1145/
1450579.1450594

15. IMTS and Peloux L du. KukaVarProxy. Available from: https://github.
com/ImtsSrl/KUKAVARPROXY [Accessed on: 2020 Dec 21]

16. Frank T, Krieger A, Leonard S, Patel NA, and Tokuda J. ROS-IGTL-Bridge: an
open network interface for image-guided therapy using the ROS environment.
International Journal of Computer Assisted Radiology and Surgery 2017 May;
12:1451–60. DOI: 10.1007/s11548-017-1618-1

17. Kahveci A. KukaRosOpenCommunication. Available from: https://github.
com/AytacKahveci/KukaRosOpenCommunication [Accessed on: 2020
Dec 21]

63

https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.media.2016.06.011
https://doi.org/10.1016/j.media.2016.06.011
https://doi.org/10.1109/tbme.2014.2322864
https://doi.org/10.1109/tbme.2014.2322864
https://doi.org/10.1117/1.jmi.5.2.021215
https://doi.org/10.1145/1450579.1450594
https://doi.org/10.1145/1450579.1450594
https://github.com/ImtsSrl/KUKAVARPROXY
https://github.com/ImtsSrl/KUKAVARPROXY
https://doi.org/10.1007/s11548-017-1618-1
https://github.com/AytacKahveci/KukaRosOpenCommunication
https://github.com/AytacKahveci/KukaRosOpenCommunication

APPENDIX A

surgical navigation node.py

1 #!/usr/bin/env python

2 ###

3 #The ROS module for surgical navigation. #

4 ###

5 #Author: Tugrul Uslu #

6 #Email: tugrul.uslu@ikc.edu.tr #

7 # Izmir Katip Celebi University #

8 # Mechanical Engineering #

9 ###

10

11 from __future__ import division, absolute_import, print_function, unicode_literals

12

13 import threading

14 import sys

15 import os

16

17 import numpy as np

18 import rospy # pylint: disable=E0401

19 #from rospy.numpy_msg import numpy_msg # pylint: disable=E0401

20 from ros_igtl_bridge.msg import igtltransform, igtlpoint, igtlpointcloud # pylint:

disable=E0401↪→

21 from geometry_msgs.msg import Point, Transform # pylint: disable=E0401

22 from surgical_navigation.msg import kuka_var # pylint: disable=E0401

23

24 from quaternion import quat2mat, mat2quat

25 from euler import decompose_affine, compose_affine, inverse_affine, euler2mat,

mat2euler↪→

26

27 if sys.version_info.major < 3:

28 input = raw_input

29 range = xrange

30

31 # Constants

32 REF_TO_TRACKER_NAME = "ReferenceToTracker"

33 STY_TO_TRACKER_NAME = "StylusToTracker"

34 REF_CALIB_TRANS_NAME = "RefCalib"

35 STY_CALIB_TRANS_NAME = "StyCalib"

36 REF_CALIB_TRANS_FILE_NAME = "reference_calib_trans.csv"

37 STY_CALIB_TRANS_FILE_NAME = "stylus_calib_trans.csv"

38 ENV_CALIB_TRANS_FILE_NAME = "environment_calib_trans.csv"

39

40 ###############

41 ## UTILITIES ##

42 ###############

43

44 def tuple2ndarray(point):

45 """

46 """

47 P = np.ones((4,1))

48 P[:3,0] = point

49 return P

64

50

51

52 def ndarray2tuple(P):

53 point = tuple(P[:3,0])

54 return point

55

56

57 def transform2mat_and_trans(transform):

58 """

59 """

60 t = np.array((transform.translation.x,

61 transform.translation.y, transform.translation.z))

62 q = np.array((transform.rotation.w, transform.rotation.x,

63 transform.rotation.y, transform.rotation.z))

64 R = quat2mat(q)

65 return R, t

66

67

68 def affine2igtltransform(A, name):

69 R, t = decompose_affine(A)

70 q = mat2quat(R)

71 msg = igtltransform()

72 msg.name = name

73 msg.transform.translation.x, msg.transform.translation.y,

msg.transform.translation.z = t↪→

74 msg.transform.rotation.w, msg.transform.rotation.x, msg.transform.rotation.y,

msg.transform.rotation.z = q↪→

75 return msg

76

77

78 def convert_point(P, *transforms):

79 """

80 returns;

81 P; Converted point, ndarray shape 4,1

82 """

83 for transform in transforms:

84 P = np.matmul(transform, P)

85 return P

86

87 def filter_mean(point_samples ,n_slice=10):

88 """

89 point_samples; np.array shape 3,i,n

90 """

91 _, i, n = point_samples.shape

92 step = n // n_slice

93 point_samples_f = np.zeros((3, i, n_slice))

94 for j in range(n_slice):

95 temp = point_samples[:,:, j*step:(j+1)*step]

96 temp = np.mean(temp, axis=2)

97 point_samples_f[:,:,j] = temp

98 return point_samples_f

99

100

101 #############

102 ## CLASSES ##

103 #############

104

65

105

106 class Surgical_Navigation(object):

107 """

108 """

109 ## Setup ##

110 def __init__(self):

111 """

112 """

113 # Variables to hold transformations

114 self.env_calib_trans = np.loadtxt(ENV_CALIB_TRANS_FILE_NAME)

115 self.ref_calib_trans = np.eye(4)

116 self.sty_calib_trans = np.eye(4)

117 self.sty2tracker = np.eye(4)

118 self.ref2tracker = np.eye(4)

119 # ###

120 # List to hold target points

121 self.targetpoint_lt = list()

122 # ###

123 # Desired end effector transformation

124 self.end_eff_transform = np.eye(4)

125 # ###

126 # Initialize system as uncalibrated

127 self.sys_is_calibrated = False

128 # ###

129 # Initialize ROS

130 rospy.init_node("surgical_navigation_node", anonymous=True)

131 rospy.on_shutdown(self.terminate) # exit gracefully

132 # ###

133 # Create the Publishers

134 self.pub_kuka = rospy.Publisher("kuka_var_stream", kuka_var, queue_size=10)

135 self.pub_pointcloud = rospy.Publisher("IGTL_POINTCLOUD_OUT", igtlpointcloud,

queue_size=10)↪→

136 self.pub_transform = rospy.Publisher("IGTL_TRANSFORM_OUT", igtltransform,

queue_size=10)↪→

137 # ###

138 # try loading calibration matrices from disk

139 try:

140 self.ref_calib_trans = np.loadtxt(REF_CALIB_TRANS_FILE_NAME)

141 self.sty_calib_trans = np.loadtxt(STY_CALIB_TRANS_FILE_NAME)

142 rospy.loginfo("Calibration matrices are loaded from memory")

143 # If successfull, system assumed to be calibrated

144 self.sys_is_calibrated = True

145 except IOError as error:

146 # These calib files do not exist so we ask them from the user

147 # If failure, system is assumed to be uncalibrated

148 rospy.loginfo("Calibration files for Reference or Stylus are not found.")

149 # ###

150 # Inform user that setup is done

151 rospy.loginfo("Setup Done.")

152

153 def terminate(self):

154 """

155 Terminate gracefully

156 """

157 pass

158

159 ## Callbacks ##

66

160 def transform_callback(self, data):

161 """

162 """

163 R, t = transform2mat_and_trans(data.transform)

164 A = compose_affine(R, t)

165 if not self.sys_is_calibrated:

166 # System is not calibrated

167 # Ask user for calibration matrices

168 print("Please send the calibration matrices.")

169 if data.name == REF_CALIB_TRANS_NAME:

170 # Save the transform for later use and hold it

171 self.ref_calib_trans = A

172 np.savetxt(REF_CALIB_TRANS_FILE_NAME, self.ref_calib_trans)

173 # Inform user

174 rospy.loginfo(REF_CALIB_TRANS_NAME+" is saved.")

175 elif data.name == STY_CALIB_TRANS_NAME:

176 # Save the transform for later use and hold it

177 self.sty_calib_trans = A

178 np.savetxt(STY_CALIB_TRANS_FILE_NAME, self.sty_calib_trans)

179 # Inform user

180 rospy.loginfo(STY_CALIB_TRANS_NAME+" is saved.")

181 else:

182 rospy.logwarn(

183 """Please only send the calibration transforms.

184 This warning might be caused by wrong naming of

transformations."""↪→

185)

186 if not ((np.allclose(self.ref_calib_trans, np.eye(4))) or

(np.allclose(self.sty_calib_trans, np.eye(4)))):↪→

187 # Since both calib matrice holder variables are not none system

assumed to be calibrated↪→

188 self.sys_is_calibrated = True

189 # Inform user

190 rospy.loginfo("Calibration is completed.")

191 else:

192 # System is calibrated

193 if data.name == REF_TO_TRACKER_NAME:

194 self.ref2tracker = A

195 elif data.name == STY_TO_TRACKER_NAME:

196 self.sty2tracker = A

197 else:

198 rospy.logwarn(

199 """Please only send the Stylus's or Reference's transforms.

200 This warnign might be caused by wrong naming of

transformations."""↪→

201)

202

203 def point_callback(self, data):

204 """

205 placeholder

206 """

207 self.targetpoint_lt.append((data.pointdata.x, data.pointdata.y,

data.pointdata.z))↪→

208

209 def string_callback(self, data):

210 """

211 """

67

212 print(data.name)

213 print(data.string)

214

215 ## Tasks ##

216 def task_robot_move_to_ref(self, Pref):

217 """

218 Pref: point according to reference frame

219 """

220 rTs = self.ref2tracker

221 sTk = self.env_calib_trans

222 Pk = convert_point(Pref, rTs, sTk)

223 return Pk

224

225

226 def calibrate_patient(self, n_sample=100, n_point=None): #WIP

227 """

228 """

229 rospy.sleep(10)

230 if n_point == None:

231 n_point = len(self.targetpoint_lt)

232 if n_point == 0:

233 print("No target points")

234 return

235 #pub = rospy.Publisher("IGTL_POINT_OUT", igtlpoint, queue_size=10)

236 calib_points = np.zeros((3, n_point, n_sample))

237 r = rospy.Rate(90)

238 counter = 0

239 while True:

240 #cmd = input("Press Enter to get a point")

241 os.system("spd-say 'Proceed to next point'")

242 rospy.sleep(5)

243 os.system("spd-say 'Starting'")

244 #if not cmd == "":

245 # break

246 rospy.sleep(0.10)

247 Pr_samples = np.zeros((4, 1, n_sample), dtype=float)

248 for i in range(Pr_samples.shape[2]):

249 r.sleep()

250 T_Pm = np.matmul(self.sty2tracker, self.sty_calib_trans,)

251 T_Pr = np.matmul(inverse_affine(self.ref2tracker), T_Pm)

252 Pr = T_Pr[:,3][np.newaxis].T

253 Pr_samples[:,:,i] = Pr

254 os.system("spd-say 'Done'")

255 rospy.sleep(1)

256 print("Point X=%.2f, Y=%.2f, Z=%.2f collected."%tuple(np.mean(Pr_samples,

axis=2)[:3,0]))↪→

257 #calib_points_lt.append(tuple(np.mean(Pr_samples, axis=0)[:3,0]))

258 calib_points[:, counter, :] = np.squeeze(Pr_samples)[:3,:]

259 counter += 1

260 if counter == n_point:

261 X = np.array(self.targetpoint_lt).T

262 Y = np.mean(calib_points, axis=2)

263 np.savetxt("target_points.csv", X)

264 np.savetxt("comp_collected_points.csv", Y)

265 os.system("spd-say 'All done'")

266 break

267

68

268 def collect_points(self, n_point, n_sample=100):

269 """

270 """

271 points_array = np.zeros((3, n_point))

272 r = rospy.Rate(90)

273 counter = 0

274 try:

275 while True:

276 cmd = input("Press Enter to get a point")

277 if not cmd == "":

278 break

279 rospy.sleep(0.5)

280 P_samples = np.zeros((3, n_sample), dtype=float)

281 for i in range(n_sample):

282 sty2tracker = self.sty2tracker

283 T_Pm = np.matmul(sty2tracker, self.sty_calib_trans)

284 Pm = T_Pm[:3,3]

285 P_samples[:,i] = Pm

286 r.sleep()

287 P_mean = np.mean(P_samples, axis=1)

288 points_array[:,counter] = P_mean[:3]

289 print("Point X=%.2f, Y=%.2f, Z=%.2f collected."%(tuple(P_mean[:3])))

290 counter += 1

291 if counter == n_point:

292 np.savetxt("collected_points.csv", points_array)

293 break

294 except KeyboardInterrupt:

295 return

296

297 def publish_calib(self):

298 msg_sty_calib = affine2igtltransform(self.sty_calib_trans,

STY_CALIB_TRANS_NAME)↪→

299 msg_ref_calib = affine2igtltransform(self.ref_calib_trans,

REF_CALIB_TRANS_NAME)↪→

300 self.pub_transform.publish(msg_sty_calib)

301 self.pub_transform.publish(msg_ref_calib)

302

303 ## ROS listener setup ##

304 def run_listener(self):

305 """

306 """

307 rospy.Subscriber("IGTL_TRANSFORM_IN", igtltransform,

308 self.transform_callback)

309 rospy.Subscriber("IGTL_POINT_IN", igtlpoint, self.point_callback)

310 rospy.spin() # Comment out ros.spin() if publisher is running so program

doesnot prematurely close↪→

311

312 ## ROS publisher setup ##

313 def run_publisher(self):

314 """

315 """

316 #print(end_eff_transform)

317 rate = rospy.Rate(20)

318 while not rospy.is_shutdown():

319 #print("publisher running")

320 R, t = decompose_affine(self.end_eff_transform)

321 x, y, z = t

69

322 a, b, c = [-156.44, 82.25, -154.88]

323 #print("calling publish")

324 self.pub_kuka.publish((x,y,z,a,b,c))

325 rate.sleep()

326

327 def publish_single(self, T):

328 if not rospy.is_shutdown():

329 #print("publisher running")

330 R, t = decompose_affine(T)

331 x, y, z = t

332 a, b, c = [-156.44, 82.25, -154.88]

333 #print("calling publish")

334 self.pub_kuka.publish((x,y,z,a,b,c))

335

336 def run(self):

337 """

338 """

339 self.run_listener()

340 #self.run_publisher()

341 # run listener in another thread

342

343 def run_thread(self):

344 thread_1 = threading.Thread(target=self.run)

345 thread_1.start()

346

347 def command_interface(self):

348 """

349 """

350 print("Command Line Interface\n\nCommands;\n\tlist\n\tclean\n\tkeep <Target

index>\n\tgoref <Target index>\n\tcalcref <Target index>\n\texit\n")↪→

351 while True:

352 cmd = input(">> ")

353 cmd_lt = cmd.split(" ")

354 if cmd_lt[0] == "list":

355 for i, point in enumerate(self.targetpoint_lt):

356 print(i, "\b.\t", "X=%.2f, Y=%.2f, Z=%.2f"%point)

357 elif cmd_lt[0] == "clean":

358 self.targetpoint_lt = list()

359 elif cmd_lt[0] == "keep":

360 if not len(cmd_lt) == 2:

361 print("usage: 'keep <Target index>")

362 else:

363 try:

364 target_index = int(cmd_lt[1])

365 self.targetpoint_lt = self.targetpoint_lt[-target_index:]

366 except ValueError as error:

367 rospy.logerr("Invalid target index\n%s"%error)

368 elif cmd_lt[0] == "goref":

369 if not len(cmd_lt) == 2:

370 print("usage: 'goref <Target index>")

371 else:

372 try:

373 target_index = int(cmd_lt[1])

374 # Assume intend to fix the point to the ref

375 Pr = tuple2ndarray(self.targetpoint_lt[target_index])

376 Pk = self.task_robot_move_to_ref(Pr)

377 print(Pk[:3,0])

70

378 t = Pk[:3,0]

379 self.end_eff_transform = compose_affine(np.eye(3), t)

380 self.publish_single(self.end_eff_transform)

381 except ValueError as error:

382 rospy.logerr("Invalid target index\n%s"%error)

383 elif cmd_lt[0] == "calcref":

384 if not len(cmd_lt) == 2:

385 print("usage: 'calcref <Target index>")

386 else:

387 try:

388 target_index = int(cmd_lt[1])

389 Ps = tuple2ndarray(self.targetpoint_lt[target_index])

390 Pr = convert_point(Ps, inverse_affine(self.ref2tracker))

391 point = ndarray2tuple(Pr)

392 self.targetpoint_lt.append(point)

393 except ValueError as error:

394 rospy.logerr("Invalid target index\n%s"%error)

395 # ### WIP

396 elif cmd_lt[0] == "calib_patient":

397 self.calibrate_patient(100, n_point=36)

398 elif cmd_lt[0] == "send_calib":

399 self.publish_calib()

400 elif cmd_lt[0] == "collect_points":

401 if not len(cmd_lt) == 3:

402 print("usage: 'collect_points <# of points> <# of samples>")

403 else:

404 self.collect_points(int(cmd_lt[1]), int(cmd_lt[2]))

405 elif cmd_lt[0] == "debug":

406 """

407 """

408 elif cmd_lt[0] == "exit":

409 rospy.signal_shutdown("doit")

410 break

411 elif cmd_lt[0] == "":

412 pass

413 else:

414 print("Unknown command")

415

416

417 if __name__ == "__main__":

418 navi = Surgical_Navigation()

419 navi.run_thread()

420 navi.command_interface()

71

quaternion.py

1 #!/usr/bin/env python

2 ###

3 #The ROS module for Surgical navigation #

4 #calculations #

5 ###

6 #Author: Tugrul Uslu #

7 #Email: tugrul.uslu@ikc.edu.tr #

8 # Izmir Katip Celebi University #

9 # Mechanical Engineering #

10 ###

11 """

12 Performing rotations with quaternions;

13 P' = q * P * conj(q)

14 P is a vector represented with (x, y, z, k) where k = 0.

15 Let q represent a a rotation along axis (x,y,z) with a rotation

16 angle of a, then;

17 q = cos(a/2) + i (x*sin(a/2)) + j(y*sin(a/2)) + k(z*sin(a/2))

18

19 Combining quaternions rotations;

20 let, q1 is the first rotation, q2 is second rotation,

21 in absolute frame of reference; q2*q1

22 in rotating objects frame of reference; q1*q2

23

24 Conjugate of a quaternion;

25 q = ix + jy + kz + w, then;

26 conj(q) = - ix - jy - kz + w

27 """

28

29 from __future__ import division, absolute_import, print_function, unicode_literals

30

31 import numpy as np

32

33

34 class Quat(object):

35 """

36 """

37

38 def __init__(self, param):

39 """

40 param; iterable, (a, b, c, d)

41 where q = a + i b + j c + k d

42 """

43 self.param = param

44

45 @property

46 def conj(self):

47 """

48 """

49 a, b, c, d = self.param

50 param_conj = (a, -b, -c, -d)

51 return Quat(param_conj)

52

53 def __mul__(self, other):

54 a, b, c, d = self.param

55 e, f, g, h = other.param

72

56 a_new = a*e - b*f - c*g - d*h

57 b_new = b*e + a*f + c*h - d*g

58 c_new = a*g - b*h + c*e + d*f

59 d_new = a*h + b*g - c*f + d*e

60 param_new = (a_new, b_new, c_new, d_new)

61 return Quat(param_new)

62

63 def __iter__(self):

64 return self.param

65

66

67 def quat2mat(quat):

68 """

69 quat; (w, x, y, z) iterable

70 returns;

71 mat; size 3x3 2d numpy array

72 """

73 w, x, y, z = quat

74 mat = np.array(

75 [[1 - 2*(y**2 + z**2), 2*(x*y - w*z), 2*(w*y + x*z)],

76 [2*(x*y + w*z), 1 - 2*(x**2 + z**2), 2*(y*z - w*x)],

77 [2*(x*z - w*y), 2*(w*x + y*z), 1 - 2*(x**2 + y**2)]]

78)

79 return mat

80

81

82 def mat2quat(mat):

83 """

84 mat; size 3x3 2d numpy array

85 returns;

86 quat; size 4 1d numpy array

87 references;

88

http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/↪→

89 """

90 tr = np.trace(mat)

91 if (tr > 0):

92 S = np.sqrt(tr+1.0) * 2 # S=4*a

93 a = 0.25 * S

94 b = (mat[2, 1] - mat[1, 2]) / S

95 c = (mat[0, 2] - mat[2, 0]) / S

96 d = (mat[1, 0] - mat[0, 1]) / S

97 elif ((mat[0, 0] > mat[1, 1]) & (mat[0, 0] > mat[2, 2])):

98 S = np.sqrt(1.0 + mat[0, 0] - mat[1, 1] - mat[2, 2]) * 2 # S=4*b

99 a = (mat[2, 1] - mat[1, 2]) / S

100 b = 0.25 * S

101 c = (mat[0, 1] + mat[1, 0]) / S

102 d = (mat[0, 2] + mat[2, 0]) / S

103 elif (mat[1, 1] > mat[2, 2]):

104 S = np.sqrt(1.0 + mat[1, 1] - mat[0, 0] - mat[2, 2]) * 2 # S=4*c

105 a = (mat[0, 2] - mat[2, 0]) / S

106 b = (mat[0, 1] + mat[1, 0]) / S

107 c = 0.25 * S

108 d = (mat[1, 2] + mat[2, 1]) / S

109 else:

110 S = np.sqrt(1.0 + mat[2, 2] - mat[0, 0] - mat[1, 1]) * 2 # S=4*d

111 a = (mat[1, 0] - mat[0, 1]) / S

73

112 b = (mat[0, 2] + mat[2, 0]) / S

113 c = (mat[1, 2] + mat[2, 1]) / S

114 d = 0.25 * S

115 return np.array([a, b, c, d])

74

euler.py

1 #!/usr/bin/env python

2 ###

3 #The ROS module for Surgical navigation #

4 #calculations #

5 ###

6 #Author: Tugrul Uslu #

7 #Email: tugrul.uslu@ikc.edu.tr #

8 # Izmir Katip Celebi University #

9 # Mechanical Engineering #

10 ###

11

12 from __future__ import division, absolute_import, print_function, unicode_literals

13

14 import numpy as np

15

16

17 def decompose_affine(A):

18 """

19 assumes orthogonolity

20 A; size 4x4 2d numpy array

21 returns;

22 R; size 3x3 2d numpy array

23 t; size 3 1d numpy array

24 """

25 assert A.shape == (4, 4)

26 R = A[:3, :3]

27 t = A[:3, 3]

28 assert is_orthogonal(R)

29 return R, t

30

31

32 def compose_affine(R, t):

33 """

34 R; size 3x3 2d numpy array

35 t; size 3 1d numpy array

36 returns;

37 A; size 4x4 2d numpy array

38 """

39 assert R.shape == (3, 3)

40 assert t.shape == (3,)

41 A = np.eye(4)

42 A[:3, :3] = R

43 A[:3, 3] = t

44 return A

45

46

47 def inverse_affine(A):

48 """

49 """

50 assert A.shape == (4, 4)

51 R, t = decompose_affine(A)

52 t_ = t[np.newaxis].T

53 t_ = -np.matmul(R.T, t_)

54 t_ = np.reshape(t_, (3,))

55 A_inv = compose_affine(R.T, t_)

75

56 return A_inv

57

58

59 def is_orthogonal(mat, tolerance=1e-6):

60 """

61 mat; 2d numpy array

62 """

63 res = np.matmul(mat, mat.T)

64 should_be_zero = np.linalg.norm(np.eye(res.shape[0]) - res)

65 result = should_be_zero <= tolerance

66 if not result:

67 print("Orthogonality error: %f is higher than tolerance"%should_be_zero)

68 return result

69

70

71 def euler2mat(xyz_lt, order="zyx"):

72 """

73 xyz_lt; list of angles in rads

74 order; order of matmul, "xyz" or "zyx"

75 """

76 x, y, z = xyz_lt

77 Rx = np.array(

78 [[1, 0, 0],

79 [0, np.cos(x), -np.sin(x)],

80 [0, np.sin(x), np.cos(x)]]

81)

82 Ry = np.array(

83 [[np.cos(y), 0, np.sin(y)],

84 [0, 1, 0],

85 [-np.sin(y), 0, np.cos(y)]]

86)

87 Rz = np.array(

88 [[np.cos(z), -np.sin(z), 0],

89 [np.sin(z), np.cos(z), 0],

90 [0, 0, 1]]

91)

92 if order == "xyz":

93 R = np.matmul(Ry, Rz)

94 R = np.matmul(Rx, R)

95 elif order == "zyx":

96 R = np.matmul(Ry, Rx)

97 R = np.matmul(Rz, R)

98 else:

99 raise ValueError

100 return R

101

102

103 def mat2euler(R, order="zyx"):

104 """

105 references;

106 https://www.learnopencv.com/rotation-matrix-to-euler-angles/

107 transforms3d

108 """

109

110 if order == "xyz":

111 i, j, k = 2, 1, 0

112 parity = True

76

113 elif order == "zyx":

114 i, j, k = 0, 1, 2

115 parity = False

116 else:

117 raise ValueError

118

119 assert is_orthogonal(R)

120 sy = np.sqrt(R[i, i]**2 + R[j, i]**2)

121 is_singular = sy < 1e-6

122

123 if not is_singular:

124 teta_x = np.arctan2(R[k, j], R[k, k])

125 teta_y = np.arctan2(-R[k, i], sy)

126 teta_z = np.arctan2(R[j, i], R[i, i])

127 else:

128 teta_x = np.arctan2(-R[j, k], R[j, j])

129 teta_y = np.arctan2(-R[k, i], sy)

130 teta_z = 0

131

132 if parity:

133 teta_x, teta_y, teta_z = -teta_z, -teta_y, -teta_x

134

135 return (teta_x, teta_y, teta_z)

77

test registration.ipynb

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # # Testing Registration

5

6 # In[]:

7

8

9 from os.path import join, expanduser

10 from math import sqrt

11

12 import numpy as np

13 import matplotlib

14 import matplotlib.pyplot as plt

15 from mpl_toolkits.mplot3d import axes3d, art3d

16 import matplotlib.animation as animation

17

18 #from registration import point_register_basic, point_register_weighted,

apply_transformation, calc_errors↪→

19 from point_register import point_register, calc_errors, apply_transformation

20 import data_pairs

21

22 font = {'family' : 'DejaVu Sans',

23 'size' : 12}

24

25 matplotlib.rc("font", **font)

26

27 def set_equal_aspect(ax, data):

28 # Create cubic bounding box to simulate equal aspect ratio

29 max_range = np.array([data[0,:].max()-data[0,:].min(),

data[1,:].max()-data[1,:].min(), data[2,:].max()-data[2,:].min()]).max()↪→

30 Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() +

0.5*(data[0,:].max()+data[0,:].min())↪→

31 Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() +

0.5*(data[1,:].max()+data[1,:].min())↪→

32 Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() +

0.5*(data[2,:].max()+data[2,:].min())↪→

33 for xb, yb, zb in zip(Xb, Yb, Zb):

34 ax.plot([xb], [yb], [zb], 'w')

35

36

37 # In[]:

38

39

40 data_pairs.print_pair_indexes(0,10)

41

42

43 # In[]:

44

45

46 # select pair

47 X_path, Y_path = data_pairs.data_path_pairs[2]

48

49 # Load points from cvs files

50 X = np.loadtxt(X_path)[:3,:]

78

51 Y = np.loadtxt(Y_path)[:3,:]

52

53

54 # In[]:

55

56

57 # Remove broken points

58 points2remove = []

59 X = np.delete(X, points2remove, axis=1)

60 Y = np.delete(Y, points2remove, axis=1)

61

62

63 # ## Performing registration with all point pairs

64

65 # In[]:

66

67

68 # Point registration method to be used

69

70 R, t = point_register(X, Y)

71

72 #print(f"Registration R = {R}")

73

74 # Transform the points

75 Xt = apply_transformation(X, R, t)

76

77 # Save Transformation matrix

78 T = np.eye(4)

79 T[:3,:3] = R

80 T[:3,-1] = t

81 home_path = expanduser("˜")

82 np.savetxt(join(home_path, "calib_trans.csv"), T)

83

84 # Calculate Errors

85 rms_all, fre_mat_all = calc_errors(X, Y, R, t)

86

87 print(f"RMS = {rms_all}")

88 print(f"Max FRE = {fre_mat_all.max()}")

89 print(f"Min FRE = {fre_mat_all.min()}")

90

91

92 # In[]:

93

94

95 # Plot the points

96 fig = plt.figure(figsize=[6,6])

97 ax = fig.add_subplot(111, projection="3d")

98 ax.set_xlabel("x axis")

99 ax.set_ylabel("y axis")

100 ax.set_zlabel("z axis")

101

102 #ax.scatter(X[0],X[1],X[2], c="b")

103 ax.scatter(Y[0],Y[1],Y[2], c="g")

104 ax.scatter(Xt[0],Xt[1],Xt[2], s=10, c="r")

105

106 set_equal_aspect(ax, Y)

107 plt.show()

79

108

109

110 # In[]:

111

112

113 # Plot fre heatmap

114 fig = plt.figure(figsize=[7.5,6])

115 ax = fig.add_subplot(111, projection="3d")

116 ax.set_xlabel("x axis")

117 ax.set_ylabel("y axis")

118 ax.set_zlabel("z axis")

119

120 pos = ax.scatter(Y[0],Y[1],Y[2], c=fre_mat_all.flatten(), s=75/4, alpha=0.6)#,

cmap="cool")↪→

121

122 set_equal_aspect(ax, Y)

123

124 # Create colorbar

125 ticks = np.linspace(fre_mat_all.min(), fre_mat_all.max(), 10)

126 plt.colorbar(pos, ticks=ticks)

127 plt.show()

128

129

130 # ## Registration with selected N point pairs

131

132 # In[]:

133

134

135 # Select N

136 N = 35

137

138 # Sort point indexes by FRE

139 best_sorted = np.argsort(fre_mat_all)

140 #print(best_sorted)

141

142 ### Sample registration points selections ###

143 # Take best N points

144 regist_indexes = best_sorted[:N]

145

146 # Take worst N points

147 #regist_indexes = best_sorted[-N:]

148

149 # Take first N points

150 #regist_indexes = np.array(range(4))

151

152 # Select registration points

153 #regist_indexes = np.array([27, 6, 7, 32, 11, 35, 3, 13, 0, 33, 22, 4, 1, 17,

8, 28, 34, 19])↪→

154

155 # Select registration points randomly

156 #indexes = np.arange(X.shape[1])

157 #np.random.shuffle(indexes)

158 #regist_indexes = indexes[:N]

159 #del indexes

160 ###

161

162 # Get target points that are not used in registation

80

163 target_indexes = np.delete(np.array([i for i in range(X.shape[1])]), regist_indexes)

164

165 # Perform registration

166 R, t = point_register(X[:,regist_indexes], Y[:,regist_indexes])

167

168 # Transform the points

169 Xt = apply_transformation(X, R, t)

170

171 # Save Transformation matrix

172 T = np.eye(4)

173 T[:3,:3] = R

174 T[:3,-1] = t

175 #np.savetxt("mTk.csv", T)

176

177 # Calculate Errors

178 rms_all, _ = calc_errors(X, Y, R, t)

179 rms, fre_mat = calc_errors(X[:,regist_indexes], Y[:,regist_indexes], R, t)

180

181 print(f"Registration points n = {regist_indexes.shape[0]}")

182 print(f"Registration RMS = {rms}")

183 print(f"RMS for all points = {rms_all}")

184 print(f"Max FRE = {fre_mat.max()}")

185 print(f"Min FRE = {fre_mat.min()}")

186

187

188 # In[]:

189

190

191 # Calculate TRE

192 rms_tre, tre_mat = calc_errors(X[:,target_indexes], Y[:,target_indexes], R, t)

193

194 print(f"Target points n = {target_indexes.shape[0]}")

195 print(f"TRE RMS = {rms_tre}")

196 print(f"TRE mean = {np.mean(tre_mat)}")

197 print(f"Max TRE = {tre_mat.max()}")

198 print(f"Min TRE = {tre_mat.min()}")

199

200

201 # In[]:

202

203

204 # Plot the points

205 fig = plt.figure(figsize=[6,6])

206 ax = fig.add_subplot(111, projection="3d")

207 ax.set_xlabel("x axis")

208 ax.set_ylabel("y axis")

209 ax.set_zlabel("z axis")

210

211 #ax.scatter(X[0],X[1],X[2], c="b")

212 ax.scatter(Y[0],Y[1],Y[2], c="g")

213 ax.scatter(Xt[0],Xt[1],Xt[2], s=10, c="r")

214

215 set_equal_aspect(ax, Y)

216 plt.show()

217

218

219 # In[]:

81

220

221

222 # Plot FRE heatmap

223 fig = plt.figure(figsize=[7.5,6])

224 ax = fig.add_subplot(111, projection="3d")

225 ax.set_xlabel("x axis")

226 ax.set_ylabel("y axis")

227 ax.set_zlabel("z axis")

228

229 pos = ax.scatter(Y[0,regist_indexes],Y[1,regist_indexes],Y[2,regist_indexes],

230 c=fre_mat.flatten(), s=75, alpha=0.6, cmap="cool")

231

232 set_equal_aspect(ax, Y)

233

234 # Create colorbar

235 ticks = np.linspace(fre_mat.min(), fre_mat.max(), 10)

236 plt.colorbar(pos, ticks=ticks)

237 plt.show()

238

239

240 # In[]:

241

242

243 # Plot TRE heatmap

244 fig = plt.figure(figsize=[7.5,6])

245 ax = fig.add_subplot(111, projection="3d")

246 ax.set_xlabel("x axis")

247 ax.set_ylabel("y axis")

248 ax.set_zlabel("z axis")

249

250 pos = ax.scatter(Y[0,target_indexes],Y[1,target_indexes],Y[2,target_indexes],

251 c=tre_mat.flatten(), s=75, alpha=0.6, cmap="cool")

252

253 set_equal_aspect(ax, Y)

254

255 # Create colorbar

256 ticks = np.linspace(tre_mat.min(), tre_mat.max(), 10)

257 plt.colorbar(pos, ticks=ticks)

258 plt.show()

259

260

261 # In[]:

262

263

264 # Plot ALL heatmap

265 fig = plt.figure(figsize=[7.5,6])

266 ax = fig.add_subplot(111, projection="3d")

267 ax.set_xlabel("x axis")

268 ax.set_ylabel("y axis")

269 ax.set_zlabel("z axis")

270

271 Y_all = np.hstack((Y[:,regist_indexes], Y[:,target_indexes]))

272 all_mat = np.hstack((fre_mat, tre_mat))

273

274 pos = ax.scatter(Y_all[0,:],Y_all[1,:],Y_all[2,:], c=all_mat.flatten(), s=75,

alpha=0.6, cmap="cool")↪→

275

82

276 set_equal_aspect(ax, Y)

277

278 # Create colorbar

279 ticks = np.linspace(all_mat.min(), all_mat.max(), 10)

280 plt.colorbar(pos, ticks=ticks)

281 plt.show()

83

point register.py

1 #!/usr/bin/env python3

2 ###

3 #Registration library #

4 ###

5 #Author: Tugrul Uslu #

6 #Email: tugrul.uslu@ikc.edu.tr #

7 # Izmir Katip Celebi University #

8 # Mechanical Engineering #

9 ###

10

11 import numpy as np

12

13

14 def apply_transformation(X, R, t):

15 """

16 X: ndarray, shape (3,n)

17 Points in reference space

18 R: ndarray, shape (3,3)

19 Rotation matrix

20 t: ndarray, shape(3,)

21 Translation Vector

22 Returns:

23 Xt: ndarray, shape (3,n)

24 Points in transformed reference space

25 """

26 assert X.shape[0] == 3

27 Xt = R @ X

28 Xt = Xt + np.repeat(t[np.newaxis].T, X.shape[1], axis=1)

29 return Xt

30

31

32 def calc_errors(X, Y, R, t):

33 """

34 Calculate fiducial registration error

35 X: ndarray, shape: 3 rows, i columns

36 Points in reference space

37 Y: ndarray, shape: 3 rows, i columns

38 Points in target space

39 R: ndarray, shape (3,3)

40 Rotation matrix

41 t: ndarray, shape (3,)

42 Translation Vector

43 Returns;

44 rms: float

45 Mean fiducial registration error

46 fre_mat: ndarray, shape: shape (n,)

47 fiducial registration error at each point

48 """

49 assert X.shape == Y.shape

50 # Number of points

51 N = X.shape[1]

52 # Apply transformation

53 Xt = apply_transformation(X, R, t)

54 # Find distance between points (FRE for each point)

55 fre_mat = np.linalg.norm(Xt - Y, axis=0)

84

56 # RMS error

57 rms = np.sqrt(np.mean(fre_mat**2))

58 return rms, fre_mat

59

60

61 def point_register(X, Y):

62 """

63 X: ndarray, shape (3,n)

64 Y: ndarray, shape (3,n)

65 returns;

66 R: ndarray, shape (3,3)

67 t: ndarray, shape (3,)

68 """

69 assert (X.shape == Y.shape) and (X.shape[0] == 3)

70 # Demean point sets

71 Xc = X - np.repeat(np.mean(X, axis=1, keepdims=True), X.shape[1], axis=1)

72 Yc = Y - np.repeat(np.mean(Y, axis=1, keepdims=True), Y.shape[1], axis=1)

73 # Calculate SVD of covariance

74 U, _, Vh = np.linalg.svd(Xc @ Yc.T)

75 # Calculate R rotation and t translation

76 R = Vh.T @ np.diag([1, 1, np.linalg.det(Vh.T @ U)]) @ U.T

77 t = np.mean(Y, axis=1) - R @ np.mean(X, axis=1)

78 return R, t

85

APPENDIX B

kuka ws scan node.py

1 #!/usr/bin/env python

2 ###

3 #Author: Tugrul Uslu #

4 #Email: tugrul.uslu@ikcu.edu.tr #

5 # Izmir Katip Celebi University #

6 # Mechanical Engineering #

7 ###

8

9 from __future__ import division, absolute_import, print_function, unicode_literals

10 import sys

11 import os.path

12 import time

13 from threading import Thread

14

15 import numpy as np

16 import rospy # pylint: disable=E0401

17 from std_msgs.msg import Float64MultiArray # pylint: disable=E0401

18 from sensor_msgs.msg import JointState # pylint: disable=E0401

19

20 from NatNetClient import NatNetClient

21

22

23 if sys.version_info.major < 3:

24 input = raw_input

25 range = xrange

26

27 ### CONSTANTS ###

28 POINTS_ARRAY_NAME = "points_array_14092020-0802.csv"

29 MOTIVE_POINTS_NAME = "motive_points_%s.csv"%(time.strftime("%d%m%Y-%H%M",

time.gmtime()))↪→

30

31 SELF_IP = "172.31.1.150"

32 MULTICAST_IP = "239.255.42.99"

33

34

35 class NatNetInter(object): # TODO natnetinter can be a ros pkg in itself

36 """

37 """

38

39 def __init__(self, server_ip, mcast_grup):

40 """

41 """

42 self.__natnetclient = NatNetClient(serverIPAddress=server_ip,

43 multicastAddress=mcast_grup,

44 natNetStreamVersion=(2, 7, 0, 0))

45 self.status = dict()

46

47 def setup_point_collector(self, sample_n=100, filename=MOTIVE_POINTS_NAME):

48 """

49 """

50 if os.path.isfile(os.path.join(os.path.expanduser("˜"), filename)):

86

51 # Reconstruct point_lt var

52 motive_points = np.loadtxt(filename)

53 self.point_lt = [motive_points[:, i]

54 for i in range(motive_points.shape[1])]

55 else:

56 self.point_lt = list()

57 self.__natnetclient.newFrameListener = self.__point_collector

58 self.file_path = os.path.join(os.path.expanduser("˜"), filename)

59 self.sample_n = sample_n

60 self.counter = sample_n + 1 # set counter 0 to start collecting

61 self.point_sample_container = np.zeros((3, sample_n))

62 # set initial status for point collecting

63 self.status["is_point_collector_setup"] = True

64 self.status["is_collecting"] = False

65 self.status["is_waiting"] = False

66 self.status["progress_to_next"] = False

67

68 def start_point_collector(self):

69 """

70 """

71 if self.status["is_collecting"]:

72 pass

73 else:

74 rospy.loginfo("Starting point collecting.")

75 try:

76 assert self.status["is_point_collector_setup"] == True

77 except KeyError:

78 print(

79 "To start collecting points, setup_point_collector method must be

called first")↪→

80 return

81 except AssertionError:

82 print("Point Collecting Disabled.")

83 return

84 self.status["is_collecting"] = True

85 self.counter = 0

86

87 def __point_collector(self, unlabeledMarkersCount, unlabeledMarkerPos):

88 """

89 """

90 #rospy.loginfo("unlabeledMarkersCount: %d"%unlabeledMarkersCount)

91 if self.status["is_collecting"]:

92 if (self.counter < self.sample_n) and (unlabeledMarkersCount != 1):

93 rospy.logwarn(

94 "Warning, unlabeled marker count is not one. Remove the

additional marker.")↪→

95 self.counter = 0

96 else:

97 pos = unlabeledMarkerPos[0]

98 if self.counter < self.sample_n:

99 self.point_sample_container[:, self.counter] = pos

100 self.counter += 1

101 elif self.counter == self.sample_n:

102 rospy.loginfo("Successfully collected points.")

103 point = np.mean(self.point_sample_container, axis=1)*1000

104 rospy.loginfo("Collected Point %.2f X, %.2f Y, %.2f Z" %

105 tuple(point))

87

106 self.point_lt.append(point)

107 np.savetxt(self.file_path, np.array(self.point_lt).T)

108 self.status["progress_to_next"] = True

109 self.counter += 1

110

111 def run(self):

112 """

113 """

114 self.__natnetclient.run()

115

116 def stop(self):

117 """

118 """

119 self.__natnetclient.stop()

120

121

122 class KukaWSScan(object):

123 """

124 For local rotation, order is C -> B -> A

125 For global rotation, order is A -> B -> C

126 """

127

128 def __init__(self):

129 """

130 """

131 # Initialize ROS

132 rospy.init_node("kuka_ws_scan_node")

133 # Create command publisher

134 self.command_pub = rospy.Publisher("position_trajectory_controller/command",

135 Float64MultiArray,

136 queue_size=10)

137 # Get target points from memory

138 try:

139 path = os.path.join(os.path.expanduser("˜"), POINTS_ARRAY_NAME)

140 self.points_array = np.loadtxt(path)

141 except IOError:

142 msg = "Cannot find points_array file. "

143 rospy.logerr(msg)

144 rospy.signal_shutdown(msg)

145 raise

146 # ###

147 # Initialize natnetclient

148 self.natnetinter = NatNetInter(SELF_IP, MULTICAST_IP)

149 self.natnetinter.setup_point_collector()

150 self.natnetinter.run()

151 # ###

152 # Call self.terminate on exit

153 rospy.on_shutdown(self.terminate)

154 # point index counter

155 self.point_index = len(self.natnetinter.point_lt)

156 if self.point_index == self.points_array.shape[1]:

157 msg = "There are no more points to collect.\nQuitting"

158 rospy.loginfo(msg)

159 rospy.signal_shutdown(msg)

160

161

162 def all_close(self, goal, actual, tolerance=0.001):

88

163 """

164 Convenience method for testing if a list of values are within a tolerance of

their counterparts in another list↪→

165 @param: goal A list of floats, a Pose or a PoseStamped

166 @param: actual A list of floats, a Pose or a PoseStamped

167 @param: tolerance A float

168 @returns: bool

169 """

170 allclose = True

171 for index in range(3):

172 if abs(actual[index] - goal[index]) > tolerance:

173 allclose = False

174 return allclose

175

176 def joint_states_callback(self, joint_states_msg):

177 """

178 """

179 joint_states = joint_states_msg.position

180 if self.point_index < self.points_array.shape[1] and

self.all_close(joint_states, self.points_array[:3, self.point_index]):↪→

181 #rospy.loginfo("Starting point collection.")

182 self.natnetinter.start_point_collector()

183

184 def run_listerner(self):

185 """

186 """

187 rospy.Subscriber("joint_states", JointState,

188 self.joint_states_callback)

189 rospy.spin()

190

191 def terminate(self):

192 """

193 """

194 self.natnetinter.stop()

195

196 def run(self):

197 """

198 """

199 listener_thread = Thread(target=self.run_listerner)

200 listener_thread.start()

201

202 rospy.sleep(5)

203

204 rate = rospy.Rate(20)

205 point_n = self.points_array.shape[1]

206 try:

207 while not rospy.is_shutdown():

208 if self.point_index == (point_n) and not

self.natnetinter.status["is_waiting"]:↪→

209 msg = "All points are completed"

210 rospy.loginfo(msg)

211 rospy.signal_shutdown(msg)

212 elif self.natnetinter.status["progress_to_next"] and self.point_index

<= (point_n-1):↪→

213 rospy.loginfo("Stepping.")

214 self.point_index += 1

215 self.natnetinter.status["progress_to_next"] = False

89

216 self.natnetinter.status["is_collecting"] = False

217 self.natnetinter.status["is_waiting"] = False

218 elif not self.natnetinter.status["is_waiting"]:

219 rospy.loginfo(

220 "====== Processing point number %d =======" %

self.point_index)↪→

221 point = self.points_array[:, self.point_index]

222 rospy.loginfo("Point %.2f X, %.2f Y, %.2f Z, %.2f A, %.2f B, %.2f

C" %↪→

223 tuple(point))

224 target = Float64MultiArray()

225 #target.data = (point[0], point[1], point[2],

226 # 0.0, -90.0, 180.0)

227 target.data = (point[0], point[1], point[2],

228 point[3], point[4], point[5])

229 self.command_pub.publish(target)

230 rospy.loginfo("send.")

231 self.natnetinter.status["is_waiting"] = True

232 else:

233 rate.sleep()

234 except rospy.ROSInterruptException:

235 rospy.signal_shutdown("Keyboard Interruption")

236

237 def debug(self):

238 rospy.sleep(1)

239 if not rospy.is_shutdown():

240 target = Float64MultiArray()

241 target.data = (600.0, 0.0, 900.0, 0.0, -90.0, 180.0)

242 self.command_pub.publish(target)

243 rospy.sleep(1)

244

245

246 if __name__ == "__main__":

247 kuka = KukaWSScan()

248 kuka.run()

90

APPENDIX C

find endeff length.ipynb

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # # Find Kuka's Effective End Effector Length

5

6 # In[]:

7

8

9 from os.path import join, expanduser

10 from math import sqrt

11

12 import numpy as np

13 import matplotlib

14 import matplotlib.pyplot as plt

15 from mpl_toolkits.mplot3d import axes3d, art3d

16 import matplotlib.animation as animation

17

18 from euler import decompose_affine, compose_affine, inverse_affine, euler2mat,

mat2euler↪→

19 from point_register import point_register, calc_errors, apply_transformation

20 import data_pairs

21

22 font = {'family' : 'DejaVu Sans',

23 'size' : 12}

24

25 matplotlib.rc("font", **font)

26

27 def set_equal_aspect(ax, data):

28 # Create cubic bounding box to simulate equal aspect ratio

29 max_range = np.array([data[0,:].max()-data[0,:].min(),

data[1,:].max()-data[1,:].min(), data[2,:].max()-data[2,:].min()]).max()↪→

30 Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() +

0.5*(data[0,:].max()+data[0,:].min())↪→

31 Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() +

0.5*(data[1,:].max()+data[1,:].min())↪→

32 Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() +

0.5*(data[2,:].max()+data[2,:].min())↪→

33 for xb, yb, zb in zip(Xb, Yb, Zb):

34 ax.plot([xb], [yb], [zb], 'w')

35

36

37 # In[]:

38

39

40 # select pair

41 home_path = expanduser("˜")

42 database_path = join(home_path, "Database")

43 X_path, Y_path = join(database_path, "points_array_14092020-0802.csv"),

join(database_path, "motive_points_14092020-0807.csv")↪→

44 #X_path, Y_path = join(database_path, "points_array_04092020-1150.csv"),

join(database_path, "motive_points_04092020-1158.csv")↪→

91

45 #X_path, Y_path = join(database_path, "points_array_03092020-1205.csv"),

join(database_path, "motive_points_03092020-1258.csv")↪→

46

47 # Load points from cvs files

48 X = np.loadtxt(X_path)[:3,:]

49 Y = np.loadtxt(Y_path)[:,:]

50 ABC = np.loadtxt(X_path)[3:,:]

51

52

53 # In[]:

54

55

56 # Remove broken points

57 points2remove = []

58 X = np.delete(X, points2remove, axis=1)

59 Y = np.delete(Y, points2remove, axis=1)

60 ABC = np.delete(ABC, points2remove, axis=1)

61

62

63 # In[]:

64

65

66 # Plot the points

67 fig = plt.figure(figsize=[6,12])

68 ax = fig.add_subplot(211, projection="3d")

69 ax.set_xlabel("x axis")

70 ax.set_ylabel("y axis")

71 ax.set_zlabel("z axis")

72 ax.scatter(Y[0],Y[1],Y[2], c="g")

73 set_equal_aspect(ax, Y)

74

75 ax = fig.add_subplot(212, projection="3d")

76 ax.set_xlabel("x axis")

77 ax.set_ylabel("y axis")

78 ax.set_zlabel("z axis")

79 ax.scatter(X[0],X[1],X[2], c="b")

80 set_equal_aspect(ax, X)

81

82 plt.show()

83

84

85 # In[]:

86

87

88 # Point registration method to be used

89

90 R, t = point_register(X, Y)

91

92 #print(f"Registration R = {R}")

93

94 # Transform the points

95 Xt = apply_transformation(X, R, t)

96

97 # Save Transformation matrix

98 T = np.eye(4)

99 T[:3,:3] = R

100 T[:3,-1] = t

92

101 np.savetxt("calib_trans.csv", T)

102

103 # Calculate Errors

104 rms_all, fre_mat_all = calc_errors(X, Y, R, t)

105

106 print(f"RMS = {rms_all}")

107 print(f"Max FRE = {fre_mat_all.max()}")

108 print(f"Min FRE = {fre_mat_all.min()}")

109

110

111 # In[]:

112

113

114 # Plot fre heatmap

115 fig = plt.figure(figsize=[7.5,6])

116 ax = fig.add_subplot(111, projection="3d")

117 ax.set_xlabel("x axis")

118 ax.set_ylabel("y axis")

119 ax.set_zlabel("z axis")

120

121 pos = ax.scatter(X[0],X[1],X[2], c=fre_mat_all.flatten(), s=75, alpha=0.6)#,

cmap="cool")↪→

122

123 set_equal_aspect(ax, X)

124

125 # Create colorbar

126 ticks = np.linspace(fre_mat_all.min(), fre_mat_all.max(), 10)

127 plt.colorbar(pos, ticks=ticks)

128 plt.show()

129

130

131 # In[]:

132

133

134 h_tool = 60

135 h_start = 50

136 h_end = 60

137 h_step = 0.01

138

139

140 # In[]:

141

142

143 h_array = np.arange(h_start, h_end, h_step) - h_tool

144 rms_array = np.zeros(h_array.shape[0])

145 for i,h in enumerate(h_array):

146 # Calculate rotations

147 Rs = np.array([euler2mat(np.deg2rad([c, b, a]), order="zyx") for a,b,c in ABC.T])

148 # Construct translation vector

149 t = np.array([0, 0, h])

150 # Apply transformations to the points

151 Xh = np.array([Rs[j,:,:] @ t + X[:,j] for j in range(Rs.shape[0])]).T

152 # Point registration method to be used

153 R, t = point_register(Xh, Y)

154 # Transform the points

155 Xt = apply_transformation(Xh, R, t)

156 # Calculate Errors

93

157 rms_all, _ = calc_errors(Xh, Y, R, t)

158 # Store RMS value

159 rms_array[i] = rms_all

160

161 print(h_array[rms_array.argmin()]+h_tool)

162 print(rms_array.min())

163

164

165 # In[]:

166

167

168 # Plot RMS per h

169 fig = plt.figure(figsize=[12,6])

170 ax = fig.add_subplot(111)

171 ax.plot(h_array+h_tool, rms_array)

172 ax.set_aspect(1)

173 ax.grid()

174 plt.show()

175

176

177 # In[]:

178

179

180 def fit_data(data_x, data_y, deg=3, num=100):

181 coeffs = np.polyfit(data_x, data_y, deg=deg)

182 print(f"""Polynomial coefficients = {coeffs}""")

183 def y_poly(coeffs,x):

184 y = 0

185 order = len(coeffs) - 1

186 for i ,coeff in enumerate(coeffs):

187 y += coeff*x**(order-i)

188 return y

189 data_x_fit = np.linspace(data_x.min(), data_x.max(), num=num)

190 data_y_fit = np.array([y_poly(coeffs,x) for x in data_x_fit])

191 data_fitted = np.vstack((data_x_fit, data_y_fit))

192 return coeffs, data_fitted

193

194

195 coeffs, data_fitted = fit_data(h_array+h_tool, rms_array, deg=6,

num=h_array.shape[0])↪→

196 dcoeffs = np.polyder(coeffs)

197 droots = np.roots(dcoeffs)

198 print(f"""Roots of Derivative = {droots}""")

199

200 # Plot RMS per h

201 fig = plt.figure(figsize=[12,6])

202 ax = fig.add_subplot(111)

203 ax.plot(h_array+h_tool, rms_array)

204 ax.plot(data_fitted[0], data_fitted[1])

205 ax.set_aspect(1)

206 ax.grid()

207 plt.show()

208

209

210 # In[]:

211

212

94

213 # Manually select h value from the roots

214 # Effective tool length is;

215 h_ = 56.15622603

216 h = h_ - h_tool

217

218 # Calculate rotations

219 Rs = np.array([euler2mat(np.deg2rad([c, b, a]), order="zyx") for a,b,c in ABC.T])

220 # Construct translation vector

221 t = np.array([0, 0, h])

222 # Apply transformations to the points

223 Xh = np.array([Rs[j,:,:] @ t + X[:,j] for j in range(Rs.shape[0])]).T

224 # Point registration method to be used

225 R, t = point_register(Xh, Y)

226 # Transform the points

227 Xt = apply_transformation(Xh, R, t)

228 # Calculate Errors

229 rms_all, fre_mat_all = calc_errors(Xh, Y, R, t)

230

231 # Save Environment Calibration

232 T = np.eye(4)

233 T[:3,:3] = R

234 T[:3,-1] = t

235 T = inverse_affine(T)

236 np.savetxt(join(home_path, "environment_calib_trans.csv"), T)

237

238 print(f"RMS = {rms_all}")

239 print(f"Max FRE = {fre_mat_all.max()}")

240 print(f"Min FRE = {fre_mat_all.min()}")

241

242

243 # In[]:

244

245

246 # Plot the points

247 fig = plt.figure(figsize=[6,6])

248 ax = fig.add_subplot(111, projection="3d")

249 ax.set_xlabel("x axis")

250 ax.set_ylabel("y axis")

251 ax.set_zlabel("z axis")

252

253 #ax.scatter(X[0],X[1],X[2], c="b")

254 ax.scatter(Y[0],Y[1],Y[2], c="g")

255 ax.scatter(Xt[0],Xt[1],Xt[2], s=10, c="r")

256

257 set_equal_aspect(ax, Y)

258 plt.show()

259

260

261 # In[]:

262

263

264 # Plot fre heatmap

265 fig = plt.figure(figsize=[7.5,6])

266 ax = fig.add_subplot(111, projection="3d")

267 ax.set_xlabel("x axis")

268 ax.set_ylabel("y axis")

269 ax.set_zlabel("z axis")

95

270

271 pos = ax.scatter(X[0],X[1],X[2], c=fre_mat_all.flatten(), s=75, alpha=0.6)#,

cmap="cool")↪→

272

273 set_equal_aspect(ax, X)

274

275 # Create colorbar

276 ticks = np.linspace(fre_mat_all.min(), fre_mat_all.max(), 10)

277 plt.colorbar(pos, ticks=ticks)

278 plt.show()

279

280

281 # In[]:

96

APPENDIX D

slicer surnav node.py

1 #!/usr/bin/env python

2 ###

3 #The ROS module for surgical navigation #

4 #with 3d Slicer. #

5 ###

6 #Author: Tugrul Uslu #

7 #Email: tugrul.uslu@ikcu.edu.tr #

8 # Izmir Katip Celebi University #

9 # Mechanical Engineering #

10 ###

11

12 from __future__ import division, absolute_import, print_function, unicode_literals

13

14 import threading

15 import sys

16

17 import numpy as np

18 import rospy # pylint: disable=E0401

19 # from rospy.numpy_msg import numpy_msg # pylint: disable=E0401

20 from ros_igtl_bridge.msg import igtltransform, igtlpoint, igtlpointcloud # pylint:

disable=E0401↪→

21 from geometry_msgs.msg import Point, Transform # pylint: disable=E0401

22 from std_msgs.msg import Float64MultiArray # pylint: disable=E0401

23 from sensor_msgs.msg import JointState # pylint: disable=E0401

24

25 from quaternion import quat2mat, mat2quat

26 from euler import decompose_affine, compose_affine, inverse_affine, euler2mat,

mat2euler↪→

27

28 if sys.version_info.major < 3:

29 input = raw_input

30 range = xrange

31

32 ### CONSTANTS ###

33

34 # ROS Constants

35 NODE_NAME = "slicer_surnav_node"

36

37 # Transforms

38 REF_TO_TRACKER_NAME = "ReferenceToTracker"

39 STY_TO_TRACKER_NAME = "StylusToTracker"

40 REF_CALIB_TRANS_NAME = "RefCalib"

41 STY_CALIB_TRANS_NAME = "StyCalib"

42 CURRENT_POSE_NAME = "Current"

43 TARGET_TRANS_NAME = "Target"

44 REF_FINAL_POSE = "Reference"

45 STY_FINAL_POSE = "Stylus"

46

47 # Filenames

48 REF_CALIB_TRANS_FILE_NAME = "reference_calib_trans.csv"

49 STY_CALIB_TRANS_FILE_NAME = "stylus_calib_trans.csv"

97

50 ENV_CALIB_TRANS_FILE_NAME = "environment_calib_trans.csv"

51

52 ### UTILITIES ###

53

54

55 def tuple2ndarray(point):

56 """

57 """

58 P = np.ones((4, 1))

59 P[:3, 0] = point

60 return P

61

62

63 def ndarray2tuple(P):

64 """

65 """

66 point = tuple(P[:3, 0])

67 return point

68

69

70 def transform2mat_and_trans(transform):

71 """

72 """

73 t = np.array((transform.translation.x,

74 transform.translation.y,

75 transform.translation.z))

76 q = np.array((transform.rotation.w, transform.rotation.x,

77 transform.rotation.y, transform.rotation.z))

78 R = quat2mat(q)

79 return R, t

80

81

82 def affine2igtltransform(A, name):

83 """

84 """

85 R, t = decompose_affine(A)

86 q = mat2quat(R)

87 msg = igtltransform()

88 msg.name = name

89 msg.transform.translation.x, msg.transform.translation.y,

msg.transform.translation.z = t↪→

90 msg.transform.rotation.w, msg.transform.rotation.x, msg.transform.rotation.y,

msg.transform.rotation.z = q↪→

91 return msg

92

93

94 def load_calib():

95 """

96 """

97 to_load = [ENV_CALIB_TRANS_FILE_NAME,

98 REF_CALIB_TRANS_FILE_NAME,

99 STY_CALIB_TRANS_FILE_NAME]

100 loaded_lt = []

101 for filename in to_load:

102 try:

103 loaded_lt.append(np.loadtxt(filename))

104 except IOError as err:

98

105 loaded_lt.append(None)

106 rospy.logwarn("%s, None type placed instead." % err)

107 return loaded_lt

108

109

110 def run_in_thread(func):

111 def wrapper(*args):

112 thread = threading.Thread(target=func, args=args)

113 thread.start()

114 rospy.loginfo("Function %s started in another thread." % func.__name__)

115 return wrapper

116

117

118 ### FUNCTIONS ###

119

120

121 def terminate():

122 """

123 """

124 rospy.signal_shutdown("Shutting down.")

125

126

127 def init_ros():

128 """

129 Initialize ROS

130 """

131 rospy.init_node(NODE_NAME, anonymous=True)

132 rospy.on_shutdown(terminate) # exit gracefully

133

134

135 def convert_point(P, *transforms):

136 """

137 returns;

138 P; Converted point, ndarray shape 4,1

139 """

140 for transform in transforms:

141 P = np.matmul(transform, P)

142 return P

143

144

145 # @run_in_thread

146 def run_listeners(listener_data_lt):

147 """

148 listeners_lt: 2d list

149 [[msg_name, msg_type, calback_func], [...]]

150 """

151 try:

152 for listener in listener_data_lt:

153 rospy.Subscriber(*listener)

154 rospy.loginfo("Starting %s listener." % listener[0])

155 rospy.spin()

156 except KeyboardInterrupt:

157 return

158

159

160 def set_publishers(publisher_data_lt, queue_size=10):

161 """

99

162 publishers_lt: 2d list

163 [[msg_name, msg_type], [...]]

164 """

165 publishers_lt = []

166 for publisher in publisher_data_lt:

167 publishers_lt.append(rospy.Publisher(

168 *publisher, queue_size=queue_size))

169 rospy.loginfo("Created %s publisher." % publisher[0])

170 return publishers_lt

171

172

173 ### TASKS ####

174

175

176 def basic_navigation():

177 """

178 """

179 rospy.loginfo("Starting basic navigation task.")

180 # Load calib data

181 calib_lt = load_calib()

182 # Set publishers

183 publisher_data_lt = [["position_trajectory_controller/command",

Float64MultiArray],↪→

184 ["IGTL_POINTCLOUD_OUT", igtlpointcloud],

185 ["IGTL_TRANSFORM_OUT", igtltransform]]

186 command_pub, pointcloud_pub, transform_pub = set_publishers(

187 publisher_data_lt)

188

189 # ###

190 # Set transform holders

191 REFERENCE = 0

192 STYLUS = 1

193 transforms_lt = [np.eye(4), np.eye(4)]

194

195 # ###

196 # Set Callbacks

197 def transform_callback(data):

198 """

199 """

200 R, t = transform2mat_and_trans(data.transform)

201 A = compose_affine(R, t)

202 # Handle ref trans

203 if data.name == REF_TO_TRACKER_NAME:

204 try:

205 env_calib = calib_lt[0]

206 ref_calib = calib_lt[1]

207 temp = np.matmul(env_calib, A)

208 transforms_lt[REFERENCE] = np.matmul(temp, ref_calib)

209 except ValueError:

210 transforms_lt[REFERENCE] = A

211 reference_msg = affine2igtltransform(

212 transforms_lt[REFERENCE], REF_FINAL_POSE)

213 transform_pub.publish(reference_msg)

214 # ###

215 # Handle sty trans

216 elif data.name == STY_TO_TRACKER_NAME:

217 try:

100

218 env_calib = calib_lt[0]

219 sty_calib = calib_lt[2]

220 temp = np.matmul(env_calib, A)

221 transforms_lt[STYLUS] = np.matmul(temp, sty_calib)

222 except ValueError:

223 transforms_lt[STYLUS] = A

224 stylus_msg = affine2igtltransform(

225 transforms_lt[STYLUS], STY_FINAL_POSE)

226 transform_pub.publish(stylus_msg)

227 # ###

228 # Handle target trans

229 elif data.name == TARGET_TRANS_NAME:

230 target = np.matmul(transforms_lt[REFERENCE], A)

231 R, t = decompose_affine(target)

232 c, b, a = np.rad2deg(mat2euler(R, order="zyx"))

233 target_msg = Float64MultiArray()

234 target_msg.data = (t[0], t[1], t[2], a, b, c)

235 command_pub.publish(target_msg)

236 rospy.loginfo(

237 "Var send.\n%.2f X, %.2f Y, %.2f Z, %.2f A, %.2f B, %.2f C" %

target_msg.data)↪→

238 # ###

239 # Handle ref calib trans

240 elif data.name == REF_CALIB_TRANS_NAME:

241 # Save the transform for later use and hold it

242 ref_calib = A

243 np.savetxt(REF_CALIB_TRANS_FILE_NAME, ref_calib)

244 calib_lt[1] = ref_calib

245 # Inform user

246 rospy.loginfo(REF_CALIB_TRANS_NAME+" is saved.")

247 # ###

248 # Handle ref calib trans

249 elif data.name == STY_CALIB_TRANS_NAME:

250 # Save the transform for later use and hold it

251 sty_calib = A

252 np.savetxt(STY_CALIB_TRANS_FILE_NAME, sty_calib)

253 calib_lt[2] = sty_calib

254 # Inform user

255 rospy.loginfo(STY_CALIB_TRANS_NAME+" is saved.")

256 # ###

257 # Handle unknown

258 else:

259 rospy.logwarn(

260 "Unexpected transformation received.\nThis warning might be caused by

wrong naming of transformations.")↪→

261

262 def joint_states_callback(data):

263 """

264 """

265 joint_states = data.position

266 a, b, c = joint_states[3:]

267 R = euler2mat(np.deg2rad([c, b, a]), order="zyx")

268 t = np.array(joint_states[:3])

269 A = compose_affine(R, t)

270 current_pose_msg = affine2igtltransform(A, CURRENT_POSE_NAME)

271 transform_pub.publish(current_pose_msg)

272

101

273 # ###

274 # Start listeners

275 listener_data_lt = [["IGTL_TRANSFORM_IN", igtltransform, transform_callback],

276 ["joint_states", JointState, joint_states_callback]]

277 run_listeners(listener_data_lt)

278

279

280 if __name__ == "__main__":

281 init_ros()

282 basic_navigation()

102

CURRICULUM VITAE

Name and Surname: Tuğrul USLU

Place and Date of Birth: MANİSA 04.12.1995

Email: tugruluslu5483@gmail.com

ORCID: 0000-0002-2154-9268

Conference Papers:

USLU T, ÇETİN L, and GEZGIN E. Preliminary Study of a Surgical Navigation with

Point Based Registration Method. 3. International Conference on Medical Devices

2020

103

