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Axisymmetric Deformation of Drops Through Tubes 

with Asymmetric Constrictions 

 

Abstract 

Drop deformation in constricted passages plays a vital role in porous media, 

microfluidic devices etc. Depending on the viscosity ratio, Capillary number, drop 

volume and geometry of the constriction drops may breakup by the snap-off 

mechanism. Different from the previous studies that consider symmetric 

single/periodic constrictions, we model a tube with an asymmetric constriction which 

is natural in porous media or can be used in microfluidic devices for the control of 

deformation and/or breakup mechanism. We integrate the drop evolution using the 

axisymmetric boundary integral equations. Compared with the symmetric constriction, 

the asymmetry of the constriction affects the snap-off time and thus the volume of the 

droplet generated after snap-off. The volume is particularly affected by the smoothness 

of the upstream rather than the downstream of the constriction, delaying the snap-off 

time as more drop volume moves into to the constriction. We show that in the case of 

a drop does not snap-off while passing through the constriction an asymmetric design 

of this passage may lead the snap-off. Pressure drop variation with time across the tube 

distinguishes the stages of snap-off from escape. To show the importance of the 

azimuthal curvature on the snap-off mechanism, finally, we compare axisymmetric 

models with planar flows.  

 

Keywords: Snap-off, asymmetric constriction, axisymmetric drop deformation, 

Stokes flow, boundary integral equations, boundary element method 
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Asimetrik Daralmalara Sahip Borularda Damlaların 

Aksisimetrik Deformasyonu 

 

Öz 

Daralan tüp ve borulardaki damla deformasyonu, gözenekli ortamlarda, mikro akışkan 

cihazlarda vb. önemli bir rol oynar. Damlalar, viskozite oranına, Kapiler sayısına, 

damla hacmine ve daralma geometrisine bağlı olarak kopma mekanizması ile 

parçalanabilir. Simetrik tek/periyodik daralmaları dikkate alan önceki çalışmalardan 

farklı olarak, gözenekli ortamlarda doğal olan veya deformasyon ve/veya parçalanma 

mekanizmasının kontrolü için mikro akışkan cihazlarda kullanılabilen asimetrik 

daralmaya sahip bir tüp modelliyoruz. Aksi-simetrik sınır integral denklemlerini 

kullanarak damlanın gelişimini inceliyoruz. Simetrik daralma ile karşılaştırıldığında, 

daralmanın asimetrisi, kopma süresini ve dolayısıyla kopmadan sonra oluşan 

damlacığın hacmini etkilemektedir. Hacim, daralmanın aşağı akış bölgesinden ziyade 

yukarı akış bölgesinin düzgünlüğünden etkilenmektedir ve daralmaya daha fazla 

damla hacmi hareket ettikçe kopma süresi gecikmektedir. Daralma içinden geçerken 

bir damlanın kopmaması durumunda, bu geçidin asimetrik tasarımının kopmaya yol 

açabileceğini gösteriyoruz. Damlanın koptuğu bir durum ile daralmadan kaçabildiği 

durumların farkını tüp boyunca basınç düşüşünün zamanla değişimi ile gözlemliyoruz. 

Son olarak, azimut eğriliğinin kopma mekanizması üzerindeki önemini göstermek 

için, aksi-simetrik modelleri düzlemsel akışlarla karşılaştırıyoruz. 

 

Anahtar Kelimeler: Kopma, asimetrik daralma, aksi-simetrik damla deformasyonu 

Stokes akışı, sınır integral denklemleri, sınır elemanı metodu 
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Chapter 1 

Introduction 

The motion of drops and bubbles through capillary tubes and microchannels is of great 

interest in multiphase flow in porous media, microfluidic devices, and lab-on-a-chip 

applications [1-8]. Due to the small length scales in the aforementioned problems, the 

motion is, generally, in creeping flow regime. In all these applications, it is important 

to define and estimate the effect of geometric and physical parameters on drop 

behavior for the design and control purposes. The physical parameters that determine 

the flow characteristics are the viscosity ratio (𝜆) of drop and suspending fluid, the 

effective radius of the drop (𝑟"##) and the capillary number (𝐶𝑎) which defines the 

ratio of viscous forces that tend to deform drops to interfacial forces that act to maintain 

the initial shape.  

The investigation of the dependence of drop behavior on physical parameters is 

initiated by Fairbrother and Stubbs [9] who study on large inviscid drops, as known as 

bubbles, and find that the thickness of the thin film between the tube wall and the 

bubble interface scales to be 𝐶𝑎. &⁄  for 𝐶𝑎 up to 0.014. Taylor [10] performs 

experiments as an extension of the previous study for larger capillary numbers and 

shows that the expression is valid for 𝐶𝑎 < 0.09. Similarly, Bretherton [11] predicts 

the film profile of large bubbles by lubrication theory. He finds that the film thickness 

and the extra pressure drop are functions of capillary number and scales as 𝐶𝑎& 0⁄ . He 

propounds that the discrepancy between the scales is due to the difference between 

theory and experiments. Goldsmith and Mason [12, 13] evaluate the film thickness and 

the velocity profiles inside and outside the drops at very low viscosity ratios. They also 

observe breakup of sufficiently large drops at both ends of the drop due to the 

nonuniform film thinning [13]. Ho and Leal [14] perform a comprehensive 

experimental study on the influence of physical parameters on drop deformation, drop 
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velocity, and the extra pressure drop. The film thickness is found to be independent of 

the drop volume for 𝑟"## > 1, but increases with the volume for 𝑟"## up to unity. It is 

also affected by the viscosity ratio and the capillary number, i.e. the drop elongates in 

the flow direction as 𝜆 and 𝐶𝑎 increases. The drop velocity and the extra pressure drop 

are affected by the drop shape. The wall effects become significant as the film 

thickness decreases leading the drop velocity to decrease. The extra pressure drop 

depends on the drop shape but its dependence on the drop volume changes with the 

viscosity ratio. The replacement of the suspending fluid with a more viscous fluid 

causes higher pressure drop, while less viscous fluid causes lower pressure drop. 

Westborg and Hassager [15] examine the film thickness for the flow of bubbles and 

viscous drops using finite element method. Their results agree well with the 

expressions of Bretherton [11] and they note that the film thickness is independent 

from the viscosity ratio at small capillary number. Martinez and Udell [16] use 

boundary element method to study the effect of physical parameters on extra pressure 

drop and drop velocity. Their results agree well with the experimental results of Ho 

and Leal [14]. Olbricht and Kung [17] experimentally study the deformation and 

breakup mechanism of a drop in a circular tube. They report the critical capillary 

number depending on the viscosity ratio and drop size that leads the breakup. The 

shape of the drop strongly depends on the capillary number for viscous drops but 

becomes less sensitive for the smaller viscosity ratio. They observe that for sufficiently 

large capillary number, the drop does not reach the steady state shape. Lac and 

Sherwood [18] study the drop deformation in a wide range of capillary number using 

boundary element method. For all capillary numbers, the extra pressure drop becomes 

independent from the drop volume as the volume increases, for unit viscosity ratio. 

They also observe the breakup at high capillary number due to jet forming at the rear 

end as mentioned in the earlier studies [13, 17, 19].   

The physical mechanism behind these motions is more complex in channel geometries 

having constrictions and/or expansions. Change in the channel radius is often used to 

force the drops and bubbles to breakup and/or coalesce. Understanding these 

mechanisms is required for the design and control of systems including such 

constrictions and/or expansions. Snap-off is one of the breakup mechanisms that is 

observed while drops and bubbles are passing through the constriction, due to the 

collar formation of outer wetting fluid around the drop. The pressure difference due to 
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the low pressure in the constricted region forces the suspending fluid to move towards 

the constriction. As a result, the collar that started to form in the constriction continues 

to grow until the drop breaks. Thus, the snap-off time is directly proportional with the 

rate of collar formation. Roof [20] shows that the snap-off time can be reduced by 

opening a groove in the capillary wall so that the wetting fluid has an additional path. 

Olbricht and Leal [21] carry out experiments to study the motion of drops flowing 

through a periodically constricted capillary. The shape and the pressure drop variations 

over time are reported. The drops with larger radius than the capillary promotes 

negative extra pressure drop while they are passing through the constrictions. They 

report that under the same flow conditions with straight capillary, breakup may occur 

in constricted capillary. Gauglitz et al. [22] study the snap-off of large bubbles in a 

constricted capillary and they measure the breakup time as a function of capillary 

number. Later, Gauglitz and Radke [23] develop a small-slope theory to study on the 

collar formation by a wetting liquid film. They also perform experiments, and the 

results show an agreement with the theory. Martinez and Udell [24] study the same 

problem [21] using boundary element method and observe similar results except for 

the breakup. The collar growth depends on the film thickness, so implicitly on the 

capillary number. At low capillary numbers, the coated film thickness is thin, and the 

drop leaves the constriction until the necessary amount of collar is formed for the snap-

off to occur. As the capillary number directly affects the drop velocity, at high capillary 

numbers, even if the film thickness is sufficient for snap-off, snap-off cannot be 

observed in this case as the drop leaves the constriction fast. Tsai and Miksis [19] 

simulate the problem for low viscosity drops since more viscous drops are more 

resistant to deform, and snap-off does not occur at high viscosity ratios. In addition to 

their results, geometric parameters such as the depth and length of the constriction 

affect the snap-off. The depth of the constriction determines whether the snap-off 

would occur or not, but the length only affects the snap-off time and the effective 

radius of the daughter droplet. Snap-off of a large oil drop immersed in water flowing 

through a constricted capillary studied experimentally by Peña et al. [25]. They show 

that as viscosity ratio increases, the shear stress at the interface becomes significant 

and the flow rate of the continuous phase decreases. Thus, if the drop viscosity is much 

larger than the suspending fluid viscosity (𝜆 ≫ 1), snap-off does not occur. The 

occurrence of snap-off and its time are found to be directly relevant with the flow rate. 
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Roman et al. [26] perform numerical and experimental studies to investigate the 

breakup of large bubbles in a constricted tube. They report the period of snap-

off/coalescence events by measuring the film thickness and correlated it with the 

capillary number. Zhang et al. [27] study on the prediction of snap-off of a drop in a 

constricted channel. They present a diagram which shows the dependency of the snap-

off on viscosity ratio and  𝐶𝑎 and find a criterion for the occurance of snap-off as a 

function which states at large viscosity ratio and/or large 𝐶𝑎, snap-off does not occur. 

They also investigate the viscous dissipation rate during the snap-off and observe that 

the snap-off is related to a sudden increase in viscous dissipation. Very low capillary 

numbers are considered with the smallest order of 1012 as in [25]. Huang et al. [28] 

simulate the flow of a drop due to gravity through a single circular constriction at non-

zero Reynolds numbers. Unlike other studies [19, 25, 27], they observe that higher 

drop viscosity gives the continuous phase sufficient time to cause breakup due to its 

relatively lower velocity to the continuous phase. Lately, Singla and Ray [29] review 

the previous studies and describe and suggest the effect of physical parameters, as well 

as geometric parameters, in other words surface topography, on drop deformation.  

In pore geometries with circular cross sections, Roof’s criterion for snap-off states that 

the capillary pressure across the meniscus in the pore body should be less than the local 

pressure at the pore throat which is proportional to the throat geometry. Studies 

influenced by this criterion [30-34] consider symmetric constrictions, however, 

asymmetry, is natural in a porous medium or can be used in microfluidic channels to 

control the drop breakup processes. Therefore, we construct an asymmetric single 

constriction consisting of two ellipses with different major axes and show that the 

snap-off mechanism depends on the asymmetry of the constriction as much as the 

previously stated physical parameters. For this model problem, which requires 

relocating the interface at each time step, boundary element method is preferable since 

it provides the discretization of the boundaries only, and determination of the unknown 

values by using the information on the boundary nodes. Due to its advantages 

mentioned, boundary element method is found to be ideal for the solution of the 

axisymmetric problem of this thesis. 

Mathematical formulation for the model problem including the governing equations 

and tube geometry is given in Chapter 2. Problem related axisymmetric boundary 



5 

 

integral equations are derived, the numerical implementation and the verification 

studies are presented in Chapter 3. In Chapter 4, we represent the flow of drop through 

asymmetric constriction and compare the axisymmetric deformation with plane flow 

in Chapter 5. We conclude our findings and give the contribution of thesis in Chapter 

6.  
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Chapter 2 

Mathematical Formulation 

In this chapter, we derive a mathematical model describing the motion of a drop in a 

capillary tube. We consider a drop with effective radius 𝑟"## and dynamic viscosity 𝜆𝜂 

in a capillary tube of radius 𝑅,, suspended in another fluid with dynamic viscosity 𝜂 

as shown in Figure 2.1. The coordinate is fixed on the stationary tube inlet with 

symmetry axis 𝑧, and radial axis 𝑟. We treat the fluids to be incompressible, neutrally 

buoyant, and immiscible.  The inlet and outlet boundaries of the domain are Γ-3 and 

Γ4%+, the capillary wall is Γ5 (Γ-3 ∪ Γ4%+ ∪ Γ5 = Γ), and the drop interface is Γ$ with 

𝒏 being the unit normal into the suspending fluid. Non-dimensionalized with scales 

𝑙' = 𝑅,, 𝑢' = 𝑄/(𝜋𝑅,&), 𝑡' = 𝑙'/𝑢', 𝑝' = 𝜂𝑢'/𝑙' with 𝑄 being the volume flow rate, 

the continuity equation requires that the divergence of the velocity vanishes: 

 ∇. 𝒖 = 0 (2.1) 

where 𝒖 is the non-dimensional velocity field. In this flow, due to the small length and 

velocity scales, the Reynolds number indicating the ratio between inertia and viscous 

forces is small (𝑅𝑒 ≪ 1). Therefore, we assume the inertial terms can be neglected and 

flow is governed by the Stokes equations of motion which requires the stress field is 

divergenceless: 

 ∇. 𝝈 = 0 (2.2) 

where the constitutive law for the Cauchy stress tensor in (2.2) is defined for 

incompressible Newtonian fluids as 
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 𝝈 = −𝑝𝑰 + 𝛼(𝛻𝒖 + 𝛻𝒖6) (2.3) 

where 𝑝 is the pressure. In (2.3), 𝛼 is 𝜆 which is the viscosity ratio, for the drop (Ω$) 

and 1 for the suspending fluid (Ω'). The velocity along the tube wall satisfies the no-

slip and no-penetration condition.  

 

Figure 2.1: Domain of the problem 

We specify a parabolic velocity profile that the suspending fluid satisfies Poiseuille 

flow when it is sufficiently far ahead and behind the drop as  

 𝒖 = 2(1 − 𝑟&)𝒆)			on			Γ-3 ∪ Γ4%+ . (2.4) 

The normal stress balance, in its dimensionless form, at the drop interface requires  

 (𝝈' − 𝝈$) ⋅ 𝒏 = Δ𝒇 =
1
𝐶𝑎

(∇ ⋅ 𝒏)𝒏 (2.5) 

where Δ𝒇 denotes the traction jump across the interface; 𝐶𝑎(= 𝜂𝑢'/𝛾) is based on the 

suspending fluid dynamic viscosity 𝜂 and its average velocity scale 𝑢' and the surface 

tension denoted by 𝛾 is assumed to be uniform and the velocity is continuous (𝒖' =

𝒖$) at the interface. The interface moves normal to itself, and we define the kinematic 

condition with 𝑿 denoting the interface position by  

 𝒖 ⋅ 𝒏 =
𝜕𝑿
𝜕𝑡 ⋅ 𝒏			on			Γ$ . 

(2.6) 
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As shown in Figure 2.1, the generating curve of the constriction is obtained by 

combining two ellipses with the same minor axes at 𝑧,, but different major axes; this 

provides us with the asymmetric constriction with respect to 𝑧,. The minor axis, 𝑟7, is 

along 𝑟 direction and it determines the throat radius 𝑟+, while the major axes, 𝑟% and 𝑟$ 

are along 𝑧.  

In this problem, we are mainly interested in the evolution of the fluid interface. In 

parallel with this purpose, we solve the continuity (2.1) and the Stokes equations (2.2) 

with the boundary conditions (2.4) - (2.6) to find the drop velocity for the 

determination of the drop shape through the kinematic condition (2.6) and the traction 

on the capillary.   
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Chapter 3 

Numerical Method 

This chapter presents the boundary element method for the solution of the model 

problem. The theory and the reformulation of the governing equations into boundary 

integral equations are given in §3.1. The transformation of the surface integrals into 

line integrals for axisymmetric formulation is explained, and the components of the 

fundamental solutions are given in §3.2. The tube and the drop boundaries are 

discretized and approximated in §3.3. The independence study from number of 

boundary elements and the time step, and the validation of the numerical solver is 

presented in §3.4.  

3.1 Boundary Integral Equations 

The motion and the deformation of drops through tubes are governed by the continuity 

equation (2.1) and the Stokes equations (2.2). Boundary integral formulation of Stokes 

flow is developed by using Lorentz reciprocal relation that considers two unrelated 

Newtonian flows with velocity fields 𝑢8 and 𝑢8′ and associated stress fields 𝜎-8 and 𝜎-8′  

 
𝑢89
𝜕𝜎-8
𝜕𝑥-

− 𝑢8
𝜕𝜎-89

𝜕𝑥-
=

𝜕
𝜕𝑥-

�𝑢89𝜎-8 − 𝑢8𝜎-89 �. (3.1) 

The Green’s functions of Stokes flow provide us with velocity and stress fields that 

satisfy the continuity equation, and the singularly forced Stokes equation 

 𝛻. 𝝈 = −𝛻𝑝 + ∇&𝒖 + 	𝛿(𝒙 − 𝒚)𝒃 (3.2) 
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where 𝛿 is Kronocker delta. Green's functions physically specify the velocity field at 

point 𝒚 due to a point force of magnitude and orientation 𝒃, applied at the source point 

𝒙. The solutions of (3.2) are  

 𝒖(𝒚) =
1
8𝜋 𝑮

(𝒙, 𝒚)𝒃, (3.3a) 

 
𝝈(𝒚) =

1
8𝜋 𝑻

(𝒙, 𝒚)𝒃. (3.3b) 

𝑮 and 𝑻 are free space Green’s functions for velocity and stress, respectively, and 

given by  

 
𝐺-8(𝒙, 𝒚) =

𝛿-8
𝑟 +

𝑟:�𝑟;�
𝑟0  (3.4a) 

 
𝑇-8(𝒙, 𝒚) = −6

𝑟:�𝑟;�𝑟<�
𝑟=  (3.4b) 

where 𝒓l = 𝒙 − 𝒚 and 𝑟 = |𝒓l|. 

To derive the boundary integral equation of three-dimensional Stokes flow, we apply 

the relation (3.1) for a Stokes flow with velocity 𝑢8 and stress 𝜎-8 and use fundamental 

solutions similar to those given in (3.3) for 𝑢89 and 𝜎-89 , and we obtain  

 𝛿(𝒙, 𝒚)𝑏8𝑢8(𝒚) =
𝜕
𝜕𝑥-

�
1
8𝜋 𝐺-8

(𝒙, 𝒚)𝑏8𝜎-8(𝒚) − 𝑢8(𝒚)
1
8𝜋 𝑇-8<

(𝒙, 𝒚)𝑏8�. (3.5) 

Simplifying for an arbitrary vector 𝒃, the equation becomes 

 𝛿(𝒙, 𝒚)𝑢8(𝒚) =
1
8𝜋

𝜕
𝜕𝑥-

�𝐺-8(𝒙, 𝒚)𝜎-8(𝒚) − 𝑢8(𝒚)𝑇-8<(𝒙, 𝒚)�. (3.6) 
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We integrate this equation over the control domain Ω bounded by Γ and using the 

divergence theorem to convert the volume integrals into surface integrals we obtain  

 𝑪(𝒙)𝒖(𝒙) =
1
8𝜋� 𝑮(𝒙, 𝒚)𝒇(𝒚)𝑑𝑆(𝒚) −

1
8𝜋� 𝒖(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>>

. (3.7) 

The first integral in (3.7) is called single layer potential and the second is called double 

layer potential. The density of the single layer potential, 𝒖, is continuous everywhere 

in the domain while the density of the double layer potential, 𝒇, is discontinuous. 𝑪 on 

the left-hand side of (3.7) is the principal value tensor, obtained by using the property 

of delta function, expressing the discontinuity of the potential of double layer. The left 

hand-side of (3.7) is 𝒖(𝒙) when the point 𝒙 lies inside the domain Ω and zero when 

the point 𝒙 lies outside the boundary Γ.  

Since we deal with multiphase flow, the general boundary integral equation (3.7) is 

rearranged for our problem which contains two fluid domains and an interface. To 

derive the boundary integrals, we first consider the suspending fluid bounded by Γ and 

contains Γ$ (see Figure 2.1). The integral equation is written as  

 −
1
8𝜋 � 𝑮(𝒙, 𝒚)𝒇'(𝒚)𝑑𝑆(𝒚)

>∪>!

+
1
8𝜋 � 𝒖'(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>∪>!

  

 = �
𝑪(𝒙)𝒖'(𝒙),
𝒖'(𝒙),
0,

											𝒙 ∈ Γ ∪ Γ$
				𝒙 ∈ Ω'
						𝒙 ∈ Ω$ 	

. (3.8) 

We decide the right hand-side of the equation with respect to the location of the source 

point. It equals to 𝑪(𝒙)𝒖'(𝒙) when the source point lies on the boundary and 𝑪(𝒙) 

equals to .
&
𝑰 for a smooth boundary.  

The obtain the boundary integral equation for drop bounded by Γ$, we follow similar 

analysis, and the resulting equation is 
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 −
1
8𝜋𝜆 � 𝑮(𝒙, 𝒚)𝒇$(𝒚)𝑑𝑆(𝒚)

>!

+
1
8𝜋 � 𝒖$(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>!

.  

 = �
𝑪(𝒙)𝒖$(𝒙),

0,
𝒖$(𝒙),

											𝒙 ∈ Γ$
																			𝒙 ∈ Γ ∪ Ω'

													𝒙 ∈ Ω$ 	
	. (3.9) 

The coupled integral equation related to the velocity at each point on the tube and drop 

boundaries is derived by taking the corresponding values of the right hand-side for 

each fluid domain. To simplify the equations, we first multiply (3.9) with 𝜆. When the 

source point, 𝒙, is on Γ, we take the summation of the first equation of (3.8) and the 

second equation of (3.9). Since the integrals of (3.8) are on Γ ∪ Γ$, while summation, 

we utilize the condition that the velocity is continuous on the interface, (𝒖' = 𝒖$ 

on	Γ$), but the traction difference leads a stress jump across the interface as given in 

(2.5), since 𝒇' does not equal to 𝒇$ on the drop interface. Following the same analysis, 

when the source point is on Γ!, we sum the first equations of (3.8) and (3.9). After the 

rearrangements, we obtain the boundary integral equation for two-phase flow 

 𝜀𝑪(𝒙)𝒖@(𝒙) = −
1
8𝜋� 𝑮(𝒙, 𝒚)𝒇'(𝒚)𝑑𝑆(𝒚)

>

  

 

 
																																																				+

1
8𝜋� 𝒖'(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>

  

 																																												−
1
8𝜋

1
𝐶𝑎 � 𝑮(𝒙, 𝒚)(∇ ⋅ 𝒏(𝒚))𝒏(𝒚)𝑑𝑆(𝒚)

>!

  

 																																				+
(1 − 𝜆)
8𝜋 � 𝒖$(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>!

. (3.10) 

In (3.10), 𝜀 is (1	 + 𝜆) when 𝛽 is 𝑑, and 1 when 𝛽 is 𝑠. 
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3.2 Axisymmetric Formulation  

The boundary integral formulation for three-dimensional flow is given in §3.1. For the 

axisymmetric case, the point force in three-dimensions expresses a unit force equally 

distributed around a ring. To determine the response at point 𝒚, the axisymmetric 

fundamental solutions are derived by integrating the three-dimensional solution (3.4) 

about a ring at point 𝒙. Therefore, for the axisymmetric problem, the surface integrals 

reduce to line integrals by computing the azimuthal integrals analytically. For the 

treatment of the axisymmetric problem, we consider the cylindrical coordinates in 

which the points are 𝒙 = (𝑹, 𝜽, 𝒁) and 𝒚 = (𝒓,𝝓, 𝒛). The solutions in cylindrical 

coordinates are determined by tensor transformation  

 𝒖(𝒙) = 𝑨6(𝒙)𝒖(𝒙, 𝒚)𝑨(𝒚) (3.11) 

where 𝑨 is the rotation matrix for field point and 𝑨6 is transpose of 𝑨 corresponding 

to source point: 

 𝑨(𝒚) = �
𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙 0
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0
0 0 1

�, (3.12a) 

 𝑨6(𝒙) = �
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

�. (3.12b) 

For an arbitrary plane we choose 𝜙 to be zero, and the mapping from cartesian 

coordinates 𝒙 = (𝑥, 𝑦, 𝑧)	to cylindrical coordinates is 𝒙 = (𝑥(𝑐𝑜𝑠𝜃, 𝑥(𝑠𝑖𝑛𝜃, 𝑥)).  

We integrate the transformed solutions about the ring  

 𝑢(( = � [(𝑢..𝑐𝑜𝑠𝜃 + 𝑢&.𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜙
&A

,
+ (𝑢.&𝑐𝑜𝑠𝜃 + 𝑢&&𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜙]𝑑𝜙 

(3.13a) 
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 𝑢() = � (𝑢0.𝑐𝑜𝑠𝜙 + 𝑢0&𝑠𝑖𝑛𝜙)𝑑𝜙
&A

,

 (3.13b) 

 𝑢)( = � (𝑢.0𝑐𝑜𝑠𝜃 + 𝑢0&𝑠𝑖𝑛𝜃)𝑑𝜙
&A

,

 (3.13c) 

 𝑢)) = � 𝑢00𝑑𝜙
&A

,

 (3.13d) 

and after we compute the integrals, we obtain the axisymmetric fundamental solutions 

for velocity [47] as follows: 

 𝑢(( =
1

2𝜋e𝑎� + 𝑏�
 −¡

𝑎� + 𝑐̅&

𝑏�
£𝐾(𝑘) + ¡

𝑏�& − 𝑎�& − 𝑎�𝑐̅&

𝑏�
£
𝐸(𝑘)
𝑎� − 𝑏�

¤, (3.14a) 

 𝑢() =
1

2𝜋√𝑎 + 𝑏
 �
𝑐𝑟
𝑏 �𝐾

(𝑘) + �
𝑐𝑅 − 𝑎𝑐𝑟

𝑏 �
𝐸(𝑘)
𝑎 − 𝑏¤, 

(3.14b) 

 𝑢)( =
1

2𝜋√𝑎 + 𝑏
 − �

𝑐𝑅
𝑏 �𝐾

(𝑘) + �
−𝑐𝑟 + 𝑎𝑐𝑅

𝑏 �
𝐸(𝑘)
𝑎 − 𝑏¤, 

(3.14c) 

 𝑢)) =
1

2𝜋√𝑎 + 𝑏
 𝐾(𝑘) + (𝑐&)

𝐸(𝑘)
𝑎 − 𝑏¤. 

(3.14d) 

where 𝑎 = 𝑅& + 𝑟& + 𝑐&, 𝑏 = 2𝑅𝑟, 𝑐 = 𝑍 − 𝑧, and 𝑘 = [2𝑏/(𝑎 + 𝑏)]. &B 	. 𝐾(𝑘) and 

𝐸(𝑘) are the elliptic integrals of the first and second kind, respectively [48].  Applying 

the same procedure gives us the fundamental solutions for tractions in cylindrical 

coordinate system.  
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	𝑡(( =
1

𝜋(𝑎& − 𝑏&)√𝑎 + 𝑏
 
𝐾(𝑘)
𝑏& [𝑑𝑏0 + 𝑎𝑏&𝑅𝑛( − 2𝑎𝑏𝑑𝑒 

								+(4𝑎& − 6𝑏&)(𝑒𝑅𝑛( − 𝑑𝑅𝑟) − (8𝑎0𝑏 − 9𝑎𝑏0)𝑅𝑛(] 

								+
𝐸(𝑘)

(𝑎 − 𝑏)2𝑏& [−4𝑎𝑏
0𝑑 + (𝑎&𝑏 + 3𝑏0)(2𝑑𝑒 − 𝑏𝑅𝑛() 

		+4𝑎(3𝑏& − 𝑎&)(𝑒𝑅𝑛( − 𝑑𝑅𝑟) + (8𝑎C − 15𝑎&𝑏& + 3𝑏C)𝑅𝑛(]
1
2¦, 

(3.15a) 

 

	𝑡() =
1

𝜋(𝑎& − 𝑏&)√𝑎 + 𝑏
 
𝐾(𝑘)
2𝑏

[−2𝑅𝑏𝑑𝑐 − 2𝑎𝑐(𝑅&𝑛( − 𝑟𝑑)] 

								−(2𝑎& − 3𝑏&)𝑐𝑛(] 	+
𝑐𝐸(𝑘)
𝑏(𝑎 − 𝑏) [−4𝑅𝑎𝑏𝑑 

								+(𝑎& + 3𝑏0)(𝑅&𝑛( − 𝑟𝑑) + 2𝑎(3𝑏& − 𝑎&)𝑛(]
1
2¦, 

(3.15b) 

 

	𝑡)( =
1

𝜋(𝑎& − 𝑏&)√𝑎 + 𝑏
 
𝑐𝐾(𝑘)
𝑏& [𝑟𝑏&𝑑 − 𝑎𝑏𝑅(𝑑 − 𝑟𝑛() 

								+(2𝑎& − 3𝑏&)𝑅&𝑛(] +
𝑐𝐸(𝑘)

𝑏&(𝑎 − 𝑏) [−4𝑟𝑎𝑏
&𝑑 

								+(𝑎& + 3𝑏0)(𝑅𝑑 − 𝑅𝑟𝑛() + 2𝑎(3𝑏& − 𝑎&)𝑅&𝑛(]
1
2¦, 

(3.15c) 

 

	𝑡)) =
1

𝜋(𝑎& − 𝑏&)√𝑎 + 𝑏
 
𝐾(𝑘)
𝑏

[−𝑏𝑐&𝑑 − 𝑎𝑅𝑐&𝑛(] 

								+
𝐸(𝑘)

𝑏(𝑎 − 𝑏)
[4𝑎𝑏𝑑𝑐& + (𝑎& + 3𝑏0)𝑅𝑐&𝑛(]		¤ 

(3.15d) 

where 𝑑 = −𝑟𝑛( + 𝑐𝑛), and 𝑒 = 𝑅& + 𝑟&.  The above equations (3.14) and (3.15) are 

the fundamental solutions to be used in the boundary integral equation (3.10). 
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3.3 Boundary Element Method 

As a discretization method based on the advantages mentioned, we choose boundary 

element method for the solution of the boundary integral equations. Boundary element 

method is first used for Stokes flow by Youngren and Acrivos [35] for flow past an 

arbitrary particle and then introduced for the interface problems [36, 37] in unbounded 

domains. The method is then applied to the motion of drops and bubbles in 

confinements [16, 18, 19, 24, 38-46]. 

Boundary element method requires reformulation of the boundary integral equations 

into a set of linear equations by discretizing the boundary into small segments called 

boundary elements. The choice of the elements is problem specific.  The elements may 

be treated as constant, linear, quadratic, or higher order. Constant elements contain one 

boundary node located at the midpoint of the element, linear elements contain two 

nodes at the extreme points of the elements, quadratic and higher order elements 

contains three and more boundary nodes, respectively. The known and unknown 

variables on the boundaries are approximated by interpolation functions between the 

boundary nodes. In the case of constant interpolation, a variable defined at the node is 

assumed to be constant along the element. Higher order interpolations provide higher 

accuracy, as sharing nodes will have an impact on more neighboring nodes. We choose 

constant elements for the fixed capillary walls regarding to computational cost, since 

we are mainly concerned with the evolution of the interface deformation. Another 

reason for choosing constant elements for the capillary wall is to avoid corner nodes 

where the unit normal vector is not unique. On the tube wall, we define the velocity 

components, and the traction components are calculated. Since traction is a function 

of the normal vector, the normal vector at the corner node causes confusion. Though 

it can be treated for higher order elements, the use of constant elements prevents this 

confusion. If sufficient number of constant elements are used, we do not need to 

consider corner nodes, which degrade the smoothness of the boundary without 

affecting the accuracy of the solution. For the fluid interface, we use cubic elements 

which involves four boundary nodes within each element as schematically shown in 

Figure 3.1.  
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Figure 3.1: Representative cubic elements on drop boundary 

We approximate the coordinates of the interface with cubic shape functions and 

perform the calculations on the mapped domain. The coordinates on the mapped 

domain are 

 𝒓(𝜉) =§𝜑87𝑟8

C

8D.

 (3.16a) 

 𝒛(𝜉) =§𝜑87𝑧8

C

8D.

 (3.16b) 

where 𝑟8 and 𝑧8 are the coordinates of the node point with respect to the arclength 𝜉 in 

[−1,1], and 𝜑87 are the cubic shape functions defined by 

 				𝜑.7(𝜉) = −(9/16)(𝜉 + 1/3)(𝜉 − 1/3)(𝜉 − 1) (3.17a) 

 𝜑&7(𝜉) = (27/16)(𝜉 + 1)(𝜉 − 1/3)(𝜉 − 1) (3.17b) 

 					𝜑07(𝜉) = −(27/16)(𝜉 + 1)(𝜉 + 1/3)(𝜉 − 1) (3.17c) 

 			𝜑C7(𝜉) =(9/16)(𝜉 − 1/3)(𝜉 + 1/3)(𝜉 + 1) (3.17d) 
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The velocity and traction components are also approximated by the cubic shape 

functions as 

 𝒖(𝜉) =§𝜑87𝑢8

C

8D.

, (3.18a) 

 𝒕(𝜉) =§𝜑87𝑡8

C

8D.

. (3.18b) 

Beside the interface, since we use constant elements for the capillary walls, each 

element has one node and the shape function 𝜑 is unity. Therefore, we divide the tube 

boundary into 𝑁 elements and the drop boundary into 𝑁$ elements which have 𝑁 and 

3𝑁$ + 1 boundary nodes, respectively. The resulting linear system is obtained by 

summing the integrals for each element as below   

 

©𝐶(( 𝐶()
𝐶)( 𝐶))

¦
𝒊𝒊
ª
𝑢(
𝑢)«-

= (1 − 𝜆)§ � ©𝑇(( 𝑇()
𝑇)( 𝑇))

¦
-8
ª
𝑢(
𝑢)«8

𝑑Γ
>!"

F!

8D.

 

																																																						+§ � ©𝑇(( 𝑇()
𝑇)( 𝑇))

¦
-8
ª
𝑢(
𝑢)«8

𝑑Γ
>#

F

8D.

 

																																																						−§ � ©𝐺(( 𝐺()
𝐺)( 𝐺))

¦
-8
©𝑓(𝑓)
¦
8
𝑑Γ

>#

F

8D.

 

																																													−
∇ ∙ 𝒏
𝐶𝑎 § � ©𝐺(( 𝐺()

𝐺)( 𝐺))
¦
-8
ª
𝑛(
𝑛)«8

𝑑Γ
>$#

F!

8D.

 

(3.19) 

where 𝑑Γ is the differential line element given by 

 
𝑑Γ = 𝑟(𝑠)  �

𝑑𝑟
𝑑𝑠�

&

+ �
𝑑𝑧
𝑑𝑠�

&

¤

.
&B

, 
(3.20) 

and 𝑠	is the arclength along the generating curve.  
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The components of the unit normal vectors are  

 𝑛) =
𝑑𝑟
𝑑𝑠

 �𝑑𝑟𝑑𝑠�
&
+ �𝑑𝑧𝑑𝑠�

&
¤
.
&B
	, (3.21a) 

 𝑛( =
𝑑𝑧
𝑑𝑠

 �𝑑𝑟𝑑𝑠�
&
+ �𝑑𝑧𝑑𝑠�

&
¤
.
&B
	 ⋅ (3.21b) 

The surface curvature along the drop boundary has two contributions: one plane 

curvature and one azimuthal curvature:  

 ∇ ⋅ 𝒏 = 𝜅G + 𝜅( =
𝑑𝑟
𝑑𝑠
𝑑&𝑧
𝑑𝑠& −

𝑑𝑧
𝑑𝑠
𝑑&𝑟
𝑑𝑠&

 �𝑑𝑟𝑑𝑠�
&
+ �𝑑𝑧𝑑𝑠�

&
¤
0
&B
+

𝑑𝑧
𝑑𝑠

𝑟  �𝑑𝑟𝑑𝑠�
&
+ �𝑑𝑧𝑑𝑠�

&
¤
.
&B
⋅ (3.22) 

Because the evaluation of the surface curvature requires the second order derivatives 

of the axial and radial coordinates, to ensure the continuity of the curvature, we use 

cubic-spline interpolation. We start with 𝑁/2 elements and mirror the coordinates with 

respect to the symmetry axis which ends up with closed curve with 𝑁 elements (as 

periodic treatment). In the cubic spline notation, the 𝑗th boundary element	(𝑗 =

1, 2, … , 𝑁) between the nodes of 𝑗 and 𝑗 + 1 is parametrically defined with cubic 

polynomials  

 𝑥8(𝑠) = 𝑎H8𝑠
0 + 𝑏H8𝑠

& + 𝑐H8𝑠 + 𝑑H8 (3.23a) 

 𝑦8(𝑠) = 𝑎I8𝑠
0 + 𝑏I8𝑠

& + 𝑐I8𝑠 + 𝑑I8 (3.23b) 

The coefficients are computed by implementing the interpolation and smoothness 

conditions. For each element, we have 8 unknowns (𝑎, 𝑏, 𝑐, 𝑑 for 𝑥 and 𝑦 coordinates) 

with a total of 8𝑁 unknowns. We, first, enforce the first and last coordinates for 𝑗𝑡ℎ 
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element which gives us 4𝑁 equations. Next, we ensure the continuity of first and 

second derivatives at the first and last nodes of 𝑗𝑡ℎ element which gives us 2𝑁 

equations for slope and 2𝑁 equations for curvature. 8𝑁 equations close the problem.  

3.4 Solver Validation  

3.4.1 Mesh Independence  

Before verifying the numerical solver, independence from number of boundary 

elements must be ensured. To do so, we solve two problems.  For the first comparison, 

we solve the motion of a drop of effective radius 1.1 in a straight capillary at 𝐶𝑎 =

0.1, and 𝜆 = 0.19 and compare the dimensionless length of the steady state profile of 

a drop with varying 𝑁$ in Table 3.1. The length of the drop is calculated as 1.54 from 

the result of Martinez and Udell [16]. We also make sure the volume of the drop is 

conserved; in all of the numerical experiments, the relative error in the drop volume is 

kept less than 0.1%. The relative error between the solutions used 𝑁$ = 120 and 𝑁$ =

180 is 0.0015%, and the error between 𝑁$ = 360 and 𝑁$ = 420 is 0.0091%.  

For the second comparison, we solve the deformation of a drop at 𝐶𝑎 = 1 by varying 

𝑁$ from 15 to 360 as shown in Figure 3.2.  

Therefore, we use 120 cubic elements when the drop deformation is relatively small 

(e.g. deformation of drops in straight tubes for 𝐶𝑎 < 1), and 360 elements when the 

deformation is relatively large (e.g. snap-off problem).  
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Table 3.1: Change of the dimensionless maximum drop length in the axial direction 
with 𝑁$ 

𝑁$ 𝐿$/2𝑟"## 

15 1.5545 

30 1.5512 

45 1.5502 

60 1.5497 

90 1.5494 

120 1.5490 

180 1.5490 

240 1.5489 

300 1.5489 

360 1.5488 

420 1.5488 

 

 

Figure 3.2: Change of drop profile with 𝑁$ 
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3.4.2 Time Step  

Although the Stokes equations of motion are linear and not time dependent, the 

unsteadiness is due to the non-linear evolution of the interface with time. The time 

integration was performed using first order Euler formula (2.6) by dynamically 

determining the time step not to allow a boundary node moves more than a tolerance. 

We define the initial time step as 5 × 101C and if maximum displacement of a node is 

larger than the tolerance, we do not accept the solution and decrease the time step.  

3.4.3 Validation: Flow in Straight Capillaries  

One of the fundamental problems of drop motion in confined geometries is the 

deformation of drops in straight tubes. Though this problem is studied widely, we 

separate this section to such problems to validate our solver. For the first problem, we 

analyze the deformation of a drop in a straight tube with jet formation behind if a 

critical 𝐶𝑎 is reached. This phenomenon is observed experimentally by Olbricht and 

Kung [17] and later simulated by Tsai and Miksis [19]. This unsteady problem 

provides a check for the abrupt interface variation to capture if the curvature and 

integral computations are implemented correctly, any blemish in either of the 

computations cannot capture such deformations. To this end, we set the initial drop 

effective radius to 0.9 and 𝐶𝑎 to unity and let the drop evolve from its spherical shape 

centered at 𝑧 = 2	in time until the leading edge reaches the tube outlet. We plot our 

observation of jet formation at 𝐶𝑎 = 1 in which the drop does not reach steady-state 

and compare with Tsai and Miksis [19] at different times as shown in Figure 3.1 at 

𝑡 = 0, 2, 4, 6. At this 𝐶𝑎, the surface tension forces at the trailing edge of the drop 

cannot overcome the viscous forces, the curvature there changes sign, and a reentrant 

cavity grows as jet towards the leading edge of the drop. At around 𝑡 = 6, the jet gets 

so thin that its interface nearly touches the symmetry axis around which we stop the 

simulations. Further integration in time for the physics of such coalescences needs the 

addition of other effective forces, such as van-der-Waals, into (3.11) at this length 

scale. 
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Figure 3.3: Evolution of a drop with time; 𝑎 = 0.9, 𝜆 = 0.1, 𝐶𝑎 = 1. The solid lines 
represent the present results, and square symbols represent the data of Tsai and 

Miksis [19] 

As a second problem, we consider the motion of drops reaching steady-state profiles 

to be able to compare our results with other flow parameters such as extra pressure 

drop due to the existence of drop inside tubes and thickness of suspending liquid coated 

on the tube walls other than drop profiles. To reach their steady-state profiles and not 

to be affected by the tube ends, the drops are held at the middle of a tube of length 𝐿 =

20𝑅 by shifting their center of mass to the mid of the tube at each time step. The extra 

pressure drop due to the existence of a drop in the tube is the pressure drop difference 

of the case with the drop moving in the tube and the one with no drop for fixed volume 

flow rate. It is experimentally and computationally observed that the less viscous drop 

than its surrounding causes a negative extra pressure drop while more viscous drop 

causes a positive extra pressure drop [14, 17, 18]. In Figure 3.4, we compare extra 

pressure drop due to the existence of drops with experiments of Ho and Leal [14], and 

the limiting case given by Brenner [49] for small drops for different 𝐶𝑎, 𝜆,	and 𝑟"## . 

We vary the effective drop radius from 0.7 to 1.1 and measure the extra pressure drops 

for 𝐶𝑎 = 0.075, 0.1, 0.15 and 𝜆 = 0.19, 2.04. We observe similar trends for 𝜆 < 1 and 

𝜆 > 1 with experiments. The deviation between the present and experimental results 

is also observed by Martinez and Udell [16] with which our computations match. This 

discrepancy is also mentioned by the experimental study of Olbricht and Kung [17] in 

which they compare the steady-state non-dimensional drop length (scaled with the 

twice of the effective drop radius) with the numerical computation of Martinez and 

Udell [16] for 𝜆 = 0.19, 𝐶𝑎 = 0.1, 𝑟"## = 1.1. While the experimentally measured 

length is 1.5, the computed value is 1.55 which is also consistent with our results. 
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Figure 3.4: Extra pressure drop as a function of drop size: ⎯⎯⎯⎯⎯: 𝐶𝑎 = 0.075,         
−−− : 𝐶𝑎 = 0.10, − ∙ − ∙ − : 𝐶𝑎 = 0.15 are present results; ∙∙∙∙∙∙∙∙∙ : theoretical 
expression of Brenner [49]. The symbols represent the experimental results of Ho 

and Leal [14] ◯: 𝐶𝑎 = 0.075; □: 𝐶𝑎 = 0.10, ♢: 𝐶𝑎 = 0.15 

As a final comparison, we measure the coated film thickness on tube walls as a 

function of  𝐶𝑎 and compare with Martinez and Udell [16] (𝜆 = 0.19,	and	𝜆 = 1), Tsai 

and Miksis [19], (𝜆 = 0.1), and Taylor [2] in Figure 3.5. The comparison for 𝜆 = 0.19 

is not included in the figure for simplicity which is also studied in §3.4.1. Taylor [2] 

defined the 𝐶𝑎 as a function of drop velocity, so for the comparison, the given data 

have been taken according to the suspending fluid velocity. As the viscosity ratio 

approaches zero, the film thickness decreases, and results approximate the film 

thickness measurements for bubbles. We should also note that, for the unit viscosity 

ratio, when 𝐶𝑎 is higher than 0.15, we do not observe film formation.  
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Figure 3.5: Film thickness as a function of 𝐶𝑎; ◯: 𝜆 = 1 [16]; ♢: 𝜆 = 0.1 [19];      

□: 𝜆 = 0	[10]; solid and dashed lines represent the present results for 𝜆 = 1, and    
𝜆 = 0.1, respectively  
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Chapter 4 

Flow in tubes with asymmetric 

constrictions  

The drop deformation mechanism is greatly influenced by the existence of 

constrictions in confined geometries. As the drop passes through the constriction, 

breakup may occur as a result of the growth of the suspending fluid collar. The break-

-up that occurs in this way is called snap-off. This mechanism is affected by 𝐶𝑎, 𝜆, 

𝑟"## and the geometry of constriction. The studies either in small slope regime or 

Stokes regime [19, 20 - 27] consider periodic or single but symmetric constriction 

effects on the drop deformation. Asymmetry, however, is natural in a porous medium 

or can be used in microfluidic channels to control the drop breakup processes. To 

observe the effect of asymmetry, we construct an isolated asymmetric constriction. As 

shown in Figure 2.1, the generating curve of the constriction is obtained by combining 

two ellipses with the same minor axes at 𝑧,, but different major axes; this provides us 

with an asymmetric constriction with respect to 𝑧,. The minor axis, 𝑟7 is along 𝑟 

direction and it determines the throat radius, 𝑟+, while the major axes, 𝑟%  and 𝑟$, are 

along 𝑧. We initiate the motion of drops upstream of the constriction with an initial 

drop profile corresponding to the steady-state profiles in a straight tube of length 12 

and place their leading-edge at 𝑧 = 𝑧, − 𝑟% − 0.25.  

Our starting point is a case in which we observe snap-off and then we vary the 

geometry. We, first, fix the viscosity ratio to 𝜆 = 0.005, 𝐶𝑎 = 0.05, and effective drop 

radius to 𝑟"## = 1.1. The drop snaps-off when the upstream and downstream radii of 

the constriction are 𝑟% = 𝑟$ = 1.0	and 𝑟7 = 0.6. We, systematically, vary the major 

axis (𝑟$) of the downstream of the constriction from 𝑟$ = 1 to 𝑟$ = 2.5 while keeping 
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all other parameters fixed and plot the drop profiles at the time of snap-off for different 

𝑟$ in Figure 4.1.  

For cases (a)-(d), drop fronts start at the same axial locations from, and snap-off time 

is a measure of the effect of asymmetry. As 𝑟$ increases, the downstream of the 

constriction diverges smoothly and this extends the time for the drop front to have a 

maximum radius of curvature. For small 𝜆, the drop can be thought of as a bubble and 

the pressure jump across the drop interface increases faster at the leading edge while 

the shape of the trailing edge remains almost the same. The interface curvature at the 

throat is also determined by the fixed 𝑟+ and the principal radii of curvature of the 

interface. Locally, at the throat, the capillary pressure has a lower bound in the limit 

as film thickness goes to zero: the dimensionless pressure is 1/𝑟+ − 1/(1 − 𝑟+) which 

is 0.833 for 𝑟+ = 0.4. As the film thickens within this region, the corresponding 

pressure may exceed the leading edge which is also bounded by confinement of the 

tube wall (~2), of course, in the small 𝐶𝑎 limit. In this situation, the collar grows, and 

the process is slower for smoother downstream, and this mechanism leads to faster 

snap-off: volume of the drop generated increases with smoother diverging constriction. 

The location of the snap-off position, on the other hand, moves downstream. The 

experiments of Roof [20] show that an irregularity in the pore is necessary for the snap-

off to happen in a reasonable amount of time. Our results are consistent with this 

observation. 



28 

 

 

Figure 4.1: Effect of 𝑟$ and 𝑟% on drop snap-off. Panel (a) is for unit 𝑟$ and 𝑟%, panels 
(b)-(d) are for 𝑟% = 1, 𝑟$ = 1.5,	2, and 2.5, respectively, panels (e)-(g) are for	𝑟$ =

1, 𝑟% = 1.5, 2, and 2.5, respectively 
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The smoothness of the upstream of the constriction, however, is dominant for the 

control of the volume of the generated droplet, 𝒱$, after snap-off. We show this 

variation in Figure 4.1 ((e)-(g)) and plot the variation of this volume relative to initial 

drop volume, 𝒱-, with 𝑟%, for fixed 𝑟$ = 1 and 𝑟+ = 0.4 in Figure 4.2. The smooth 

entrance to the constriction provides more volume to move downstream before the 

leading edge of the drop starts expanding and this mechanism generates more volume 

after snap-off.  

For comparison, we also show on the same graph, the volume variation with 𝑟$; it is 

evident that volume is affected more by the smoothness of the upstream. To see the 

effect of upstream geometry, we replace the upstream half of the constriction with a 

linearly varying profile instead of an ellipse and observe similar trends.  Our argument 

on asymmetric constriction could be used to control drop generation.  

 

Figure 4.2: Variation of volume of the generated droplet related to after snap-off with 
smoothness of upstream and downstream 

We should also note that the above argument holds as long as the variation in the 

upstream radius of curvature of the drop is small compared to the one at the throat and 

downstream. This condition can easily be satisfied by increasing the volume of the 

initial drop. The time scale for the collar growth needs to be smaller from both time 

scales of the variation in the leading and trailing edges.  

We further consider various cases in which drops do not snap off and show that 

increasing downstream of the tube leads drops to snap off as the leading edge of the 

drop grows beyond the limits of the upstream radius of curvature of the tube. When 

the leading edge of the drop is allowed to expand beyond the limits of the upstream 
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radius of curvature, a drop, which is able to escape from the constriction with 𝑟% =

𝑟$ = 1.0, can snap-off. We show this by increasing the radius of the tube downstream 

to 𝑅$ = 1.5 and compare it with the symmetric case in Figure 4.3. Here, the viscosity 

ratio is 𝜆 = 0.0075, 𝐶𝑎 = 0.025 and 𝑟7 = 𝑟+ = 0.5.  

We start both cases with a drop of effective radius 𝑟"## = 1.5 and plot the time series 

of the drop profiles. The profiles at times 𝑡 = 2 are alike, after this time the asymmetry 

allows expansion. The increase of the upstream radius of curvature increases the radius 

of curvature of the leading edge of the drop which results with snap-off, albeit larger 

𝜆 and throat radius, smaller 𝐶𝑎; all of which tends to prevent snap-off.  

 

Figure 4.3: Effect of asymmetry due to downstream radius of curvature: top half is 
for a symmetric constriction with 𝑅% = 𝑅$ = 1, drop profiles at                               

𝑡 = 0	(⎯⎯⎯), 2	(− − −), 4	(− ⋅ −), 6	(⎯⎯⎯);	bottom half is for an asymmetric 
constriction with	𝑅% = 1;	𝑅$ = 1.5, drop profiles at 𝑡 = 0	(⎯⎯⎯), 2	(− − −),

4(− ⋅ −),4.164	(⎯⎯⎯) 

The history of pressure drop across the tube unveils the deformation mechanism. As 

shown in Figure 4.4, starting from 𝑡	 = 	0, the pressure drop increases while the 

leading edge enters into the constriction. It reaches to a peak value at which the leading 

edge is at the narrowest section of the constriction. Here, the radius of curvature of the 

leading edge is at its minimum value. After this point, the leading edge starts 

expanding while leaving the constriction. For sufficiently large drops, we observe 

almost constant pressure drop (1.5	 < 	𝑡	 < 	4, quasi–steady translation) as the drop 

retains its profile as is. In the next stage, if there is no snap–off (dashed line in Figure 

4.4), the trailing edge leaves the constriction while the pressure drop decreases to a 

minimum which corresponds to the time at which the trailing edge is a the narrowest 

section, the radius of curvature of the trailing edge, this time, attains its minimum 

value. After this point the trailing edge expands which increases the pressure drop and 

reaches to quasi–steady translation. If there is snap–off (dot-dash line in Figure 4.4), 

the pressure drop jumps just after the plateau region (quasi–steady translation); this is 
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provided by the increase of the radius of the curvature at the leading edge due to 

asymmetry. 

 

Figure 4.4: History of pressure drop across tube and stages of drop deformation 
mechanism through constriction, dashed line corresponds to symmetric constriction 

with no snap–off while the dot-dash line corresponds to asymmetric constriction 
shown in Figure 4.3. 
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Chapter 5 

Comparison with Plane Flow  

Our purpose in this section is to show the importance of azimuthal curvature on the 

deformation of drops; two-dimensional models may not be sufficient for models of jet 

formation and snap–off. For this purpose, we develop a planar version of our solver. 

The fundamental solutions in the two-dimensional case with corresponding boundary 

integral formulation are given in Appendix B. We set both cases to be dynamically 

and geometrically similar: setting the velocity scale 𝑢' equal provides us with the same 

𝐶𝑎 for fixed surface tension and dynamic viscosity of the suspending fluid; namely, 

the volume flow rate per unit depth of the planar case averaged with channel height, 

ℎ, is same as the volume flow rate of the axisymmetric one averaged with cross-

sectional area. However, the time scale 𝑡' = 𝑙'/𝑢', differs for plane and axisymmetric 

flows due to the different length scale. The velocity profile we set at the inlet and outlet 

of the channel is  

 𝒖 = 6(𝑦 − 𝑦&)𝒆H			on			Γ-3 ∪ Γ4%+ (5.1) 

In axisymmetric boundary element analyses, the surface curvature (3.22) has plane and 

azimuthal components which allow us to catch the real-like shape. In two dimensions, 

the curvature has only the plane component and is given as  

 	𝜅 =
𝑑𝑥
𝑑𝑠
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We first compare jet formation problem at 𝐶𝑎	 = 	1 given in §3.4.3. Here, the viscous 

forces are as much important as the surface tension forces. While a jet develops from 

the trailing edge of the drop in the axisymmetric case, the interface recoils in time with 

no jet formation in planar case. The drop speeds differ considerably. Considering the 

time scale 𝑡', the length scale is 𝑙' = 𝑅, for axisymmetric flow and 𝑙' = 2𝑅, for plane 

flow. Therefore, we plot our results at 𝑡 = 0, 1, 2, and 3 for plane flow and at 𝑡 =

0, 2, 4, and 6 for axisymmetric flow Figure 5.1.  

Figure 5.1: Deformation of drops for axisymmetric flow (top), and plane flow 

(bottom); 𝑟"## = 0.9, 𝜆 = 0.1, 𝐶𝑎 = 1 

For the snap–off problem, we compare an axisymmetric case in which we observe 

snap-off. The physical and geometric parameters are same as axisymmetric problem 

shown in panel (a) of Figure 4.1. We compare the history of axisymmetric and planar 

cases at times 𝑡	 = 	0, 0.5, 0.913 in Figure 5.2. We also show in this panel, planar drop 

profile at 𝑡	 = 	2.5	with no snap–off. In the planar case, the surface tension forces lack 

the out–of plane curvature, namely the azimuthal curvature contribution does not exist 

comparing with the axisymmetric problem and this prevents jet formation or snap–off. 

These two comparisons show that plane models of drop deformation in channels 

should be addressed with caution. 
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Figure 5.2: Deformation of drop through a symmetric constriction; drop profiles at 
𝑡 = 0,0.5,0.913, 2.5 for axisymmetric flow (top) and 𝑡 = 0,0.25, 0.4565, 1.25 for 

plane flow (bottom) 
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Chapter 6 

Conclusion 

Motivated by the lack of asymmetry effects on the drop deformation through 

constrictions, we develop an axisymmetric model of such deformations in creeping 

flow regime. In this study, rather than the role of physical parameters, our sole purpose 

is to show the effects of asymmetry on the snap-off mechanism. As the flow in this 

regime is governed by the Stokes equations of motion, we integrate the motion of drops 

using axisymmetric boundary integral equations. The three main conclusions of this 

study are as follows: (i) When we observe a snap-off in a single symmetric 

constriction, the asymmetry of the constriction affects the snap-off time scale. We 

show that the volume of the daughter droplet is mainly affected by the smoothness of 

the upstream of the constriction as it provides more room for the drop to fit inside the 

constriction before the snap-off. (ii) When we do not observe snap-off, we show that 

a drop may undergo break–up if the radius of the downstream of the tube is made 

sufficiently large to decrease the capillary pressure at the leading edge of the drop 

beyond the pressure at the throat. The difference between escape and snap-off of a 

drop can be observed from the history of pressure drop across the tube. (iii) The out-

of-plane curvature contribution to the surface tension forces is crucial in the 

mechanism of large deformations such as jet formation and breakup. Our results 

contribute to the understanding of drop deformation in tubes with asymmetric 

constrictions and would motivate further numerical and experimental studies to control 

the drop deformation. 
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Appendix A  

Treatment of Singular Integrals 

The kernels of the boundary integral equations contain singularity because they are 

function of 𝑟, the distance between source and field points. when the source point is 

on the same boundary element with the field point, r approaches zero and solving the 

singular integrals becomes a challenge. To deal with the singularity, we implement 

third degree polynomial transformation for the integrals, which is introduced by Telles 

[50], and improved by Telles and Oliviera [51].  

If an integrand 𝑓(𝜒) of an integral 

 
𝐼 = �𝑓(𝜒)𝑑𝜒

.

1.

 
(A.1) 

is singular at a certain point 𝜒,, we define the variable in terms of a third-degree 

polynomial 

 𝑠 = 𝜒0(𝑡) = 𝑎𝑡0 + 𝑏𝑡& + 𝑐𝑡 + 𝑑. (A.2) 

And the conditions below are applied to determine the coefficient 𝑎, 𝑏, 𝑐,	and 𝑑.	Since 

𝜒0(𝑡): [−1,1] → [−1,1],  

 𝜒0(1) = 1 (A.3a) 

 𝜒0(−1) = −1 (A.3b) 
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 𝜕𝜒0
𝜕𝑡 	¶J%

= 0 (A.3c) 

 
𝜕&𝜒0
𝜕𝑡& 	·

J%

= 0 (A.3d) 

where 𝜒, = 𝜒0(𝑡,).  

The transformation in general form that satisfies the above conditions is given by [52]  

 𝜒K(𝑡) = 𝜒, + 𝛿(𝜒,, 𝑞)(𝑡 − 𝑡,)K (A.4) 

where 𝑞 is an odd integer. Setting 𝜒K(1) = 1	and 𝜒K(−1) = −1 gives the unknowns 

𝛿(𝜒,, 𝑞) and 𝑡, as 

 𝛿(𝜒,, 𝑞) = 21K¸(1 + 𝜒,). K⁄ + (1 − 𝜒,). K⁄ ¹K , (A.5) 

and 

 
𝑡, =

(1 + 𝜒,). K⁄ − (1 − 𝜒,). K⁄

(1 + 𝜒,). K⁄ − (1 − 𝜒,). K⁄ ⋅ (A.6) 

By setting 𝑞 = 3 in the general form of the transformation, we obtain Telles 

transformation.  
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Appendix B  

Two-Dimensional Boundary Integrals  

In §5, we compare axisymmetric flow with plane flow by developing two-dimensional 

boundary integral formulation. The integral equations are derived as in the same 

analysis in three-dimensional formulation. We apply Lorentz reciprocal relation (3.1) 

with two-dimensional solutions of (3.2) for velocity and stress fields  

 𝒖(𝒚) =
1
4𝜋 𝑮

(𝒙, 𝒚)𝒃, (B.1a) 

 
𝝈(𝒚) =

1
4𝜋 𝑻

(𝒙, 𝒚)𝒃. (B.1b) 

In two dimensions, the Green’s functions are given as  

 
𝐺-8(𝒙, 𝒚) = −𝛿-8 ln 𝑟 +

𝑟:�𝑟;�
𝑟& , 

(B.2a) 

 
𝑇-8(𝒙, 𝒚) = −4

𝑟:�𝑟;�𝑟<�
𝑟C ⋅ (B.2b) 

The general boundary integral equation for two-dimensional flow is 

 𝑪(𝒙)𝒖(𝒙) =
1
4𝜋� 𝑮(𝒙, 𝒚)𝒇(𝒚)𝑑𝑆(𝒚) −

1
4𝜋� 𝒖(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>>

, (B.3) 
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and the boundary integral equation for multiphase flow is  

 𝜀𝑪(𝒙)𝒖@(𝒙) = −
1
4𝜋� 𝑮(𝒙, 𝒚)𝒇'(𝒚)𝑑𝑆(𝒚)

>

  

 

 
																																																				+

1
4𝜋� 𝒖'(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>

  

 																																												−
1
4𝜋

1
𝐶𝑎 � 𝑮(𝒙, 𝒚)(∇ ⋅ 𝒏(𝒚))𝒏(𝒚)𝑑𝑆(𝒚)

>!

  

 																																				+
(1 − 𝜆)
4𝜋 � 𝒖$(𝒚)𝑻(𝒙, 𝒚)𝒏(𝒚)𝑑𝑆(𝒚)

>!

. (B.4) 

Since the fundamental solutions (B.2) are in two dimensions, we directly integrate 

them, and the linear system is obtained by summing the integral equations for all 

elements as below  

 

©
𝐶HH 𝐶HI
𝐶IH 𝐶II

¦
𝒊𝒊
ª
𝑢H
𝑢I«-

= (1 − 𝜆)§ � ©
𝑇HH 𝑇HI
𝑇IH 𝑇II

¦
-8
ª
𝑢H
𝑢I«8

𝑑Γ
>!"

F!

8D.
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>#

F
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(B.5) 
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In two-dimensional implementation, we use constant elements for the approximation 

of the coordinates, the velocity, and the traction components.  The normal vectors and 

the surface curvature are calculated by 4th order interpolation for better accuracy. The 

4th order shape functions are  

 				𝜑.(𝜉) = (2/3)𝜉(𝜉 − 1)(𝜉 − 1/2)(𝜉 + 1/2), (B.6a) 

 𝜑&(𝜉) = (8/3)𝜉(𝜉 + 1)(𝜉 − 1/2)(1 − 𝜉), (B.6b) 

 								𝜑0(𝜉) = 4(𝜉 + 1)(𝜉 + 1/2)(𝜉 − 1/2)(𝜉 − 1), (B.6c) 

 	𝜑C(𝜉) = (8/3)𝜉(𝜉 + 1)(𝜉 + 1/2)(1 − 𝜉), (B.6d) 

 				𝜑=(𝜉) = (2/3)𝜉(𝜉 + 1)(𝜉 − 1/2)(𝜉 + 1/2). 
(B.6e) 
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