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EVALUATING STEADY-STATE VISUALLY-EVOKED 

POTENTIALS USING ENSEMBLE LEARNING 

METHODS 

ABSTRACT 

Steady-state visual evoked potentials (SSVEPs) have been designated to be 

appropriate and useful for many areas in clinical neuroscience, cognitive, and in 

engineering. SSVEPs have become popular recently, due to their advantages such as 

high bit rate, simple system structure, and short training time, etc. To design SSVEP 

based BCI system, signal processing methods appropriate to the signal structure 

should be applied. One of the most appropriate signal processing methods of these 

non-stationary signals is the Wavelet Transform. After literature searched, we 

noticed that there was no study on the mother wavelet type selection by applying 

Discrete Wavelet Transform of SSVEP signals.  

SSVEP signal were recorded at seven different stimulus frequencies (6 – 6.5 – 7 – 

7.5 – 8.2 – 9.3 – 10 Hz). A total of 115 features were extracted: time-domain, 

frequency-domain and time-frequency domain. These features were classified by a 

total of 25 different classification processes. Classification evaluation was presented 

with the 5-fold cross-validation method and accuracy values obtained from the 

confusion matrix. 

According to the results, (I) the most successful wavelet function was Haar wavelet, 

and (II) the most successful classifier was Ensemble Learning classifier.  (III) Instead 

of the energy, entropy, and variance features were used alone, the feature vector, 

which was a feature set, gave better results. (IV) As a result of the feature selection 

made with the one-way ANOVA test, it reduces the classification accuracy. (V) By 

conducting detailed research on stimulation frequencies, the highest performances 

were obtained in the frequency pairs with "6-10", "6.5-10", "7-10", and "7.5-10" Hz. 



DURAĞAN HAL GÖRSEL UYARILMIŞ 

POTANSİYELLERİN TOPLULUK ÖĞRENMESİ 

YÖNTEMLERİYLE DEĞERLENDİRİLMESİ 

ÖZET 

Durağan Durum Görsel Uyarılmış Potansiyeller (DDGUP), klinik sinirbilim, bilişsel 

ve mühendislikteki birçok alan için uygun ve yararlı olarak belirlenmiştir. DDGUP 

yüksek bilgi aktarım hızı, basit sistem yapısı ve kısa eğitim süresi gibi avantajları 

nedeniyle son zamanlarda popüler hale gelmiştir. DDGUP tabanlı BBA sisteminin 

tasarımı için sinyal yapısına uygun sinyal işleme yöntemleri uygulanmalıdır. Bu sabit 

olmayan sinyallerin en uygun sinyal işleme yöntemlerinden biri Dalgacık 

Dönüşümüdür. Literatür araştırmasından sonra, DDGUP sinyallerine Ayrık Dalgacık 

Dönüşümü uygulanarak, ana dalgacık tipi seçimi üzerinde bir çalışma olmadığını 

tespit edildi.  

DDGUP sinyalleri yedi farklı uyaran frekansında (6 – 6,5 - 7 – 7,5 – 8,2 – 9,3 – 10 

Hz) kaydedilmiştir. Zaman alanı, frekans alanı ve zaman-frekans alanı olmak üzere 

toplamda 115 öznitelik çıkarılmıştır. Bu öznitelikler, yedi temel makine öğrenme 

algoritmasının alt parametreleri nedeniyle toplam 25 farklı sınıflandırma sürecine 

göre sınıflandırılmıştır. Sınıflandırma değerlendirmesi, 5-kat çapraz validasyon 

yöntemi ve hata matrisinden elde edilen doğruluk değerleri ile sunulmuştur.  

Elde edilen sonuçlara göre, (I) en başarılı dalgacık fonksiyonu Haar dalgacığı olarak 

ve (II) en başarılı sınıflandırıcı Topluluk Öğrenimi sınıflandırıcısı olarak elde 

edilmiştir. (III) Tek başına kullanılan enerji, entropi ve varyans öznitelikleri yerine, 

bir öznitelik kümesi olan öznitelik vektörü daha iyi sonuçlar vermiştir. (IV) Tek 

yönlü ANOVA testi ile yapılan öznitelik seçimi sonucunda, sınıflandırma 

doğruluğunu azalttığı görülmüştür. (V) Stimülasyon frekansları hakkında ayrıntılı 

araştırmalar yapıldığında, en yüksek performanslar "6-10", "6,5-10", "7-10" ve "7,5-

10" Hz frekans çiftlerinde elde edilmiştir. 



1. INTRODUCTION

The concept of communication is an essential focus for different fields. Such as 

linguistics, ethology, cell biology, computer science, biomedical engineering, genetic 

engineering, sociology, anthropology, philosophy, semiotics, and literary theory, and 

each uses the term uniquely. The communication, another definition of information 

transfer [1], can be realized in different ways. The connection has been used in many 

ways and so many contexts that it means almost everything for all living things. So 

what is the communication that has a great place, and importance in our lives, and 

has been developing for centuries? The connection can be expressed as the transfer 

of emotions, thoughts, and information from one place to another [1]. Figure 1 shows 

the essential components of communication. 

Figure 1.1 Fundamental components of communications. 

These components can be briefly described as follows [2]: 

Sender (Source): The sender is the subject who creates the message and transmits it 

to the other party through a channel. 

Receiver (Destination): The subject or group to whom the message is intended to be 

delivered is the recipient component in communication. 
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Message: The message is the information that the sender wants to transmit to the 

destination or receiver. And here, not only words but also everything used to describe 

an emotion thought to express the message. 

Channel (Sending Format): The way the message reaches the destination from the 

source is the channel. Channel; There may be tools such as speech, writing, numbers, 

body language movements, and even thoughts taken with brain signals, i.e., 

biosignals. 

Since bio-signals are a natural and spontaneous form of communication, they are an 

excellent option, especially for people who cannot communicate in traditional ways. 

For many years now, people have been thinking that electrophysiological 

measurements of brain function can provide a channel that does not need the 

muscular system to send messages or commands to the outside world [3], and are 

researching for it. Over the last 25 years, productive human-machine interface (HMI) 

research programs or applications have emerged [4, 5]. Our focus is on improving 

communication and control technologies that address the needs and potentials of 

people with neuromuscular disorders (Amyotrophic lateral sclerosis (ALS), multiple 

sclerosis, brainstem stroke, Charcot-Marie-Tooth (CMT) and spinal cord injury, 

etc.). By understanding the function of the brain, robust and low-cost computer 

equipment emerged. The primary purpose of the existing systems in the literature is 

to provide word processing programs, or neuroprosthesis to express their wishes for 

these users who are entirely or semi-paralyzed [3-16]. 

For HMI applications, different types of biomedical signals including 

electrooculography (EOG), electromyography (EMG), electrocardiography (ECG) 

and electroencephalography (EEG) or a mix of them have been used since these 

signals can be acquired more quickly by comparing to other types of signals [5, 16]. 

Besides, only brain activities are used as input signals of the support system 

frequently in cases of limited use of people's eye and muscle activities or not 

working at all. This type of HMI systems is called the brain-computer interface 

(BCI) [10, 14-16]. Communication with this technology occurs roughly as follows: 

biomedical signals of temporal resolution produced by neuronal dynamics from the 

scalp are received and recorded [3, 12]. The properties of the recorded brain signals 
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are extracted, and these properties are converted to outputs, commands, scripts, or 

similar applications in the real world [3-16]. 

Various methods are available to monitor brain activity [4]. These include 

electrocorticography (ECoG), intra-cortical, EEG, functional magnetic resonance 

imaging (fMRI), magnetoencephalography (MEG), positron emission tomography 

(PET), and optical imaging. However, intra-cortical, ECoG, fMRI, PET, MEG, and 

optical imaging are not preferred because they are technically challenging, more 

invasive, and expensive [4, 6, 10, 11]. Also, fMRI, PET, and optical imaging 

methods, which depend on blood flow, are less suitable for fast communication as 

they take a long time [4]. Among these monitoring methods, only EEG methods offer 

a practical BCI possibility. It is relatively non-invasive to other methods, requires a 

short time, is workable in most environments, and has the advantages of more 

straightforward and cheaper equipment [4, 5, 10]. 

Commonly used control signals in EEG-based BCIs are slow cortical potentials 

(SCP), sensorimotor rhythms (µ and β rhythms), event-related potentials (ERP), 

event-related synchronization (ERS) and desynchronization (ERD), and visual 

evoked potentials (VEP) [14, 15, 17-19]. VEP-based BCI is considered to be a 

dependent BCI, unlike other systems [20]. Because the production of VEP depends 

on the control of the outflow pathways and eye movements of the cranial nerves and 

extraocular muscles, therefore, this method cannot be applied to a small number of 

people with severe neuromuscular barriers that may lack the exit channel of 

extraocular muscle control. However, for most people, VEP-based BCI is more 

suitable than other systems. It has advantages such as high information transfer rate 

(ITR), simple system structure, short user training, and short time requirement [20-

23]. Apart from these, the eye muscles' health is sufficient for the user to use this 

system. 

VEPs are the brain's response to visual stimulation [20, 21]. They reflect the visual 

information processing mechanism in the brain. VEPs that appear with short stimuli 

are usually transient responses of the optical system [22]. Transient evoked potentials 

are the responses of the system under study to sudden changes in the input [23, 24].  
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Approximately 60 years ago, Regan began experimenting with long stimulus trains. 

This stimuli produced a stable VEP of small amplitude, which can be extracted by 

averaging over multiple trials, and these EEG waves were named as "Steady-State" 

Visually Evoked Potentials (SSVEPs) of the visual system [25-29]. 

SSVEP is a resonance phenomenon that occurs mainly in the visual cortex when an 

individual's visual attention focuses on a light source that flickers with a frequency 

above 6 Hz [20, 22]. Also, SSVEP consists of a periodic component of the same 

frequency as the flickering light source, likewise of many harmonic frequencies [26, 

27]. Since SSVEP is an intrinsic neuronal response relatively independent of higher-

level cognitive processes, it is widely used to study low-level processing in the brain 

and perform clinical assessments of visual pathways [20, 22, 29, 30]. SSVEP could 

be recorded on the visual cortex from the scalp with maximum amplitude in the 

occipital region [24-27, 29]. The interest in SSVEP based BCI studies is mainly 

owing to the robustness of the SSVEP phenomenon. 

1.1 Problem Statement 

The analysis of EEG signals using machine learning methods is developed for 

precise diagnosis to doctors and provides fast and accurate tools in assistive 

applications designed for individuals. Among the various approaches available in the 

literature, the Wavelet Transform (WT) has proven to be an effective time-frequency 

analysis tool for analyzing transient signals [31-49]. Feature extraction and 

classification from SSVEP signal processing stages are used to evaluate various 

transient events in biological signals. Various wavelet families are available to define 

and adapt signal characteristics. However, choosing an appropriate mother wavelet is 

very important for the analysis of these signals. There are studies comparing different 

mother wavelet types for ECG [49, 50, 51], EMG [49, 51], EEG [31-49] and SSVEP 

[32, 37]. Research studies to date for EEG-signal classification using the wavelet 

technique have mostly been done using the Daubechies (Db) family. Besides, there is 

only one study in the literature, although the SSVEP-based BCI study designed using 

wavelet families is almost nonexistent. The maximum accuracy achieved in this 

study is 95.00% [32]. However, in this study, although the signal is suitable for 

Discrete Wavelet Transformation (DWT), it has made analysis using the Continuous 
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Wavelet Transformation (CWT) method. Also, in reference [37], the SSVEP signal 

was used for a single wavelet type (Db40), but no mother wavelet selection was 

made. Thus, the mother wavelet selection for SSVEP is still an unanswered question. 

In the same study, analyzes were made for a single frequency. In this thesis, a 

detailed analysis was performed using multiple frequencies. 

Table 1.1 Studies in the literature comparing the EEG signal for different mother 

wavelets. 

WAVELET 

FAMILY 
TASKS CLASSIFIER 

SUCCE

SFUL 

WAVE

LET 

NUMB

ER OF 

COMM

ANDS 

REF. 

Db2, Db4, 

Sym4, Sym5 

Left- and right-hand movement and 

also forward imagery used for analysis 

Bayes Net, 

SVM, RBFN 

Sym4 3 [31] 

Cmor, Mey, 

Mex Hat, Bior 

Users in this study are required to gaze 

at one stimulus according to his or her 

control intention 

SVM Cmor 1 [32] 

Db, Haar, Bior This study is aimed at image 

compression of the gray scale 

– Db – [33] 

Db4 BCI system is recognizing isolated 

spoken words 

MLP Db4 – [34] 

Haar, Db (2–

10), Coif (1–

10), Bior (1.1, 

2.4, 3.5, 4.4) 

EEGs belong to both normal and 

abnormal (epileptic) signals  

Probabilistic 

Neural Network 

(PNN), SVM 

Coif1 2 [35] 

Haar This study purposed controlling cursor 

movements for ALS patients 

MLP, PNN 

(RBF), SVM 

Haar 2 [36] 

Db40 It is intended to control the movement 

of a small ball 

Fisher Classifier Db40 [37] 

Db10, Db7, 

Sym7 

Graz data set II-B was analyzed on a 

two-class data set for motor imagery - 

Left and right hand 

Hidden Markov 

Model 

Db10 4 [38] 

Mor This study is aimed to compare two 

signals for decoding finger movements 

LDA Mor 2 [39]
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Table 1.1 Studies in the literature comparing the EEG signal for different mother 

wavelets. Continued, page 2 of 3. 

WAVELET 

FAMILY 
TASKS CLASSIFIER 

SUCCE

SFUL 

WAVE

LET 

NUMB

ER OF 

COMM

ANDS 

REF. 

Db6 Study aims at analyzing and 

classifying the eye blinks obtained 

from EEG signals for control 

applications 

k- NN and ANN Db6 2 [40] 

Db (2-20), 

Sym(2-20), 

Coif(1-5) 

Carried out three experimental 

runs of imagining the motiont (both 

fists and / or both feet) for 

classification 

NN Coif4 2 [41] 

Sym (4 and 

10), Coif (2 

and 4), Db (2 

and 6) 

The used dataset in this study is BCI-

IIIa from the BCI competition 2005 

k-NN, SVM,

AdaBoost 

Db2 2 [42] 

Haar, Db (2-

20), Sym(2-8), 

Coif (1-5) 

In this study, a speech recognition 

system has been developed to 

recognize speaker in isolated words 

spoken in Malayalam independently 

MLP Db4 4 [43] 

Db (2 and 8), 

Bior(1.5 and 

2.8), Haar 

Classification of EEG signals obtained 

from normal, interictal, and seizure 

people 

SVM Bior2.8 – [44] 

Bior3.7, Coif5, 

Db8, Haar, 

Sym18, 

Analyzed data in this study consists of 

20 numbers of normal meditators and 

20 non-meditators 

The Pearson 

correlation 

coefficient 

Db8 3 [45] 

Db4, Sym4, 

Cmor3-3, Haar 

The time-frequency images of three 

(C3, Cz, C4) channels used to extract 

feature of motor imagery, it is known 

as dataset III from BCI competition II 

CNN Cmor 3-

3 

2 [46] 

Haar, Coif1, 

Bior 6.8, 

Rbior6.8, Db2, 

Db4 

Four different mental tasks used for 

EEG classification problem  

ANN Coif1 4 [47]
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Table 1.1 Studies in the literature comparing the EEG signal for different mother 

wavelets. Continued, page 3 of 3. 

WAVELET 

FAMILY 
TASKS CLASSIFIER 

SUCCE

SFUL 

WAVE

LET 

NUMB

ER OF 

COMM

ANDS 

REF. 

Bior2.2, Coif2, 

Db8, 

DMeyer2, 

Haar, Rbior2.2, 

Sym2 

This study includes a mask image 

displaying the osseous information and 

a digital subtraction angiography 

image containing the vascular details 

to test the performance of various 

wavelet families  

– Db8 4 [48] 

Db (1-15), 

Sym(1-15), 

Bior(1.1-6.8), 

Rbio(1.1-6.8) 

Six different data sets were used. 

These include two EEG, EMG and 

ECG data. The study aimed to 

evaluation the performance of an 

adaptive selection algorithm for the 

mother wavelet selection 

– Db8 – [49] 

When a wavelet transform is applied to any pattern recognition system, a feature or 

features must first be extracted for it [53]. Thus, energy and/or entropy and/or 

variance are calculated by heart rate variability (HRV) [54-57], ECG [58, 59], EMG 

[60, 61], EOG [62, 63], EEG [64-68], SSVEP [68-70]. However, in most of these 

studies, all of these features are used together. When the mathematical formulas are 

examined, which of these similar features might be more successful or their 

superiority to each other has not been discussed before. Besides, in these studies 

summarized in the table above, examined in the literature, these features have never 

been used before. This presented thesis aims at filling this lack. 

The research presented in this thesis is especially about selecting the most suitable 

wavelet function for signal analysis of SSVEP signals, detailed investigation of 

energy, entropy, and variance attributes, and examining the appropriate frequency(s) 

for SSVEP based BCI design. 

There is also no in-depth study on the selection of stimulation frequencies. It was 

thought that higher accuracy rates would be obtained for pattern recognition by 

examining the frequency selection and the differences between the frequencies. The 

frequency or frequencies that give the best results are thought to help design a user-
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friendly BCI system by providing higher accuracy rates and time advantages. Due to 

the shortcomings in the literature mentioned above, this study was considered to be 

conducted. 

1.2 Motivation 

There are two situations in which I am particularly motivated when doing this study: 

My first source of motivation was my grandmother, although she did not get ALS 

disease at an early age, she suffered for a long time. She had a hard time, both 

physically and psychologically. Life was very difficult for her since we did not have 

an easily accessible (affordable, portable, and user-friendly) BCI technology at that 

time and even today. 

Another motivation is the biography of the famous scientist Prof. Dr. Stephen 

Hawking, whose life energy should be a model for everyone. Despite his illness, he 

embraced science and life more tightly. Using different interfaces to communicate 

with the outside world, physicist Prof. Dr. Stephen Hawking has a exceptional early-

onset and slow-moving ALS form. This form is known as motor neuron disease, 

which has been slowly paralyzed over the years. Prof. Dr. Stephen Hawking used a 

communication channel, a state-of-the-art application, consisting of a cheek muscle 

dependent to a speech-producing device. Prof. Hawking is a famous model that 

motivates developing these and similar technologies that help mentally healthy 

people. 

1.3 Hypothesis 

In general, the main problem of BCI systems is that they require high accuracy and 

custom-designed systems that can be customized easily. When it comes to SSVEP 

based BCI design, it is crucial to meet these criteria with the minimum channel, 

frequency, and classifier. These components are vital in terms of both time and 

system accuracy, easy applicability, and comfort. 

In this thesis, it is aimed to design the SSVEP-based BCI system with the features 

listed above and a hypothesis, including the following steps is established: 
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• Using SSVEP signals from a single channel (since the most prosperous

region in the visual cortex in the occipital lobe, it will be time-consuming to

examine others)

• Analysis with the most appropriate feature extraction method for signal type

(between time domain, frequency domain, and time-frequency domain),

• What would be the results of the frequencies and classifiers tested in this

case?

• At the same time, what would be the results if the ones that gave maximum

accuracy in the classification techniques with multiple, triple (with

maximum difference frequencies) and binary classification?

• And finally, does system performance increase as the difference between

frequencies increases?

Based on this hypothesis, analyzes and evaluations were made. 

1.4 Objectives of the Thesis 

The study presented in this thesis aimed to achieve significant optimization of 

cortical visual responses, signal processing methods, and machine learning 

algorithms, as well as the accuracy and reliability of the superior multi-command 

SSVEP-based BCI system, which is lacking in the literature. New approaches have 

been explored using existing methods to develop an accurate, reliable, comfortable 

SSVEP-based BCI. That can offer severe motor neuron diseases a communication 

alternative using attention modulation without requiring neuromuscular activities or 

eye movements. As a result, the following research objectives were achieved in this 

study: 

1. For SSVEP detection, the performances of the feature extractors and

classifiers were investigated from the literature, methods that were not

used before were identified, examined, and compared with each other.

2. For the SSVEP detection, a reconstructed existing feature extraction

method with high accuracy results was proposed,

3. By conducting detailed research on stimulation frequencies, the highest

accuracy frequencies were determined,
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4. Performances of the classifier types, which have not been compared

before, concerning SSVEP detection were evaluated in the literature.

5. The mother wavelet selection that best reflects the SSVEP signal was

performed,

6. Multiple, triple and binary classification performances were analyzed, and

their superiority was compared for SSVEP detection,

7. In parallel with the differences between stimulation frequencies, an

increase in system performance was observed and detected.

1.5 Contribution of the Thesis 

All the objectives listed above have been achieved, and contributions have been 

made during the studies. In some cases, different studies have been carried out in 

parallel. The main contributions of this thesis are listed as follows: 

1. This thesis is a detailed study of the selection of stimulation frequencies.

2. To the author's best knowledge, this is the first study on in-depth research

and evaluation of mother wavelet selection using the DWT method in

SSVEP-based BCI.

3. To the author's best knowledge, this is the first study about the combination

of energy, entropy, and variance features. It was determined which

combination had a higher discrimination power on BCI studies.

4. This thesis is the first study about the evaluation and comparison of the used

classifiers to the author's best knowledge.

5. To the author's best knowledge, this is the first study to examine the

differences between stimulation frequencies and their effects on the system.

1.6 Organization of the Thesis 

Within the scope of the thesis, from general to specific information about BCI and 

SSVEP based BCI studies are given. The materials and methods used are explained, 

and the results are analyzed in detail. 
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The rest of this thesis is organized as follows: 

In Chapter 2, a review of the theoretical background is made to define the concepts 

of BCI and SSVEP based BCI systems. From the structure of the brain to the 

construction of the eye to which the SSVEP signals are related, physiological 

information is also briefly mentioned. 

Chapter 3 is a section that introduces the materials and methodologies used in the 

thesis. Initially, an explanation was made regarding the acquisition and recording of 

the EEG signal used. Then, in the scope of this thesis, all the pattern recognition 

(preprocessing, feature extraction, feature selection, classification, evaluation) steps 

and methods in order are explained detail. 

In Chapter 4, the results of the methods applied in the previous section are examined, 

and the findings obtained are evaluated in detail. 

In Chapter 5, a summary of all the work done in this thesis, the contributions 

obtained are presented. The development of this thesis was carried out in 

chronological order, as shown in Figure 1.2. All objectives mentioned above, and 

contributions have been made during the studies. In some cases, different studies 

have been carried out in parallel. 
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Figure 1.2 Chronological progress of the thesis pointing out objectives and achieved 

contributions.



2. OVERVIEW OF BRAIN COMPUTER INTERFACE

Technology is an area that starts with the invention of the wheel and extends to the 

advancement of artificial intelligence and affects every aspect of society. 

Revolutionary changes continue in the healthcare delivery system with the 

advancement of technology and the increasing speed of technology to meet changing 

healthcare needs [71]. These technological advances have significantly changed 

medical practices. The use of electronic health records, humanoid robots used in 

almost every area of health care, automated dispensing robots that apply drugs 

combined with highly specialized artificial intelligence is generally a few examples 

in this regard, and the brain-computer interface (BCI) is also one of the advances in 

neuroscience [72]. 

An artificial intelligence based BCI is a rapidly growing technology that means 

direct communication between a quietly speaking brain and bio-monitoring devices, 

electric chairs, robots, smartphones, and other external devices [73,74]. BCI can be 

seen as a set of systems that allow the direct transmission of electrical signals from 

neurons in the brain to an external device and/or system, such as a computer or 

robotic arm, without requiring any muscular system [3-19, 73,74]. 

BCI's initial release objective was developed for biomedical applications, which led 

to the production of auxiliary devices for the restoration of motion and 

communication power to rehabilitate lost motor abilities for physically semi- or 

fully-disabled patients [5]. However, researchers' horizons have been used not only 

for people with disabilities for medical applications but also for the development of 

non-medical applications such as prototypes of hand-free devices in many sectors 

such as the game and entertainment industry [17]. 

While real-time BCI applications exist worldwide, they are still in the global 

experimental stage. However, BCI applications have great potential and may become 
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clinically relevant soon [10]. The inclusion of these highly advanced technologies, 

especially in neuroscience healthcare, will change the medical profession. For this 

reason, healthcare providers face increasing difficulties integrating the continuous 

development of technology into medical practices. These challenges ask doctors and 

all healthcare providers to learn about recent technological advances and even 

implement what is available. 

BCI is a technology that analyzes signals generated from the brain and transmits it to 

output commands in the real world to perform a specific task [3]. In doing so, they 

are unique because they do not contain normal neuromuscular pathways of peripheral 

nerves and muscles in paralyzed patients [9].  

2.1 Brain Architecture 

Some parts of human physiology need to be understood to understand and create BCI 

applications. This section provides essential and brief information about the 

physiological structure of the brain, which forms the basis of a BCI application. 

Thanks to the brain, nerves, and spinal cord, it controls the central nervous system, 

manages the peripheral nervous system and regulates almost all functions of the 

body. Involuntary actions such as breathing, heartbeat, and digestion, without being 

noticed through the autonomic nervous system; More complex mental activities, such 

as thought, logic, and abstraction, are consciously managed by the brain [75]. 

All the stimuli coming from the sensory organs in the brain are evaluated, problems 

and events are considered and resolved, learning activity and memory are provided, 

hunger, thirst, sleep, wakefulness activities, blood pressure, and body temperature are 

regulated, and the time of hormones secretion is determined [76]. 

The human brain weighs an average of 1.5 kg. [75] It has a volume ranging from 

person to person, ranging from 1130 to 1260 cm3. There are about 86 billion neurons 

in the human brain. [77] When the mind is alive, it has blood circulation, it is very 

soft. It consists of gray matter. 
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The brain has three parts: the brainstem, the limbic system, and the neocortex [75-

77]: 

Brain Stem: It is the part surrounding the top of the spinal cord. It controls 

stereotyped responses, such as breathing, heartbeat, reflexes in distress situations, 

and essential functions related to life. No thinking and new learning take place in this 

section. It is a pre-programmed organizer that manages the responses necessary for 

our life. In other words, it is the center of our instinctive behavior. 

Limbic System: It is the part surrounding the brain stem and controls our emotions. 

The amygdala and the hypothalamus are two critical parts of this part. The limbic 

system regulates an essential part of long-term memory. Therefore, we can remember 

the events that we have emotional connections more easily. 

Neocortex: It is the center of thought. It manages high-level mental functions such as 

seeing, hearing, speaking, creating, thinking. It is the center where we bring together 

what we perceive through the senses and produce meaning. There are separate 

sections in the neocortex where the senses are hidden. The signals of speech, hearing, 

vision, and tactile senses are recorded separately in these lobes. 

There are five main lobes [75] in the human brain. These: 

1. Frontal lobe - conscious thinking; If it is damaged, there may be a change in 

mood or mood. 

2. Parietal lobe - plays a vital role in combining information from various 

sensory organs. Besides, some parts of the parietal lobe are involved in the 

use of objects and some spatial processing (visuospatial processing). 

3. Occipital lobe - the lobe where information about the sense of sight is 

processed. Slight damage causes hallucinations. 

4. Temporal lobe - the perception of sound and smell and the processing of 

complex stimuli such as faces and spaces- are provided by this lobe. 
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5. Cerebellum - relates movement with information from the sense organs.

This lobe plays a vital role in ensuring balance.

Each lobe listed above is located in both hemispheres of the brain [75-77]. 

Figure 2.1 Functional Areas of the Cerebral Cortex [78]. 

Due to the extremely complex nature of the eighty-six million neurons fired, the 

signals consist of a mixture of varied frequencies. Scientists have divided distinct 

frequency ranges into some subgroups known as frequency bands (waves) as a result 

of researches. Each of these waves represents a different cognitive or non-cognitive 

state of the brain, and they first discovered in 1924 by Hans Berger by measuring 

EEG. In 1929, the German psychiatrist introduced the terms "alpha" and "beta" [12].  

Other frequency bands, respectively, in 1936, Walter introduced the term "delta" for 

all frequencies below the alpha band. Also, he defined the "theta" band for the 

frequency range of 4–7.5 Hz. In 1938, the term 'gamma' was introduced by Jasper 

and Andrews for frequencies higher than 30–35 Hz [24, 79]. In the literature, 

different upper and lower frequency limits are available for these waves. Therefore, 
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brain rhythms, frequency ranges, and their characteristics are generalized in Table 

2.1.  

Table 2.1 Brain rhythms with their frequency ranges and characteristics. 

RHYTHM FREQUENCY 

RANGE  

BRAIN WAVE ASSOCIATED MENTAL ACTIVITY  

Delta (δ) 0.1 – 3.5 Hz 
 

• Sleep / Therapy for sleep 

disorders 

• Accelerated physical healing  

• Deep relaxation 

Theta (θ) 4 – 7.5 Hz 
 

• REM sleep 

• Access to unconscious mind 

• Healing of trauma and 

addiction 

• Deep meditation  

Alpha (α) 8 – 13 Hz 
 

• Relaxation  

• Creativity 

• Light meditative / Trance state 

• Increased serotonin production 

• Threshold to unconscious mind 

Beta (β) 14 – 30 Hz 
 

• Cognition 

• Focus  

• Analytical thinking 

• Stress / Anxiety 

• Fight / Flight response 

Gamma (γ) >30 

 

• Whole-brain activity 

• Super-learning 

• Sudden insight 

 

2.2 Components of Brain-Computer Interface 

The primary purpose of designing a brain-computer interface is to detect, analyze, 

and evaluate the properties of the signals that show the intent of the user [4-10]. 

Also, it is to send these signal characters to an external device that works to fulfill the 

user's intent. The system created for this purpose generally includes four connected 

components: signal acquisition, processing (feature extraction), translation (feature 
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translation/classification), and device output (application) and/or feedback [16, 53]. 

Figure 2.2 shows these components and their various applications that serve their 

primary purpose (restore, replace, improve, supplement, enhance). 

Figure 2.2 Components of BCI. 

The main steps of a BCI system are briefly outlined below: 

Signal acquisition: The signal acquisition step, which is the first step of the BCI 

system, involves measuring the activities in the brain and digitizing them to be 

processed on the computer [53]. 

Feature extraction: The process of obtaining the characteristic features of the signal 

corresponding to the brain activity captured by the signal acquisition step [16]. 

Translation (Feature translation / Classification): Which brain activity corresponds to 

the features obtained in this step is determined by using classification (machine 
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learning) algorithms, and commands to be used in the application step are generated 

[16]. 

Application: With the command obtained in the classification step, many 

applications can be developed to improve the life quality of partially or entirely 

disabled people [16]. 

2.3 Brain-Computer Interface Classifications  

BCI systems are classified in three different ways according to the working 

principles of the methods used in system design [10, 11, 18, 80]. These classes are 

defined as invasiveness, dependency, and synchronization, as shown in Figure 2.3. In 

terms of dependability, the BCI could be categorized as dependent and independent 

BCI, while in terms of invasiveness, it could be divided into invasive and non-

invasive BCI. In the final category, the BCI could be synchronous or asynchronous 

(self-paced).  

Figure 2.3 Classification of BCI systems. 

2.3.1 Synchronous and asynchronous (self-paced) Brain-Computer 

Interface 

In the classification of BCI systems according to the synchronization status, when 

user interaction with the system is done at a specific time, this type of BCI system is 

called synchronous BCI. In other words, the synchronous BCI system must interact 

with the user within a particular time frame. If there is no interaction during this 
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period, the system cannot receive the user's signals. On the contrary, in asynchronous 

BCI [81], also called "self-paced," the user can perform his mental tasks at any time, 

and the system will react to his mental activities. Therefore, the user can do his 

activity at any time. 

2.3.2 Dependent and independent Brain-Computer Interface 

In a dependent BCI, the user must have a certain level of motor control, while in an 

independent BCI, no motor control is required. The BCI system needs to be designed 

as independent BCI to help people without motor control [80]. An example of an 

independent BCI system is the SSVEP-based BCI system. In this system, the system 

can only control the gaze of the user. However, dependent BCI is more suitable for 

people who can partially or fully use the motor control system [18]. For example, it 

is ideal for the control of the rehabilitation robot or to use video games. 

2.3.3 Invasive and non-invasive Brain-Computer Interface 

A BCI system is classified as invasive and non-invasive based on where the brain 

activity is measured. In invasive recording methods, microelectrodes are placed 

under the brain's scalp, and neural activity is measured inside the motor cortex or 

cortical surface (electrocorticography (ECoG)). Their most important advantage is 

that they provide high temporal and spatial resolution by increasing the quality of the 

signal obtained and the signal to noise ratio. 

On the other hand, these techniques have many disadvantages. Although it requires 

risky surgical procedures, there are usability problems. The small size of the brain 

regions monitored by implants placed in the brain can create problems with the 

system's output. Implanted microelectrodes cannot be shifted to measure brain 

activity in another area. There may also be problems with the stability of implants 

and infection prevention. For these reasons, the use of the invasive recording in the 

real world is generally limited to monkey experiments. 

Unlike invasive methods, non-invasive methods do not require implanting electrodes 

or external objects to the brain. Therefore, it prevents the surgical procedures needed 

by invasive techniques. In this case, the signals may be of more inferior quality; 

however, it is the most preferred method due to the many advantages of non-invasive 
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BCI. For example, it does not require any surgical intervention, easy applicability, 

and portability, relatively low cost, etc. 

In the next section, neuroimaging BCI methods, sub-methods used in invasive and 

non-invasive techniques, will be explained in detail. 

2.4 Neuroimaging Methods of Brain-Computer Interface  

In the signal acquisition step, which is the first part of the BCI system, two basic 

methods detect, measure, and display the brain's signals produced by the brain's 

neuronal activities: invasive and non-invasive techniques. These methods are 

responsible for the acquisition and recording of signals and their transfer to the next 

BCI component. These methods, which are categorized according to where the 

signals are measured in the brain, are subdivided. They differ according to the 

external sensors, devices, and procedures used within themselves. These methods are 

summarized in Figure 2.4. 

 

Figure 2.4 Types of neuroimaging methods.   

2.4.1 Intra-cortical  

The intracortical acquisition technique represents the most invasive method shown in 

Figure 2.4. This method, which is penetrated under the cortex surface of the brain, is 

obtained using a single electrode or a series of electrodes that measure individual 

neurons' movement activities. Since the electrode tips are placed very close to the 

signal source, they provide a relatively high spatial resolution. However, the 
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intracortical acquisition may show signal variability or signal loss in long-term use. 

This may be the result of neuronal cell death or increased tissue resistance. If the 

system contains a stimulus to activate the limb of individuals with disabilities, this 

additional stimulus can also create a significant noise effect, and this noise reduces 

system performance [82]. 

Studies using intra-cortical recording techniques with human subjects have been 

limited to some severely disabled people. However, intra-cortical signal acquisition 

on monkeys and rats has significantly contributed to BCI research studies. The 

movement of the BCI-based robot system was analyzed on animals using implanted 

electrodes. At the same time, monkeys managed to move a cursor to eight targets 

located in the corners of an imaginary cube in research to minimize the number of 

electrodes used in these systems. In light of the information obtained, an adaptive 

motion prediction algorithm has been developed. Moreover, the monkeys managed 

to move a brain-controlled robot arm using virtual reality and helped them eat with a 

real robot arm [83]. 

2.4.2 Cortical surface (ECoG) 

Although ECoG is a recording method that requires less invasiveness than the intra-

cortical process, it provides the advantages of the intra-cortical approach. It is 

performed surgically by implanting the electrode grids or strips onto the cortex 

surface [84]. Compared to non-invasive methods, it is less affected by the noise and 

artifacts caused by muscle connection to achieve a high signal to noise ratio. This 

method, which provides a substantial advantage, especially for seizure localization 

problems of epilepsy patients, is used by patients before surgery. 

2.4.3 Magnetoencephalography (MEG) 

It is a non-invasive method that measures magnetic fields produced by naturally 

occurring electrical currents from the chemical structure of the brain [85]. MEG 

signals can affect and be affected by other magnetic signals, such as the earth's 

magnetic field. Thus, this recording method requires a laboratory environment with 

protective, concealing, and specialized equipment. Despite its portability and cost 

issues, MEG signals are less distorted than methods received by the cortical surface. 
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However, this advantage does not significantly improve system performance or 

training times compared to other non-invasive signal acquisition methods [86]. 

2.4.4 Functional magnetic resonance imaging (fMRI) 

Functional magnetic resonance imaging (fMRI) detects changes in blood flow due to 

neural activity in the brain [87]. These changes are offered as solutions to resource 

localization problems. Because in case of using any brain part, the blood flow is 

expected to increase in that part. This method helps to map brain areas that 

correspond to blood flow. Although the relatively temporal resolution of fMRI is 

low, it provides a high spatial resolution. The most important advantage of this 

method is that it captures information that cannot be collected by electrical or 

magnetic measurements from the deep parts of the brain [87]. 

2.4.5 Functional near-infrared spectroscopy (fNIRS) 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive method that 

measures blood flow dynamics to detect neural activity. It uses near-infrared light to 

detect blood flow dynamics [88]. Providing high spatial resolution signals is 

advantageous due to its portability and relatively inexpensive system. However, 

concerning temporal resolution, it offers less imaging capability. The fNIRS signal 

recording is likely to be less effective than methods based on electromagnetic 

signals. fNIRS is more suitable for clinical studies and practical use [89]. 

2.4.6 Positron emission tomography (PET)  

Positron Emission Tomography (PET) is a nuclear medicine imaging method that 

shows functional changes that occur in organs and tissues [90]. PET displays normal 

or pathological tissues in which metabolic radioactive substances injected into the 

user through the vein accumulate. It is generally used for metabolic or functional 

imaging. In this technique, the PET method is performed by injecting the positron 

irradiated fluorine-labeled fdg molecule through the vein into the user. 
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2.4.7 Electroencephalography (EEG)  

Although the brain's electrical activity research was revealed in 1875 by 

neurophysiologist Ricard Caton, who recorded the electrical activity of rabbit and 

monkey brains directly from the brain tissue [91], the first human 

electroencephalography (EEG) was recorded by Hans Berger in 1924. He created the 

term "electroencephalogram" by characterizing and defining the wave models 

containing alpha (α) and beta (β) waves [92]. 

EEG is the recording of electrical activity to cover all regions of the brain by 

measuring the voltage fluctuations that occur during the neurotransmission activity in 

the brain. The electrodes are attached to a hat-like device (cap). EEG has unique 

usability advantages over other brain imaging methods recommended for clinical and 

commercial use. This user-friendly method is both portable and relatively affordable. 

At the same time, EEG recording provides high temporal resolution. However, the 

signal-to-noise ratio and spatial resolution are more limited than other neuroimaging 

methods. Various solutions are provided to improve spatial resolution and signal 

localization problems in EEG signals. One of them is the use of increasing electrodes 

up to 256. 

Electrodes used for EEG acquisition are placed on the scalp according to the 

international 10-20 settlement system [93]. The layout is shown in Figure 2.5. 

  

Figure 2.5 International 10-20 electrode layout [93]. 
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Figure 2.5 shows the left portrait as indicated by A and the top view of the title as 

revealed by B. The notations in the claim that refer to each cortical region as 

reference are Pg: Nasopharyngeal, Fp: Frontal Polar, F: Frontal, A: Ear-lobe, T: 

Temporal, C: Center, P: Parietal and the last O: Occipital. Electrodes in the right 

hemisphere of the header are represented by even numbers, while the electrodes in 

the left region are identified by odd numbers [94]. As seen in Figure 2.5, the layout 

was created by dividing the skull's distance from the nasion level to the inion level 

by 10-20-20-20-10 percent. 

When measuring EEG, two types of measurement criteria are usually used: 

Monopolar and bipolar. In a monopolar measurement, the voltage difference between 

each electrode and a common reference selected is measured. It is placed in a 

"neutral" zone (e.g., Mastoid, earlobe), which assumes that the chosen common 

reference's electrical activity is not affected by other brain activities. Besides, the 

reference signal may be the average of two or more electrodes. Moreover, the 

average of all electrodes can be selected as a reference, and this is called the common 

average reference (CAR). In a bipolar measurement, the voltage difference between 

all electrode pairs is measured [94]. 

Table 2.2 Comparison of neuroimaging methods. 

NEUROIMAGING 

METHODS 

SIGNAL 

TYPES 

INVASIVE-

NESS 

PORTABILI

TY 

SPATIAL 

RESOLUTI-

ON 

TEMPORAL 

RESOLUTI-

ON 

Intra-cortical Electrical Highly Invasive Portable Highest Highest 

ECoG Electrical Invasive Portable Higher Higher 

MEG Magnetic Non-invasive Non-portable High High 

fMRI Metabolic Non-invasive Non-portable High Low 

fNIRS Metabolic Non-invasive Portable High Low 

PET Metabolic Non-invasive Non-portable High Low 

EEG Electrical Non-invasive Portable Low High 

2.5 Control Signals Types in Brain-Computer Interfaces’ 

The primary purpose of BCI studies is to analyze and interpret user intentions by 

monitoring the cerebral region [14]. The electrical signals produced in the brain 
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contain many simultaneous phenomena related to cognitive tasks. Many of them are 

still not understood as their roots are unknown [14]. However, the physiological 

phenomena of some signals have been discovered in such a way that they can learn 

to modulate people at any time. In other words, a large number of BCI studies have 

been conducted that have managed to interpret users' intentions by finding out the 

effects and differences of various triggering conditions (e.g., evoked potentials (EP)) 

or spontaneous brain oscillations that are not necessarily associated with external 

stimulation (e.g., event-related synchronization (ERS) – desynchronization (ERD)). 

These signals are called control signals used in BCI systems [14]. These control 

signals can be divided into three basic categories [18]: 1) Spontaneous signals, 2) 

Hybrid signals, and 3) Evoked potentials. Figure 2.6 shows the classification of 

control signals. Also, a brief description of each is below. 

Figure 2.6 Classification of control signals. 

2.5.1 Spontaneous signals 

Spontaneous signals, one of the types of signals used in BCI, are signals produced 

without any external stimulation that affects the user. Spontaneous signals known in 

the literature are divided into Sensorimotor Rhythms (SMRs), Slow Cortical 

Potentials (SCPs), and Non-motor cognitive tasks. 

2.5.1.1 Sensorimotor rhythms (SMRs) 

Sensorimotor rhythms, also known as "μ and β rhythms," include brain activities 

localized in the μ band (≃7-13 Hz) and β band (≃13-30 Hz). Sensorimotor rhythms 
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are associated with motor images without any real movement [14]. Patterns of motor 

images are produced as a result of mental rehearsals of motor motion without any 

actual motor output [18]. However, sensorimotor rhythms are not easy to control, and 

often people have difficulty imagining motor images. To overcome this difficulty, 

long-term training is required. In this training, they ask users to imagine a particular 

motor image task in their minds. The sensorimotor rhythms obtained at the end of 

this task are obtained by comparison with a reference and then classified. As a result, 

the participant is provided with visual or audio feedback based on the classification 

success. 

Sensorimotor rhythms can be based on two kinds of amplitude modulation known 

depending on the event: sensory stimulation, motor behavior, and synchronization 

(ERD) that creates mental images, and event-related synchronization (ERS). ERD 

includes an amplitude suppression of the rhythm, and ERS implies increasing 

amplitude. 

2.5.1.2 Slow cortical potentials (SCPs) 

Slow cortical potentials are slow, positive, and negative voltage changes in brain 

signals that last between milliseconds and a few seconds. SCPs are the part of the 

brain signals with a frequency below 1 Hz. SCPs are associated with changes in 

activity at the cortical level (detected in the frontal and middle cortex). Negative 

SCPs are associated with an increase in neuronal activity, while positive SCPs are 

assessed by a decrease in neuronal activity [15]. 

Success in the SCP signal training depends on many factors, such as the patient's 

psychological and physical condition. It is also known that the user's learning ability 

significantly affects SCP modulation training. Therefore, the value of SCPs as the 

appropriate control signal for each of the individual designs can only be determined 

by trials. At the same time, it is difficult to establish general rules in this regard, since 

personal effects are not the same for all users. SCPs have been extensively tested 

with ALS patients, and the accuracy rates obtained as a result of the SCP 

classification range from 70% to 80%. However, the information transfer rates 

provided by the real-time SCP-based BCI are relatively low. Also, longer training 
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times are required to use real-time SCP-based BCI. Due to these disadvantages, 

many researchers have not preferred SCP and is usually replaced by sensorimotor 

rhythms. 

2.5.1.3 Non-motor cognitive signals 

Non-motor cognitive tasks mean that the user uses cognitive tasks except the dream 

of motor movement, for example, to visualize the rotation of a letter in his mind, 

visual counting, mathematical calculations or neuronal activities have taken while 

listening to music. Ozmen et al. [95] and Sadreddini et al. [96] analyzed the 

differences between the imagination of motor movement and non - motor cognitive 

signals in their studies with pattern recognition methods and machine learning 

algorithms. 

2.5.2 Hybrid signals 

Hybrid signals are signal types in which a combination of electrical activities 

produced by the brain is used by BCI systems [97]. In the BCI system using this type 

of signal, only one input signal is measured and used, that is, a signal hybrid is used. 

The primary purpose of using two or more types of brain signals as input signals to 

the BCI system is to increase system performance and reliability [98]. It is also to 

avoid the disadvantages of each signal type. 

2.5.3 Evoked potentials (EPs) 

Evoked potentials (EPs) or evoked responses create an event-related activity that 

occurs as an electrical response to various sensory stimuli of the brain [24, 25]. 

Auditory and visual stimulation is widely used to produce this signal [23]. Evoked 

potentials typically show themselves as temporary waveforms, which depends on the 

type, power, and electrode positions on the scalp of the stimulus. The user's mental 

state, exemplified by attention, alertness, and anticipation, also affects the waveform 

morphology. The best-known EPs used in the literature are Visual Evoked Potentials 

(VEPs) and P300 signals [80]. 
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2.5.3.1 P300 signals 

P300 evoked potentials are positive peaks that occur approximately 300 ms after 

visual, auditory, or somatosensory stimuli. One of the essential advantages of using 

P300-based BCIs is that it requires little or no training. However, if the user rarely 

gets used to the stimulus, the P300 amplitude decreases, and system performance 

may decrease [99]. P300 is used for visual impairment in auditory stimuli, although 

visual stimuli are used in most applications based on their evoked potential, due to 

ease of application. The information transfer rates of P300 based BCIs are meager. 

At the same time, a lot of trials are required to capture the P300 potentials. Besides, 

some studies have shown that the detection accuracy of visual P300 potentials 

depends on their visual characteristics, such as the size or color of the symbols. 

Performance decreases when small symbol matrices are used, and performance 

increases when using the green and blue matrix compared to gray or black colors 

[100]. 

2.5.3.2 Visual evoked potentials (VEPs) 

With the sensory stimulation of the visual field in the brain of a BCI user, visually 

evoked potentials produced in the visual cortex are formed [29]. That is, VEPs reflect 

the visual information-processing mechanisms in the brain. VEP-based BCI is a 

system where the user's EEG is recorded simultaneously when the user is visually 

focused on a target. In a VEP-based BCI, each target presented to the user is coded 

with a unique stimulus sequence that evokes a unique VEP pattern [102]. Therefore, 

when designing a target, the characteristics of VEP should be determined by 

analyzing. Thus, existing VEP-based BCI systems are divided into three categories 

based on the stimulus morphology used [102]: 

1. Time-modulated VEP (t-VEP) 

2. Code modulated VEP (Pseudorandom code) (c-VEP) 

3. Frequency modulated VEP (f-VEP) 

In the first modulation, t-VEP based BCI, the flash sequences of different targets are 

independent. Flash sequences for different targets should never overlap. To avoid 

overlapping two or more consecutive t-VEPs, t-VEP-based BCIs generally have low 
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stimulus rates (<4 Hz). Another method to prevent overlap of t-VEPs is that the 

target's flash sequence is dependent on each other. Still, the stimulus design can be 

made by randomly adjusting the duration. To make accurate target identification in t-

VEP based BCI, it is necessary to average of many epochs. However, t-VEP based 

BCIs have a lower stimulus frequency (ITR) because they have a lower stimulus 

frequency (<30 bits/minute) [26, 27].  

 

Figure 2.7 a) Independent stimulus sequences of the targets of a t-VEP based BCI. 

b) A single t-VEP response [102]. 

Although the first c-VEP based BCI was introduced by Sutter [29] in 1984, there is a 

minimal number of studies on the c-VEP signal until 2009. This is because the 

results of the proposed methods are not satisfactory. In 2009, Bin et al. [102] 

developed a 32-targeted c-VEP-based BCI with the highest ITR value among all BCI 

types designed in those years. Pseudorandom sequences are used in a c-VEP-based 

BCI, and the m sequence is the most used pseudorandom sequence [29]. A binary m-

sequence is produced using linear and nonlinear system analysis, using maximum 

direct feedback and shifting records. An m-sequence has an autocorrelation function 

and is almost perpendicular to the time delay sequence [103]. Thus, an m-sequence 

and its delay sequence can be used for a c-VEP based BCI. Figure 2.9 shows the 

stimulation sequences of a c-VEP based BCI and the time streaming of the 

stimulation response. 
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Figure 2.8 Stimulation sequences of the targets of c-VEP based BCI [102]. a) Target 

sequences of a stimulation cycle. b) A waveform of the evoked response. 

In a final modulation f-VEP based BCI, each target generates a periodically evoked 

response sequence with the harmonics of the stimulus frequency, as well as the 

flashing stimulus at a different frequency [20, 21, 22, 26, 30, 104]. Power spectrum 

density is most commonly used for target identification of f-VEP based BCI [102]. 

So, figure 2.10 a) shows a stimulation sequence of an f-VEP based BCI and b) shows 

the power spectrum of the stimulated response. For the x segment of an EEG data 

obtained from an i-targeted f-VEP based BCI with flickering frequencies f1, f2, ..., fi, 

the target identification is implemented with the following steps: 

1) Calculate the power spectrum (P (f)) of the EEG signal using a spectral

analysis technique (e.g. Fast Fourier Transform (FFT)).

2) Calculate the signal-to-noise ratio (SNR) Si of each stimulus frequency (fi).

3) Determine the target of detection by selecting the target (I) corresponding to

the maximum Si.

The flicker frequency in f-VEP based BCI is generally higher than 6 Hz [104-110]. 

Stimulated responses caused by the repeated flashing of the target may overlap and 

form a periodic sequence of f-VEPs. This condition is called a frequency-locked 

steady-state visual evoked potential (SSVEP) [26, 27]. In this case, the name of f-

VEP based BCIs is defined as SSVEP based BCI [104]. Over the past decades, the 
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robustness of SSVEP-based BCI systems has been credibly demonstrated in many 

laboratories, research groups, and clinical tests [101-122]. The advantages of an 

SSVEP-based BCI are, for example, simple system configuration, no user training, 

and a high ITR (30-60 bits/min) rate [18]. It is also among the advantages of being 

relatively less sensitive to artifacts produced by noise contamination, such as eye 

movements and electromyography [26]. 

 

Figure 2.9 a) Stimulating sequences of targets of f-VEP based BCI (SSVEP based 

BCI) [102]. b) Power spectrum of the evoked frequency at a frequency of 10 Hz. 

Modulation approaches differ due to different target identification methods used, as 

mentioned above, change in system performances. As a summary of these 

differences, the properties of the modulation are presented in Table 2.3. 

Table 2.3 Characteristics of VEP modulations. 

VEP MODULATION CHARACTERISTICS 

t-VEP 

-Relatively low information transfer rate (<30 bits/min) 

-Synchronous signal is necessary  

-No user training required 

c-VEP 

-Very high information transfer rate (>100 bits/min) 

- Synchronous signal is necessary  

- User training required  

-More suitable for application with many options 

f-VEP 

-High information transfer rate (30-60 bits/min) 

-Simple system configuration  

-No user training required  

-More suitable for application with few options  
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As a result, the main features, advantages and disadvantages of all control signals 

used in the design of BCI systems described in section 2.5 are summarized in Table 

2.4. 

Table 2.4 Control signals summary.  

SIGNAL 
CHARACTERIST

ICS 

TRANSFER 

RATE 

(BITS/MIN) 

TRAI

NING 
ADVANTAGES DISADVANTAGES 

Sensori-

motor 

rhythms 

It is based on 

modulations 

synchronized to 

motor activities 

3-35 Yes 

-Doesn’t depend on 

any stimulation 

-Subject use it 

voluntarily  

-Suitable for control 

applications 

-Needs very long-time 

training  

- Some subjects might 

not be able to 

generate the signals 

-Needs multiple EEG 

channels for 

recordings for good 

performance  

SCP 

It is the slow 

voltages shift in 

brain signals  

5-12 Yes 

P300 It is the positive 

peaks due to 

infrequent stimulus   

20-25 No 

-Need very little 

training or no 

training required 

-High bit rate 

-Single EEG 

channel is required 

-Permanent attention 

to external stimuli 

-Some subjects might 

get tired VEP It is based on signal 

modulations in the 

visual cortex 

60-100 No 

 

2.6 Steady-State Visual Evoked Potential (SSVEP) Based Brain-

Computer Interfaces 

This thesis focuses mainly on SSVEP based BCI systems. Therefore, SSVEP based 

BCI system components will be detailed in this section. 

SSVEP signals are continuous, periodic and also harmonic signals that emerge with 

an external visual stimulus frequency greater than 6 Hz and oscillate equal to or full 

times the frequency of the stimulus [26, 27, 29, 30]. In other words, SSVEP signals 

emerge by processing visual stimulus information in the visual (occipital) cortex in 

the brain [104]. As seen in Figure 2.10, SSVEP signals can be observed in frequency 

space and can be distinguished from EEG noises. In Figure 2.10 a), the raw signal of 

10 Hz stimulated SSVEP used in the thesis, and b) the power spectrum and the first 

and second harmonics of the signal are seen. 
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Figure 2.10 a) SSVEP raw signal b) Power spectrum of the 10 Hz stimulated SSVEP 

signal. 

SSVEP signals are influenced by factors such as the user's focus status, the colour of 

the visual stimulus, its shape, the frequency of the stimulus's active/passive residence 

times, and the light source [123, 124]. These factors will be explained in detail in 

section 2.6.2. One of the characteristic features of the SSVEP signal is its amplitude 

and stability in phase [125] and the parallelism between the phase of the stimulus and 

the signal phase. Another characteristic feature that makes the SSVEP signal an ideal 

source is noise immunity. In SSVEP based BCI systems, the frequency of the visual 

stimulus used is generally chosen more significant than 6 Hz [104-110]. Because the 

frequency of noise caused by eye or body movements is less than 6 Hz. Therefore, 

SSVEP signals are relatively more immune to noise from these movements. Also, as 

explained in section 2.5.3.2, SSVEP based BCI systems are considered the ideal 

signal source for BCI systems due to their advantages such as no training required, 
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the stability of neuronal response, and high information transfer rate [20-23, 101-

123]. 

2.6.1 Vision physiology  

SSVEP signals emerge by recording neuronal activities obtained by the visual cortex 

through the eye organ. Therefore, one of the critical points when examining SSVEP 

based BCI is to understand the physiology of vision. In this section, an explanation 

will be given about the structure and working principle of the human eye. The eye 

consists of three different layers (tunic) [126]. The human vision process and the 

layers of the eye are as follows from the outermost to the innermost part [127]: 

1. Outer fibrous layer: This layer consists of the cornea. This part of the eye 

provides support and protection of the shape and structure of the eye.  It 

also provides a connection point for the extrinsic muscles, and the lights 

of objects first enter the eye through the cornea. 

2. Middle vascular layer: This layer consists of the iris. This section 

provides pathways for blood vessels and lymphatics for eye tissue. Iris 

regulates the size of the pupil and controls the light entering the eyes. At 

the same time, the iris controls the watery humour (vitreous gel) that 

regulates the shape of the lens and travels through the chambers of the 

eyes. 

3. Inner nerve layer: This layer consists of the retina. The retina is the 

innermost layer of the eye, consisting of a pigmented retina and a sensory 

retina, enhancing visual acuity and preventing the bounce of light and 

scattering from the sensory retina, transmitting light to electrical signals 

and sending visual information to the brain with optic nerves. Also, 

another essential point that should not be missed when talking about the 

inner nerve layer is fovea centralis. Fovea centralis is a small hole in the 

retina. When people focus on something, they are responsible for visual 

acuity. It is about 1 mm in diameter. Although it occupies less than one 

percent of the entire retina, it is responsible for half of the information 

transmitted to the primary visual cortex. Therefore, visual information 

passing through the fovea centralis reaches the visual cortex of the 
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occipital lobe. The neurons of the visual cortex transfer information to an 

image. Electrical impulses are sent to the brain by the optic nerve, and 

the image is formed [128]. 

 

Figure 2.11 a) Human eye structure b) Location of the fovea [127]. 

It is not enough to know the physiology of human vision briefly to make visual 

stimulus design in SSVEP based BCI applications. Because of the cells in different 

areas of the human visual cortex for different visual characteristics such as shape, 

frequency and colour. Therefore, the structures responsible for the colour, shape and 

frequency of each object used in the design are different. Two types of photoreceptor 

cells sense light in the retina region of the eye. These cells are called rods and cones 

[126]. Rods are photoreceptors that do not include separation of colours and enable 

people to see in a reduced light environment. The rods work better in dim light 

because they are light sensitive. Cones, which are other receptors, are photoreceptors 

that enable people to see in colour. Three types of cones called R (red) -G (green) -B 

(blue) cones have different sensitivity curves according to the wavelength of the 

light. The peak sensitivity of the curves of the three cones does not precisely 

correspond to the colours of red, green and blue. Therefore, they are sometimes 

named in wavelength, corresponding to the peak sensitivity, in the following order 

and wavelengths [128]: 
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· Long (L): 564-580nm (L)

· Medium (M):

· 534-555nm (M)

· Short (S): 440-498nm (S)

The number of these three types of cones is not equal, and the ratios of R: G: B cones 

are 40: 20: 1. Besides, the perception of colour vision is subject to various 

dimensions of the three stimulated cone types. In the human eye, the maximum 

absorption for the R-G-B type cone is, respectively [128]: 

· B: 498nm

· G: 534nm

· R: 564nm

Moreover, the human visual system consists of two main ways [101]. The first of 

these is called the Parvocellular (PC) path, and this path is colour sensitive, has lower 

contrast sensitivity, responds to higher spatial frequencies and lower temporal 

frequencies and continuous responses. The second is defined as the Magnocellular 

(MC) path and the MC path, known for its colour insensitivity, responds to lower

spatial frequencies and higher temporal frequencies with higher contrast sensitivity 

when the brightness is balanced. MC and PC paths start from the retina. The PC path 

carries colour (red-green-blue), spatial contrast and shape information. The MC path 

determines frequency and depth [101]. The MC path has faster transmission speed, 

more rapid adaptation to the constant stimulus, larger receiving area compared to the 

PC path. Therefore, the contribution of paths to the SSVEP stimulus design largely 

depends on the characteristics of the stimuli. For example, black and white 

checkerboards with high temporal frequency and low spatial frequency can evoke 

greater SSVEP on the MC path. In contrast, coloured checkerboards on the low 

temporal frequency and high spatial frequency can produce more robust SSVEP 

responses on the PC path than the MC path [101]. 
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2.6.2 Visual Stimulus  

When designing an SSVEP-based BCI, several choices must be made about the 

properties of the visual stimuli the system will use for an SSVEP response. Visual 

stimulus design is a critical step in SSVEP-based BCI studies, since the size, colour, 

environmental lighting, spatial frequency, shape, the light source of the stimulus, the 

rate of active/passive duration of the stimulus, and frequency affect the generated 

signal [124]. The visual stimulus used can be designed with repeated shapes at a 

specific frequency on the computer screen, as well as external light sources such as 

Liquid Crystal Display (LCD) and Light Emitting Diodes (LED) [123]. In this 

section, the properties that determine the characteristics of the visual stimulus will be 

introduced. 

• Size: The size of the stimulus is important in terms of being noticed. 

However, they should not be large enough to make it difficult to focus on the 

active stimulus on the screen with multiple stimuli. Because in this case, it is 

more challenging to ignore passive stimuli, and this is not the desired 

situation. At the same time, the stimulus size also affects the amount of light 

transmitted to the user [124]. Thus, size is an important criterion to determine 

how significant the stimulus should be or how much surface area remains for 

other stimuli. 

  

Figure 2.12 Different stimuli (colour, pattern, size) designed to generate SSVEP 

responses [124]. 

• Environmental lighting: Generally, lighted environments are more useful 

for the comfort of the user. However, in short-term trials, a bright stimulus in 
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the dark may appear much more pronounced and make focusing easier. The 

concept of environmental lighting is closely related to the stimulus displayed 

and the contrast of ambient lighting. The pupil expansions caused by a dark 

environment can cause the eye to catch more of the stimuli. Therefore, it may 

be easier to capture the SSVEP response. As a result, it has been shown that 

based on all these observations, SSVEP based BCI performance can be 

increased in dark environments [27]. 

• Contrast: Contrast, also known as “modulation depth”, is defined as (lmax -

lmin) / (lmax + lmin) × 100%. Here lmin, lmax denotes minimum and maximum

brightness, respectively. The importance of contrast for the SSVEP response

has been demonstrated by studies in which a higher contrast leads to stronger

SSVEP responses, particularly for dark stimuli, as mentioned in the previous

paragraph [129]. However, it has also been noted that higher contrast

provides lower comfort for long-term trials.

• Color: Main colors used in stimulus design other than black, white, gray are

red, green and blue. Colors differ in properties defined as hue, saturation and

lightness, and these more perceptual terms are known to affect the SSVEP

response [28].

Figure 2.13 Main colors used in stimulus design [124]. 

• Shape and Spatial Frequency: In SSVEP research, the form of stimulus is

divided into two classes as simple stimulus and complex stimulus. In this

classification, the simple stimulus class consists of single light source

flashing and / or single graphic (square, circle, rectangular, triangle, arrow,
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etc.) stimuli that flash on the monitor. Simple stimulus examples are shown 

in Figure 2.14. 

Figure 2.14 Simple stimulus examples used for visual stimulus design [110]. 

The complex stimuli class includes visual stimuli applied by periodic inversion of a 

shape, such as a checkerboard (chess) board, or a visual of a square graphic 

consisting of black and white stripes parallel to each other, at the desired frequency. 

Figure 2.15 shows the first case in a) and the inverse case in b). The spatial 

frequency is determined by the size and number of cells of the stimulus [124]. For 

example, Figure 2.15 c) shows a 6 cm chess board consisting of 4 x 4 pixels, while d) 

shows a 3 cm chess board consisting of 2 x 2 pixels. 

Figure 2.15 The complex stimulus designed for the SSVEP response is a) initial 

version b) inverted version [110] c) 4 x 4 dimension and d) 2 x 2 dimension [124]. 
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• Stimulation Source: Another important factor affecting both comfort and

performance is the stimulation source. There are two methods used as a

source of stimulation [130]:

- Light / lamp

- Computer monitors

When the sources used to obtain visual stimuli are examined, Cathode Ray 

Tube (CRT), LCD and LED sources are frequently found [123]. In a study 

comparing the amplitudes of SSVEP signals resulting from visual stimuli 

obtained using LED light, CRT monitor and LCD monitor, it was observed 

that the amplitude of the SSVEP signal obtained when using LED light was 

significantly higher than the monitors [123]. Although high amplitude SSVEP 

signal is obtained by using LED light, external hardware is needed to use 

LED lights. Therefore, the flexibility and portability of the system decreases. 

On the other hand, when CRT and LCD are compared, it has been observed 

that CRT monitors have a constant vibration that can create an unwanted 

SSVEP response at the refresh rate [131]. In contrast, LCDs do not have this 

problem, but generally lower contrast and refresh rates have occurred. Still, 

computer monitor stimulation has the advantage that monitors can be found 

everywhere and can be easily integrated into a computer-based system. 

Therefore, when the monitor is used, the visual stimulus is controlled from 

the computer through software, and signal processing applications are also 

carried out on the same computer at the same time. This provides the system 

with flexibility by reducing the hardware dependency of the BCI system. In 

the vast majority of SSVEP based BCI studies, the monitor is used as a 

source of visual stimuli [123]. 

• Frequency: SSVEP-based BCIs often use the frequency feature distinctively

to determine which target the user will focus on. For this reason, the system

should use the same number of targets that can be distinguished from each

other during the signal processing phase, as well as the number of targets it

will use as a control signal. According to research, high frequencies are more

comfortable and safe than low frequencies [130]. However, they produce a
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smaller response and may not be produced by most computer monitors. 

Because computer monitors have refresh rates that determine which 

frequencies can be displayed correctly. A device with a refresh rate R can 

generate the R / k frequency set correctly, where k≥2. Other frequencies can 

only be generated approximately. It has been shown that using frequencies 

that the monitor can generate accurately can significantly improve 

performance [123]. 

2.6.3 Signal acquisition and preprocessing 

Signal acquisition: Because the SSVEP signal is at low volts, it is first amplified, 

digitized, and preprocessed ready for processing and analysis then recorded [3]. 

Preprocessing: The purpose of the preprocessing step is to strengthen the SSVEP 

signal and increase the signal to noise ratio (SNR) [53, 132]. The low SNR value 

means that the information received by the brain remains behind other signals; in 

other words, it is challenging to detect valuable information. However, the high SNR 

value, on the contrary, makes it easier to obtain the desired information in the BCI 

system. Filtering techniques combined with transform techniques are used in the BCI 

system in the preprocessing step [133]. With these techniques, while the SNR value 

increases, unwanted signals are eliminated. 

Since the amplitude of SSVEP signals is very low, it easily contains various 

physiological and electromagnetic sources [134]. It is affected by devices that emit 

electromagnetic waves during measurement and physiological artefacts such as 

muscle and eye movements. Besides, brain activities not associated with the SSVEP 

signal can also be included in the noise class [135]. Examples of electromagnetic 

artefacts that interfere with SSVEP signals are telephone, tablet and similar devices, 

electrodes, or city mains (power line) in the environment during measurement. To 

reduce the effects of these disruptors, all electronic devices that can be turned off and 

power line interference is reduced by applying a suitable spectral filter, for example, 

a 50Hz notch filter. On the other hand, it is challenging to avoid disruptors caused by 

physiological artefacts, ocular (EOG), muscles (EMG) cardiac activities (ECG), 

breathing and sweating. EOG and EMG are the most problematic artefacts affecting 
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SSVEP-based BCI, but these artefacts can be detected in the SSVEP signal and 

reduced by various methods. 

The first step of preprocessing is usually filtering. The filters applied in the systems 

are divided into two groups as frequency-based filters and spatial filters [136]. 

Frequency-based filters are notch filters and band-pass filters. These filters can be 

applied to software or hardware. Some data acquisition units contain these filters. 

Using a band-pass filter, the signal is limited in a specific frequency band to include 

stimulus frequency and harmonics. Since the band-pass filter used in the studies uses 

visual stimulus in the low-frequency band, the frequency range is narrow and covers 

the low and mid-band frequencies. The notch filter is used to remove the mains 

frequency from the system [134]. 

2.6.4 Feature extraction  

SSVEP signals are usually recorded with a series of electrodes ranging from 1 to 512 

and a sampling frequency ranging from 100 Hz to 1000 Hz [80, 136]. Therefore, the 

number of data obtained is quite high. To get the best performance from the system, 

it is necessary to work with fewer data describing some relevant features of the 

signals. These data are defined as signal-specific "features". The features are usually 

collected in a vector known as the "feature vector" [80, 136]. Thus, feature extraction 

is defined as a process that receives one or more signals in a feature vector. 

Determining and removing useful features suitable for the signal structure from the 

signals is a crucial step in BCI design [53]. That is if the features extracted from 

SSVEP are not signal related or do not define the neurophysiological signals used 

well, the machine learning algorithms that make up the output of the system will 

have difficulty in determining the mental state of the user. Thus, the accuracy of 

recognition rates of the classification results will be very low [80]. Therefore, even if 

raw signals can be used as the input of the machine learning algorithm for some 

signals, it is essential and generally recommended to select and extract useful 

features to maximize the performance of the system by facilitating the task of the 

machine learning algorithm. Also, according to some studies, the selection of an 

excellent preprocessing and feature extraction method has been shown to have more 



44 

 

impact on the final performance than the choice of a good machine learning 

algorithm [80, 132, 134]. 

Numerous feature extraction techniques have been researched and proposed for 

EEG-based BCI systems [132, 134, 137]. These techniques can be divided into four 

main groups [80]: 

1) methods that use temporal information embedded in signals, 

2) methods using frequency information, 

3) hybrid approaches based on time-frequency representations using both temporal 

and frequency information, 

4) and other methods (e.g. spatial information, etc.). 

 

Figure 2.16 Feature extraction methods. 

2.6.4.1 Temporal methods 

Temporal methods use the temporal change characteristics of the signals as feature 

vectors. These methods are used primarily to identify neurophysiological signals 

with a precise and specific time signature, such as P300 or ERS - ERD, especially 

those triggered by motor images [80, 99, 100]. Among these temporal feature 

extraction methods, we can find the amplitude, statistical values, Mean Absolute 

Value, Slope Sign Changes, Zero Crossings, autoregressive parameters or Hjorth 

parameters of the raw EEG signals. 

 2.6.4.2 Frequential methods 

EEG signals consist of a series of specific oscillations known as brain waves 

(rhythms) [138], which are also described in Brain Architecture in section 2.1. 

Performing a particular mental task that the BCI user focuses on changes the 
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amplitude of these different rhythms. Besides, in SSVEP signals, oscillations with 

frequencies synchronized with the stimulus frequency are expected [24, 25]. 

Therefore, it seems necessary to use frequently used frequency information 

embedded in EEG signals [139]. Two frequency-based methods and variations are 

often used in research. These are band power features and power spectral density 

features. 

2.6.4.3 Time-frequency representations 

Given that the neurophysiological signals (EEG, EMG, EOG, etc.) used in a BCI 

generally have specific properties in both temporal and frequency domains [53], 

time-frequency methods that can be seen as hybrid were used for the BCI design. 

These methods are based on various time-frequency representations and are extracted 

from signal information, both frequency and temporal [132]. The main advantage of 

these time-frequency displays is that they can capture relatively sudden temporal 

information. On the contrary, frequency methods assume that the signal is in a steady 

state. 

 2.6.4.4 Other feature extraction methods 

Apart from the time domain, frequency domain and time-frequency features, other 

feature extraction methods were also used in BCI design [80]. Among these methods, 

methods based on interactions between signals can be mentioned. Because measuring 

the consistency of phase synchronization between sensors has proven to be effective 

for extracting EEG features in BCI [134]. Similarly, identification of EEG signals 

has made it possible to distinguish between different brain states thanks to brain link 

graphs. Using the interactions between the sensors, the fractal size of the signals or 

their multiple fractal spectrum has been used as features for BCI [134]. Finally, 

several studies have shown that using features extracted using different methods may 

result in increased system performance [80, 140, 141, 142]. 

Although many feature extraction methods have been proposed for BCI, it is 

challenging to identify the most efficient ones due to lack of comparison [80]. It is 

also essential to obtain a small number of features that represent context-specific 

information to achieve good performances. Therefore, it is vital to use adjustable 
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features (i.e. band power features in which frequency bands can be adapted to the 

subject) and dimensionality reduction or feature selection techniques to facilitate the 

subsequent operation of the classifier [143]. Although relatively many feature 

extraction techniques have been proposed, it is a fact that the BCI community should 

investigate and analyze new feature extraction methods and concepts. More 

precisely, it is crucial to have more interpretable BCI to find features that will lead to 

more efficient BCI design in terms of accurate recognition rates and to learn more 

about the mental processes that BCI users use to control the system. 

2.6.5 Classification  

The third important step in identifying neurophysiological signals in an SSVEP-

based BCI is to convert features to desired outputs. This step is called 

"classification". The purpose of the classification step is to assign a class to the 

feature vector previously extracted automatically. This class represents the type of 

mental task performed by the BCI user. Classification is carried out using algorithms 

known as "machine learning". Machine learning algorithms can learn how to define 

the class of a feature vector through training sets. These sets consist of feature 

vectors labelled with their belonging classes [144, 145]. 

2.6.6 Evaluation of classification  

While training machine learning algorithm to classify SSVEP signals is an important 

step, it is essential to consider how the algorithm is generalized on unprecedented 

data (test set) [145]. We need to know if the algorithm works correctly and whether 

we can trust its predictions. The machine learning algorithm can only memorize the 

training set. Therefore, it can make reasonable predictions about future examples or 

examples that it has not seen before. Thus, it is one of the essential steps for BCI 

systems to know and apply the techniques used to evaluate how well a machine 

learning model generalizes to new, unprecedented data [146]. 

Model Evaluation Techniques 

The model assessment step is an integral part of the model development process. It 

helps to find the best model that represents our data and how well the chosen model 

will work in the future. Methods for evaluating the performance of a classification 
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model generally divided into two categories: Hold-out and Cross-validation (CV) 

[145]. Both methods use a test set to evaluate model performance. It is not 

recommended to use the previously used data to assess the model. Because our 

model will remember the entire training set and therefore, will always predict the 

right label for any data in the training set, this is called “overfitting” [144]. 

Hold-out technique 

The purpose of the hold-out evaluation is, as mentioned earlier, to test a model on 

different data than it is trained. This method provides an unbiased estimate of 

learning performance [145]. 

In this method, the dataset is randomly divided into three subsets: 

1. Training set: A subset of the data set used to create predictive models. 

2. Validation set: It is a subset of the data set used to evaluate the 

performance of the model created during the training phase. It 

provides a testing platform to fine-tune the parameters of a model and 

choose the model that performs best.  

3. Test set (Unprecedented data): It is a subset of the data set used to 

evaluate the possible future performance of a model. If a model fits 

the training set better than the test set, this is due to overfitting. 

The hold-out approach is useful due to its speed, simplicity and flexibility. However, 

this technique is generally compatible with high variability because differences in the 

training and test dataset can cause significant differences in accuracy estimation 

[145]. 

Cross-validation technique 

Cross-validation (CV) is a technique that includes dividing the original observation 

dataset into a training set used to train the model and an independent set used to 

evaluate the analysis [146]. 

The most common CV technique is k-fold cross-validation, where the original data 

set is subdivided into k equal-sized sub-samples called folds. k is a user-determined 

number, usually 5 or 10 as the preferred value, this is repeated k so that each time 
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one of the k subsets is used as the test set/validation set, and the other k-1 subsets are 

combined to form a training set. Error estimation is averaged in all k trials to obtain 

the total effectiveness of our model. If k is equal to the sample size, this is called 

"leave-one-out" [147]. 

For example, when performing 5-fold cross-validation, the data is first divided into 

five parts (approximately) of equal size. Many models are trained. The first model is 

trained using the first fold as the test set, and the remaining folds are used as the 

training set, this is repeated for each of these five folds of data, and the accuracy 

estimate is averaged in all five trials to obtain the total effectiveness of our model 

[148]. 

As can be seen, each data element is used precisely once in a test set and k-1 is used 

once in a training set, this significantly reduces bias as we use most of the data for 

the training set, and significantly reduces the variance as most of the data is also used 

in the test set. Changing training and test sets also contributes to the effectiveness of 

this method [145]. 

Model Evaluation Metrics 

Model evaluation metrics are required to measure model performance. The choice of 

assessment metrics depends on a particular machine learning task (such as 

classification or regression) [145]. Also, some metrics, such as sensitive recall, are 

useful for multiple tasks. Supervised learning tasks such as classification and 

regression constitutes most of the machine learning applications, including this thesis 

study. Some of the most commonly used metrics for these two supervised learning 

models are confusion matrix, logarithmic loss, area under the curve (AUC).  

The confusion matrix is used in this thesis, and it will be discussed in detail in 

section 3.5.2. 



3. MATERIAL AND METHODS

3.1 Data Set Description and Preprocessing 

In this thesis, the data set (AVI SSVEP Dataset) containing steady-state visual 

evoked potential signals designed and recorded by Adnan Vilic was used [149]. The 

data set contains data that include EEG measurements of healthy individuals looking 

at the repetitive flashing target to trigger responses of SSVEP signals at different 

frequencies, and the data set is free. All data were recorded using three electrodes 

(Oz, Fpz, Fz). Using the standard international 10-20 system for electrode placement, 

the reference electrode is positioned in Fz with the signal electrode in Oz and Fpz in 

the ground electrode. Impedances are kept at 5kΩ or below. The amplifier used is 

g.USBamp from g.tec (Guger Technologies) set to a 512 Hz sampling rate. Figure

3.1 shows the electrode cap used for all experiments and the layout of the electrodes. 

Figure 3.1 Electrode placement throughout experiments using 10-20 system (left), 

and electrodes used in this study (right) [149].  

Subjects sat in front of an LCD computer display with a refresh rate of 120 Hz. 

Contrast and brightness are set to maximum. In addition, the screen resolution is 

1680x1050 pixels. The targets presented to the subjects were arranged to have an 

area of 2.89 cm2. An application was developed in Microsoft Silverlight to display 

the visual stimulus to subjects and was run on a Windows 8-based computer.  An 

analogue notch filter was applied to the data obtained at interference frequency 

(50Hz) [149]. The data were saved as .mat files opened using Matlab or Octave. As 
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an alternative file archive, raw EEG and target frequencies are created in .csv 

(comma-separated values) files that can be opened by any text editor. The difference 

between these two file types (.mat and .csv) is that .mat files contain more metadata 

about installation. 

Figure 3.2 Hardware installation for experiments [149]. 

In this experiment, individuals have seated 60 cm away from a monitor staring at a 

single repetitive flashing target whose colour changed rapidly from black to white. 

The test stimulus is a flashing box at seven different frequencies (6 - 6.5 - 7 - 7.5 - 

8.2 - 9.3 - 10 Hz) presented on the monitor. The data set consists of four sessions 

with four different participants. Each session in a session lasts 30 seconds and 

participants take a short break between trials. Experiments were repeated at least 

three times for each frequency. Table 3.1 presents a list of physiological knowledge 

(gender and age) of healthy individuals who participated in the experiment. 

Table 3.1 List of participants for single target flickering (Male (M), Female (F)). 

LIST OF PARTICIPANTS IN SINGLE TARGET 

STIMULATION 

Participant 1 2 3 4 

Gender M M M F 

Age 32 27 27 31 
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3.2 Feature Extraction 

It is possible to define the neurophysiology of the human visual system, the neuronal 

activity of the visual cortex is replaced by visual stimulation, and variations of the 

brain response related to the features of the visual stimulus such as brightness, 

contrast and frequency [27, 28]. Neurons in the visual cortex synchronize their 

flickering to the frequency of blinking of the visual stimulus. Steady-state visually 

evoked potentials occur when visual stimuli are repeatedly presented, creating almost 

sinusoidal oscillations [26]. The SSVEP response shows an increase in energy at the 

same frequency of the blinking stimulus [26, 27, 28]. The strongest response occurs 

in the visual cortex of the brain (occipital), but other areas of the brain are also 

activated to different degrees [24, 25]. SSVEP marks can be detected even for 

narrow frequency bands around the visual stimulation frequency with signal 

processing methods that take advantage of the specific features of the signal such as 

timing, frequency and rhythm [23]. SSVEP-based BCI systems use visual 

stimulation as a way to evoke a particular electrical pattern in the visual (occipital) 

cortex [29]. Unlike independent EEG based BCI systems where the application is 

based on voluntary control of the subject's neural activity, the operation of SSVEP 

systems depends on the intended action, that is, the subject's ability to focus, fix 

(correct) and follow visual stimuli [20, 22, 23]. In addition, this thesis is on accepted 

signal processing strategies that validate the comprehensive scenarios analyzed. 

Performance of SSVEP based BCI systems depends on the signal analysis used, 

feature extraction, and classification methods [23, 29, 30, 53]. For this purpose, 

analyzes were made by extracting features from three different domains (time, 

frequency and time-frequency) containing the signal's information. 

3.2.1 Time-domain based feature extraction 

The EEG time domain features are extracted from information in the original field 

(i.e. time-domain) of the EEG signal. Table 3.2 describes the relevant and distinctive 

EEG time-domain features we identified. These features are based on the amplitude 

(e.g. Average amplitude change value, root mean square, interquartile ranges, etc.) 
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and statistical changes of the EEG signal (e.g., mean, variance, skewness, and 

kurtosis, etc.) [150, 151, 152, 153].  

Table 3.2 EEG time-domain features (EEG signal is represented by x, and 𝐹𝑖
(𝑡)

stands 

for the EEG features computed from x). 

EEG TIME-DOMAIN FEATURES (𝑭𝒊
(𝒕)
) 

No. Features No. Features 

1. EEG minimum value 14. Kurtosis of EEG signal 

2. EEG maximum value 15. Skewness of EEG signal 

3. EEG mean value 16. Hjorth identifiers: 1) Activity 

4. EEG standard deviation value 17. Hjorth identifiers: 2) Mobility 

5. Integrated EEG value 18. Hjorth identifiers: 3) Complexity 

6. Mean absolute value 19. Signal range (max-min.) 

7. Simple square integral value 20. Inter-quarter intervals 1st Quartile 

8. EEG variance value 21. 
Inter-quarter intervals 2nd Quartile 

(Median) 

9. Root mean square value 22. Inter-quarter intervals 3rd Quartile 

10. Waveform length value 23. Zero-crossing 

11. Average amplitude change value 24. Slope-change value 

12. Absolute difference in standard deviation 25. Mode value of the signal 

13. Maximum fractal length   

 

The formulas of the time-domain based features which are examined within the 

scope of this thesis and summarized in Table 3.2 are given below: 

Minimum value                    𝐹1
(𝑡)

= 𝑀𝐼𝑁 = min⁡(𝑥𝑛)                                           (3.1) 

Maximum value                   𝐹2
(𝑡)

= 𝑀𝐴𝑋 = max⁡(𝑥𝑛)                                          (3.2) 

Mean value                           𝐹3
(𝑡)

= 𝑀𝐸𝐴𝑁⁡(𝑥̅) =
1

𝑁
∑ 𝑥𝑛
𝑁
𝑛=1                                 (3.3) 

Standart deviation value       𝐹4
(𝑡)

= 𝑆𝑇𝐷⁡(𝜎) = √
1

𝑁
∑ (𝑥𝑛 − 𝑥̅)2𝑁
𝑛=1                      (3.4) 
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Integrated EEG                     𝐹5
(𝑡)

= 𝐼𝐸𝐸𝐺 = ∑ |𝑥𝑛|
𝑁
𝑛=1                                           (3.5) 

Mean Absolute Value           𝐹6
(𝑡)

= 𝑀𝐴𝑉 =
1

𝑁
∑ |𝑥𝑛|
𝑁
𝑛=1                                        (3.6) 

Simple Square Integral         𝐹7
(𝑡)

= 𝑆𝑆𝐼 = ∑ |𝑥𝑛|
2𝑁

𝑛=1                                            (3.7) 

Variance of EEG                  𝐹8
(𝑡)

= 𝑉𝐴𝑅𝑡 =
1

𝑁−1
∑ (𝑥𝑛 − 𝑥̅)2𝑁
𝑛=1 ⁡                         (3.8) 

Root mean square                 𝐹9
(𝑡)

= 𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑛2
𝑁
𝑛=1                                      (3.9) 

Waveform Length                𝐹10
(𝑡)

= 𝑊𝐿 = ∑ |𝑥𝑛+1 − 𝑥𝑛|
𝑁−1
𝑛=1                                (3.10) 

Average amplitude change    𝐹11
(𝑡)

= 𝐴𝐴𝐶 =
1

𝑁
∑ |𝑥𝑛+1 − 𝑥𝑛|
𝑁−1
𝑛=1 ⁡⁡⁡⁡⁡⁡⁡⁡                   (3.11) 

Absolute differ. in std.          𝐹12
(𝑡)

= 𝐷𝐴𝑆𝐷𝑉 = √
1

𝑁−1
∑ (𝑥𝑛+1 − 𝑥𝑛)2
𝑁−1
𝑛=1            (3.12) 

Maximum fractal length       𝐹13
(𝑡)

= 𝑀𝐹𝐿 = 𝑙𝑜𝑔10 (√∑ (𝑥𝑛 − 𝑥𝑛+1)2
𝑁−1
𝑛=1 )         (3.13) 

Kurtosis value                       𝐹14
(𝑡)

= 𝐾 =⁡
1

𝑁
∑

(𝑥𝑛−𝑥̅)
4⁡

𝜎4
𝑁
𝑛=1 ⁡                                   (3.14) 

Skewness value                     𝐹15
(𝑡)

= 𝑆𝑘 = ⁡
1

𝑁
∑

(𝑥𝑛−𝑥̅)
3

𝜎3
𝑁
𝑛=1                                    (3.15) 

Hjorth (Activity)                 𝐹16
(𝑡)

= 𝐴 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒⁡(𝑥(𝑛)) =
1

𝑁
∑ (𝑥𝑛 − 𝑥̅)2𝑁
𝑛=1    (3.16) 

Hjorth (Mobility)                  𝐹17
(𝑡)

= 𝑀 = √
𝐴⁡(

𝑑𝑥(𝑛)

𝑑𝑛
)

𝐴⁡(𝑥(𝑛))
                                              (3.17) 

Hjorth (Complexity)              𝐹18
(𝑡)

= 𝐶 = ⁡
𝑀(

𝑑𝑥(𝑛)

𝑑𝑛
)

𝑀(𝑥(𝑛))
                                                (3.18) 

Signal Range                         𝐹19
(𝑡)

= 𝑅 = max(𝑥𝑛) − 𝑚𝑖𝑛(𝑥𝑛)                           (3.19) 

First quartile                          𝐹20
(𝑡)

= 𝑄1 = 𝑥 [
(𝑁+1)

4
]                                             (3.20) 

Inter-quartile (median)          𝐹21
(𝑡)

= 𝑄2 = 𝑄3 − 𝑄1 = ⁡𝑥 [
3(𝑁+1)

4
] − ⁡𝑥 [

(𝑁+1)

4
]⁡   (3.21) 
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Third quartile 𝐹22
(𝑡)

= 𝑄3 = 𝑥 [
3(𝑁+1)

4
] (3.22) 

Zero-crossing value  𝐹23
(𝑡) =

1

2𝑁
∑ |𝑠𝑖𝑔𝑛[𝑥𝑖(𝑛)] − 𝑠𝑖𝑔𝑛[𝑥𝑖(𝑛 − 1)]|𝑁−1
𝑛=1   (3.23) 

𝑠𝑖𝑔𝑛[𝑥𝑖(𝑛)] = ⁡ {
1, 𝑥𝑖(𝑛) ≥ 0,

⁡⁡⁡⁡⁡⁡⁡⁡⁡−1, 𝑥𝑖(𝑛) < 0.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

Slope change  value        𝐹24
(𝑡)

= 𝑆𝐶 = ∑ [𝑓[(𝑥𝑛 − 𝑥𝑛+1)⁡.⁡⁡(𝑥𝑛 − 𝑥𝑛+1)]]
𝑁−1
𝑛=1 ⁡ (3.24) 

𝑓(𝑥) = ⁡ {
1,⁡⁡⁡⁡⁡𝑖𝑓 → 𝑥⁡ ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

Mode value 𝐹25
(𝑡)

= Most⁡frequent⁡value⁡in⁡a⁡data⁡set⁡  (3.25) 

3.2.2 Frequency-domain based feature extraction (EEG frequency-

domain features 

EEG signals consist of a series of specific oscillations known as rhythms, as 

mentioned earlier. Performing a specific mental, sensory or visual task changes the 

amplitude of these rhythms [24, 138]. Moreover, signals such as SSVEP are 

identified by oscillations with frequencies synchronized with the stimulus frequency 

[25]. For this reason, many EEG-based BCI systems use frequency information 

embedded in the signal in the feature extraction process. In the literature, spectral 

estimation methods are generally used [21, 125, 132-137, 140-142, 153, 154]. Within 

the scope of this thesis, EEG frequency features were extracted from the frequency 

domain representation of the EEG signal using a Fourier transform. The relevant and 

distinctive EEG frequency characteristics we detected are based on the spectral 

information of EEG signals for each EEG rhythm, such as energy, variance and 

spectral entropy.  

These features explain how power, variance, and irregularity (entropy) change in 

some related frequency bands. In practice, this means that these features will use 

their power in certain frequency bands [133, 151]. 

1) Features based on power spectrum, energy of each frequency band,
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𝐹1
(𝑓)

= 𝐸𝑛𝑒𝑟𝑔𝑦𝑓 = ∑ 𝑦(𝑘)2𝑀
𝑘=1           (3.26) 

Here is the Fourier transform of the analytic signal y of a real discrete time EEG 

signal x. 

𝐹1
(𝑓)

= 𝐸𝑓 stands for the EEG features computed from y, and M corresponds to the

maximum frequency. 

2) Features based on variance of each EEG frequency band

𝐹2
(𝑓)

= 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑓 =
1

𝑀−1
∑ (𝑦𝑘 − 𝑦̅)2𝑀
𝑘=1       (3.27) 

“𝑦̅” in the formula gives the average of the “y” signal. 

3) Fetaure based on entropy of each EEG frequency band: Spectral entropy

measures the regularity of the power spectrum of EEG signal

𝐹3
(𝑓)

= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑓 =
1

log(𝑀)
∑ 𝑃(𝑦(𝑘)) log 𝑃(𝑦(𝑘))𝑀
𝑘=1 (3.28) 

3.2.3 Wavelet transform based feature extraction 

As the last feature extraction method, the features are extracted by using Discrete 

Wavelet Transform (DWT) including time-frequency domain properties [155]. 

Discrete wavelet decomposition was applied for the signal used, and the features 

were extracted from SSVEP signals using wavelet transform. In signal processing 

with wavelet transform, selecting a suitable mother wavelet is always the most 

important and the first step [35, 155, 156, 157]. Different mother wavelets give 

different wavelet transform coefficients in the same SSVEP segment. Thus, different 

results are obtained in each mother wavelet [156]. Wavelet families where mother 

wavelet types are compared for EEG signal in the literature, and which are used in 

the presented study are shown in Table 3.3 and Table 3.4 respectively.  
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Table 3.3 Wavelet families in the literature used for mother wavelet comparisons of 

the EEG signal. 

WAVELET FAMILY 

Name Abbreviation Representations 

Haar wavelet haar 

Daubechies 

wavelets 
db 

Symlets sym 

Coiflets coif 

Biorthogonal 

wavelets 
bior 

Reverse 

biorthogonal 

wavelets 

rbio 

Meyer wavelet meyr 

Mexican hat 

wavelet (Ricker 

wavelet) 

mexh 

Morlet wavelet morl 

Complex Morlet 

wavelets 
cmor 

Discrete 

approximation of 

Meyer wavelet 

dmey 
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           Table 3.4 Wavelet families used in this study. 

WAVELET FAMILY 

Name Abbreviation Representations 

Haar wavelet haar 

 

Daubechies 

wavelets 
db 

 

Symlets sym 

 

Coiflets coif 

 

Biorthogonal 

wavelets 
bior 

 

Reverse 

biorthogonal 

wavelets 

rbio 

 

 

3.2.3.1 Wavelet decomposition  

EEG signal is non-stationary [12] [24], so Wavelet Transform has been used to 

examine not only spectral analysis of the signal but also the spectral behavior of the 

signal over time [157]. This method is a smooth and fast oscillating function that is 

well localized in frequency and time [155-157]. Wavelet transform (WT) can be 

applied as a specially designed dual FIR filter. The frequency responses of the FIR 

filters separate the high frequency and low-frequency components of the input signal 

[35, 155-157]. The point of dividing the signal frequency is usually between 0 Hz 

and half the data sampling rate (Nyquist frequency). In the multi-resolution 

algorithm (MRA) of the wavelet transform, the identical wavelet coefficients are 

used in both low-pass (LP) and high-pass (HP) filters [35]. The Low Pass filter 

coefficients are associated with the scaling parameter; the scale parameter will decide 

the oscillatory frequency and the length of the wavelet. At the same time, the High 
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Pass filter is associated with the wavelet function. Figure 3.3 shows the tree 

algorithm of an MRA of wavelet transforms for a discrete SSVEP signal sampled at 

512 Hz. The outputs of the LP filters are called the approximations (a) coefficients, 

and the outputs of the HP filters are called the details (d) coefficients. In MRA of 

WT, any time-series signals can be entirely decomposed in terms of the a and d 

coefficients based on decomposition level, as presented in Figure 3.3. 

Implementation of DWT on raw signal produces an MRA of various statistical and 

non-statistical parameters across time and frequency. The subsets of the wavelet 

coefficients of the decomposition tree were selected as input vectors to the classifier. 

The SSVEP signals are decomposed into nine frequency, di is the detail band while ai 

is the approximation band and i = 1, 2, . . ., 9 for 512 Hz sampling frequency.  

 

Figure 3.3 Components of wavelet coefficients and decomposition of subbands for 

512 Hz sampling frequency. 
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3.2.3.2 Parameters for feature extraction 

Using different DWT functions (Haar, Db2, Sym4, Coif1, Bior3.5, Rbior2.8), 

SSVEP signals are subdivided into frequency subbands (delta, theta, alpha, beta, 

gamma) showed in Figure 3.4, and the energy, entropy and variance values of each 

band calculated [35, 158-163]. As seen in Figure 3.4, each DWT frequency band is 

associated with one or two EEG rhythms. Thus, a number of features represented in 

the frequency bands were obtained. 

Figure 3.4 Relationship between DWT frequency coefficients and EEG rhythms. 

Energy at each decomposition level was calculated using the following equations 

[35, 64-67, 158-163]:      

𝐹1
(𝑤)

= 𝐸𝑑𝑖 =⁡∑ |𝑑𝑖𝑗|
2𝑁

𝑗=1 ⁡,⁡⁡⁡⁡⁡𝑖 = 1,2,3, … , 𝑙        (3.29) 

𝐹1
(𝑤)

= 𝐸𝑎𝑖 =⁡∑ |𝑎𝑖𝑗|
2𝑁

𝑗=1 ⁡,⁡⁡⁡⁡⁡𝑖 = 1,2,3, … , 𝑙 (3.30)    

where dij and aij, in the equations expresses each of the detail and approximate 

coefficients respectively, formed by the wavelet level corresponding to each EEG 

subband (delta, theta, alpha, beta, gamma). 𝑖 = 1,2,3,… , 𝑙  is the wavelet 

decomposition level from levels 1 to 𝑙. Here N represents the number of detail and 

approximate coefficients at each decomposition level.   
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Another feature, the entropy at each decomposition level is calculated using the 

following equation [35, 44, 54, 64-67]: 

 

𝐹2
(𝑤)

= 𝐸𝑛𝑡𝑖 =⁡−∑ 𝑑𝑖𝑗
2 log(𝑑𝑖𝑗

2)𝑁
𝑗=1 ⁡,⁡⁡⁡⁡⁡𝑖 = 1,2,3, … , 𝑙            (3.31)                

 

The variance at each decomposition level was calculated using the following 

equation [35, 163]: 

𝐹3
(𝑤)

= 𝑉𝑎𝑟𝑖 =⁡
1

𝑁−1
∑ (𝑑𝑖𝑗 − 𝜇𝑖)

2𝑁
𝑗=1 ⁡,⁡⁡⁡⁡⁡𝑖 = 1,2,3, … , 𝑙              (3.32) 

Here 𝜇𝑖 represents the mean and is given by: 

𝜇𝑖 =⁡
1

𝑁
∑ 𝑑𝑖𝑗
𝑁
𝑗=1 ⁡,⁡⁡⁡⁡⁡𝑖 = 1,2,3, … , 𝑙                                                (3.33) 

Extracted features, which consist of different combinations, (𝑙 +1) dimensional are 

used as input vectors. That is to say for an ‘𝑙’ level decomposition, the feature vector 

of any parameter can be represented as Feature = [xd1, xd2, …, xdl, xal] here x is the 

parameter (energy, entropy and variance) [35, 163]. 

3.3 Feature Selection with Statistical Evidence of ANOVA 

Feature selection is called the chosen or reduction of important features that will 

increase classifier performance and reduce our calculation time among the feature 

vectors after the feature extraction step [53, 143]. Since the data size decreases when 

the feature is selected, it does not guarantee to increase the estimation rate while it 

ensures to reduce the calculation load ratio [163]. 

In this study, wavelet features were created for the problem of distinguishing eight 

different frequencies, and the IBM SPSS 24 program [164] used in statistical analysis 

was used to see if there were significant differences between the features. One-way 

analysis of variance (ANOVA) was applied to see if there was a statistically 

significant difference between the features of the stimulation frequencies. To 

implement this test, it was first examined whether there was an outlier value in the 

data and whether it was suitable for normal distribution. No outlier data was found 
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during the visual inspection of the data. Then, normality tests, variance homogeneity 

tests, and one-way ANOVA tests were applied to the data with SPSS software. As a 

result of the normality test, if it was determined that the data were not suitable for 

normal distribution, normalization of the data was tried to be achieved by applying 

various transformations. The Levene test tested the variance homogeneity. Although 

this test will only be used in the selection of post-hoc tests to be applied according to 

the ANOVA test results, variance homogeneity was also tested. Finally, a one-way 

ANOVA test was used to check whether there was a statistically significant 

difference between the groups (stimulation frequencies). Although the ANOVA test 

shows that there is a difference between groups, it is not capable of showing which 

groups are separated. However, since the aim of this study was not to examine the 

differences in the groups with the post-hoc test, post-hoc tests were not performed. 

According to the selected statistical significance level (p), the features with a 

statistically significant difference between the measurements of stimulation 

frequencies were determined as the selected features. In this study, the statistical 

significance level (α) was chosen as 0.05. 

3.4 Machine Learning Classification Algorithms 

One of the most important sub-branches of supervised learning in machine learning 

is classification [80, 136, 139, 144, 145, 165, 166]. After feature extraction, 

classification is performed to recognize an SSVEP signal and convert it to command, 

that is, to use it as output [111]. For the classification process, the "datasets" formed 

by a certain number of feature vectors, of which class it belongs, are passed through 

the training period required by the classification type. As a result of this training, a 

decision mechanism algorithm is created, which is used to assign the unknown signal 

to the appropriate class [80, 134, 136]. 

In the classification phase, a single classifier was used in many EEG-based BCI 

systems [31-49, 80]. On the other hand, combinations of classifiers are very useful in 

synchronous experiments [42, 139, 152, 163, 167, 168]. In other words, measuring 

the performance of the system designed by looking at the performance of a single 

classifier may not always be the right way [80, 139, 165]. Therefore, in this thesis, 

feature vectors extracted from the SSVEP signal have been tested with seven basic 
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classifiers. The "Classifier Learner" application in the MATLAB software was used 

for the classification process, and the performances of all classifiers and their sub-

parameters on the data were examined. These classifiers consist of the following 

algorithms: Decision Trees (Fine, Medium, Coarse), Discriminant Analysis (Linear, 

Quadratic), Logistic Regression, Naive Bayes (Gaussian, Kernel-Based), Support 

Vector Machines (Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, 

Coarse Gaussian), k-Nearest Neighbor (Fine, Medium, Coarse, Cubic, Cosine, 

Weighted) and Ensemble Classifiers (Boosted, Bagged, Subspace Discriminant, 

Subspace KNN, RUSBoosted Trees). Brief descriptions of each machine learning 

algorithm are presented below as subtitles. 

3.4.1 Decision tree 

The decision tree is a machine learning algorithm that separates the independent 

variables in the data into nodes according to information gain and gives the average 

in the range (learned during training) in response to a value from the relevant range 

during the prediction [144]. How to divide into nodes in decision tree algorithms is 

one factor that affects the accuracy of the tree. The creation of the lower nodes 

increases the homogeneity of the lower nodes. In other words, we can say that the 

node's purity increases according to the target variables. Therefore, decision trees use 

multiple algorithms to decide to split a node into two or more sub-nodes. The choice 

of algorithm depends on the type of target variable, but the most frequently used 

algorithms for categorical variables are Entropy, Gini, and Classification Error 

Method [80]. In this study, entropy was used. Entropy is a measure of randomness 

and irregularity in our data. Decision tree try to maximize information gain by 

making choices that reduce the entropy value (degree of randomness) of the current 

situation. It recalculates the error function in each node and selects the 

question/status with the lowest error. 
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Figure 3.5 Basic structure of a decision tree classifier. 

 

Entropy and information gain are calculated by the following equation, respectively 

[144]: 

                           𝐸𝑛𝑡𝑟𝑜𝑝𝑦⁡(𝑆𝑖) = −∑ 𝑃𝑖 log2 𝑃𝑖
𝑚
𝑖=1                                                (3.34)        

Here, 𝑝𝑖 indicates the percentage of the group belonging to a particular class. 

                          𝐺𝑎𝑖𝑛(𝑆, 𝐷) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)𝑣𝜖𝐷                 (3.35)              

Here, 𝑆 is the original dataset, and 𝐷 is a divided part of the set. Her 𝑆𝑣, 𝑆’nin bir alt 

kümesidir. Each 𝑆𝑣 is a subset of 𝑆, that is, 𝑆𝑣 is all discrete and constitutes 𝑆. In this 

case, information gain is defined as the difference between the entropy of the original 

data set before the split and the entropy value of each feature. 

3.4.2 Discriminant analysis (Linear and Quadratic discriminant) 

The purpose of discriminant analysis is to divide the independent variables in the 

data correctly into homogeneous groups [80]. Linear Discriminant Analysis (LDA) 

determines group elements and calculates the probability of belonging to different 

groups for each component. The element is then assigned to the group with the 

highest probability score. LDA creates a linear discriminatory function that assumes 

that predictors are normally distributed (Gauss distribution) and that different classes 

have class-specific elements and equal variance/covariance. Quadratic Discriminant 

Analysis (QDA) does not assume that variance/covariance is equal. So, the 
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covariance matrix for QDA can be different for each class. Thus it configures the 

discriminatory function to be of second-order [144, 145]. 

LDA gives better results than QDA when you have a small training set. In contrast, if 

the training set is too large, the classifier's variance will not be a significant problem, 

or if the common covariance matrix assumption for classes of data cannot be 

explicitly defended, QDA is recommended. Discriminatory functions of LDA and 

QDA are then used to classify observations. The overall fit is assessed by looking at 

what the group means and how well the model is classified [144]. 

  

Figure 3.6 Linear vs. quadratic discriminant analysis classifiers. 

3.4.3 Logistic regression  

Logistic regression is used in the modeling of variables that give binary results. In 

models with binary status, the result is usually defined as 0 or 1. With the help of a 

hypothesis in logistic regression, the probability of the situation is estimated. The 

data extracted from this hypothesis are converted into the logistic function (log 

function), which creates an S-shaped curve known as "sigmoid" [144, 145]. 

  

Figure 3.7 Logistic regression model.  
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The graphic created above is made through this logistic function [144]: 

𝑓(𝑥) =
1

1+𝑒−𝑥
(3.36)   

In this equation, ‘𝑒’ represents the sigmoid curve that takes a value between 0 and 1. 

Accordingly, we write the logistic regression equation as follows: 

𝑦 =
𝑒𝑏0+𝑏1∗𝑥

1+(𝑒𝑏0+𝑏1∗𝑥)
(3.37) 

In this equation, b0 and b1 are two coefficients of input x. We estimate these two 

coefficients using "maximum likelihood estimation" [145]. 

3.4.4 Support Vector Machines 

Support Vector Machines (SVM) is a supervised machine learning algorithm based 

on statistical learning theory found in 1963 by Vladimir Vapnik and Alexey 

Chervonenkis [145]. SVM is basically used to optimally separate data from two or 

more classes. For this, decision boundaries, or in other words, hyperplanes, are 

determined. SVM is divided into two groups according to whether the data set can be 

separated linearly or not. In the data that can be separated linearly, the hyperplane 

must be closest to the two classes' boundary lines for the decision line to give correct 

results to the new data. Vectors closest to this boundary line are called support 

vectors. Class labels such as -1, +1 are generally used for classification with support 

vector machines [80, 144]. The planes on the support vectors shown in dashed lines 

in Figure 3.8 are called boundary planes. The plane located in the middle of the 

boundary planes and equidistant from both planes is defined as the hyperplane. 

Figure 3.8 shows the class labels -1 and +1, the weight vector w (normal of the 

hyperplane), and b the slope value. 
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Figure 3.8 Model of SVM algorithm.  

In cases where the data set cannot be classified linearly, the mapping of each data 

with the upper property space and its classification in this new space with the help of 

a hyperplane is performed using the "Kernel trick". This trick is achieved by 

indirectly mapping data to another space with much higher dimensions using the 

kernel function K (x, y). The Kernels commonly used in EEG-based BCI studies are 

the Gauss or Radial Basic Function (RBF) [80]: 

                                                𝐾(𝑥, 𝑦) = exp⁡(
−‖𝑥−𝑦‖2

2𝜎2
)                                       (3.38) 

In this equation, “𝜎” represents the RBF width. 

SVM classifiers are used in many classification problems from face recognition 

systems to speech analysis. 

3.4.5 K-nearest neighbor classifier  

K-nearest neighbor (KNN) classifier was proposed in 1967 by T. M. Cover and P. E. 

Hart [53]. The KNN algorithm is running by using data from a sample set with 

certain classes. The closeness of the new data to be included in the sample data set is 

calculated according to the existing data, and the “K” number of neighbors are 

checked. Whichever of these neighbors is more, the label of the new data consist of 

the decision of that class [53]. 
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Figure 3.9 KNN step-by-step running scheme. 

Generally, 2 types of distance functions are used for distance calculations: 

                                                  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑥𝑖 −⁡𝑦𝑖)2
𝑁
𝑖=1                           (3.39) 

                                            𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 = ∑ |𝑥𝑖 −⁡𝑦𝑖|
𝑁
𝑖=1                             (3.40) 

KNN is one of the most popular machine learning algorithms because it is old, simple 

and resistant to noisy training data. However, it also has disadvantages. The most 

important of these is that it requires a lot of memory space when used for big data 

since it stores all the situations when calculating the distance [80, 145]. 

3.4.6 Naive bayes classifier 

The Naïve Bayes classifier is a probabilistic approach to the pattern recognition 

problem that can be used with a proposition that seems quite restrictive at first glance. 

This proposition is that each descriptive feature or parameter to be used in pattern 
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recognition should be statistically independent. It is a simplified version of Bayes' 

theorem. Bayes' theorem is expressed by the following equation [53, 144]: 

𝑃(𝐴\𝐵) = ⁡
𝑃(𝐵\𝐴)𝑃(𝐴)

𝑃(𝐵)
   (3.41)

P ( A \ B ) = Probability of event A when event B occurs 

P ( A ) = Probability of event A 

P ( B \ A ) = Probability of event B when event A occurs 

P ( B ) = Probability of event B 

Using the Bayes theorem, we can find the probability of being A given the B 

formation. Here B is proof and A is hypothesis. The assumption made here is that the 

predictors / features are independent. This means that the presence of a particular 

feature does not affect the other. So it is called “naive” [53]. 

3.4.7 Ensemble Learning 

Ensemble learning is meta algorithms that combine multiple machine learning 

techniques into a single prediction model (classifier) to improve deviation (boosting) 

and/or predictions (stacking) and also reduce variance (bagging) [53, 144, 169, 170, 

171]. According to this algorithm, single classifiers generally cannot achieve a 

specific and precise classification accuracy due to possible noise in the data, 

overlapping data distributions, and outliers. The purpose of creating the algorithm is 

that there is no single model (classifier) that works best for each classification 

problem. Therefore, ensemble learning methods are needed. An ensemble learning 

model is generally created in two ways [169, 170]: 

• “Sequential ensemble learning methods” in which the basic learners

(classifiers at the input) are produced sequentially (e.g., AdaBoost),

• “Parallel ensemble learning methods” in which basic learners are provided in

parallel (e.g., Random Forest).
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The purpose of the sequential ensemble learning method is to take advantage of the 

interdependence among the basic learners. Such as, overall performance can be 

improved by weighing previously mislabelled samples at a higher weight. 

The primary motivation of the parallel ensemble learning method is to benefit from 

the independence among the basic learners. For example, by taking the average in 

this method, the error can be significantly reduced. 

After the models are run sequentially or in parallel, the resulting model outputs are 

combined according to specific criteria, and the final classification decision is made. 

The basic framework of ensemble learning modelling is shown in Figure 3.10. 

 

Figure 3.10 The basic model of ensemble learning classification. 

Here, x represents the signal presented as an input to the models, hn(x) represents the 

model resulting from the classification and αn represents the combination criteria 

used based on the sequential or parallel operation of the models. 
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Figure 3.11 Summary and some important properties of classifiers used in this 

thesis. 

The classifier properties in Figure 3.11 describe the general characteristics of speed 

and memory usage for all preset classifiers that cannot be optimized. The classifiers 

were tested with various data sets (7000 observations, 80 estimators and 50 classes) 

available in the literature, and the results were defined as follows [172]: 

 

                          Table 3.5. Speed and memory value definitions of classifiers. 

SPEED MEMORY 

Fast  0.01 second Small 1 MB 

Medium  1 second Medium 4 MB 

Slow 100 seconds Large 100 MB 
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3.5. Evaluation of Machine Learning Algorithms Performance 

The k-fold cross-validation and confusion matrix evaluation criteria were used to 

evaluate the performance of the machine learning algorithms used in this thesis. 

3.5.1 k-fold cross-validation 

The feature set consisting of the features extracted from the data sets used in this 

thesis is divided into train and test sets. Although the classifier's parameters are 

adjusted using the train set, the classifier performance is tested using the test set. It is 

necessary to achieve a good generalization performance for a classifier [53]. One of 

the most commonly used methods for dividing the data set as a train and test sets is 

the k-fold cross-validation method [145]. In this method, the data set is randomly 

divided into k segments. Among these segments, k-1 parts are used for the training, 

and the remaining part is used for the testing. This process is repeated until all parts 

are used for testing separately. The test errors are recorded each time, and the 

average of the errors after the last part is reported. The performance of the classifier 

algorithm used is evaluated in this way [144-148]. In this study, the data set is 

divided into five equal parts. 

Figure 3.12 k-fold cross-validation model used in the classification of this study with 

k=5. 
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3.5.2 Confusion Matrix 

A confusion matrix shows the number of true and false predictions made by the 

classification model compared to actual results in the data. The confusion matrix is 

NxN sized, and where N is the number of target values (classes). The performance 

of these models is usually evaluated using the data in the matrix. The table below 

shows the 2x2 confusion matrix for two classes (Positive and Negative) [144]. 

Table 3.6 Confusion matrix. 

TARGET (PREDICTIVE) 

Positive (1) Negative (0) 

MODEL 

(ACTUAL) 

Positive (1) a b 
Positive Predictive 

Value 
a/(a+b) 

Negative (0) c d 
Negative Predictive 

Value 
d/(c+d) 

Sensitivity Specificity 
Accuracy = (a+d)/(a+b+c+d) 

a/(a+c) d/(b+d) 

The model and target values constitute the matrix, and the formulas consisting of 

these values are as follows: 

• a: Actual true and model predicted it true

• b: Actual true and model predicted it false

• c: Actual false and model predicted it true

• d: Actual false and model predicted it false

✓ Positive Predictive Value: the proportion of correctly identified positive

cases.

✓ Negative Predictive Value: the proportion of correctly identified negative

cases.

✓ Sensitivity or Recall: the proportion of correctly identified true positive

cases.

✓ Specificity: the proportion of correctly identified true negative cases.

✓ Accuracy: the ratio of the total number of correct predictions.



4. RESULTS AND DISCUSSION

The SSVEP data used in this study were obtained through open access from 

“https://www.setzner.com/avi-ssvep-dataset/.” [149] with the permission of the 

dataset owner. All processing, translation, and performance analyzes were 

implemented using MATLAB software [172] and IBM SPSS 24 package program 

[164]. The performance of each machine learning algorithm was evaluated by the 

accuracy criterion using the confusion matrix. 

Characterized as an increase in the amplitude of the stimulating frequency, the photic 

driver response results in significant baseline and harmonics [21, 102]. Thus, it is 

possible to determine the stimulus frequency based on the SSVEP measurement. For 

this purpose, 115 feature vectors were extracted from the SSVEP signals recorded 

using seven different frequencies: the time domain, the frequency domain, and the 

time-frequency domain. The extracted feature vectors were run with 25 machine 

learning algorithms due to 7 basic classifiers and sub-parameters. Simultaneously, 

the frequencies that constitute the SSVEP data set were evaluated with multiple, 

selected three-class, and binary classifications. Also, the effect of the increase in the 

difference between frequencies on the accuracy criterion was investigated, and the 

results are shown in detail between figures 4.17 – 4.22. 

4.1 Time-Domain Features Results 

The multiple and binary classification results of 25 feature vectors extracted from 

SSVEP signals using time domain properties are given below, respectively. 

4.1.1 Multiple classification results 

According to the results obtained, the highest performance was found in the 

Ensemble Learning classifier with 52.40%. Considering that time domain properties 

do not fully reflect the frequency-based SSVEP signal, the results are not low. 

Because SSVEP signals do not have time-domain features like P300 signals. Also, 

according to the author's best knowledge, the problem of multiple classifications 

present in SSVEP signals has not been studied in the literature with seven classes 
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(commands) so far. The results appear to be relatively good and improved, compared 

to designs with more than three commands in the literature [173-178]. 

Table 4.1 Results of multiple classification for time-domain features. 

SUBJECTS ACCURACY (ACC) CLASSIFIERS 

Sub1 25.90 LDA 

Sub2 50.00 Ensemble (Bagged Trees) 

Sub3 52.40 Ensemble (Subspace Discriminant) 

Sub4 42.90 Ensemble (RUSBoosted) 

Mean 42.80 

4.1.2 Binary classification results 

According to the binary classification results shown in Figure 4.1, the best 

performance was obtained with an accuracy value of 91.68% in 6-10 frequency pairs 

based on the average of the subjects. Simultaneously, when the subjects are 

considered separately, up to 100% results were obtained. In addition, there is no 

definitive finding related to the increase in the accuracy value parallel to the 

difference between frequencies for the time domain. When the results are evaluated 

in terms of classifiers, it is seen in Figure 4.2 that the best performance is in the 

Ensemble learning classifier. 
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Table 4.2 Results of classification performances in terms of classifiers for time-

domain features. 

Classes 
CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

6-6.5 LDA, SVM (Linear), 

Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

KNN) 

LDA, Ensemble 

(Subspace Discr., 

Subspace KNN) 

LDA, SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine, Weighted), 

Ensemble (Subspace 

Discr.) 

6-7 LDA, Ensemble 

(Subspace Discr., 

RUSBoosted) 

Ensemble (Bagged 

Trees) 

SVM (Quadratic), 

Ensemble (Subspace 

KNN) 

Naive Bayes (Kernel), 

KNN (Fine) 

6-7.5 LDA, Logistic 

Regression 

SVM (Linear, 

Quadratic), Ensemble 

(Bagged Trees) 

Ensemble (Subspace 

Discr., Subspace KNN) 

LDA, SVM (Linear, 

Cubic), KNN (Fine), 

Ensemble (Subspace 

Discr.) 

6-8.2 Ensemble (RUSBoosted) Ensemble (Bagged 

Trees) 

Ensemble (Bagged 

Trees) 

Ensemble (Bagged 

Trees) 

6-9.3 Decision Tree (All), 

SVM (Gaussian All), 

KNN (All), Ensemble 

(Boosted) 

LDA, SVM (Linear, 

Quadratic, Cubic), KNN 

(Fine) 

Ensemble (Subspace 

KNN) 

SVM (Linear, Quadratic, 

Cubic) KNN (Fine, 

Weighted) 

6-10 Decision Tree (All), 

SVM (Gaussian All), 

KNN (All), Ensemble 

(Boosted) 

LDA, SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine, Weighted), 

Ensemble (Subspace 

Discr.) 

LDA, Logistic 

Regression, SVM 

(Linear, Quadratic, 

Cubic), KNN (Fine), 

Ensemble (Bagged 

Trees, Subspace KNN) 

LDA, SVM (Cubic), 

KNN (Fine), Ensemble 

(Subspace Discr., 

Subspace KNN) 

6.5-7 Logistic Regression Ensemble (Bagged 

Trees) 

Naive Bayes (Kernel) Ensemble (Bagged 

Trees) 

6.5-7.5 Ensemble (Subspace 

KNN) 

SVM (Linear), Ensemble 

(Bagged Trees, Subspace 

KNN) 

Ensemble (Subspace 

KNN) 

Logistic Regression, 

SVM (Cubic), KNN 

(Fine) 

6.5-8.2 Ensemble (Subspace 

Discr.) 

KNN (Weighted), 

Ensemble (Subspace 

Discr.) 

SVM (Quadratic, Cubic), 

KNN (Fine) 

Ensemble (Subspace 

KNN) 

6.5-9.3 Ensemble (Subspace 

KNN) 

Ensemble (Bagged 

Trees, Subspace Discr.) 

Naive Bayes (Kernel), 

SVM (Quadratic) 

Logistic Regression 
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Table 4.2 Results of classification performances in terms of classifiers for time-

domain features. Continued. 

Classes 
CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

6.5-10 Ensemble (Subspace 

KNN) 

LDA, SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine, Weighted), 

Ensemble (Subspace 

Discr.) 

LDA, Logistic 

Regression, Ensemble 

(Subspace Discr., 

Subspace KNN) 

LDA, Naive Bayes 

(Kernel) 

7-7.5 KNN (Fine) Ensemble (RUSBoosted) Ensemble (Subspace 

KNN) 

Logistic Regression 

7-8.2 SVM (Linear SVM) Ensemble (Subspace 

Discr.) 

KNN (Fine), Ensemble 

(Subspace Discr.) 

Ensemble (Subspace 

KNN) 

7-9.3 Logistic Regression Ensemble (Subspace 

KNN) 

Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

Discr.) 

7-10 SVM (Linear), KNN 

(Fine), Ensemble 

(Bagged Trees, Subspace 

Discr.) 

LDA, SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine, Weighted), 

Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

KNN) 

LDA 

7.5-8.2 LDA SVM (Quadratic), 

Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

KNN) 

Logistic 

Regression,Naive Bayes 

(Kernel), KNN (Fine) 

7.5-9.3 Ensemble (Subspace 

KNN) 

Ensemble (Subspace 

KNN) 

Logistic Regression, 

SVM (Linear) 

Logistic Regression 

7.5-10 Ensemble (Subspace 

KNN, RUSBoosted) 

LDA, SVM (Linear, 

Quadratic, Cubic), 

Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

KNN) 

Logistic Regression, 

Ensemble (Subspace 

KNN) 

8.2-9.3 Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

KNN) 

LDA, Ensemble 

(Subspace Discr.) 

Ensemble (Bagged 

Trees) 

8.2-10 Ensemble (Bagged 

Trees) 

SVM (Cubic) LDA, Logistic 

Regression, Ensemble 

(Subspace Discr., 

Subspace KNN) 

Naive Bayes (Kernel) 

9.3-10 Ensemble (RUSBoosted) Ensemble (Subspace 

KNN) 

LDA, Ensemble 

(Subspace Discr.) 

Logistic Regression 
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4.2 Frequency-Domain Features Results 

For the frequency domain characteristics used in the problem of determining seven 

different frequencies, firstly, spectrum analysis was performed to detect the stimulus 

frequencies more clearly than the signal. This analysis is often used to obtain 

frequency information in evoked SSVEP responses. The basic idea is always the 

same: a flashing or moving visual stimulus at a constant frequency (stimulus 

frequency) reveals a response or even harmonics at the same frequency in the brain 

[12]. At the same time, the power spectrum of EEG signals was determined by FFT 

using MATLAB software to calculate its power, entropy, and variance for each band 

in the frequency range corresponding to the frequencies. For this purpose, the signal 

received FFT is divided into EEG sub-bands (delta, theta, alpha, beta, gamma), and 

energy, entropy, and variance values of each band are calculated. A total of 15 

feature vectors are generated. The results of evaluating the generated features with 

machine algorithms are presented in Table 4.2 and Figure 4.4 - 4.6 with accuracy. 

 

4.2.1 Multiple classification results 

According to the multiple classification results of the seven frequencies presented in 

Table 4.3, it was determined that the best performance was in the Ensemble Learning 

classifier with an accuracy value of 57.10%. Another remarkable finding here is that 

the results of the classifier from all individuals are the same. This shows us that, like 

the time-domain, the Ensemble Learning classifier performs better than others. In 

addition, when multiple classification results of frequency domain features are 

compared with multiple classification results of time domain features, it has been 

determined that there is an increase of 4.70% on an individual basis and 3.18% on 

average. 
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Table 4.3 Results of multiple classification for frequency-domain features. 

SUBJECTS ACC CLASSIFIER 

Subject 1 29.20 Ensemble (Subspace Discr.) 

Subject 2 50.00 Ensemble (Subspace Discr.) 

Subject 3 57.10 Ensemble (Subspace Discr.) 

Subject 4 47.60 Ensemble (Subspace Discr.) 

Mean 45.98 

4.2.2 Selected three class classification results 

In this analysis, three frequencies (6Hz - 8.2Hz - 10Hz), which are considered to 

increase the classification performance, were chosen among the seven frequencies 

present in the data set, during the feature extraction phase. The reason for choosing 

these frequencies are the results of the study done in reference [9] [10] and [11]. 

These frequencies are shown in Figure 4.2. 

Figure 4.2 Three selected frequencies (6Hz - 8.2Hz - 10 Hz) among the seven 

frequencies. 
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In Figure 4.3, the classification results and averages of each of the four participants 

are presented. According to the results obtained, the highest classification 

performance for the first participant was 83.30% in the Ensemble Learning classifier, 

the highest 100% classification performance for the second participant was in the 

KNN and SVM classifiers, and 88.90% for the third participant in the KNN 

classifier. Finally, in the fourth participant, it was seen again in the Ensemble 

Learning classifier with 77.80%. 

When the results are evaluated considering the classifiers, the performance of the six 

different classifiers was calculated by taking the average of the four participants and 

the highest performance was found in the Ensemble Learning classifier with an 

accuracy of 79.73%. The second highest classifier following the Ensemble Learning 

classifier was SVM with 70.85%, whereas k-NN was the third best performing 

classifier with a very small margin of 70.83%. While LDA and Naive Bayes 

classifiers give relatively lower results, the Decision Tree classifier appears not to be 

suitable for SSVEP frequency analysis. 

Figure 4.3 Results of selected 3-class classifications for frequency-domain features. 
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As a result, it has been observed that the methods used are successful by obtaining 

classification performances up to 100% on the basis of participants and 79.73% when 

the averages are examined and it can be used in a real time SSVEP based BCI 

design. At the same time, when comparing classifier performances among 

themselves, it is seen that Ensemble Learning method gives higher performance 

compared to other classifiers used in classifying SSVEP signals. 

4.2.3 Binary classification results 

Considering the averages of the binary classification results of frequency features for 

four participants, the performances obtained vary between the lowest 70.85% and the 

highest 100%. Accordingly, the highest performance was determined with 100% 

accuracy value in 7.5 - 10 frequency pairs. The following six highest performances 

are 96.43% accuracy in the 6.5 - 9.3 frequency pairs, 95.83% in the 6 - 7.5 frequency 

pairs, 95.83% in the 6.5 - 7.5 frequency pairs, 95.83% in the 6.5 - 8.2 frequency 

pairs, 95.83% in the frequency pairs 7 - 8.2, and the last it was obtained with the 

accuracy values of 95.83% in 7 - 10 frequency pairs. The lowest performance was 

found in the frequency pair 9.3-10 with an accuracy of 70.85%. It is noteworthy that 

the highest performance obtained is determined in the frequency pair where the 

difference between them is relatively high. 

When the results are evaluated in terms of classifiers, it is clearly seen in Table 4.4 

that the classifier that performs with the highest rate is the Ensemble Learning 

classifier. Another classifier that follows the Ensemble learning classifier and has 

obvious success has been the SVM classifier. Other classifiers following Ensemble 

Learning and SVM were identified as KNN, Logistic Regression and Naive Bayes 

classifiers, respectively. It is also seen that no successful results have been obtained 

in the LDA and Decision Tree classifiers. 
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Table 4.4 Results of classification performances in terms of classifiers for 

frequency-domain features. 

 

Classes 

CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

6-6.5 Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

Discr.) 

Logistic Regression, 

Naive Bayes (Kernel) 

6-7 SVM (Quadratic), 

Ensemble (Subspace 

Discr.) 

Ensemble (Subspace 

Discr.) 

Logistic Regression, 

Ensemble (Bagged 

Trees) 

Ensemble (Subspace 

Discr.) 

6-7.5 Ensemble (Subspace 

Discr.) 

SVM (Quadratic, 

Cubic), KNN (Fine) 

Logistic Regression, 

Ensemble (Subspace 

Discr.) 

Logistic Regression, 

SVM (Quadratic, 

Cubic), Ensemble 

(Subspace Discr.) 

6-8.2 Logistic Regression, 

SVM (Cubic) 

Logistic Regression Naive Bayes 

(Kernel), Ensemble 

(Subspace Discr., 

RUSBoosted) 

SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine), Ensemble 

(Subspace KNN) 

6-9.3 Logistic Regression, 

Ensemble (Subspace 

Discr.) 

Naive Bayes (All) Logistic Regression SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine), Ensemble 

(Subspace KNN) 

6-10 Logistic Regression SVM (Linear, 

Quadratic, Cubic), 

KNN (Fine), 

Ensemble (Subspace 

Discr.) 

SVM (Quadratic, 

Cubic), Ensemble 

(Subspace Discr.) 

SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine) 

6.5-7 Ensemble (Bagged 

Trees, Subspace 

KNN) 

KNN (Fine) Logistic Regression SVM (Quadratic), 

Ensemble (Subspace 

Discr.) 

6.5-7.5 Naive Bayes (Kernel) Ensemble (Subspace 

Discr.) 

Logistic Regression Ensemble (Subspace 

Discr.) 

6.5-8.2 SVM (Quadratic, 

Cubic), Ensemble 

(Bagged Trees, 

Subspace KNN) 

Ensemble (Bagged 

Trees) 

Ensemble (Subspace 

Discr.) 

Logistic Regression, 

Ensemble (Subspace 

Discr.) 

6.5-9.3 Ensemble (Subspace 

Discr.) 

Ensemble 

(RUSBoosted) 

Logistic Regression, 

SVM (Quadratic, 

Cubic) 

Naive Bayes (Kernel), 

Ensemble (Subspace 

Discr.) 

6.5-10 Ensemble (Subspace 

Discr.) 

SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine, 

Weighted), Ensemble 

(Subspace Discr.) 

Naive Bayes 

(Kernel), SVM 

(Linear, Quadratic, 

Cubic) 

SVM (Cubic), KNN 

(Fine), Ensemble 

(Subspace Discr.) 
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Table 4.4 Results of classification performances in terms of classifiers for 

frequency-domain features. Continued. 

Classes 

CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

7-7.5 Logistic Regression SVM (Linear, 

Quadratic) 

Logistic Regression, 

Ensemble (Subspace 

Discr.) 

SVM (Linear, 

Quadratic, Cubic) 

7-8.2 SVM (Quadratic, 

Cubic), Ensemble 

(Subspace Discr.) 

Naive Bayes 

(Gaussian), SVM 

(Medium Gaussian), 

Ensemble (Subspace 

Discr.) 

SVM (Linear) Ensemble (Subspace 

Discr.) 

7-9.3 Logistic Regression, 

Naive Bayes (Kernel), 

SVM (Quadratic, 

Cubic), KNN (Fine) 

SVM (Linear), 

Ensemble (Subspace 

Discr.) 

SVM (Linear, 

Quadratic, Cubic), 

KNN (Fine), 

Ensemble (Subspace 

Discr.) 

SVM (Linear) 

7-10 SVM (Linear), 

Ensemble (Subspace 

Discr.) 

SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine, 

Weighted), Ensemble 

(Bagged Trees) 

SVM (Linear, 

Quadratic, Cubic), 

Ensemble (Subspace 

Discr.) 

SVM (Linear, Cubic), 

KNN (Fine), 

Ensemble (Subspace 

Discr.) 

7.5-8.2 Logistic Regression, 

SVM (Quadratic, 

Cubic), KNN (Fine), 

Ensemble (Subspace 

Discr.) 

Naive Bayes (Kernel), 

Ensemble (Bagged 

Trees) 

SVM (Linear, 

Quadratic, Cubic), 

KNN (Fine, 

Weighted) 

Logistic Regression, 

Ensemble (Subspace 

Discr.) 

7.5-9.3 Ensemble (Subspace 

Discr.) 

Ensemble (Bagged 

Trees, Subspace 

Discr.) 

SVM (Linear, 

Medium Gaussian), 

KNN (Fine) 

SVM (Linear, 

Quadratic, Cubic, 

Medium Gaussian), 

KNN (Fine, 

Weighted) 

7.5-10 Ensemble (Subspace 

Discr.) 

SVM (Quadratic, 

Cubic) 

SVM (Quadratic, 

Cubic) 

Logistic Regression, 

Ensemble (Subspace 

Discr., Subspace 

KNN) 

8.2-9.3 Ensemble 

(RUSBoosted) 

SVM (Cubic), KNN 

(Fine), Ensemble 

(Bagged Trees) 

Ensemble (Subspace 

Discr., RUSBoosted) 

Logistic Regression 

8.2-10 SVM (Cubic), KNN 

(Fine) 

Ensemble 

(RUSBoosted) 

KNN (Fine), 

Ensemble (Subspace 

Discr.) 

SVM (Cubic) 

9.3-10 Naive Bayes (Kernel) SVM (Linear, 

Quadratic, Cubic), 

KNN (Fine), 

Ensemble (Subspace 

Discr.) 

Ensemble (Bagged 

Trees, Subspace 

Discr.) 

Ensemble (Subspace 

Discr., RUSBoosted) 
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4.3 Wavelet Transform Features Results 

This section aims to analyse the relationship between mother wavelet selection 

problem and frequencies by applying the DWT method, which has both time and 

frequency domain properties to SSVEP signal and has been proven to be successful 

in EEG signal analysis. For this purpose, three crucial features, such as energy, 

variance, and entropy, which are frequently used in DWT studies, have been 

extracted from the sub-bands (delta, theta, alpha, beta, and gamma) of the EEG 

signal. These features were generated for six different mother wavelets (haar, db4, 

sym4, coif1, bior3.5, rbio2.8) commonly used in the literature. The results of each 

were evaluated in detail for multiple, binary, and three selected frequencies. 

4.3.1 Multiple classification results (for 8 frequencies) 

In this analysis, the results are examined by considering the 12 Hz data available in 

the data set. The main reason that it was not mentioned before and not used in other 

analyse is that it is the second harmonic of the 6 Hz signal. In the case of SSVEP 

signals, the use of the second harmonic of the signal may be deemed unsuitable 

because it can create an “overlap” [26, 27]. However, this analysis was carried out in 

order to be present both in the data set and to see its effect on the results. 

In this study, the feature selection was also carried out. Feature selection is provided 

by one-way ANOVA test. There is a prerequisite for the data to be normally 

distributed to perform this test [29]. For this, the normality test was applied using 

SPSS software and the statistical significance values (p) obtained were recorded 

(Table 4.5). Since all the values in this table are greater than the selected 0.05 

significance level, all features are considered to have a normal distribution. 
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Table 4.5 Normality test results of features extracted from SSVEP data. 

FETAURES 

 NORMALITY TEST – SIGNIFICANCE VALUE (P) 

Delta Theta Alfa Beta Gamma 

Haar 

 

Energy .200 .258 .179 .191 .166 

Variance .127 .256 .153 .123 .145 

Entropy .117 .070 .085 .061 .097 

Db4 

Energy .200 .468 .356 .345 .258 

Variance .082 .143 .124 .263 .066 

Entropy .200 .259 .149 .179 .109 

Sym4 

Energy .140 .091 .119 .413 .234 

Variance .117 .070 .142 .256 .080 

Entropy .200 .468 .154 .374 .099 

Coif1 

Energy .082 .143 .175 .219 .123 

Variance .166 .092 .200 .110 .254 

Entropy .154 .155 .147 .201 .125 

Rbio2.8 

Energy .126 .080 .200 .119 .096 

Variance .200 .138 .169 .104 .200 

Entropy .069 .094 .086 .073 .051 

Bior3.5 

Energy .093 .071 .076 .087 .120 

Variance .062 .052 .089 .060 .052 

Entropy .100 .069 .117 .090 .109 

 

While applying the one-way ANOVA test, variance homogeneity test is applied in 

the second step. For this purpose, the Levene statistics are preferred [29]. Generally, 

variance homogeneity test results are applied in post-hoc tests and if the significance 

value is greater than or equal to 0.05 (p ≥ 0.05), the variance is accepted as 

homogeneous, otherwise it is considered heterogeneous. According to this result, the 

post-hoc test to be applied after the ANOVA test is selected. As a result of the test 

performed on the features in this study, the significance value was found to be 0.62, 

and variance homogeneity can be mentioned in the groups (Table 4.6). 

Tablo 4.6 Variance homogeneity test of normally distributed data. 

VARIANCE HOMOGENITY TEST 

Levene statistics df1 df2 Significance (p) 

2.508 7 87 0.62 
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As a final step in feature selection, differences between groups were determined 

according to the criterion of significance value (p ≤ 0.05) with one-way ANOVA test 

(Table 4.7). The features found statistically significant in the table are shown with 

“✓” according to the EEG frequency bands to which they belong. Accordingly, it is 

seen that the features of "Haar" and "Bior 3.5" mother wavelets are not selected. It is 

also seen that the features in the "Beta" and "Gamma" bands are also not selected. 

Although ANOVA test shows a significant difference between the groups, it does not 

give which groups are separated from each other and post-hoc tests are 

recommended for this purpose. However, pot-hoc tests were not applied in this study 

since the purpose of this study was not to separate the groups with ANOVA test and 

that only a significant difference was found. 

Table 4.7 Selected features from EEG frequency bands. The selected features via 

signifance values (p≤0,05) obtained by ANOVA are indicated by “✓”. 

FETAURES 

EEG FREQUENCY BAND 

Delta Theta Alfa Beta Gamma 

Haar 
Energy 

Variance 

Entropy 

Db4 

Energy ✓ ✓ 

Variance ✓ ✓ 

Entropy ✓ ✓ 

Sym4 

Energy ✓ ✓ ✓ 

Variance ✓ ✓ ✓ 

Entropy ✓ ✓ ✓ 

Coif1 

Energy ✓ 

Variance ✓ ✓ 

Entropy 

Rbio2.8 

Energy ✓ ✓ ✓ 

Variance ✓ ✓ ✓ 

Entropy ✓ ✓ ✓ 

Bior3.5 

Energy 

Variance 

Entropy 
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In the classification phase, the classification algorithms were run using all the 

features without feature selection and their performances were recorded (Table 4.8). 

55.6% performance was achieved with the LDA classifier for the features using 

Bior3.5 mother wavelet in the first subject. For the second subject, the Ensemble 

Learner classifier achieved 26.9% performance for the features using Bior3.5 mother 

wavelet, while the third subject achieved 33.3% performance with the Naive Bayes 

classifier for the features using the Haar and Db4 mother wavelets. Finally, in the 

fourth subject, 28.6% classifier performance was obtained with the Naive Bayes - 

Ensemble Learner classifier for the features using Bior3.5, Db4 and Sym4 mother 

wavelets. According to this table, it is seen that an average of 36.1% performance is 

achieved and Bior3.5 mother wavelet generally gives good results but a common 

wavelet type and classifier cannot be determined for all subjects. 

Table 4.8 Multiple classification results of wavelet transform features before the 

feature selection. (for 8 frequencies). 

SUBJECTS 
WAVELET 

FUNCTIONS 

BEST 

PERFORMANCE 

(%) 

CLASSIFIERS 

1 

Haar 37.0 SVM (Cubic) 

Coif1 25.9 Ensemble (Bagged Trees) 

Db4 29.6 Tree (Fine, Medium, Coarse) 

Bior3.5 55.6 LDA 

Rbio2.8 22.2 
Naive Bayes, SVM (Coarse 

Gaussian), KNN (Coarse) 

Sym4 25.9 
KNN (Coarse), SVM (Coarse 

Gaussian), Ensemble (Boosted Trees) 

2 

Haar 23.1 

SVM (Fine Gaussian), SVM (Coarse 

Gaussian), KNN (Coarse), Ensemble 

(Boosted Trees) 

Coif1 23.1 
SVM (Coarse Gaussian), KNN 

(Coarse), Ensemble (Boosted Trees) 

Db4 23.1 
SVM (Coarse Gaussian), KNN 

(Coarse), Ensemble (Boosted Trees) 

Bior3.5 26.9 Ensemble (Subspace KNN) 

Rbio2.8 23.1 
SVM (Coarse Gaussian), KNN 

(Coarse), Ensemble (Boosted Trees) 

Sym4 23.1 
SVM (Coarse Gaussian), KNN 

(Coarse), Ensemble (Boosted Trees) 
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Table 4.8 Multiple classification results of wavelet transform features before the 

feature selection. (for 8 frequencies). Continued. 

SUBJECTS 
WAVELET 

FUNCTIONS 

BEST 

PERFORMANCE 

(%) 

CLASSIFIERS 

3 

Haar 33.3 
Naive Bayes (Kernel), Ensemble 

(Subspace KNN) 

Coif1 23.8 SVM (Quadratic) 

Db4 33.3 Naive Bayes (Kernel) 

Bior3.5 19.0 
KNN (Weighted), Ensemble 

(Subspace KNN) 

Rbio2.8 19.2 
SVM (Coarse Gaussian), KNN 

(Coarse), Ensemble (Boosted Trees) 

Sym4 19.0 LDA 

4 

Haar 19.0 KNN (Cubic) 

Coif1 23.8 Naive Bayes (Kernel) 

Db4 28.6 Ensemble (RUSBoosted Trees) 

Bior3.5 28.6 Naive Bayes (Kernel) 

Rbio2.8 19.0 Ensemble (Subspace Discriminant) 

Sym4 28.6 Ensemble (Subspace Discriminant) 

Later, the highest classifier performances of the selected features were recorded by 

running the classification algorithms for four different participants (Table 4.9). In the 

first subject, 25.9% classifier performance was obtained in the KNN - Ensemble 

Learner classifier with the features using Coif1 and Sym4 mother wavelets. In the 

second subject, 23.1% performance was obtained with the KNN - SVM - Ensemble 

Learner classifiers in all mother wavelet types. In the third subject, 38.1% 

performance was observed in the LDA classifier with the features using the Sym4 

mother wavelet, while in the fourth subject, 38.1% classifier performance was 

obtained in the Naive Bayes classifier with the features using the Rbio2.8 mother 

wavelet. According to this table, it is seen that an average performance of 31.3% is 

obtained and a common wavelet type and classifier, which gives good results for all 

subjects, as in Table 4.9 in general, could not be determined. 
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Table 4.9 Multiple classification results of wavelet transform features after the 

feature selection. (for 8 frequencies). 

SUBJECTS 
WAVELET 

FUNCTIONS 

BEST 

PERFORMANCE 

(%) 

CLASSIFIERS 

1 

Coif1 25.9 Ensemble (Boosted Trees) 

Db4 22.2 SVM (Coarse Gaussian), KNN (Coarse) 

Rbio2.8 22.2 
SVM (Coarse Gaussian), KNN 

(Coarse), Ensemble (Boosted Trees) 

Sym4 25.9 
KNN (Coarse), Ensemble (Boosted 

Trees) 

2 

Coif1 23.1 Ensemble (Boosted Trees) 

Db4 23.1 SVM (Coarse Gaussian), KNN (Coarse) 

Rbio2.8 23.1 

SVM (Fine Gaussian), SVM (Coarse 

Gaussian), KNN (Coarse), Ensemble 

(Boosted Trees) 

Sym4 23.1 
KNN (Coarse), Ensemble (Boosted 

Trees) 

3 

Coif1 9.5 Ensemble (RUSBoosted Trees) 

Db4 33.3 Tree (Fine, Medium, Coarse) 

Rbio2.8 28.6 Ensemble (Subspace KNN) 

Sym4 38.1 LDA 

4 

Coif1 19.0 Ensemble (RUSBoosted Trees) 

Db4 19.0 Naive Bayes (Gaussian) 

Rbio2.8 38.1 Naive Bayes (Gaussian) 

Sym4 23.8 LDA 

 

Finally, in order to evaluate the SSVEP records of all participants together, the 

classification algorithms were run both for all the features without the feature 

selection and after the feature selection was made (Table 4.10). According to these 

results, when all subjects are evaluated together, the highest average classifier 

performance is achieved when Rbio2.8 mother wavelet is used in all classifiers. In 

the table, the classifier performances of the feature selection are shown with an 

asterisk (*). Accordingly, the data of all subjects with feature selection gives a worse 

classifier performance in all cases. 
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Table 4.10 Average success of classifiers before and after feature selection (*). 

CLASSIFIERS 
WAVELET FUNCTIONS 

Haar Db4 Sym4 Coif1 Bior3.5 Rbio2.8 

Decision Tree 
15.8 15.8 18.9 20.0 22.1 26.3 

14.7* 14.7* 11.6* 21.1* 

Discriminant Analysis 
18.9 10.5 13.7 18.9 15.8 21.1 

8.4* 14.7* 13.7* 16.8* 

Naïve Bayes 
15.8 12.6 12.6 14.7 12.6 16.8 

15.8* 16.8* 15.8* 16.8* 

Support Vector Machines 
20.0 15.8 14.7 14.7 14.7 28.4 

14.7* 24.2* 17.9* 24.2* 

k-Nearest Neighbour
21.1 14.7 13.7 14.7 17.9 34.7 

15.8* 15.8* 18.9* 29.5* 

Ensemble Learning 
23.2 12.6 15.8 21.1 23.2 37.9 

16.8* 16.8* 17.9* 33.7* 

Consequently, as a result of the classification procedures performed for each subject 

individually, the stimulation frequency is estimated with an average accuracy of 

36.1% (26.9-55.6) (Table 4.8) when using all the features, and an average of 31.3% 

(23.1-38.1%) (Table 4.9) when the features were selected, it was determined that the 

stimulation frequency can be estimated with accuracy. In addition, considering the 

data of all subjects, it was seen that the stimulation frequency can be estimated with 

an average of 37.9% (Table 4.10) when using all the features without the selection of 

the features, and an average of 33.7% (Table 4.10) only if the selected features were 

used. 

Accordingly, when the data of the subjects are evaluated separately, although it is 

seen that any mother wavelet type and classifier algorithm is not dominant, when the 

data of the subjects are evaluated together, it is understood that the Ensemble 

Learning classifier and Reverse Biorthogonal (Rbio2.8) mother wavelet are clearly 

superior to other classifier and mother wavelet combinations. However, one-way 

ANOVA, which is used as a statistical based feature selection method, has been 

shown to give a worse result in BCI control with SSVEP.  



92 

4.3.2 Multiple classification results (for 7 frequencies) 

In this analysis, unlike section 4.3.1, since the data set contains 6 Hz data, 12 Hz 

frequency data, which is the second harmonic of 6 Hz, which is not suitable for use 

in SSVEP analysis and may cause misleading results, was discarded. And the results 

were evaluated by multiple classification method for 7 frequencies.  

According to the results obtained, the highest performance was determined in 

Subject 1 with the LDA classifier in Bior 3.5 mother wavelet with an accuracy value 

of 55.60%. In Subject 2, the highest performance was achieved with the Ensemble 

Learning classifier in Coif 1 mother wavelet with 34.60% accuracy value, and in 

Subject 3, the highest performance was obtained with the Ensemble Learning and 

LDA classifiers in Bior 3.5 and Haar wavelets with 42.90% accuracy value. Finally, 

the highest performance in Subject 4 was determined with the Ensemble Learning 

and LDA classifiers in Coif1 and Db4 wavelets with 33.30% accuracy.  

Considering the mother wavelet selection, Bior3.5 and Coif1 mother wavelets were 

found to be relatively successful, although there is no dominant wavelet type. 

However, it is very difficult to suggest an exact mother wavelet type in the multiple 

classification of SSVEP signals. Experimenting with a larger number of subjects in 

order to generalize can give precise results. In contrast to the mother wavelet 

selection, when the classifiers are evaluated, the success of Ensemble learning and 

LDA classifiers is clearly seen. 

Table 4.11 Multiple classification results of wavelet transform features (for 7 

frequencies). 

SUBJECT 
MOTHER 

WAVELET 
ACC CLASSIFIERS 

Subject 1 

Coif 1 29.20 KNN (Cosine, Cubic) 

Bior 3.5 55.60 LDA 

Db 4 37.50 SVM (Cubic), KNN (Fine) 

Sym 4 29.20 LDA 

Haar 37.50 KNN (Fine, Weighted) 

Rbio 2.8 33.30 Naive Bayes (Kernel) 

Mean 37.05 
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Table 4.11 Multiple classification results of wavelet transform features (for 7 

frequencies). Continued. 

SUBJECT 
MOTHER 

WAVELET 
ACC CLASSIFIERS 

Subject 2 

Coif 1 34.60 Ensemble (Subspace KNN) 

Bior 3.5 23.10 Ensemble (Boosted) 

Db 4 23.10 SVM (Fine Gaussian) 

Sym 4 30.80 Tree (All) 

Haar 23.10 LDA 

Rbio 2.8 23.10 SVM (Coarse Gaussian) 

Mean 26.30 

Subject 3 

Coif 1 33.30 Ensemble (Subspace KNN) 

Bior 3.5 42.90 Ensemble (Subspace Discr.) 

Db 4 33.30 Naive Bayes (Kernel) 

Sym 4 38.10 Ensemble (Subspace KNN) 

Haar 42.90 LDA 

Rbio 2.8 38.10 Ensemble (Subspace Discr.) 

Mean 38.10 

Subject 4 

Coif 1 33.30 LDA 

Bior 3.5 28.60 Naive Bayes (Kernel) 

Db 4 33.30 Ensemble (RUSBoosted) 

Sym 4 28.60 LDA 

Haar 23.80 LDA 

Rbio 2.8 28.60 Ensemble (Subspace Discr.) 

Mean 29.37 

4.3.3 Classification results for three selected frequencies 

In this analysis, as in the classification of frequency domain features (section 4.2.2), 

multiple classification was made by selecting 3 selected frequencies (6 Hz - 8.2 Hz – 

10 Hz) where the differences between the frequencies were higher among the seven 

frequencies. However, unlike the analysis made in the frequency domain, the 

selected features are classified and evaluated when they are used together, that is, 

when energy, variance and entropy features are used as a single feature vector, and 

when they are used as separate features. Thus, detailed information about the power, 

irregularity and bias of the signal was obtained. At the same time, it is learned how to 
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use these three features, which have the indispensable properties of the signal, more 

effectively. And the contribution of these features, which are frequently used in the 

literature, as a new form of features is wanted to be shown.  

In Figure 4.5, the accuracy values obtained by classification of the energy, entropy, 

and variance features extracted using each wavelet family for 4 people are presented. 

Mean, minimum and maximum values of the classification results of 4 people were 

also shown. According to these results, the values given by the Haar wavelet function 

for energy, entropy, and variance feature groups, which yield more successful results 

than other wavelet functions, were 75.85%, 73.08%, and 73.75%, respectively. There 

were no major differences between the mean values of the 3 features extracted based 

on the Haar wavelet. However, it was seen that the entropy feature group had a 100% 

success rate compared to the others. Success performance values following Haar 

wavelet family were as follows: bior3.5 mother wavelet with 65.71%, 69.62% and 

65.34%, db4 mother wavelet with 52.35%, 54.85%, 54.85%, rbio2.8 mother wavelet 

with 52.35%, 51.95%, 52.65%, 46.93%,48.88%, 49.58% with coif1 mother wavelet, 

and 42.23%, 39.43%, 41.50% were obtained in sym4 mother wavelet. 

 

Figure 4.5 Classification performance of energy, entropy, and variance as separate 

features. 
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In Figure 4.6, the extracted features based on wavelet were used as a feature set, and 

the successful performances of the wavelet families were compared in this way. 

According to the results obtained, it was seen that the most successful wavelet family 

was the Haar wavelet function. The ranking of success in other wavelet families has 

not changed. The accuracy values are as follows: 75.85% with Haar mother wavelet, 

67.53% with bior3.5 mother wavelet, 60.85% with db4 mother wavelet, 56.25% with 

coif1 mother wavelet, 52.35% with rbio2.8 mother wavelet and 44.73% with sym4 

mother wavelet obtained. It was seen that some mother wavelet performances 

increased when compared with the accuracy values in which the features in Figure 

4.5 were handled separately. Mean values of coif1, db4, and sym4 mother wavelet 

functions increased. 

Figure 4.6 Classification performance of energy, entropy, and variance together as a 

feature set. 

In Table 4.12, classifier performances of each participant of energy, entropy and 

variance as separate features are presented. These results indicate the highest 

accuracy values obtained in each wavelet function and the classifier with the most 

successful performance. The six basic classifiers used in classification are compared 

to decide the most successful classifiers among themselves. In addition to the six 

basic classifiers used, the ones specified in parentheses refer to the sub-parameters of 

the classifiers.  
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Table 4.12 Classification performance of energy, entropy, and variance as separate 

features for selected three frequencies. 

Features with 

wavelet functions 

CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

bior3.5_energy 

Ensemble Learning 

(Subspace 

Discriminant) 

SVM (Quadratic), 

KNN (Fine), 

Ensemble Learning 

(Subspace KNN) 

Ensemble Learning 

(Subspace KNN) 

Ensemble Learning 

(Subspace KNN) 

bior3.5_entropy 

LDA SVM (Quadratic), 

KNN (Weighted), 

Ensemble Learning 

(Bagged Trees) 

Ensemble Learning 

(Subspace KNN) 

Ensemble Learning 

(Subspace KNN) 

bior3.5_variance 

LDA Naive Bayes 

(Kernel), KNN 

(Weighted), 

Ensemble Learning 

(Subspace Disc. & 

KNN) 

Ensemble Learning 

(Subspace KNN) 

Ensemble Learning 

(Bagged Trees, 

Subspace KNN) 

coif1_energy 

SVM (Fine, 

Medium, Coarse), 

KNN (All), 

Ensemble Learning 

(Boosted Trees) 

LDA LDA Naive Bayes 

(Kernel) 

coif1_entropy 

Ensemble Learning 

(Subspace 

Discriminant) 

LDA, Naive Bayes 

(Kernel) 

LDA Naive Bayes 

(Gaussian, Kernel) 

coif1_variance 

SVM (Quadratic), 

DesicionTree (All) 

LDA, Ensemble 

Learning (Bagged 

Trees, Subspace 

Discr.) 

LDA KNN (Fine), 

Ensemble Learning 

(Bagged Trees) 

db4_energy 

Ensemble Learning 

(Subspace 

Discriminant) 

SVM (Cubic), 

Ensemble Learning 

(Subspace KNN) 

Ensemble 

(Subspace KNN) 

Naive Bayes 

(Kernel) 

db4_entropy 

Ensemble Learning 

(Subspace 

Discriminant), 

SVM (Cubic) 

Ensemble Learning 

(Subspace KNN) 

SVM (Cubic), 

Naive Bayes 

(Kernel) 

Ensemble Learning 

(Bagged Trees) 

db4_variance 

Ensemble Learning 

(Subspace 

Discriminant) 

Ensemble Learning 

(Subspace KNN) 

Naive Bayes 

(Kernel), Ensemble 

Learning (Subspace 

KNN) 

Naive Bayes 

(Kernel) 

 



97 

Table 4.12 Classification performance of energy, entropy, and variance as separate 

features for selected three frequencies. Continued. 

Features with 

wavelet functions 

CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

haar_energy 
Decision Tree 

(All) 

Ensemble Learning 

(Bagged Trees) 

LDA Ensemble Learning 

(Subspace KNN) 

haar_entropy 
Decision Tree 

(All) 

Ensemble Learning 

(Bagged Trees) 

LDA Ensemble Learning 

(Subspace KNN) 

haar_variance 
Naive Bayes Ensemble Learning 

(Bagged Trees) 

LDA Ensemble Learning 

(Subspace KNN) 

rbio2.8_energy 

SVM (Linear 

SVM) 

Ensemble Learning 

(RUSBoosted 

Trees) 

LDA, Ensemble 

Learning (Subspace 

Discriminant) 

Ensemble Learning 

(Subspace KNN) 

rbio2.8_entropy 

LDA Naive Bayes 

(Kernel) 

Ensemble Learning 

(Subspace 

Discriminant) 

LDA 

rbio2.8_variance 

SVM (Linear 

SVM) 

Ensemble Learning 

(RUSBoosted 

Trees) 

Ensemble Learning 

(Subspace 

Discriminant) 

Ensemble Learning 

(Subspace KNN) 

sym4_energy 

SVM (Fine, 

Gaussian, 

Coarse), KNN 

(All), Ensemble 

Learning 

(Boosted Trees, 

Subspace 

Discriminant) 

Ensemble Learning 

(Subspace 

Discriminant) 

LDA, SVM 

(Quadratic, Cubic) 

Ensemble Learning 

(Bagged Trees, 

Subspace KNN) 

sym4_entropy 

SVM (Fine, 

Gaussian, 

Coarse), KNN 

(All), Ensemble 

Learning 

(Boosted Trees) 

LDA SVM (Quadratic, 

Cubic) 

Ensemble Learning 

(RUSBoosted 

Trees) 

sym4_variance 

SVM (Linear 

SVM), Ensemble 

Learning 

(Subspace 

Discriminant) 

LDA, Ensemble 

Learning (Subspace 

Discriminant) 

SVM (Quadratic) Ensemble Learning 

(Subspace KNN) 
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The results to be expressed in the pie chart in Figure 4.7 are the number of hits of the 

classifiers obtained in Table 4.12. These numbers were obtained by running all 

algorithms 240 times in total. With reference to results obtained (Figure 4.7), it is 

obvious that the most successful and also the most frequent classifier in the 

classification was obtained as the Ensemble classifier. Other classifiers following the 

Ensemble Learning classifier can be ranked as Discriminant Analysis, SVM, Naive 

Bayes, KNN, and Decision Tree. 

Figure 4.7 Percentage of classifier where the best result is the most often obtained as 

a result of running the algorithms 240 times in total. (Energy, entropy, and variance 

as separate features). 

In Table 4.13, the classifier performances where the feature group is evaluated as 

feature set is presented, and also, in Figure 4.8, the number of hits of the obtained 

results in terms of classifiers are shown. According to the results obtained (Figure 4.8 

and Table 4.13), the most frequent and also most successful classifier has been again 

Ensemble Learning classifier. The ranking of the classifier achievements has been 

obtained in the same order as in Figure 4.7. In other words, other classifiers 

following the Ensemble Learning classifier can be ranked as Discriminant Analysis, 

SVM, Naive Bayes, KNN, Decision Tree. 

Ensemble
Learning 

Classifiers
108

SVM
38

KNN
17

Naive Bayes
24

Deicision Tree
7

Discriminant 
Analysis

46

SEPARATELY
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Table 4.13 Classification performance of energy, entropy, and variance as a feature 

set for selected three frequencies. 

Features with 

wavelet 

functions 

CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

bior3.5 LDA 
KNN (Weighted 

KNN) 

Ensemble Learning 

(Subspace KNN) 

Ensemble Learning 

(Subspace KNN) 

coif1 

LDA, Ensemble 

Learning (Subspace 

Discriminant) 

Naive Bayes 

(Kernel), Ensemble 

Learning (Subspace 

Discriminant) 

LDA, Ensemble 

Learning (Subspace 

Discriminant) 

Naive Bayes (All) 

db4 

SVM (Fine, 

Quadratic, Coarse), 

KNN (All), 

Ensemble Learning 

(Boosted Trees) 

Ensemble Learning 

(Subspace KNN) 

Naive Bayes 

(Kernel) 
LDA 

haar LDA 

Ensemble Learning 

(RUSBoosted 

Trees) 

LDA 
Ensemble Learning 

(Subspace KNN) 

rbio2.8 SVM (Linear) 

LDA, Naive Bayes 

(Gaussian), 

Ensemble Learning 

(All) 

Ensemble Learning 

(Subspace 

Discriminant) 

Ensemble Learning 

(Bagged Trees, 

Subspace KNN) 

sym4 

SVM (Fine, 

Coarse), KNN (All), 

Ensemble Learning 

(Boosted Trees) 

LDA SVM (Cubic) 

Ensemble Learning 

(RUSBoosted 

Trees) 
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Figure 4.8 Percentage of classifier where the best result is the most often obtained as 

a result of running the algorithms 240 times in total. (Energy, entropy, and variance 

as a feature set). 

As a result of the classification processes performed separately for each subject, 

when the performances of both feature groups were examined, the most successful 

wavelet function was found as the Haar wavelet. When the average accuracy values 

of the feature groups are examined, the results in the case that the three features are 

used as a single feature vector gave higher results for all wavelet functions than the 

other feature group. Although there is no dominant result in the comparison of 

energy, entropy, and variance features among themselves, the highest result was seen 

in the entropy feature in Subject 3 with 100%. When the machine learning 

algorithms have been examined, it has seen that the Ensemble learning algorithm 

classifiers with the highest performance compared to the others [179].  

4.3.4. Binary classification results 

In this analysis, feature vectors are treated as a single feature vector and individual 

feature vectors, similar to those in Section 4.2.3. The resulting feature vectors were 

then evaluated by binary classification in order to analyze frequencies in detail. As 

the results of the first part of the experimental design, the classification performances 

are obtained for: 

Ensemble
Learning 

Classifiers
103

SVM
29

KNN
22

Naive Bayes
29

Decision Tree
0

Discriminant 
Analysis

57

ALL FEATURES TOGETHER
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• three features separately (energy, entropy and variance),

• average of the three features separately (Mean),

• the extracted features were grouped as a single feature set (All features

together).

Each feature (energy, entropy, variance and all features together) extracted using 

each wavelet family for 4 participants. All values of the classification results are 

presented in Figure 4.9- 4.14 for each mother wavelet, respectively.  
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According to these results, features obtained from the Haar wavelet function yielded 

higher accuracies than those obtained from the other wavelet functions. Maximum 

accuracy performances were obtained in the frequency pairs "6-10", "6.5-8.2", "6.5-

10" in the Haar wavelet (Table 4.14). When the features are evaluated, it is realized 

that the "All features together" feature generally has better results for all mother 

wavelet functions. 

Table 4.14 Classification results of the most successful frequency pairs of the Haar 

mother wavelet. 

FREQUENCY 

PAIR 
ENERGY ENTROPY VARIANCE MEAN 

ALL 

FEATURES 

TOGETHER 

6 - 10 95.83 94.45 100.00 96.76 97.23 

6.5 – 8.2 92.85 95.83 95.83 94.83 100.00 

6.5 - 10 100.00 84.50 95.83 93.44 100.00 

And another researched hypothesis results are presented in Figure 4.15 – 4.20 for 

each mother wavelet, respectively. The purpose here is to show the change in the 

accuracy value according to the increase in the difference between the frequencies. 

Figure 4.15 Change of accuracy value according to the differences between 

frequencies for Bior 3.5 mother wavelet. 
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Figure 4.16 Change of accuracy value according to the differences between 

frequencies for Coif 1 mother wavelet. 

Figure 4.17 Change of accuracy value according to the differences between 

frequencies for Db 4 mother wavelet. 



110 

 

 

Figure 4.18 Change of accuracy value according to the differences between 

frequencies for Haar mother wavelet. 

 

 

Figure 4.19 Change of accuracy value according to the differences between 

frequencies for Rbio 2.8 mother wavelet. 
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Figure 4.20 Change of accuracy value according to the differences between 

frequencies for Sym 4 mother wavelet. 

As a result of the classification, when the seven basic classifiers are compared among 

themselves according to their percentage accuracy performance, the result obtained is 

presented in Table 4.15. Since the classification results of all the features ranking are 

similar for all the wavelet functions, the classification result of the "All features 

together" for Haar wavelet function is presented. According to these results, the most 

successful classifier was obtained as the Ensemble classifier. 
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Table 4.15 Classification performance of energy, entropy, and variance as a feature 

set (All features together) for Haar wavelet. 

Classes 

CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

6-6.5 
Ensemble Learning 

(RUSBoosted) 

Ensemble Learning 

(Subs. KNN), KNN 

(Fine, Weighted), 

SVM (Cubic, Fine 

Gaussian) 

LDA, SVM 

(Quadratic), KNN 

(Fine) 

Ensemble Learning 

(Subs. Dicr.) 

6-7 Logistic Regression 
Ensemble Learning 

(RUSBoosted) 
Logistic Regression 

Ensemble Learning 

(Subs. Dicr.) 

6-7.5 

SVM (Medium 

Gaussian), Ensemble 

Learning (Subs. 

KNN, RUSBoosted) 

Ensemble Learning 

(RUSBoosted) 

LDA, Logistic 

Regression, Ensemble 

Learning (Subs. 

KNN) 

LDA, Logistic 

Regression 

6-8.2 

LDA, Ensemble 

Learning 

(RUSBoosted) 

KNN (Weighted) Logistic Regression 
Ensemble Learning 

(Subs. KNN) 

6-9.3 
Ensemble Learning 

(RUSBoosted) 

Naive (Gaussian), 

Ensemble Learning 

(Subs. KNN) 

LDA, Logistic 

Regression, Naive 

Bayes (Kernel) 

LDA, Logistic 

Regression 

6-10 
Ensemble Learning 

(RUSBoosted) 

Ensemble Learning 

(Subs. Discr.) 
Logistic Regression 

LDA, Logistic 

Regression, SVM 

(Quadratic, Cubic), 

Ensemble Learning 

(Subs. KNN) 

6.5-7 Logistic Regression 
Naive Bayes 

(Gaussian) 

Naive Bayes (Kernel), 

Ensemble Learning 

(Subs. KNN) 

Ensemble Learning 

(Subs. Discr.) 

6.5-7.5 
SVM (All), KNN 

(Fine, Weighted) 

Ensemble Learning 

(Bagged, 

RUSBoosted) 

SVM (Linear, 

Quadratic, Cubic), 

Ensemble Learning 

(Bagged) 

Ensemble Learning 

(Subs. Discr.) 

6.5-8.2 KNN (Fine) 
Ensemble Learning 

(Subs. KNN) 

Ensemble Learning 

(Bagged) 

LDA, Ensemble 

Learning (Subs. 

Discr., Subs. KNN) 

6.5-9.3 

Logistic Regression, 

SVM (Linear, 

Quadratic, Cubic), 

KNN (Fine, 

Weighted), Ensemble 

Learning (Subs. 

Discr.) 

Ensemble Learning 

(Bagged) 

Ensemble Learning 

(Bagged) 
Naive Bayes (Kernel) 

6.5-10 LDA 
Ensemble Learning 

(Subs. KNN) 

Ensemble Learning 

(RUSBoosted) 

Logistic Regression, 

Ensemble Learning 

(Subs. KNN) 

7-7.5 
Ensemble Learning 

(Bagged) 

Decision Tree (All), 

Naive (Gaussian), 

SVM (Fine, Coarse), 

KNN (All), Ensemble 

Learning (Boosted, 

Subs. KNN) 

Naive Bayes (Kernel, 

Gaussian), Ensemble 

Learning (Subs. 

KNN) 

Naive Bayes (Kernel) 

7-8.2 
LDA, Logistic 

Regression 

Naive Bayes 

(Gaussian), SVM 

(Quadratic, Cubic), 

KNN (Fine) 

LDA, Logistic 

Regression 

Naive Bayes (Kernel), 

LDA, Logistic 
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Table 4.15 Classification performance of energy, entropy, and variance as a feature 

set (All features together) for Haar wavelet. Continued. 

Classes 

CLASSIFIERS 

Subject 1 Subject 2 Subject 3 Subject 4 

7-9.3
Ensemble Learning 

(Subs. KNN) 

Ensemble Learning 

(RUSBoosted) 

SVM (Linear), 

Ensemble Learning 

(Bagged Trees) 

Logistic Regression 

7-10 Logistic Regression 
Ensemble Learning 

(Bagged) 
SVM (Linear) Logistic Regression 

7.5-8.2 
Ensemble Learning 

(Subs. KNN) 
KNN (Fine) 

Ensemble Learning 

(Subs. KNN) 
KNN (Fine) 

7.5-9.3 

LDA, Logistic 

Regression, Ensemble 

Learning (Subs. 

KNN) 

Ensemble Learning 

(Bagged) 

Ensemble Learning 

(Subs. KNN) 
LDA 

7.5-10 

SVM (Medium 

Gaussian), Ensemble 

Learning (Bagged 

Trees) 

Logistic Regression 

SVM (Linear), 

Ensemble Learning 

(Subs. Discr.) 

Ensemble Learning 

(Subs. KNN) 

8.2-9.3 
Ensemble Learning 

(Subs. Discr., KNN) 

Naive Bayes 

(Gaussian) 

Ensemble Learning 

(RUSBoosted) 

LDA, Ensemble 

Learning (Subs. 

Discr.) 

8.2-10 Logistic Regression 
Ensemble Learning 

(Subs. Discr.) 
Logistic Regression 

LDA, Ensemble 

Learning (Subs. 

Discr.) 

9.3-10 
LDA, Logistic 

Regression 
Naive Bayes (Kernel) 

Ensemble Learning 

(Bagged) 

Ensemble Learning 

(RUSBoosted) 

Figure 4.21 Percentage of classifier where the best result is the most often obtained 

as a result of running the algorithms 250 times in total. (Energy, entropy, and 

variance as a feature set). 
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5. CONCLUSION

The study presented in this thesis aimed to achieve significant optimization of 

cortical visual responses, signal processing methods, and machine learning 

algorithms, as well as the accuracy and reliability of the superior multi-command 

SSVEP-based BCI system, which is lacking in the literature. New approaches have 

been explored using existing methods to develop an accurate, reliable, comfortable 

SSVEP-based BCI that can offer people with severe motor neuron diseases a 

communication alternative using attention modulation without requiring 

neuromuscular activities or eye movements. 

In this study, a total of 115 different feature vectors, namely time-domain, frequency 

domain and time-frequency domain, were extracted from SSVEP (AVI SSVEP 

Dataset) data obtained through open access. These feature vectors are classified by a 

total of 25 different classification processes due to the sub-parameters of the seven 

basic machine learning algorithms. In addition, in the classification step, whether the 

frequency of the visual stimulus presented to the subjects can be determined with the 

same frequency in the occipital lobe of the brain was evaluated with multiple, three 

selected frequencies and binary classification methods. Classification evaluation is 

presented with 5-fold cross validation method and accuracy values obtained from 

confusion matrix. 

As a result, the following research objectives were achieved in this study: 

• When the results of the time domain features are evaluated first, it can be

seen that these features give usable (noteworthy) results in the classification

of SSVEP signals. However, given the natural structure of the SSVEP signal,

it is a fact that the results obtained are not sufficient for a real-time SSVEP-

based BCI design, since the time domain properties do not reflect the

characteristics of the signal alone.

• When the classification results of the frequency domain features, another

feature group, were evaluated alone, satisfactory results were obtained.
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Higher accuracy values were obtained in both multi-classification and binary 

classification compared to time domain. 

• And when the last feature group time-frequency domain features are used,

using mother DWT functions (Haar, Db2, Sym4, Coif1, Bior3.5, Rbior2.8),

SSVEP signals are divided into frequency subbands (delta, theta, alpha, beta,

gamma) and energy, entropy and variance values of each band are calculated.

In this way, feature vectors were created and feature vectors were used as,

both separately and also together. In other words, four different features were

used in total. Extracted feature vectors were tested with a binary, multiple and

three selected classes classification method to see the relationship between

seven different classifiers and each frequency in detail.

• Although multiple classification results seem to be low for all feature groups,

there is no study with 7 frequencies (by command) when the literature is

searched according to the best knowledge of the author, but high results were

obtained compared to studies with 3 and 4 frequencies.

• For stimulation frequency detection in the SSVEP signal, a new form has

been proposed that has been proven to be more effective with respect to the

use of energy, entropy and variance features than the properties derived from

the frequency domain and time-frequency domain. According to this form,

instead of the energy, entropy and variance properties used separately, the

feature vector, which is all together (All features together), gave better results

than the others.

• As a result of the feature selection made with the one-way ANOVA test, it

was seen that it reduces the classification accuracy and it is not recommended

to use the method in SSVEP signals.

• By conducting detailed research on stimulation frequencies, frequency pairs

estimated with the highest accuracy were determined. Although this result

showed small differences between the mother wavelet functions, the highest

performance was obtained in the frequency pairs in which the difference was

generally high (6-10, 6.5-10, 7-10, and 7.5-10).
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• In the literature, the performances of the classifier types that were not

compared before were evaluated in terms of SSVEP detection and the most

successful classifier was found to be the Ensemble Classifier.

• Also, does system performance increase in parallel with the differences

between frequencies? Based on this hypothesis, the relationship between

frequencies was investigated in pairs. The results obtained confirmed the

hypothesis, as can be seen from the figures in Figure 4.17 – 4.22. A decrease

in “Sym4” function was observed, where only the lowest performances were

obtained (Figure 4.22).

• Finally, the most successful mother wavelet selection was made.

Accordingly, it was the Haar wavelet function that gave the best results

compared to others.
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