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A MACHINE LEARNING APPROACH TO BIOMASS 
GASIFICATION PROCESS 

ABSTRACT 

Machine learning (ML) has been paving the way for researchers to create unique 
data-driven solutions in many areas of science by offering a strong set of 
computational tools. Especially the “collecting related input and output data and 
letting ML algorithms try to discover the underlying phenomenon” approach enabled 
researchers to overcome severe limitations of conventional analytical and/or numeric 
approaches in their respective fields. One such phenomenon is the biomass 
gasification. Biomass gasification is a promising power generation process due to its 
ability to utilize waste materials and similar renewable energy sources that is highly 
open to ML augmentation due to its complex and unpredictable nature. In this thesis, 
challenges of the biomass gasification are undertaken from ML perspective. Firstly, a 
hierarchical classification framework is developed by employing ML classifiers to 
distinguish solid fuels for their optimal use. With this framework, over 92% 
classification accuracy is obtained. Secondly, ML regression techniques are applied 
on an experimentally collected data set. Performances of the proposed regression 
models are evaluated with k-fold cross validation. artificial neural networks and 
decision tree regression outperformed other modeling approaches in the literature by 
achieving R2 > 0.9 for the majority of outputs. Lastly, a time series modeling 
approach is implemented on biomass gasification process and R2 > 0.98 for all 
outputs is achieved. Furthermore, a model predictive controller (MPC) is designed to 
control output concentrations of the biomass gasification process. Designed MPC is 
challenged in practical scenarios. MPC showed satisfactory performance for all 
scenarios and also showed high compliance with the experimental data which further 
strengthened its practical usability potential.  
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BİYOKÜTLE GAZLAŞTIRMASI SÜRECİNE MAKİNE 

ÖĞRENMESİ YAKLAŞIMI 

ÖZET 

Makine öğrenmesi (ML), araştırmacılara güçlü hesaplama araçları sunarak bilimin 
birçok alanında benzersiz veri odaklı çözümler yaratmalarının yolunu açmaktadır. 
Özellikle “ilgili girdi ve çıktı verilerinin toplanarak ve ML algoritmalarının 
sayesinde altında yatan sürecin keşfedilmesi” yaklaşımı, araştırmacıların kendi 
alanlarında geleneksel analitik ve/veya numerik yaklaşımların sahip olduğu 
sınırlamaların üstesinden gelmelerini sağlamıştır. Biyokütle gazlaştırmasıdır da bu 
süreçlerden biridir. Biyokütle gazlaştırması, biyolojik atık ve benzeri yenilenebilir 
enerji kaynaklarını kullanma kabiliyeti nedeniyle umut verici bir enerji üretim 
sürecidir. Bu tezde, biyokütle gazlaşmasının sahip olduğu zorluklar ML 
perspektifinden ele alınmıştır. İlk olarak, katı yakıtları optimum kullanımlarına 
ayırmak için ML sınıflandırıcıları kullanılarak hiyerarşik bir sınıflandırma yapısı 
geliştirilmiştir. Bu yapıda, 92% ve üzeri sınıflandırma doğruluğu elde edilmiştir. 
İkinci olarak, ML regresyon teknikleri deneysel olarak toplanan bir veri setine 
uygulanmış ve performansları k-katlı çapraz geçerlik yöntemiyle değerlendirilmiştir. 
Yapay sinir ağları ve karar ağacı regresyonu, çıktıların çoğunluğu için R2>0.9'a 
ulaşarak literatürdeki diğer modelleme yaklaşımlarından daha iyi performans 
göstermiştir. Son olarak, biyokütle gazlaştırma sürecinde bir zaman serisi modelleme 
yaklaşımı uygulanmış ve tüm çıktılar için R2 > 0.98 elde edilmiştir. Ayrıca, bir model 
tahmini kontrolör, biyokütle gazlaştırma işleminin çıkış konsantrasyonlarını kontrol 
etmek amacıyla tasarlanmıştır. Tasarlanmış MPC pratik senaryolarda test edilmiş ve 
tüm senaryolar için tatmin edici bir performans sergilemiştir. Aynı zamanda pratik 
deneysel verilere yüksek uyum göstererek pratik kullanılabilirlik potansiyelini daha 
da güçlendirmiştir. 
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1.  INTRODUCTION 

1.1  Motivation 

Worldwide energy consumption has increased significantly in recent years due to 

rapid urbanization and industrial development. Energy consumption around the globe 

has increased from 3,701 million tonnes of oil equivalent (mtoe) in 1965 to 13,511 

mtoe in 2019 [1]. Currently, this enormously growing energy demand is mainly met 

with fossil-based resources like coal, oil and natural gas. Fossil based resources are 

not only limited but also pose danger to the environment when processed with 

conventional methods used in power plants [2]. Increasing awareness about climate 

change and depleting reserves of fossil-based resources, countries around the world 

started seeking alternative methods to use their limited energy resources efficiently 

with more environment-friendly processes. For this reason, biomass gasification 

caught attention as an efficient and cleaner way to produce energy. Biomass is the 

general name of all non-fossilized biological material obtained from living or 

recently living creatures. It refers to animal and vegetable-based products which 

make biomass abundantly available and renewable resource of energy all around the 

globe [3,4]. Gasification is a thermochemical process that converts organic or fossil 

fuels to combustible gases, i.e., a mixture of carbon monoxide, carbon dioxide, 

hydrogen, methane, light hydrocarbons and char by reacting the fuels with oxygen 

and steam in high temperatures [5]. This gaseous mixture referred to as “syngas” 

which can be further processed to generate heat and electricity [6]. Thus, biomass 

gasification is one of the subtypes of gasification processes that use biomass as a 

fuel. It can utilize widely available biomass such as forest waste, municipal solid 

waste and agricultural waste which makes it a highly environment-friendly chemical 

conversion process [7]. It has been known that a series of chemical reactions take 

place simultaneously during the biomass gasification process [8]. Thus, control and 

optimal syngas production via biomass gasification has been accepted as a 

challenging task due to its sensitivity to small changes in many parameters of the 
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process such as temperature, equivalence ratio and characteristics of the fed fuel as 

well as due to the highly nonlinear dynamics of the chemical reactions that occur 

during the process [9–11]. However, it has been show that if the parameters such as 

temperature, equivalence ratio, biomass feed rate and air/fuel ratio are selected 

before the process successfully with respect to the type of biomass that will be used, 

the maximum quantities of desired products can be obtained [3]. Therefore, a model 

that can describe and/or predict the dynamic behavior of production relative to the 

input parameters (operation conditions) of the process is well needed for optimal 

syngas production. The effect of operating conditions on syngas composition has 

been evaluated by a few numbers of kinetic mathematical models [12,13]. However, 

these models that evaluate homogeneous and heterogeneous reactions require 

extensive efforts to formulate kinetic equations and transport (heat, mass and 

momentum), where finding the solution is a time consuming and computationally 

expensive [12]. Another approach to model biomass gasification process is the use of 

thermodynamic equilibrium models. thermodynamic equilibrium approach consists 

of two equilibrium methods referred to as stoichiometric and non-stoichiometric 

approaches. The non-stoichiometric method is based on Gibbs free energy 

minimization [14–16]. In stoichiometric models, the equilibrium is determined using 

equilibrium constants for particular reactions such as water gas shift and methanation 

for the stoichiometric approach [17–20]. However, the equilibrium condition in the 

gasifiers is never achieved for both techniques. Thus, the high number of 

assumptions made in equilibrium models and extreme computational requirement in 

kinetic models significantly reduced these modeling approaches’ practical usability 

and reliability [21]. Naturally, control of the output syngas production for optimal 

energy production is not studied due to the practical/computational limitations of 

these conventional methods. In order to overcome the drawbacks of the mentioned 

modeling approaches, a new approach was needed and machine learning-based 

methods has shown to be outstanding candidate for such purpose. Machine learning 

(ML) algorithms have been widely used to develop estimation models to understand 

and solve a various type of complex problems encountered in different disciplines of 

science [22]. One of the most useful attributes of ML techniques is that they do not 

require any mathematical definition of the phenomena involved in the process, and 
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therefore limitations caused by the need for high number of assumptions in the 

equilibrium models are fundamentally eliminated [23]. As such, ML models usually 

have low computational expense once they are trained which eliminates the extensive 

computational and time requirement of the kinetic modeling approach [24]. Thus, 

mentioned advantages shows a great potential of ML techniques for their use in 

biomass gasification.  

Aside from the mentioned challenges, there is another obstacle for optimal and clean 

energy production via biomass gasification which is the classification of the fuel 

used. Type of the biomass, and fuel in general, to be used is a critically important 

information in biomass gasification as well as in almost all energy applications [25]. 

It is also necessary to consider the effect of energy conversion process on air 

pollution as well as impacts on water and soil [26]. For example, manufactured 

biomass generally contains higher amounts of heavy metals (e.g., Cu, Cr, Ni and Zn), 

while coal-type fuels contain more sulfur [27]. However, the recovered fuels can be 

heterogeneous mixtures generated from different types of solid fuels [28]. As a 

result, a specific classification is needed for the research of thermal conversion of 

solid fuels and it is essential to plan to preprocess and improve the production of 

power  [26]. Therefore, a highly accurate classification framework to classify 

biomass from other fuel-based resources as well as to distinguish different types of 

biomass from one another is a need for optimal syngas production via biomass 

gasification and to minimize the environmental damage caused by it. Furthermore, 

ML methods are also shown to have capability at classification tasks in various 

problems [29]. Thus, the great potential of ML on modeling of biomass gasification 

as well as on the classification of solid fuels establishes the motivation of this thesis. 

1.2  Related Work 

1.2.1  Machine learning-based approaches to biomass gasification  
With the mentioned advantages of the ML algorithms and widely available 

computational tools for implementing these algorithms, researchers started using ML 

methods to develop prediction models for the biomass gasification process. The most 

suitable approach for this modeling task is referred to as 'regression'. Regression is a 

branch of supervised ML algorithms that are used to predict continuous type output 
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variable(s) (dependent variables) in a data set by using one or more features 

(independent variables) that include observations (samples) which ideally contains 

enough information about the output variable(s) [30]. Even though the term 

‘regression’ has been used for many years in statistics, it has been interchangeably 

mentioned as a set of ML algorithms in the computer science literature [31]. Because 

the syngas compositions of the biomass gasification are continuous type variables 

(mostly volume percentage), regression algorithms, mainly artificial neural networks 

(ANN), were usually go-to methods used during the development of prediction 

models. Guo et al. [32] employed ANN modeling to predict the product yield and gas 

composition of biomass gasification in an atmospheric pressure steam fluidized bed 

gasifier. Bed temperature and the stock residence time variables are used as features 

of the model. Even though developed prediction model is satisfactory in the 

aforementioned study, because of using only two features and lack of performance 

evaluation of the model using cross validation techniques, the study was insufficient 

to explain and prove the suitability of the proposed method for biomass gasification 

problem. Arnavat et al. [33] proposed more sophisticated ANN model for biomass 

gasification with fluidized bed gasifiers, which used eight features (Ash content, 

moisture content, carbon content, oxygen content, hydrogen content, equivalence 

ratio, gasification temperature and steam to biomass ratio) and five outputs (Gas 

yield, gas composition, H2 content, CH4 content, CO2 content and CO content) while 

creating the model. They developed single ANN model to predict all of the outputs 

and came up with a model that can predict each output with high accuracy. They 

predicted each output variable with R2 > 0.95 and showed the impact of each feature 

for corresponding outputs by utilizing weight and bias variables in the trained ANN 

model. However, authors have used all of the data to train ANN model, thus 

proposed model’s possible overfitting problem is not investigated with splitting the 

data into training and testing sets and/or using cross validation techniques. Pandey et 

al. [34] have proposed a set of methods to select and apply most suitable ANN 

architecture and predicted lower heating value of gas, lower heating value of 

gasification products and syngas yield during gasification of municipal solid waste in 

a fluidized bed reactor. Proposed method iteratively changes number of neurons on 

the hidden layer and activation functions on the network to choose best fitting model, 
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authors also randomly splat dataset into training, testing and cross-validation sets. 

Although, relatively small dataset (100 observations) is used in the paper and cross 

validation methods such as K-Fold which uses all of the dataset for both training and 

testing purposes haven’t applied even though these methods are crucial for accurate 

evaluation of the models’ performance [35]. Thus, the best ANN architecture 

selection according to proposed method might be misleading due to repeated random 

splitting on the small dataset. Brown et.al. [36] used nonlinear regression and ANN 

methods to predict product compositions of biomass gasification using feedstock 

compositions, ER and reaction temperature variables. They have tried several hidden 

layer sizes in their feedforward ANN architecture and conclude that ANN modeling 

can outperform equilibrium and kinetic modeling approaches when applied properly. 

In Mutlu et.al. [6], authors predicted the syngas composition released in the biomass 

gasification process by employing support vector machines and random forest 

algorithms. They used gasification temperature, ultimate analysis results, ER and fuel 

ratio variables and obtained lower root-mean-square error (RMSE) values compared 

to equilibrium and kinetic modeling approaches. 

1.2.2  Classification of solid fuels 

In the literature, studies based on the classification of fuels usually conducted to 

explain certain characteristics of the fuels. For example, Van Krevelen diagram 

which is a graphic method to characterize the source and maturity of organic matter 

by plotting molar H/C ratios against molar O/C ratios. It is often used in the literature 

to separate different classes of biomass to analyze their heating values [37–39]. In 

Zhou et al. [40], authors classified MSW components using a cluster analysis method 

according to the proximate and ultimate analyses and heating value results, as well as 

thermogravimetric (TG) characteristics. The classification groups include vegetables 

including banana peel, starch food, orange peel, wood waste, printing paper, 

cellulose, PVC, PET, PE/PP, PS, and rubber. Furthermore, the classification of liquid 

fuels, i.e. algae, rocket, diesel, and jet fuels are also introduced to the literature. In 

Ross et al. [41] they classified five macroalgae from the British Isles; Fucus 

vesiculosus, Chorda filum, Laminaria digitata, Fucus serratus, Laminaria 

Hyperborea, and Microcystis pyrifera from South America. The macroalgae have 

been characterized for proximate and ultimate analysis, inorganic content, and 
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calorific value. Their result has also been presented in terms of a Van Krevelen 

diagram. In Rearden et al. [42], a fuzzy rule-building expert system (FuRES) was 

used as a multiclass classifier for the two-way gas chromatograms of fuels, including 

rocket, diesel, and jet fuels. Wang et al. [43] they demonstrated the feasibility of 

using two-dimensional correlation coefficient mapping to classify gas 

chromatograms of aviation fuels under environmental hazards. 

For the case solid fuel classification explicitly, there are no studies that focus on 

developing a such classification framework. Expert opinion is a usually used and a 

practical approach to classify the type of the fuel, but it is prone to be misleading due 

to the human-error [44]. More scientific approach is to conduct ultimate analysis and 

decompose the material into elementary contents, i.e., C, H and O which are unique 

to the material (if the tools used can measure with enough precision). Although the 

results obtained from ultimate analysis can be used to classify the type of 

corresponding fuel, one has to search for a database and/or a look-up table to find the 

class which the fuel belongs to. When the expensive equipment requirement of 

ultimate analysis is also taken into account, fuel classification with using ultimate 

analysis may become a frustrating and inefficient process. On the other hand, 

proximate analysis expresses the material in terms of its fixed carbon, volatile matter 

and ash contents. It is widely used by researchers due to its lower equipment cost 

compared to ultimate analysis [45]. Although the results obtained from proximate 

analysis may not as deterministic as they are in ultimate analysis when the fuel 

characteristics are concerned, proximate analysis have been used in various modeling 

and prediction studies [46–49]. Thus, proximate analysis has shown to be an efficient 

and useful method when characteristics of the fuels are concerned. 

1.3  Research Objective 

When the studies in the literature about both ML-based approaches to biomass 

gasification and classification of solid fuels are concerned, one can recognize the 

shortcomings as follows: 

1. ML-based studies for modeling of biomass gasification almost always focus 
on ANN, other methods are rarely employed. 
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2. Performance evaluations and generalization capabilities of the proposed 
methods are not deeply discussed. Possible overfitting problem and 
randomness effect is not investigated by cross-validation techniques.  

3. Biomass gasification is not treated as a “process” during the applications of 
ML on it. All of the developed models are time-independent. When the time 
dependency, effect of the previous states on the current one, is concerned.  

4. Even though it is the one of the important factors for preparation for biomass 
gasification process, classification framework for the solid fuels is not 
proposed nor studied in the literature. 

Thus, the current state of the literature leaves a space for improvement which this 

thesis aims to fill. The goals of this thesis can be expressed in three parts. First is the 

development of a ML-based classification framework to accurately classify various 

type of fuels that includes both fossil-based and biomass types. This framework 

benefits not only the biomass gasification related applications but many more energy 

applications that utilizes fuels. Second goal is to create predictive models for biomass 

gasification process by employing several ML-based regression methods and the use 

of appropriate metrics for unbiased performance evaluation. Last goal is the 

development of a time dependent model of biomass gasification with ML-based time 

series modeling techniques and a model predictive controller design that can control 

the certain outputs of the process in practical manner. And it has been ultimately 

aimed that to use power of ML to help researchers and engineers around the globe to 

help produce energy via biomass gasification more cleanly and more effectively. 

1.4  Thesis Outline 

The remainder of the thesis is structured as follows: 

Section 2 proposes a ML-based framework for solid fuel classification, for this 

purpose, a data set is collected from the literature and was grouped into four classes, 

i.e., coals, woods, agricultural residue and manufactured biomass with their 

respective proximate analysis results. Then, K-nearest neighbor, support vector 

machine and random forest machine learning classifiers are employed to develop 

classification models. Furthermore, hierarchical classification approach is taken to 

combine each classifier’s advantages with integration of expert opinion to create a 

complete and highly accurate classifier framework which can classify an unknown 

fuel in to one of the four categories by just utilizing proximate analysis results. 
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Section 3 explains the development of regression models by employing i.e., 

polynomial regression, support vector regression, decision tree regression and 

multilayer perceptron to predict CO, CO2, CH4, H2 and HHV outputs of the biomass 

gasification process. Experimentally collected data set is used in this section. Feature 

extraction and application of Principal Component Analysis (PCA) technique to the 

extracted features is demonstrated to prevent multicollinearity and to increase 

computational efficiency. Performances of the proposed regression methods are 

evaluated with k-fold cross validation accompanied by the deep discussion about the 

results. Results of the previous studies on the subject are also compared to the ones 

obtained in this section. 

Section 4 proposes a time dependent regression model for biomass gasification that 

can describe and predict outcomes of biomass gasification using non-linear 

autoregressive with exogenous neural networks (NARXNN) with the use of the 

knowledge extracted from Section 3. Secondly, a model predictive controller (MPC) 

design is proposed in order to control a certain output variable at a desired state. 

Moreover, the designed controller is challenged in practical scenarios such as 

maximum hydrogen production to test its usability in practical applications.  

Section 5 summarizes the results of previous sections and offers recommendations 

for future research. 
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2.  CLASSIFICATION OF SOLID FUELS WITH 
MACHINE LEARNING 

In this section of the thesis, a set of classification models is proposed to classify four 

different types of fuels, i.e., coals, woods, agricultural residues and manufactured 

biomass by employing three machine learning based methods, i.e., random forest, K-

nearest neighbor and support vector machines. These methods are selected due to 

their strictly different way of “learning” which led to the exploration different sides 

of the problem. K-nearest neighbor algorithm which is used to classify unlabeled 

data according to the closest data points (neighbors) is one of the most extensively 

used classification methods due to its easy-to-implement algorithmic structure and 

effectiveness for various data-related problems [50]. As a more sophisticated and 

complex algorithm, support vector machines is a classification method that separates 

classes in the data set as wide as possible with the use of hyper-planes. As a result of 

its unique approach for classification, it is extensively used especially for image and 

text recognition problems [51]. Random forest, on the other hand, is a method that 

built upon decision trees which is another classification algorithm. In decision trees 

classification is performed with recursively answering ’yes’ or ’no’ questions [52]. A 

random forest contains multiple decision trees that are trained with different sections 

of the data. It makes the final classification by the selecting most commonly occurred 

class in the predictions made by decision trees [53].  

This feature of random forest enables it to look at different perspectives of the 

problem and to decide the final prediction with more unbiased fashion [54]. 

Furthermore, the use of classification algorithms to predict all classes in the output 

vector is referred to as flat classification [55]. Even though this approach is viable for 

many problems, it ignores any kind of hierarchical structure between classes that are 

aimed to be predicted [56]. On the contrary, hierarchical classification is a subset of 

classification approaches where the output classes are grouped depending on their 

similarity or differences, and classification is performed with several stages starting 

from the arbitrarily created groups and continues until original classes are predicted 

[57]. Even though this approach is well-defined and have been used in many 
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computer science applications in the literature, it is not well studied especially on the 

interdisciplinary application of machine learning [58].  

The data set used in this section contains the proximity analyses and the name of 

corresponding fuels and is collected from multiple studies in the literature. After 

collection and merging of the data set, the study is conducted in two phases. In the 

first phase, proposed methods are separately trained to classify fuels. In the second 

phase, hierarchical classification is employed to combine each individual method’s 

strengths. Moreover, this method allowed to integrate expert opinion during the 

training of the models to obtain improved stability and accuracy. 10-fold cross 

validation technique is used to evaluate each models’ accuracy and generalization 

performance in an unbiased manner. Results obtained from each phase are discussed 

and source code for proposed hierarchical classifiers is provided for researchers to 

use (https://github.com/furkanelmaz/SolidFuelClassification). 

2.1  Dataset Acquisition and Analysis 

2.1.1  Collection of the data set 

Dataset used in this section has 585 samples and is collected from various reliable 

studies in the literature as well as from Phyllis. All samples contain fixed carbon, 

volatile matter, ash contents, i.e., proximate analysis results, and the corresponding 

name of the fuel. Because trying to develop a classifier to classify each fuel 

individually is not a realistic approach, the fuels are categorized into coals, woods, 

agricultural residues (AR) and manufactured biomass (MB) classes as shown in 

Table 2.1.  

Fortunately, dataset contains three features and single output column with four 

distinct classes, thus, it can be plotted it in 3D surface (Figure 2.1). As one can see in 

Figure 2.1, there are considerable overlaps and no strict distinction between classes 

at least from plain eye observation which indicates the requirement of further 

analyses. Also, one must not confuse categorization of raw fuels and categorization 

in hierarchical classification mentioned earlier, categorization here is to obtain 

classes that is aimed to be predicted at the end and have no connection to hierarchical 

classification. 
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Table 2.1 Categorization of raw fuels. 
Class	Name #	of	Samples Elements 

Coals 												94 coals,	charcoals,	chars 
Woods 												251 wood,	shell,	pruning 
AR 												167 seed,	husk,	leaves,	grass,	bark,	straw,	stalk 
MB 												73 municipal	solid	waste, RDF,	sludge,	

briquettes 
 

 

Figure 2.1 3D plot of the data set. 

2.1.2  Statistical analyses 

In order to have better understanding of the dataset and to find relationships between 

classes, several statistical tests are conducted. Means and standard deviations of each 

feature for each class are calculated to explore characteristics of the classes (Table 

2.2). 

Table 2.2 Means and standard deviations of classes for each feature. 

 Coals MB  AR  Woods 

Mean Std. Mean Std. Mean Std. Mean Std. 
Fixed 
Carbon 

58.62 17.12 9.19 3.46 18.38 4.73 17.86 3.79 

Volatile 
Matter 

30.48 15.27 43.17 13.48 73.84 5.89 80.71 4.18 

Ash 10.89 9.14 33.63 15.27 7.76 5.24 1.44 0.94 

According to Table 2.2, one can deduce following statements: 
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1. Coals tends to have higher fixed carbon content compared to all others 

2. MB tends to have higher ash content compared to all others 

3. AR and woods tend to have higher volatile matter content compared to coals 
and manufactured biomass 

4. AR and woods tend to have similar fixed carbon content 

Although deductions made were based on means and standard deviations, they are 

not enough to prove a certain characteristic of a class is different from another.  For 

this reason, Mann–Whitney U non-parametric statistical test is employed to justify 

these deductions [59]. Like many other statistical tests, Mann-Whitney U assumes 

two given lists came from similar distribution and there is no statistical difference 

between them (null hypothesis). Then a p-value (0 ≤ # − %&'() ≤ 1) is outputted 

after the test is conducted, if p−value is less than 0.05, hypothesis gets rejected which 

concludes that there is a statistical difference between two given lists. Otherwise, 

hypothesis is accepted. Mann-Whitney U test is conducted for all classes and all 

binary combination of the classes. In order to keep things simple, only p−values for 

the deductions made are included in Table 2.3. One must note that, different 

deductions can be made with using Table 2.2 and results of the Mann-Whitney U 

test. Given deductions are based on prior experience and what is mentioned as expert 

opinion throughout this section. 

Table 2.3 Mann-Whitney U test on selected classes and group of classes 
Compared 
Groups 

Coals	
-	
MB 

Coals	
-	
AR 

Coals	
-	

Woods 

AR	
-	

Woods 

AR&Woods	
-	

Coals	&	MB 

MB	
-	

Coals 

MB	
-	
AR 

MB	
-	

Woods 
Compared 
Feature  Fixed	Carbon  Volatile	

Matter  Ash  

p-values 9.97E-29 7.56E-40 2.64E-45 0.122 3.8E-66 1.23E-18 3.73E-29 2.96E-39 

As one can see from Table 2.3, distribution of fixed carbon content of Coals is 

statistically different all other classes. And with its higher mean value in mind, one 

can assume first statement is justified. In the same way, ash content of MB is 

different and tend to be higher than the other classes which justifies second 

statement. For third statement, AR class is combined with Woods and Coals is 

combined with MB, and with resulting p-value, these two combined categories are 

statistically different from each other and AR & Woods category tend to have higher 

volatile matter content due to their higher mean values. For final statement, AR and 
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Woods tend to have similar fixed carbon content with p-value greater than 0.05, thus, 

it is not a distinctive feature between them. 

2.2  Classification Methods & Performance Evaluation Techniques 

2.2.1  K-nearest neighborhood 

K-nearest neighborhood (KNN) is a primitive yet effective machine learning 

algorithm which is easy to implement and has low computational complexity 

compared to other complex machine learning algorithms [60]. KNN is based on a 

simple idea; unlabeled data can be classified as the most occurred class in k number 

of nearest labeled data points. This idea raises two fundamental questions; how can 

we measure the ‘distance’ between data points to determine whether a data point is 

near or not? What is the optimal number k? In KNN, distance is usually calculated 

with geometrical distance metrics such as Euclidean and minkowski metrics [61]. In 

this section, minkowski metric, which is defined in Equation 2.1, is used.  

 +(-, /) = 2|- − /|!
!  (2.1)  

Euclidean distance is a special case of minkowski when the p is equal to 2. The 

distance is calculated between a labeled sample and unlabeled sample for each 

feature column individually, then the results are summed to obtain final distance 

value. This process is repeated between each labeled sample and the unlabeled 

sample to calculate all distance values, thus, one can predict the class of unlabeled 

sample with using the class information of k number of data points which have the 

least distance to the unlabeled data. Selection of number k is highly dependent on the 

data set used, and usually determined by trying different number of integers and by 

evaluating their performances [62]. 

2.2.2  Support vector machine 

Support Vector Machine (SVM) is a widely used machine learning algorithm created 

by Vapnik and Cortes [63]. Although it was originally proposed as a binary 

classifier, due to its enormous success especially in text and image recognition, it is 

twisted and have been also used in multi-class classification and regression problems 

[64]. SVM aims to find not only feasible but an optimal hyperplane to separate given 
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classes which is also known as large margin classification. This feature distinguishes 

SVM from other machine learning algorithms because it makes SVM fundamentally 

resistant to overfitting where others prone to overfit more easily [65]. Decision 

condition for two arbitrary classes 1 and -1 and objective function J which will be 

minimized during the training phase are given in Equation 2.2 and Equation 2.3, 

respectively [63]. 

 45)67897:; = <
1, if 					>" ⋅ @ + B ≥ 0

−1, otherwise  (2.2)  
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where, M is number of samples in the data set, N" is the unlabeled feature column 

vector, N(  is the labeled feature column vector, / is the label (output) vector. O, B 

and P are weight vector, constant term and Lagrange multipliers which will be 

determined in training process, respectively. Equation 2.3 is called primal 

formulation of SVM. Even though it is possible to train an SVM model for linearly 

separable simple problems, true power of SVM yields on kernel method. With 

kernels, input data can be mapped into higher dimensional space with the help of a 

kernel function. Thus, linearly inseparable input data can become linearly separable 

in higher dimension. In order to use kernels, primal form must be converted to dual 

form as given in Equation 2.4 [66]. 
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where, V is the regularization parameter which controls the violation of large margin 

classification, Q(-" , -() the kernel function and in the original form, it is equal to dot 

product of -" and -( which is known as linear kernel. In order to map the inputs to 

higher dimension space, there are several kernel functions that can be used, radial 

basis (Equation 2.5) and polynomial (Equation 2.6) kernels are the most commonly 

used and what have been used in this section. 

 
Q(-" , -() = )

)*"+*#)
$

#,$  (2.5)  

 

 Q(-" , -() = (N" ⋅ N( + 8)- (2.6)  

 

Where W is a free parameter which configures sensitivity to differences in feature 

vectors,	6 is the order of the polynomial. After selection of kernel and convex 

optimization of Equation 2.4, one can obtain the non-zero J values (support vectors), 

calculate H and B variables by using Equation 2.7 and Equation 2.8, respectively. 

Then unlabeled data can be classified with conditions given in Equation 2.2. 
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where, Y corresponds to the indices of the support vectors in the J, X. is the number 

of support vectors. 
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2.2.3  Random forest 

Random Forest (RF) is an ensemble type machine learning method built upon 

Decision Tree (DT) algorithm [67]. It uses multiple DT models and merges them to 

make more accurate and stable predictions [68]. In DT, the tree is grown by 

recursively determining the most decisive values in input space with using a measure 

of randomness such as entropy or gini index [69]. Thus, a tree of binary split nodes is 

grown to classify unlabeled data. Although DT is useful in various machine learning 

problems, overfitting and unstability are commonly encountered problems [70]. 

There are several techniques like pruning to overcome overfitting but they are less 

reliable compared to RF algorithm [71]. Although, there are several ways of 

implementing RF, the most common “bagging” method is focused in this section. 

Bagging is an abbreviation for “bootstrap aggregating”. For demonstration, let us 

assume we have a data set which has M number of samples and ; feature columns, 

bootstrapped data set is created by inserting randomly selected sample from the 

original data set (with replacement) until the number of samples in bootstrapped set 

is equal to M [72]. Number of bootstrapped sets will be created is equal to the 

number of DT that will used in RF. After that, each DT will be trained with different 

bootstrapped set, but each best split during the training phase will be determined by 

using Z number of randomly selected features where Z ≤ ;. Moreover, an unlabeled 

sample will be classified by “aggregating” DTs, in other words, prediction will be 

made with majority vote of the trained DTs. With using a bagging technique, RF 

algorithm is able to look “different perspective” of the data set, thus, becomes more 

resistant to overfitting and creates more stable prediction model in return for higher 

computational cost. 

2.2.4  Hierarchical classification 

Large amount of classification studies in literature is conducted by using flat 

classification. Flat classification is conventional approach where the classifier is 

trained to classify all classes in a data set [73]. Although, this approach has helped 

researchers to solve various types of problems successfully, it ignores any kind of 

relationship between classes. On the other hand, hierarchical classification creates 

prediction models in multiple hierarchically structured stages with using one or more 
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classifiers [58]. Idea of hierarchical classification ranges broadly from simple 

classifiers to the deep learning applications. The approach that is used in this section 

local classification which also known as top-down approach in the literature [74]. In 

top-down approach, 8 number of classes in the dataset are categorized into 9 number 

of categories with respect to “similarities” between classes, where	 9 ≤ 8. Created 

categories become new classes for the classifier used in upper level of the hierarchy 

which can be considered as parent–child relationship. In the training phase, each 

parent classifier learns to distinguish its child categories individually with no 

connection to other classifiers. In the testing phase, prediction of an unlabeled data 

starts with the classifier at highest level of the hierarchy (root node), it classifies the 

data as one of its child categories and corresponding classifier continues this 

procedure until a one of the original class in the data set (leaf node) is reached. There 

are several advantages of hierarchical classification to the flat classification, one of 

them is to ability to merge multiple classifiers for the same problem. In the same data 

set, one classifier may outperform other one for predicting a certain child category, 

this situation may reversed for another category, thus, increase in overall accuracy 

can be observed with combination of classifiers compared to selecting one algorithm 

to classify all classes [75]. Secondly, hierarchical classification allows researcher to 

explore and analyze the problem more deeply due to simplification of the problem at 

each parent–child stage. Also, one can use algorithms such as logistic regression, 

which is not suitable for multiclass problems, in different levels of the hierarchy. 

Moreover, a different subset of features can be used rather than using all features 

during the training of the classifiers, thus, expert opinion can be integrated at each 

level of hierarchy which also can increase overall accuracy and stability. With the 

given advantages, hierarchical classification approach is also employed to develop a 

prediction model in this section. In order to visually demonstrate the way how the 

hierarchical classifier is developed in this section, the flowchart given in Figure 2.2 is 

created for an arbitrary number of classes grouped into 2 groups. 
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Figure 2.2 Flowchart of a hierarchical classifier design 

2.2.5  K-fold cross-validation 

Cross validation is extremely important procedure to evaluate generalization 

performance as well as the stability of a prediction model [35]. K-fold cross-

validation (KCV) is popular technique due to its use of all the samples in the data set 

and its viability whether the data set is relatively small or not [76]. KCV splits the 

data set into Z number of equally sized folds. Then, Z − 1 number of folds is used to 

train the model and the trained model is tested on the remaining one. This process is 

repeated Z times to use all folds for testing once and all predictions made on the test 

folds are merged. Cross-validation accuracy is calculated between merged 

predictions and original data set by using appropriate error metrics depending on 

type of the problem. Because training and testing are performed on different folds in 

each iteration and accuracy is calculated with using whole data, KCV shows the true 

prediction ability of the candidate model in unbiased manner [77]. Moreover, each 

fold is used Z − 1 times for training in KCV, thus, one  can  also  look  at  training  

accuracies  by  averaging Z − 1 performances of each fold to check for stability 
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problems [78]. In this section, KCV is used to evaluate training and testing 

performances of the models proposed and Z number is chosen as 10 due to its 

reliability shown in previous studies in the literature [79]. Evaluation scheme of 10-

fold cross validation is illustrated in Figure 2.3. 

 

 

Figure 2.3 Visual demonstration of 10-fold cross-validation 

As one can see in Figure 2.3, predictions of each fold are stored until all ten rounds 

are completed, then performance evaluation is conducted between all of the stored 

predictions and original data [80]. Moreover, in this section, procedure illustrated in 

Fig. 1 is repeated ten times with different random number generator seeds and the 

means and relative standard deviations for resulting ten iterations are calculated 

during the performance evaluations of the employed methods. With the repetition of 

10-fold cross validation for ten times, it is easier to check the dependency to the 

randomness of each proposed method [81]. Because these elements in ten equal-

sized folds are selected randomly, random number generator seed is changed in 

Python at each iteration to check whether the candidate model can predict target 

classes with the same success regardless of the different random splits. The mean and 

relative standard deviation of these ten repetitions of 10-fold cross-validation is 

calculated to show if the model is successful at predicting target classes as well as 

how resistant is the model to randomness factor which is referred to as stability in 

remainder of this section. Moreover, because 10-fold cross validation is performed 

10 times with different random number generator seeds, mean and relative standard 
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deviation of iterations   is   also   provided   in  tables provided in the further 

subsections are in the form of M)&; ± 5)'&97%)	T9&;6&56	6)%7&97:;. Also, 

confusion matrices are plotted for more in-depth analyses. A confusion matrix is a 

2D plot where one of the axes is the actual labels and other is the predicted labels. 

This plot shows how many samples are labeled correctly and incorrectly for each 

class. Percentage values are also added in these plots for better clarity. 

2.2.6  Performance metrics 

During the performance evaluations of the proposed models, classification accuracy 

(Accuracy) (Equation 2.9), Precision (Equation 2.10), Recall (Equation 2.11) and F1-

Score (Equation 2.12) metrics are calculated. 
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where, a TP (true positive) corresponds to a correct identification of a test sample 

from a particular class. FN (false negative) means that the prediction is not the class 

that the test sample belongs to, which is the target class. TN (true negative) happens 

when predictions based on samples from classes which are not the target class, and 

they are classified as non-target class. FP (false positive) happens when the sample is 

predicted wrongly as the target class [82]. For instance, if a medical doctor wants to 
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predict if a patient has cancer or not by examining tomography of the patient, then a 

TP happens if the patient has cancer (cancer=positive in this case) and the doctor also 

diagnoses the patient as cancer. On the contrary, if the patient does not have cancer 

but the doctor diagnoses him/her with cancer, then this would be a FP. Also, if the 

patient has cancer but the doctor diagnoses him/her without cancer, then this would 

be a FN. One should note that in both cases, FP and FN, the prediction is wrong. And 

finally, the true negative (TN) happens when the patient does not have cancer and the 

doctor diagnoses him/her as non-cancer or healthy. Classification accuracy shows 

overall prediction capability of the model and is calculated as the proportion of 

number of correctly predicted labels to the number of the prediction made. Precision 

and recall metrics judge the prediction model from different perspective by only 

utilizing TP, FP and FN scores. F1-Score uses both precision and recall metrics to 

obtain a final score. All metrics range between 0 and 1, where 1 corresponds to the 

perfect score [83].  

2.3  Results and Discussion 

2.3.1  Flat classification 
Classifiers proposed in this paper have hyper-parameters such as number of trees in 

RF, number of neighbors in KNN or regularization parameter in SVM which can 

dramatically increase or decrease the performance of the predictions. In order to 

show true potential of each method, different hyper-parameters for each method have 

been tried. Results with most successful hyper-parameters are given in Table 2.4 and 

their corresponding confusion matrices are given in Figure 2.4. Hyper-parameter 

with highest test score is selected as best, if one or more of them had equal test 

scores, one that had least relative standard deviation is selected. One must note that 

percentage accuracies, number of correctly or incorrectly labeled classes given in 

confusion matrices are also mean values of 10 iterations of 10-fold cross validation 
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evaluations. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.4 Confusion matrices resulting from best performing RF (a), SVM (b) and 
KNN (c) flat classifiers 

Table 2.4 Performance evaluation results of best performing flat classifiers 

 Classification Accuracy Precision Recall F1-Score 
Training Testing Training Testing Training Testing Training Testing 

KNN 
(# of Neighbors=10 

Minkowski Order=1) 
0.842 

± 
0.08% 

0.8228 
± 

0.5% 
0.842 

± 
0.08% 

0.823 
± 

0.5% 
0.842 

± 
0.08% 

0.8228 
± 

0.49% 
0.84 

± 
0.1% 

0.8213 
± 

0.5% 
RF 

(# of Trees=100 
Maximum Depth=10) 

0.988 
± 

0.83% 

0.901 
± 

6.3% 
0.989 

± 
1.02% 

0.9 
± 

6.5% 
0.98 

± 
0.83% 

0.9 
± 

6.38% 
0.98 

± 
0.83% 

0.9 
± 

6.54% 
SVM 

(Kernel=Quadratic 
                (d=2) C=1) 

0.841 
± 

0.13% 
0.838 

± 
0.6% 

0.842 
± 

0.14% 
0.839 

± 
0.64% 

0.841 
± 

0.13% 
0.838 

± 
0.6% 

0.84 
± 

0.2% 
0.836 

± 
0.61% 
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Results shown in Table 2.4 can be considered somewhat successful. SVM and KNN 

methods were able to “understand” the dynamics of the problems to some degree and 

more promisingly developed models were stable because the relative standard 

deviation between cross-validation iterations were quite low. RF performed best 

when the overall accuracy mean is considered. On the other hand, RF also had the 

greatest relative standard deviation between iterations of 10-fold cross validation 

evaluation, this situation refers least stability and generalization performance. The 

main reason for this high accuracy and high variance behavior is the random feature 

selection during the growing of trees in the RF. When the distinctive features are 

selected, RF was able to predict high accuracy, otherwise accuracy drops accordingly 

and creates variance between iterations. This situation leads to another conclusion, 

usage of all features is not necessary and may even drop the accuracy of the model 

for some classes. And with flat classification it is not possible to determine which 

features are determinative to distinguish which classes. Even though flat 

classification results were not catastrophic, there is a space for improvement in 

overall accuracy and stability with hierarchical classification which is discussed next. 

2.3.2  Hierarchical classification 

There are several steps to follow while developing a hierarchical classification 

model. Firstly, a hierarchical structure between classes is created by using their 

“similarities” and “differences”. Woods and AR tend to have larger amount of 

volatile matter compared to other classes as mentioned in Section 2.1.2. These two 

classes make up the first group “Group 1”. Naturally, other two classes, i.e., Coals 

and MB make up the “Group 2”. As a second step, distinctive feature(s) between the 

elements of each group are determined. For elements of Group 2, Coals have greater 

fixed carbon content while MB having greater ash content as inferences made in 

Section 2.1.2. Therefore fixed carbon and ash are optimal features to distinguish 

these two elements. For Group 1, fixed carbon is not an optimal choice as mentioned. 

Therefore, only volatile matter and ash features are used during the classification of 

these two elements. As a final step, three classifiers are determined to classify Group 

1 and Group 2, as well as their respective elements. For each classifier, RF, KNN and 

SVM with different hyper-parameters are implemented, best results are given in 
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Table 2.5, Table 2.6, Table 2.7 for classification of Group 1 and Group 2, Coals and 

MB, Woods and AR, respectively.  

 

According to Table 2.5, SVM had the greatest success to classify Group 1 and Group 

2 due to its superior testing performance compared to other algorithms. In same 

fashion, as shown in Table 2.7, RF was the most successful algorithm for classifying 

elements of Group 2. One must note that, unlike what is used in flat classification, 

RF was trained with only boot-strapping rather than bagging algorithm in this part. 

The reason is the selection of features to be used beforehand, thus, random feature 

selection in RF is not required and even it might lead to underfitting [96]. For 

Table 2.5 Performance evaluation for the classification of Group 1 and Group 2 
 Classification Accuracy Precision Recall F1-Score 

Training Testing Training Testing Training Testing Trainin
g 

Testing 

KNN 
(# of Neighbors=5 

Minkowski Order=3) 

0.919 
± 

0.02% 

0.91 
± 

0.31% 

0.919 
± 

0.03% 

0.91 
± 

0.31% 

0.919 
± 

0.02% 

0.91 
± 

0.31% 

0.919 
± 

0.03% 

0.909 
± 

0.31% 

RF 
(# of Trees=100 

Maximum Depth=8) 

0.998 
± 

0.58% 

0.933 
± 

2.37% 

0.998 
± 

0.58% 

0.933 
± 

2.46% 

0.998 
± 

0.83% 

0.933 
± 

2.37% 

0.99 
± 

0.58% 

0.933 
± 

2.46% 

SVM 
(Kernel=Quadratic(d=2) 

C=0.01) 

0.983 
± 

0.07% 

0.979 
± 

0.31% 

0.982 
± 

0.07% 

0.979 
± 

0.32% 

0.982 
± 

0.07% 

0.979 
± 

0.32% 

0.982 
± 

0.05% 

0.979 
± 

0.33% 

 
Table 2.6 Performance evaluation for classification of Coals and MB 

 Classification Accuracy Precision Recall F1-Score 
Training Testing Training Testing Training Testing Training Testing 

KNN 
(# of Neighbors=3 

Minkowski Order=2) 

0.993 
± 

0.03% 

0.987 
± 

0.06% 

0.993 
± 

0.02% 

0.988 
± 

%0.0 

0.993 
± 

0.03% 

0.987 
± 

0.07% 

0.993 
± 

0.03% 

0.988 
± 

0.02% 

RF 
(# of Trees=50 

Maximum Depth=2) 

0.995 
± 

0.19% 

0.984 
± 

0.97% 

0.995 
± 

0.19% 

0.984 
± 

0.97% 

0.995 
± 

0.19% 

0.984 
± 

0.97% 

0.995 
± 

0.19% 

0.984 
± 

0.97% 

SVM 
(Kernel=Quadratic(d=2) 

C=0.01) 

0.989 
± 

0.09% 

0.98 
± 

0.73% 

0.989 
± 

0.09% 

0.981 
± 

0.72% 

0.989 
± 

0.09% 

0.98 
± 

0.73% 

0.989 
± 

0.09% 

0.98 
± 

0.73% 

 

Table 2.7 Performance evaluation for classification of Woods and AR 

 Classification Accuracy Precision Recall F1-Score 
Training Testing Training Testing Training Testing Training Testing 

KNN 
(# of Neighbors=10 

Minkowski Order=1) 

0.925 
± 

0.121% 

0.907 
± 

0.5% 

0.927 
± 

0.11% 

0.909 
± 

0.51% 

0.925 
± 

0.12% 

0.907 
± 

0.5% 

0.925 
± 

0.11% 

0.907 
± 

0.51% 

RF 
(# of Trees=100 

Maximum Depth=8) 

0.985 
± 

0.14% 

0.948 
± 

1.07% 

0.986 
± 

0.14% 

0.949 
± 

1.08% 

0.985 
± 

0.14% 

0.948 
± 

1.07% 

0.985 
± 

0.14% 

0.948 
± 

1.08% 

SVM 
(Kernel=Quadratic(d=2) 

C=0.01) 

0.931 
± 

0.2% 

0.91 
± 

0.68% 

0.932 
± 

0.24% 

0.911 
± 

0.69% 

0.931 
± 

0.2% 

0.911 
± 

0.68% 

0.93 
± 

0.2% 

0.911 
± 

0.67% 
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classification of the elements Group 1, it was a quite simple task for all classifiers 

and all of them managed to achieve almost perfect prediction accuracy for both 

training and testing phases as shown in Table 2.6. With little to no accuracy 

differences between classifiers, KNN algorithm is selected for this stage due to its 

lower computational complexity compared to others when the sample size is quite 

low. 

With the construction of hierarchical structure between classes, selection of 

classifiers and features to be used at each stage, proposed hierarchical classification 

model is developed. Training and testing procedures of the model are illustrated in 

Figure 2.5 and Figure 2.6, respectively. Performance evaluation and confusion 

matrix is given in TABLE and Figure 2.7, respectively.  

 

Figure 2.5 Training procedure of the proposed hierarchical classifier 

 

Training Set

Coals and MB 
are Labeled as 

Group 1, Woods 
and AR Labeled 

as Group 2

Trained to 
Classify

Group 1 Group 2

Data Labeled as 
Coal or MB are 

Selected

KNN                    
(# of Neigbors = 3, 
Minkowski Order = 

2)

Trained to 
Classify

Coal MB

Data Labeled as 
Woods or AR are 

Selected

RF                        
(# of Trees = 200, 
Maximum Depth = 

8)

Trained to 
Classify

Woods AR

SVM                    
(Quadratic Kernel 
(d=2), C = 0.01)
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Figure 2.6 Testing procedure of the proposed hierarchical classifier 

 

 

 

 

Figure 2.7 Confusion matrix resulting from hierarchical classifier 

 

Test Set Trained SVM 
Model Classifies as

Trained KNN 
Model 

Trained RF   
Model

Group 1

Group 2

Classifies as

Classifies as

Coal

MB

Woods

AR

Table 2.8 Performance evaluation of the hierarchical classifier. 

 Classification Accuracy Precision Recall F1-Score 
Training Testing Training Testing Training Testing Training Testing 

Hierarchical Classifier 
0.963 

± 
0.06% 

0.923 
± 

0.17% 

0.963 
± 

0.06% 

0.923 
± 

0.18% 

0.963 
± 

0.06% 

0.923 
± 

0.5% 

0.925 
± 

0.17% 

0.962 
± 

0.18% 
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When Table 2.8 is examined and compared to Table 2.4, performance of hierarchical 

classifier is improved compared to other flat classification models especially in 

testing phase. Furthermore, training and testing scores of the model is quite close to 

each other which concludes that, model was not over-fitting and has good 

generalization performance. But there are few aspects one has to cover; firstly, are 

the results significantly better when the additional effort required to develop 

hierarchical model in mind? When flat classification models with KNN and SVM 

and hierarchical model are compared, there are reasonable performance difference. 

Both KNN and SVM was not able to distinguish each class as good as hierarchical 

model did when given accuracy metrics are taken into the account. For RF model, 

mean accuracies is quite similar to hierarchical model, but relative standard deviation 

between iterations are the main difference between those models. As mentioned in 

Section 2.3.1, random feature selection process in RF is a “two-edged sword” which 

can increase or decrease prediction accuracy depending on the randomness factor 

[84]. In hierarchical model, this problem was solved by selecting the features by 

using expert opinion and statistical analyses for each stage of the hierarchy. 

Therefore, hierarchical model grows into both stable and accurate prediction model 

as opposed to flat classification models.  

In order to justify the results of the section statistically, Wilcoxon test which is an 

another non-parametric statistical to check is there a significant difference between 

performance of hierarchical model and flat classification models is employed [85]. In 

order to perform Wilcoxon test, test performances of best performing flat classifiers 

and hierarchical classifier are collected by changing random seed of 10-fold cross-

validation splitting 100 times iteratively. Then, Wilcoxon test is used to obtain p-

values with using these results (Table 2.9). 

  

 

Table 2.9 Performance evaluation of the hierarchical classifier. 

  SVM                                          KNN                                         RF 
Hierarchical 

Classifier 3.816E −18                                  3.789E −18                              3.818E −18 
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According to the p-values strictly less than 0.05, there is a statistically significant 

difference between hierarchical classifier and flat classifiers. With superior 

performance of hierarchical model in mind, it is safe to say that, for fuel 

classification problem, hierarchical prediction modeling outperforms flat 

classification approaches by both accuracy and stability perspectives when the 

feature and classifier selections are done correctly. This result also indicates that 

hierarchical structure between fuels exists and can be utilized in many different 

applications.  

Even though there are no studies that focus on the classification of solid fuels, one 

can compare the performance of hierarchical classification framework to ones 

obtained in Rearden et al. and Wang et.al. where the focus is on the classification of 

liquid fuels [42,43]. In Rearden et al., authors reported 95 ± 0.3% accuracy for the 

classification performed between jet fuels. Moreover, in Wang et al., 90% accuracy 

is reported for the classification between Diesel/JP-4 binary mixture. These studies 

also mentioned that their respective results are satisfactory and proposed techniques 

can be utilized in practical applications. In this section, 92 ± 0.17% accuracy for the 

classification of solid fuels with a hierarchical classifier framework is obtained. 

When the accuracies of the previously mentioned studies are concerned, the 

proposed hierarchical classifier can be considered a successful and strong framework 

that can be utilized in practical applications. 
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3.  PREDICTIVE MODELING OF BIOMASS 
GASIFICATION WITH MACHINE LEARNING 

After the completion of the fuel classification which is an important procedure before 

the energy production via biomass gasification, next step is the development of a 

prediction model for the critical outputs of the biomass gasification process. As 

previously discussed in Section 1.2.1, there are several studies that focused on ML-

based modeling of the biomass gasification. Nevertheless, these studies mainly 

deficient about the unbiased performance evaluations and excessively focused on the 

use of ANN. For this reason, in this section, four regression techniques, i.e., 

polynomial regression, support vector regression and decision tree regression are 

employed alongside ANN to predict five critical outputs, i.e., CO, CO2, CH4, H2 and 

HHV of the biomass gasification process. Moreover, the experimentally collected 

data set is utilized during this section. The data set was collected by Gebze Technical 

University and the collection was independent from this thesis and only explained for 

clarification in Section 3.1. Furthermore, feature extraction is performed on the data 

set and PCA technique is applied to the extracted features to prevent 

multicollinearity and to increase computational efficiency. Performances of the 

proposed regression methods are again evaluated with 10-fold cross validation.  

3.1  Dataset Collection 

10 kW down draft fixed-bed gasifier provided by All Power Labs Inc is used during 

the data collection. Downdraft gasifiers enable solid fuels to be moved together with 

air in the downward direction, whereas the venturi ejector provides air suction that 

causes air entering the reactor via an airflow meter. The biomass is exposed to 

multiple processes in four different stages of the fixed-bed gasifiers: drying, 

pyrolysis, combustion, and reduction stages, in which some certain combination of 

complex heterogeneous and homogeneous chemical reactions take place. In order to 

filter the particles, cyclone separator is used to clean the produced syngas. Also, the 

packed bed filter is used to clean the remaining condensable materials. Lastly, the 

flue gas is burnt out by a swirl burner. The concentrations of CH4, H2, CO2, CO and 

O2 in the syngas measured by Wuhan Cubic Syngas Analyzer Gas board 3100P, a 

portable infrared syngas analyzer, simultaneously as heating value (calorific value) is 
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computed using Thermal Conductivity Detector and NDIR. The amount of heat that 

is released when a unit mass of fuel is fully combusted is defined as the higher 

heating value (HHV). It also includes the latent heat of vaporization of water. 

Temperatures measured using a group of 6 in-line K-type thermocouples with 8 mm 

diameter at 6 different heights inside the gasifier as T0, T1, T2, T3, T4, T5 during the 

experiments. Then were recorded real-time values of temperatures, pressures and 

flow rates using an Arduino based system illustrated in Fig.1. Equivalence Ratio 

(ER) expresses the amount of external air supplied to the gasifier, is computed using 

the recorded airflow rate values and it is a crucial operating variable in biomass 

gasification. Pinecone particles and wood pellets are used as the feedstock for 

gasification. Fallen mature pinecones collected from the Gebze Technical University 

campus in Kocaeli, Turkey. The wood pellets are purchased from a local 

manufacturer of wood pellets. During the data collection; ASTM E1755-01, ASTM 

E871-72 and ASTM D3175 methods are used to determine ash, moisture and volatile 

matter contents by using ash furnace, respectively. FC was determined by balance. 

Ultimate analysis results are obtained by using LECO Truspec CHNS Elemental 

Analyzer. Oxygen content is calculated with Equation 3.1, HHV is calculated with 

Equation 3.2 which is provided by Sheth and Babu [86]. The ultimate and proximate 

analysis of the woody biomass are given in Table 3.1. Thus, total number of 4826 

data samples including temperatures, equivalence ratio values, concentration values 

and fuel flow rate were collected from five different experiments. 

 O% = 100 − C%− H%− N%− S%− Ash% (3.1)  
 

 HHV = 0.3536FC + 0.1559VM − 0.0078Ash (3.2)  
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Table 3.1 Physical and chemical characterization of the pine cone and wood pellet. 
Physical analysis (mm) Pine cone Wood pellet 

Width 8 7 
Length 12 20 

Proximate analysis (wt%) 
Moisture 9.6 12 
Volatile Matter 77.8 79.12 
Fixed Carbon 11.7 7.83 
Ash 0.9 1 

Ultimate analysis (wt% db) 
Carbon 42.62 50.67 
Hydrogen 5.56 6.18 
Oxygen 51.01 40.97 
Nitrogen 0.76 2.0 
Sulphur 
 

0.05 0.18 

Calorimetric analysis (MJ/kg db) 
   Lower heating value 16.25 18.69 

 

The gas composition for the same temperature values and the same air-fuel ratios 

should be fixed, even though there are instantaneous differences due to channeling 

and bridging phenomena, it is expected that the average value and trend of the gas 

composition will be the same when the experiment is repeated. Moreover, C, H and 

O contents of biomass are calculated with elemental analysis of biomass. Among the 

features that are used in this experiment, the measurement range for the temperature 

values, T0, T1, T2, T3, T4, T5 is up to 1250°C, where the measurement uncertainty is 

±2°C. In addition, the measurement uncertainty for the C is ±0.45% and for the H is 

±0.1%. For the O, the measurement uncertainty is ±0.6%, whereas, for the ER and 

FR, it is ±1%. 

3.2  Methods 

3.2.1  Feature extraction and preprocessing 

In order to use machine learning-based methods successfully, one must select a set of 

features that are informative and appropriate for the problem. For gasification 

process, equivalence ratio (ER), fuel flow rate (FR) and distribution of temperature 

(T0, T1, T2, T3, T4, T5) are important dynamics, thus, they are selected as features. 

Furthermore, the feature set was extended by adding the ultimate and proximate 

values of the biomass that are Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N), 
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Moisture (M), VM, FC and Ash. However, S (Sulphur) that comes from elemental 

analysis from biomass involves redundant information since the changes in these 

variables are either constant or too low to discriminate. Therefore, the remaining 

sixteen features are used to predict CO, CO2, CH4, H2 and HHV values and 

constructed a 16-1 dimensional feature column vector, N1, for the ;23 sample in the 

data set.  

Once the features are extracted, distance measures will be exploited for the 

prediction of the dependent variables of biomass gasification, i.e., CO, CO2, CH4, H2 

and HHV levels, based on similarities among the features. To prevent larger valued 

features from dominating scale sensitive computation of metrics such as Euclidean or 

Manhattan distances, feature normalization is performed on the dataset with linear 

scaling to the unit range (Equation 3.3). 

 -
~
"[;] =

-"[;] − M7;(-")
M&-(-") − M7;(-")

 (3.3)  

where -"[;] is the 723 feature vector of ;23 observation in the dataset, M7;(-") and  

M&-(-") are the minimum and maximum values of 723 feature vector across all 

observations in the dataset, respectively. Therefore, one obtains -
~
"[;], which is the 

normalized version of the 723 feature for the ;23 observation in the dataset. Thus, the 

feature set ranges between 0 and 1. 

3.2.2  Principal component analysis (PCA) 

In order to address possible multicollinearity among the sixteen features and to 

represent independent variables with minimal redundancy, PCA is employed, which 

can find feature components that have low and high variance in a given data set [87]. 

For this purpose, one compute a sample covariance matrix as: 

 t =
1

M − 1
I(N1 − N1)(N1 − N1)5
%

1&'
 (3.4)  
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where, N1 =
'
%∑ N1%

1&'  and m is the total number of samples in the data set. Then, 

eigen decomposition of the 16x16 sample covariance matrix, C, is then performed to 

compute eigenvalues v', v#, . . . , v'6, which are sorted in decreasing order such that, 

v' ≥ v# ≥. . . ≥ v'6 whereas the corresponding eigenvectors are denoted as 

w', w#, … , w'6. 

 

In order to achieve minimum redundancy, one needs to project the original feature 

vectors onto the first K principal components, i.e., eigenvectors w', w#, … , w7, with 

the largest K eigenvalues such that: 

 
∑ v"
8
"&'

∑ v"'6
"&'

∗ 100 ≥ y (3.5)  

the cumulative energy captured by these principal components account for at least y 

percent of the total energy in the dataset. In this section, y is selected as 90% and 

computed a projected set of vectors: 

 z1 = [w', w#, . . . , w8]5N1 (3.6)  

which are then used as features with reduced dimensionality. With the 

implementation of PCA, a total of sixteen features are reduced to three. One must 

note that three features created by the PCA algorithm have no physical 

correspondence for the biomass gasification process. They are algebraically 

transformed and dimensionally reduced vectors which consist of at least %90 of the 

information in the original feature set. It is also worth mentioning that, C, H, N, 

Moisture, Ash and FC are not included in the correlation equations by the PCA 

algorithm. This means that these features are highly correlated with other feature(s), 

thus, they do not contain enough unique information to be included in these 

equations [88]. 
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3.2.3  Regression 
3.2.3.1  Polynomial regression 

Polynomial regression is a statistics-based technique which aims to represent the 

relationship between the independent variables (features) and the dependent variable 

(output) with an ;23 (; = 	2, 3. . . ) degree polynomial equation [89]. The main goal 

of polynomial regression is to find optimal coefficients that can make satisfactory 

predictions of the output variable in terms of features used in a data set. The choice 

of the degree and type of the polynomial equation vary according to the problem for 

which one would like to develop a solution. In this section, the quadratic and cubic 

polynomial functions with interception terms are used as shown in Equation 3.7 and 

Equation 3.8, respectively: 

  ℎ(-) =I|J"-" +I}"(-"-()

1

(&"
~

1

"&'
+ � (3.7)  

 

 ℎ(-) =IÄJ"-" +I(

1

(&"
}"(-"-( +IÅ"(7-"-(-7

1

7&(
)Ç

1

"&'
+ � (3.8)  

 

where, J, }	&;6	Å are the coefficients of the given polynomial function and � is the 

constant bias term.  

In order to determine these variables, one must select a proper cost function (J) and 

minimize it to obtain a hypothesis function, ℎ(-) that can mimic pheromone one 

aims to model which corresponds to the great generalization performance. In this 

section, least-squares cost function with L2 regularization is used to find optimal 

coefficients while preventing overfitting to maximize generalization performance 

(Equation 3.9) [90]. 
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 D = I(/" − ℎ(-"))#
%

"&'
+ v|IJ"

#
1

"&'
I}"(

#
1

(&"
IÅ"(7

#
1

7&(
~ (3.9)  

where, ℎ(-") presents the prediction of the hypothesis function for 723 sample of the 

feature vector, m is the number of samples in the data set. v is the regularization 

parameter. After the minimization of  D w.r.t. parameters of ℎ(-), one can obtain a 

polynomial representation of the phenomenon. 

3.2.3.2  Support vector regression 

Support vector machines (SVM) is a large-margin classification algorithm that has 

been broadly used in various applications as explained in Section 2.2.2. Support 

vector regression (SVR) is a special case of SVM where the aim is to predict 

continuous variables rather than categorical ones [91]. General estimation function of 

SVR is given in Equation (3.10) 

 `(-) =IJ" ∗ Q(-" , -()

1

"&'
+ B (3.10)  

where, &"(7 = 1,2,3, …;), B and Q(-" , -() are the support vectors and bias term and 

kernel function as same as in SVM, respectively. Radial basis function with W =

0.15 is used as the kernel function in this section. After the selection of kernel, a cost 

function must be selected to find support vectors and bias term. Obviously, same cost 

function used in SVM cannot be utilized for SVR due to the dependent variable 

being continuous type.  For this reason, empirical risk minimization approach 

(Equation 3.11) with robust ε-insensitive loss function (Equation 3.12) is used to 

train SVR model. With the minimization of Equation 3.11, one can use resulting P 

vector and constant B to make predictions using Equation 3.10. 

 D = IÉ9(`(-"), Ñ)

%

"&'
 (3.11)  
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 É9 = {
0, if |Ñ − `(-)| ≤ Ü

|Ñ − `(-)| − Ü, otherwise  (3.12)  

where Ñ is the output vector and á is the very small epsilon value. 

3.2.3.3  Decision tree regression  

Decision Trees (DT) is a widely used and intuitive machine learning method for 

creating prediction models based on basic logical statements [92]. Unlike SVM or 

polynomial regression, the relationship between features and output is not 

predetermined which means it does not use a function to fit data. DT creates a set of 

questions such as “is equal” or “is greater” using feature set, with the given “yes” or 

“no” answers, another question will be encountered to answer. This process is 

repeated until there are no more questions to answer, thus, the output is obtained. DT 

is grown by repeatedly dividing the data into binary sections. The divisions for all 

features are examined with a randomness measure such as entropy [93]. The division 

that makes output distribution most homogeneous is selected as the best division and 

added to the tree. This selection recursively repeated until perfect homogeneity (if 

possible, otherwise best homogeneity available in the set) is obtained or prespecified 

maximum number of nodes is reached. Even though this algorithm is suitable for the 

classification task, it can be twisted for regression problems also known as DTR. In 

DTR, rather than using a randomness metric, DTR utilizes some of square errors 

metric to create subsets which has the lowest possible difference between the 

elements rather than homogeneity of the classes [94]. After that, one can again 

follow the questions in the tree to obtain a continuous variable which is the 

prediction for the given feature set. 

3.2.3.4  Artificial neural network 

ANN is a machine learning methodology inspired by the human brain and its 

information processing structure [95]. It has found widespread usage across different 

types of problems in various disciplines due to its proven success for predicting both 

continuous and discrete variables [96]. ANN consist of neurons which are the 

primary processing elements, and neuron clusters which are called layers. Neurons 

receive inputs from neurons in the previous layer, process the information with its 
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activation function and transmit output for the neurons in the next layer [97] (Figure 

3.1).  

 

Figure 3.1 Simple neuron representation of ANN 

This transmitting process starts with the input layer and continues until the neurons 

in the output layer produce output(s). Every layer between input and output layers 

are called hidden layer, the number of hidden layers and number of neurons in each 

hidden layer and activation functions are hyper-parameters which must be 

determined beforehand. Output (prediction) formulation for a single hidden layer and 

single output feedforward neural network can be defined as: 

 

 

y
~
= Å#(IàO"

(#)
Å'(X)â

%

"&'
+ b(#))

X =I(x(w*(
(')
)

1

(&'
+ b(')

 (3.13)  

 

where, y
~

 is the prediction vector of the ANN model, M is the number of samples in 

the data set, ; is the number of features in the dataset, N( is the ä23 feature vector, 

H(#) are the weights between hidden layer and the output layer, H(') are the weights 

of inputs connected to hidden layer Å# is the activation function of the output layer. 

Å' is the activation function of the neurons in the hidden layer. b(#) and b(') are the 

bias vectors in output layer and hidden layer, respectively. In the proposed ANN 
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model, two hidden layers with ten neurons each as shown in Figure 3.2 is used due to 

its superior performance compared to other topologies. The sigmoid activation 

function is used in hidden layers in order to make ANN “learn” non-linearity of the 

data (Equation 3.14) and linear activation function is used at the output neuron to 

obtain a continuous variable as the prediction (Equation 3.15). 

 
Figure 3.2 Developed ANN structure 

 

 `(-) = 	
1

1 + )+*
 (3.14)  

 

 `(-) = 8 ∗ - (3.15)  

where, c is the constant value adjusts the proportion of the input information to the 

output. In the training phase of the model, weights are adjusted with backpropagation 

and batch Gradient-Descent algorithms. In backpropagation, É# regularized sum of 

square errors with as cost function and every weight’s contribution on the cost 

(jacobian matrix) are calculated with propagating error back to the corresponding 

weights and batch-gradient descent algorithm is used to update the weights [98]. 

Input Layer Hidden Layer
#1

Hidden Layer
#2

Output Layer
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3.2.4  Performance evaluation  

In order to evaluate the performance of the regression models, 10-fold cross-

validation as explained in Section 2.2.5 is used with correlation coefficient (R2), 

adjusted correlation coefficient (Adj. R2), root mean square error (RMSE) and 

normalized root mean square error (NRMSE) metrics. 

 a# = 1 − ã
∑ (/" − /"

^
)#%

"&'
å (/" − /)#

%
"&'

ç (3.16)  

 

 \6ä. a# = 1 − é
(1 − a#)(M − 1)

M − Z − 1
è (3.17)  

 

 aêYë = í∑ (/" − /"
^
)#%

"&'
M

 (3.18)  

 

 XaêYë =
1

M
í
∑ (/" − /"

^
)#%

"&'
/

 (3.19)  

where /"
^

 is the prediction vector, / is the mean of actual output vector and Z is the 

number of features in the data set. 

3.3  Results & Discussion 

The proposed four regression methods are employed to develop prediction models 

for five distinct outputs, i.e., i.e., CO, CO2, CH4, H2 and HHV using three features 

generated by the PCA procedure as mentioned in Section 3.2.2. All prediction 
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models are trained to predict single output variable and their performances are 

evaluated according to their test performance in 10-fold cross validation by using R2, 

Adj. R2, RMSE and NRMSE metrics. 

Table 3.2 shows the performance of the proposed techniques in predicting the five 

distinct outputs variables. For a better understanding of the regression models’ 

performances, the predicted outputs of all 4826 samples versus actual observations 

plots are created as shown in Figure 3.3. In these plots, the ideal case would be when 

all points lay on a straight line with slope equal to 1 which indicates that all 

predictions are equal to observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

Table 3.2 Performance evaluation of the proposed regression methods 
Output Method   R2 Adj.R2 RMSE NRMSE 
CO SVR 0.713 0.712 1.965   0.278 

 DTR 0.807 0.806 1.211   0.099 

 PR (Quadratic) 0.541 0.54 2.469   0.341 

 PR (Cubic) 0.71 0.709 1.964   0.271 

 MLP 0.823 0.822 1.119   0.116 

CO2 SVR 0.812 0.811 0.88   0.117 

 DTR 0.852 0.851 0.514   0.092 

 PR (Quadratic) 0.567 0.566 1.268   0.175 

 PR (Cubic) 0.719 0.718 1.022   0.141 

 MLP 0.837 0.836 0.562   0.102 

CH4 SVR 0.827 0.827 0.53   0.219 

 DTR 0.944 0.944 0.125   0.18 

 PR (Quadratic) 0.682 0.681 0.702   0.582 

 PR (Cubic) 0.85 0.849 0.482   0.201 

 MLP 0.927 0.927 0.176   0.198 

H2 SVR 0.915 0.915 1.032   0.128 

 DTR 0.938 0.938 0.352   0.071 

 PR (Quadratic) 0.726 0.725 1.808   0.249 

 PR (Cubic) 0.865 0.854 1.269   0.175 

 MLP 0.944 0.944 0.328   0.056 

HHV SVR 0.886 0.885 0.552   0.097 

 DTR 0.921 0.92 0.286   0.058 

 PR (Quadratic) 0.713 0.712 0.866   0.112 

 PR (Cubic) 0.858 0.857 0.61   0.101 

 MLP 0.931 0.931 0.221   0.045 
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(e) 

Figure 3.3 Predictions vs observations plots for all proposed regression methods 

As one can see in Table 3.2, the performance of the MLP and DTR was similar and 

superior to other methods for all output variables due to their higher R2 and Adj.R2 

scores and less RMSE and NRMSE values. For CO, H2 and HHV outputs, MLP 

slightly outperformed DTR, whereas DTR results better for the remaining outputs. 

When the complex dynamics of the biomass gasification process is concerned, MLP 

is usually expected to have greater performance compared to other machine learning 

methods due to its proven success for learning non-linear and complex behaviors 

exception-ally well [99]. On the other hand, DTR builds a decision-based 

hierarchical structure using the training data and it is known for creating 

opportunities for exploratory analysis with its easy to understand the structure. Since 

the DTR performs similarly to the MLP, it can be an effective tool to make 

predictions about the biomass gasification process. On the contrary, when Figure 

3.3a and Figure 3.3c are examined, DTR’s predictions are more scattered compared 

to MLP’s, which means that predictions made by DTR tend to either scatter on the 

45-degree line or scatter irrelevantly. This is caused by a strict rule-based learning 
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approach that the DTR utilizes. When the high preciseness required for the biomass 

gasification process is concerned, DTR may cause instability problems in practical 

applications and using it along with other methods might be a better approach. 

Furthermore, just like MLP, the performance of the DTR proportionally increases 

with the number of samples in the data which means one can expect greater 

prediction performance using a data set with more data samples than what we have 

used in this section [100].  

PR is employed in two forms, i.e., quadratic and cubic. Quadratic PR’s prediction 

performance was catastrophically worse compared to other methods according to 

Table 3.2. Hence, one can conclude that the quadratic combination of features is not 

sufficient to present any of the outputs and more complex terms are required. For 

cubic PR, prediction performance is significantly increased compared to quadratic 

PR. Although cubic terms of features have helped to represent outputs, it was not as 

successful as DTR or MLP. But when the performance increase with cubic PR is 

compared to quadratic PR is concerned, increasing the order of the polynomial or 

introduction of non-linear terms (non-linear regression) may help to increase. 

Moreover, when Figure 3.3d and Figure 3.3e are examined, one can see that both 

quadratic and cubic PR’s false predictions of CO output lay in a specific range of H2 

and HHV outputs. This is not common behavior for MLP nor DTR where the false 

predictions spread more uniformly. Therefore, we can say that PR is not able to 

understand the unique dynamics of CO output with the given feature set and one may 

need to extract more features for PR methods to achieve greater prediction 

performance. SVR had similar performance compared to cubic PR for all outputs 

except for CO2 and its overall performance was still worse than the DTR and the 

MLP. One of the reasons for the inferior performance of SVR is the broad range of 

output variables. Because SVR is the extension of a classification algorithm (SVM), 

it tends to create a group the output variable during the training phase [101]. As one 

can see in Figure 3.3b, all predictions are stuck at a certain range, thus, false 

predictions are also “grouped” in the same range. This behavior can be helpful when 

the samples of a certain output variable are between some range of values. 

Otherwise, like it is in biomass gasification, output samples that are out of the range 

of majority are considered as outliers and highly ignored during the creation of the 
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support vectors, hence, the overall prediction capability of the model is decreased. 

Even though the performance of the SVR might increase with the use of different 

kernels and hyper-parameters, it can be considered as a sub-optimal regression 

technique for the biomass gasification process compared to others. 

In addition to comparing the overall performances proposed machine learning 

methods, one must investigate the prediction performance for each output variable to 

explore the viability of machine learning methods for the biomass gasification 

process more deeply. For HHV output, MLP and DTR were able to achieve 

satisfactory prediction accuracy with a# = 0.931 and a# = 0.921, respectively. 

Other proposed regression methods also came close except for quadratic PR which 

means that the given feature set contains enough information for proposed machine 

learning algorithms to learn and make accurate predictions about HHV. This 

statement can also be made for H2 and CH4 outputs where the proposed methods had 

also similar performances. On the other hand, for outputs CO2 and CO, the 

performance of all methods are declined. It can be deduced that the dynamics of 

these outputs are more complex than the others and the proposed methods are 

struggling to understand their complexity. There are several steps one can take to 

increase performance for these outputs. First, the number of samples in the data set 

can be increased by collecting more experimental results. This approach can 

significantly increase the prediction performance of machine learning methods 

especially DTR and MLP due to their hunger for data [102]. Also, one can extract 

more feature with respect to the nature of the biomass gasification. But this approach 

may result in the addition of unnecessary feature which can deceive the models and 

cause performance decline. Lastly, rather than treating the CO and CO2 outputs as a 

part of the biomass gasification process, one can create models specifically designed 

just for predicting those outputs individually and with using different set of features 

and hyper-parameter configurations, it would be possible to obtain greater prediction 

performance for CO and CO2. 

In order to compare the results obtained in this section to other modeling techniques, 

a comparison table is created as shown in Table 3.3. In this table, RMSE values of 

stoichiometric and non-stoichiometric modeling approaches from [103], least-square 
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SVM (LS-SVM) and random forest (RF) classification approach from a previous 

study that uses same data set are included and compared for CO, CO2, CH4, H2 and 

HHV outputs of the biomass gasification process [11]. In the table, only the best 

performing regression methods, MLP and DTR, are included from this section for 

the sake of simplicity. kinetic or CFD modeling are not included due to its enormous 

computational requirements which reduces its’ practical usability beforehand 

compared to proposed methods.  
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Table 3.3 Comparison of RMSE values between this study and other modeling 
approaches 

Output Method RMSE Reference 

CO DTR 1.211 This Study 

 MLP 1.119 This Study 

 LS-SVM 1.512 [11] 

 RF 5.144 [11] 

 Stoichiometric 34.99 [103] 

 Non-Stoichiometric 3.936 [103] 

CO2 DTR 0.514 This Study 

 MLP 0.562 This Study 

 LS-SVM 0.64 [11] 

 RF 2.8 [11] 

 Stoichiometric 20.33 [103] 

 Non-Stoichiometric 1.59 [103] 

CH4 DTR 0.125 This Study 

 MLP 0.176 This Study 

 LS-SVM 0.348 [11] 

 RF 1.796 [11] 

 Stoichiometric 3.846 [103] 

 Non-Stoichiometric 4.32 [103] 

H2 DTR 0.352 This Study 

 MLP 0.328 This Study 

 LS-SVM 0.595 [11] 

 RF 5.041 [11] 

 Stoichiometric 2.256 [103] 

 Non-Stoichiometric 12.23 [103] 

HHV DTR 0.286 This Study 

 MLP 0.211 This Study 

 LS-SVM 0.38 [11] 

 RF 2.328 [11] 

 Stoichiometric 1.53 [103] 

 Non-Stoichiometric 0.87 [103] 

As one can see from Table 3.3, for all outputs, MLP and DTR regression methods 

were able to outperform stoichiometric and non-stoichiometric modeling as well as 

the classification-based approach using LS-SVM and RF in a previous study. These 
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results also justify the application of PCA to the extracted features which can be 

utilized in further applications where the data set and the number of features is larger 

and more computationally efficient training procedure is needed. Moreover, the toe-

to-toe performance of DTR compared MLP shows that the use of artificial neural 

network-based algorithms should not be the only machine learning-based approach 

to employ. Intuitive and low computational cost algorithms such as DTR can give 

similar or even better performance and create new ways to deeply understand and 

create predictions models for the biomass gasification process and many more energy 

applications. Furthermore, trained models of the two best performing method in this 

section, i.e., MLP and DTR is provided in Github 

(https://github.com/furkanelmaz/PredictiveModelingofBiomassGasification). With 

the provided models, one can simulate outcomes of biomass gasification with 

different scenarios. Because these pre-trained models have low computational 

requirement to make predictions, one can also directly embed them to a 

microcontroller-based embedded system by using MATLAB Coder to utilize it 

practically such as by feeding real-time sensor measurements to the prediction model 

and “foresee” the next state of the biomass gasification’s outcomes to increase 

efficiency and to experiment with it.  
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4. TIME SERIES MODELING AND MODEL 
PREDICTIVE CONTROL OF BIOMASS 
GASIFICATION PROCESS 

In the previous section, several regression methods are employed to predict outputs 

of the gasification process. Although results were satisfactory and better than the 

previously used modeling approaches, prediction were in time-independent fashion. 

This means the outputs are predicted for a ‘snap’ of time rather than a series of time. 

This approach highly limits the practical usability of the models because biomass 

gasification is a process and previous states of the system have effect on the further 

ones. Furthermore, not including the previous states also makes impossible to 

maximize desired outputs throughout the process because time-independent models 

are fed with certain feature set from unknown time instance, thus, different dynamics 

caused by the previous states are not acknowledged by them. In this section, this 

problem is addressed by developing a time series-based ML model for the biomass 

gasification process. Moreover, a model predictive controller is designed on top of 

that to maximize certain desired outputs and deeply discuss practical usability 

perspective. The study in this section is conducted in two steps: 

The first step is the development of a time series-based ML model of biomass 

gasification which can mimic the dynamics of the real process with minimal error 

rates. For this purpose, same data set that used in the Section 3 is utilized. Then, the 

nonlinear autoregressive with external input neural network method (NARXNN) 

modeling approach is taken to create the model due to its time-dependent nature and 

its previously proven success for many process modeling studies. The second step is 

to create a model predictive controller that uses only data to create a predictive 

model and change the ER variable to control desired output variables with 

“foreseeing” next state of the process. Thus, the aim of this section is to propose a 

highly accurate time-dependent predictive model of biomass gasification process and 

model predictive controller to control syngas compositions by manipulating ER 

variable to create both a realistic simulation platform and practically usable 

controller design.  
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4.1  Methods 

4.1.1  Nonlinear Auto Regressive with Exogenous Input Neural Networks 
(NARXNN) 

Nonlinear Auto Regressive with Exogenous Input (NARX) is a widely used 

predictive modeling technique for time series problems [104]. NARX utilizes not 

only previous values of the output variable it also adds another relevant time series as 

input (exogenous input) to the model in order to boost prediction performance and 

generalization capability of the model [105]. A NARX model can be defined as: 

 /
~
2 = `(/2+', /2+#, . . . , /2+-= , -2+', -2+#, . . . -2+-*) + )7 (4.1) 

where, /
~
2 is the predicted output value at time 9, - is the exogenous time series input, 

6= and 6* are the number of delays for outputs and inputs, respectively. ` is a 

nonlinear function of previously known 6* and 6= number of inputs and outputs 

determined during the training of the model, respectively. )7 is the error term (also 

known as noise term) which assumed to be white gaussian noise in this study. 

Even though ` in Equation 4.1 can be any arbitrary nonlinear function, this function 

must be capable of expressing the given nonlinear phenomena in order to obtain a 

successful prediction model [106]. For this reason, a combination of ANN and 

NARX, also known as NARXNN introduced in literature [107]. In NARXNN, 

nonlinear function ` given in Equation 4.1 is replaced by a feedforward neural 

network model [108]. Moreover, when the nonlinear activation functions such as 

sigmoid is used in hidden layers of this ANN, NARXNN model can learn 

nonlinearity and can be utilized to develop models for problems with high 

complexity [109]. Single hidden layer and single output NARXNN model can be 

defined as: 
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where, m is the number of samples in the data set, @(#) is the weight vector between 

the hidden layer and the output layer, ì# is the activation function of the output layer 

which is selected as linear when the desired output is continuous variable 

(regression). ì' is the activation function of the neurons in the hidden layer ñ(#) and 

ñ(') are the bias terms in the output layer and hidden layer, respectively. O*
(') and 

O=
(') are the weight vectors of inputs connected to the hidden layer and weights of 

delayed outputs connected to the hidden layer, respectively. 

Even though Equation 4.2 is defined for single hidden layer and single output 

architecture, one can easily extend the hidden layer size by recursively defining ï2+' 

for each hidden layer with different weight matrices and can predict more than one 

output by adding the desired number of neurons in the output layer [110]. One must 

note that the training of the model is performed with series- parallel NARXNN 

architecture where the true output is used instead of feeding back the estimated 

output at each time instance. After the training of the model, architecture is converted 

to the parallel structure where the predictions from the previous time instance are fed 

to the model as inputs. Thus, aside from initial conditions, the model is self-sufficient 

at each sampling instance and training of the model can be performed with 

conventional feed-forward ANN training algorithms such as backpropagation [111]. 

NARXNN model is developed to predict five outputs using a single hidden layer. 

Details of the model are given in Section 4.2. 

4.1.2  Model predictive controller 

Model predictive controller (MPC) is an established control methodology based on 

changing the controllable variable(s) to control desired output(s) by predicting the 

further states of the system (plant) and by performing online optimization at each 

sampling instant [112]. MPC requires a dynamic model of the system to “forecast” 

next states, this model must define the variable that aimed to be controlled in terms 

of inputs (controllable variable) that can dynamically affect the plant [113]. Also, it 

should mimic the real dynamics of the system as accurate as possible for good 

control performance [114]. Assume that, mentioned dynamic model is available as 

ê2(-) which is a function of controllable variable x. One can define a cost function 
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(D) such as the sum of square errors that includes the reference value at time 9 as 

/>?@	: 

 D =
1

2
(/>?@ −ê2(-))# (4.3) 

With the minimization of Equation 4.3, one can obtain the optimal - value (-∗) and 

feed it to the plant to approximate the output variable to the reference value. Another 

feature of MPC is the ability to prevent violation of constraints [115]. One can add a 

desired number of constraints to the Equation 4.3 and perform minimization while 

satisfying these constraints. This feature is especially useful in energy applications 

where many physical constraints exist. Moreover, the Equation (3) can be expanded 

by introducing a move suppression term which is a penalty term that penalize the 

change in manipulated variable to prevent controller from aggressively try to make 

the system stabilize at the reference [116]. Even though this term is not required for 

the case studies conducted in this section, one can need to add this term for different 

applications of the proposed framework. Similarly, hard limiting of the control signal 

might be needed to force the duty signal in the meaningful range and this can be 

achieved by adding the desired range of the control signal as an additional constraint 

to the optimization function. 

Another perspective one should consider is the development of ê2(-). This dynamic 

model is no different than a conventional machine learning model where the outputs 

are represented in terms of input variables and this is the reason why MPC is also 

mentioned as machine learning control [117]. One can argue that the same 

NARXNN modeling approach which explained in Section 4.1.1 can be employed 

during the implementation of MPC. Even though this statement is correct, the 

NARXNN model contains recursively defined layer structures with nonlinear 

activation functions. Because MPC solves an optimization problem at each sampling 

instant, minimization of the cost function which includes the NARXNN model 

would have enormous computational expense especially when it must be solved in 

real-time. For this purpose, a simplified model of biomass gasification by employing 
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polynomial regression is used to develop a dynamic model for MPC. Details of the 

developed MPC model are given in Section 4.3. 

4.1.3  Rolling-windows analysis 

Unbiased performance evaluation is an important step while developing a prediction 

model to measure the generalization performance of the model and to investigate 

possible overfitting problems. For this purpose, several cross-validation methods 

such as k-fold and hold-out are primarily used in machine learning applications. 

Even though these methods are suitable for many regression and classification 

problems as k-fold is used in this thesis, they are suboptimal to be used for time 

series. Because, these methods are based on random splitting which means they 

create a test/validation sets by using random samples in the data set, thus, time is not 

a considered variable [118]. On the other hand, in time series, outputs/inputs in 

previous time steps are important factors and performance evaluation based on 

randomly selected subsets would be unreasonable [119]. In order to evaluate the 

performance of a predictive model developed for the time series problem, rolling-

window analysis is successfully used in the literature [120]. In this analysis, the first 

k number of data points are used to train the model, then, prediction of the model for 

p number of sequential data points (window) after k (test) are stored. After that, the 

model is retrained by using the first k + p data points and a prediction vector for the 

next window is stored. This procedure is repeated until the model predicts the last 

data point in the data set. Illustration of rolling-windows analysis is given in Figure 

4.1.  
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Figure 4.1 Visual demonstration of rolling-windows analysis 

After collecting the predictions of the model for all data points except the first k data 

points, one can use correlation and/or error metrics to compare actual data points 

(observations) and predicted data points (predictions) to evaluate prediction 

performance and generalization capability of the model. In this section widely R2, 

Adj.R2, RMSE and NRMSE metrics are used like the previous section to evaluate the 

performance of both NARXNN and polynomial regression models. 

4.2  NARXNN Modeling 

During the NARXNN modelling, ultimate analysis results, i.e., C, H, O, N and 

proximate analysis results, i.e., FC, VM, Moisture, Ash and ER variables are utilized 

as exogenous inputs. Output HHV, gas concentrations, i.e., CO, CO2, CH4, H2 and T0 

are used as outputs in the NARXNN model. All of these inputs variables except ER 

are time-independent, thus, no delay is added to them. On the other hand, ER has a 

time-dependent effect on the outputs which means current values of the outputs are 

affected by previous ER values, therefore, 2 number of delays including its’ real-time 

value (ëa2, ëa2+', and ëa2+#,) are added while feeding it to the model. Moreover, 

outputs with 2 number of delays, excluding their real-time values, are also used as 

inputs to make the NARXNN model understand the time-dependent structure of the 
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outputs. For neural network architecture, a single hidden layer with ten neurons with 

sigmoid activation function on each neuron is used, in the output layer linear 

activation function is used to predict continuous type variables. The optimal number 

of neurons in the hidden layer is determined by trying different range numbers and 

calculating the average R2 of all outputs. Resulting average number of neurons vs 

average R2 plot is provided in the Appendix. The architecture of the proposed 

NARXNN model is illustrated in Figure 4.2. 

 

 

Figure 4.2 Developed NARXNN model 

Performance of the proposed NARXNN is evaluated by rolling-windows analysis as 

explained in Section 4.1.3. The first 1000 data points are used for initial training of 

the model and rest are predicted as windows that have a size of 100. Performance 

evaluations are given in Table 4.1, NARXNN predictions and actual time series plot 

is given in Figure 4.3 for each output variable. 
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Table 4.1 Performance evaluation of the NARXNN model 
Output   R2 Adj.R2 RMSE NRMSE 
CO 0.9888 0.9885 0.3233   0.0241 

CO2 0.9853 0.985 0.2138   0.0226 

CH4 0.9839 0.9811 0.1027   0.034 

H2 0.9931 0.9929 0.2605   0.017 

  HHV 0.9941 0.9939 0.121   0.016 
 

  T0  0.9854 0.984 4.5374   0.0246 

 

 
Figure 4.3 NARXNN prediction and actual values plot, ‘-P’ indicates the predicted 
values of a certain output 

As one can see from Table 4.1, the NARXNN model was able to “learn” the 

dynamics of biomass gasification quite successfully by reaching a# > 	0.98 for all of 

the outputs. One must also note that given performance metrics are calculated with 

rolling-windows analysis which means that the model is challenged to predict 
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outputs while training samples constantly varying as explained in Section 4.1.3. One 

can conclude that the proposed NARXNN model was able to dynamically adapt all 

time periods, excluding the first 1000 data points which are reserved for initial 

training and predict outputs accordingly. Another perspective one must look at is the 

model’s ability to understand trends in the data set. In the data set, there are several 

increasing and decreasing trends in all of the outputs. NARXNN model was able to 

catch those trends strongly and it is almost impossible to distinguish actual values 

from predicted ones by the naked eye. That situation also justifies the utilization of 

delayed output variables that are fed to the model, because it is also known that time-

independent prediction methods such as support vector machines and decision trees 

struggle with keeping out with changing trends in a data set [121,122]. When the 

modeling performance of the proposed NARXNN model is concerned, it is safe to 

claim that, during the implementation of MPC for controlling outcomes of biomass 

process, NARXNN model can be treated as real plant and its’ prediction would be 

exceptionally similar to one can have in real gasification system. 

4.3  MPC Design 

MPC method consists of two layers of implementation; first is the development 

dynamic model which will be used to predict the next state of the corresponding 

plant. To obtain such a model, polynomial regression method is employed as 

discussed in Section 3.2.3.1. Because polynomial regression can only be used to 

predict single output variable [123], five unique models for five controllable output 

variables are developed. Previous output variable, /2+', and ER are utilized as 

features for all models. The reason why such a low number of features is used, 

especially compared to the NARXNN model, is to increase computational efficiency. 

Because, during each sampling instant, MPC solves an optimization problem to 

determine optimal ER value which minimizes the cost function, thus, each extra term 

in the polynomial model would increase the computational time and reduce the 

controller’s practical usability with microcontroller-based embedded systems. 

Furthermore, all polynomial regression models are trained with a batch gradient 

descent algorithm by minimizing L2 regularized sum of square errors. Performance 

metrics resulting from rolling-windows analysis are given in Table 4.2 for each 
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output. Correlation equations, predicted output and actual output comparison plots 

are given in Appendix for the sake of clarity. 

Table 4.2 Performance evaluation of the polynomial regression models 
Output   R2 Adj.R2 RMSE NRMSE 
CO 0.8742 0.8733 0.9854   0.0734 

CO2 0.8321 0.8294 0.5076   0.0542 

CH4 0.8352 0.8302 0.3421   0.0936 

H2 0.8422 0.8415 1.2685   0.0841 

  HHV 0.8591 0.8572 0.4765   0.0644 
 

As one can see from Table 4.2, prediction accuracy is dropped compared to the 

NARXNN model and the results given in Table 4.1. This situation is surely expected 

due to the superior learning capability of NARXNN model and significantly more 

number of features used during the NARXNN modeling. On the other hand, results 

are still can be considered satisfactorily, due to all of the polynomial regression 

models achieving over a# > 0.8. Even though polynomial regression models are 

simplified models to be used in MPC, they were still able to “learn” the dynamics of 

the biomass gasification to some degree. Also, as one can see in Appendix, 

polynomial regression models are able to catch increasing and decreasing trends on 

the data set. This situation shows that these models can accurately represent the next 

state of the biomass gasification for MPC to successfully generate optimal ER 

values. Moreover, these models contain only quadratic combinations of the output 

value from the previous time sample and ER variable. Therefore, it is reasonable to 

assume that the online optimization process can be executed in real-time by a 

computer or even with several microcontroller-based embedded systems. 

The second layer of implementation during MPC design is the definition of an 

optimization problem. This step depends significantly on the control objective and 

the constraints occur in the nature of the process to be controlled. Moreover, this 

optimization problem will be solved at each iteration (online optimization) for 

satisfactory controller performance [124]. As stated in Section 4.2, a highly 

successful NARXNN model is treated as the real plant of biomass gasification. 

Another parameter set of the MPC is the prediction and control horizons. The pre- 
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diction horizon is defined as the number of predictions that the prediction model 

(polynomial regression models for our case) does at each sampling instant. The 

control horizon is the expected number of manipulations on the manipulated variable 

(ER in this case) to set the system to the desired reference level at the interval Z 

where Z is between 1 and prediction horizon. There is no certain way to determine 

these horizons. On the other hand, as both of these horizons increase, the required 

computational effort significantly increases. Moreover, decreasing the value of the 

prediction horizon tends to make the controller more aggressive which is another 

undesirable attribute for this study [125]. In this study, the prediction horizon is set to 

10 sampling instant and the control horizon is set to 3 sampling instants in order to 

obtain a functional controller while not extensively increasing the computational 

burden. Illustration of complete MPC design with the NARXNN model is given in 

Figure 4.4. 

 

 

Figure 4.4 Illustration of complete MPC design with NARXNN model. 

In order to demonstrate and the proposed complete controller design, an arbitrary 

reference stabilization problem is defined where the aim is to control and stabilize 

HHV output at 10 MJ/kg. For this purpose, optimization problem is defined to be 

minimized as in Equation 4.4 where the square difference between 10 (reference 

value for HHV) and output of the polynomial model of HHV output. Moreover, 

because there can’t be any negative concentration for product gases in biomass 

gasification physically, constraints where all output gas concentration have to be 

greater or equal to 0 are also added. The framework demonstrated in Figure 4.4 has 
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been run until stabilization of the outputs with the optimization objective given in 

Equation 4.4. Change in gas concentrations, HHV, T0 and ER variable (generated by 

MPC) is visually demonstrated in Figure 4.5. 
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polynomial regression models for CO, CO2, CH4, H2 and HHV outputs, respectively. 

 

Figure 4.5 Demonstration of MPC design by controlling HHV variable at 10 MJ/kg 

When the Figure 4.5 is concerned, ±2 error rate from the reference value which is 

referred to as steady-state is reached after 172 seconds and constraints given in 

Equation 4.4 are satisfied throughout the application. Even though the obtained 
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results look promising, one must also check the viability of these results compared to 

the experimental data. For this reason, the time period in experimental data where 

HHV is equal to 10 which is between 1380th and 1581th seconds and we compared 

experimentally collected outputs, i.e., gas concentrations, T0 and ER variable to the 

ones obtained during MPC application in that period of time are compared (Table 

4.3).  

Table 4.3 Range comparison of results obtained from proposed framework with the 
experimental results for stabilization of HHV. 

Output Experimental Proposed Framework Error 
CO (vol%) 25.3-26.4 25.9-26.6 ±%1.9 

CO2 (vol%) 10.67-11.33 10.7-11.42 ±%1 

CH4 (vol%) 2.81-3.21 2.76-3.12 ±%2.25 

H2 (vol%) 18.47-19.98 19.45-20.54 ±%4 

  HHV (MJ/kg) 9.97-10.15 9.98-10.11 ±%0.24 

  T0 (°C) 802-836 812-819 ±%1.6 

  ER 0.18-0.2 0.184-0.205 ±%2.35 

As one can see in Table 4.3, all output variables as well as the MPC-generated ER 

variable during MPC application were highly coherent with the experimental data 

where the error rates for all outputs were < ±%5. One can assume that the error 

rates given in Table 4 are acceptable. Therefore, for this specific application, real-

time control of the biomass gasification process with the proposed MPC approach 

performed satisfactorily due to its high consistency with the experimental data and its 

success as a controller. 

In order to test and challenge the proposed MPC design further, rather than 

stabilizing an output at certain reference value, performance of proposed controller 

for practical scenarios such as maximization of certain gas concentration are also 

investigated. Therefore, MPC is implemented to several practical cases, its 

performance is evaluated and discussed for each case. 
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4.4  Case Studies 

In real-life applications of biomass gasification, a certain tracking of a reference 

variable would not always be a feasible control objective. One can aim to produce 

the maximum amount of certain output gas based on the aim of the application. On 

the other hand, in MPC, a reference value has fed to the cost function in order to 

control a certain output variable. In order to perform a maximization task, an 

algorithm is developed that steadily increases the reference value until no significant 

change in the corresponding output is observed (Algorithm 4.1).  

Algorithm 4.1: Increasing reference algorithm for maximization 

for each 20 seconds do 
      increase the reference by 10%  
      wait for 19 seconds 

if change in output concentration > ±2% 
   then 
      continue executing this algorithm 

      else 
set reference as final value for %!"# 

             stop executing this algorithm 
      end 
end 

One can argue that, rather than increasing the reference value steadily, the 

polynomial regression model of the desired output can directly be maximized during 

the optimization. Although this approach can be viable for certain circumstances, 

direct maximization of the optimization function may cause instability due to the 

rapidly changing ER variable produced by MPC. Similar instability problems are 

encountered and acknowledged in the literature [126]. Thus, increasing reference 

value approach is taken for maximization case studies and Algorithm 4.1 is used for 

each study case. Average computational expense of the optimization routine for each 

case study is provided in the Appendix in terms of number of iterations and number 

of function evaluations. Also, one must note that many different optimization 

objectives can be defined to utilize the proposed framework and one must develop 

such objective to their benefits and expectations from the biomass gasification 

process for energy & valuable chemical production. 
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4.4.1  Case study 1: maximization of H2 concentration 

Hydrogen is a clean energy carrier can be used in fuel cells to generate electricity, or 

power and heat. It is possible to utilize hydrogen in almost all sectors such as 

transportation, industrial production and inside portable energy sources. Due to its 

importance, the maximum production of it is one of the desired goals during biomass 

gasification. Therefore, in our first case study, MPC and the optimization problem is 

adjusted to maximize H2 production. For this reason, the optimization problem is 

defined as in Equation 4.5. One must note />?@ variable initially defined as the 10% 

higher than the starting value of H2 then increases according to the Algorithm 4.1. 

Resulting outputs vs time and ER vs time plot is given in Figure 4.6. 
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Figure 4.6 Gas concentrations, T0 and ER generated by NARXNN and MPC for 
maximization of H2 concentration 

As one can see from Figure 4.6, concentration on H2 was steady from Time = 177 

seconds to the end of the simulation. H2 value was 24 ± %2 during the steady-state 

which indicates that the maximum amount of H2 can be obtained at that level 

according to the MPC and Algorithm 4.1 with the given conditions. When one look at 

the experimental data to check the viability of these results, the maximum amount of 

H2 production was at a time range of 2814-3000 where the H2 value varied between 

24.38% and 24.752%. These results are also compatible to the results provided in 

Aydin et.al. [127]. Even though these maximum values are somewhat similar, other 

outputs and ER variable at that time range was checked as given in Table 4.4. 
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Table 4.4 Range comparison of results obtained from proposed framework with the 
experimental results for maximization of H2 concentration. 

Output Experimental Proposed Framework Error 
CO (vol%) 28.88-29.42 29.51-30.04 ±%2.1 

CO2 (vol%) 8.485-9.32 8.732-9.456 ±%2.17 

CH4 (vol%) 1.49-2.14 1.36-2.12 ±%4.85 

H2 (vol%) 24.38-24.752 24.25-24.412 ±%4 

  HHV (MJ/kg) 13.75-14.31 13.8-14.2 ±%0.93 

  T0 (°C) 797-843 790-864 ±%1.72 

  ER 0.24-0.28 0.24-0.309 ±%4.54 

When the Table 4.4 is examined, NARXNN and MPC results are coherent with the 

experimental results up to ±5% error rates. But it is also worth mentioning that, MPC 

was able to only find and stabilize the maximum H2 concentration that occurred in 

the experimental d ata. One can doubt that is it the actual maximum amount of H2 

concentration that can be produced by the experimental setup that generated the data 

for this study. Even though there are no references for comparison for the same 

setup, at worst case, MPC was able to determine the maximum value for H2 

concentration and was able to stabilize it successfully with the given set of data. 

Moreover, it is logical to assume that the proposed MPC would be capable of find 

and stabilize the H2 concentration at different maximum concentrations with the 

different data set and can be a viable controller method in different biomass 

gasification applications when the experimental data can be collected. 

4.4.2  Case study 2: maximization of CO/CO2 ratio 

Another practical scenario considered in this case study is the maximization of 

CO/CO2 ratio. This ratio is proportional to the calorific value of the synthesis gas 

which is desired to be maximized during biomass gasification. In addition, CO is 

used in hydroformylation, popularly known as the “oxo” process and it is a building 

block of many relevant valuable chemical products such as formaldehyde, acetic 

acid/anhydride, the methyl ethers, methylamine and methyl chloride. Thus, due to the 

importance of CO/CO2 ratio, optimization problem that will be solved by MPC is 

defined as shown in Equation 4.6 to increase this ratio as much as possible. 
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It is also worth to mention that, unlike Section 4.4.1, the aim is to maximize a ratio 

rather than a certain gas concentration in this case study. For this reason, ö>?@ is 

initially defined as the initial ratio of CO/CO2 and the ratio steadily increased 

according to the Algorithm 4.1. The maximum CO/CO2 ratio is obtained between 

Time = 3158 and Time = 3225 in the experimental data where the maximum ratio is 

equal to 5.411. Moreover, MPC was able to achieve 5.217 and stabilize at that level 

in steady-state. One must note that maximum ratio that occurred in experimental data 

was at a smaller time interval compared to other case studies. Experimental outputs 

and ER are compared to NARXNN and MPC outputs are given in Table 4.5. 

Table 4.5 Range comparison of results obtained from NARXX and MPC models 
with experimental results for maximization of CO/CO2 ratio 

Output Experimental Proposed Framework Error 
CO (vol%) 30.81-31.15 30.27-30.46 ±1.98% 

CO2 (vol%) 5.721-5.756 5.532-5.559 ±3.41% 

CH4 (vol%) 2.351-2.765 2.47-2.832 ±3.71% 

H2 (vol%) 24.851-25.312 25.136-25.325 ±0.7% 

  HHV (MJ/kg) 12.22-13.421 12.53-13.07 ±2.55% 

  T0 (°C) 825.5-823 819.98-840.244 ±1.37% 

  ER 0.241-0.266 0.247-0.273 ±2.52% 

 CO/CO2 5.385-5.411 5.471-5.479 ±1.42% 
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Figure 4.7 Gas concentrations, T0 and ER generated by NARXNN and MPC for 
maximization of CO/CO2 ratio 

As one can see from Table 4.5 and Figure 4.7, NARXNN and MPC results were 

coherent with the experimental data up to <±%5 deviation similar to other case 

studies. And MPC was able to achieve a slightly better CO/CO2 ratio than the certain 

interval in experiments where this ratio is at maximum. Even though obtained 

CO/CO2 ratios were better in proposed MPC framework, they were no significant 

change compared to experimental data and MPC was only able to find and stabilize 

the desired output level occurred in the data set as discussed in Section 4.4.1. 

4.4.3  Case study 3: maximization of HHV 

HHV, also known as calorific value, is a term generally used for fuels defined as is 

the amount of heat released during the combustion of a specified amount of the 

material [127]. It is an important characteristic to determine the energy potential of 

the corresponding material. In biomass gasification. The amount of HHV obtained 

throughout gasification indicates the energy potential of the product gases to be used 
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in further processes such as electricity generation. Thus, it is one of the primary goals 

of biomass gasification. For this reason, maximization of the amount of HHV is the 

aim in this case study. Thus, optimization problem is defined almost same as in 

Section  4.4.1 only for HHV (Equation 4.7). Results are provided in Table 4.1 and 

Figure 4.8. 
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Table 4.6 Range comparison of results obtained from NARXX and MPC models 
with experimental results for maximization of HHV. 

Output Experimental Proposed Framework Error 
CO (vol%) 29.45-31.063 28.72-29.15 ±4.4% 

CO2 (vol%) 7.625-8.145 7.426-7.987 ±2.25% 

CH4 (vol%) 2.45-2.58 2.44-2.825 ±4.82% 

H2 (vol%) 23.77-25.68 24.06-25.65 ±0.66% 

  HHV (MJ/kg) 14.82-15.02 15.18-15.34 ±2.25% 

  T0 (°C) 795-846 829-855 ±2.63% 

  ER 0.251-0.258 829-855 ±2.63% 
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Figure 4.8 Gas concentrations, T0 and ER generated by NARXNN and MPC for 
maximization of HHV 

As one can see from Figure, the maximum amount of HHV obtained during MPC 

implementation is 15 ± %2 during steady-state, and in experimental data, maximum 

HHV value occurred during between time = 2798 and time = 2982 while the HHV 

range was between 14.82 and 15.02. When the Table 4.6 and Figure 4.8 are 

examined, just like other case studies, deviation between experimental data and 

proposed model outputs were similar to other case studies which are <±%5 

Furthermore, MPC was able to determine the maximum HHV value occurred in the 

experimental data and managed to stabilize the system at that level successfully. 

4.4.4  Case study 4: maximization of CH4 concentration 

CH4 is another type of energy carrier like H2 and similarly it has the potential use in 

almost all industries. Moreover, CH4 is 4-5 times denser than H2 which makes it 

highly attractive from economical perspective. Also, there is an extensive 

infrastructure for CH4 (natural gas) in place. So, the no need for new infrastructure 
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investments makes it a highly desired product. Thus, maximization of CH4 can be 

considered as another aim of biomass gasification for certain applications. Therefore, 

we define a similar optimization problem for other case studies as in Equation (13) to 

maximize CH4 concentrations during biomass gasification. Comparison of steady-

state outputs of proposed model to the experimental data is given Table 4.7. 

Resulting gas concentrations, HHV, ER and T0 variables during the study are plotted 

in Figure 4.1. 
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Table 4.7 Range comparison of results obtained from NARXX and MPC models 
with experimental results for maximization of HHV. 

Output Experimental Proposed Framework Error 
CO (vol%) 24.51-26.64 24.59-26.11 ±1.15% 

CO2 (vol%) 11.12-11.71 11.23-11.27 ±2.3% 

CH4 (vol%) 3.08-3.16 3.11-3.32 ±3.01% 

H2 (vol%) 17.65-18.11 16.63-17.36 ±5% 

  HHV (MJ/kg) 10.92-11.67 10.78-11.39 ±1.84% 

  T0 (°C) 677-681 623.98-646.85 ±5.43% 

  ER 0.131-0.132 0.125-0.128 ±3.75% 

 

 



85 
 

 
Figure 4.9 Gas concentrations, T0 and ER generated by NARXNN and MPC for 
maximization of CH4 concentration 

When the Table 4.7 is concerned, error rates were again at < ±%5 except T0 output 

and maximum amount of CH4 production range in the experiment have reached by 

MPC in the steady-state which is between 3.08 and 3.16. Just like other case studies, 

MPC was not able to significantly go out of the maximum level occurred during 

experimental data collection. On the other hand, CH4 is the least changing output gas 

concentration among others during the experiment, and MPC was still able to catch 

the observed maximum level and managed to stable the CH4 concentration and adapt 

accordingly which is a desired feature for a prediction model and for a controller. 

4.5  General Discussion 

When the overall performance of the NARXNN model is concerned for mimicking 

the dynamics of the biomass gasification process as well as the MPC for stabilization 

problem and other maximization-based case studies, there are several observations 

had to be pointed out. Firstly, NARXNN modeling is proved itself as one of the best 

if not the best modeling approach for biomass gasification by hitting almost perfect 
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performance metrics. And due to the utilization of rolling-windows analysis 

technique, the model is shown to almost perfectly mimic the biomass gasification for 

data with varying time steps, this performance shows not only good prediction 

performance but also satisfactory generalization performance. Therefore, it is safe to 

claim that time-dependency and utilization of output variables from previous time 

instances are extremely helpful for biomass gasification modeling. Thus, the 

NARXNN model which is illustrated in Figure 4.2 can be used to accurately predict 

the output gas compositions, HHV and T0 and can be utilized in simulation studies. 

For MPC implementation, polynomial regression is employed to model each output 

variable to be used during the optimization process. Because the developed 

polynomial regression models’ prediction capability was worse than the NARXNN 

model due to the low number of features used and polynomial regression being 

severely less sophisticated algorithm compared to NARXNN. But it was a necessary 

model simplification to obtain models that have low computational cost due to their 

part in the optimization procedure of MPC. And because this optimization performed 

at each sampling instant, these models must require as computation as possible to be 

used in a practical application where many gasification systems still use 

microcontrollers that have low to medium computational power. Furthermore, 

developed MPC is firstly tested in tracking the reference control problem where we 

aimed to stabilize HHV at 10 MJ/kg. MPC was able to success- fully reach and 

stabilize HHV at the desired level in the steady-state. Also, other outputs were 

compatible with the experimental data in the time period where HHV is equal to 10 

MJ/kg. In case studies, four different maximization problem is defined with their 

practical motivation and challenged MPC to solve these problems. Even though 

results, and obtained maximum concentrations or HHV value, were highly coherent 

with the experiments, MPC was not able to get out of the boundaries of experimental 

data for all case studies. This result indicates that, if one desires to control a certain 

output variable at a certain level and this level is included inside of the training data 

collected for the development of MPC, it is likely for MPC to find these desired 

levels and stabilize the output at that level with high success. On the other hand, if 

that level is not included in that training set as. It can be assumed that MPC may not 

be able to control the corresponding output at the desired level. The main reason for 
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this behavior is due to the polynomial regression models’ limited modeling 

capability. If more complex terms are introduced in the models rather than only 

quadratic combinations of two features, this approach would increase prediction 

capability but decrease the practical usability due to the higher computational 

requirement. This trade-off seems to be a primary problem throughout the control 

applications using MPC in biomass gasification. But this increased computational 

requirement can be satisfied by using modern solutions such as cloud computing 

rather than using conventional microcontroller-based circuity. For the proposed MPC 

design, it seems to be essential for the user to create a data set that includes a wide 

range of unique samples in order to obtain a controller for different application 

objectives. For more specific applications, carefully collected and cleaned data set 

which can describe unique characteristics of the process to some degree would be 

sufficient to control it with the MPC design we is proposed in this section. 
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5. CONCLUSION 

In this thesis, a ML-based approach is taken to overcome the limitations of the 

conventional biomass gasification models as well as to expand the practically usable 

computational frameworks for effectively produce energy via biomass gasification. 

In Section 2, several prediction models are developed to classify four fuel types, i.e., 

Coals, Woods, AR and MB with using a dataset collected from literature. Firstly, 

more conventional approach, flat classification, is taken by employing KNN, RF and 

SVM classifiers to distinguish four classes at once. Even though all classifiers are 

managed to classify fuels to some degree, KNN and SVM failed to reach highly 

satisfactory prediction accuracies. RF, despite its high accuracy level RF, showed 

stability problems during performance evaluation. Secondly, hierarchical 

classification methodology is conducted by creating a hierarchical structure between 

classes by using expert opinion and statistical analyses. Then, classifiers and 

distinctive features are carefully selected at each stage of the hierarchy and single 

prediction model is created by merging different classification algorithms. 

Performance of hierarchical model outperformed flat classification models from both 

accuracy and stability perspectives by reaching 92% mean accuracy and ±0.17 re-

lative standard deviation in the testing phase. Thus, hierarchical classification proved 

itself as a viable strategy that can be used in biomass gasification as well as in many 

fuel applications if it is implemented appropriately. In the Section 3, SVR, DTR, PR 

and ANN regression methods are employed to predict CO, CO2, CH4, H2 and HHV 

outputs of the downdraft biomass gasification process by using experimentally 

collected data set. In order to create prediction models, total of sixteen features are 

extracted, then reduced to three by using PCA to eliminate possible multi-correlation 

between features and to reduce computation time during the training phase. MLP and 

DTR performed significantly better than rest of the methods by achieving R2>0.92 

for CH4, H2, HHV outputs and R2>0.85 for CO and CO2 outputs. Performance of all 

methods declined while predicting CO and CO2 compared to other outputs, thus, 

there is a space for improvement for both hyper-parameter and feature selection to 

increase prediction performance for these outputs. RMSE values obtained from MLP 

and DTR outperformed the ones obtained from the stoichiometric and non-
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stoichiometric modeling and classification-based approaches taken previously that 

uses the same data set. Obtained results show that machine learning methods can be 

viable tools to understand, explore and make accurate predictions about the biomass 

gasification process. MLP and DTR proved themselves as the strongest candidates 

for this purpose. But due to different complexities of different outputs of the biomass 

gasification, one method is not sufficient to be used in all of the outputs. The 

utilization of ensemble learning techniques as well as a different selection of hyper-

parameters and features may be a stronger approach. Moreover, developed machine 

learning-based regression methods, have a low computational requirement to make 

predictions once they are trained. Thus, these models can be used to make 

predictions in a simulation environment as well as can be embedded into a 

microcontroller-based circuitry and utilized in practical applications. In the Section 

4, a NARXNN model and MPC for the biomass gasification process is developed by 

using the same data set that is utilized in Section 3. While creating the NARXNN 

model, biomass gasification is approached as a time-dependent process (time-series) 

in order to create a prediction model that can mimic the real dynamics of the process 

with high precision. Ultimate analysis results, proximate analysis results and ER are 

used as exogenous inputs, CO, CO2, CH4, H2 concentrations, HHV and T0 values are 

used as outputs of NARXNN model. Moreover, at each sampling instant, output 

values from previous sampling instant are fed to the model in order to make 

NARXNN learn the time-dependent nature of the process. Performance of the 

NARXNN model evaluated with rolling-windows analysis and R2 > 0.98 is achieved 

for each output. This concluded that the NARXNN model was managed to 

understand and mimic biomass gasification even better than the ones proposed in 

Section 3. Furthermore, MPC implemented to control a certain output variable by 

treating the NARXNN model as the real plant. For this purpose, polynomial 

regression models are created for each output variable to make MPC predict the next 

states of the outputs. Then, optimization problems that are solved at each iteration 

defined as case studies to test MPC in practical scenarios. The proposed MPC was 

able to stabilize the outputs at desired levels in all case studies. Although MPC 

showed several limitations, its’ results were highly consistent with the experimental 

data, thus, MPC can be considered as a strong candidate that can be utilized to 
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control outputs of the biomass gasification process and possibly in many other 

energy-based applications for cleaner and more efficient production. 
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APPENDIX 

This appendix contains the following related to the Section 4: 

• Correlation equations between the output variables’ next state and the 
quadratic combinations of their previous state and ER. These equations and 
coefficients are generated by the polynomial regression technique which is 
described in the section. Furthermore, output and actual values vs time plots 
of rolling-windows analysis are provided to visually demonstrate the 
prediction performance of each model. 

• Number of neurons vs average R2 value plot 
• Average computational expense of the optimization procedures for each case 

study in terms of number of iterations and number of function evaluations. 
 

Correlation Equations: 

1. Correlation equation and rolling-windows analysis plot of polynomial 
regression model for CO Output 

Correlation Equation: 

 
Võ2F' = 0.872 + 0.948Võ2 − 0.9ëa + (6.126) − 04)(Võ2)#

+ (4.77) − 02)ëa ∗ Võ2 − 0.391ëa# (A.1)  

 
Rolling-Windows Analysis: 

 
Figure A.1 Polynomial regression predictions vs actual values of CO concentrations 
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2. Correlation equation and rolling-windows analysis plot of polynomial 
regression model for CO2  output. 

Correlation Equation: 

 
Võ#&'( = −0.606 + 1.141Võ#& − 0.93ëa − (4.038 − 03)(Võ#&)

#

− (0.328)ëa ∗ Võ#& + 10.44ëa
# (A.2)  

Rolling-Windows Analysis: 

 

Figure A.2 Polynomial regression predictions vs actual values of CO2 concentrations 

3. Correlation equation and rolling-windows analysis plot of polynomial 
regression model for CH4  output 

Correlation Equation: 

 
VùG&'( = −0.01 + 1.08VùG& + 1.835ëa − (2.897) − 03)(VùG&)

#

− (0.62)ëa ∗ VùG& − 5.25ëa
# (A.3)  

Rolling-Windows Analysis: 

 

Figure A.3 Polynomial regression predictions vs actual values of CH4 concentrations 
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4. Correlation equation and rolling-windows analysis plot of polynomial 
regression model for H2 output 

Correlation Equation: 

 
ù#&'( = −0.346 + 0.948ù#& + 11.576ëa − (9.353) − 03)(ù#&)

#

+ (4.295)ëa ∗ ù#& − 38.32ëa
# (A.4)  

 

Rolling-Windows Analysis: 

 

Figure A.4 Polynomial regression predictions vs actual values of H2 concentrations 

5. Correlation equation and rolling-windows analysis plot of polynomial 
regression model for HHV output 

 

Correlation Equation: 

 
ùùû2F' = 0.176 + 0.9ùùû2 + 5.33ëa + (3.535) − 04)(ùùû2)#

+ (4.18) − 02)ëa ∗ ùùû2 − 18.32ëa# (A.5)  
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Rolling-Windows Analysis: 

 

Figure A.5 Polynomial regression predictions and actual values of HHV 

Number of neurons on the hidden layer vs average R2 values plot: 

 

Figure A.6 Number of neurons on the hidden layer vs average R2 values 
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Average computational expense of the optimization routine for each case study 
table: 

Table A.1 Average computational expense of the optimization routines 

Case Studies Number of Iterations Number of Function 
Evaluations 

Case Study 1 17 34 
Case Study 2 16 32 
Case Study 3 16 32 
Case Study 4 15 30 
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