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SIMULATION OF IMMISCIBLE DISPLACEMENT OF PETROLEUM  VIA 

SECOND AND THIRD ORDER FINITE DIFFERENCING TECHNIQUES 

ABSTRACT 

Finite difference simulation of convection dominated flow and transport in porous 

media suffers significant numerical dispersion and unphysical oscillations problems. 

Leonard has extensively investigated differencing of the convection term in terms of 

feedback sensitivity. According to feedback sensitivity concept, we have to obtain 

negative feedback sensitivity in order to suppress the unphysical oscillations. He 

stated that the greater the magnitude of feedback sensitivity coefficient, the more 

capable the scheme suppressing the oscillations.  Note that, the second order accurate 

central differencing of convection term has a neutral feedback sensitivity, which 

potentially cause unstable numerical solutions. Therefore, in order to suppress 

unphysical oscillations, Leonard suggests using a high odd order upstream 

differencing of convection term instead of using the second order central differencing 

of convection term.  Using the first order accurate single point upstream method can 

suppress the oscillation but leads to a excessive numerical dispersion. Therefore, 

Leonard proposed the third order upstream method for both higher accuracy and 

better feedback sensitivity. Thus, employing the third order upstream method yields 

sharper flood fronts with small numerical dispersion compared to both single point 

upstream method and central differencing, and negligible unphysical oscillations 

compared to central differencing.  In this study, we combined Leonard’s third order 

upstream differencing and Crank-Nicolson time discretization methods with a 

flexible flux limiter to mitigate both numerical dispersion and unphysical 

oscillations. 

Despite the superiority of Leonard’s method it did not completely eliminate neither 

the numerical dispersion nor the unphysical oscillations.  In 1984, Harten has 

introduced the Total Variation Diminishing (TVD) scheme which aims eliminating 

the unphysical oscillations that violate the entropy condition. In the same year, 

Sweby has published a classical work which specified the stability region for the 

TVD schemes.  Later, Leonard’s third order method and the TVD algorithm have 

been employed in petroleum engineering by a number of investigators, including Liu, 

Gupta et al., Pinto et al., Chen et.al., Wollcot et.al, and Jiang et.al.  In 1992 Pinto et 

al, referring to Liu, pointed out that the TVD method can be applied to Leonard’s 

third order differencing. In 1993, Chen et. al. applied TVD  method to single point 

upstream differencing of convection term.  The TVD method has practically lead to 

second order differencing, and hence, sharper flood fronts have been observed 

compared with pure single point upstream method.  In 1991, Gupta et al, and in 

1994-1995 Liu et. al. and in 1996 Wollcot et. al. applied third order upstream 

Leonard method to TVD schemes and they obtained better results  compared to 

single point TVD method. Later, this method has been widely employed in various 

simulation studies specially by reseachers in UT Texas at Austin upto present.    In 
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2017, Jiang et. al. applied the TCDF (third-order continuously differentiable 

function) method for discretization of convection term for the purpose of reducing 

the computational iterations of TVD schemes. The TCDF method reduced total 

number of iterations only slightly for small Courant number simulations compared to 

the TVD-L method, however, it becomes superior when the Courant numbers are 

increased to values close to 2. 

This thesis undertakes, a extensive investigation of performances of the above 

mentioned methods in both miscible and immiscible displacement, and the 

application of the TCDF method to waterflooding problems by closely following the 

procedures presented by Chen et. al., Wollcot et.al., and Jiang et.al.. All the 

simulators used in this work developed in MATLAB environment which makes them 

easily accessible to researchers in this area. Application of the flexible TCDF method 

for simulating immiscible displacement of petroleum is great importance as the 

incompressible immiscible displacement is a type of convection dominated flow in 

porous media.  Also in this study, we improved third order TCDF method by 

combining it with second order time accurate Crank-Nicolson scheme.    

Finally, we further improved the TCDF method by developing flexible flux limiter 

increase the stability region of the pure TCDF method. The novel flexible flux 

limiter gave better results than previously developed methods even for Courant 

numbers as high as 1.85 while the pure TCDF worked without unphysical oscillation 

for Courant numbers up to 1.5. 
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İKİNCİ VE ÜÇÜNCÜ DERECEDEN SONLU FARKLILAŞTIRMA 

YÖNTEMLERİYLE PETROLÜN KARIŞMADAN ÖTELENMESİNİN 

SAYISAL BENZETİMİ 

ÖZET 

Konveksiyonun egemen olduğu akışların sonlu fark yöntemi ile simülasyonu ve 

gözenekli ortamlarda taşınım, önemli sayısal dağılım ve fiziksel olmayan salınım 

problemlerine sahiptir. Leonard, taşınım teriminin geri besleme duyarlılığı açısından 

farklılıklarını kapsamlı bir şekilde araştırmıştır. Geri besleme duyarlılığına göre, 

kararlı sayısal çözümler alabilmek için negatif geri besleme duyarlılığı elde edilmesi 

gerekmektedir. Geri besleme hassasiyet katsayısı ne kadar büyük olursa, salınımları 

baskılayan şema o kadar etkindir. Konveksiyon teriminin ikinci dereceden merkezi 

farkı, potansiyel olarak kararsız sayısal çözümlere neden olan nötr bir geri besleme 

hassasiyetine sahiptir. Bu nedenle, fiziksel olmayan salınımları bastırmak için 

Leonard, konveksiyon teriminin merkezi farkını kullanmak yerine konveksiyon 

teriminin yukarı yelpaze farkının kullanılmasını önerir. Birinci dereceden yukarı 

yelpaze yöntemi kullanılarak salınım baskılanabilir, ancak büyük bir sayısal 

dağılmaya yol açar. Bu nedenle Leonard, hem daha yüksek doğruluk hem de daha iyi 

geri besleme hassasiyeti için üçüncü dereceden yukarı yelpaze yöntemini önerdi. 

Böylece, üçüncü dereceden yukarı yelpaze yöntemin kullanılması, hem tek nokta 

yukarı yelpaze yönteme hem de merkezi farklılaşmaya kıyasla daha küçük sayısal 

dağılım ile daha doğru sonuçlar ayrıca merkezi farklılıklara kıyasla ihmal edilebilir 

fiziksel salınımlar sağladı. Bu çalışmada, hem sayısal dağılımı hem de fiziksel 

olmayan salınımları azaltmak için, Leonard'ın üçüncü dereceden yukarı yelpaze 

tekniğini ve Crank-Nicolson zaman ayrıklaştırma yöntemini, değişken bir sınırlayıcı 

fonksiyon ile birleştirdik.  

Leonard’ın yöntemi büyük avantajlara sahip olmasına rağmen ne sayısal dağılımı ne 

de fiziksel olmayan salınımları tamamen ortadan kaldıramadı. 1984 yılında Harten, 

entropi durumunu aşan fiziksel olmayan salınımları ortadan kaldırmayı amaçlayan 

Total Variation Diminishing (TVD) şemasını geliştirdi. Aynı yıl, Sweby, TVD 

şemaları için stabilite bölgesini belirten klasik bir çalışma yayınladı. Daha sonra, 

Leonard'ın üçüncü dereceden yöntemi ve TVD algoritması, petrol mühendisliğinde 

Liu, Gupta ve arkadaşları, Pinto ve arkadaşları, Chen ve arkadaşları, Wollcot ve 

arkadaşları ve Jiang ve arkadaşları dahil olmak üzere bir dizi araştırmacı tarafından 

kullanıldı. 1992'de Pinto ve arkadaşları, Liu'ya atıfta bulunarak, TVD yönteminin 

Leonard’ın üçüncü dereceden farkına uygulanabileceğini belirtti. 1993 yılında Chen 

ve arkadaşları konveksiyon teriminin tek nokta yukarı yelpaze farkına, TVD 

yöntemini uyguladı. TVD yöntemi pratik olarak ikinci dereceden farklılığa yol 

açmıştır ve bu nedenle tek nokta yukarı yelpaze yöntemine kıyasla daha doğru 

sonuçlar gözlenmiştir. 1991'de Gupta ve arkadaşları, 1994-1995'te Liu ve arkadaşları 

ve 1996'da Wollcot ve arkadaşları TVD şemalarına üçüncü derece Leonard 

yöntemini uyguladılar ve tek noktalı TVD yöntemine kıyasla daha iyi sonuçlar elde 

ettiler. Bu yöntem şimdiye kadar UT Texas'ta araştırmacılar tarafından çeşitli 

simülasyon çalışmalarında yaygın olarak kullanılmıştır. 2017 yılında Jiang ve 

arkadaşları iterasyon sayısını azaltmak amacıyla konveksiyon teriminin 

ayrıklaştırılması için TCDF (üçüncü dereceden sürekli farklılaştırılabilir fonksiyon) 

yöntemini uyguladılar. TCDF yöntemi, TVD-L yöntemine kıyasla küçük Courant 

sayısı simülasyonları için toplam iterasyon sayısını biraz azaltmaktadır, ancak 
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Courant sayıları 2'ye yakın değerlere yükseltildiğinde TCDF yöntemi daha üstün hale 

gelmektedir. 

Bu tez, yukarıda bahsedilen yöntemlerin, petrolün karışarak ve karışmadan 

ötelenmesinde uygulanmasını kapsar. Aynı zamanda bu çalışma; TCDF yönteminin 

su enjeksiyon problemlerine uygulanmasını, Chen ve arkadaşları, Wollcot ve 

arkadaşları ve Jiang ve arkadaşları tarafından yapılan çalışmaları takip ederek içerir. 

Bu çalışmada kullanılan tüm simülatörler, bu alandaki araştırmacılar tarafından 

kolayca erişilebilir olmasını sağlayan MATLAB programı ile geliştirilmiştir. 

Petrolün karışmayan yer değiştirmesini simüle etmek için uygulanan değişken TCDF 

yöntemi, gözenekli ortamdaki konveksiyonel akışlar için büyük önem taşımaktadır. 

Ayrıca bu çalışma; üçüncü derece TCDF yönteminin, ikinci derece Crank-Nicolson 

şeması ile birleştirilerek geliştirilmesini de içermektedir. 

Son olarak, değişken sınırlayıcı fonksiyonunu uygulayarak, TCDF yönteminin 

stabilite bölgesini arttırıp TCDF yöntemini bir adım daha geliştirdik. TCDF yöntemi, 

1.5'e kadar olan Courant sayıları için fiziksel salınım olmadan çalışırken, yeni 

bulunan değişken sınırlayıcı fonksiyonu, 1.85'e kadar olan yüksek Courant sayıları 

için bile daha önce geliştirilmiş yöntemlerden daha iyi sonuçlar vermektedir. 
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1.  INTRODUCTION 

Flow and transport through porous media is of profound importance for many 

engineering fields, particularly for petroleum engineering. While the single-phase 

flow of reservoir fluids in porous media can be accurately modeled by heat equation, 

most transport processes such as immiscible displacement, miscible displacement, 

chemical and thermal EOR methods and tracer tests are of convective-dispersive 

nature. 

In addition the natural state of oil and gas reservoirs are far from being homogeneous 

and isotropic with ideal geometrical shapes, most governing flow and transport 

equations has to be solved numerically. The numerical modeling of flow and 

transport in porous media are generally known as reservoir simulation and the 

models are called numerical simulators.  

Over the last 100 years, which deserved to be called as oil century, the recovery 

fraction of oil reservoirs has been between 20 to 30 percent worldwide. That means 

70 to 80 percent of the total discovered oil resources still remains unproducable in 

the reservoirs. Therefore, enhancing recovery and accelerating the production rate is 

the primary objective of the reservoir management practices. Reservoir 

simulation/modeling plays a central role in all reservoir management schemes. In 

fact, reservoir simulators are the most widely used tools for determining the present 

flow conditions, estimating the future conditions and designating the operations to 

control the fluid flow and transport in reservoirs. Reservoir simulations studies are 

the most useful tools of identifying the necessary steps to improve reservoir 

performance and enhance ultimate recovery rates. On the other hand, the 

heterogeneous and usually anisotropic nature of reservoirs and presence of strong 

capillary forces in multiphase flow in porous media pose great challenges to the 

development accurate numerical models in reservoir simulation studies.  For 

instance, modelling convective-dispersive transport involves many problems such as 

numerical dispersion, unphysical oscillations and grid orientation effects. Such 

problems are especially more pronounced in convection-dominated flow and 
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transport in both miscible displacement and immiscible displacement. The main 

objective of this study is to mitigate of the numerical dispersion and unphysical 

oscillations problems. 

The problem of numerical dispersion and unphysical oscillations for some 

elementary finite difference schemes of convection-dominated transport models have 

been thoroughly investigated by, Peaceman, in 1977, in his classical book titled 

Fundamentals of Numerical Reservoir Simulation. Peaceman has used three 

elementary space discretization of the convection term, namely upstream (backward), 

downstream (forward) and midpoint(central) differencing methods. He has also 

employed three time schmes of time treatment of the dicrete governing equations 

namely, explicit, implicit and Crank Nicholson methods. For all differencing 

schemes, he has developed and presented the stability limits and numerical 

dispersion expressions. Indeed these two mathematical expressions serves as an 

excellent tool for interpreting the concentration profiles and quantifying the 

numerical errors involved for each scheme. Unfortunately, none of the methods he 

has used yielded satisfactory results for convection dominated transport especially 

limiting the schemes for small Courant Numbers (less than one) for acceptable 

results. In summary, Peaceman has found that first order upstream space 

discretization schemes can avoid unphysical oscillations but a cost of considerable 

numerical dispersion. In 1979, Leonard presented a third order finite differencing 

technique for the convective term with a novel concept of feedback sensitivity to 

suppress unphysical oscillations. Leonard has his method as QUICK method with an 

explicit time treatment and has showed that the third order upstream (upstream) 

space discretization methods exhibit a negative feedback sensitivity, which is a 

necessary condition to suppress oscillations. Thus, Leonard has observed QUICK 

method yields numerical results that are more accurate and highly stable compared to 

those of first order upstream differencing. Although Leonard’s third order upstream 

method yields sharper flood front and lesser numerical dispersion, it suffered from 

stability limitation. In 1997, Kocabas and Margoub employed the QUICK method 

combined with a Crank Nicholson scheme wich has significantly increased the 

accuracy and stability of the numerical solutions. Nevertheless, neither Leonard’s 

method nor Kocabas and Margoub modification of it could totally eliminate the 

arising of the profiles vilotaing the second law of thermodynamics or entropy 
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generation rule specially for large Courant Numbers. Especially, for the sharp flood 

fronts, some of the grid blocks near the front had higher concentrations than their 

upstream neighbors.   The second law of thermodynamics prohibits any block to 

have a higher concentration than those of its upstream location as the transport must 

spontaneously and naturally take place from higher concentrations to lower 

concentrations via dispersion.   The remedy to entropy violation again came from 

computational fluid dynamics community.  In 1984, Harten has introduced the (Total 

Variation Diminishing) TVD concept which practically imposes a limited 

antidiffusive term called as flux limiter, and later in the same year Sweby has 

determined the stability limits for various TVD flux limiters. In 1991, Liu and Gupta 

et al published the third order flux limiter function for Leonard’s scheme.   In 1993, 

Chen used a second order TVD space discretization method.  Later in 1992 Pinto et 

al, 1994 Liu et al and in 1996 Wollcot et al employed combination of Leonard’s third 

order method and TVD limiter function. This TVD-Leonard method has given to us 

third order space accurate profiles and a sharper flood front compared with that of 

Chen’s second order TVD method. In 2017, Jiang used third order space TCDF 

(third-order continuously differentiable function) method instead of using TVD-

Leonard method. The advantage of TCDF (also third order Leonard’s method is used 

in TCDF method only difference is the limiter function) method over TVD-Leonard 

method is that is yields obtain numerical solutions with only slightly lesser total 

iterations for small Courant number simulations, however, it becomes superior when 

the Courant numbers are increased to values close to 2. 

The objective of this thesis is threefold. First, we will develop 1D and 2D MATLAB 

codes for both widely used elementary and promising advanced schemes used in 

both miscible and immiscible displacement processes. The second objective is to 

search for a technique which will combine third order space TCDF method and 

second order Crank-Nicolson method as a remedy to violation of entropy distruction 

law, and still preserving the accurate (minimal numerical dispersion) nature of 

numerical solutions.  The final objective is to present a novel flexible flux limiter 

fuction, which works at very large courant number without any unphysical 

oscillation compared with the previously developed techniques. 
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2.  LITERATURE REVIEW 

This section, we presents a review of the literature related to finite difference 

schemes employed to solve the classsical convection-dispersion equation. The focus 

is on the large number of discretization techniques of the convective term. 

2.1 Convection-Dispersion Equations 

Convection-dispersion equation has been widely employed in simulation of fluid 

flow and solute transport in petroleum reservoir simulations as well as in many other 

engineering disciplines including chemical, mechanical, environmental and 

hydrogeological engineering. The behavior of many variables such as concentration 

and temperature related to heat and mass transport especially in flow through porous 

media are governed by the convection-dispersion equation. 

Specific areas where the convection-diffusion equation is used to describe the 

transport process are vast in numbers including the solute/contaminant/sediment 

transport in the atmosphere, oceans, lakes, rivers or groundwater, tracer transport in 

oil gas and geothermal reservoirs and groundwater aquifers. Another important area 

of employment for convection dispersion equation is flow and transport through 

packed beds in chemical engineering [1]. In addition, convection–diffusion equations 

are particularly important for modeling flow and transport in geothermal, oil and gas 

reservoirs in two phase flow in oil reservoirs [2]. 

In particular, convection–diffusion equation is an indispensable tool modeling for 

various secondary and enhanced oil oil recovery processes such as miscible 

displacement, chemical displacement (polymer, alkaline and surfactant flooding), 

immiscible displacement,  nonisothermal injection methods and also in immiscible 

displacement saturation propogation [3]. In other words, convective dispersive 

transport is involved in chemical flooding, miscible displacement, tracer flow, solute-

contaminant transport and heat transport in porous energy fluids bearing reservoirs.  
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The classical governing partial differential equation of convective dispersive 

transport is presented by many authors including Peaceman (1977) as follows: 

          
  

  
 (2.1) 

In Eq. 2.1, the dependent variable, C, represents concentration. The first term of eq. 

2.1 is the diffusion term and, when it dominates, eq. 2.1 behaves like the parabolic 

heat conduction equation. On the other hand, for the negligeble the diffusion 

(dispersion) term is negligible the convection term dominates and eq. 2.1 approaches 

the first-order hyperbolic equation (eq. 2.2)  [4]. 

      
  

  
 (2.2) 

Equation 2.1 may be simplified assuming one-dimensional and horizontal flow as 

equation 2.3.  [4]. 

 
   

   
  

  

  
 

  

  
 (2.3) 

The velocity, v, is assumed to be positive, corresponding to flow in the direction of 

increasing x. In this form equation 2.3 serves as the model of miscible displacement, 

tracer testing or chemical displacement in single phase reservoir flow conditions. 

A through treatment of some elementary finite difference scehmes of equation 2.3 

has been presented by Peaceman. Particularly valuable is the part of his work that 

corresponds to development of stability criteria and numerical dispersion expressions 

for the finite difference solutions of equation 2.2. A general form of finite diffence 

equation of equation 2.2 is presented by Peaceman as follows: 
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(2.4) 

In this general difference scheme (eq. 2.4) while W specifies the spatial weighting 

and θ specifies temporal weighting. For backward differencing W=1, for central 

differencing W=1/2 and for forward differencing W=0, and for explicit solutions 

θ=0, for implicit solutions θ=1 and for Crank Nickolson schemes θ=1/2.  

Peaceman has also presented a comprehensive table for stability and numerical 

dispersion corresponding to each sheme reproduced here as table 2.1.  

Table 2.1: Stability table. 

 
W=1 W=0.5 W=0 

Q=1 always stable always stable stable if Nc>=1 

              (    )              (  )             (    ) 

Q=0.5 always stable neutrally stable always unstable 

                                     (  ) 

Q=0 stable if Nc<=1 always unstable always unstable 

              (    )              (  )              (    ) 

 

In table 2.1, the stability limit has been presented as a function of Courant Number, 

Nc, (note that Peaceman has used the symbol λ for Courant Number). The Courant 

Number (equation 2.5) is defined as 

   
   

  
 (2.5) 

The general numerical dispesion expression (equation 2.6a) is also provided as 

        ((     )    (     )) (2.6a) 

Among these elementary schemes Peaceman has found that backward in space 

implicit in time solution is always stable but has always have a positive numerical 
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dispersion. In addition, he observed that the backward in time and Crank Nicholson 

in time scheme is also always stable and yields a positive but smaller than that of 

implicit scheme numerical dispersion. The other elementary schemes suffered from 

at least one of the following disabilities being conditionally stable, neutrally stable or 

unstable, and having either always-positive numerical dispersion or sometimes 

having a negative numerical dispersion violating the second law of thermodynamics. 

In 1979, Leonard has presented a third order upstream space discretization scheme 

which he demonstrated by using feedback sensitivity that the scheme eliminates 

majority of nonphysical oscillations. He treated the time derivative explicitly and 

called his scheme as QUICK method. The numerical dispesion of QUICK method 

(equation 2.6b) may be provided as 

                (     ) (2.6b) 

Nevertheless, this third order upstream method had exhibited significant oscillations 

violating the entropy restriction especially for large Courant numbers.  In 1984, 

Harten has introduced the Total Variation Diminishing (TVD) scheme that aims 

eliminating the unphysical oscillations that violate the entropy condition.  In the 

same year, Sweby has published a classical work which specified the stability region 

for the TVD schemes.  Later, Leonard’s third order method and the TVD algorithm 

have been employed in petroleum engineering by a number of investigators, 

including Liu, Gupta et al., Pinto et al., Chen et.al., Wollcot et.al, and Jiang et.al.  In 

1992 Pinto et al, referring to Liu, pointed out that the TVD method can be applied to 

Leonard’s third order differencing. In 1993, Chen et. al. applied TVD  method to 

single point upstream differencing of convection term.  The TVD method has 

practically lead to second order differencing, and hence, sharper flood fronts have 

been observed compared with pure single point upstream method.  In 1991, Gupta et 

al, and in 1994-1995 Liu et. al. and in 1996 Wollcot et. al. applied third order 

upwinding Leonard method to TVD schemes and they obtained better results  

compared to single point TVD method. Later, this method has been widely employed 

in various simulation studies specially by reseachers in UT Texas at Austin upto 

present. 
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In numerical simulations of convection-diffusion equation, not only space 

discretization but also time discretization has great importance. Therefore, Kocabas 

and Margoup [5] improved Leonard space discretization emplying the second order 

(Crank-Nicolson) time discretazation method.  Kocabas and Margoup obtained 

superior resuls compared to those of all elementary schemes and purely explicit or 

implicit methods applied to Leonard’s third order space differencing scheme.  

In 2017, Jiang et. al. applied the TCDF (third-order continuously differentiable 

function) method for discretization of convection term for the purpose of reducing 

the computational iterations of TVD schemes. The TCDF method reduced total 

number of iterations only slightly for small Courant number simulations compared to 

the TVD-L method, however, it becomes superior when the Courant numbers are 

increased to values close to 2. 

At this point we rewrite the numerical dispersion equations (eq. 2.7) in terms of cell 

Peclet and Courant numbers as follows: 

    

     
   ((     )    (     )) (2.7) 

Figure 2.1, 2.2 and 2.3 shows some of the profiles reproduced from Peaceman and 

the scheme used by Kocabas and Margoub, namely first order space and second 

order (Crank-Nicolson) time numerical solution, third order space (Leonard) and 

second order (Crank-Nicolson) time numerical solution and exact solution of 

equation 2.3. 
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Figure 2.1: Fig. 12C in Peaceman’s book. 

 
Figure 2.2: Fig. 13A2 in Peaceman’s book. 
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Figure 2.3: Summary of Miscible Displacement Simulations dx=0.1 dt=0.05. 

 

Reservoir simulation has mostly focused on the solution multiphase flow oil, water 

and gas. Waterflooding or water influx modeling in oil reservoirs involve immiscible 

displacement of oil by water. Immiscible displacement of oil water is an unsteady 

state two phase flow process which invariably requires use of multiphase numerical 

simulaton. In two-phase, unsteady state reservoir simulation models, saturations and 

velocities vary with time and space. The Darcy velocity is a function of relative 

permeability values and relative permeability values depend on water saturations. 

The following oil and water equations (equations 2.8a and 2.8b) [7] govern the one 

dimensional immiscible displacement processes oil reservoirs. 

 

  
[      

   

    
(
  

  
)]    

  

  

 

  
(
 (    )

  
)       (2.8a) 

 

 

  
[      

   

    
(
  

  
)]    

  

  

 

  
(
 (  )

  
)       (2.8b) 

The saturations equation does in fact take the form of a nonlinear convection 

dispersion equation as demonstrated by Peacaman as follows (equation 2.9a-2.9f). 
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 (   )  (     ) (2.9a) 

If the viscous forces dominates the capillary forces, that is velocities are large and hw 

is much smaller, Equation 2.9a reduces to a purely convective transport equation.   

    
    

     

   

   
 (2.9b) 

 

 
   
   

 ⃗       
   

  
 (   )  (     ) (2.9c) 

 

   
  

  
    (  ) (2.9d) 

 

 
   
   

    
   

  
  

   

  
    (  )

   

   
 
   

  
 (2.9e) 

Assuming that the flow is horizontal Equation 2.9e reduces to the well known 

transport equation that can be most conveniently solved by the method of 

characteristics. 

    
   

   

   

  
   

   

  
 (2.9f) 

2.2 Discretization Methods of Flow and Transport Equations 

In developing numerical solutions of fluid flow equations in oil reservoirs, 

historically two different approached are followed. The first discretization method is 

called as Conventional Mathematical Approach and the second method is called as 

Engineering Approach [8]. In classical mathematical approach, PDEs formulations 

are developed using a finite control volume material balance of mass transport. Then 

each partial differential term in the PDE is discretized back on a finite grid system. In 

the engineering approach the discrete equations are derived directly from finite grid 

systems. The engineering approach has two disctinct advantages, namely it first 

shortens the process of obtaining discretized equations, second it bears a higher order 
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accuracy for the finite volume. These two advantages constitute the main strength of 

the engineering approach. 

2.2.1 Conventional Mathematical Approach 

Conventional mathematical approach consists of several steps. Firstly, material 

balance equations are written for a control volume. Then, resultant equations are 

converted into partial differential equations, by taking limit of the control volume as 

it reduces to zero. The finite difference equations are redeveloped by discretizing the 

continuous derivatives of the PDEs, resulting in a set of algebraic equation written 

for each grid block. 

As multiphase flow equations in oil reservoirs such as eq. 2.8 and eq.2.9 are strongly 

nonlinear PDE’s, they are almost impossible to solve analytically without substantial 

ideaalizations. Therefore, reservoir engineers turn to numerical methods to obtain 

solutions to the multiphase unsteady flow problems [7]. 

Over the last hundred years almost all numerical reservoir simulators, were based 

finite-difference equations. For instance, eq. 2.10 may be obtained by discretization 

of flow equations using finite difference approximations of the second-order central 

derivatives of pressure with respect to space and first-order forward (explicit) 

derivative of pressure with respect to time [8, 9]. 

(  
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(2.10) 

On the other hand, eq. 2.11 is obtained by discretization of flow equation as finite 

difference approximations of the second-order central derivatives with respect to 

space and first-order backward (implicit) derivatives with respect to time. 
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(2.11) 

Equation 2.12 was obtained by discretization of flow equation as finite difference 

approximations of the second-order central derivatives with respect to space and 

second-order central (Crank-Nicholson) derivatives with respect to time [8,9]. 
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(2.12) 

In the equations above, subscript p refers phase, and hence for writing out water 

equation, p subscription will be replaced with w and thus the variable Sp will mean 

Sw. 

2.2.2 Engineering Approach 

In engineering approach, as there is no need to obtain contious medium PDEs 

formulation, understanding the engineering approach is easier than conventional 

mathematical approach. Farouq Ali (1986) looked extensively into the nonlinear 

algebraic flow equations developed using the classical mathematical approach and 
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found that the flow terms of the discretized equations are fundamentally Darcy’s law, 

which defines the volumetric flow rate of fluid between the block (control volume) 

and its neighbouring blocks at standard conditions. Forward-central-difference 

(forward difference in time and central difference in space) equations and backward-

central-difference (backward difference in time and central difference in space) 

equations were developed by him based on his observation and assumption 

associated to the time level of evaluating the flow terms, without formulation of 

PDEs and PDE discretization. Farouq Ali’s observation was certainly a revolution in 

simulation studies. 15 years later, Ertekin et al. (2001) represented control volume by 

a point at its center, which is pretty much closer to the engineer’s view about the 

blocks of petroleum reservoir. Development of engineering approach thus started by 

mainly Farouq Ali and later by Ertekin et al. [8]. Equation 2.9 [8, 9] shows 

engineering approach for discretization of fluid flow equations. Note that a similar 

approach has also been employed by Leonard for discretizing the convection 

dispersion equation. Again it is important note that, subscription p means phases. For 

example, if equation is oil equation, p subscription will be o and Sp will be So. 
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(2.13) 

Figure 2.4a shows graphical representation of the integral of equation 2.9. 

Nevertheless, in numerical solutions, perfectly obtaining of figure 2.4a is impossible. 

Argument F will be used to clarify integration of equation 2.9. It is assumed that F 

represents (  
       

      
)
 

(       )  , ∫ (  
       

      
)
     

(       )  
   

 
 and 

     
. In figure 2.4b, t

z
 is constant over the time step  t [8]. In that case, shaded area 

in figure 2.4b can be found nearly same as shaded area in figure 2.4a. Figure 2.4c 

shows equation 2.6 (finite difference approximations of the second-order central 

derivatives with respect to space and first-order forward (explicit) derivatives with 

respect to time). Figure 2.4d shows equation 2.7 (finite difference approximations of 
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the second-order central derivatives with respect to space and first-order backward 

(implicit) derivatives with respect to time). Figure 2.4e shows equation 2.8 (finite 

difference approximations of the second-order central derivatives with respect to 

space and second-order central (Crank-Nicholson) derivatives with respect to time). 

 
Figure 2.4: Engineering and classical approachs [8]. 

2.3 Problems in Convective Term Discretization 

The spatial inaccuracy problems of multiphase flow equations mainly arise from 

unknown relative permeability terms at grid block faces. This fact is deduced from 

the analytical solution (frontal advance solution) of immiscible displacement of oil 

by water both of which are assumed incompressible. In order to calculate inlet flux 

into and outlet from a grid block, saturations at grid block faces have to be known. 

Therefore, higher order techniques may help to obtain closer prediction of saturation 

values at grid block faces. 
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A second problem in finite differencing techniques is observation of unphysical 

oscillations. Another important problem is the stability limitations. In 1981, Leonard 

investigated the stability of (specially suppressing of unnecessary perturbations) of 

many elementary and high order differencing schemes using the concept of feedback 

sensitivity. He concluded that in order to have a numerically stable solution the 

differencing scheme must have negative feedback sensitivity. A feedback sensitivity 

analysis showed that, upstream differencing techniques have negative feedback 

sensitivity so these methods are more stable than central differencing methods. 

Therefore, any scheme employed should be ensured to have negative feedback 

sensitivity regardless of its truncation error or accuracy. 

The spatial accuracy or truncation errors are directly related the order scheme 

employed. In order to reduce the truncation errors especially in chemical reservoir 

simulation models [10], researchers mostly opted to use second order and third order 

upstream schemes. Using higher order upstream techniques instead of first order 

upstream method, gives to more reliable reservoir simulation models. In 1996, 

Wolcott et al. explained advantage (sharper flood front) of using higher order 

techniques. Researchers have shown that when the mobility terms are discretized 

using higher than first order schemes, sharper and potentially more accurate flood 

fronts are predicted  [11]. 

Although there is no any analytical solution of 2D and 3D reservoir simulation, 

analytical solution of 1D incompressible two-phase immiscible displacement 

reservoir simulation is available. Analytical solution of 1D reservoir simulation was 

developed by Buckley et al. in 1941 [12]. It is very significant for us to compare our 

numerical results with analytical solution. Also this analytical solution has been used 

by a number of researchers [13-22] in their studies. 
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Figure 2.5: Comparison of higher and first order techniques. 

 

Figure 2.5 shows a comparision of first and third order methods to simulate the 

Buckley Leveret immiscible displacement solution in a linear flooding geometry. 

Figure 2.5 exhibits that the higher order technique produces sharper flood front and 

lesser numerical dispersion and hence is much closer to analytical solution than first 

order method. 

The main inaccuracy of caused by higher numerical dispersion is an early 

breakthrough of the injected water.  

In 2017, Kayode et al. pointed out the importance of water breakthrough time. 

During history matching of observed production data of brown fields, one of the key 

matching parameters is the water break-through time and its accurate prediction is 

great significance for constructing proper surface treatment installations [23]. 

Figure 2.6 shows breakthrough time of first order and the higher order technique 

where first order method cause 200 days earlier breakthrough time which adversely 

affect prediction of oil reservoir performance.  
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Figure 2.6: Breakthrough times of higher and first order methods. 

 

 
Figure 2.7: Breakthrough times of higher and first order methods in detail. 

It is very important question that why earlier breakthrough time is observed using 

first order method. In numerical reservoir simulation, only block center saturations 
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and pressures are known but saturation and pressure values at interface of two grid 

blocks are not known. Main problems arise from that point in numerical reservoir 

simulation for spatial discretization. Because according to Darcy Law, interface 

water saturations have to be known to calculate fluid flow between two grid blocks. 

In figure 2.8, suppose that there are five grid blocks, first grid block is injection grid 

block and fifth grid block is production grid block. Normally, in fully implicit 

solution, there are five water equations and five oil equations in order to solve five 

pressure unknowns and five saturation unknowns but so as to simplfy understanding 

of early breakthrough for first order methods, only left side water flow of third grid 

block will be taken into account. In order to calculate water flow from second grid 

block to third grid block, interface water saturation between second and third grid 

block requires. In first order method, due to lack of interface water saturation 

between second and third grid block, it is assumed that interface water saturation 

between second and third grid block is equal to second grid block water saturation. 

Because of the fact that first grid block is injection grid block and first grid block has 

highst water saturation, second grid block is upstream to third grid block. Therefore, 

saturation of second grid block is higher than saturation of third grid block as well as 

interface water saturation between second and third grid block. In first order method, 

selection of water saturation of second grid block for interface water saturation 

between second and third grid block causes assumption of higher water saturation 

than it should be. Assumption of higher water saturation for interface water 

saturation between second and third grid block also causes easly water flow from 

second grid block to third grid block because according to Darcy Law, water flow is 

directly proportional to relative permeability of water and relative permeability of 

water is also directly proportional to water saturation. There are two important results 

of easly water flow from second grid block to third grid block using first order 

method. One of them is advantage, one another is disadvantage. Advantage of first 

order method can be defined as there is no any accumulation of water at second grid 

block therefore there is no any ossilation at second grid block thanks to easly water 

flow. On the other hand, easly water flow from second grid block to third grid block 

causes numerical dispersion as well as earlier breakthrough time that can be 

explained as main disadvantage of first order methed.  
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The main objectives of this study are to reduce numerical dispersion using a higher 

order differencing and at the same time avoid entropy violations namely to diminish 

nonphysical oscillation using a limiter function. There are a number of higher order 

spatial discretization technique for which limiter function is employed. One of the 

earliest application of limiter function is on the second order spatial discretization, 

called as TVD (Total Variation Diminishing) method [24]. This second order spatial 

discretization TVD Method can be easly applied IMPES as well as Fully Implicit 

Methods. In order to apply second order spatial discretization TVD Method on left 

hand side fluid flow of third grid block in figure 2.8; second, third and forth grid 

block water saturations should be compared. So as to determine or predict interface 

water saturation between second and third grid block, firstly select lesser water 

saturation differences of second-third grid blocks or third-forth grid blocks. 

Secondly, substract selected differences from second grid block water saturation. 

Thanks to second order spatial discretization TVD Method, interface water saturation 

between second and third grid block was easly calculated. Calculated interface water 

saturation between second and third grid block is lesser than second grid block water 

saturation therefore lesser numerical dispersion and later water breakthrough time 

can be observed. Another advantage of second order spatial discretization TVD 

Method is to suppress the effect of oscillation using selection of lesser saturation 

differences. Other higher order techniques described in this study are third order 

spatial discretization TVD-Leonard Method [11], third order spatial discretization 

TCDF Method [6], second-third order time accuracy Runge-Kunta Method [24] and 

second order time accuracy Crank-Nicholson Method [4]. 

Ultimate aim of this study is to obtain combination of third order spatial accuracy 

TCDF Method and second order time accuracy Crank-Nicholson Method (TCDF-

CN). 

 

 

 

Figure 2.8: 1D five grid blocks. 

 

1 2 3 4 5

injection production
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3.  MATHEMATICAL DEVELOPMENTS FOR MISCIBLE 

DISPLACEMENT SIMULATIONS 

The general governing partial differential equation of miscible displacement 

simulation is given by equation 3.1 called as classical convection dispersion equation 

[4]. 

 
   

   
  

  

  
 

  

  
 (3.1) 

Where C, D and u are referred to as the concentration, the dispersion coefficient, 

interstitial velocity respectively. The problematic first derivative, accounting for the 

convective transport, requires the knowledge of grid block face values for 

approximating the first derivative in discretized form of equation 3.1. Finite 

difference approximation of the convection term is given by equation 3.2. 
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3.1 Miscible Displacement Simulations Using Elementary Difference Schemes 

The general forms of the elementary differencing schemes at block faces are 

provided by Peacemean in hir classical work as follows [4]: 
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Where for upstream differencing W=1, mid-point diffrencing W=0.5 and 

downstream differencing W=0 in equation 3.3 and 3.4 distance weighting methods. 
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Also, note that equation 3.3 and equation 3.4 show east side and west side face 

values respectively for different distance weighting methods  [4]. 

The second order diffusive transport term in equation 3.1 can be accurately 

discretized by using a midpoint (central) differencing. 

The the full and most general discretized form of equation 3.1 with elementary 

differencing schems can be written as in equation 3.5: 
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(3.5) 

Where Q represents time weighting factor. Similar to spatial differencing time 

differencing, the three cases are as follows implicit Q=1, center-in-time Q=0.5 and 

explicit Q=0. 

Note that the weighting factors, W and Q, are varied only for the convection term, 

Peaceman has used central differencing for both time and space discretatization of 

dispersion term as they yield more accurate results than those of other weighting 

factors for the dispersion term [4]. 

Figure 3.1 [4] shows first order upstream distance weighting and second order 

Crank-Nicolson time weighting numerical solution of equation 3.6 using Matlab 

Code (see fig. 10B in Peaceman’s book [4]).  
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Figure 3.1: 1st order space and 2nd order time (using Matlab code). 

3.2 Feedback Sensitivity and Improved Discretization Techniques 

Feedback sensitivity is a techniques used by Leonard to understand investigate the 

stability of the numerical solutions stability with respect to oscillatitory perturbations 

[5]. For stable numerical solutions, negative feedback sensitivity is required. 

Feedback sensitivity, σ, is defined as the derivative of the difference operator with 

respect to node for which derivative is approximated (see APPENDIX A). Leonard 

has pointed out that for stable numerical solutions negative feedback sensitivity is 

required. In addition, the greater the absolute value of the feedback sensitivity the 

more capable is the scheme to suppress the oscillations. For example, consider the 

upstream differencing of first derivative of convection term (equation 3.6): 

  
   

  
   

  
      

 

  
 (3.6) 

Then, the feedback sensitivity of convection term becomes (equation 3.7): 

  
  

  
 (3.7) 
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Since the difference operator has always a negative feedback sensitivity assuring 

damping of oscillation, the central differencing works very well for the second order 

derivatives (see APPENDIX A)  [5]. 

Also, consider the central differencing of first derivative of convection term 

(equation 3.8): 

  
   

  
   

    
      

 

   
 (3.8) 

Thus, the feedback sensitivity of convection term is zero as in equation 3.9: 

    (3.9) 

This differencing operator has a second order discretization error the same as that of 

diffusion operator. However, this operator has neutral (zero) feedback sensitivity that 

has a high potential of producing unphysical oscillations. In fact, Leonard states that 

neutral sensitivity is a characteristic of all central difference methods of any order 

when applied to odd order derivatives [5]. Therefore, he has resort to employing a 

third order upstream scheme. Equation 3.10 shows a third order upstream scheme of 

the first order derivative (the convection term) developed by Leonard [25]. 

  
   

  
   

     
     

       
      

 

   
 (3.10) 

The feedback sensitivity of equation 3.10 becomes: 

  
   

   
 (3.11) 

This negative feedback sensitivity of the third order discretization operator assures 

damping of oscillations and a leads to a third order truncation error [5]. However, 

magnitude of feedback sensitivity of the third order discretization operator is lesser 

than magnitude of feedback sensitivity of the first order discretization operator. 

Therefore, first order upstream method is better than third order upstream technique 

to suppres unphysical oscillation. On the other hand, first order method has huge 

numerical dispersion compared with third order technique. 
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In 2000, Kocabas and Margoup combined the third order upstream (Leonard) 

distance weighting and second order Crank-Nicolson time weighting method [5] in 

order to take advantage of both methods higher order accuracy and unconditionally 

stable nature of implicit treatment. Figure 3.2 shows the concentration profiles 

obtained using Kocabas and Margoub approach coded in Matlab. 

 
Figure 3.2: 3rd order space and 2nd order time (using Matlab code). 

After that point, three different cases (Explicit, Implicit and Crank-Nicolson) using 

improved technique will be investigated following part in detail. 

3.2.1 In Depth Investigation of the Explicit Numerical Schemes 

In this section, we present an in depth investigation of elementary differecing 

operators, namely upstream weighting, mid-point weighting and the third order 

accurate Leonard technique operator, called as QUICK method, explicit schemes. 

Also in this section, six figures are presented for various Courant numbers and Cell 

Peclet numbers, which are both functions of spacial grid size and time increment. 
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Figure 3.3: Improved method n=440 dx=0.025 Nc=0.1 (Explicit). 

Figues 3.3, 3.4 and 3.5 show simulations with small space intervals (same cell peclet 

number) but gradually increasing courant numbers (Nc). 

 
Figure 3.4: Improved method n=80 dx=0.025 Nc=0.55 (Explicit).  

Figure 3.3 gives to same profiles for both higher (second and third) order spatial 

discretization techniques but the first order upstream method exhibits significant 

numerical dispersion. No unphysical oscillation is observed for any of the methods. 

Figure 3.4, exhibits a very interesting behavior namely, negative numerical 

dispersion effect in all methods thus and hence they are not considered as stable any 

more. 

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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Figure 3.5: Improved method n=40 dx=0.025 Nc=1.1 (Explicit). 

At the courant number, Nc, is further increases (figure 3.5), all solution methods 

becomes unstable and produce unphysical and unacceptable oscillations.  

Figure 3.6 shows the profies generated for a large space increment (i.e.large cell 

Peclet number Pecl, and small Courant Number, Nc). Comparing the profiles in 

figure 3.3 and figure 3.6 one may reach the following conclusion. İncreasing the 

space increment, the dispersion in the upstream method becomes more prominent 

and leads to separation of the profile from analytical solution significantly in figure 

3.7. Also in figure 3.7, while the mid-point method exhibits a pronounced unphysical 

oscillation, Leonard methods closely matches the analytical solution. 

 
Figure 3.6: Improved method n=110 dx=0.1 Nc=0.1 (Explicit). 

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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Figure 3.7: Improved method n=20 dx=0.1 Nc=0.55 (Explicit). 

Figure 3.7 shows that for the same large cell Peclet number, increasing the Courant 

number to 0.55 (larger time step), the higher order methods become unstable 

exhibiting wild unphysical oscillations. Interestingly however, the first order 

upstream method yields a smooth apparently stable profile with really large 

numerical dispersion. One can conclude that this pseudo stable apparence is due to 

the fact that vastly large numerical dispersion smears our the unstability oscillations 

from the first order upstream method. 

 
Figure 3.8: Improved method n=10 dx=0.1 Nc=1.1 (Explicit). 

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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Further increase in the Courant number to 1.1 as shown in Fig. 3.9 leads totally 

unstable solutions for all explicit schemes of any order. This can be deduced from the 

stability conditions developed for each method. 

In summary: 

 As dx grows trancation errors and hence numerical dispersion grows for all of 

explicit schemes. 

 The stability condition is best for upstream scheme among the elementary 

schemes detailed by Peaceman. 

 Explicit mid-point methods are unstable with oscillations at large courant 

number. 

 Quick explicit method exhibits no oscillation and negligible numerical 

dispersion and hence matches the front perfectly but only for very small Nc 

close to 0.1. 

 For explicit Quick method the range of stability region for Nc must be 

determined before the actual simulations using analytical solutions where 

either oscillations or negative numerical dispersion or both are observed. 

3.2.2 In Depth Investigation of the Implicit schemes 

The stability of all explicit schmes are limited by the magnitude of the courant 

number, Nc. Thus, large courant numbers leads to unphysical oscillations and hence 

unstable solutions. 

The figures 3.19-3.11 show the profiles of the implicit solution for the same cell 

Peclet number and Courant numbers of figures 3.3-3.5. These implicit methods are 

all unconditionally stable and hence increasing Courant numbers should influence 

the results only slightly. One can observe that figure 3.9 produces the same result 

that of figure 3.3 which is expected as Nc is small and explicit methods has no 

problem of stability in this case. 
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Figure 3.9: Improved method n=440 dx=0.025 Nc=0.1 (Implicit). 

 
Figure 3.10: Improved method n=80 dx=0.025 Nc=0.55 (Implicit).  

Figures 3.9, 3.10 and 3.11 show that the all the implicit methods being 

unconditionally stable exhibit smooth profiles separating away from the analytical 

solution according to the numerical dispersions they contain. The largest numerical 

dispersion is observed in the first order spatial upstream method as expected.  

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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Figure 3.11: Improved method n=40 dx=0.025 Nc=1.1 (Implicit).  

 
Figure 3.12: Improved method n=110 dx=0.1 Nc=0.1 (Implicit). 

The midpoint space discretized method yields a hump-which viloates entropy 

condition- close to the actual front, however this makes the midpoint front exhibiting 

a sharper dispersive profile in figure 3.12.  

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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Figure 3.13: Improved method n=20 dx=0.1 Nc=0.55 (Implicit). 

When the Courant number is increased the unphysical hump disappears due to larger 

numerical dispersion involved and the method shows a relatively sharper front 

comparaed to third order discretization making a false impression of as if having a 

smaller numerical dispersion as in figure 3.13 and 3.14.  

 
Figure 3.14: Improved method n=10 dx=0.1 Nc=1.1 (Implicit). 

3.2.3 In Depth Investigation of Semi-implicit schemes 

As the Crank-Nicolson method is of second order accurate in time discretization we 

have also investigated the influence of this improvement on the elementary and high 

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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order discretization schemes. The following figures of 3.15-3.17 investiagates the 

role of the courant number for a fixed small cell Peclet nuber, Pecl. 

 
Figure 3.15: Improved method n=440 dx=0.025 Nc=0.1 (C-N).  

For small spatial interval (figure 3.15, 3.16 and 3.17), both higher order spatial 

accuracy methods coincide the analytical solution even large time step or high 

courant number but first order upstream method has still numerical dispersion. 

 
Figure 3.16: Improved method n=80 dx=0.025 Nc=0.55 (C-N).  

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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Figure 3.17: Improved method n=40 dx=0.025 Nc=1.1 (C-N). 

First order upstream method has larger numerical dispersion for large space interval 

compared to small space interval. As time step increases, numerical dispersion of 

upstream method increases step by step. 

 
Figure 3.18: Improved method n=110 dx=0.1 Nc=0.1 (C-N).  

The figures 3.18-3.20 shows the role of courant number on the profiles for again a 

fixed but large cell Peclet number. 

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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Figure 3.19: Improved method n=20 dx=0.1 Nc=0.55 (C-N). 

For large space interval (figure 3.18, 3.19 and 3.20), advantage of third order 

Leonard technique become prominent. As courant number increases, oscillation of 

mid-point increases. On the other hand, third order Leonard with Crank-Nicolson 

(Kocabas and Mahgoup) technique has very small numerical dispersion with nearly 

non-unphysical oscillation even large time step.  

 
Figure 3.20: Improved method n=10 dx=0.1 Nc=1.1 (C-N). 

Results of semi-implicit schemes: 

 Upstream scheme is still uncontionally stable but second order time accuracy 

did not reduce numerical dispersion significantly. 

DIMENSIONLESS DISTANCE 

DIMENSIONLESS DISTANCE 
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 Mid-point scheme is working fine for small dx but displacing unphysical 

oscillations for high courant numbers and dx. 

 Quick-CN (Kocabas and Margoup) method reduces both the unphysical 

oscillation of Quick-explicit and the numerical dispersion of Quick-implicit 

methods.Thus, it yields both stable and highly accurate profiles compared to 

all previous methods for all ranges. 

 For these observations, we hoped that Quick CN method would be successful 

for simulating convection dominated immiscible displacement. 

 Mid-point and Quick have same accuracy for larger diffusion cases in stable 

region (which corresponds to small dx and small courant number). 

 Difference of Mid-point and Quick methods becomes quite distinct in case of 

small disperison. 

 Quick explicit shows almost zero numerical dispersion for small courant 

number and hence matches the front profile perfectly, outstanding all other 

schemes. 

 However, when the dt increases and hence courant number is increased 

Quick-explicit becomes totally unstable thus prohibiting the scheme for use 

in actual simulations which are usually carried out with large time steps. 

 Note that despite being unconditionally stable Quick-CN do exhibit 

unphysical oscillations and fairly  large numerical dispersion for high courant 

number raised to 1.5. 

 This leads to investigation of flux limiters in simulation practics in CFD 

society. 

 Since the main objective of this thesis work is to simulate convection 

dominated immiscible displacement all simulations were carried out using 

Quick-CN combined with various flux limiter. Such another suitable flux 

limiter has resulted in the discovery of flexible flux limiters as a notable 

outcome of this research. 
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4.  CONVECTIVE DISPERSIVE NATURE OF IMMISCIBLE 

DISPLACEMENT SIMULATIONS 

Peaceman has shown that immiscible displacement saturation equation is in indeed 

of convective dispersive nature. In fact, immiscible displacement of oil by water 

assuming incompressible fluids leads to a purely convective transport equation and 

its analytical solution is known as frontal advance solution developed by Buckley 

and Leveret. 

In order to simulate the frontal advance displacements a number of simulations were 

carried out and the results are presented in this section. 

For all one and two dimensional reservoir simulations (impes simulations and fully 

Implicit simulations) following input data are used. 

Table 4.1: Input data for one and two dimensional simulations. 

Array of blocks for 1D i=25 j=1 k=1 

Dimensions of block for 1D dx=40 ft dy=100 ft dz=100 ft 

Array of blocks for 2D i=10 j=10 k=1 

Dimensions of block for 2D dx=100 ft dy=100 ft dz=10 ft 

Porosity 20% 

Permability kx=300 mD ky=300 mD 

Viscosity of water 1 cp 

Viscosity of oil 1 cp 

Time increment 2.5 days 

Total simulation time tt=1500 days 

Irreducible water saturation 0.363 

Residual oil saturation 0.205 

Initial pressure 5000 psia 

In order to avoid nonunique solutions to an ill posed problem, at least one grid block 

pressure have to be fixed according during process of solving the governing 

equations numerically [7]. Therefore, the first grid block’s location (1,1) and 

pressure was fixed at 5000 psia. Water is assumed to be injected at a rate of 65 

barrel/day in the first block. Owing to incompresssible nature of flowing fluids the 

production rate must also be fixed as 65 bbl/d at the production blocks, namely the 
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last block in 1D coordinate of (1,25) and in 2D coordinate of (25,25). Note also that 

capillary pressure is neglected included in development of the governing equations. 

Figure 4.1 shows artificially generated water wet relative permeability curves in 

which initial water saturation and resudial oil saturation data were borrowed from 

Ertekin et al. [7] and permeability functions are borowed from Ahmad [26]. 

 
Figure 4.1: Relative permeability curves. 

The relative permeability functions in figure 4.1 leads to the following fractional 

flow curve in figure 4.2. Welge graphical technique is used to determine the flood 

front water saturation of Buckley Leveret solution as in also figure 4.2. 
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Figure 4.2: Determination of flood front water saturation (0.7131). 

The following frontal advance solution (Buckley-Leverett solution) is used to 

determine plot saturation profiles for an immiscible incompressible displacement of 

oil by water.  

    (
        

  
) (

   
   

) (4.1) 

In equation 4.1, iw is injected water flow rate, t is total simulation time,    is porosity, 

A is cross sectional area, fw is fraction of water and xSw is location of water 

saturation. 

Note that in order to determine the location of any saturation behind the front you 

need only two parameters total flow rate and the derivative of the fractional flow 

equation for that saturation. 

Almost all commercial and and propriety simulators have employed the first order 

upstream space discretization and implicit time treatment owing to its simplicity, and 

unconditional stability. The numerical dispersion in this approach was tried to be 

minimized by using small spatial grids but this was almost impossible due to the 
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necessity of having large grid size to cover vast distances involved in petroleum 

reservoir simulations. 

A second and more subtle source of error in immiscible displacement is due to the 

difficulty of predicting the grid block interface saturations. Frontal advance equation 

is stating that the flow in and out of a block is solely dependent on the end point 

saturations where as the in all simulation studies only average block saturations are 

calculated and known. Therefore, basing the face saturations on the average block 

saturations inherently involves significant errors on the stimation of fluid fluxes. For 

instance let’s assume that at a time step the flood fron has reached two third length of 

a certain block and still away from the outlet face. Then in reality the displacing fluid 

flux out of this block must be zero, however, as the simulators consider the average 

block saturation and this saturation may well be above irreducible water saturation 

then simulated flux out of this flux will be greater than zero. This is a major problem 

to be considered as pointed by Crotti [27, 28] for the first time. 

In order to validate our Matlab codes of first order and third order schemes we have 

used with Buckley-Leverett analytical solution as a benchmark in the following 

section. Then, we have investigated various approaches of employing limiter 

functions in the third order schmes to obtain non-oscilation results for higher Courant 

numbers. 

4.1 In depth Investigation of IMPES First Order Space and Time Solutions 

In petroleum engineering literature, IMPES simulator a simulator that treats 

pressures implicitly saturations explicitly. Therefore, the simulation process consists 

of two stages. 

4.1.1 First order pressure solution 

The general form of first order (FO) pressure solutions are shown by equation 4.2 

[4]: 

  (     )       (4.2) 

Where mw, mo, p and q corresponds to mobility of water, mobility of oil, pressure 

differences and source term respectively. The source term (q) represents either 
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injection or production rate. While the injection rate assumes a positive value, 

production rate is assumed to be negative. 

Using a first order upstream distretization equation 4.2 may be written as equation 

4.3 for the block i in a horizontal linear displacement. 

    

       

       

       

  
  

      (4.3) 

Where     
 means total mobility at west face (left) of (i)th grid block.     

 means 

total mobility at east (right) face of (i)th grid block.  

Assuming the right face phase saturations are represented by the average phase 

saturation of the left block (i-1)th block, the mobility can be written as equation 4.4. 

    
          [

      (     
)

  
 

      (     
)

  
] (4.4) 

Similarly, east(right face saturations) are assumed and the corresponding mobility 

becomes: 

    
          [

      (   
)

  
 

      (   
)

  
] (4.5) 

Such saturation representations, where only one grid block water saturation is used, 

leads to first order upstream relative permeability weighting solution [7]. A major 

advantage of using upstream relative permeability values is to prevent excessive 

accumulation in the grid block under consideration, which violates entropy 

generation leads to unphysical oscillations. 

Using the above approach, the system discretized equations for a simple five block 

system can be written as follows in equations 4.6-4.10.  

 Pressure equation for first grid block; 

      

     

  
  

          (4.6) 
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 Pressure equation for second grid block; 

    

     

       

     

  
  

     (4.7) 

 Pressure equation for third grid block; 

    

     

       

     

  
  

     (4.8) 

 Pressure equation for forth grid block; 

    

     

       

     

  
  

     (4.9) 

 Pressure equation for fith grid block; 

    

     

    

  
          (4.10) 

As the saturation values are assumed to known from the previus time steps the 

unknown pressure values can be easily solved using simple matrix solvers. 

4.1.2 First order saturation solution 

The second stage of IMPES method is computations of saturations for the new time 

step. As pressure values have been already determined in the first stage. Therefore, 

velocity as well as saturation values of each grid blocks can be determined using the 

following saturation equation. 

  (     )     
   

  
 (4.11) 

Where    and    are total Darcy velocity and fractional water flow respectively [4]. 

   (     )   (4.12) 

As the pressure values for each grid block are known, the total velocity values can be 

calculated substituting equation 4.12 and 4.13 into equation 4.11. 
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 (4.13) 

 

  ((     )   
  

     
)     

   

  
 (4.14) 

Equation 4.13 can be simplified as: 

  (    )     
   

  
 (4.15) 

Discretizing equation 4.15 one obtains: 

  
      

  [
     

  
  ]  

           

 
 (4.16) 

New time step water saturation of each grid block can be calculated using equation 

4.16. 

            
      (     

)

  
 

       

  
 (4.17) 

It is important note that; in equation 4.16 and 4.17, relative permeability of water is 

function of water saturation only. 

            
      (   

)

  
 

       

  
 (4.18) 

The two dimensional simulations using  IMPES of first order space and time are 

presented in APPENDIX B for future referencing. 

Figure 4.3 compares of 1D Buckley-Leverett analytical solution and our 1D first 

order Matlab code results. 
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Figure 4.3 : Impes first order Matlab result. 

A major advantage of first order upstream differencing is its ability to dampan the 

unphysical oscillations due to its large magnitude negative feedback sensitivity. 

However, it is grealy limited by the stability conditions which require small time 

steps and large Δx values. Since the large Δx values lead to large numerical 

dispersion, this apparently stable (smeared nonphysical oscillations) techniques 

suffers from large number of time steps and large numerical dispersion. An 

interesting observation we have made is rendered in the following figure 4.4 for 

which we have selected a large Δx. As Δx grows the negative feedback sensitivity 

decreases and hence the solution becomes more prone to oscillations. Apparent in 

Fig. 4.4 is the significant numerical dispersion in the IMPES numerical solution. 
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Figure 4.4: First order method for large Δx. 

Such an oscillation can be observed at an intermediate simulation time as in figure 

4.5. However, as the simulation continues for greater times then the numerical 

dispersion overwhemes the oscillation but shows a larger dispersion of the front as in 

figure 4.6. 

 
Figure 4.5: First order method for intermediate simulation time. 
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Figure 4.6: First order method for intermediate simulation time. 

Figure 4.7 shows the first order IMPES solution obtained using the 2D IMPES 

Matlab code. Chen [24] mentions the disadvantage of this IMPES method suffering 

from grid orientation effect in two-dimensional simulations. 

 
Figure 4.7 : 2D Impes first order Matlab result. 
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4.2 Impes Second Order (TVD) Space and Time Solutions 

Higher order differencing method were investigated to mitigate the large numerical 

dispersion in the first order differencing solutions. Therefore, a second order 

upstream method has been developed to reduce the numerical dispersion but this 

even order methods suffer more in unphysical oscillations as pointed out by Leonard. 

Nevertheless, researchers applied this method combined with a technique called as 

TVD (total variation diminishing) technique. Impes second order method consists of 

two stages solution which are pressure and saturation steps. In both steps, relative 

permeability values will be calculated as second order spatial accuracy. In saturation 

solution step, saturation values will be calculated as second order time accuracy. 

4.2.1 TVD pressure solution 

Recall equation 4.3 which describes solutions of pressure (equation 4.19). 

    

       

       

       

  
  

      (4.19) 

Application of the second order Total Variation Diminishing (TVD) method [24] to 

equation 4.19 can be explained as follows: 

The main objective of this method is to reduce the numerical dispersion which is 

mainly cause by the fast propogation of the grid block average saturations to the grid 

faces. In ther words in the upstream method we assume the west face saturation of 

the grid block i is equated to the average saturation of the block (i-1). Similarly the 

east face of saturation of the grid block I is equated to average saturation of i. Thus 

the saturations are allowed to propagate faster leading to large numerical dispersion. 

In order to alleviate the numerical dispersion, TVD is applied as follows: 

Let’s define the differential of saturation as the difference between saturations of (i-

1) and (i-2) grid blocks as: 

         
      

 (4.20) 

Similarly, for grid blocks of (i) and (i-1) may be defined as: 
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 (4.21) 

Based o the two saturation differentials a flux limiter is defined as follows: 

        (   )     (     [|   |         (   )]) (4.22) 

Equation 4.22 describes limiter function of the flux for the west face saturation term. 

The west face saturation is now defined as the (i-1) block saturation less the half of 

the    , note that     subtraction leads to a smaller west face saturation than that is 

obtained by propagating the (i-1) average saturation. It is this limiter that reduces the 

numerical dispersion and therefore it is also called as anti-diffusive term [29] 

employement/addition. 

Using this algorithm allows us to represents, the west face mobility term with a 

second order spatial accuracy as follows: 
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        )
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        )

  
] 

(4.23) 

Similarly, equations 4.24 through 4.27 represent the development of the second order 

TVD scheme for the east face of the block (i). 

       
      

 (4.24) 

 

         
    

 (4.25) 

 

        (   )     (     [|   |         (   )]) (4.26) 
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] 

(4.27) 
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Pressure solutions of second order TVD IMPES schemes are quite analogous to 

pressure solutions of first order IMPES. 

4.2.2 TVD saturation solution 

TVD saturation equation is solved by using two steps Runga Kutta algorithm. First 

step of Runge Kutta algorithm is S1 and second one is S2. 

   
    

     (4.28) 

Equation 4.29 means first order time term (FO). However, it is important note that, 

FO time term in equation 4.28 has second order spatial accuracy. 
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  ]  

           

 
 (4.29) 

In equation 4.29,    and    values are calculated by equation 4.30 and 4.31 

respectively. 
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        )

  
 

       

  
 (4.30) 

Again    and    values have second order spatial accuracy. 

            
      (   

        )

  
 

       

  
 (4.31) 

Second order TVD saturation solutions are shown by equation 4.32. 

  
      

                (4.32) 

In equation 4.32, calculations of second order (SO) time term very similar to FO time 

term. Equation 4.33, 4.34 and 4.35 describes SO time term. Again, it is important not 

that SO time term has also second order spatial accuracy. 

   [
       

  
  ]  

           

 
 (4.33) 
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 (4.34) 



50 

             
      (    

        )

  
 

       

  
 (4.35) 

 
Figure 4.8 : Impes second order (TVD) result. 

Figures 4.8 and 4.9 are IMPES TVD method with small and large    respectively. 

Figure 4.9 shows that adding a TVD algorithm reduces the numerical dispersion.  

 
Figure 4.9: IMPES TVD with large   . 
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Figure 4.10 : 2D Impes second order (TVD) Matlab result. 

Figure 4.10 shows results of 2D simulation for second order (TVD) displaying two 

dimensional dispersion in colours. 

4.3 Impes Third Order (TVD- Leonard) Space and Time Solutions 

The third order Leonard method is known to yield much smaller numerical 

dispersion than first order method and has greater ability to dampen introduced 

oscillations than second order (in fact all even high order) methods. As the absolute 

value of feedback sensitivity of Leaonard method slightly smaller than that of first 

order upstream method it is more prone to oscillations than first order method. 

Thefore the researchers wanted to take advantage of Leaonard method combined 

with TVD algrorithm. 

Note that Leonard third order differencing is a specific TVD algorithm itself. Sweby 

has noticed this feature and then formalized the stability region for flux limiters as 

follows. Wolcott [11] et al has also noticed this feature and they pointed out that the 

flux limiters can be applied to any of the variables including saturations, velocities, 

mobilities and fractional flow. 

For any variable, the general flux limiter can be expressed as: 
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                     (       ) (4.36a) 

Where ϕ is the flux limiter of flux ratio, r, is given by equation 4.36b: 

       
       

       
 (4.36b) 

Sweby [30] has noticed that the stabity region for the flux limiter as a function of 

flux ratio can be derived as in figure 4.11. 

It is imported note that in 1984, Harten [31] has introduced the Total Variation 

Diminishing (TVD) scheme which aims eliminating the unphysical oscillations that 

violate the entropy condition. In the same year, Sweby has published a classical work 

which specified the stability region for the TVD schemes. 

In equation 4.36a; if flux limiter (anti-difusive term) is constant as (r+2)/3, red 

straight line will be obtained in figure 4.11. The anti-difusive term of Leonard’s 

method may be expressed as equation 4.37: 

              
   

 
 (       ) (4.37) 

 

 
Figure 4.11: TVD region. 
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Note that in figure 4.11 Leonards flux limiter (Leonard scheme expressed as a flux 

limiter) is shown as a red straight line for which a large range of flux ratios would 

fall into the shaded stablity region. Any limiter which is in this region is at least 

second order accurate if it falls on the Leonard line the it is exactly third arder 

accurate.  

In order to take advantage of this stability region the Leonard flux limiter can be 

modified as needed when it fall outside the stability region. Therefore, the TVD 

method can also be succesfully applied to Leonard scheme as following section. 

4.3.1 TVD- Leonard pressure solution 

Recall equation 4.2 that describes solutions of pressure (equation 4.38). 

    

       

       

       

  
  

      (4.38) 

Implementing third order TVD-Leonard scheme in IMPES method [17] [11], 

represents west and east side total mobility terms with a third order spatial accuracy. 

In order to calculate west side total mobility term of a grid block; in addition to the 

saturation values of the same grid block, the two preceeding block saturations are 

also considered. 

 In this method firstly, the west side total mobility term,     
 is written as: 
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Equations 4.39, 4.40 and 4.41 are used to define the flux limiter’s flux ratio, equation 

4.42. 
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  ( ( )   ( )) ( ( )   ( )) (4.42) 

Equation 4.42 is used to determine the flux limiter function from figure 4.11. 

For achieving stability the limiter function must fall in the shaded stability region in 

figure 4.11. If the vertical line drawn from the flux limiter intersects the Leonard 

limiter function line then the value corresponding to leaonard limiter is used. In other 

words Leonard scheme is use with no modification of its original limiter  [11]. 

However, if the vertical line crosses Leonard’s line outside the stability region then a 

new limiter function value is selected within the shaded area. Such a selection of the 

flux limtier is achieved using equation 4.43. 

       [      (     (   )  )] (4.43) 

Finally, the west side mobility is determined using the flux limiter from 4.43 as: 

    
  ( )         ( ( )   ( )) (4.44) 

 Similarly for east side total mobility,     
 the equations, 4.45 through 4.50 must 

be used to determine the east side mobility. 
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  ( )         ( ( )   ( )) (4.50) 

The solutions to pressure equations of TVD- Leonard are analogous to pressure 

solutions of first order IMPES method. 

4.3.2 TVD-Leonard saturation solution 

The Leonard TVD saturation equations are solved explicitly by using a three step 

(third order time accurate) Runga Kutta technique. For the first Runga Kutta iteration 

is he saturation equation is given by Eq. 4.48: 
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 (4.51) 

 The west and east side velocity,   ,    values are calculated using TVD Leonard 

technique as follows: 
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For east face values: 
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Substituting 4.57 and 4.63 into 4.51 gives the first iteration via Runga Kutta. 

Similarly using the values obtained from the first iteration we can calculate the 

saturation for the second iteration as equation 4.64 and the results of the second 

iteration is substituted into the third iteration equations to finally obtain equation 4.65 

as a order time accurate, Runge-Kutta solution [24] which employed the Leonard 

TVD algorithm. 
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 (4.65) 
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Figure 4.12 : IMPES TVD-Leonard for small   . 

Fig. 4.12 compares IMPES TVD and third order IMPES TVD-Leonard methods for 

small Courant numbers and small cell Peclet number. 

 
Figure 4.13: IMPES TVD-Leonard for large   . 

Fig. 4.13 compares IMPES TVD and third order IMPES TVD-Leonard methods for 

large   . 2D equations were presented in APPENDIX C for future referencing.  
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Figure 4.14 : 2D Impes third order (TVD-L) Matlab result. 

Figure 4.14 shows the simulations of 2D third order (TVD-L) method displaying two 

dimensional dispersion in colours. 

 

 
Figure 4.15: Unstablity of IMPES. 
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Figure 4.15 shows unstability of IMPES methods for    is 40 ft and    is 70 days. 

Therefore, we need to use unconditionally stable solution techniques as fully implicit 

or semi-implicit methods. 

4.4 Fully Implicit First Order Space and First Order Time Solution 

Fully implicit methods are proposed because of their unconditional stability 

characteristics. However, their high iteration requirements and large computational 

CPU time appears to be a disadvantage. Nevertheless, the fully implicit methods 

have been widely employed in petroleum reservoir simulation studies. This section 

provides a brief introduction and some results of the fully implicit method which 

employ first order discretatization technique for both time and space. Using these 

two simple discretization scheme the discrete set of equations for second grid block 

can be written as equations 4.66-4.67 and 4.68-4.69 [9]. 
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(4.69) 

Total number of water and oil equations developed for all grids in the reservoir is 

equal to number of unknown pressures and saturations for all grids. The discretized 

set of algebraic equations are solved by a suitable matrix solver iteratively such as 

Newton-Rapson method [9]. Equation 4.70 shows the matrix representation of 

discretized set of equations. 
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 (4.70) 

Figure 4.16 shows first order fully implicit solution with small    and small   . 

Using large    for first order implicit solution is given by figure 4.17. 
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Figure 4.16 : Fully implicit first order Matlab result. 

 
Figure 4.17: Fully implicit first order for large   . 
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Figure 4.18 shows first order implicit solution with large time step (  =70 days). 

Despite large time step, first order fully implicit solution is still stable. In that 

condition, all IMPES solution techniques are unstable (see figure 4.15). 

 
Figure 4.18: Fully implicit first order for large   . 

 
Figure 4.19 : 2D Fully implicit first order Matlab result. 
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The discretized equations of 2D fully implicit method is given in APPENDIX D for 

future referencing. Figure 4.13 shows 2D fully implicit first order Matlab code 

results. 

4.5 TVD Implemented Fully Implicit First Order Method 

The highly promising TVD method can also be implemented for fully implicit 

solution methods. Employing the TVD the related flow and transport equations are 

modified as follows: 
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Equations 4.72 to 4.78 are used to calculate limiter function. 
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Using     and     limiter values, equation 4.78 has second order spatial accuracy. 

    
             (  

      
   )   

     

 
             (  

      
   )   

     
         

   

 
       (    

       
 )

  
   

(4.79) 

 

    
      [   

           ]  (  
      

   )

      

 
      [   

           ]  (  
      

   )

      

 
          

   

  
 

  (    
       

 )

  
   

(4.80) 

Similarly, flux limiter is applied to oil phase equation (see equations 4.79 and 4.80). 

Note that the only difference between IMPES and Fully Implicit TVD methods is 

that the saturations and pressures are all treated at the new time step in fully implicit, 

while saturation are treated at old time steps in IMPES method. The same iterative 

solution techniques must be used for the TVD implemented fully implicit methods. 
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Figure 4.20 : Fully implicit second order space first order time Matlab result. 

Figure 4.20 shows comparison of 1D fully implicit first order and second order TVD 

methods for small    and   .  

 
Figure 4.21: Fully implicit TVD for large   . 
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Figure 4.21 and figure 4.20 shows implicit TVD results with large    (125 ft) and 

large    (70 days) respectively. 

 
Figure 4.22: Fully implicit TVD for large   . 

Figure 4.23 shows 2D fully implicit second order space (TVD) and first order time 

Matlab result.  
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Figure 4.23: 2D Fully implicit second order space first order time Matlab result. 

4.6 Fully Implicit Third Order Space (TVD-L) and First Order Time Solution 

The governing equatins for this technique is the same as IMPES TVD Leonard 

Method with the sole difference of implicit treatment of grid block saturation. Thus, 

the governing equations for second grid block can be written as follows: 
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(4.81) 

 

The following equations (equations 4.82-4.87) are used to calculate water relative 

permeability values at a grid block’s west face. 
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) (4.82) 



68 

 ( )     (     
) (4.83) 

 ( )     (   
) (4.84) 

  ( ( )   ( )) ( ( )   ( )) (4.85) 

 

       [      (     (   )  )] (4.86) 

 

          ( )         ( ( )   ( )) (4.87) 

The following equations (equation 4.88-4.93) are used to calculate water relative 

permeability values at a grid block’s east face. 
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The oil relative permeability equations are of the same form of water equations. The 

oil and water functional equations may be written as equation 4.94-4.95. 
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Dividing both sides of Equation 4.81 and 4.95 by the grid block voume one obtains 

equations 4.94 and 4.96 only as a function of Δx. 
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The TVD Leonard Fully Implict equation can be solved iteratively similar to any 

fully implicit method. 

 

Figure 4.24 : Fully implicit third order space first order time Matlab result. 
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Figure 4.24 is designed by small    and   . Figure 4.25 and 4.26 show fully implicit 

TVD and TVD-Leonard methods with large    and large    respectively. Figure 

4.26 implies that despite large   , higher order methods are still stable.  

 
Figure 4.25: Fully implicit TVD for large   . 

 
Figure 4.26: Fully implicit TVD-L for large   . 
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The equations of 2D fully implicit third order space (TVD-L) is presented in 

APPENDIX E.  Figure 4.27 shows 2D fully implicit (TVD-L) Matlab simulations 

result. 

Figure 4.27 : 2D Fully implicit (TVD-L) result. 

4.7 Fully Implicit Third Order Space (TCDF) and First Order Time Solution 

Third-order Continuously Differentiable Function (TCDF) technique [32] improved 

the TVD method by changing uprupt switching of the original TVD [33-34] flux 

limiter to when the limiter function falls outside the stability region to a gradually 

switching smoot flux-limiter function[6]. The smooth flux limiter function is given 

by equation 4.97. 
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(4.97) 

Even though there no noticable improvement in the capturing of sharp front profiles 

for a large range of flux limiter values and removing oscillations for those values as 

shown in figure 4.28, this method requires only slightly lower iterations (171 

iterations for TVD-L and 163 iterations for TCDF) for the computational work. 
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However, it is this method that has lead to the development of flexible flux limiter 

function, which is the major contribution of this thesis. 

 
Figure 4.28 : TCDF and TVD-L methods. 

Figure 4.29 shows 2D fully implicit third order space (TCDF) first order time Matlab 

result. 

 
Figure 4.29 : 2D Fully implicit third order space (TCDF) first order time Matlab 

result. 
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4.8 First Order Space and Semi Implicit Second Order Time (Crank-Nicolson) 

Solution 

Crank-Nicolson[4] (CN) method has been introduced to take advantage of both 

unconditional stability and second order time accuracy for the finite diffence 

schemes. Thus, it will be implemented for both elementary and high order techniques 

possibly combined with TVD schemes. 

This section presents the equations, from 4.98 to 4.103, for upstream first order space 

discretized flow equations combined with Crank Nicholson method. 
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In equations 4.98 and 4.99; saturations, pressures and flow rates are based on 

previous time step. 
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The saturations, pressures and flow rates are based on next time step in equation 

4.100 and 4.101. 
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Equation 4.102 and 4.103 are solved by using an iterative matrix solver 

employement similar to any fully implicit method. 

 
Figure 4.30 : 1D Fully implicit first order space and second order time Matlab result. 

 

One dimensional immiscible displacement simulations of fully implicit first order 

and semi-implicit second order Crank Nicholson solutions are compared in figure 

4.30 (small time step) and figure 4.31 (large time step). Figure 4.32 shows 2D result. 
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Figure 4.31: Crank-Nicholson with large time step. 

 
Figure 4.32 : 2D Fully implicit first order space and second order time Matlab result. 

The previous mathematical developments and investigation of solution techniques 

has lead us to take advantage of the three findings, namely Leonard differencing for 

third order space accuracy, Crank Nicholson for second order time accuracy and 

unconditional stability and TCDF for removing oscillations with a hihger order 

accuracy. Thus, we have used these methods all combines as follows. 
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5.  TCDF-LEONARD WITH CRANK NICOLSON SCHEME 

In order to observe the possible advantages we have combined the TCDF Leonard 

with Crank Nicholson Scheme. The mathematical 1D equations for this technique is 

given by equations 5.1 through 5.6. Functional forms of previous time step are given 

by 5.1 and 5.2. 
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(5.2) 

Functional forms in present time step are given by 5.3 and 5.4. 
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The functional form of Crank Nicholson scheme is given by 5.5 and 5.6. 
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Equations 5.5 and 5.6 are solved similarly to any implicit method.  

 

Figure 5.1: 1D Fully implicit third order space and second order time Matlab result. 

Figure 5.1 shows comparison of TVD-L and TCDF-CN methods for   =60 days and 

  =40 ft. For higher than 60 days time step interval, TCDF-CN techniques gives 

oscillations in front of the front line. Therefore, we need to use flexible flux limiter to 

supperes small oscillation of the TCDF-CN solution techniques. Figure 5.2 shows 2D 

result of TCDF-CN methods. 
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Figure 5.2: 2D Fully implicit third order space and second order time Matlab result. 
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6.  FLEXIBLE FLUX LIMITER APPLICATIONS 

In 2017, Jiang et. al. investigated in detail the implementation of flux limiter 

switching. They have used two TCDF switching functions that switch the limiter 

function smoothly but either of the two limiter values of 2 and 1.5. They have laso 

observed that when dt is large switching the flux limiter to 1.5 yield better results 

both in smooting the oscillation and reducing the number of computational iterations. 

Since the dt values are direct indicator of Courant number we have adopted a 

switching method based on the Courant number magnitude. We have observed that 

the courant number is very good indicator of unphysical oscillations. As the 

following figure 6.1 shows once the Courant Number is high enough then fixing the 

flux limiter to 2 or 1.5 may still yield oscillatory behavior, despite the fact that the 

limiter function is specified within the Sweby stability region. To determine the 

stable and unoscillatory flux limiter value within the Sweby stability region we have 

divided two, the maximum limiter value in the stability region, by the courant 

number as the limiting value of the flexible flux limiter. Since this limiting value is 

varying depending on the Courant number we called this technique as the flexible 

flux limiter method. Note however that for Courant numbers smaller than one then 

the calculated flexible flux limiter value becomes greater than 2 which is outside the 

stability region. Then the flux limiter is fixed back to 2, which works very well 

because the time step and hence the Courant number is small.    
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Figure 6.1: Matlab result of flexible flux limiter Nc=1.8515. 

Figure 6.1 and 6.2 show results of flexible flux limiter method and other techniques 

for large time step (45 days) and small time step (10 days) respectively.  

 
Figure 6.2: Matlab result of flexible flux limiter Nc=0.4115. 
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Figure 6.3: 2D Matlab result of flexible flux limiter (before breakthroug time). 

Figure 6.3 (before breakthrough time) and figure 6.4 (before breakthrough time) 

show Matlab result of FullyImp 3OS(Novel Flux Limiter) and 2OT(CN) method. 
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Figure 6.4: 2D Matlab result of flexible flux limiter (after breakthroug time). 



83 

7.  APPLICATIONS OF THE METHODS TO DIFFERENT RESERVOIRS 

7.1 Oil Wet Reservoirs 

In this section, oil wet reservoir data will be used to compare solution methods. It is 

assumed that total simulation time is 1000 days, dy is 100 ft, dz is 100 ft, j-direction 

block is 1 and initial pressure of reservoir is 1000 psia.  

 
Figure 7.1: Relative permeability curves for case 2. 

These reservoir simulation data and relative permeability curves data in figure 7.1 are 

taken from Ertekin et. al. [7]. Using regression, smoot relative permeability curves 

are obtained. 
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Figure 7.2: dx=100ft and dt=100days for oil wet reservoir. 

In order to compare different reservoir simulation methods, we will use fine grid 

block dimension and minor time step intervals in this section. Figure 7.2-7.5 show 

comparison of fully implicit third order spatial (TCDF) second order time (CN) 

method and fully implicit first order spatial first order time  method for different 

spatial and different time step intervals. 

 
Figure 7.3: dx=50ft and dt=50days oil wet reservoir. 
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Figure 7.4: dx=25ft and dt=25days for oil wet reservoir. 

 

 

 
Figure 7.5: dx=10ft and dt=10days for oil wet reservoir. 
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7.2 Intermediate Wettability Reservoirs 

Using fine grid block dimension and minor time step intervals is not appropriate to 

compare different reservoir simulation models. Because there are truncation errors 

even using fine grid block dimension and minor time step intervals. Therefore, we 

will use Buckley–Leverett [12] analytical solution in order to compare results of 

fully implicit third order spatial (TCDF) second order time (CN) method and fully 

implicit first order spatial first order time  method for different spatial and different 

time step intervals. 

In this section it is assumed that total simulation time 2000 days, dy 100 ft, dz 100 ft, 

j-direction block 1, Swi=0.01, Sor=0, Pi=1000 psia. Also it is assumed that relative 

permeability of water is function of square of water saturation and relative 

permeability of oil is function of square of oil saturation in figure 7. 6 [6]. 

 
Figure 7.6: Relative permeability curves for intermediate wettability reservoir. 
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Figure 7.7: Fractional flow curves for intermediate wettability reservoir 

(Swf=0.7041). 

In order to obtain B-L analytical solution, we need to determine front water 

saturation. Using Matlab Code, front water saturation is obtained as 0.7041. Figure 

7.7 shows determination of front water saturation as broadly. 

 

Figure 7.8: dx=100ft and dt=100days for case 3. 
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Figure 7.9: dx=50ft and dt=50days for intermediate wettability reservoir. 

Figure 7.8-7.12 show comparison of fully implicit third order spatial (TCDF) second 

order time (CN) method and fully implicit first order spatial first order time  method 

for different spatial and different time step intervals. 

 
Figure 7.10: dx=25ft and dt=25days for intermediate wettability reservoir. 
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Figure 7.11: dx=10ft and dt=10days for intermediate wettability reservoir. 

 

 

 

 
Figure 7.12: dx=1ft and dt=1days for intermediate wettability reservoir. 
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In 2D reservoir simulations, we will use water breakthrough time in order to compare 

different reservoir simulation models. During history matching of observed 

production data of brown fields, one of the key matching parameters in the water 

break-through time. Water break-through time is the time at which significant water 

production begins at a producing well [23]. 

For 2D simulation, it is assumed that total simulation time 4000 days, dt=40days, 

dx=100ft, dy=100ft, dz=10ft, i-direction block 10, j-direction block 10, Swi=0.01, 

Sor=0, Pi=1000 psia, q_inj=75.96b/d. In addition to these data, relative permeability 

curves in figure 7.6 and front water saturation (0.7041) in figure 7.7 were used. 

 

Figure 7.13: Water breakthrough time for intermediate wettability reservoir. 

Figure 7.13 shows breakthrough times of fully implicit third order spatial (TCDF) 

second order time (CN) method and fully implicit first order spatial first order time 

method. According to figure 7.14, using fully implicit first order spatial first order 

time method cause 200 days earlier breakthrough time compared with fully implicit 

third order spatial (TCDF) second order time (CN) method. That situation adversely 

affects prediction of oil reservoir performance. 
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Figure 7.14: Water breakthrough time for intermediate wettability reservoir in detail. 
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8.  CONCLUSION 

Numerical reservoir simulations are indispensable tools of predicting the 

performance of the oil and gas reservoirs. The major problems encountered in 

reservoir simulations may be listed as numerical dispersion, unphysical oscillation 

and grid orientation effects. 

In addition, specially in immiscible displacement of oil with water the estimation of 

grid blocks face saturations is of utmost importance. Since Buckley Leverett model 

dictates the accurate estimate of face saturations for correct calculation of influx and 

outflux values. The numerical simulators inherently and unavoidably calculate and 

use average grid block saturation. This enters as an inherent inaccuracy of block face 

estimations. 

Detailed investigations of elementary and some high order space discretization 

methods of convection dominated flow and transport has revealed that the first order 

methods are highly dispersive but with an apparent advantage of negative feedback 

sensitivity to smooth out the oscillation. The even high order methods reduce the 

numerical dispersion but they are much more oscillatory. In 1979, The Leonard 

introduced his famous third order discretization which reduced the numerical 

dispersion and having a negative feedbeck sensitivity is less prone to oscillations. 

Nevertheless, even this method becomes oscillatory for some very small and very 

large Courant numbers. 

In order to mitigate the numerical dispersion and reduce unphysical oscillations a 

method called as TVD has been introduced and implemented in elementary and some 

high order schemes. In 1984, Sweby introduced his classical work of framing the 

stability region for the flux limiters of TVD schmes.  

We have noticed that Leonard method is in fact a special TVD scheme where its flux 

limiter falls on a straight line, may be called as straight-line flux limiter. 

For simulations of miscible displacement, combining explicit Quick with Crank 

Nicholson method (Kocabas and Margoup) method reduces both the unphysical 
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oscillation of Quick-explicit and the numerical dispersion of Quick-implicit methods. 

Thus, it yields both stable and highly accurate profiles compared to all previous 

methods for a large range of Courant Numbers. 

The folowing improvments has been achieved in order: higher order spatial 

discretization schemes using Quick (without limiter function Leonard), piecewise 

linear flux limiter (Pinto and Sweby), TCDF smooth flux limiter (Zhang) and 

Adaptive smooth flux limiter methods (Jiang). 

Our contribution to this field is two folds. Implementing a flexible flux limiter which 

is specified as a function of Courant number thus avoiding the oscillation for all 

ranges of Courant Numbers. Then implementing all of these improvements including 

the flexible flux limiter to Leonard Crank Nicholson discretization. 

These two improvements distintly showed the superiority of the method in both 

better front capturing and oscillation avoiding features compared to the previously 

developed method. One other major advantage is that this new method has also 

reduced the number of iterations for high Courant number simulations especially in 

two phase flow simulations. In summary: 

1) Third order space second order time (C-N) scheme give most accurate results 

for miscible displacement. 

2) On the other hand, the third order space second order time (C-N) scheme 

exhibit a single large unphysical hump before the front for immiscible 

displacement. 

3) All unphysical oscillations in all schemes can be attributed to violation of 

Sweby stability constraint. Therefore they require use of flux limiters. 

4) The flux limiters are not needed in fully implicit upstream scheme as it 

contain only numerical dispersion and no unphysical oscillations. 

5) Employing flux limiters in third order space second order time (C-N) scheme 

improves the solutions greatly. Making the schemes better than fully implicit 

first and second order upstream schemes. 

6) The novel flexible flux limiter method presented in this work further 

improves the results of third order space second order time (C-N) scheme. 
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APPENDICES  

APPENDIX A 

 
   

   
  

  

  
 

  

  
 (A.1) 

In order to understand the feedback sensitivity, let’s assume that a numerical solution 

of equation A.1 has been carried out. The evolution of the central node value Ci: 

RHS
t

Ci 



 (A.2) 

where RHS represents the numerically modeled terms on the right hand side.  In 

general, RHS will involve some dependence on Ci; thus the evolution of 

perturbations in Ci  can be studied by taking the variation of equation A.2 with 

respect to Ci, giving 
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 (A.3) 

which has a closed form solution 

   tCi  exp  (A.4) 

where the feedback sensitivity is given by 

iC
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For example, central differencing of the diffusion operator 
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APPENDIX B 

2D Impes First Order Space and Time Solutions 

FO pressure solution 
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Suppose that there are five grid block x-direction and five grid block y-direction, first 

grid block is injection constant pressure grid block and fiftyth grid block is 

production grid block. In this case,  

 Pressure equation for first grid block; 
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 Pressure equation for second grid block; 
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 Pressure equation for thirteenth grid block; 
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 Pressure equation for twenty-forth grid block; 
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 Pressure equation for twenty-five grid block; 
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There are twenty-four unknown pressures and there are twenty-five equations, 

therefore unknown pressure values can be determined. 

 

FO saturation solution 
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APPENDIX C 

2D Impes Third Order (Leonard-TVD) Space and Time Solutions 

Leonard-TVD pressure solution 
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 Calculation for east side,       
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 Calculation for south side,       
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After that point, pressure solution of Leonard-TVD is quite analogous to pressure 

solution of FO. 

Leonard-TVD saturation solution 

Using equation 2.6 
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APPENDIX D 

2D Fully Implicit First Order Space and Time Solution 

Suppose that there are twenty-five grid blocks through x-direction and there are 

twenty-five grid blocks through y-direction. In this case, water and oil equations for 

thirteenth grid block: 
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Total number of water and oil equations is equal to number of unknown pressure and 

saturation, so governing equations can be solved using Newton-Rapson iteration 

method. 
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APPENDIX E 

2D Fully Implicit Third Order Space (TVD-L) and First Order Time Solution 
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 Calculation for west side,           
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 Calculation for east side,           
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 Calculation for north side,          
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 Calculation for south side,           
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The values of oil relative permeability is quite similar to the values of water relative 

permeability. 
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