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Evaluation of Some Neurological Disorders by the 

Analysis of EEG Signals 

Abstract 

Epilepsy and Alzheimer’s dementia are highly prevalent among all neurological 

disorders. In the evaluation of epilepsy, three different approaches are presented to 

distinguish seizure and seizure-free EEG segments. In the first method, multichannel 

EEG signals collected from epilepsy patients are decomposed into Intrinsic Mode 

Functions (IMFs) using Empirical Mode Decomposition (EMD), Ensemble EMD 

(EEMD) methods, and then essential IMFs are selected. Finally, time- and spectral-

domain, and nonlinear features are extracted from selected IMFs and coefficients of 

discrete wavelet transform (DWT). Dynamic mode decomposition (DMD) is a new 

matrix decomposition method proposed as an iterative solution to problems in fluid 

flow analysis. We present single-channel, and multi-channel EEG -based DMD 

approaches for the analysis of epileptic EEG signals. As a third method, we use the 

Synchrosqueezing Transform (SST) representations of seizure and pre-seizure EEG 

data. For Alzheimer's dementia (AD), various signal decomposition methods such as 

EMD, EEMD, and DWT and Time-Frequency (TF) representation-based approaches 

such as Short Time Fourier Transform (STFT) and SST are presented to classify EEG 

segments of control subjects and AD patients. Time-domain and spectral-domain 

features are calculated using selected 7 IMFs and 5 detail and approximation 

coefficients of DWT. TF density functions obtained utilizing the SST and STFT 

approaches are used to calculate 18 different TF features to achieve distinctive 

information between EEG segments of control subjects and AD patients. Various 

classification techniques namely Support Vector Machine (SVM), k-Nearest Neighbor 

(kNN), Naive Bayes (NB), Logistic Regression (LR), Boosted Trees (BT), Subspace 

kNN (S-kNN), and Random Forest (RF) are utilized to distinguish different groups. 

Simulation results demonstrate that the proposed approaches achieve outstanding 

validation accuracy rates. 

Keywords: Epileptic EEG Classification, Alzheimer's dementia EEG classification, 

Empirical Mode Decomposition, Dynamic Mode Decomposition, Synchrosqueezing 

Transform, Machine Learning.  
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EEG Sinyallerinin Analizi ile Bazı Nörolojik 

Bozuklukların Değerlendirilmesi 

Öz 

Epilepsi ve Alzheimer demans, tüm nörolojik bozukluklar arasında oldukça yaygındır. 

Epilepsi değerlendirmesinde nöbet ve nöbetsiz EEG segmentlerini ayırt etmek için üç 

farklı yaklaşım sunulmaktadır. İlk yöntemde, epilepsi hastalarından toplanan çok 

kanallı EEG sinyalleri, Görgül Kip Ayrıştırma (GKA), Grup GKA (GGKA) 

yöntemleri kullanılarak IMF'lere ayrıştırılır ve ardından gerekli IMF'ler seçilir. Son 

olarak, seçilen IMF'lerden ve ayrık dalgacık dönüşümü (ADD) katsayılarından zaman 

ve spektral alan ve doğrusal olmayan özellikler çıkarılır. Dinamik kip ayrıştırma 

(DKA), akışkan akış analizindeki sorunlara yinelemeli bir çözüm olarak önerilen yeni 

bir matris ayrıştırma yöntemidir. Epileptik EEG sinyallerinin analizi için tek kanallı 

ve çok kanallı EEG tabanlı DKA yaklaşımları sunuyoruz. Üçüncü bir yöntem olarak, 

nöbet ve nöbet öncesi EEG verilerinin Senkronize Sıkma Dönüşümü (SSD) 

temsillerini kullanıyoruz. Alzheimer demansı (AD) için, kontrol deneklerinin ve AD 

hastalarının EEG segmentlerini sınıflandırmak için GKA, GGKA ve ADD gibi çeşitli 

sinyal ayrıştırma yöntemleri ve Kısa Süreli Fourier Dönüşümü (KSFD) ve SSD gibi 

Zaman Frekans (ZF) temsiline dayalı yaklaşımlar sunulmaktadır. Zaman alanı ve 

spektral alan özellikleri, seçilen 7 IMF ve ADD'nin 5 detay ve yaklaşıklık katsayıları 

kullanılarak hesaplanır. SSD ve KSFD yaklaşımları kullanılarak elde edilen ZF 

yoğunluğu fonksiyonları, kontrol deneklerinin ve AD hastalarının EEG segmentleri 

arasında ayırt edici bilgiler elde etmek için 18 farklı ZF öznitelliğini hesaplamak için 

kullanılmıştır. Destek Vektör Makinesi (DVM), k-En Yakın Komşu (kEYK), Naive 

Bayes (NB), Lojistik Regresyon (LR), Yükseltilmiş Ağaçlar (YA), Altuzay kEYK (A- 

kEYK) ve Rastgele Orman (RO) olmak üzere çeşitli sınıflandırıcı teknikleri farklı 

grupları ayırt etmek için kullanılmıştır. Simülasyon sonuçları, önerilen yaklaşımların 

olağanüstü doğrulama oranlarına ulaştığını göstermektedir. 

Anahtar Kelimeler: Epileptik EEG Sınıflandırması, Alzheimer demans EEG 

sınıflandırması, Görgül Kip Ayrıştırma, Dinamik Kip Ayrışımı, Senkronize Sıkma 

Dönüşümü, Makine Öğrenmesi.  
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1. Introduction 

Neurological disorders may spring from any disorder in the brain or the central and 

autonomic nervous systems. Changes in any metabolite involved in regulating brain 

functions can cause fatal damage to the central nervous system due to its complex 

structure [1]. According to the World Health Organization (WHO), neurological 

disorders are the diseases with the highest rate of disability worldwide, and they are 

the second disease category with the highest mortality rate (16.8% of all deaths) [2, 3]. 

The burden of neurological disorders in all disability causing disorders is compared in 

Figure 1.1 with the burden of other selected common diseases as a percentage of total 

disability-adjusted life years (DALYs). Here, one DALY represents a loss that is 

equivalent to one year of total health loss [2]. The primary neurological diseases 

affecting people are Alzheimer’s disease, and other dementias, Parkinson’s disease, 

Epilepsy, multiple sclerosis, migraine, stroke, poliomyelitis, tetanus, meningitis, and 

Japanese encephalitis [3, 4]. 

 

 

Figure 1.1: Percentage of total DALYs for neurological disorders and selected 

common diseases. 
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Stroke is responsible for 47.3% of the total DALYs and 67.3% of total deaths due to 

neurological disorders. Among the neurological disorders, while Alzheimer’s disease 

and other dementias are the fourth-largest contributors (9.5%) (Shown in Figure 1.2a) 

of DALYs, they are the second largest contributor (20.3%) (Shown in Figure 1.2b) of 

deaths [2, 3]. Epilepsy accounts for 5% (shown in Figure 1.2a) of total DALYs, but it 

is one of the most commonly reported neurological diseases in primary care [2, 3, and 

5].  

 
(a) 

 
(b) 

Figure 1.2: (a) DALYs and (b) death rates for particular neurological disorders as a 

percentage of total neurological disorders [3]. 
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Search results of the most prevalent 5 neurological disorders on Science Direct and 

PubMed are plotted in Figure 1.3 for the last 20 years. It is obviously seen on each 

database search results that dementia and epilepsy are the most studied diseases after 

stroke.  For this reason, it is aimed to evaluate the data of dementia and epilepsy 

patients within the scope of the thesis, as it is thought to contribute to the literature and 

provide more opportunities for comparative analysis. Different signal and image 

processing techniques such as Electroencephalogram (EEG), Magnetic resonance 

imaging (MRI), Magnetoencephalography (MEG), Functional Magnetic Resonance 

Imaging (fMRI), single photon emission computed tomography (SPECT), Positron 

Emission Tomography (PET), Diffusion Tensor Imaging (DTI), and quantitative 

electroencephalography (QEEG) have been used for detecting abnormalities in brain 

functions [6]. However, non-invasive, widely available, and relatively cost effective 

EEG method is the most commonly used method for examining brain functions [6–9].  

 
(a) 

 

 
(b) 

Figure 1.3: Search results of the 5 neurological disorders on (a) PubMed and (b) 

Science Direct. 
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1.1 Objectives of the Thesis 

The main purpose of the presented thesis is to achieve high EEG classification 

successes with advanced signal processing methods for two neurological disorders, 

epilepsy, and Alzheimer’s dementia, which are highly prevalent among all 

neurological disorders and are frequently studied in the literature. Three different 

advanced signal analysis methods are utilized for the classification of EEG signals. 

The EEG segments were investigated using (i) EMD and its derivative EEMD 

methods, (ii) DMD method, and finally, (iii) SST and traditional STFT methods to 

achieve high classification performances. The main objectives of the thesis are listed 

below; 

1. Distinguishing of EEG signals by classifying the features extracted from 

selected IMFs of EMD, or EEMD was performed. Simulations are performed 

to evaluate the effectiveness of selecting IMFs based on some metrics as 

opposed to using the first several IMFs for the classification. 

2. We investigated whether the recently proposed DMD can be used for the 

representation and classification of single-channel EEG signals. 

3. We aimed to define different features using the DMD spectrum. 

4. We propose high-resolution SST method-based feature extraction and 

classification model for EEG signals. 

1.2 Contribution of the Thesis to Literature 

Different uses and features from the literature have been proposed for the advanced 

signal processing methods, and high classification performances have been obtained 

for EEG signals of both disease types. The innovative contributions of this thesis can 

be highlighted as follows; 

(a) For the EMD and derivative EEMD based approaches; 

1. We propose a hybrid IMF selection method considering different approaches such 

as energy, correlation, power spectral distance, and statistical significance test. 
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2. We demonstrate the advantages of using selected IMFs by the proposed 

approaches of either EMD or EEMD as opposed to randomly selecting the first 

several IMFs. 

3. We investigate the performance improvement by using ensemble EMD in the 

classification of epileptic seizures as compared to traditional EMD, the EEG signal 

itself, and DWT-based approaches. 

(b) For the DMD based approach; 

1. We propose a single channel-based DMD algorithm for the analysis of EEG 

signals. In the literature, multi-channel EEG data are used for the DMD analysis. 

Here we show that the proposed DMD algorithm can successfully be applied to 

data recorded from a single channel. 

2. The DMD Spectrum provides similar results to Power Spectral Density estimates. 

However, while different EEG segments are analyzed simultaneously using the 

DMD algorithm by creating a high dimensional EEG data matrix, these EEG 

segments must be analyzed separately using the Fourier transform or similar 

approaches. In contrast to traditional spectral analysis where the frequency content 

is calculated at uniform frequency samples, the DMD spectrum is calculated only 

at the mode frequencies of the signal. This is why the DMD spectrum might have 

more than one power or no power values at some frequencies. 

3. We define novel features from the DMD spectrum in this study: higher-order DMD 

moments, and DMD sub-band powers, and use them in the classification of EEG 

signals. Thus, we show that a single channel DMD-based approach provides a 

computationally efficient method for the classification of EEG signals. 

(c) For the SST based approach; 

1. The magnitude of SST is used for feature extraction. Higher-order joint TF 

moments, traditional TF features, and Gray Level Co-occurrence Matrix (GLCM) 

based features are extracted. 

2. For the first time, TF moment, various traditional TF features, and GLCM based 

features are implemented to EEG signals of both epilepsy and Alzheimer’s 

dementia disorders. 

3. It has been observed that the SST method, which offers high TF resolution, allows 

successful classification of EEG signals in various neurological disorders. 
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2. Background Information and Literature 

Review 

This section contains information about the brain, the main source of neurological 

diseases, the EEG recording method, frequently used in the clinic and used in our 

study, epidemiology, clinical course, and literature review of epilepsy and Alzheimers’ 

Dementia. 

2.1 The Main Structures and Functions of the Brain 

The brain is the highly developed part of the Central Nervous System (CNS). An adult 

human brain weighs about 1.5 kg and consists of an average of 84 billion neurons and 

trillions of glial. It receives sensory information from the spinal cord and related nerve, 

processes this information, and controls the activities of trunks and limbs. It accounts 

for only 2% of the total body mass but is responsible for 20% of the total energy 

consumption, as it is responsible for the control of most physiological processes [10–

12]. The location of the brain in the nervous system, the three main divisions of the 

brain, each performing different functions, and the subdivisions of these main parts are 

summarized in Figure 2.1 [10–13]. 

The brain is divided into three important parts including the forebrain, midbrain, and 

hindbrain. The hindbrain is the division of the brain that helps regulate autonomic 

functions, direct sensory information, regulate movement, and maintain balance. The 

midbrain is the smallest division of the brain that helps to regulate movement and 

process auditory and visual information. The forebrain is the division of the brain that 

processes sensory information, helps reasoning and problem solving, and regulates 

autonomic, endocrine, and motor functions. The forebrain contains the cerebral cortex, 

which represents about 75% of the brain’s mass and covers most of the other brain 

structures. The cerebral cortex includes functions such as processing sensory 
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information, controlling motor functions, and executing higher-level functions like 

thinking and problem solving and have four important lobes (Shown in Figure 2.2) 

[10–13]. 

 

Figure 2.1: Schematic representation of parts of the nervous system. 

 

 

 Frontal Lobe: Responsible for important functions such as motor control of 

voluntary movements, consideration, judgment, and memory. 

 Parietal lobe: Responsible for all kinds of sensory functions such as receiving and 

processing sensory information. 

 Temporal lobe: Responsible for functions related to hearing sense, balance, and 

memory. 

 Occipital lobe: Responsible for functions related to the sense of vision 
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Figure 2.2: The four lobes of the brain. 

 

2.2 EEG 

The measurement of the electrical activity resulting from the communication activity 

of neurons in the brain with electrodes placed on the scalp is called the EEG and the 

first person to record the electrical field of the human brain was German psychiatrist 

Hans Berger [14]. The EEG signal has been a valuable clinical tool used to evaluate a 

variety of neurophysiological conditions. For EEG recordings, electrodes are placed 

on the surface of the scalp according to the internationally recognized 10-20 electrode 

placement system as illustrated in Figure 2.3 [14, 15]. 

The amplitude of a standard EEG signal varies between 0-200µV, while its frequency 

varies between 0.5-50Hz, and includes different frequency subbands such as delta (δ), 

theta (θ), alpha (α), beta (β), and gamma (γ). EEG subbands, frequency ranges of 

corresponding subbands, their characteristics waveforms, and general personal state 

are summarized in Table 2.1. 
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Figure 2.3: Internationally recognized 10-20 electrode placement system [14]. 

 

Table 2.1: Description of EEG Subbands [14]. 

Wave 

Type 

Frequenc

y Range 

(Hz) 

Region of the 

Brain 

Person State Example Waveform 

Delta 

(δ) 

0.5-4 prefrontal 

orbitofrontal  

deep sleep 

babies 

 
 

Theta 

(θ) 

4-8 temporal 

parietal  

Children, 

sleeping adults 

REM sleep 

 

 

 
 

Alpha 

(α) 

8-13 occipital 

frontal  

parietal  

Awake 

Eye closed 

resting state 

 

 

Beta (β) 13-30 parietal  

frontal  

mental 

activations 

Stress / 

Anxiety 

 

 

 

Gamma 

(γ) 

> 30 Frontocentral   

Whole-brain 

activity 
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2.3 Epilepsy and Literature Review 

Epilepsy is a neurological disease caused by the excessive and instant electrical 

discharge of the neurons. This disease affects millions of people worldwide, regardless 

of gender, age or social status. In the most general sense, epilepsy is a neurological 

disease that meets one or more of the following conditions; (1) at least two uncaused, 

non-stimulated (or reflex) seizures that occur more than 24 hours interval, (2) 

possibility of having an additional seizure similar to the overall risk of relapse (at least 

60%) after an uncaused (or reflex) seizure and two uncaused seizures within the next 

ten years, (3) an epilepsy syndrome diagnosis [16, 17]. According to data from the 

WHO in 2005, there existed at least 50 million people with epilepsy. Until the 19th 

century, it was believed that epilepsy was caused by vascular problems [2]. 

2.3.1 Epidemiology and Clinical Course of Epilepsy 

According to WHO, while the overall incidence of epilepsy varies from 0.27% to 5% 

worldwide, the proportion of patients with active epilepsy varies from 0.4% to 0.8%, 

which is lower in industrialized countries than in developing countries. The incidence 

of epilepsy in the second and third decade of life tends to be higher, and moreover, the 

incidence of epilepsy is higher in men than in women [2]. 

Due to the large number of seizure types and epilepsy, a single etiology and 

consequence cannot be determined. The simplest classification according to the types 

of seizures and epilepsy and the factors causing the disease is given in Figure 2.4. The 

initial stage of seizure classification is establishing whether the first sign of any seizure 

is generalized or focal. Seizures are called focal onset seizures if they have focal onset, 

and are called generalized onset seizures if they have a generalized onset. If the onsets 

of the seizures are unclear or cannot be detected for any reason, they are classified as 

unknown onset seizures. Another classification is conducted according to the type of 

epilepsy. Here, persons with generalized epilepsies can have various seizure types, 

with the inclusion of absence, myoclonic, atonic, tonic, and tonic-clonic seizures, and 

generalized spike-wave activity is observed on their EEGs. In another epilepsy type, 

Focal epilepsy, people may have unifocal disorders as well as multifocal disorders, 

and these disorders may even cover an entire hemisphere. If the person has both 
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generalized and focal seizures, the epilepsy type is classified as a combination of 

generalized and focal epilepsy. Additionally, epilepsy is classified as unknown 

epilepsy in cases where the patient is diagnosed with epilepsy by experts but the type 

of epilepsy cannot be detected because of various reasons. Although there is no 

classical epilepsy syndrome classification, the most common epilepsy syndromes are 

Childhood absence epilepsy, West syndrome, Dravet syndrome. In addition to 

correctly classifying the type of epilepsy and seizure, it is important to know the cause 

of the disease for correct treatment. While, epilepsy may have many causes such as 

structural, genetic, infectious, metabolic, and immune-related causes, it may also be 

due to an unknown cause. On the other hand, epilepsy can be seen as a single disease 

in the person, as well as in most cases, one or more diseases such as learning, 

behavioral and psychological problems may accompany epilepsy (comorbilities) [16, 

17]. 

 

Figure 2.4: The simplest block diagram of the seizure and epilepsy classification [16, 

17]. 

 

2.3.2 Literature Review 

Detection of epileptic seizures is performed by neurologists by a visual examination 

of longterm EEG signals. However, this method is very time consuming and generally 

yields incorrect results. On the other hand, epileptic seizures are initiated in different 

brain lobes of different individuals, so it is not possible to determine a standard focus 
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center for the studies. Therefore long-term EEG recordings are needed to detect 

epileptic seizures and determine focus center [18–21]. Since visual examination of 

long-term EEG data makes it difficult to diagnose the disease, automatic seizure 

detection has become a very popular research area and various signal processing 

methods have been applied to solve this problem [18, 21, and 22]. 

Epileptic seizure detection and classification studies have been reported frequently in 

the literature using various signal processing and classification methods. Variety of 

features such as temporal, spectral, statistical and nonlinear features are exploited to 

improve the detection and classification performance. 

Several methods have been presented for the detection and classification of seizure 

and seizurefree EEG segments by using time and frequency domain features such as 

energy [23], exponential energy [24], matrix determinant [18], spectral power of 

Hjorth’s mobility components [25], crosscorrelation, power spectral density [26], sub-

band spectral powers [27], average value, maximum value, and minimum value [21]. 

Weighted multiscale Renyi permutation entropy (WMRPE), Weighted Permutation 

Entropy (WPE), fuzzy entropy (FuzzyEn), a sigmoid entropy, approximate entropy 

(ApEn) based methods have also been frequently applied to this problem [28–30]. 

Additionally, non-linear parameters such as fractal dimension, scaling exponent 

obtained with detrended fluctuation analysis (DFA), Hurst’s exponent have been 

utilized in many studies and successful results have been obtained for the detection 

and classification of seizure and seizure free epileptic EEG signals [31, 32]. 

One of the most employed methods for the analysis is the Fourier Transform (FT) 

which generates spectral features. However, FT assumes that the signal to be analysed 

is stationary which is not the case; like most of the real-world signals, EEG signals are 

non-stationary. Another drawback of the FT is that it does not contain any time 

information [33]. Thus other methods have been developed based on time-frequency 

representations such as Short-Time Fourier Transform (STFT) which analyzes the 

local characteristics of a signal by using a window. However, since STFT utilizes only 

one filter, time and frequency resolutions of the resulting TF representation cannot be 

increased simultaneously. Wavelet Transform (WT) introduces a multiresolution 

analysis utilizing several filters with different bandwidths to overcome this problem 

[34]. In WT, a window containing all the signal to extract low frequencies is used 
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which produces good time resolution, then it is translated and scaled to extract higher 

frequency information which produces good frequency resolution [35]. Unfortunately, 

despite these advantages, WT fails to provide simultaneously improved time and 

frequency resolutions. In order to overcome these problems, Empirical Mode 

Decomposition (EMD) algorithm was developed to analyze non-stationary and non-

linear signals [36]. EMD is a data-driven approach which decomposes the signal into 

a finite number of oscillations called Intrinsic Mode Functions (IMFs) that are not 

predefined basis functions, but satisfying the following criteria: (i) Number of extrema 

and number of zero-crossings must be equal or differ at most by one. (ii) At any point, 

the mean of the envelope defined by local maxima and the envelope defined by the 

local minima is zero. The advantages of EMD are that scales are adaptive, separation 

of oscillation is data-driven and multi-resolution analysis is local, unlike WT which 

analyze the signal globally and based on pre-determined scales of filters [15]. 

Signal decompositions such as WT, STFT, EMD and derivatives, variational mode 

decomposition (VMD), singular value decomposition (SVD), synchrosqueezing 

transform (SST), and their variants have been successfully applied in classification and 

prediction problems [15, 35, 37–47]. 

Bajaj and Pachori used the EMD method, and calculated amplitude- and frequency- 

modulation bandwidths using Hilbert Transform (HT) of the IMFs. They differentiated 

seizure and nonseizure EEG signals using Support Vector Machine (SVM) classifier 

with Morlet kernel function and concluded that the proposed method can be used for 

the detection of epilepsy and for the analysis of non-stationary signals [15]. In 2017, 

Alickovic et al. investigated the performances of EMD, Discrete WT (DWT) and 

Wavelet Packed Decomposition (WPD) for epileptic seizure classification. Wu et al. 

introduced the complete ensemble empirical mode decomposition (CEEMD) method 

and Extreme Gradient Boosting (XGBoost) based seizure detection approach, and 

promising classification performance was achieved for seizure detection [40]. In 2019, 

Kumar et al. presented a VMD and semantic feature-based epileptic seizure detection 

approach [41]. In another work [48], the STFT and several other Time-Frequency (TF) 

distributions were employed to obtain the energy distribution of epileptic EEG signals. 

In a different approach [32], the analytic time-frequency flexible wavelet transform 

(ATFFWT) and fractal dimension (FD) were used to detect epileptic seizures 
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automatically. The direction of the energy of the signal in the TF field was used as a 

feature in another study to classify seizure and non-seizure EEG segments. The 

Wigner–Ville distribution (WVD) was utilized to obtain TF distribution [23]. In 

another seizure detection study [49], EEG signals were mapped into two-dimensional 

space, and texture images were obtained to distinguish seizure and seizure-free events. 

Using the GLCM, various texture features were obtained. In another study [50], TF 

images of EEG signals were obtained using continuous WT (CWT), and features are 

extracted from Gaussian Mixture Model (GMM) and GLCM. In a recent seizure 

detection study [51], CWT, DWT, higherorder spectra (HOS), GLCM, run-length 

matrix, fractal features, and local binary pattern based features are presented with 

outstanding performance. A new TF representation method called SST, is recently 

proposed by using reassignment of the TF coefficients into the instantaneous 

frequency trajectory to approximate the ideal TF distribution. Using STFT or CWT as 

initial TFR, SST provides a highly localized TF representations for multi-component 

non-stationary signals that is not usually possible with other TF analysis methods [52–

57]. In a recent study, the STFT (Fourier) based synchrosqueezed transform (FSST) 

was applied to the classification of seizure and seizure-free EEG signals using Bonn 

University data set. In this approach, the magnitudes of FSST were calculated and used 

to obtain 5 non-overlapping frequency sub-bands for each EEG signal. GLCM features 

of the five subbands were calculated and classified [57]. 

In [58], authors proposed a method for the detection of epileptic seizures using 

Dynamic mode decomposition (DMD). They calculated DMD powers by using 

augmentation and applied thresholding for feature reduction. The clustering of the 

DMD powers by frequency along with normalization was performed. Curve lengths 

of time-domain EEG signals were calculated as features. RUSBoost approach was 

adopted for classification. It was concluded that DMD is capable of differentiating 

seizure and non-seizure EEG signals. Using multi-resolution dynamic mode 

decomposition (MRDMD), seizure detection approach was conducted in another study 

[59]. The power of DMD modes and temporal features of EEG signals were used as 

features. Two different feature sets were obtained by combining temporal features with 

either DMD mode powers, or MRDMD mode powers to compare the performances of 

DMD and MRDMD methods. 
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After a brief investigation, it may be observed that successful classification results 

have been obtained by using classification algorithms such as SVM [21, 28–30, 32], 

Artificial Neural Networks (ANN) [14, 60, and 61],  K-Nearest Neighbor (kNN) 

algorithm [62], Extreme Learning Machine (ELM) [22, 31], Multilayer Perceptron 

Neural Network (MLPNN) [63], etc. In addition to above machine learning based 

classification studies, deep learning (DL) approaches have been successfully utilized 

for seizure detection and classification in recent studies [64–67]. 

2.4 Dementia and Literature Review 

Dementia is one of the most common neurological disorders in which the person 

suffers from the defection of cognitive functions that can affect daily life and activities, 

resulting from physical changes in the brain. These cognitive dysfunctions consist of 

multiple dysfunctions, including memory, learning capacity, language, orientation, 

comprehension, thinking, calculation, and reasoning. 

2.4.1 Epidemiology and Clinical Course of Dementia 

According to WHO, 24.3 million people suffer from dementia at the present time, and 

it is considered that the number of dementia patients will be 81.1 million by 2040. 

Approximately 2% of all dementia cases are seen before the age of 65, but the disease 

usually begins at an older age [2, 68, and 73]. There are many risk factors that increase 

or decrease an individual's likelihood of developing dementia. The incidence of 

dementia doubles every 5 years between the ages of 65 to 85. Therefore, age is one of 

the biggest risk factors for dementia. Gender is an important risk factor for dementia, 

and the incidence of different types of dementia in men and women varies [2, 68]. In 

addition, the likelihood of developing disease is closely related to genetic factors, and 

depression is another risk factor for dementia. There are vascular risk factors such as 

blood pressure and diabetes, as well as stroke and heart diseases are important 

disorders that cause dementia. Excessive smoking and alcohol use are also some of the 

factors that increase the likelihood of dementia, which is linked to lifestyle [68, 69]. 
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Figure 2.5: The most common causes of dementia [68–72]. 
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Figure 2.6: Sypmtoms of dementia in different stages [2, 70, and 71]. 

 

Dementia is a clinical syndrome that consists of a combination of symptoms and other 

characteristics that coexist and form a recognized model, so it is not a disease by itself. 

There are several causes of this syndrome, some of which are more common than 

others. This syndrome can occur differently in everyone, and symptoms related to the 

disease can be grouped into three stages named early, middle, and late stage [2]. In 

Figure 2.5 and Figure 2.6, the most common causes of dementia and stages of dementia 

are summarized, respectively [2, 68–72]. 

Within the scope of this thesis, the EEG data of early-stage Alzheimer’s Dementia 

(AD) were studied. AD is the most common type of Dementia, accounting for 

approximately 50-75% of all Dementia after the age of 65, and it is the most common 

cause of death compared to other dementia syndromes [68, 70–72]. While the risk of 

developing AD is 20% for women and 10% for men around the age of 45, the risk of 

developing AD increases for both gender groups after the age of 65 [71]. The protein 

fragment beta-amyloid accumulation outside of neurons and the accumulation of an 

abnormal form of tau protein within neurons is two of the most known brain changes 

associated with AD [68, 70, and 71]. Additionally, symptoms associated with AD are 

summarized in Figure 2.5. 
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2.4.2 Literature Review 

The diagnosis of Alzheimer’s disease and the follow-up of the response to treatment 

can be conducted by many medical methods. MRI, Computer Tomography (CT), and 

recording of the electrical activity of the brain with Electroencephalography are 

performed together with the general neurological and physical examination. In recent 

years, due to its low cost and being a non-invasive diagnosis method, EEG has started 

to attract great scientific attention and various researchers have focused on analyzing 

the EEG records of AD patients in order to follow changes such as complexity, 

synchronization, and regularity of EEG activity. EEG recording method has been a 

frequently used method not only for the detection of the disease but also for the follow-

up of the treatment and the determination of the response of the patients to the 

treatment [74, 75]. In the literature, there are many studies that have been carried out 

using the EEG recording method, which is frequently used during the diagnosis of AD 

and follow-up of the treatment, and remarkable results have been reported. 

Automatic EEG classification studies for dementia patients have been conducted using 

EEG sub-bands (δ, θ, α, β, and γ) and relative sub-bands powers were computed as 

features [74, 76–78].  In these studies, it was reported that δ and θ relative band powers 

of AD patients increased and α, β, and and γ relative band powers decreased. 

Tzimourta et al. [74] proposed the automated Alzheimer’s Disease detection study in 

which several statistical and spectral features were calculated using EEG signals of 

AD patients and healthy controls (14 AD patients, 10 healthy subjects). Considering 

the different EEG segment lengths (ranging from 5 to 12 s) and different brain regions, 

features were calculated for both the entire time domain EEG segment and their 5 

subbands. It was stated that the best performance for 5 different brain regions and for 

all classification problems evaluated was obtained using the Random Forest classifier 

with 12 s segment long (ACC: 88.79% to 96.78%, the highest performance was 

achieved in the CN/moderate AD classification problem.). Cassani et al. [79] used 

three different automated artifact removal (AAR) algorithms before the EEG feature 

extraction process to achieve higher AD detection performance. EEG signals of 20 

mild AD patients, 15 moderate AD patients, and 24 healthy control subjects were 

evaluated. Various features such as spectral power, magnitude square coherence, phase 

coherence/synchrony, and EEG amplitude modulation rate-of-change were calculated 
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to create the feature set. In the result of the study, a maximum of 89% AD detection 

performance is indicated. In another AD detection study, EEG amplitude modulation 

rate-of-change is calculated as features for each EEG sub-bands. EEG signals of 11 

healthy subjects, 11 mild AD, and 10 moderate AD patients were investigated for this 

research. It is reported that compared with the benchmark parameters, this study yields 

a higher accuracy gain [80]. Another AD detection approach was introduced in which 

three different feature sets named spectral, wavelet, and complexity-based feature sets 

were utilized by Kulkarni et al [81]. In this study, EEG recordings of 50 AD patients 

and 50 healthy subjects were evaluated. To construct the spectral-based feature set, 

relative EEG sub-band powers were calculated for each EEG sub-band; similarly to 

achieve the wavelet-based feature set, mean and variance values were calculated for 

each wavelet coefficient obtained using 5 decomposition levels. Additionally, to 

achieve the complexity-based feature set, Spectral entropy, Spectral centroid, Spectral 

roll-off, and Zero crossing rate were computed for each EEG segment. The highest 

classification accuracy of 96% with SVM classifier was obtained using the 

complexity-based feature set. 

Many studies have also been conducted to measure brain complexity using EEG 

signals. Various entropy values such as Approximate Entropy [74, 77, and 82], 

Permutation Entropy [78, 82], Sample Entropy [76, 78], Tsallis Entropy [76], Spectral 

Entropy [83], multiscale entropy [84], and Multivariate Multiscale Weighted 

Permutation Entropy [85]; and various nonlinear features such as correlation 

dimension [86], Higuchi Fractal Dimension [83, 87, and 88],  Lyapunov Exponent 

[86], and the Lempel – Ziv Complexity [89, 90] value were often calculated in 

literature. In all of these studies, it was emphasized that there was a decrease in brain 

complexity in AD patients compared to the control group, and promising results have 

been provided. Two different non-linear methods such as Lempel–Ziv (LZ) 

complexity which is the non-parametric metric of the one-dimensional signal’s 

complexity and computation of the central tendency metric (CTM) that summarizes 

the degree of variability in the signal, were used in another AD detection research 

(EEG recordings of 11 AD patients and 11 healthy subjects were used) [89]. In the 

consequence of the study, it was reported that 90.9% sensitivity and 72.7% specificity 

values were obtained. In study [90], the calculation of the distance-based Lempel–Ziv 

complexity (dLZC) metric, which could be used to analyze non-linear signals, was 
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performed to achieve distinctive information between EEG signals of healthy subjects 

and AD patients. In this study, EEG signals of 11 healthy subjects and 11 AD patients 

were analyzed and it is reported that lower dLZC values for AD patients were achieved 

than that of healthy subjects in the most electrode pairs. The maximum distinguish 

accuracies of 77.27% and 78.25% were obtained for subject-based and epoch-based 

classification methods, respectively. On the other hand, various synchronization 

parameters such as Random event synchronization, Granger causality, State-Space 

based synchronization, and amplitude and phase correlation were also calculated for 

the analysis of brain synchronization of AD patients [91]. 

In addition to calculating various features from EEG signals or EEG sub-bands, 

different decomposition methods have also been used for the analysis of AD patients’ 

EEG data. Various signal decomposition approaches including DWT, and EMD, and 

different classifiers were utilized to distinguish EEG signals of healthy, mild AD, and 

moderate AD subjects [92]. For this purpose, EEG signals of 35 healthy, 31 mild AD, 

and 20 moderate AD subjects were investigated. Different wavelet families were used 

for the DWT method and for each of them, number of decomposition level was chosen 

as 6. For the EMD method, the first 5 obtained IMFs were evaluated. Lots of features 

such as skewness, kurtosis, Shannon entropy, sure entropy, and Hjorth parameters 

were calculated for each case. Both K-fold cross-validation and leave-one-subject-out 

(LOSO) cross-validation methods were utilized and Daubechies type 4 (db4) wavelet 

of DWT yielded the highest classification performance (97.64%) using the kNN 

classifier for k-fold cross-validation. In study [93], spectral features and DWT features 

were calculated using EEG signals to distinguish healthy and Alzheimer’s subjects. 

EEG signals of 50 healthy and 50 Alzheimer’s subjects were recorded and evaluated. 

Relative band powers were calculated as spectral features. Using Daubechies wavelet 

and 5 decomposition levels, DWT coefficients were obtained, and the mean and 

variance of each DWT coefficient were calculated as DWT features. In the result of 

the study, it is mentioned that by using the combination of two feature sets, 94% 

classification accuracy was obtained. In another study [94], various analyses were 

conducted by means of the combined use of ANN, GA, and DWT to determine the 

degree of cognitive impairment and promising results have been obtained. 
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3. Materials and Methods  

In this section, advanced signal processing methods utilized for signal analysis, and 

classification algorithms used for classification stages of proposed approaches are 

introduced. 

3.1 Advanced Signal Decomposition Methods 

In this thesis, three different advanced signal analysis methods are utilized for the 

classification of EEG signals. The pre-seizure and seizure EEG segments are 

investigated using (i) EMD and its derivative EEMD methods, (ii) DMD method, and 

finally, (iii) SST and traditional STFT methods to achieve high classification 

performances. 

3.1.1 Empirical Mode Decomposition and its Variant 

We applied the EMD and Ensemble EMD methods for the analysis of EEG signals in 

our study. In the following, we present a brief introduction to these decomposition 

methods. 

3.1.1.1    Empirical Mode Decomposition  

Empirical Mode Decomposition which produces a collection of IMFs with zero-mean 

oscillations, is used as an adaptive time-frequency signal analysis method. In non-

linear and non-stationary processes, it is applied as a feature extraction and noise 

reduction method in signal processing applications. It is the most important rule of the 

EMD method that the sum of these obtained IMFs give the original signal. It is 

essential for the IMF to satisfy two conditions: (1) the number of zero crossing and 

extrema should be equal or should differ at most by one, (2) the mean value of the 
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upper and lower envelopes should be zero. The process of the EMD algorithm is to 

extract IMF, also called Sifting, can be performed as shown in Algorithm 1 [14, 95]. 

Algorithm 1: EMD 
 

1. Local minima 𝐿𝑚𝑖, 𝑖 = 1, 2, … and Local maxima 𝐿𝑥𝑗, 𝑗 = 1, 2, … are found using input 

signal 𝑥[𝑛]. 
 

2. Calculate 𝑈𝑒[𝑛] and 𝐿𝑒[𝑛] which upper and lower envelopes respectively, using cubic 

interpolation. 

3. Mean of envelopes value is found. 

𝑀𝑒[𝑛] = (𝑈𝑒[𝑛] − 𝐿𝑒[𝑛])/2 

4. Compute 𝑑1[𝑛] = 𝑥[𝑛] − 𝑀𝑒[𝑛]. If 𝑑1[𝑛] satisfies the condition of 𝐼𝑀𝐹, 

𝑑 1[𝑛] = 𝐼𝑀𝐹1[𝑛]. Else go to step 1 and repeat every processes using  𝑑1[𝑛] instead of 

𝑥[𝑛]. 

5. After obtaining 𝐼𝑀𝐹1[𝑛] calculate the residue 𝑅1[𝑛] = 𝑥[𝑛] − 𝐼𝑀𝐹1[𝑛]. If this residue 

has more than a zero-crossing, return step 1 and calculate again new 𝐼𝑀𝐹. 

This process will continue until last residue 𝑅𝐿[𝑛], which has no zero crossing is obtained 

and all necessary conditions are satisfied. 

We can reconstruct the original signal 𝑥[𝑛] using the following formulation: 

𝑥[𝑛] = (∑𝐼𝑀𝐹𝑙[𝑛]

𝐿

𝑙=1

) + 𝑅𝐿[𝑛] 

Here, L is the number of  𝐼𝑀𝐹𝑠 and  𝑅𝐿[𝑛] is the residue. 

 

3.1.1.2    Ensemble Empirical Mode Decomposition  

Although the standard EMD algorithm provides successful results in signal processing 

applications as a time-frequency analysis method, it suffer from a problem called 

“mode mixing”. The problem of mode mixing can be described as the occurrence of 

very different oscillations in one mode, or very similar oscillations in different modes. 

The Ensemble EMD method has been developed to overcome this problem. In the 

EEMD method, Gaussian white noise is added to the signal to be analyzed and the 

signal is decomposed into the IMF using the EMD method. Due to the statistical 

properties of Gaussian white noise, the continuity of the signal is obtained in different 



23 

 

frequency regions, so that the problem of mode mixing is reduced. The process of the 

EEMD algorithm is demonstrated in Algorithm 2 [96]. 

Algorithm 2: EEMD 

1. Gaussian white noise with different mean and variance is added to the analyzed signal. 

𝑥𝑖[𝑛] = 𝑥[𝑛] + 𝑔𝑖[𝑛]     𝑖 = 1, 2, … , 𝐾. 

Here, K is the number of ensemble, 𝑥[𝑛] is the original signal, and 𝑔𝑖[𝑛] is the Gaussian 

noise added at ith 𝑖𝑡ℎ iteration. 

2. From the noise added signal 𝑥𝑖[𝑛], the Intrinsic Mode Functions (𝐼𝑀𝐹𝑠) 𝐼𝑀𝐹𝑗
𝑖[𝑛], 𝑗 =

1, 2, … , 𝐽𝑖of the  𝑖𝑡ℎ iteration are obtained by the EMD algorithm. Here 𝐽𝑖 is the number 

of 𝐼𝑀𝐹𝑠 at 𝑖𝑡ℎ  iteration. 

 

3. After K iteration, the means 𝐼𝑀𝐹𝑗[𝑛]̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are obtained. 

𝐼𝑀𝐹𝑗[𝑛]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝐾
∑𝐼𝑀𝐹𝑗

𝑖[𝑛]

𝐾

𝑖=1

 

 

3.1.2 Dynamic Mode Decomposition 

Most of the real-world signals are observed from non-linear and dynamic systems, and 

the behavior of these processes may not be revealed by using traditional time or 

frequency domain methods. In DMD, measurements that are collected over a certain 

time interval are used for generalizing and expressing the process with a function, and 

also being able to predict the behavior of the system at a future point in time. Basic 

idea is to linearize the system with the Least-Squares Approximation (LSA), and 

obtain the eigenvalues and eigenvectors of the system to construct the dynamic modes 

which represent the observed signal. The algorithm constructs an original matrix 

whose columns are time snapshots, and time shifted versions of it. Afterwards, DMD 

obtains the best matrix that can linearly transform the current state of the system to the 

next state which can be calculated with least squares regression [97]. In recent studies, 

DMD algorithm has been used to analyze neural recordings and successful results have 

been obtained [58, 97–100]. 
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EEG signals recorded from a single channel are represented by 𝑇 −samples long data 

vectors. In DMD algorithm, 𝑁 × 𝑀 − data matrices are processed. In order to obtain 

𝑁 × 𝑀 size data matrix from EEG channels, M samples long EEG data recorded from 

𝑁 different channels are previously used [58]. Here 𝑁 represents the number of used 

EEG segments and 𝑀 represents the time samples called “snapshot”.  

In order to extract sufficient number of modes and to precisely capture the dynamics 

of neurological activity, the number of measurements (𝑁) must be at least twice the 

number of time points 𝑀, called snapshots [101]. As such, an augmented data matrix 

𝑋𝐴𝑢𝑔 of size (𝐾 × 𝐿) is obtained by applying a data augmentation process to the data 

matrix 𝑋. The augmentation process is based on the principle of creating the Hankel 

matrix specified in [98, 102]. In our experiments, we use 𝐾 = 200 and 𝐿 = 100 for 

the dimensions of the augmented matrix.  

Using the augmented EEG data matrix, two 𝐾 × (𝐿 − 1) new EEG data matrices 

𝑋𝑎𝑢𝑔  and 𝑋′
𝑎𝑢𝑔 given in Equation (3.1) can be constructed. Here, 𝑋′

𝑎𝑢𝑔  is the 

∆𝑡 shifted version of 𝑋𝑎𝑢𝑔  in time. 

 𝑋𝑎𝑢𝑔 = [
⋮ ⋮    … ⋮
𝑥1 𝑥2 … 𝑥𝐿−1

⋮ ⋮    … ⋮
]      𝑋′

𝑎𝑢𝑔 = [
⋮ ⋮    … ⋮
𝑥2 𝑥3 … 𝑥𝐿

⋮ ⋮    … ⋮
]    (3.1) 

 𝑋′
𝑎𝑢𝑔 = 𝐴 × 𝑋𝑎𝑢𝑔 (3.2) 

DMD works with the A matrix given in Equation (3.2), which best maps the original 

𝑋𝑎𝑢𝑔 matrix and its time-shifted version 𝑋′
𝑎𝑢𝑔. To determine a high-dimensional 

linear regression-based relation between data matrix pair 𝑋𝑎𝑢𝑔 and 𝑋′
𝑎𝑢𝑔, this 

transition matrix 𝐴 should be estimated. Using the eigen-decomposition of 𝐴, dynamic 

mode decomposition of the data matrix pair 𝑋𝑎𝑢𝑔 and 𝑋′
𝑎𝑢𝑔 is estimated. One possible 

approach to obtain the transition matrix 𝐴 is to compute the pseudo-inverse of 𝑋𝑎𝑢𝑔. 

However, as in the case of high-dimensional data such as neural recordings, this will 

cause computational confusion. By using the DMD algorithm, introduced in 

Algorithm 3, low-rank approximation �̃� of 𝐴, and its eigen-decomposition may be 

calculated [58, 97, 98, and 102].  
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Algorithm 3: DMD [58, 97, and 98] 
 

1. Calculate the Singular Value Decomposition of augmented EEG data matrix 𝑋𝑎𝑢𝑔 =

𝑈∑𝑉∗ explained in Section 3.1.2, and rewrite Equation (3.2); 

 

𝑋′
𝑎𝑢𝑔 = 𝐴𝑈∑𝑉∗ 

2. Define �̃�; 
 

𝐴 = 𝑋′
𝑎𝑢𝑔𝑋+

𝑎𝑢𝑔 = 𝑋′
𝑎𝑢𝑔𝑉∑−1𝑈∗ 

�̃� = 𝑈∗𝐴𝑈 
 

                                                                �̃� = 𝑈∗𝑋′
𝑎𝑢𝑔𝑉∑−1𝑈∗𝑈 

 

                                                                        �̃� = 𝑈∗𝑋′
𝑎𝑢𝑔𝑉∑−1 

 

Here, 𝑈 is the matrix of Left singular vectors, ∑−1 is the inverse of the singular values, 

𝑉 is the matrix of Right singular vectors, and �̃� denotes the approximate value of the 

transition matrix 𝐴. 

 

3. Calculate the eigendecomposition of �̃�; 
 

�̃�W = 𝑊Ω 
 

Here, W is the matrix of eigenvectors, Ω is the diagonal matrix of eigenvalues 𝜆𝑚which 

are the eigenvalues of DMD modes. 

 

4. Calculate the DMD modes of augmented EEG data matrix 𝑋𝑎𝑢𝑔. 

 

 

Φ = 𝑋′
𝑎𝑢𝑔𝑉∑−1𝑊 

 

Each column of Φ contains the DMD mode Φ𝑚 extracted from the augmented EEG 

data matrix matching to eigenvalues 𝜆𝑚. 
 

 

3.1.3 Synchrosqueezing Transform 

In this study, STFT based SST are utilized to obtain the joint TFR of EEG segments. 

STFT is a traditional method which relies on short-time processing of non-stationary 

signals to capture the time-varying frequency content. STFT uses a sliding window to 

divide the signal into short-time and usually overlapping segments. Fourier transforms 

of the short-time segments are calculated and process is repeated until the whole signal 

is covered by windowing. Parameters used in windowing such as window type, length, 
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and amount of overlapping affect the resolution of the resulting STFT [48, 103]. 

Magnitude square of the STFT is referred to as the “Spectrogram” and widely used to 

estimate how the energy of a signal is distributed over joint TF plane.  

 𝑋(𝑡, 𝜔) =  ∫ 𝑥(𝜏)𝜔(𝜏 − 𝑡)𝑒−𝑗𝜔𝜏𝑑𝜏
∞

−∞

 (3.3) 

where 𝑥(𝑡) is the analyzed signal, 𝜔(𝑡) is the window function, and 𝑋(𝑡, 𝜔) is the 

STFT. 

STFT of a given signal 𝑥(𝑡) and a selected window function 𝜔(𝑡)  may also be 

formulated using their Fourier transforms 𝑋(𝜔) and 𝑊(𝜔) by, 

 𝑋(𝑡, 𝜔) =  
1

2𝜋
∫ 𝑋(𝜑)𝑊(𝜔 − 𝜑)𝑒𝑗𝜑𝜏𝑑𝜑

∞

−∞

 (3.4) 

Spectrogram of the signal is defined by, 

 𝑆𝑆𝑃(𝑡, 𝜔) =  |𝑋(𝑡, 𝜔)|2 (3.5) 

Synchrosqueezing Transform that belongs to the family of TF reassignment methods 

(RM) initially developed to analyze the audio signals [52, 53, 104, and 105]. RM and 

SST were developed to enhance the localization properties of TFRs. Using the 

reassignment or squeezing process, the TF coefficients of conventional TF analysis 

approaches approximate the instantaneous frequency (IF) trajectory close to the ideal 

TFR. SST and RM map the TF coefficients “𝑋(𝑡, 𝜔)“ calculated by another TF 

analysis method according to below procedure;   

 
𝑅𝑀: (𝑡, 𝜔) → (𝜏0(𝑡, 𝜔),𝜔0(𝑡, 𝜔)) 

                                      𝑆𝑆𝑇: (𝑡, 𝜔) → (𝑡, 𝜔0(𝑡, 𝜔)) 
(3.6) 

Here, 𝜔0(𝑡, 𝜔) is the approximation of the instantaneous frequency and 𝜏0(𝑡, 𝜔) is the 

approximation of the group delay [54].  
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While high resolution in both time and frequency may be achieved with the RM 

method by reassigning the spectrogram into the IF trajectory, signal reconstruction is 

not possible. On the other hand, by squeezing the TF coefficients into the IF trajectory, 

resolution only in the frequency direction can be obtained with SST. Additionally, 

signal reconstruction may be achieved using SST, but TF resolution is lower than RM 

[54, 106]. SST method can be used to obtain TF representation of signals in complex 

systems based on continuous wavelet transform or Short-Time Fourier Transform. In 

our proposed study, the STFT based SST is utilized to analyze EEG segments. The 

energy concentration of 𝑥(𝑡) in the joint TF plane is improved by the squeezing 

procedure in the SST method. The IF information required in SST is obtained from the 

derivative of the STFT. Using the estimated IF information, the STFT coefficients that 

have the same frequency are collected where they should appear [54, 57, and 106]. 

The steps of SST are given in Algorithm 4.  

 

Algorithm 4: SST 
 

1. Let 𝑥(𝑢) be the EEG segment to be analyzed and 𝜔(𝑢 − 𝑡) is the shifted window 

function. SST process starts by taking the STFT. Using the Fourier Transforms of 

analyzed signal (𝑋(𝜑)) and window function (𝑊(𝜔 − 𝜑)), STFT 𝑋(𝑡, 𝜔) is obtained. 

 

𝑋(𝑡, 𝜔) =  
1

2𝜋
∫ 𝑋(𝜑)𝑊(𝜔 − 𝜑)𝑒𝑗𝜑𝜏𝑑𝜑

∞

−∞

 

 

2. In order to obtain the IF 𝜔0(𝑡, 𝜔) from STFT, the derivative of 𝑋(𝑡, 𝜔) is calculated with 

respect to time. 

 

𝜔0(𝑡, 𝜔) = −𝑗
1

𝑋(𝑡, 𝜔)

𝜕𝑋(𝑡, 𝜔)

𝜕𝑡
 

 
3. By using instantaneous frequency 𝜔0(𝑡, 𝜔), STFT coefficients that have the same 

frequency are collected where they should appear. The SST 𝑇(𝑡, 𝜂) is formulated by using 

synchrosqueezing operator ∫ 𝛿(𝜂 − 𝜔0(𝑡, 𝜔))𝑑𝜔.
∞

−∞
 

 

𝑇(𝑡, 𝜂) = ∫ 𝑋(𝑡, 𝜔)𝛿(𝜂 − 𝜔0(𝑡, 𝜔))𝑑𝜔.
∞

−∞
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3.2 Classification and Performance Evaluation 

3.2.1 Classification 

In the proposed thesis, features extracted utilizing the three different approaches are 

classified using six different classifiers such as Decision Tree (DT), Logistic 

Regression (LR), Naïve Bayes (NB), kNN, SVM, Random Forest (RF), Boosted Trees 

(BT), and Subspace kNN (S-kNN) to distinguish related EEG segments. In the 

following, we present the fundamentals of these classification methods.  

3.2.1.1    Support Vector Machine  

SVM, a supervised machine learning algorithm, is a successful algorithm that is 

frequently used in both classification and regression studies. In this algorithm, the 

elements of the dataset containing n features are placed as elements of the coordinate 

system in an n-dimensional space. Then, the classification is performed by finding the 

hyperplane that separates the classes best. There are many possible hyperplanes that 

can separate the two classes. What is important here is to choose the hyperplane from 

which the highest classification performance may be achieved.  

Let (𝑥𝑘, 𝑦𝑘) be given as a separable sample example. Here 𝑘 indicates the size of the 

feature set and 𝑦 ∈ {−1, 1} indicates the class label. Hence, separating hyperplane can 

be formulated via 𝑓(𝑥) = 𝜔𝑥⃗⃗⃗⃗  ⃗ + 𝑐 here  �⃗⃗�  indicates the hyperplane parameters and 𝑐 

indicates the offset. The hyperplanes that can separate the two classes from each other 

with minimum error provide 𝑦𝑘[(𝜔𝑥⃗⃗⃗⃗  ⃗𝑘) + 𝑐] − 1 ≥ 0, 𝑘 = 1, 2, … , 𝑛 condition. The 

main purpose here is to achieve the maximum margin. Here the margin is the distance 

between the support vectors (shown in Figure 3.1) belonging to two different class. 

Finally, the data falling on different sides of the hyperplane is assigned as an element 

of the different class [28, 29, 62, and 95].  The basic representation of the SVM 

algorithm for 2 classes problem is given Figure 3.1a.  
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(a) 

 

(b) 

Figure 3.1: Basic representation of the (a) SVM algorithm, (b) kNN algorithm 

 

3.2.1.2    k-Nearest Neighbor  

It is one of the learning-based pattern recognition methods. The dataset is divided into 

two parts as training and test then the learning process is performed according to the 

data in the training set. First, the distance between the sample to be classified and all 

the data in the training set is calculated. Then, the k nearest neighbors that have 

minimum distance is determined. Finally, the most common class among these k 

nearest neighbors is selected as the class of the new sample. Various distance 

measurement methods such as Euclidean, Manhattan, Minkowski, and Hamming can 

be used for distance calculation [49, 62]. In our study, the most commonly used 

Euclidean distance calculation method is used (shown in Equation (3.7)) and k value 

is chosen as 5. The basic representation of the kNN algorithm for 2 class problem is 

given in Figure 3.1b.  

 𝐸𝐷 =  √∑(𝑥𝑚 − 𝑦𝑚)2

𝑛

𝑚=1

 (3.7) 
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3.2.1.3    Naive Bayes  

It is one of the probabilistic classifiers based on Bayes theorem in which classification 

is performed according to probability basics. The classification process is performed 

by calculating the membership probability of a sample to all classes in the dataset.  

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be given. Here, 𝑛 is the number of features, 𝑋 indicates the 

sample in the feature set. In addition, {𝑀1, 𝑀2, … ,𝑀𝑚} represents classes, here 𝑚 is 

the number of classes. The probability that each 𝑋 data in the data set is a member of 

the 𝑀𝑖 class is calculated as given in Equation (3.8):  

 

 

𝑃(𝑀𝑖/𝑋) =
𝑃(𝑋/𝑀𝑖)𝑃(𝑀𝑖)

𝑃(𝑋)
 

 

if;     𝑃(𝑀𝑖 𝑋⁄ ) > 𝑃(𝑀𝑗 𝑋⁄ ),     1 ≤ 𝑗 ≤ 𝑚,   𝑗 ≠ 𝑖             

 

(3.8) 

Then the 𝑋 data is assigned to the class in which class membership is highest. Here, 𝑋 

data is assigned to the 𝑀𝑖 class. Where 𝑃(𝑀𝑖 ) indicates the class prior probabilities, 

𝑃(𝑋 ) indicates the prior probability of sample 𝑋, 𝑃(𝑋/𝑀𝑖) indicates the probability 

of 𝑋 conditioned on Mi and 𝑃(𝑀𝑖/𝑋) indicates the probability of 𝑀𝑖  conditioned on 

𝑋 [48, 49]. A basic graphical representation for the NB algorithm is given in Figure 

3.2a.  

 

 
 

(a) 

 
(b) 

Figure 3.2: Basic representation of the (a) NB, and (b) LR algorithm 
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3.2.1.4    Logistic Regression  

LR is a frequently used statistical classification technique in which the probability 

(P1), of dichotomous outcome event limited to two values such as yes/no, on/off, or 

1/0, is related to a set of independent variables as given in Equation (3.9).  

 

 

𝐿𝑜𝑔𝑖𝑡(𝑃1) = ln
𝑃1

1 − 𝑃1
= 𝛽0 + 𝛽1𝑋1 + ⋯+ 𝛽𝑛𝑋𝑛 

(3.9) 

Here, 𝛽0 is the intercept and {𝛽1𝑋1 + ⋯+ 𝛽𝑛𝑋𝑛} are the coefficients associated with 

the independent variable {𝑋1 + 𝑋2 + ⋯+ 𝑋𝑛}. Generally, in the Logistic regression 

method, the maximum likelihood estimation (MLE) method is used to calculate the 

coefficients {𝛽1𝑋1 + ⋯+ 𝛽𝑛𝑋𝑛}. The probability of existing of an event as a function 

of the independent variables is nonlinear as extracted from Equation (3.10) [48].  

 

 

𝑃1(𝑋) =
𝑃1

1 + 𝑒−𝐿𝑜𝑔𝑖𝑡(𝑃1(𝑋))
 

(3.10) 

Here, 𝑃1 ∈ {0, 1} indicates the probability value.  

If the result of Equation (3.10) is −∞, the probability is 0 (𝑃1 = 0), and if the result of 

this equation is ∞, our probability is 1. A basic graphical representation for the LR 

algorithm is given in Figure 3.2b.   

3.2.1.5    Decision Tree  

DT algorithm is a machine learning method that can separate the data into several sub-

groups and can be used for classification as well as regression. The name of the 

algorithm comes from the tree-like structures as branches or nodes that are used. In 

this algorithm, training is performed by learning a set of decision rules. When a 

decision is made a leaf node is created whereas when the decision is not certain a 

decision node which is another branch, is created. In this thesis, coarse tree algorithm 

is used for the classification process [48].  
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3.2.1.6   Random Forest  

The random forest classifier is an ensemble classifier that is composed of many 

individual decision trees. Trees randomly selected from among many possible trees 

are called random trees, and these random trees are a decision tree that takes into 

account "𝑘" features randomly selected at each node. By randomly selecting 𝑁 

samples, with replacement, from the data set, a training set is created for each tree. 

Here, each sample has "𝐾" features. Then, without replacement, a subset "𝑘 = √𝐾 ” 

of the features "𝐾" of the training set are randomly chosen to split the nodes of the 

decision tree. The best splitting feature in the "𝑘" subset is used to split each node in a 

tree. This process continues until all selected samples have been sorted. Thus, an 

output is obtained for each decision tree. The class that is common among the outputs 

of all the used decision trees is select by the random forest algorithm [38, 41, and 45]. 

For our experiment, 30 is selected as the number of the decision tree.  

3.2.1.7   Subspace kNN  

S-kNN is one of the ensemble learning classifiers in which subsets of a specific number 

of features are randomly selected and categorized in the feature set. For 𝑛-dimensional 

feature set {𝑋1, 𝑋2, … , 𝑋𝑛}, 𝑚-dimensional random subspaces  {𝑋1, 𝑋2, … , 𝑋𝑚},𝑚 <

𝑛 are selected, and 𝑘 nearest neighbors of each test sample are calculated for each 

subset using Euclidean distance. The class labels of those 𝑘 neighbors {𝑐1
𝑙,

𝑐2
𝑙,, … , 𝑐𝑘

𝑙,} are collected in a list. Finally, the most common class in that list is 

selected as the class of the test sample [107]. In our experiments, subspace dimension 

and number of learners are selected as 8 and 30, respectively.  

3.2.1.8   Boosted Tree  

Boosting is one of the frequently used powerful ensembles learning approaches for 

classification and regression. In this approach, initially, a ‘weak’ hypothesis 

 {𝑇1, 𝑇2, … , 𝑇𝐷} of 𝐷 decision trees with 𝐾 nodes is created for training data 

 {𝑋1, 𝑋2, … , 𝑋𝑁} with weight𝑠 {𝜔t
1, 𝜔t

2,, … , 𝑐𝑡
𝑁,}, where 𝑡 is the number of trials. 

The learning process starts by using the initial 𝜔𝑡 for the decision tree of 𝐾 nodes. The 

weights of training data are updated using the weight of decision trees’ each node 
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𝑑(𝑡, 𝑘). This process continues until 𝑡 = 𝐷. Two parameters such as the number of 

learner trees and the number of nodes per tree are important for the success of boosted 

decision trees [108]. In the proposed boosted tree classification experiment, the 

number of learners is equaled to 30 and the maximum number of the nodes is selected 

as 20.  

 

3.2.2 Statistical Analysis and Performance Evaluation Metrics 

In this thesis, accuracy (ACC), sensitivity (SEN), selectivity (SPE), precision (PRE), 

false positive rate (FPR), and false discovery rate (FDR) expressed as the performance 

criteria and F-score (F1-S) values that is the combination of previous parameters are 

used for performance evaluation. K-fold cross-validation (CV) method has been used 

to establish the performances of the classifiers.  

 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
∗ 100% 

 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100% 

 

𝑆𝑃𝐸 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
∗ 100% 

 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
∗ 100% 

 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
∗ 100% 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑅𝐸 ∗ 𝑆𝐸𝑁

𝑃𝑅𝐸 + 𝑆𝐸𝑁
∗ 100% 

 

(3.11) 

Here, true-positive (TP) is the sample number of 𝑐𝑙𝑎𝑠𝑠 − 1 classified in the same class, 

and true-negative (TN) is the sample number of 𝑐𝑙𝑎𝑠𝑠 − 0 classified in 𝑐𝑙𝑎𝑠𝑠 − 0. 

While false-positive (FP) is the number of samples not in 𝑐𝑙𝑎𝑠𝑠 − 1 but classified 
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in 𝑐𝑙𝑎𝑠𝑠 − 1, false-negative (FN) indicates the number of samples in 𝑐𝑙𝑎𝑠𝑠 − 1 but 

classified in 𝑐𝑙𝑎𝑠𝑠 − 0 [28, 29, and 48]. In order to obtain a consistent classification 

accuracy, 𝐾 −fold cross-validation is employed in our experiments. In the 𝐾 −fold 

cross-validation process, the feature set is divided into 𝐾 equal size subsets. The 

method is repeated K times, and each time (𝐾 − 1)/𝐾 of the sub-sets are utilized for 

training, and the remaining 1/𝐾 is used for testing. Then the average accuracy for 𝐾 

trials is computed as classification accuracy [32, 38, and 48]. Visual demonstration of 

𝐾-fold Cross-Validation is illustrated in Figure 3.3. 

 

 

Figure 3.3: Visual demonstration of K-fold Cross Validation. 
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4. Classification of Epileptic EEG Signals 

Using Advanced Signal 

Decomposition Methods 

In this study, three different approaches are presented to distinguish seizure and 

seizure-free EEG segments. In the first method, various temporal, spectral, and non-

linear features are extracted from the IMFs obtained using EMD and EEMD 

approaches. In the second method we present, epileptic EEG segments are analyzed 

using a simple matrix decomposition method, namely the DMD approach. Finally, in 

the third approach the SST method with high TF resolution is utilized to extract 

features and achieve high classification performance in distinguishing seizure and 

seizure-free EEG segments. The results of these three approaches are compared in line 

with the classification performances of various machine learning algorithms used in 

our study. 

4.1 Experimental Data sets 

In this thesis, two different Epileptic EEG data sets are evaluated. The first one is our 

own IKCU data set that was collected from patients under treatment at Izmir Katip 

Celebi University Medical School Hospital. The other one is CBH-MIT data set that 

is publicly available epileptic EEG data collected at Children’s Hospital Boston.  

4.1.1 Epileptic EEG data set-1 (IKCU Epilepsy data set) 

Epileptic EEG data of 16 epilepsy patients recorded using surface electrodes in Izmir 

Katip Celebi University, School of Medicine, and Neurology Department were used 

in this study. EEG data were recorded using the Neurofax EEG device, from 18 

different channels and at a sampling frequency of 100 Hz. Surface EEG data were 
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recorded from, Fp1-F7, F7-T1, T1-T3, T3-T5, T5- O1, Fp1-F3, F3-C3, C3-P3, P3-O1, 

Fp2-F8, F8-T2, T2-T4, T4-T6, T6-O2, Fp2-F4 F4-C4, C4-P4, P4-O2, electrode 

positions, according to the International 10-20 electrode placement system. In order to 

use this EEG data within the scope of our study, Izmir Katip Celebi University Non- 

Invasive Clinical Research Ethics Committee was applied and Ethical Approval dated 

08.08.2019 and numbered 296 was obtained. As discussed in [109], EEG signals 

recorded from the temporal and frontal lobe-weighted 10 channels (Fp1-F7, F7-T1, 

T1-T3, T3-T5, Fp1-F3, Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-F4) are used in the study.  

One-minute pre-seizure and seizure epochs were marked by neurologist in the 

Epileptic EEG signals recorded from selected channels. A total of 2 EEG epochs, one 

pre-seizure, and one seizure EEG epoch were used for each patient for our study. Thus, 

a total of 32 EEG epochs (containing 10 channels, for one minute) were analyzed. 

Summary of the EEG dataset used in the proposed study is presented in Table 4.1.  

 

Table 4. 1: Summary of the IKCU EEG dataset used proposed study (F: Female, M: 

Male, LTemp: Left Temporal, RTemp: Right Temporal, RFron.-Temp: Right Fronto-

Temporal) 

Subject Gender 
Epileptic 

Focus Area 
Age/Duration 

Patient 1 

Patient 2 

Patient 3 

Patient 4 

Patient 5 

Patient 6 

Patient 7 

Patient 8 

Patient 9 

Patient 10 

Patient 11 

Patient 12 

Patient 13 

Patient 14 

Patient 15 

Patient 16 

F 

F 

F 

F 

F 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

LTemp 

LTemp 

LTemp 

LTemp 

LTemp 

LTemp 

LTemp 

RFron.-Temp 

RFron.-Temp 

LTemp 

LTemp 

LTemp 

LTemp 

LTemp 

LTemp 

LTemp 

Age: 37.3±7 

Duration: 1 min. 
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4.1.2 Epileptic EEG data set-2 (CHB-MIT data set) 

In order to demonstrate the success of the proposed approach on a second data set, the 

multichannel (23 or 18 channels) epileptic EEG data collected at Children’s Hospital 

Boston, CHB MIT [110] are used for seizure detection. This data set contains epileptic 

EEG data recorded from 24 pediatric patients with 256 Hz sampling frequency. In the 

proposed experiments, the temporal and frontal lobe-weighted 10 EEG channels (FP1-

F7, F7-T7, T7-P7, FP1-F3, T7- FT9, FP2-F8, F8-T8, T8-P8, FP2-F4, FT10-T8) of 23 

patients (chb01-chb23) are used in order to make the experiment parallel to the IKCU 

data set.   

1s duration, non-overlapping EEG segments from the seizure EEG signals, and 10-

minute inter- seizure EEG signals that are maximum 1-2 hours prior to the onset of the 

seizure are obtained for each patient.  

4.2 Results and Discussions of EMD and its Derivative 

IKCU EEG Data set including pre-seizure and seizure EEG signals was analyzed using 

EMD, and EEMD methods and various classifiers. In the proposed method, we had 10 

channel and two epoch EEG signal for each patient (total number of patients is 16). 

Hence the size of the pre-seizure and seizure EEG dataset is 16x10. Maximum 

numbers of obtained IMFs after applying the EMD and EEMD are 16 and 15 

respectively. Therefore, since it would be time-consuming and meaningless to obtain 

features from all IMFs, IMF selection process is carried out for EMD and EEMD 

methods in order to identify the IMF that best represents the original signal, before the 

feature extraction.  

4.2.1 Selection of Intrinsic Mode Functions  

In this study we propose a hybrid IMF selection method by using energy based, 

correlation based, PSD-distance based, and t-test based approaches. Pre-seizures and 

seizures Epileptic EEG data of 16 patients recorded from 10 channels (IKCU EEG 

data set) were decomposed into the IMFs using both EMD and EEMD approaches 
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(example signals are shown in Figure 4.1), then the proposed IMF selection procedure 

described below is executed.  

4.2.1.1 Energy Based Selection Method 

The energies of each IMFs are calculated as shown in Equation (4.1). Since the higher-

energy IMF is considered to be the best representative of the original signal, the IMFs 

were ranked from the high-energy IMF to the low-energy IMF [111]. 

 𝐸𝐼𝑀𝐹𝑖
= ∑|𝐼𝑀𝐹𝑖[𝑛]|2,      𝑖 = 1, 2, … , 𝐿.

𝑁−1

𝑛=0

 (4.1) 

Here,  𝐼𝑀𝐹𝑖  is the  𝑖𝑡ℎ IMF and 𝐸𝐼𝑀𝐹𝑖
 is the energy of this IMF.  

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 4.1: (a) Surface pre-seizure EEG signal and its first three IMFs obtained using 

EMD, (b) Surface seizure EEG signal and its first three IMFs obtained using EMD, 

(c) Surface pre-seizure EEG signal and its first three IMFs obtained using EEMD, (d) 

Surface seizure EEG signal and its first three IMFs obtained using EEMD 
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4.2.1.2 The Correlation Based Selection Method 

The correlation coefficient of each IMFs are calculated as shown in Equation (4.2). 

Since the IMF with high correlation coefficient is considered to be a good 

representative IMF of the original signal, the IMFs are ranked from the high correlation 

coefficient IMF to the low correlation coefficient IMF [112]. 

 𝜌𝑥,𝐼𝑀𝐹𝑖
=

𝐶𝑥,𝐼𝑀𝐹𝑖

𝜎𝑥𝜎𝐼𝑀𝐹𝑖

 (4.2) 

Here, 𝐶𝑥,𝐼𝑀𝐹𝑖
 is the crosscovariance of the original signal and  𝑖𝑡ℎ IMF, 𝜎𝑥, and 

𝜎𝐼𝑀𝐹𝑖
 are the standard deviations of the original signal and 𝐼𝑀𝐹𝑖 respectively, 𝜌 

denotes the correlation coefficient.  

4.2.1.3 The PSD-distance Based Selection Method 

Another IMF selection method, based on power spectral densities (PSD) was also 

utilized by using the power spectral densities of the original signal and IMFs. The 

distances between the estimated PSDs are calculated using the Kullback Leibler 

Distance (KLD) method as shown in Equation (4.3). If the distance between the PSDs 

of original signal and an IMF is minimum, that IMF is considered to be the best 

representative IMF of the original signal. Hence, the IMFs are ranked from the low 

PSD distance IMF to the high PSD distance IMF [113, 114].  

 𝑑𝑖𝑠𝐾𝐿𝐷(𝑥, 𝐼𝑀𝐹𝑖) = ∑ 𝑙𝑜𝑔
𝑃𝑆𝐷𝑥(𝜔𝑘)

𝑃𝑆𝐷𝐼𝑀𝐹𝑖
(𝜔𝑘)

𝑁−1

𝑛=0

,    𝜔𝑘 =
2𝜋

𝑁
𝑘. (4.3) 

In Equation (4.3), 𝑃𝑆𝐷𝑥 is the power spectrum of the original signal, 𝑃𝑆𝐷𝐼𝑀𝐹𝑖
 is the 

power spectrum of the  𝑖𝑡ℎ  IMF, 𝑑𝑖𝑠𝐾𝐿𝐷(𝑥, 𝐼𝑀𝐹𝑖) shows the KLD between the power 

spectrum of the  𝑖𝑡ℎ  IMF and the power spectrum of the original signal.  
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4.2.1.4 T-test Based Selection Method 

We also use the t-test statistical significance measure for the selection of best IMFs 

[14]. As such we calculate the p score for every IMF by applying the t-test in 

MATLAB. Since the p-value obtained here shows the statistical significance of 

signals, the IMFs are ranked from the high p-value IMF to the low p-value IMF. As a 

result of the above four selection approaches, we obtain a ranking matrix of the IMFs. 

An example of this matrix for a single EEG channel of a patient is shown in Table 4.2.   

 

Table 4.2: Example of IMF Ranking Matrix for EEMD method 

 Order of IMF 

Component 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 

Energy 7 6 8 5 9 10 4 1 3 2 11 12 

Corr. Coef. 7 6 8 9 5 4 10 3 11 12 1 2 

PSD dis. 1 2 3 4 5 6 7 8 9 10 11 12 

P value 3 2 1 7 4 9 5 6 10 8 11 12 

Here; 

 7th IMF has the highest Energy while 12th IMF has the lowest Energy. 

 7th IMF has the highest Correlation Coefficient while 2nd IMF has the lowest 

Correlation Coefficient. 

 1st IMF has the lowest PSD distance while 12th IMF has the highest PSD distance. 

 3rd IMF has the highest p value while 12th IMF has the lowest p value. 

 Each row shows the ranking of the obtained IMFs according to those features. 

 

 

Figure 4.2: Histogram of first priority selected IMFs for EEMD method 
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These procedures were applied to the pre-seizure and seizure EEG data of 10 different 

channels of each patient separately. As a result of these procedures, 40 metrics for 10 

channels are calculated for each patient. All ranking matrices were combined and a 

1280x16 dimensional ranking matrix for all pre-seizure and seizure EEG data was 

obtained. To determine the first priority selected IMFs for all signals, the histogram of 

the 1st column of the ranking matrix was calculated. The resulting histogram is shown 

in Figure 4.2. When the histogram shown in Figure 4.2 is evaluated, It is seen that in 

the 558 of the 1280 features calculated, the IMF-1 is the first priority selected IMF. 

Also, it is seen that in the 135 of the total features calculated, IMF-2 is the first priority 

selected IMF. Last, it is seen that 172 of the 1280 features calculated, IMF-3 is the first 

priority selected IMF. As a result of these processes, it is decided to use these three 

IMFs (IMF-1, IMF-2, and IMF-3) in our study.   

4.2.2 Feature Extraction 

4 time domain, 5 spectral, and 2 non-linear features are calculated for each pre-seizure 

and seizure EEG segment using the selected IMFs. For comparison, the same features 

are calculated from the EEG segment itself, without using the EMD or EEMD method. 

DWT has widely been used for the analysis of non-stationary signals [38]. In our study, 

we use the DWT based approach for feature extraction and classification of epileptic 

EEG segments to investigate the advantages of proposed EMD and EEMD based 

approaches. DWT decomposes a given signal x[n] into detail and approximation 

coefficients by using a set of mother wavelet function [38, 87]. In our study, 

Daubechies4 (db4) mother wavelet and 3 level subband decomposition are used. 

4.2.2.1 Time Domain Feature Set 

After the IMF selection process is carried out, the time domain feature dataset was 

created, using directly the EEG signals, using the first three of the IMFs obtained by 

EMD and EEMD methods, and using the subbands of DWT. Energy, Mean value, 

Skewness, and Kurtosis values are calculated for 3 IMFs, DWT subbands, and EEG 

signals in the time domain [24, 38].  
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𝐸 = ∑|𝑋[𝑛]|2
𝑁−1

𝑛=0

 

 

𝜇 =
1

𝑁
∑ 𝑋[𝑛]

𝑁−1

𝑛=0

 

 

𝑆 =

1
𝑁

∑ (𝑋[𝑛] − 𝜇)3𝑁−1
𝑛=0

(√1
𝑁

∑ (𝑋[𝑛] − 𝜇)2𝑁−1
𝑛=0 )

3 

(4.4) 

𝐾 =

1
𝑁

∑ (𝑋[𝑛] − 𝜇)4𝑁−1
𝑛=0

(
1
𝑁

∑ (𝑋[𝑛] − 𝜇)2𝑁−1
𝑛=0 )

2 

In the above equations, 𝑋[𝑛] indicates the EEG signal or IMFs, 𝑁 is the size of the 

signal or IMFs. 𝐸 denotes the energy, 𝜇 is the mean value; 𝑆 indicates the Skewness, 

𝐾 is the Kurtosis value.  

In the EMD and EEMD based approaches a total of 320x12 size, and DWT based 

approach a total of 320x16 size feature sets are obtained. Applying the same procedure 

to the EEG signal itself, a total of 320x4 size feature set for pre-seizure and seizure 

EEG data is obtained. 

4.2.2.2 Spectral Domain Feature Set 

To generate this feature dataset, the spectrum of the signal or IMF calculated by the 

periodogram method was used. Total power, Spectral Entropy, 1st, 2nd, and 3rd 

moments are calculated using the spectrum of signals [26, 62].  

 

𝑆(𝜔𝑘) =
1

𝑁
|𝑋(𝜔𝑘)|

2 

 

𝑆𝑇 = ∑ 𝑆(𝜔𝑘)

𝑁−1

𝑘=0

 

 

𝑀𝑗 = ∑(𝜔𝑘)
𝑗

𝑁−1

𝑘=0

𝑆(𝜔𝑘),      𝑗 = 1, 2, 3. 

(4.5) 
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𝐻 = − ∑ 𝑃(𝜔𝑘) log2 𝑃(𝜔𝑘)

𝑁−1

𝑘=0

  

Here, in Equations (4.5), 𝑆(𝜔𝑘) denotes the Power Spectral Density of the signal 

estimated by periodogram method, 𝑋(𝜔𝑘) is the Discrete Fourier Transform of the 

signal 𝑥[𝑛] [26], and 𝑆𝑇 is the total power. In addition, 𝑁 indicates the size of the 

corresponding signal and 𝜔𝑘 =
2𝜋

𝑁
𝑘. 𝑀𝑗 indicateS the higher order spectral moments 

of the corresponding signal. 𝐻 denotes the spectral entropy of the signal, and 𝑃(𝜔𝑘) =

𝑆(𝜔𝑘)

 𝑆𝑇
 indicates the normalized power spectral distribution [62].  

In the EMD and EEMD based approaches a total of 320x15 size, and DWT based 

approach a total of 320x20 size feature sets are obtained. Applying the same procedure 

to the EEG signal itself, a total of 320x5 size feature set for pre-seizure and seizure 

EEG data is obtained.  

4.2.2.3 Non-Linear Feature Set 

Non-linear features such as the Hurst Exponent and Higuchi Fractal Dimension are 

computed to obtain this feature data set. These nonlinear features are used to analyze 

the complexity and self-similarity of brain recordings and other biological signals. 

Calculation of Hurst Exponent and Higuchi Fractal Dimension are given in Equations 

(4.6), and (4.7); respectively.  

 

𝑋[𝑛] = {𝑋[1], 𝑋[2], … , 𝑋[𝑁] } 
 

𝑋𝐴[𝑛] = ∑𝑋[𝑖] − 𝜇,    𝑛 = 1,… ,𝑁.

𝑛

𝑖=1

 

 

𝑅[𝑚] = max({𝑋𝐴[1], 𝑋𝐴[2],… , 𝑋𝐴[𝑚] })
− min({𝑋𝐴[1], 𝑋𝐴[2], … , 𝑋𝐴[𝑚] }) 

 

𝑆[𝑚] = √
1

𝑚
 ∑(𝑋[𝑘] − 𝑋𝑚)

2
,

𝑚

𝑘=1

      𝑚 = 1,… ,𝑁. 

 

 

(4.6) 
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𝐿𝑁 = ln
𝑅(𝑘)

𝑆(𝑘)
      𝑘 = 1,… ,𝑁 

where, 𝑋[𝑛] given in Equation (4.6) shows the EEG signal or the IMFs to be analyzed 

and 𝜇 indicates the mean value of this signal. 𝑋𝐴[𝑛] indicates the accumulated 

deviation value of 𝑋[𝑛]. 𝑅[𝑚] 𝑖s the range series and 𝑆[𝑚] denotes the standard 

deviation of the time series 𝑋[𝑛], and 𝑋𝑚 is the mean value from 𝑋[1] to 𝑋[𝑚].  𝐿𝑁 

shows the logarithmic value. The Hurst exponent is calculated as the slope of the line 

where 𝐿𝑁 is plotted with respect to ln(𝑘).  

The value of Hurst Exponent (HE) ranges from 0 to 1. If there is no correlation in the 

time series, 𝐻𝐸 = 0.5; if time series has long range anti-correlations, 0 < 𝐻𝐸 < 0.5  

and if there is long-range correlations in the time series, 0.5 < 𝐻𝐸 < 1 [31].  

Higuchi FD (HFD) is used to calculate the FD directly from time-series signals. The 

most important parameter that must be determined for the calculation of Higuchi 

Fractal Dimension is 𝑘𝑚𝑎𝑥. The HFD values calculated in a given 𝑘𝑚𝑎𝑥  range are 

plotted against this range in order to determine the optimal value for the 𝑘𝑚𝑎𝑥 

parameter. The 𝑘 value that the obtained curve reaches the saturation point is 

determined as 𝑘𝑚𝑎𝑥 [32, 88].  

 

𝑋[𝑛] = {𝑋[1], 𝑋[2], … , 𝑋[𝑁]} 
 

𝑋𝑘
𝑚 = {𝑋[𝑚], 𝑋[𝑚 + 𝑘], 𝑋[𝑚 + 2𝑘]… , 𝑋[𝑚 + 𝑖𝑛𝑡(. ) ∗ 𝑘]},

𝑚 = 1, 2, … , 𝑘. 
 

 

𝐿[𝑚, 𝑘] =  
{(∑ |𝑋[𝑚 + 𝑖𝑘] − 𝑋[𝑚 + (𝑖 − 1)𝑘]|𝑖𝑛𝑡(.)

𝑖=1 )
𝑁 − 1
𝑖𝑛𝑡(. )

}

𝑘
 

 

𝐿[𝑘] =
1

𝑘
∑ 𝐿[𝑚, 𝑘],   𝑚 = 1, 2, … , 𝑘.

𝑘

𝑚=1

 

 

(4.7) 

In Equation (4.7), 𝑋[𝑛] indicates the one dimensional time series EEG signal or the 

IMFs and 𝑋𝑘
𝑚 indicates the new time series. Here, 𝑘 and 𝑚 are integers and the 

𝑖𝑛𝑡(. ) operation indicates the integer part of the (𝑁 − 𝑀)/𝑘 value, 𝑁 is the length of 

the original signal. The 𝐿[𝑚, 𝑘] calculated in Equation (4.7) indicates the size of the 
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new time series signals. The 𝐿[𝑘] calculated by using the average of the 𝐿[𝑚, 𝑘] values 

indicates the length of the curve for the 𝑘 new time interval. HFD is calculated as the 

slope of the line where 𝐿[𝑘]  is plotted with respect to ln[1 𝑘⁄ ], 𝑘 = 1, 2, … , 𝑘𝑚𝑎𝑥.  

In our study, HFD values calculated against different 𝑘𝑚𝑎𝑥 values are plotted and a 

graph was obtained (shown in Figure 4.3). It is observed that this graph reached 

saturation point when 𝑘𝑚𝑎𝑥 = 30. Therefore, the 𝑘𝑚𝑎𝑥  value is set to 30. 

 

Figure 4.3: HFD values calculated against different kmax values 

 

In the EMD and EEMD based approaches a total of 320x6 size, and DWT based 

approach a total of 320x8 size feature sets are obtained. Applying the same procedure 

to the EEG signal itself, a total of 320x2 size feature set for pre-seizure and seizure 

EEG data is obtained.  

4.2.3 Experimental Results and Discussion 

EEG signals including pre-seizure and seizure segments obtained from 10-channel 

EEG recordings of 16 epilepsy patients who are under treatment at Izmir Katip Celebi 

University School of Medicine, Department of Neurology, were analyzed using EMD, 

and EEMD approaches and various classifiers. The hybrid IMF selection process 

including energy, correlation, power spectral distance, and statistical significance 

measures was carried out for EMD and EEMD approaches in order to identify the 
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IMFs that best represent the original signal as described in Section 4.2.1. After the 

IMF selection process, time-domain (Energy, Mean value, Skewness, and Kurtosis) 

and spectral-domain (Total power, Spectral Entropy, 1st, 2nd, and 3rd moments), and 

non linear (Hurst Exponent and Higuchi Fractal Dimension) feature-sets were created 

using the  selected three IMFs (IMF1, IMF3, IMF2) obtained by EMD, and EEMD 

approaches, and the EEG signal itself. In addition, we also performed simulations to 

compare the performance of our proposed approach with that of DWT. Since three 

selected IMFs of EMD and EEMD approaches are used for feature extraction and 

classification, three level decomposition is used for DWT utilizing Daubechies4 (db4) 

mother wavelet function [38]. Finally, SVM, kNN, NB, and LR classifiers are used for 

the classification, and the results are evaluated.  

Performance evaluation results of our proposed approach are given in Tables 4.3-4.6. 

In these tables IMF1, IMF2, or IMF3; show that the features for classifications are 

calculated by using the corresponding IMF; IMF 1-3 denotes that the features are 

extracted using all three IMFs. On the other hand IMF1- IMF2 shows that the features 

are extracted from IMF1 and IMF2. Additionally, AC+DC1-3 show that the features 

are extracted from Approximation Coefficient (AC) and 3 Detail Coefficients (DC) of 

DWT. Furthermore, the boldface numbers in table cells indicate the best performance 

in accuracy for each approach and classifier (in Tables 4.3-4.6).  

Table 4.3 summarizes the performance evaluation of time-domain features used for 

classification. Using the time domain features calculated from the IMF1-IMF3 (the 

most favorable two IMFs) of EMD, we obtain 97.18% classification accuracy and 

97.14% F1-S using the Logistic Regression classifier. While the Logistic Regression 

algorithm yields the highest accuracy (98.13%) and F1-S (98.13%) values by using the 

time domain features calculated from IMF1-IMF3 of EEMD, the SVM algorithm 

performs the worst (ACC: 62.44%, F1-Skor:60.80%) for the same features calculated 

from IMF2. When the same features calculated from the subbands obtained using 

DWT, we achieved 94.25% accuracy and 94.31% F1-S for the kNN classifier. To 

reveal the effect of decomposition, we analyzed the EEG signal itself and repeated the 

above feature extractions and classification. Using the time-domain features and kNN 

classifier, we obtain 89.75% accuracy and 89.96% F1-S, where the SVM performed 
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very poorly (ACC: 53.94% and F1-S: 45.26%). Results of all classification using time-

domain features are provided in Table 4.3.  

 

Table 4.3: Performance results (%) for pre-seizure and seizure EEG signal 

classification using the time-domain feature-set. 

 SVM kNN NB LR 

Method Component ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

EMD 

IMF1 55.81 43.64 94.56 94.45 91.56 91.24 94.69 94.94 

IMF2 77.75 79.54 93.50 93.40 91.44 91.06 94.38 94.19 

IMF3 86.19 87.75 93.88 93.75 93.38 93.24 94.69 94.60 

IMF1-IMF2 94.63 94.72 96 95.94 92.25 92.02 93.44 93.42 

IMF1-IMF3 96.12 96.14 95.25 95.19 94.94 94.86 97.18 97.14 

IMF2-IMF3 78.63 73.11 94.69 94.60 93 92.84 94.38 94.30 

IMF1-3 74.44 69.07 95.75 95.71 94.19 94.08 96.88 96.88 

IMF1-4 78.88 75.24 95.63 95.54 93.50 93.39 91.56 91.03 

 

 

 

 

EEMD 

IMF1 91.38 91.28 95.19 95.20 92.69 92.52 95.31  95.27 

IMF2 62.44 60.80 90.94 90.63 90.63 90.14 92.81  92.60 

IMF3 71.44 69.75 94.44 94.34 93.63 93.55 94.38  94.27 

IMF1-IMF2 96.06 96.04 95.06 95.06 91.75 91.56 95.31  95.30 

IMF1-IMF3 95.50 95.22 96.31 96.28 93.56 93.50 98.13  98.13 

IMF2-IMF3 92.75 92.33 94.50 94.39 92.38 92.24 94.38  94.30 

IMF1-3 73.44 64.36 96.63 96.61 93.81 93.73 90.94  90.61 

IMF1-4 73.13 68 96.50 96.43 92.81 92.71 90.63  90.51 

DWT AC+DC1-3 71.38  60.51 94.25  94.31 93.50  93.39 92.09  92.06 

EEG all EEG 53.94  45.26 89.75  89.96 78.94  75.38 87.81  87.21 

 

We give the performance metrics for spectral features used in classification for 

different IMF combinations in Table 4.4. We observe that NB provides 96.88% 

accuracy and 96.77% F1-S using spectral features calculated from IMF1-IMF3 of 

EMD. However, higher classification performance is obtained by the same features 

calculated from IMF2-IMF3 of EEMD with Logistic Regression. While 95% accuracy 

and 94.87% F1-S were obtained from the spectral feature of DWT using Naive Bayes 

classifier; 93.31% accuracy and 93.37% F1-S are achieved using the same feature 

obtained from EEG signals itself.  
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Table 4.4: Performance results (%) for pre-seizure and seizure EEG signal 

classification using the spectral feature-set. 

 SVM kNN NB LR 

Method Component ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

EMD 

IMF1 94.12  94 94.38  94.35 94.56  94.28 85  82.73 

IMF2 94.06  93.81 92.94  92.77 93.75  93.42 94.06  93.97 

IMF3 93.63  93.60 94.75  94.59 95.81  95.66 77.19  80 

IMF1- IMF2 94.69  94.53 93.25  93.15 94.94  94.70 83.13  84.75 

IMF1- IMF3 85.50  86.56 95.44  95.35 96.88  96.77 94.69  94.50 

IMF2- IMF3 93.34  93.77 94.81  94.66 96.13  95.99 83.44  82.03 

IMF1-3 93  93.31 94.88  94.80 96.19  96.06 82.50  82.93 

IMF1-4 93.81  94.03 94.66  94.59 95.75  95.62 84.38  83.77 

 

 

 

 

EEMD 

IMF1 96.06  96.02 95.06  95.05 94.44  94.26 96.25  96.25 

IMF2 92.13  91.90 91.94  91.88 93  92.56 92.50  92.31 

IMF3 94.56  94.48 94.25  94.20 95.56  95.39 96.88  96.86 

IMF1- IMF2 94.38  94.26 94.94  94.88 94.81  94.61 81.88  81.29 

IMF1- IMF3 74.31  73.80 95.31  95.26 96.75  96.6 79.69  78.83 

IMF2- IMF3 94.94  94.83 93.75  93.74 95.69  95.52 96.88  96.89 

IMF1-3 95.12  94.84 96.69  96.66 96.06  95.93 88.13  88.34 

IMF1-4 91.25  90.64 96.31  96.29 96.81  96.68 90.31  89.42 

DWT AC+DC1-3 81.25  77.56 93.31  93.24 95  94.87 88.75  88.82 

EEG all EEG 72.06  67.29 93.31  93.37 77.37  71.59 89.06  88.14 

 

 

Table 4.5: Performance results (%) for pre-seizure and seizure EEG signal 

classification using the non-linear feature-set. 

 SVM kNN NB LR 

Method Component ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

EMD 

IMF1 80.50  79.17 83.13  82.82 82.69  82.05 83.13  82.80 

IMF2 81.38  80.11 83.31  83.15 86.19  86.79 85.63  85.80 

IMF3 84.75  85.05 81.81  81.52 86.06  86.46 86.25  86.34 

IMF1- IMF2 84.19  83.23 87.31  87.27 88.94  89.18 87.81  87.93 

IMF1- IMF3 88.87  87.85 89.31  89.32 90.75  91.02 89.69  89.72 

IMF2- IMF3 88.19  88.21 86.88  86.93 92  92.32 87.5  87.5 

IMF1-3 90.37  90.15 90.44  90.39 91.81  92.17 90.94  90.97 

IMF1-4 95  95.01 93.94  93.86 92.38  92.61 94.38  94.41 

 

 

 

 

EEMD 

IMF1 55.88  42.68 59.63  59.05 63.75  56.97 55.63  50 

IMF2 69.73  61.66 79.38  79.47 82.88  84.07 81.25  81.82 

IMF3 70.31  67.75 73.88  73.58 79.88  79.80 77.81  78.15 

IMF1- IMF2 70.06  62.49 77.87  77.63 84.50  84.99 87.50  87.58 

IMF1- IMF3 70.19  66.94 74.19  74.08 80.25  79.65 81.88  81.65 

IMF2- IMF3 77.31  75.39 78.38  78.20 84.50  85.10 83.44  83.28 

IMF1-3 76.69  74.32 78.63  77.69 85.56  85.77 89.06  88.89 

IMF1-4 92.94  92.90 91.50  91.35 90.69  90.74 91.25  91.19 

DWT AC+DC1-3 64.63  58.12 68.88  67.53 84.50  84.22 87.50  87.42 

EEG all EEG 58.19  64.84 67.31  65.83 69.38  68.95 62.81  65.51 

 

Classification result using nonlinear features are given in Table 4.5. The results suggest 

that the nonlinear features extracted from IMF1-4 of EMD provided classification 
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performance with 95% accuracy and 95.01% F1-S using SVM. However, EEMD 

approach provided 92.94% accuracy and 92.90% F1-S using the same features with 

SVM. Using the features obtained from the EEG signal itself, accuracy and F1-S are 

obtained 69.38% and 68.95%, respectively with NB. On the other hand, 87.50% 

accuracy and 87.42% F1-S were obtained using the non-linear feature of the DWT 

approach by the Logistic Regression classifier.  

 

Table 4.6: Performance results (%) for pre-seizure and seizure EEG signal 

classification using the combined feature-set. 

 SVM kNN NB LR 

Method Component ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

EMD 

IMF1 94.31  94.16 94.38  94.31 94.31  94.03 86.25  87.06 

IMF2 94.12  93.85 92.62  92.48 93.13  92.79 94.06  94.22 

IMF3 93.38  93.36 94.63  94.45 95.63  95.48 87.50  86.58 

IMF1- IMF2 94.56  94.40 93.81  93.70 94.56  94.33 92.5  92.31 

IMF1- IMF3 92.06  92.38 95.63  95.53 96.88  96.77 96.25  96.23 

IMF2- IMF3 94.50  94.35 94.81  94.66 95.88  95.74 89.69  89.39 

IMF1-3 90  90.99 94.88  94.81 96.19  96.07 93.75  93.59 

IMF1-4 87.38  85.90 94.63  94.59 96  95.89 92.81  92.55 

 

 

 

 

EEMD 

IMF1 96.06  96.04 94.44  94.43 93.75  93.60 96.25  96.30 

IMF2 92.44  92.19 91.81  91.69 93.50  93.12 87.19  86.38 

IMF3 94.50  94.42 94.06  94.02 95.44  95.27 92.19  91.80 

IMF1- IMF2 94.94  94.86 94.81  94.76 94.12  93.91 92.50  92.68 

IMF1- IMF3 81.69  80.29 95.94  95.90 97  96.91 84.38  84.66 

IMF2- IMF3 94.44  94.32 94.25  94.21 95.38  95.18 91.25  91.36 

IMF1-3 94.19  94.39 97  96.97 95.75  95.62 90.31  90.22 

IMF1-4 93.56  93.30 96.19  96.17 96.88  96.77 93.13  92.86 

DWT AC+DC1-3 80.81  76.83 93.44  93.38 94.56  94.43 90.94  90.97 

EEG all EEG 59.75  66.33 93.25  93.35 78.94  74.41 88.44  87.46 

 

In order to determine the effect of IMF selection on the classification performance and 

to compare the approaches, the classification is performed with the combination of 

time, spectral, and nonlinear features. The classification results are shown in Table 4.6. 

In EMD approach, the SVM provided the maximum classification accuracy (94.56%) 

using combined features of IMF1-IMF2. However kNN (95.63%), Naive Bayes 

(96.88%), and Logistic Regression (96.25%) classifiers resulted the highest accuracies 

using combined features of IMF1- IMF3.  On the other hand, in the EEMD approach 

SVM (96.06%) and Logistic Regression (96.25%) classifiers provided the highest 

classification accuracy for the combined features of IMF1. While kNN (97%) achieves 
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the best performance using combined features of IMF1-3, Naive Bayes (97%) yielded 

maximum classification accuracy using the combined feature of IMF1-IMF3.  DWT 

approach provided maximum classification accuracy of 94.56% with Naive Bayes 

classifier for the combined features of subbands. Notice that by using the same features 

extracted from the EEG signal (the last row), kNN (93.25%) provides the best 

classification performance. We also observed that the classification performance of 

the combined feature-set created by using the EEG signal is worse than the EMD and 

EEMD approaches. Furthermore, the highest classification performance for all 

classifiers is achieved using features extracted by EEMD approach. Apart from the 

selected first 3 IMFs, the success of the classification was not improved when the 

features obtained using the 4th IMF were included in the classification process. 

 

 
(a) 

 
(b) 

 

(c) 

Figure 4.4: Hemisphere based mean classification accuracy for (a) EMD approach, 

(b) EEMD approach, and (c) EEG signals. Here, left and right Hemispheres were 

represented with blue and red, respectively. 

 

In order to investigate the channel based performance of our approaches, the 

classification is performed for 10 channels separately using total features of IMF1-3. 
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The average mean classification accuracies for the channels in the left (Fp1-F7, F7-

T1, T1-T3, T3-T5, Fp1-F3 channels) and right (Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-

F4 channels) hemispheres are calculated. The classification accuracy of EEMD and 

EEG signal based approaches are higher in the left hemisphere for all four classifiers 

(shown in Figure 4.4b and 4.4c). These results are supported by the clinical 

information about epileptic focus areas of patients in our study shown in Table 4.1. 

However, in the EMD based approach, the classification accuracy is higher for the left 

hemisphere only for kNN and NB classifier (shown in Figure 4.4a).  

In our proposed study, the main objective is to present a hybrid IMF selection method 

and explore the effect of selected IMFs extracted by EMD and EEMD, on the 

classification performance. Our approach investigates the advantage of using EEMD 

where noise added versions of the signal are decomposed to eliminate the well-known, 

mode-mixing problem of EMD. The problem of mode mixing can be described as the 

occurrence of very different oscillations in one mode, or very similar oscillations in 

different modes. EEMD method has been developed to overcome this shortcoming of 

EMD. As such, in our experiments we included EEMD as well as EMD to compare 

their classification performance.   

We have applied the proposed IMF selection approach on the classification of EEG 

signals recorded from epilepsy patients who are under treatment at our collaborator 

hospital. We have used 10 channel EEG signals recorded from 16 patients, providing 

a total of 160 pre-seizure, and 160 seizure (320 total) EEG segments. In addition, 4 

time-domain, 5 frequency domain, and 2 nonlinear features are extracted from each 

selected IMF of those EEG segments. The timedomain, spectral-domain, and non-

linear features obtained from the selected three IMFs (IMF1, IMF3 and IMF2; in this 

order) were classified using SVM, kNN, Naive Bayes, and Logistic Regression 

classifiers, and the performances of EMD and EEMD approaches were compared. 

Then by using this selection approach, we explore the advantages of IMF selection in 

either EMD or EEMD approaches as opposed to using first several IMFs (IMF1-4). In 

order to reveal the advantages of using EMD or EEMD approaches, the same features 

were extracted from the EEG signal itself, and the subbands obtained by the DWT 

approach, and classification processes is repeated.  
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Performance of SVM classifier with time feature-set was found to be poor for both 

approaches. When nonlinear feature-set was used, the success of four classifiers was 

found to be low in both approaches. Using the spectral feature-set, we obtain higher 

accuracies for all classifiers except Logistic Regression. This suggests that epileptic 

seizures cause distinctive changes in the frequency domain. In addition, when IMF-

based classification results were evaluated, we noticed that the success of classification 

performed only by the features obtained from the combination of selected IMFs was 

higher or similar to randomly selected first 4 IMFs (except nonlinear feature set). This 

shows that the IMF selection process helps improve the classification performance as 

selected IMFs carry the most useful information for the discrimination between the 

seizure and pre-seizure segments of EEG signals. The classification accuracy obtained 

using EMD or EEMD approaches using each feature-set is higher than that of the 

features obtained directly from EEG signals, and subbands of DWT, for all four 

classifiers. The computational complexity of EMD and its derivative, over classical 

approaches such as DWT, and Fast FT (FFT) is generally considered as a 

disadvantage. Contrary to common knowledge, if the number of sifting steps in the 

EMD algorithm is equal to 10, the computational complexity is given as 𝑂(𝑁 log𝑁) 

which is same as the computational complexity of FFT, where 𝑂 denotes the order of 

computation, and 𝑁 shows the signal sample size. In addition to EMD, the number of 

ensembles is added to the computational complexity in the EEMD approach [115]. 

Therefore, in signal processing applications, EMD based approaches may be preferred 

considering the trade-off between the performance and computational cost.  

Evaluating the channel based classification performances, the classification success of 

the features obtained by EEMD approach was found to be higher than other approaches 

for all 4 classifiers (shown in Figure 4.4). The innovative contributions of our study 

can be highlighted as follows;  

 We propose a hybrid IMF selection method considering different approaches such 

us energy, correlation, power spectral distance, and statistical significance test. 

 We demonstrate the advantages of using selected IMFs by the proposed approach 

of either EMD or EEMD approaches as opposed to randomly selecting first several 

IMFs. 
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 We investigate the performance improvement by using ensemble EMD in the 

classification of epileptic seizures as compared to traditional EMD, the EEG signal 

itself, and DWT based approaches. 

4.3 Results and Discussions of DMD Methods 

In this thesis, a DMD based epileptic seizure classification approach is proposed. 

Epileptic EEG data set (IKCU EEG data set) labeled as pre-seizure and seizure 

segments by physicians, is used. Dynamic modes are obtained by using the DMD 

algorithm for pre-seizure and seizure EEG segments and various features such as DMD 

subband powers, and higher-order DMD moments are calculated using these DMD 

modes. Finally, the extracted features are classified by using DT, LR, NB, kNN, SVM, 

and RF classifiers. All signal processing, feature extraction, and classification 

processes are performed using MATLABc 2019 software running on a personal 

computer with Intel (R) Core (TM) i7 processor and 8 GB of RAM. The steps of the 

proposed approach are represented as a block diagram given in Figure 4.5. 

 

 

Figure 4.5: Block diagram of the proposed DMD based method 
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 4.6: Example Single Channel EEG based DMD modes; (a) 5 Pre-Seizure EEG 

segments, (b) 5 Seizure EEG segments, First 5 DMD modes of; (c) Pre-Seizure EEG 

segments shown in (a), (d) Seizure EEG segments shown in (b). 

 

In literature, previously, 𝐾 × 𝑇 − sized multi-channel EEG signals are evaluated using 

the DMD approach. Here, T is the sample size of a single EEG channel, and 𝐾 is the 

number of channels. Using this data matrix, 𝐾 × 𝐿 − sized X data matrices in which 𝐿 

denotes the time samples named “snapshot” is obtained, and the DMD algorithm is 

applied to these obtained data matrices [58]. In our study, both the multi-channel DMD 

approach used in the literature is performed and the single-channel DMD approach is 

proposed, unlike the literature, and 𝐾 × 𝐿 − sized 𝑋 data matrices are constructed 

using these two different approaches.  

In the single-channel DMD approach (SC-DMD), the single-channel EEG signals 

with 𝑇 − samples long are divided into non-overlapping, 𝐿 samples long EEG 

segments. The (𝐾 × 𝐿) EEG data matrices are constructed using 𝐾 of these obtained 
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segments [100]. For our epileptic seizure classification experiment, 𝐿 = 140 and 𝐾 =

5 are chosen.  

Additionally, in the multi-channel DMD approach (MC-DMD), (𝐾 × 𝐿) EEG data 

matrices with no overlap are generated using 𝐿 = 140 samples of 𝐾 = 5 different 

EEG channels. In our experiment, these data matrices are obtained using the 𝐾 = 5 − 

EEG channel in the left hemisphere (Fp1-F7, F7-T1, T1-T3, T3-T5, Fp1-F3) and the 

𝐾 = 5 −EEG channel in the right hemisphere (Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-

F4). Also (10 × 120 EEG data matrices are constructed using the 𝐾 = 10 −EEG 

channel with 𝐿 = 120 sample long in both hemisphere. In Figure 4.6, we give the first 

5 of the extracted DMD modes by the proposed single channel EEG based DMD 

approach for pre-seizure and seizure epileptic EEG segments. 

In the next section, we apply the proposed DMD approaches to the detection of 

epileptic seizures in EEG signals.  

4.3.1 The DMD Spectrum 

The dynamic modes (achieved using Algorithm 3) are associated with complex 

eigenvalues λm, the real part of which shows the decay frequency of the dynamic 

modes and the imaginary part of which shows the oscillation frequencies of the 

dynamic modes shown in Equation (4.8) [97, 98, 100, and 102].  

 𝑓𝑚 = |𝑖𝑚𝑎𝑔(
𝜔𝑚

2𝜋
)| (4.8) 

Here, 𝑓𝑚 is the oscillation frequency of 𝑚𝑡ℎ DMD mode in Hz, 𝜔𝑚 =
log (𝜆𝑚)

∆𝑡
, ∆𝑡 =

0.001𝑠 denotes the time difference between sequential snapshots, and 𝑖𝑚𝑎𝑔(. ) is the 

imaginary part of a complex number. The sorted set of different mode frequencies 𝑓𝑚 

is defined as 𝐹𝐷𝑀𝐷 = {𝑓𝑚}.  

The power of these modes 𝑃𝑚 can be calculated using norm-square as given in 

Equation (4.9) and used to obtain the DMD Spectrum. However, before calculating 

the power of the modes, the scaling process specified in [98] is applied to the modes. 
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The frequencies of DMD modes do not spread uniformly as in the conventional Fourier 

spectrum [97], hence more than one mode may be present at one frequency, or there 

may not be any mode at some frequencies. Therefore, before the DMD Spectrum was 

obtained, the mode powers corresponding to the same frequency are combined 

together as shown in Equation (4.10), then a single power value is calculated for each 

frequency. 

 𝑃𝑚 = ‖𝛷𝑚‖2 (4.9) 

where ‖ . ‖2indicates the Euclidian norm. 

 𝑃𝐷𝑀𝐷(𝑓𝑚) = ∑𝑃𝑚
𝑖(𝑓𝑚),    ∀{𝑓𝑚}

𝐿𝑘

𝑖=1

∈ 𝐹𝐷𝑀𝐷 (4.10) 

Here, 𝐿𝑘 is the number of modes at frequency 𝑓𝑚, 𝑃𝑚
𝑖(𝑓𝑚) is the power value of ith 

DMD mode at the frequency 𝑓𝑚, and 𝑃𝐷𝑀𝐷(𝑓𝑚) denotes the sum of DMD powers at 

the frequency 𝑓𝑚. To obtain the DMD spectrum, 𝑃𝐷𝑀𝐷(𝑓𝑚) vector is plotted with 

respect to the oscillation frequency vector 𝐹𝐷𝑀𝐷.  

Examples of the proposed Single-Channel EEG based, and Multi-Channel EEG based 

DMD spectra for pre-seizure and seizure epileptic EEG data are given in Figures 4.7 

and 4.8. Single- Channel EEG based DMD spectra of pre-seizure and seizure epileptic 

EEG data matrices are given in Figs. 4.7-a, and 4.7-b respectively. Figs. 4.7-c and 4.7-

d show the PSD estimates of corresponding EEG segments calculated using Welch 

method. Similarly, Multi-Channel EEG based DMD spectra of 5-channel pre-seizure 

and 5-channel seizure epileptic EEG data are given in Figs. 4.8-a and 4.8-b 

respectively. The Welch spectral estimates of corresponding channels individually are 

given in Figs. 4.8-c and 4.8-d. Notice that the similarity between DMD spectra and 

Welch PSD estimates are remarkable. However, while the DMD spectra are 

simultaneously calculated for 5 EEG segments, Welch estimates are calculated for 

each EEG segment individually. In Figs. 4.7-c, 4.7-d, 4.8-c, and 4.8-d, the black bold 

lines show the average of 5 spectral estimates.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.7: An example of Single Channel EEG based DMD representation. DMD 

Spectrum of (a) 5 Pre-Seizure EEG segments, (b) 5 Seizure EEG segments, PSD 

estimates of (c) 5 Pre-Seizure EEG segments together, (d) 5 Seizure EEG segments 

together. In (c) and (d) bold black lines show the average of 5 PSD estimates. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.8: An example of Multi Channel EEG based DMD representation. DMD 

Spectrum of (a) 5-channel Pre-Seizure EEG segments, (b) 5-channel Seizure EEG 

segments, PSD estimates of (c) 5-channel Pre-Seizure EEG segments together, (d) 5-

channel Seizure EEG segments together. In (c) and (d) bold black lines show the 

average of 5 PSD estimates. 

 

 

4.3.2 DMD Features 

In this study, we propose two sets of DMD features for the classification of epileptic 

EEG segments. First approach uses the EEG sub-band powers and total power 

calculated from the DMD spectrum. As a second approach, we introduce a new method 

called Higher-order DMD spectral moments (DMD-HOS).  
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4.3.2.1 DMD Sub-band Powers 

In the first approach, we define EEG Sub-band Powers in the DMD domain; Delta 

(𝑃𝛿), Theta (𝑃𝜃), Alpha (𝑃𝛼), Beta (𝑃𝛽), and Gamma (𝑃𝛾) band powers, and the total 

DMD power (𝑃𝑇) calculated from the DMD Spectrum.  

EEG signals are composed of different oscillations which are known to be responsible 

for different cognitive functions. These are called Delta (𝛿), Theta (𝜃), Alpha (𝛼), Beta 

(𝛽), and Gamma (𝛾) waves. The frequency bands of these EEG sub-bands are; delta 

(0–4Hz), theta (4–8Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma waves (30–

60Hz).  

 

𝑃𝛿 = ∑ 𝑃𝐷𝑀𝐷(𝑓𝑚)

𝑓𝑚∈𝑓𝛿

;       𝑃𝜃 = ∑ 𝑃𝐷𝑀𝐷(𝑓𝑚)

𝑓𝑚∈𝑓𝜃

;                 

 

𝑃𝛼 = ∑ 𝑃𝐷𝑀𝐷(𝑓𝑚)

𝑓𝑚∈𝑓𝛼

;       𝑃𝛽 = ∑ 𝑃𝐷𝑀𝐷(𝑓𝑚)

𝑓𝑚∈𝑓𝛽

;                 

 

𝑃𝛾 = ∑ 𝑃𝐷𝑀𝐷(𝑓𝑚)

𝑓𝑚∈𝑓𝛾

;       𝑃𝑇 = ∑𝑃𝐷𝑀𝐷(𝑓𝑚)

𝑓𝑚

;                

 

(4.11) 

where 𝑓𝛿  is a subset of extracted DMD mode frequencies 𝐹𝐷𝑀𝐷 = {𝑓𝑚} corresponding 

to 𝛿 sub-band of EEG, 𝑓𝜃 is the subset of the DMD modes frequencies corresponding 

to 𝜃 sub-band of EEG, and so on. 

EEG sub-band powers and total power calculated from traditional power spectrum are 

commonly used as frequency domain features of EEG signals in computer aided 

diagnosis algorithms in a variety of problems [22, 44, and 100]. In the proposed 

method, DMD sub-band powers and total power are calculated as indicated in 

Equation (4.11).   

4.3.2.2 Higher-order DMD Spectral Moments 

Similar to the higher-order frequency moments calculated using traditional PSD, we 

propose Higher-order DMD Spectral Moments as the second approach of feature 
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extraction [100]. The Higher-order DMD Spectral Moments < 𝑓𝑚
𝑗 >, 𝑗 =

1, 2, 3, … are defined as;  

 𝑀𝑗
𝐷𝑀𝐷 = ∑ (𝑓𝑚)𝑗𝑃𝐷𝑀𝐷(𝑓𝑚), 𝑗 = 1, 2, 3…

𝑓𝑚∈𝐹𝐷𝑀𝐷

 (4.12) 

Here, 𝑓𝑚 denotes the extracted mode frequencies in the set 𝐹𝐷𝑀𝐷, 𝑃𝐷𝑀𝐷(𝑓𝑚) is the 

value of the DMD spectrum at frequency 𝑓𝑚, and 𝑀𝑗
𝐷𝑀𝐷 denotes the jth order DMD 

Spectral Moment. In our experiments, we calculated the first three DMD Spectral 

Moments,  𝑗 = 1, 2, 3, and used for classification.  

In order to investigate the advantages of using the DMD methods, the Sub-band 

Powers and Higher-order Spectral Moments are calculated using the classical PSD 

estimate as well. Power Spectrum of each pre-seizure and seizure EEG segment was 

estimated using the Welch method which is an improved version of the Periodogram. 

In this method, the data is divided into K segments which are overlapping. Then the 

windowed Periodograms of each segment are calculated and averaged to estimate the 

PSD. In our simulations, we use a Hamming window and 50% overlapping [22, 44, 

116, and 117].  

Pre-seizure and seizure EEG signals are divided into segments containing 140 samples 

(1.4 sec) to obtain the similar segment sizes used in the proposed DMD method. 

Afterward, the PSD of each EEG segment was estimated using the Welch method. 

Sub-band Powers (Delta (𝑆𝛿), Theta (𝑆𝜃), Alpha (𝑆𝛼), Beta (𝑆𝛽), and Gamma (𝑆𝛾)), 

total power (𝑆𝑇), and Higher-order Spectral Moments < 𝜔𝑘
𝑗 > are calculated as 

follows;  

 

𝑆𝛿 = ∑ 𝑆(𝑓𝑘)

𝑓𝑘∈𝑓𝛿

;       𝑆𝜃 = ∑ 𝑆(𝑓𝑘)

𝑓𝑘∈𝑓𝜃

;                 

 

𝑆𝛼 = ∑ 𝑆(𝑓𝑘)

𝑓𝑘∈𝑓𝛼

;       𝑆𝛽 = ∑ 𝑆(𝑓𝑘)

𝑓𝑘∈𝑓𝛽

;                 

 

𝑆𝛾 = ∑ 𝑆(𝑓𝑘)

𝑓𝑘∈𝑓𝛾

;       𝑆𝑇 = ∑ 𝑆(𝑓𝑘)

𝑁−1

𝑘=0

;                

(4.13) 
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 𝑀𝑗
𝑃𝑆𝐷 = ∑(𝑓𝑘)

𝑗𝑆(𝑓𝑘)

𝑁−1

𝑘=0

, 𝑗 = 1, 2, 3, … (4.14) 

Here, 𝑁 denotes the length of the corresponding EEG signal, 𝑓𝑘 =
𝐹𝑠

𝑁
𝑘, 𝑘 =

0, 1, … ,𝑁 − 1  are the uniform frequency samples, 𝐹𝑠 is the sampling frequency, 

𝑆(𝑓𝑘) is the Power Spectral Density estimate of the EEG signal at frequency 𝑓𝑘. 

Frequency subset 𝑓𝛿 contains frequency values corresponding to 𝛿 sub-band 

frequencies (𝑓𝑘 ∈ [0 − 4] Hz) of the EEG, 𝑓𝜃 contains frequency samples 

corresponding to 𝜃 sub-band frequencies (𝑓𝑘 ∈ [4 − 8] Hz) of the EEG, etc. Hence 5 

subband power features for 𝛿: [0 − 4] Hz, 𝜃: [4 − 8] Hz, 𝛼: [8 − 13] Hz, 𝛽: [13 −

22] Hz, and 𝛾: [22 − 50] Hz bands are obtained considering the sampling frequency 

of 100 Hz. 𝑀𝑗
𝑃𝑆𝐷 indicates the 𝑗𝑡ℎ-order Spectral Moment of the EEG segment.  

 

4.3.3 Experimental Results and Discussions 

In this study, we aim at distinguishing the pre-seizure and seizure EEG segments using 

the DMD spectral based approaches. Pre-seizure and seizure segments of 10-channel 

EEG recordings of 16 epilepsy patients are used for the proposed study. DMD 

approach utilized to obtain DMD Spectra of each EEG segment as described in 

previous section. The Sub-band Powers and total power of DMD Spectrum, and 

Higher-order DMD Spectral Moments are calculated as features using the DMD 

Spectra. The analysis is also performed by utilizing the PSD estimated using the Welch 

method to compare the performance of the proposed approach. Hence, traditional Sub-

band Powers, total power, and Higher-order Spectral Moments are also calculated 

from the estimated PSD of EEG segments. Finally, various classifiers such as DT, 

SVM, kNN, NB, LR, and RF were used for the classification and the results of each 

of them were investigated.  
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(a) 

 
(b) 

 

(c) 

Figure 4.9: The mean Sub-band power values for pre-seizure and seizure EEG 

segments calculated using; (a) Single Channel DMD Spectrum, (b) Multi Channel 

DMD Spectrum, (c) Power spectral estimates. 

 

Figure 4.9 shows the average values of sub-band powers calculated from the DMD 

Spectrum (Figgure 4.9-a,b) and the PSD estimate (Figgure 4.9-c) for pre-seizure and 

seizure epileptic EEG segments of 10 EEG channels of 16 epilepsy patients. While 

sub-bands (Delta (𝑃𝛿), Theta (𝑃𝜃), Alpha (𝑃𝛼)), containing low-frequency information 

are dominant for the pre-seizure, the increase in high frequencies (Beta (𝑃𝛽), and 

Gamma (𝑃𝛾)) for seizure data is noticed. In general, the power of higher frequencies 

bands of EEG signals such as beta and gamma increases before and during epileptic 

activity by the transfer of energy of lower frequencies bands to higher frequency bands 

[118, 119].  
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The averages over all channels and subjects of higher-order DMD spectral moments 

(Figure 4.10-a,b) and traditional higher-order spectral moments (Figure 4.10-c) for 

pre-seizure and seizure EEG segments are given in Figure 4.10 to compare the two 

methods. Similar to traditional spectral moments, the first 3 DMD spectral moments 

of both DMD approach contain distinctive information about pre-seizure and seizure 

EEG data.  

 
(a) 

 
(b) 

 
(c) 

Figure 4.10: The mean moment values for pre-seizure and seizure EEG segments 

calculated using; (a) Single Channel DMD Spectrum, (b) Multi Channel DMD 

Spectrum, (c) Power spectral estimates. 

 

Tables 4.7-4.9 demonstrate the performance evaluation results of proposed 

approaches. The boldface numbers in the tables show the highest classification result 

for that component. The performance evaluation of the proposed Single-channel based 

DMD approach is summarized in Table 4.7. Here, Fp1-F7, F7-T1, T1-T3, T3-T5, Fp1-

F3, Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2- F4 show that the classifications are performed 

using the feature sets obtained from the EEG segments of related channels. On the 

other hand, “Left Hems” and “Right Hems.” indicate that the classifications are 
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performed using the feature sets created by combining the features obtained from the 

channels in the left hemisphere (Fp1-F7, F7-T1, T1-T3, T3-T5, Fp1-F3) and the right 

hemisphere (Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-F4) respectively. Additionally, “Two 

Hems.” denotes that the classifications are performed using the feature sets generated 

by combining the features obtained from the channels in both hemispheres.  

 

Table 4.7: Performance evaluation results (ACC %) of single-channel based DMD 

Approach 

 

Table 4.8: Performance evaluation results (ACC %) of PSD based approach 

 

The highest accuracy (97.2%, 96.1%) values are achieved using the both proposed 

DMD subband power, and higher-order DMD spectral moment features calculated in 

the T3-T5 channel (in the left hemisphere) with the kNN and LR classifier. However, 

 Subband Power Based Feature Set Moment Based Feature Set 

Component DT LR NB SVM kNN RF DT LR NB SVM kNN RF 

FP1-F7 91.2  91.7 92.3 91.7 90.6 92.8 87.8  92.3 86.7 87.8 90.1 87.8 

F7-T1 94.5  92.8 93.9 93.4 91.7 96 88.4  93.9 88.4 89.5 88.4 86.2 

T1-T3 95  96.1 95.6 94.5 95.6 96.1 91.2  96.1 91.7 91.7 95 90.6 

T3-T5 96.1  95.6 95 96.1 97.2 95 95.6  96.1 92.8 93.9 95.6 95.6 

FP1-F3 91.2  92.8 91.7 91.7 91.2 89.5 90.1  92.3 88.4 89.5 87.8 87.8 

FP2-F8 91.2  91.2 89.5 89 85.6 91.2 86.2  89.5 84.5 86.2 86.2 80.1 

F8-T2 92.3  92.3 92.3 92.8 92.3 91.7 87.8  92.8 84.5 89.5 89.5 90.1 

T2-T4 88.4  89.5 88.4 89.5 86.2 90.1 89.5  88.4 87.8 87.8 84 85.1 

T4-T6 85.6  90.1 90.6 89.5 90.1 89.5 84  87.8 83.4 86.7 87.8 84.5 

FP2-F4 85.6  88.4 85.1 86.2 88.4 85.6 81.2   84.5 80.1 83.4 84 82.3 

Right Hems 89.1  90.2 89.5 90.2 90.6 90.9 86.1  89.1 83 87.1 88 86.7 

Left Hems 92.9   94 93.5 93.8 94.3 93.3 91.7  93.3 90.2 92.7 91.9 92.3 

Two Hems 91.3  91.7 91.3 91.6 91.7 91.7 88.5  91 87.3 90.4 90.5 89.9 

 Subband Power Based Feature Set Moment Based Feature Set 

Component DT LR NB SVM kNN RF DT LR NB SVM kNN RF 

FP1-F7 93.1  68.5 91.3 88.5 90.9 92.6 92.6  87.2 90.7 89.6 92.4 92.4 

F7-T1 94.9  94.2 92 92 94.9 94.7 94.6  94.3 93 93 94 94.4 

T1-T3 95.4   95.7 95.2 92 95.6 95.3 96.1  96.3 95.1 95.3 96.3 95.3 

T3-T5 95.2  96.9 95 94.8 93.6 96.2 96  96.4 95.7 95.1 95.6 95.7 

FP1-F3 89  88.7 88.8 88.8 89.6 91 91.3  88.8 89.9 88.9 88.2 91.2 

FP2-F8 89.5  88.2 89 86 87.2 90.5 91.8  87.3 89 87.4 90.4 91.2 

F8-T2 91.5   82.3 89.1 89.3 91 92.9 91  90.3 88.1 89.7 90 91.6 

T2-T4 89.6  83.9 88.4 86.4 88.7 91.1 89  86.6 87.6 84.5 89.6 89.5 

T4-T6 91.6  66.4 88.1 87 88 92.7 90.9  86.4 88.1 86.4 88.8 89.8 

FP2-F4 88.4  81 84.1 80.7 83.8 88.6 86.1  81.9 83.5 78.5 85.2 85.4 

Right Hems 89.3  85.8 86.8 86.1 87.1 90.8 89.2  85.2 86.8 85.3 88.1 89.2 

Left Hems 91.9  92 91.2 91.9 92.2 93.3 92.9  92.1 92.5 92.6 91.7 91.9 

Two Hems 90.5  88.7 88.4 89.2 89.6 91.8 90.2  88 89.3 88.5 89.4 90.2 
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the lowest classification accuracy for both feature sets is obtained from the Fp2-F4 

channel (in the right hemisphere). In addition, for the DMD sub-band power-based 

feature set calculated from the left hemisphere (Left Hems.), the kNN classifier 

achieved 94.3% accuracy, while 93.3% classification accuracy with the LR classifier 

is achieved for the DMD spectral moment-based feature set obtained from the same 

hemisphere (given in Table 4.7).  

In order to investigate the advantages of the proposed DMD-based approaches, similar 

feature sets (Subband Powers and Higher-Order Spectral Moments) are calculated 

from the PSD estimated by the Welch periodogram method. Classification 

performance results are given in Table 4.8. Fp1-F7, F7-T1, T1-T3, T3-T5, Fp1-F3, 

Fp2-F8, F8-T2, T2- T4, T4-T6, Fp2-F4 shows the Channel-based classification results 

of the features obtained from the traditional PSD estimate of the EEG segments in 

respective channels. Right Hems, Left Hems, and Two Hems; denote the hemisphere-

based classification result, where the features are combined separately for the Right 

hemisphere, Left Hemisphere and both hemispheres. The highest classification 

accuracies are achieved from the T3-T5 channel using LR classifier for both Subband 

Power-based features (96.9 %) and Moment based features (96.4 %), obtained from 

the Channel-based PSD approach. On the other hand, the highest classification 

accuracies (93.3%, 92.9%) are obtained with the RF and DT classifiers using the 

subband power based features and moment based features, calculated from “Left 

Hems” of the hemisphere based PSD approach.  

Table 4.9: Performance evaluation (ACC %) of multi-channel based DMD approach 

 

Table 4.9 lists the performance evaluation results of the Multi-Chanel based DMD 

Approach. Here, while “Left Hems.” shows that the EEG matrices utilized in the DMD 

algorithm are obtained from the left hemisphere channels, “Right Hems.” indicates 

that the EEG matrices are obtained from the right hemisphere channels. In addition, 

“Two Hems.” denotes that these EEG matrices are obtained using both hemisphere 

 Subband Power Based Feature Set Moment Based Feature Set 

Component DT LR NB SVM kNN RF DT LR NB SVM kNN RF 

Right Hems 89.9  89.9 89.8 90.4 89.9 90.7 84  89.3 81.5 88.2 86.5 87.1 

Left Hems 93.9  92.6 92.5 93 94.1 93.9 90.9  93 87.5 92.5 92.5 92.9 

Two Hems 94.3  94.9 93.5 95 94.6 94.1 91.3  94.6 88.7 92.8 92.2 92 
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channels. Using those EEG matrices, the DMD algorithm is performed, and Subband 

Power based and Moment based features are obtained from the DMD Spectrum. In the 

“Right Hems” of DMD, while RF provides 90.7% accuracy using Subband Power-

based feature set, LR provides 89.3% accuracy using the Moment-based feature set. 

However, higher classification accuracies for Subband Power-based features and 

Moment based features of the “Left Hems.” of DMD are obtained with kNN (94.1%) 

and RF (92.9%), respectively. On the other hand, using the features obtained from the 

“Two Hems” of DMD, (94.9% and 94.6%) accuracies are achieved with LR for the 

Subband Power-based and Moment based features respectively. Note here that, DMD 

spectral features extracted from the proposed single-channel EEG-based DMD 

approach provides the highest classification performance among all other 

combinations.  

Classifier based changes of sensitivity and specificity values obtained from the “Two 

Hems” of both single- and multi-channel DMD and PSD approaches are given in 

Figure 4.11. Here, while the sensitivity value denotes the ratio of the correctly 

classified seizure data, the specificity value indicates the ratio of the correctly 

classified pre-seizure data. Higher SEN values are obtained using the Multi-channel 

DMD approach than the other two approaches for all feature sets and classifiers except 

the SEN value of the DT classifier obtained using the moment-based feature set of the 

PSD approach (shown in Figure 4.11a and 4.11c). In both subband power based and 

momentbased feature sets, the single-channel DMD approach provided higher SEN 

values than the PSD approach, except for DT and NB classifiers. Additionally, for the 

Multi-channel DMD approach, higher SPE values are obtained for all classifiers and 

feature sets than other two approaches, except the SPE value of the NB classifier 

obtained from the moment-based feature set of the PSD approach (shown in Figure 

4.11b and 4.11d). Overall, the single-channel DMD approach provided higher SPE 

values than the PSD approach.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.11: Classifier based change of; (a) sensitivity and (b) specificity values 

obtained from Subband-power based feature sets of approaches; (c) sensitivity and 

(d) specificity values obtained from Moment based feature sets of approaches. 

 

In order to evaluate the performance of the proposed DMD approach on a publicly 

available epileptic EEG data set, single-channel and multi-channel DMD algorithms 

are also tested on CHB-MIT epilepsy data [110]. In our experiments, we used EEG 

data of 14 patients (chb01, chb02, chb03, chb04, chb05, chb07, chb09, chb10, chb17, 

chb18, chb19, chb20, chb22, chb23), which yielded successful epileptic seizure 

detection and prediction results in previous studies [29, 65, 120, and 121]. (i) Seizure 

segments (60 seizure event) of these patients, (ii) 5 minutes pre-seizure segments that 

end before the onset of those seizures, and (iii) 10 minute inter-seizure segments for 

each patient are used to perform (a) seizure prediction and (b) seizure detection 

experiments. By using the 10-channel CHB-MIT data set, moment-based and 

subband-based features are obtained with single-channel and multi-channel DMD 

approaches. In our CHB-MIT experiment, M = 308 samples long (1.2 sec.) EEG 

segments with no overlap, and N = 10 snapshots are chosen for single channel DMD 

approach, and the procedure is repeated for 10 channels. Additionally, 10 × 308 −size 

EEG data matrices are generated using the whole 110 −channel EEG segments for the 

multi-channel DMD approach. In both single-channel, and multi-channel DMD 
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approaches, (520 × 256) − sized augmented EEG data matrices are obtained. The 

details of both single-channel and multi-channel DMD approaches are described 

previously. These augmented EEG data matrices are used to extract the DMD modes 

for seizure, pre-seizure, and inter-seizure EEG segments. Moment-based and subband-

based features are calculated using these DMD modes. For (a) seizure detection 

experiment, features obtained from seizure, and inter-seizure EEG segments are 

combined to create seizure detection feature set. As for (b) seizure prediction 

experiment the features obtained from pre-seizure and inter-seizure EEG segments are 

combined to generate seizure prediction feature set for each patient. Finally, these 

feature sets are classified using DT, NB, kNN, SVM, and RF and their classification 

performances are evaluated using various statistical performance metrics such as SEN, 

SPE, and ACC.  

Table 4.10: Average performance evaluation results (ACC %, SEN %, and SPE %) 

of 14 patients of CHB-MIT data set for seizure detection experiment. 

 

Performance evaluation results of the seizure detection experiment are summarized in 

Table 4.10. The RF classifier yields the highest accuracy and sensitivity values for the 

subband power based feature set of both single-channel and multi-channel DMD 

approaches (SC-DMD: 96.5 % ACC, 92.5% SEN; MC-DMD: 96.7% ACC, 92.9% 

SEN), while the maximum specificity values are achieved using SVM classifier for 

both approaches (SC-DMD: 98.6 % SPE; MC-DMD: 98.5% SPE). On the other hand, 

for the moment based feature set of single-channel DMD approach, the highest 

classification accuracy, and specificity values (95.2 % ACC, 97.7% SPE) are achieved 

using the SVM classifier, but the maximum sensitivity is obtained by the RF classifier. 

For the same feature set of the multi-channel DMD approach, the SVM classifier gives 

  Subband Power Based Feature Set Moment Based Feature Set 

Method Metric DT NB kNN SVM RF DT NB kNN SVM RF 

SC-

DMD 

ACC 96.2  95.6 96.3 96.1 96.5 93.8  91.4 94.9 95.2 94.7 

SEN 91.5  91.4 91.1 89.2 92.5 86.6  83.2 89.2 86.5 88.4 

SPE 97.6  97.3 98.2 98.6 97.8 95.9  94.9 96.9 97.7 96.9 

 

MC-

DMD 

ACC 96.6  95.8 96.4 96.1 96.7 93.2  90.7 94.5 94.5 94.2 

SEN 92.8  92.9 91.5 88.6 92.9 84.4  81.9 87.9 84.8 87.5 

SPE 97.6  96.8 98.1 98.5 97.8 96.3  94.6 96.8 98.2 96.4 
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the highest classification performance with 94.5 % ACC, and 98.2 % SPE values, 

while the maximum sensitivity value is achieved using the kNN classifier.  

Table 4.11: Average performance evaluation results (ACC %, SEN %, and SPE %) 

of 14 patients of CHB-MIT data set for seizure prediction experiment. 

 

Table 4.11 shows the performance evaluation results of the seizure prediction problem. 

For the subband power-based feature sets of both single-channel and multi-channel 

DMD approaches, the highest accuracy, sensitivity, and specificity values are achieved 

using the RF classifier (SC-DMD: 86.7% ACC, 86.1% SEN, and 87.1% SPE; MC-

DMD: 88.5 % ACC, 89.7% SEN, and 86.1% SPE). Moreover, for the moment based 

feature set of both DMD approaches, the highest accuracy and specificity values (SC-

DMD: 81.2% ACC, 79.9% SPE; MC-DMD: 83.5 % ACC, 77.8% SPE) are obtained 

by the RF classifier, while the SVM classifier yields the maximum sensitivity values 

(SC-DMD: 83.7% SEN; MC-DMD: 88.1% SEN).  

The classification performance of the Subband Power-based features is higher in the 

single channel based DMD approach than the multi-channel based DMD approach 

except “Two Hems.” However, the classification accuracy of the Moment-based 

features is higher in the multi-channel based DMD approach than the single-channel 

based DMD approach except “Left Hems.”(Shown in Table 4.7 and Table 4.9). In 

addition, the maximum classification performances of Subband Power-based features 

of DMD-based approaches are higher for each feature set and each condition than the 

maximum classification successes of the Subband Power-based features of PSD based 

approach.  

 

  Subband Power Based Feature Set Moment Based Feature Set 

Method Metric DT NB kNN SVM RF DT NB kNN SVM RF 

SC-

DMD 

ACC 84.7  83.1 85.1 82.2 86.7 76.5  74.1 81.2 80.9 81.2 

SEN 83.3  80.8 85.7 84.5 86.1 76.7  72.2 82.4 83.7 81.8 

SPE 86.3  86.9 84.1 80.1 87.1 75.7  76.8 78.7 78.3 79.9 

 

MC-

DMD 

ACC 86.3  83.9 86.9 83.7 88.5 80.1  76.1 83.3 82.6 83.5 

SEN 87.9  82.6 89.5 89.2 89.7 86.4  80.5 87.2 88.1 86.6 

SPE 85.5  85.2 83.2 74.7 86.1 69.1  70.6 77.1 73.6 77.8 
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Table 4.12: Classification performance comparison of various epileptic seizure 

detection and prediction studies. 

Problem Author Data Set Approaches Performance Metrics 

Seizure 

Detection 

Alickovica et al. [38] 
CHB-MIT* EMD,DWT,WPD 100% ACC 

Freiburg MD,DWT,WPD 100% ACC 

Moctezuma et al. [39] CHB-MIT* EMD 93% ACC 

Moctezuma et al. [122] CHB-MIT* EMD, DWT 93%–97% ACC 

Pachori et al. [42] Bonn EMD 100% ACC 

Wu et al. [40] 
CHB-MIT* CEEMD 95.8% ACC, 95.7% SEN, 95.9% SPE 

Bonn CEEMD 99.5%–100% ACC 

Hassan et al. [43] Bonn CEEMDAN 
97.6%–100% ACC, 97.7%–100% SEN, 

97.4%–100% SPE 

Quintero et al. [46] CHB-MIT* DWT and GGD 
92%–97% ACC, 97%–99% SEN, 79%–

92% SPE 

Ibrahim et al. [47] Bonn WT 100% ACC 

Correa et al. [44] Freiburg WT 85.39% SEN, 83.17% SPE 

Bhattacharyya et al. 

[123] 
CHB-MIT* EWT 99.41% ACC, 97.91% SEN, 99.57% SPE 

Kumar et al. [41] 

Bern-

Barcelona 
VMD 78.5% ACC, 95% SEN, 95% SPE 

Bonn VMD 94.1% ACC, 95.33% SEN, 96.67% SPE 

Zhang et al. [45] Bonn GST and SVD 88.04%–99.12% ACC 

Ayodele et al. [65] 
CHB-MIT* CNN 71.45% SEN, 76%SPE 

TUSZ CNN 78.35% SEN, 90%SPE 

Xiang et al. [29] 

CHB-MIT* 
Fuzzy Entropy 98.31% ACC, 98.27% SEN, 98.36% SPE 

Sample Entropy 97.16% ACC, 97.01% SEN, 97.34% SPE 

Bonn 
Fuzzy Entropy 100% ACC, 100% SEN, 100% SPE 

Sample Entropy 88.5 % ACC, 90.36% SEN, 87.63% SPE 

Fu et al. [124] Original Sparse CSP 99.75% ACC 

Solaija et al. [58] 
CHB-MIT* MC-DMD 87% SEN, 99% SPE 

KU Leuven MC-DMD 88% SEN, 99% SPE 

Bilal et al. [59] 

CHB-MIT* 
DMD 91% SEN, 99.2% SPE 

MRDMD 93.7% SEN, 99.2% SPE 

KU-Leuven 
DMD 90.6% SEN, 99.3% SPE 

MRDMD 96.1% SEN, 99.1% SPE 

K.Cura et al. [125] IKCU 

EMD 97.14% ACC 

EEMD 98.13% ACC 

DWT 94.56% ACC 

Proposed Study 

CHB-MIT* SC-DMD 96.5% ACC, 92.5% SEN, 98.6% SPE 

 MC-DMD 96.7% ACC, 92.9% SEN, 98.5% SPE 

IKCU SC-DMD 97.2% ACC, 93% SEN, 95% SPE 

 MC-DMD 94.9% ACC, 95% SEN, 97% SPE 

Seizure 

Prediction 

Alickovica et al. [38] 
CHB-MIT EMD,DWT,WPD 99.7% ACC 

Freiburg EMD,DWT,WPD 99.5% ACC 

Alotaiby et al. [120] CHB-MIT CSP 89% SEN, 37% SPE 

Cui et al. [121] CHB-MIT Bag-of-Wave 88.24% SEN 

Proposed Study 
CHB-MIT SC-DMD 86.7% ACC, 86.1% SEN, 87.1% SPE 

 MC-DMD 88.5% ACC, 89.75% SEN, 86.1% SPE 

 

In order to demonstrate the performance of the DMD approach on a different dataset, 

the performances of the DMD approaches are evaluated using the publicly available 

CHB-MIT EEG dataset. Both seizure detection and seizure prediction problems are 
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considered and DMD based solutions are provided on this dataset. In the seizure 

detection and prediction experiments, the higher classification performances are 

achieved for subband power-based feature sets of both single-channel and multi-

channel DMD approaches than that of the moment-based feature set (Shown in Tables 

4.10-4.11). In case of seizure detection problem, no significant difference is observed 

between the performance of single-channel and multi-channel DMD approaches using 

both feature sets.  

In Table 4.12, we summarize some of the previous epileptic “seizure detection” and 

“seizure prediction” studies, and compare their performances with that of the proposed 

study. In [38] seizure detection and prediction problems are considered where 1000 

seizure, 1000 inter-seizure, and 1000 pre-seizure EEG segments (each 8s long) from 

CHB-MIT database were used. In seizure detection, the maximum 97.5% accuracy 

was achieved by the EMD approach, while the highest classification accuracy (100 %) 

was obtained using the DWT and WPD approaches. In seizure prediction problem, the 

maximum 99.7 % accuracy is achieved using the multiscale principal component 

analysis (MSPCA)+WPD+SVM approach. However, no information is provided 

about which patient’s EEG data is used. The number of EEG segments is a factor that 

directly affects the success of the study. In our study, the number of evaluated EEG 

segments is higher than that of the study. In [123], EWT based, and in [122] EMD and 

DWT based seizure detection approaches were presented using different EEG channels 

of CHB-MIT data set. Higher ACC, SEN, and SPE values were reported than our 

proposed approach. However, in those studies channel selection process is conducted 

before the feature extraction which is not the case in our study. We consider all 

channels with high and low classification performance, which slightly decreases the 

overall seizure detection performance, but eliminates a channel selection step. In 

another study [39], EMD based seizure detection approach was presented. 5-channel 

EEG signals of 24 patients in the CHB-MIT data set were decomposed into IMFs using 

EMD methods. Then, utilizing the most relevant IMFs (IMF1 and IMF2), various 

features such as Teager and instantaneous energy, Higuchi and Petrosian fractal 

dimension, and detrended fluctuation analysis (DFA) were calculated, and an average 

classification accuracy of 93% was obtained. Although more EEG channels were 

evaluated, the classification accuracy is lower than that of our proposed DMD-based 

approach. In [40], seizure (2675 segments) and non-seizure (2675 segments) EEG 
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segments of randomly selected five patients in the CHB-MIT dataset, and five subsets 

of Bonn data sets were investigated. Using the CEEMD method, seizure and non 

seizure EEG segments decomposed into IMFs and one residue. Time-domain, 

frequency-domain, time-frequency domain, and entropy-based features were 

calculated using obtained IMFs, residue, and raw EEGs. 95.70% SEN, 95.89% SPE, 

and 95.79% ACC were achieved for the CHB-MIT data using XGBoost classifier. Our 

proposed DMD approach yields higher ACC, PRE values but lower SEN value, using 

the EEG segments of 14 patients rather than 5 patients. In [42], the EMD, and in [43] 

the derivative of CEEMD, called the CEEMDAN method are applied to epileptic EEG 

signals on the Bonn data set, resulting higher classification performances. EMD and 

its derivative approaches have more computational complexity than the proposed 

DMD approaches as detailed in the discussion section.  

13 seizure, 26 non-seizure EEG signals from 1 to 5 minutes of 9 different subjects in 

the CHB-MIT data set were evaluated in [46]. Five spectral components of EEG 

signals, namely delta, theta, alpha, beta, and gamma, were decomposed using 

Dauchebies (Db4) wavelet filter bank. Dimension reduction based on a statistical 

model was conducted using the zero-mean generalized Gaussian distribution (GGD) 

method. Seizure and non-seizure EEG classification performances of each EEG 

component were evaluated using the linear discriminant analysis (LDA). 97%–99% 

SEN, 79%-92% SPE, and 92%–97% ACC were reported as the results of the study. 

Fewer patient data were evaluated compared to our proposed DMD-based study. 

Moreover, fewer epileptic EEG segments have been evaluated. Despite all this, the 

SEN value is higher, but the SPE and ACC values are lower than that of our proposed 

study.  

In two seizure detection studies [44, 47] conducted using WT methods, publicly 

available Freiburg and Bonn data sets were used. While higher seizure detection 

performance was achieved on the Bonn data set [47] compared to our DMD-based 

study, the study conducted using the Freiburg data set [44] provided lower 

performance evaluation results than that of our proposed approach implemented on the 

CHB-MIT data set. Seizure detection performances reported in the literature using the 

CHB-MIT data set are generally lower than those obtained using the Bonn data set.  
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In 2018, Kumar et al. presented a VMD and semantic feature-based epileptic seizure 

detection approach. Two different public epileptic EEG data sets, known as the Bern-

Barcelona data set and Bonn data set were utilized for the seizure detection study. 

Band-limited IMFs (BLIMFs) were extracted by VMD. By using high-frequency 

BLIMFs, semantic features (differential entropy and peak-magnitude of root mean 

square ratio) were extracted. Various classifiers such as ANN, SVM, K-NN, NB, and 

RF are employed to separate seizure and seizure-free EEG segments. The experimental 

results yielded superior recognition performance with an average of 78.5% ACC, 95% 

SEN, 95% SPE and 94.1% ACC, 95.33% SEN, 96.67% SPE values for the Bern-

Barcelona and Bonn data sets respectively [41]. While our proposed DMD-based 

approach provided higher ACC and PRE values than the VMD-based approach, the 

SEN value was slightly lower. 

In [45], a seizure detection study using generalized Stockwell transform (GST) and 

SVD was proposed. The time-frequency distributions of EEG segments in the Bonn 

data set were obtained using GST methods. Utilizing SVD matrix decomposition 

algorithm, GST matrices were decomposed into singular values and various features 

were extracted. Average classification accuracies between 88.04% and 99.12% were 

obtained using RF classifier. Compared to studies performed using the Bonn data set, 

this study achieved an average seizure detection performance. In addition, proposed 

DMD approach uses the SVD method in the matrix decomposition step, however the 

computational complexity of our approach is lower because no signal representation 

is required such as GST.  

In [65], using the convolutional neural network (CNN), seizure detection experiment 

was conducted utilizing the CHB-MIT data set. The 71.45 % average seizure detection 

sensitivity was achieved by their approach. Sample entropy (SampEn) and fuzzy 

entropy (FuzzyEn) based seizure detection was presented in another study [29]. The 

EEG recordings of patients from the CHB-MIT data set (Patients 1-18) and Bonn data 

set were used for the seizure detection. In fuzzy entropy, the higher mean accuracy, 

sensitivity, and specificity (98.31 % ACC, 98.27%, and 98.36%) values were achieved 

than in the Sample entropy (97.16% ACC, 97.01%, and 97.34%) for CHB-MIT 

dataset. The Sparse common space pattern (SCSP) based automatic seizure detection 

approach was utilized in another study [124]. 22 channel-EEG signals of 10 patients 



74 

 

were collected with 256 Hz sampling frequency. The interictal, pre-ictal (10–50 min 

before the onset), and the ictal EEG segments of each patient were evaluated. Using 

three different search methods based on the eigenvalue decomposition, EEG feature 

sparsity was carried out. Fisher linear discriminant method was used for the 

classification resulting over 99.75 % classification accuracy.  

Among these previous studies, there is one seizure detection study [58] conducted 

using the DMD approach that reports the performance by means of SEN and SPE. 

CHB-MIT data set was used to detect seizure event and 87% SEN, 99% SPE values 

were achieved. Compared to this study, higher SEN and SPE values were obtained in 

our seizure detection approach performed with the CHB-MIT dataset (96.7% ACC, 

92.9% SEN, 98.5% SPE). Bilal et. al [59] presented an MRDMD based seizure 

detection approach. DMD powers and temporal features, of the CHB-MIT dataset, 

were used as features. The highest 93.7% SEN, and 99.2% SPE values were achieved 

in the results of that study. Again, compared to the performance of DMD-based seizure 

detection experiment on CHB-MIT dataset in our study, there is no significant 

performance improvement despite the additional computational expense of temporal 

features.   

In another study [120], using the common spatial pattern (CSP) based feature 

extraction, the seizure prediction problem was considered. The maximum average 89 

% SEN and 37 % SPE, and 68.71 minute prediction time were obtained using the 

CHB-MIT data set. In another epileptic seizure prediction study [121], bag-of-wave 

(BoWav) based feature extraction and ELM based classification approach was 

presented. The EEG recordings of patients from the CHB-MIT data set (Patients 1, 5, 

7, 8, 9, 10, 14, 15, and 22) with a total of 62 seizure events were utilized and 88.24 % 

sensitivity was achieved. Compared with these two studies [120, 121], higher SEN and 

SPE values were achieved in our MC-DMD-based seizure prediction study performed 

with the CHB-MIT dataset.  

On the other hand, in our previous study [125] conducted using the same IKCU data 

set, and applying EMD, EEMD and DWT methods, we achieved 97.14%, 98.13%, and 

94.56% accuracy values respectively. However, as discussed in that study, EMD and 

EEMD approaches have the disadvantage of computational complexity over DWT 

method. The computational complexity of EMD is 𝑂(𝑁𝑠𝐿𝑁𝑥) where 𝑁𝑠 is the number 
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of shifting iterations to extract each IMFs, 𝐿 denotes the number of IMFs, 𝑁𝑥 is the 

length of the signal, and 𝑂(.) shows the order of computation. This complexity is 

multiplied by the number of ensembles 𝑁𝑒 in EEMD [115, 125], making EMD and its 

variants computationally expensive iterative methods. The single channel-based DMD 

approach proposed by us, which clearly has the computational advantages, resulted in 

96.7% classification accuracy. The computational complexity of the DMD algorithm 

is reported as 𝑂(𝐾𝑁𝑀) where 𝐾 is the number of modes, 𝑁 and 𝑀 are the dimensions 

of the data matrix [126]. Thus, the above encouraging classification results together 

with the computational advantages, indicate that the proposed DMD method may be 

applied to the analysis of univariate signals such as single EEG channels and other 

non-stationary signals.  

 

4.4 Results and Discussion of SST Methods 

In this section, a novel time-frequency representation based approach is presented to 

distinguish pre-seizure (or inter-seizure) and seizure EEG segments. The proposed 

method involves obtaining joint TF representation of “pre-seizure (or inter-seizure)” 

and “seizure” EEG segments labeled by expert neurologists. The TF representations 

of EEG segments are obtained using SST and STFT for each EEG channel separately. 

SST-based machine learning and deep learning approaches are performed to epileptic 

EEG detection and prediction. 

4.4.1 Machine Learning Based Approach 

In the machine learning-based approach, two different methods are presented for 

feature extraction: (i) higher-order joint TF moments are calculated using the joint 

densities obtained by SST and STFT. (ii) The resulting TFRs from SST and STFT are 

processed as images, and GLCM are calculated from these TFR images. Four 

statistical GLCM features: contrast, correlation, energy, and homogeneity are 

calculated to obtain GLCM based feature sets. Finally, both single and ensemble 

machine learning algorithms such as SVM, kNN, NB, LR, BT, and S-kNN are used 

for the classification of generated feature sets. In proposed SST based seizure detection 
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approach, two different data sets are evaluated. The first one is our own IKCU data set 

that is collected from patients under treatment at Izmir Katip Celebi University 

Medical School Hospital. The other one is CBH-MIT data set that is publicly available 

epileptic EEG data collected at Children’s Hospital Boston.  

 

 
(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.12: 1 s. long, (a) pre-seizure, (b) seizure EEG; magnitude STFT of (c) pre-

seizure, (d) seizure EEG segment; magnitude SST of (e) pre-seizure, (f) seizure EEG 

segment. 
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TF representations of 1 s. duration pre-seizure and seizure EEG segments (in IKCU 

data set) obtained using STFT and SST methods are given as examples in Figure 4.12. 

It is observed from Figure 4.12c- 4.12f that the SST method is able to resolve the 

components of the EEG signals for both pre-seizure and seizure cases and represent 

them better in the TF plane than the STFT method. Note here that the resolution of the 

TF representation obtained by the STFT is based on the selection of the analysis 

window function. In our experiments, we utilized a window size that provides optimal 

time and frequency resolutions in the STFT analysis of epileptic EEG signals. Even in 

that case, reassigned SST method shows clear advantages in the representations of 

these signals.  

4.4.1.1 Feature Extraction 

In this study, we present two approaches to extract features from the TF representations 

of EEG signals; Higher Order Joint Time-Frequency (HOJ-TF)-moments, and GLCM 

based feature sets are generated from STFT and SST images. In the STFT calculations, 

a Hamming window is used with a 50% overlap.  

 HOJ-TF moment based features: Higher-order joint TF moments < 𝑡𝑖  𝜔𝑗 >

; 𝑖, 𝑗 = 1, 2, … are calculated using the joint TF density estimates obtained by SST 

and STFT methods.  

 < 𝑡𝑖  𝜔𝑗 >= ∬𝑡𝑖  𝜔𝑗  𝑆(𝑡, 𝜔) 𝑑𝑡𝑑𝜔, 𝑖, 𝑗 = 1,…                    (4.15) 

where 𝑆(𝑡, 𝜔) is the density obtained by the magnitude square of the SST and STFT. 

The joint TF moments are log-normalized to reduce the dynamic range as [127],  

 < 𝑡𝑖  𝜔𝑗 >= log (
< 𝑡𝑖  𝜔𝑗 >

𝑖! 𝑗!
) , 𝑖, 𝑗 = 1, … , 𝑛                   (4.16) 

In our experiments, log-normalized HOJ-TF moments are calculated for 𝑛 = 4, hence 

1 × 16 feature vector is obtained for each inter-seizure, pre-seizure, and seizure EEG 

segment.  
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 GLCM based features: GLCM is one of the texture descriptors and may be 

utilized in many pattern recognition applications. To obtain GLCM matrix 

𝐺(𝑚, 𝑛) of the gray-level image 𝐼(𝑘, 𝑙), the joint probability distributions of two 

neighboring image pixel pairs with a specific angle “𝜃” and distance “𝑑” are 

calculated [57, 128].  

 𝐺(𝑛,𝑚) = (
1,        

𝑖𝑓 𝐼(𝑘, 𝑙) = 𝑛 𝑎𝑛𝑑

𝐼(𝑘 + 𝑑 cos 𝜃 , 𝑙 + 𝑑 sin 𝜃) = 𝑚
0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

)              (4.17) 

Here, 𝑛,𝑚 𝜖 {0, 1, … ,𝑁𝑔 − 1} are intensity values of pixels, 𝐼(𝑘, 𝑙) is the intensity 

value of (𝑘, 𝑙)𝑡ℎ image pixel, and 𝐾 × 𝐿  is the size of the image with 𝑁𝑔 gray levels.  

In this study, we propose considering the magnitude of STFT and SST of each EEG 

segment as a gray-scale image, and calculating GLCM features. Examples of STFT 

and SST magnitudes are shown in Figure 4.12, for pre-seizure and seizure EEG 

segments of IKCU data set. Therefore, we calculate the GLCM matrices using 𝜃 = 0𝑜 

and distance 𝑑 = 1 and extract efficient features [49, 57]. Second-order statistical 

features, namely, contrast, correlation, energy, and homogeneity given below are 

calculated from the GLCM matrices corresponding to each EEG segment [49, 128];  

 

𝐺𝐶 = ∑ ∑ (𝑛 − 𝑚)2𝐺2(𝑛,𝑚)

𝑁𝑔−1

𝑚=0

  

𝑁𝑔−1

𝑛=0

      

 

𝐺𝐶𝑜𝑟𝑟 = ∑ ∑ (𝑛 − 𝜇)(𝑚 − 𝜇)𝐺(𝑛,𝑚)/𝜎2

𝑁𝑔−1

𝑚=0

  

𝑁𝑔−1

𝑛=0

      

 

𝐺𝐸 = √ ∑ ∑ 𝐺2(𝑛,𝑚)

𝑁𝑔−1

𝑚=0

  

𝑁𝑔−1

𝑛=0

      

 

𝐺𝐻 = ∑ ∑
1

1 + (𝑛 − 𝑚)2
𝐺(𝑛,𝑚)

𝑁𝑔−1

𝑚=0

  

𝑁𝑔−1

𝑛=0

      

 

(4.18) 

where 𝑁𝑔 denotes the number of gray levels, 𝐺(𝑛,𝑚) is the (𝑛,𝑚)𝑡ℎ entry of the 

GLCM matrix, 𝜇 is the mean value, and 𝜎2 is the variance of the GLCM matrix. 
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𝐺𝐶 , 𝐺𝐶𝑜𝑟𝑟 , 𝐺𝐸 , 𝐺𝐻  are the Contrast, Correlation, Energy, and Homogeneity features 

calculated from the GLCM matrix.  

Hence, 1 × 4  GLCM feature vector is obtained for each pre-seizure, seizure, and inter-

seizure EEG segment.  

4.4.1.2 Experimental Results and Discussions 

In this section we present the results of epileptic EEG classification obtained by the 

proposed SST representation based approaches using various machine learning 

techniques. We compare the performance of the proposed method with that of the 

conventional TF method, i.e., STFT on the epileptic EEG data sets. 

Statistical analysis of the proposed method is performed using the one-way analysis of 

variance (ANOVA) test at 95% confidence level (𝛼 = 0.05) to determine the statistical 

significance of the difference between the extracted feature sets of two classes. The 

small p-value obtained as a result of ANOVA for all our experiments suggest that the 

difference between feature set of the groups is significant [29, 37]. In addition, the 

performances of the classifiers are investigated by means of different statistical metrics 

which are ACC, PRE, SEN, FPR, and F1-S.   

In the first stage of proposed approach, SST and STFT based TFR approaches are 

proposed to obtain distinctive information between pre-seizure and seizure EEG 

segments of IKCU data set. 1s and 5s duration EEG segments are obtained from pre-

seizure and seizure EEG signals, and time-frequency representations are obtained for 

each EEG segment using both SST and STFT approaches detailed in Section 3.1.3. 

First, the ANOVA test is applied to all feature sets obtained and the statistical 

significance level of the difference between groups is determined. The difference 

between the seizure and pre-seizure groups is found to be significant with p < 0.0001 

for both HOJ-TF moment-based and GLCM-based feature sets obtained from both 1s 

and 5s segment duration of SST and STFT approaches. Then, various classifiers are 

utilized to classify both 1s, and 5s pre-seizure and seizure EEG segments duration, and 

different statistical performance metrics are calculated. The features obtained from the 

left hemisphere (Fp1-F7, F7-T1, T1-T3, T3-T5, and Fp1-F3) and right hemisphere 
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(Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-F4) EEG channels are evaluated separately in 

order to reveal the hemisphere effect in distinguishing between pre-seizure and seizure.  

Table 4. 13: Performance Evaluation results of HOJ-TF-moment based feature sets 

for 1s (p < 0.0001) and 5s (p < 0.0001) EEG segments duration in the Left 

hemisphere. 

 

 

Table 4.14: Performance Evaluation results of HOJ-TF-moment based feature sets 

for 1s (p < 0.0001) and 5s (p < 0.0001) EEG segments duration in the Right 

hemisphere 

 

The performance evaluation results of the proposed SST approach, together with a 

comparison to STFT based method are given in Tables 4.13-4.16. The highest 

classification accuracy for 1s and 5s EEG segments are demonstrated with boldface 

numbers in the tables. The performance evaluation results of HOJ-TF-moment based 

feature sets obtained using SST and STFT approaches for both 1s and 5s seizure and 

pre-seizure EEG segments obtained from the left hemisphere and right hemisphere are 

summarized in Table 4.13 and Table 4.14, respectively. The highest classification 

  SST based HOJ-TF moment Feature Set STFT based HOJ-TF moment Feature Set 

 
 

Metric 
LR SVM kNN NB BT 

S-

kNN 
LR SVM kNN NB BT 

S-

kNN 

1s 

ACC 93  93.1 92.5 92.1 92.8 91.2 92.6  92.1 91.6 85.3 91.5 89.9 

PRE 94.8  95.4 93.9 96.7 94.7 93.2 94.2  94.5 93.8 94.4 94.3 92.4 

SEN 94.3  93.9 94.5 90.9 94.1 93.1 94.3  92.9 93.1 81.9 92.3 91.8 

F1-S 94.6  94.6 94.2 93.7 94.4 93.2 94.2  93.8 93.5 87.7 93.3 92.1 
 

5s 

ACC 94.6  95.1 94.2 94.4 94.1 93.3 94.4   93.7 93.6 89 93.3 92.7 

PRE 95.9  96.9 96.3 97.5 95.6 95.4 95.7  95.9 95.6 95.9 95.4 93.9 

SEN 95.7  95.5 94.7 93.8 95.2 94.3 95.7  94.3 94.5 86.7 94.2 94.7 

F1-S 95.8  96.2 95.5 95.6 95.4 94.8 95.7  95.1 95.1 91.1 94.8 94.4 

  SST based HOJ-TF moment Feature Set STFT based HOJ-TF moment Feature Set 

 
 

Metric 
LR SVM kNN NB BT 

S-

kNN 
LR SVM kNN NB BT 

S-

kNN 

1s 

ACC 88.4  88.4 88.5 83.6 88.4 86.2 87.6  87.2 86.6 79.1 85.9 84.1 

PRE 91.1  90.8 91.2 94.2 90.2 89.9 89.6  89.9 89.3 92.9 89.4 87.7 

SEN 91.1  91.3 90.9 79.4 92.1 88.6 91.2  90.2 89.8 72.9 88.5 87.4 

F1-S 91.1  91 91.1 86.2 91.1 89.3 90.4  90 89.5 81.7 88.9 87.6 

 

5s 

ACC 90.5  90.9 90.5 87.1 91 90.2 89.8  88.6 88.1 83.6 86.7 86.7 

PRE 92.5  93 94.4 94.9 93.1 93.1 91.4  91.7 92.5 95.2 91.2 90.1 

SEN 92.9  92.9 90.7 84.7 93.2 91.8 93.1  90.6 88.8 78.6 87.9 89.4 

F1-S 92.7  92.9 92.5 89.5 93.1 92.4 92.2  91.2 90.6 86.1 89.5 89.7 
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performance is achieved with 93.1% ACC, 95.4% PRE, 93.9% SEN, and 94.6% F1-S 

values using SVM classifier from SST approach of 1s EEG segments obtained from 

the left hemisphere. For the same EEG segment size and same hemisphere, the 

maximum classification performance is obtained for the STFT approach with 92.6% 

ACC, 94.2% PRE, 94.3% SEN, and 94.2% F1-S values using LR classifier. In 

addition, the classification successes are increased both SST (95.1% ACC) and STFT 

(94.4% ACC) approaches for 5s EEG segment duration. On the other hand, the 

classification performances are decreased in both SST and STFT approaches for the 

right hemisphere (shown in Table 4.14). While the highest classification performance 

is achieved with 88.5% ACC, 91.2% PRE, 90.9% SEN, and 91.1% F1-S values using 

kNN for SST approach of 1s EEG segment; 91% ACC, 93.1% PRE, 93.2% SEN, and 

93.1% F1-S values are obtained using the BT classifier for the SST approach for 5s 

EEG segments. Whereas lower classification performances are obtained in STFT 

approach for both 1s (87.6% ACC), and 5s EEG segments (89.8% ACC) with the LR 

classifier.  

Table 4.15: Performance Evaluation results of GLCM based feature sets for 1s (p < 

0.0001) and 5s (p < 0.0001) EEG segments duration in the Left hemisphere. 

 

The classification metrics of GLCM feature sets that consist of second-order statistical 

features for SST and STFT approaches of different EEG segment sizes are 

demonstrated in Table 4.15 and 4.16. While using the BT classifier for the SST 

approach with a segment length of 1s in the left hemisphere (shown in Table 4.15), the 

highest classification performance is achieved with 92.7% ACC, 94.6% PRE, 94.1% 

SEN and 94.4 % F1-S values; using the same classifier, the highest classification 

performance is obtained with the scores of 90.7% ACC, 93.1% PRE, 92.4% SEN and 

  SST based GLCM Feature Set STFT based GLCM Feature Set 

 
 

Metric 
LR SVM kNN NB BT 

S-

kNN 
LR SVM kNN NB BT 

S-

kNN 

1s 

ACC 92.5  92.5 92.6 92.2 92.7 91 90  90.3 90.4 88.7 90.7 89.1 

PRE 95.4  95.7 95.8 95.2 94.6 94.1 91.8  92.5 93.4 92.2 93.1 92.7 

SEN 92.8  92.5 92.7 92.5 94.1 91.8 92.7  92.3 91.5 89.9 92.4 90.2 

F1-S 94.1  94.1 94.2 93.9 94.4 92.9 92.2  92.4 92.4 91.1 92.7 91.4 
 

5s 

ACC 94.1  94.4 94.4 94.5 93.6 93.3 94.1  94.4 94.1 94.4 93.9 93.9 

PRE 95.6  96.2 96.8 96.2 95.7 95.6 95.6  96.2 96.6 96.3 95.6 96.2 

SEN 95.2  95.2 94.5 95.3 94.4 93.9 95.2  95.2 94.3 94.9 94.9 94.4 

F1-S 95.4  95.7 95.7 95.8 95.1 94.8 95.4  95.7 95.4 95.6 95.3 95.3 
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92.7% F1-S for the STFT approach. Additionally, for the 5s segment duration, 

classification success is increased in both SST (94.5% ACC) and STFT (94.4% ACC) 

approaches. On the other hand, for the right hemisphere, lower classification successes 

are achieved for both approaches, both in the 1s EEG segment duration and the 5s EEG 

segment duration (demonstrated in in Table 4.16).  

Table 4.16: Performance Evaluation results of GLCM based feature sets for 1s (p < 

0.0001) and 5s (p < 0.0001) EEG segments duration in the Right hemisphere. 

 

To observe the advantages of the SST method and the contribution of the segment 

duration to the classification performance more clearly, the features obtained from the 

right hemisphere and left hemisphere are combined to create combined feature sets for 

both 1s, and 5s EEG segments duration. Classification performances of combined 

HOJ-TF-moment-based, and combined GLCM-based feature sets obtained for 

different segment sizes, using SST and STFT approaches are shown in Figure 4.13. 

For the combined HOJ-TF-moment-based feature set, the classification metrics of all 

classifiers for both SST and STFT approaches are increased in the 5s segment duration. 

For the same feature set, the SST approach in both segment lengths provided higher 

performance metrics than the STFT approach (shown in Figure 4.13a). For the 

combined GLCMbased feature set, classification with 5s segment duration signals is 

also better in both methods (shown in Figure 4.13b). Examples of misclassified and 

correctly classified seizure segments are given in Figure 4.14.  

  SST based GLCM Feature Set STFT based GLCM Feature Set 

 
Metric 

LR SVM kNN NB BT 
S-

kNN 
LR SVM kNN NB BT 

S-

kNN 

1s 

ACC 88.8  88.6 88.4 88.1 88.7 86.1 85.3  85.4 85 83.8 86.1 83.4 

PRE 91.3  90.9 91.5 92.1 90.5 90 87.9  88.4 88.6 88.2 89.2 88 

SEN 91.2  91.5 90.6 89.1 92.1 88.2 89.4  88.8 87.8 86.4 89.1 85.8 

F1-S 91.3  91.2 91 90.6 91.3 89.1 88.6  88.6 88.2 87.3 89.2 86.9 

 

5s 

ACC 90  90.1 92.8 90.1 91.9 91.5 90.1  91 92.7 90.1 91.6 91 

PRE 91.6  92.1 96.8 95.1 94.2 94.5 91.6  92.4 96.5 95.2 93.8 93.7 

SEN 93.2  94.1 92.1 89.4 93.2 92.4 93.4  93.9 92 89.3 93.2 92.2 

F1-S 92.4  93.1 94.4 92.2 93.7 93.4 92.5  93.2 94.2 92.2 93.5 92.9 
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(a) 

 
(b) 

Figure 4.13: Classification accuracy (% ACC) of (a) HOJ-TF-moment based 

combined feature sets, (b) GLCM based combined feature sets obtained using SST 

and STFT approaches for 1s and 5s EEG segments durations. 

 

 
(a) 

 
(b) 

Figure 4.14: Examples of (a) misclassified and (b) correctly classified seizure 

segments. 

 

Since the difference between methods is more pronounced in the 1s segment size, the 

precision and sensitivity values of the classifiers and the patient-based performance of 

the SST approach are given for 1s segment duration, and shown in Figures 4.15 and 

4.16, respectively. Precision values for the classifiers, which show the ratio of seizure 

data correctly classified to the data assigned to the seizure class by classifiers, for 1s 

segment duration (the difference between methods is more pronounced) in both 

approaches are given in Figure 4.15a,c. Similarly, sensitivity values for the classifiers, 

which indicates the ratio of accurately detected seizure data to the total seizure data, 

for 1s segments duration in both approaches are given in Figure 4.15b,d. Higher 

Precision values are obtained in all classifiers for the SST approach than the STFT 

approach using both combined HOJ-TF-moment-based feature set, and the combined 
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GLCM-based feature set. Similarly, higher sensitivity values are obtained in the SST 

approach for all classifiers and both feature sets.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.15: Changes in Precision and Sensitivity values on a classifier basis in 1s 

EEG segments in both methods: (a) Precision values and (b) Sensitivity values 

obtained from combined HOJ-TF-moment based feature set; (c) Precision values and 

(d) Sensitivity values obtained from combined GLCM based feature set. 

 

 
(a) 

 
(b) 

Figure 4.16: Patient based average (a) SEN and (b) FPR values obtained using the 

HOJ-TF-moment based feature set and GLCM based set of SST approach for 1s 

EEG segment duration. 

 

In the study conducted with the IKCU data set, the classification process is carried out 

by combining the features obtained from all patient data due to the low number of 

patients and the short total duration of pre-seizure and seizure EEG signals (inter-

patient classification process). In order to reveal the success of the SST approach to 
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classify pre-seizure and seizure EEG segments based on intra-patient, the performance 

of patient-based classification is also evaluated for 1s segment duration. The averages 

of the SEN and FPR values obtained from all classifiers are calculated and shown in 

Figure 4.16. It is remarkable that the patient-based SEN values are high. However, in 

5 patients (Patient-3, Patient-4, Patient-5, Patient-12, and Patient-13) with lower SEN 

performance, the FPR is also high (average FPR values for all patient; for HOJ-TF 

moment based feature set: 11.6%, for GLCM based feature set: 13.9%). The fact that 

the number of pre-seizure segments in these 5 patients is much less than the number 

of seizure segments is thought to cause this situation. The low success of pre-seizure 

and seizure classification in these patient data causes a decrease in classification 

performances performed by combining all patient data.  

Using the CHB-MIT public epileptic EEG data set, SST based seizure detection 

approach is performed. HOJ-TF moments based and GLCM based feature sets are 

created using TFRs that obtained utilizing the SST approach for seizure and inter-

seizure EEG segments. Similar to the IKCU data set, log-normalization is used to 

obtain the HOJ-TF moment-based feature set, and the 1 × 16 feature vector is obtained 

for each EEG segment. Again, 2nd order statistical GLCM-based features such as 

contrast, correlation, energy, and homogeneity are calculated, thus 1 × 4 GLCM 

feature vector is obtained for each seizure and inter-seizure EEG segment.  

The statistical significance of the difference between the inter-seizure and seizure 

groups in the obtained feature sets is determined for each patient by applying the 

ANOVA test 𝛼 = 0.05. Using various classifiers and statistical metrics such as ACC, 

PRE, and SEN, the success of a patient-based seizure detection approach is 

demonstrated.  

The results of the classification performances of the patient-based seizure detection 

approach and the p values obtained as a result of the ANOVA test are summarized in 

Tables 4.17-4.18. The HOJ-TF moment based feature set of the SST approach 

provided successful patient-based seizure detection with high SEN, PRE, and ACC 

values except for patient chb13 (p < 0.001) and chb21 (p < 0.01) (given in Table 4.17). 

Lower SEN values (higher than 80%) are obtained for patients chb06 (SVM:83.6%, 

kNN:82.8%, LR:84.9%), chb14 (SVM:84%, kNN:78%, LR:89.2%), chb16 

(SVM:81.7%, kNN:85.8%, LR:81.9%),and chb18 (SVM:80.6%, kNN:80.8%, 
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LR:81%), while high ACC and PRE values (with p < 0.005) are achieved. The kNN 

classifier achieved the highest average seizure detection success with 89.1% SEN, 

92.6% PRE, and 94.5% ACC values for all patients. On the other hand, high patient-

based performance evaluation results (p < 0.001) are obtained using GLCM based 

feature set of the SST approach except for patients chb13 (p = 0.07), chb21 (p = 0.3) 

(less than 80%, given in Table 4.18). Additionally, higher average seizure detection 

performance with 90.3% SEN, 93.4% PRE, and 95.1% ACC values are achieved using 

the kNN classifier.  

Table 4.17: Performance Evaluation results of HOJ-TF moment based feature sets of 

CHBMIT data set (p < 0.01, 600 inter-seizure segments are investigated for each 

patient.) 

  SVM kNN LR 

Patient Segment SEN PRE ACC SEN PRE ACC SEN PRE ACC 

chb01  481 seizure 88.1  98.3 94.2 94.4  96.9 96.2 96.3  97.5 97.3 

chb02  172 seizure 86.3  85.7 93.8 88.1  84 93.6 87  88.5 94.6 

chb03  402 Seizure 98.3  99 99.1 99  99 99.3 97.7  98.3 98.5 

chb04  262 Seizure 92  94.4 95.9 94.9  93.3 96.5 93.2  93.8 96.1 

chb05  558 Seizure 97.7  97 97.4 97.8  96.8 97.5 97.7  97.3 97.6 

chb06  137 Seizure 83.6  88.6 94.9 82.8  89.9 95.1 84.9  87.9 95.1 

chb07  325 Seizure 98.2  98.5 98.9 98.5  98.5 99.1 98.6  98.2 98.9 

chb08  919 Seizure 93.9  97 94.6 95  97.2 95.3 95.1  96.8 95.2 

chb09  276 Seizure 96  99.7 98.7 98.2  99.5 99.3 95.9  98.4 98.3 

chb10  447 Seizure 92.9  97.7 96.2 94.8  97.4 96.7 92.8  96.5 95.5 

chb11  806 Seizure 94.8  98.5 96.4 96.3  98 96.9 97.2 98.6 97.8 

chb12  641 Seizure 83.8  91.3 87.7 87.8  91.2 89.3 85.7 89.7 87.7 

chb13  253 Seizure 45.7  77 81.5 56.6  76 81.9 52.8 78.2 81.8 

chb14  169 Seizure 84  94.3 95.4 78  94 94.2 89.2 92.4 96.1 

chb15  1396 Seizure 94.8  79.9 77.8 89.8  89.2 85.3 91.8 85.7 82.7 

chb16  69 Seizure 81.7  85.9 96.7 85.8  86.4 97.2 81.9 82.6 96.4 

chb17  293 Seizure 93.4  94 95.9 95.1  93.2 95.9 92.6 93.9 95.7 

chb18  317 Seizure 80.6  85.9 88.7 80.8  87.4 89.4 81 87 89.2 

chb19  236 Seizure 92.3  100 97.8 94.9  99.4 98.5 96.3 98.1 98.5 

chb20  294 Seizure 93.6  99.4 97.7 94.8  98.5 97.7 98 98.3 98.8 

chb21  199 Seizure 38.8  63.4 81.1 48.2  68.9 81.7 46.3 66.3 81.3 

chb22  204 Seizure 98.2  98.4 99.1 99.3  98.5 99.4 98.2 97 98.8 

chb23  424 Seizure 97.9  95.6 97.3 97.7  95.1 97.1 97.4 95.7 97.1 

 Average 87.2  92.2 93.8 89.1  92.6 94.5 89.1 92.1 94.3 
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Table 4.18: Performance Evaluation results of GLCM based feature sets of CHB-

MIT data set (p < 0.07 except patient chb21, 600 inter-seizure segments are 

investigated for each patient.) 

  SVM kNN LR 

Patient Segment SEN PRE ACC SEN PRE ACC SEN PRE ACC 

chb01  481 seizure 100   100 100 100 99.6 99.9 100 100 100 

chb02  172 seizure 99.9  100 99.9 99.9 100 99.9 99.9 100 99.9 

chb03  402 Seizure 99  99.7 99.7 99 99.7 99.6 99 99.8 99.7 

chb04  262 Seizure 91.1   97 96.5 93.9 94.9 96.6 91.6 96 96.3 

chb05  558 Seizure 98.6  96.4 97.7 98.5 96.8 97.8 98.3 96.8 97.7 

chb06  137 Seizure 85.3  91 95.7 84.6 91.1 95.6 83.8 91.9 95.6 

chb07  325 Seizure 99.2  98.9 99.6 99.1 99.1 99.6 99.1 99.2 99.6 

chb08  919 Seizure 94.3  96.8 94.7 94.9 97.2 95.3 94.5 96.5 94.8 

chb09  276 Seizure 97.2   99.7 99.1 98.4 99.6 99.4 97 99.2 98.9 

chb10  447 Seizure 94.1  98.6 97.1 97.5 98.7 98.5 94.9 98.1 97.2 

chb11  806 Seizure 95.9  99.3 97.4 96.9 98.4 97.6 97.2 98.6 97.9 

chb12  641 Seizure 79  87.3 83.2 86.1 89.8 87.9 80.3 84.4 82.2 

chb13  253 Seizure 43.1  89.6 81.6 54.9 74.2 80.9 46.2 86.2 81.9 

chb14  169 Seizure 93  98.4 98.2 93.8 98.1 98.2 94.4 97.5 98.2 

chb15  1396 Seizure 86.9  93.3 86.4 88.9 90.7 85.9 88.4 91.4 86 

chb16  69 Seizure 90.3  90.8 98 89.5 91.1 98 90.2 91.4 98.1 

chb17  293 Seizure 94.8   92.2 95.8 95.9 93 96.3 94.1 93 95.7 

chb18  317 Seizure 78.7  85.1 87.2 82.5 89.1 90.5 78 84.9 87.2 

chb19  236 Seizure 89   100 96. 9 93.2 99.5 98.1 95.8 99.1 98.6 

chb20  294 Seizure 95.4  100 98.5 96.7 99.6 98.9 98.7 99.2 99.4 

chb21  199 Seizure 6.9  25.2 75.4 34.2 53.2 76.2 17.5 51 75.6 

chb22  204 Seizure 98.8   98.8 99.4 99.6 98.7 99.6 99 99 99.4 

chb23  424 Seizure 98.9  95.4 97.6 98.8 95.5 97.6 98.2 95.9 97.6 

 Average 87.4  92.8 94.6 90.3 93.4 95.1 88.5 93.4 94.7 

 

In order to compare the seizure detection success of the GLCM and HOJ-TF moment-

based feature sets of SST approach, patient-based SEN and FPR values are obtained 

by averaging SEN and FPR values of three classifiers. The obtained patient-based SEN 

and FPR values are graphically given in Figure 4.17. Higher average SEN values are 

obtained using GLCM based feature set of SST approach except for patients chb08, 

chb12, chb13, chb19, and chb21 than that of HOJ-TF moment based feature set of 

SST. In addition, average SEN values that are greater than 80% are achieved using 

both the HOJ-TF moment-based feature set and the GLCM-based feature set, except 

for chb13 and chb21 patients, for seizure detection approach. On the other hand, it is 

remarkable that low FPR values are achieved in all patients except patient chb15 

(average FPR values for all patient; for HOJ-TF moment based feature set: 4.71%, for 

GLCM based feature set: 3.58%). The fact that the number of seizure segments 

examined is more than the number of inter-seizure segments may have led to these 

results for this patient.  
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(a) 

 
 (b) 

Figure 4.17: Patient based average (a) SEN and (b) FPR values obtained using the 

HOJ-TF-moment based feature set and GLCM based set of SST approach for 1s 

EEG segment duration. 

 

In order to test the proposed method on a real-life scenario, we trained the proposed 

model using one data set, and tested using another data set. The sensitivity and 

accuracy of classification obtained by using the models trained by CHB-MIT data, and 

tested by unlabeled features of IKCU data set are demonstrated in Figure 4.18. Data 

from subject chb03 is used to create models by SVM, kNN, and LR classifiers, and 

then those models are used to classify the seizures of subject-14 in the IKCU data set. 

Sensitivity and accuracy values of subject-14 for HOJ-TF moment based feature set of 

SST approach are 97.8%, 98.5%, 99.3%, and 98.2%, 98.7%, 97.9%, for SVM, kNN, 

and LR, respectively (shown in Figure 4.18a). However, sensitivity and accuracy 

values of the created models of subject chb03 are 99%, 98.3%, 97.7% and 99.3%, 

99.1%, 98.5%, respectively. Although the models obtained using the GLCM-based 

features of the chb03 subject are successful in detecting the seizure of the subject-14 

in the IKCU data set except for SVM, it failed to detect the pre-seizure data. While 
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high SEN values are obtained, lower ACC values are resulted (illustrated in Figure 

4.18b).  

 
(a) 

 
(b) 

Figure 4.18: Classification of epileptic seizures of subject-14 in IKCU data set using 

the classifier based models of subject chb03 in CHB-MIT data set for (a) HOJ-TF 

moment based feature set and (b) GLCM based feature set. 

 

 

Table 4.19: Comparison of classification performances of various seizure detection 

studies that used the CHB-MIT data set. 

Author Patient Approaches Classifiers Performance Metrics 

Samiee et al. [49] 23 Patients GLCM SVM SEN: 70.19%, SPE: 97.74% 

Thodoroff et al. [67] 23 Patients Recurrent CNN  SEN: 85% 

Ayodele et al. [65] 23 Patients CNN  SEN: 71.45% 

Jana et al. [129] 23 Patients DWT 
ANN, LDA, 

SVM, ELM 

SEN: 71.42%, PRE: 73.88% 

ACC: 99.14%, F1 score: 71.53% 

Zhou et al. [66] 23 patient CNN  
SEN: 96.9%, SPE: 98.1%, 

ACC: 97.5% 

Xiang et al. [29] 18 patient 
Fuzzy Entropy 

Sample Entropy 
SVM 

SEN: 98.27%, ACC: 98.31% 

SEN: 97.01%, ACC: 97.16% 

Alickovica et al. [38] Not given 
EMD, DWT, 

WPD 

RF, SVM, MLP, 

kNN 

DWT, WPD: 100% ACC 

EMD: 95.35% ACC 

Dash et al. [130] 23 patient IFDT HMM 
SEN: 96.64%, PRE: 98.73%, 

ACC: 99.60% 

Proposed Approach 23 patient SST SVM, kNN, LR 
SEN: 90.3%, PRE: 93.4% 

ACC: 95.1% 

 

Some studies in which seizure detection was performed using the CHB-MIT data set 

are summarized in Table 4.19. This table contains the utilized methods, classifiers, 

number of patient, and performance metrics. According to studies using 23 patient data 

[49, 65, 67, 129] except study [66, 130], the performance evaluation results of our 

proposed SST-based approach are higher. In addition, with our proposed approach, 

higher SEN values are obtained than two studies using CNN [65, 67]. In another CNN 

study [66] better performance for seizure detection was achieved. However, although 
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it was stated that 23 patient data were used in this study, it was not stated how many 

EEG segments were evaluated for each patient. In the study [130] in which higher 

performance evaluation results were obtained, many features such as 2-D power 

spectral density, time-domain features, dynamic mode decomposition power, variance, 

and Katz fractal dimension were used in addition to the Iterative Filtering 

Decomposition Technique. Computing a large number of features causes 

computational complexity. In study [29] in which 18 patients data were used and in 

study [38], it was not specified which patient data were used. If patients with low 

seizure detection performance results and high p-values (chb13 and chb21) are 

excluded from the study, higher average performance values may be obtained for our 

proposed study. 

There are studies in the literature applying deep learning techniques to the detection of 

seizures on the CHB-MIT data set, providing higher accuracies than the proposed SST 

approach [66]. However, in the present study, a successful seizure detection method is 

presented using machine learning approaches and a new TF method, SST with 

improved localization properties. Additionally, for the IKCU data set, higher seizure 

classification performances are achieved using the proposed SST approach than the 

classical TF analysis method, STFT.  

 

4.4.2 Deep Learning Based Approach 

In this section, we propose an image-based utilization of TFRs obtained by the high-

resolution SST of EEG signals. SST approach provides a close to ideal TF energy 

distribution by assigning the TF components of the signal into the instantaneous 

frequency (IF) trajectory resulting in very high TF localization of the signal 

components. Epileptic seizures cause abrupt changes on the statistics of EEG signals 

which are non-stationary in nature. Hence, the aim of this study is to apply a high-

resolution TF analysis method such as SST into the representation of epileptic EEG 

signals to be able to capture the fast spectral variations of EEG signals during seizures. 

We train a CNN architecture with these TF images to achieve high segment-based 

seizure detection and prediction performances. The performance evaluation of both 
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seizure detection and prediction is based on a segment-based method which consists 

of 1 s and 5 s long EEG segments instead of the whole seizure event. The proposed 

approach is tested on two datasets; IKCU dataset we collected and the CHB-MIT 

dataset to detect and predict epileptic seizures with outstanding validation accuracies.  

4.4.2.1 Deep CNN Architecture 

In the proposed study, a novel network architecture is adapted from the 50-layer 

Residual Neural Network (ResNet-50) model, which is an advanced CNN architecture. 

ResNet-based approaches have been developed to prevent degradation and vanishing 

gradients problems as the network’s depth increases in CNN architectures [131]. 

ResNet architecture adds shortcuts between layers to overcome this problem. In our 

proposed method, TFR images are used as input to train the network. Using TFR 

images, the energy density of the signals may be expressed as color pixels. In order to 

achieve high classification performance, all information in TF pixels must be 

processed with minimum loss. The information in TF energy density of nonstationary 

signals is critical when analyzing these signals [132]. In recent years, TFR images have 

been used frequently for training deep learning-based architectures [133, 134]. Hence, 

in this study, a new CNN architecture is designed inspired by ResNet-50 architecture 

to classify the calculated TF images. The original ResNet-50 architecture has widely 

been used in many studies with successful results [134]. Nevertheless, it may be further 

optimized for binary classification problems with less training set. Hence, in this study, 

we use an optimized version of the ResNet-50. The proposed architecture includes 

fewer filters than the ResNet-50 and aims to increase the accuracy of the binary 

classification problem compared to the ResNet-50 while reducing the training cost.  

First, the TF-images recorded at 500 DPI resolution are resized to 128x128x3 

dimensions to reduce the training cost and are given as input to the deep network. 

Then, zero-padding is performed to balance the kernel sizes. Proposed architecture 

was implemented in 5 stages. In the first stage, one convolutional layer (including; 

convolution (Conv) (7x7), strides of 2, batch normalization (BN), and rectified linear 

unit (ReLU) function as the activation function), and one pooling layer (maximum) 

(3x3) strides of 2 have been used, respectively. The second stage consists of two blocks 

called convolutional block and identity block, both consist of 3 repetitive 
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convolutional layers and a step called shortcut that adds the incoming unaltered input 

array to the output of the convolutional layers. In the convolutional block, unlike in 

the identity block, the input array participates in the adding step after passing through 

Conv and BN layers on the shortcut phase. In the convolutional and identity blocks, 

the convolutional layers have 1x1, 3x3, and 1x1 kernel sizes, respectively. In the 

shortcut phase of the convolutional block, the convolutional layer has a 1x1 kernel 

size. Shortcuts have been used for preventing the deep network from overfitting, and 

also used to reduce and optimize computational complexity. After the second stage, 

the identity block is used by repeating 2, 3, 4, and 5 times, respectively. The proposed 

architecture includes 50-layer similar to the ResNet-50 architecture. The proposed 

architecture was not added more layers in order not to increase the training cost. It is 

modified for the binary classification problem by reducing the number of filters in the 

convolutional and identity blocks. The filter numbers in repetitive convolutional and 

identity blocks are as follows: while Stage-1 is preserved exactly as in ResNet-50, in 

Stage-2, convolutional block and all identity blocks have 16, 32, and 64 filters, 

respectively. The number of filters is increased in sub-stages so as to extract deeper 

features. Stage-3 has 32, 64, and 128 filters. In all sub-stages of Stage-4, similar to the 

ResNet-50 architecture the number of filters kept fixed but reduced to 128. Similarly, 

the number of filters is reduced, chosen as 256, and fixed in all substages of Stage-5. 

Deep residual features are extracted from the last stage. An average pooling (2x2) 

process was performed before the fully connected layer with 8192 neurons to reduce 

the large deep residual features array. Finally, the SoftMax function [135] has been 

used as a binary classifier to classify deep residual features. The deep network has over 

23.5 million trainable parameters.  

During the training phase of the network, Adam Optimizer was used, due to the 

effective choice of hyperparameters. Furthermore, different batch sizes have been 

tested in the training phase to obtain the best training result, and the batch size has 

been optimized to 64 as parameter tuning. Epochs have been selected as 50 in order to 

specify standards in all training phases, not to increase the training cost, and to observe 

the robustness of the model. The learning rate was chosen as 0.1, 0.01, 0.001, and 

0.0001, to observe its effect.  
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Two different cross-validation methods are adopted to evaluate the robustness of the 

proposed models. The k-fold CV [136] method is utilized based on a patient-correlated 

detection (PCD) approach where the trained model contains a mixed amount of data 

from all patients. Hence, the trained model preserves some of the characteristics of all 

patients used for training. Although this method does not evaluate well the accuracy 

in testing new patients, it is more successful in testing the data unused for training the 

model. The other method used for testing our results is the leave-one-out cross-

validation (LOOCV) [137]. In the LOOCV method, the subjects-folds used for testing 

are not considered for training. Therefore, it can be used for patient-independent 

detection (PID) validation. In the PID method, since the patient data used as test data 

are not included in any training phase, the trained model does not have any 

characteristic features of these patient data. Therefore, compared to the PCD method, 

this method better evaluates accuracy in testing new patients. Moreover, the LOOCV 

method is advantageous in choosing a more robust model compared to other CV 

methods [138]. In this study, since patients are selected and excluded, the LOOCV 

method works as a leave-subject-out CV approach.  

Additionally, SEN, PRE, ACC, F1-S, area under the receiver operating characteristic 

curve (ROC-AUC) [29, 125, 139], and mean squared error (MSE) [137] values are 

calculated during the segment-based evaluation phase [140] of the proposed models, 

in order to investigate the imbalanced dataset effects further. Moreover, imbalance 

ratio (IR) [141] values are calculated for all training sets.  

4.4.2.2 Experimental Results and Discussion 

Using the IKCU dataset which includes 10-channel EEG signals of 16 epilepsy 

patients, segment-based seizure detection approach is performed. All pre-seizure and 

seizure EEG segments are divided into non-overlapping 1 s- and 5 s-long segments. 

The high-resolution TFR of each EEG segment is calculated using the SST method. 

The magnitude square of SST matrices are considered as images and used as input for 

the proposed CNN architecture. PID and PCD validation methods are used to test the 

performance of the proposed image-based CNN approach. Two different segment 

durations are tested in order to reveal the contribution of the duration– TF resolution 
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to the performance of the proposed approach. The number of segments used to training 

and test phases of the proposed approach for all cases are given in Table 4.20. 

Table 4.20: The number of segments reserved for training and testing for IKCU 

dataset (Note: Tr-S=Training, Te-S=Testing, and Tot-S=Total Size). 

 

 

In the PCD approach, IR is 1 for both 1 s and 5 s long segments. In the PID approach, 

IR is calculated as 1.004 and 1.011 for 1 s and 5 s segments, respectively. Hence, no 

imbalanced dataset effect was encountered during the training of the IKCU dataset. 

Initially, we compared the proposed ResNet-50-based architecture to the traditional 

ResNet-50 architecture. The comparison was conducted with the 5 s long SST 

segments obtained from the IKCU data set. Traditional ResNet-50 is tested using PCD 

and PID validation methods, and average ACC of 94.78% and 90.97% were obtained 

respectively. The proposed architecture is achieved an average ACC of 99.06% and 

97.22% and revealed an average of 5.27% significant difference compared to the 

traditional ResNet-50 architecture. Further, it takes 519 s to train the traditional 

ResNet-50 architecture and 428 s to train the proposed modified ResNet-50 

architecture using 5 s long SST images. Thus, the proposed architecture provides a 

17.53% gain of training time. Therefore, all subsequent experiments are conducted on 

the proposed architecture. Additionally, we compare our results by the SST approach 

with spectrograms obtained by the traditional TFR approach, STFT. In our 

experiments, a Hamming window and overlap of 50% are utilized for STFT 

calculation for both 1 s and 5 s long EEG segments. The seizure detection performance 

for all cases in terms of SEN, PRE, ACC, cross-entropy (CE)-Loss, and F1-S for the 

segment-based analysis are presented in Tables 4.21-4.22.  

 

 

 1s Duration 5s Duration 

CV Type 5-fold CV LOOCV 5-fold CV LOOCV 

Tr-S 7856   9206 1520 1781 

Te-S 1964   614 380 119 

Tot-S 9820   9820 1900 1900 
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Table 4.21: The segment-based seizure detection performance obtained using the 

PID validation model for 1 s long EEG segments of the IKCU dataset. 

 SST 1s (%) STFT 1s (%) 

Patient ACC PRE SEN F1-S ACC PRE SEN F1-S 

Patient 1  96.58  98.72 94.77 96.70 86.97 89.74 85.37 87.50 

Patient 2 96.09  98.40 94.17 96.24 86.16 88.78 84.71 86.70 

Patient 3 93.65  97.12 90.99 93.96 82.74 85.26 81.60 83.39 

Patient 4 91.37  96.47 87.76 91.91 82.74 84.94 81.79 83.34 

Patient 5  91.21  96.79 87.28 91.79 83.39 85.90 82.21 84.01 

Patient 6  95.77  98.08 93.87 95.93 85.69 88.18 84.40 86.25 

Patient 7  95.77  98.40 93.60 95.94 85.18 87.82 83.79 85.76 

Patient 8 96.74  99.04 94.79 96.87 87.79 90.38 86.24 88.26 

Patient 9 95.90  98.40 93.88 96.09 87.79 90.71 86.02 88.30 

Patient 10  95.28  97.76 93.27 95.46 85.18 87.50 84.00 85,71 

Patient 11 94.95  97.44 92.97 95.15 85.50 88.14 84.10 86.07 

Patient 12  91.69  96.79 88.05 92.21 83.50 85.90 82.46 84.14 

Patient 13 92.02  97.12 88.34 92.52 82.90 85.26 81.85 83.52 

Patient 14 97.39  99.68 95.40 97.49 88.27 91.03 86.59 88.75 

Patient 15 97.72  100.0 95.36 97.62 88.76 91.67 86.93 89.24 

Patient 16 97.07  99.36 95.09 97.18 89.57 91.03 87.41 89.18 

Average 94.95  98.10 92.47 95.19 85.76 88.27 84.34 86.26 

 

 

Table 4.22: The segment-based seizure detection performance obtained using the 

PID validation model for 5 s long EEG segments of the IKCU dataset. 

 SST 5s (%) STFT 5s (%) 

Patient ACC PRE SEN F1-S ACC PRE SEN F1-S 

Patient 1  99.16  100.0 98.39 99.19 96.64 96.72 96.72 96.72 

Patient 2 98.32  100.0 96.83 98.39 94.96 95.08 95.08 95.08 

Patient 3 96.64  96.72 96.72 96.72 90.76 93.44 89.06 91.20 

Patient 4 94.96  95.08 95.08 95.08 89.92 91.80  88.89 90.32 

Patient 5  94.12  95.08  93.55  94.31  89.92  90.16  90.16  90.16 

Patient 6  97.48  96.72  98.33  97.52  93.28  93.44  93.44  93.44 

Patient 7  97.48  98.36  96.77  97.56  95.80  96.72  95.16  95.93 

Patient 8 99.16  100.0  98.39  99.19  97.48  98.36  96.77  97.56 

Patient 9 99.16  98.36  100.0  99.17  99.16  100.0  98.27  99.13 

Patient 10  98.32  98.36  98.36  98.36  95.80  95.80  96.67  96.23 

Patient 11 98.32  98.36  98.36  98.36  94.12  95.08  93.55  94.31 

Patient 12  92.44  93.44  91.94  92.68  90.76  95.08  87.88  91.34 

Patient 13 91.60  93.44  90.48  91.94  89.92  95.08  86.57  90.63 

Patient 14 100.0  100.0  100.0  100.0  98.32  98.36  98.36  98.36 

Patient 15 99.16  100.0  98.39  99.19  97.48  98.36  96.77  97.56 

Patient 16 99.16  98.36  100.0  99.17  96.64  96.72  96.72  96.72 

Average 97.22  97.64  96.97  97.30  94.44  95.64  93.75  94.67 

 

Segment-based seizure detection performance for the 1 s segment duration using PID 

method is presented in Table 4.21. For 1 s segment duration, while by using the SST-

based CNN  approach, the highest patient-independent seizure detection performance 
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(97.72% ACC, 100% PRE, 95.40% SEN, and 97.62% F1-S) is achieved for “Patient-

15”, the maximum seizure detection performance (89.57% ACC, 91.03% PRE, 

87.41% SEN, and 89.18% F1-S) is obtained utilizing the STFT-based CNN approach 

for “Patient-16”. For the same validation model of 5 s segment duration, similarly, 

maximum seizure detection performance (100% ACC, PRE, SEN, and F1-S) is 

achieved using the SST-based CNN approach for “Patient-14”. However, lower 

seizure detection performances have been achieved using STFT based CNN approach 

(shown in Table 4.22). In addition to the performance evaluation values given in 

Tables 4.21 and 4.22, the average ROC-AUC values are also calculated. In the PID 

approach, the ROC-AUC values obtained using SST 1 s, STFT 1 s, SST 5 s, and STFT 

5 s are 0.963, 0.912, 0.987, and 0.944, respectively.  

 

Table 4.23: The segment-based seizure detection performance obtained using the 

PCD validation model for both 1 s and 5 s long EEG segments of the IKCU dataset 

 

We also tested the performance of SST and STFT based CNN approaches for segment-

based epileptic seizures detection using PCD validation method (Table 4.23). For 1 s 

segment duration, the best seizure detection accuracy calculated using the “Fold-2” 

PCD model of SST based CNN approach is 96.54%, which is significantly higher than 

the best accuracy calculated using the “Fold-1” PCD model of STFT based CNN 

approach (88.34%). Similarly, for the 5 s segment duration, the highest seizure 

detection accuracy (99.47%) for the SST based CNN approach is achieved using 

  SST STFT 

 Folds ACC Loss PRE SEN F1-S ACC Loss PRE SEN F1-S 

1s 

Fold-1 95.42  0.256  97.03  94.23  95.61  88.34  0.387  88.77  87.00  87.88 

Fold-2 96.54  0.242  98.68  94.13  96.35  85.92  0.450  87.75  85.30  86.51 

Fold-3 93.78  0.289  96.26  91.96  94.06  86.83  0.423  87.75  86.80  87.27 

Fold-4 96.08  0.243  96.94  95.53  96.23  88.03  0.396  89.31  87.65  88.47 

Fold-5 93.71  0.289  96.14  91.95  94.00  87.79  0.398  89.22  87.66  88.43 

Avr. 95.11  0.264  97.01  93.56  95.25  87.38  0.411  88.56  86.88  87.71 

 

 

 

5s 

Fold-1 99.25  0.017  98.51  100.0  99.25  94.21  0.121  96.52  92.82  94.63 

Fold-2 98.95  0.018  99.00  99.00  99.00  98.68  0.075  100.0  97.57  98.77 

Fold-3 99.21  0.018  99.44  99.01  99.22  96.32  0.086  98.01  95.17  96.57 

Fold-4 99.47  0.017  100.0  98.88  99.44  95.53  0.098  97.51  94.23  95.84 

Fold-5 98.42  0.019  98.01  98.99  98.50  97.37  0.079  98.01  97.04  97.52 

Avr. 99.06  0.018  98.99  99.18  99.08  96.42  0.092  98.01  95.37  96.67 
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“Fold-4” PCD model, but the maximum seizure detection accuracy (98.68%) is 

obtained using the “Fold-2” PCD model for the STFT based CNN approach. 

Additionally, for both 1 s and 5 s long segment durations, all average recall, precision, 

and F1-score values calculated using the SST based CNN approach (for 1 s: 93.56% 

SEN, 97.01% PRE, and 95.25% F1-S; and for 5 s: 99.18% SEN, 98.99% PRE, and 

99.08% F1-S) are significantly higher than those calculated for the STFT based CNN 

approach (for 1 s: 86.88% REC, 88.56% PRE, and 87.71% F1-S; for 5 s: 95.37% SEN, 

98.01% PRE, and 96.67% F1-S). It is also observed that the average CE-Loss 

calculated using the SST-based CNN approach is lower than that of the STFT-based 

CNN approach for all cases. In the PCD approach, the average ROC-AUC values 

obtained using SST 1 s, STFT 1 s, SST 5 s, and STFT 5 s are 0.970, 0.942, 0.996, and 

0.973, respectively.  

Table 4.24: Average accuracy and training duration comparison versus learning rate 

hyperparameters in PCD based approach for each fold in the IKCU dataset. 

 

In addition, to further explore the advantages of the proposed SST-based CNN 

approach, all steps of the classification algorithm are repeated utilizing a CWT on 5 s 

long segments. In our experiments, Morlet wavelet is employed, a frequently utilized 

mother wavelet, to calculate the scalogram of EEG segments [142], which are used to 

train the network. The average accuracy and MSE values are demonstrated for tested 

TFR methods, and validation models in Figures 4.19a and 4.19b. It is noteworthy that, 

while the CWT-based approach yields higher average ACC and lower average MSE 

values compared to the STFT method, the proposed SST approach provided the 

highest average ACC and lowest average MSE values for both validation models. 

Additionally, each approach provides higher average performance metrics using PCD 

based validation model.  

 SST 1s SST 5s STFT 1s STFT 5s 

Learning 

Rate 

ACC 

(%) 
TT(s) 

ACC 

(%) 
TT(s) 

ACC 

(%) 
TT(s) 

ACC 

(%) 
TT(s) 

0.1 92.45  578  96.95   111 83.69   613 94.68 98 

0.01 93.55  1093  98.41   234 84.96  1058  95.89  189 

0.001 95.11  2168  99.06   428 87.38  2000  96.42  346 

0.0001 94.67  4076  97.43   973 86.98  4004  95.76  798 
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(a) 

 
(b) 

Figure 4.19: Comparison of average accuracy and MSE obtained using (a) PID 

(standard deviations for accuracy values: ±2.24% (SST 1s), ±2.58% (SST 5s), 

±2.27% (STFT 1s), ±3.26% (STFT 5s), and ±2.31% (CWT 5 s)) and (b) PCD 

(standard deviations for accuracy values: ±1:30% (SST 1s), ±0.40% (SST 5s), 

±0.99% (STFT 1s), ±1.71% (STFT 5s), and ±0.35% (CWT 5s)) based validation 

models for IKCU dataset. 

 

As shown in Table 4.24, resulting ACC and calculated training durations are given for 

various learning rate hyperparameters in the PCD method. The best scenario in all 

segments occurred at a 0.001 learning rate. Although the models provide lower training 

time at higher learning rates, they reached local minima points. Using a lower learning 

rate of 0.001, we reach the global minimum. The best training and validation ACC, 

and CE-Loss values, and the best confusion matrix in the test phase of the PCD method 

with 5s SST segments are given in Figure 4.20. Note that, ACC values converge to the 

upper, and CE-Loss values converge to the lower limits. Therefore, overfitting or 

underfitting are not observed in any of the trained models. Notice also that SST 5s 

models converged before 50 epochs, hence it is fixed to 50 to compare all models on 

equal conditions. Moreover, SST 5s model is almost fully capable of distinguishing 

seizure from pre-seizure.  
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(a) 

 
(b) 

 

(c) 

Figure 4.20: Example performance graphs obtained in the 4th-fold of PCD method 

with 5s long SST segments; the best (a) training and validation accuracies, (b) CE-

Losses, and (c) the confusion matrix in the IKCU dataset. 

 

Based on the conducted experiments, the highest performing 5 s long SST images are 

selected and used to train several well-known architectures. Testing phase 

performance comparisons with that of the proposed network are shown in Figure 4.21. 

Results emphasize the superiority of the proposed architecture in classifying SST 

images. Notice that, AlexNet yields the lowest classification performance. The 

proposed ResNet-based architecture provides a significant improvement of 5.27% 

compared to traditional ResNet-50 [131, 134], 24.33% compared to AlexNet [133, 

143], 12.86% compared to VGG16 [134], and 15.59% compared to SqueezeNet [133].  
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Figure 4.21: Comparison of proposed architecture with well-known CNN 

architectures using 5 s long SST segment in IKCU dataset. 

We applied the proposed SST-based CNN approach to CHB-MIT Epileptic EEG 

dataset which was previously employed in other deep learning studies, and compared 

our performance with existing literature. Two different classification problems are 

addressed using this dataset. Segment-based seizure detection: the SST-based CNN 

model is trained to differentiate between inter-seizure and seizure EEG segments, 

Segment-based seizure prediction: the model is trained to distinguish inter-seizure and 

pre-seizure EEG segments. Signals in this dataset are sampled with 256 Hz providing 

a sufficient TF resolution. Hence, the proposed approach is only conducted using 1 s 

long segment duration. Using LOOCV- and CV-based validation models for segment 

based seizure detection and prediction, we evaluate the performance of our proposed 

approach.  

In addition, the patient-independent prediction (PIP) approach similar to the PID 

method, and the patient-correlated prediction (PCP) approach similar to the PCD 

method utilized above were used to validate the success of segment-based seizure 

prediction models on the CHB-MIT dataset. For this experiment, variable numbers of 

training and testing sets are formed because the number of seizure segments of each 

patient is different. Using the CHB-MIT dataset, in the PCD-based method, a total of 

23080 SST segments are used, with 18464 for training and the rest of 4616 for testing 
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in each fold. This data includes a total of 9280 seizure segments and a total of 13800 

inter-seizure segments (600 segments for each subject). Seizure segments are variable 

in each patient and contain an average of 403 (min 66 and max 1396) SST 1 s 

segments. In this method, the IR was calculated as 1.49. In the PCP-based method, a 

total of 20700 SST segments are used, where 16560 segments used for training and 

4140 for testing at each fold.  

These segments include a total of 6900 pre-seizure segments (300 segments for each 

subject) and a total of 13800 inter-seizure segments (600 segments for each subject). 

Furthermore, in the PIP based method, 19800 segments are used for training and 900 

segments for testing at each fold. In both PCP and PIP methods, the IR value was 

calculated as 2. As the PID method contains a variable number of seizure segments 

like the PCD method, an average of 22077 segments for training and 1003 segments 

for testing are used in each fold. In this method, the IR value was calculated as 2.25. 

The reason for the data imbalance is the variation in the number of seizure segments 

in CHB-MIT database. Although IR affects our models, its level is negligible. 

Performance evaluation results of the experiments carried out with the proposed 

approach are demonstrated in Tables 4.25 and 4.26 for the segment-based seizure 

detection and prediction tasks, respectively.  

Table 4.25: The segment-based seizure detection (inter-seizure vs seizure) and 

segment-based seizure prediction (inter-seizure vs pre-seizure) performances of the 

proposed SST-based CNN approach obtained using the CV-based validation model 

for 1 s EEG segments of the CHB-MIT dataset 

 

It can be observed from Table 4.25 that generally high segment-based seizure detection 

performances in terms of accuracy (≥99.35%), precision (≥99.64%), sensitivity 

(≥99.10%), and F1-score (≥99.46%) are achieved using the PCD validation model. 

The proposed SST based CNN approach provides equally high performance for the 

 Seizure Detection Seizure Prediction 

Folds ACC Loss PRE SEN F1-S ACC Loss PRE SEN F1-S 

Fold-1 99.76  0.011  99.86  99.75  99.80  96.81  0.143  99.13  96.20  97.64 

Fold-2 99.46  0.015  99.64  99.46  99.55  97.10  0.115  99.28  96.48  97.86 

Fold-3 99.61  0.013  99.71  99.64  99.67  97.71  0.087  99.46  97.17  98.30 

Fold-4 99.35  0.017  99.82  99.10  99.46  96.33  0.194  98.88  95.75  97.29 

Fold-5 99.98  0.009  100.0  99.66  99.83  96.62  0.169  98.99  96.06  97.50 

Avr. 99.63  0.013  99.81  99.52  99.66  96.91  0.142  99.15  96.33  97.72 
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more challenging segment based seizure prediction problem with accuracy (≥96.33%), 

precision (≥98.88%), sensitivity (≥95.75%), and F1-score (≥97.29%) for the PCP 

validation model. On the other hand, by using the PID validation model (given in Table 

4.26), while maximum segment-based seizure detection performances (100% ACC, 

PRE, SEN, and F1-S) are obtained for patients chb07 and chb23, the highest segment-

based seizure prediction performances are achieved (100% ACC, PRE, SEN, and F1-

S) for patients chb09 and chb20 using PIP approach. Additionally, the average 

accuracy and MSE vales given in terms of conducted task and validation models, in 

Figure 4.22. Note that the PCD validation model shows higher average segment-based 

seizure detection ACC (99.63%) and lower average MSE values (0.003), PIP 

validation model provides better performance (97.92% ACC, and 0.02 MSE) for 

segment-based seizure prediction task.  

 

Table 4.26: The segment-based seizure detection (inter-seizure vs seizure) and 

segmentbased seizure prediction (inter-seizure vs pre-seizure) performances of the 

proposed SST-based CNN approach obtained using the LOOCV-based validation 

model for 1 s EEG segments of the CHB-MIT dataset 

 Seizure Detection (%) Seizure Prediction (%) 

Patient ACC PRE SEN F1-S ACC PRE SEN F1-S 

chb01  99.17  99.33  99.17  99.25  99.44  99.67  99.50  99.58 

chb02  99.09  99.16  99.66  99.41  98.88  99.17  99.17  99.17 

chb03  98.60  99.67  99.00  99.33  98.65  99.00  99.00  99.00 

chb04  98.96  98.83  99.66  99.24  99.22  99.50  99.33  99.41 

chb05  99.22  99.67  98.84  99.25  98.31  98.67  98.83  98.75 

chb06  99.59  100.0  99.50  99.75  97.75  98.33  98.33  98.33 

chb07  100.0  100.0  100.0  100.0  99.78  99.83  99.83  99.83 

chb08  99.34  99.83  98.52  99.17  96.63  97.33  97.66  97.49 

chb09  99.89  99.83  100.0  99.91  100.0  100.0  100.0  100.0 

chb10  99.14  99.67  98.84  99.25  96.18  97.00  97.32  97.16 

chb11  99.50  99.17  99.66  99.41  98.78  99.17  99.00  99.08 

chb12  99.68  99.33  100.0  99.66  95.96  96.83  97.16  96.99 

chb13  99.30  99.50  99.50  99.50  94.44  96.67  95.08  95.87 

chb14  99.48  99.50  99.83  99.66  99.11  99.50  99.17  99.33 

chb15  99.60  99.67  99.01  99.34  96.18  97.00  97.32  97.16 

chb16  98.06  99.17  98.67  98.92  95.73  96.67  96.99  96.83 

chb17  98.66  99.33  98.68  99.00  95.56  97.50  95.90  96.69 

chb18  98.26  98.50  98.83  98.66  99.00  99.33  99.17  99.25 

chb19  99.16  99.50  99.33  99.41  99.33  99.67  99.34  99.50 

chb20  99.66  99.83  99.67  99.75  100.0  100.0  100.0  100.0 

chb21  97.00  98.67  97.37  98.02  93.89  96.33  94.60  95.46 

chb22  99.50  100.0  99.34  99.67  99.67  99.83  99.67  99.75 

chb23  100.0  100.0  100.0 100.0  99.56  99.50  99.83  99.66 

Average 99.17  99.49  99.26  99.37  97.92  98.54  98.36  98.45 
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Figure 4.22: Comparison of average accuracy and MSE values obtained using 

segment-based PCD, PCP, PID, and PIP models (standard deviations for accuracy 

values: ±0.25%, ±0.53%, ±0.69%, and ±1.90%, respectively) in the CHB-MIT 

dataset. 

 

Table 4.27: Comparison of recent segment-based seizure detection and prediction 

studies conducted using CHB-MIT dataset with proposed work. 

Problem Author 
No. of 

Patient 
Feature Classifier 

No. of 

Seizure 

ACC 

(%) 

SEN  

(%) 

Seizure 

Detection 

Ayodele et al. [65] 23 Features maps RCNN 198 - 71.45 

Li et al. [136] 24 EEG time-series NLSTM 127 95.29 95.42 

Liang et al. [143] 23 EEG waveforms LRCN 198 99 84 

Hossain et al. [144] 23 EEG time-series CNN 198 98.05 90.00 

Thodorof et al. [67] 23 Image based LSTM 198 - 85.00 

Wei et al. [145] 24 EEG time-series CNN 151 81.49 70.68 

Zhang et al. [134] 9 STFT CNN - 98.26 98.01 

Zhou et al. [66] 24 EEG time series CNN - 62.3 61.2 

Zhou et al. [66] 24 EEG frequency-series CNN - 97.5 96.9 

This Worka 23 SST CNN 144 99.17 99.26 

This Workb 23 SST CNN 144 99.63 99.52 

Seizure 

Prediction 

Liu et al. [146] 2 EEG features CNN 36 - 91.5 

Shahbazi et al. [147] 14 STFT LSTM 49 - 98.21 

Tsiouris et al. [140] 24 EEG features LSTM 185 - 99.84 

Zhou et al. [66] 24 EEG time series CNN - 59.5 61.8 

Zhou et al. [66] 24 EEG frequency-series CNN - 95.6 94.2 

This Worka 23 SST CNN 144 97.92 98.36 

This Workb 23 SST CNN 144 99.91 96.33 

 

Performance comparison of recent segment-based seizure detection and prediction 

studies conducted on the CHB-MIT dataset with the proposed approach is 

demonstrated in Table 4.27. The best performance evaluation results are highlighted 
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in boldface numbers. Hossain et al. [144] introduced a segment-based seizure detection 

approach in which the multi-channel raw EEG data were used as input to the CNN 

model. Using the cross patient validation model, the proposed approach provides the 

average 90.00% SEN, 91.65% SPE, 98.05% ACC for all patients. In another study 

[143], four-class segment-based seizure detection approach was proposed. EEG 

waveform images of normal, pre-seizure, seizure and post-seizure EEG data were used 

as input to an 18-layer Long-Term recurrent convolutional network (LRCN). By using 

cross patient seizure detection model, 84% sensitivity, 99% specificity, and 99% 

accuracy were achieved. The segment-based seizure detection approach was proposed 

by using the multichannel time-series EEG signals based 12-layer CNN model in 

another study. The merger of the increasing and decreasing sequences (MIDS) and 

data augmentation method was utilized, separately, and achieved cross patient 

performance evaluation results. Using multi-channel EEG, 70.68% sensitivity, 81.49% 

ACC, and 92.30% specificity values were achieved [145]. In a study conducted by 

Zhang et al. [134], three different CNN models (VGG16, VGG19, and ResNet-50) 

based segment-based seizure detection approaches were performed using STFT based 

preprocessing step. Maximum 98.26% seizure detection accuracy was achieved using 

9 patients EEG recordings. It is noteworthy that among all seizure detection methods 

compared, both PID and PCD validation results of our SST-based CNN methods are 

significantly higher.  

Further, the segment-based seizure prediction performance of the proposed SST-based 

CNN approach is tested and compared with similar studies in the literature (given in 

Table 4.27). The 3-layer CNN-based seizure detection and prediction method using 

the CHB-MIT data set has been presented using both time domain and frequency 

domain signals as inputs for classification [66]. In the segment-based seizure detection, 

while this approach presented an average of 62.3% ACC, and 61.2% REC values for 

the time domain inputs, for the frequency domain inputs average 97.5% ACC and 

96.9% REC values were presented. Additionally, in the segment-based seizure 

prediction, average 95.6% ACC, and 94.2% REC values were achieved for the 

frequency domain inputs. LSTM based CNN method is utilized in another segment-

based seizure prediction study. Spectrograms of corresponding signals were used as 

input. For 14 patients, an average of 98.21 SEN was obtained [147]. The performance 

of segment-based seizure prediction obtained in that study is higher than that of our 
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study. While EEG data of 14 patients, and 49 seizure segments are examined in that 

study, EEG data of 23 patients and 144 seizure segments are evaluated in our study. In 

another segment-based seizure prediction study [140], statistical moments, zero 

crossings, WT coefficients, PSDs of EEG subbands, and cross-correlation were 

calculated as features and utilized as input for LSTM. For the pre-seizure window of 

120 min, an average of 99.84% SEN, and 99.86% SPE were achieved for 24 patients. 

In that study, higher segment-based seizure prediction sensitivity was obtained 

compared to the proposed approach at the expense of comprehensive and 

computationally expensive feature extraction step.  

Seizure events cause changes in time and frequency characteristics of EEG signals. 

Thus, the correct distribution of epileptic EEG signals’ energy into the joint time-

frequency plane is very effective in the classification process. SST is a recently 

developed TF reassignment method that provides a close to an ideal representation of 

non-stationary signals in the TF plane. In our recent work [148], TF representations 

obtained by SST are used as input for both machine and deep learning methods using 

only IKCU Epilepsy dataset. Higher-order TF moments are manually extracted and 

classified using three classifiers. Higher classification performance is achieved by 

using a standard CNN architecture trained by SST images. The present study presents 

utilization of the high-resolution TF representations obtained by SST in the segment-

based classification of epileptic EEG signals. We propose treating those SST energy 

distributions as images and utilize them in the training of a deep network. Among other 

network architectures, the proposed modified ResNet-50 architecture yielded better 

classification performance. The layer-filters of the proposed architecture are optimized 

according to our classification problem. Further, the hyperparameters used in the 

training of the network are fine-tuned by making performance comparisons. While 

constructing the deep network, it was aimed to extract all valuable information of the 

energy distribution in TFR images with residual features. Experimental results have 

emphasized the advantages of the proposed architecture in the segment-based 

classification problem.  
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4.5 Comparison of the proposed epileptic EEG detection 

and classification approaches 

In our study, epileptic seizure detection is performed using EMD and derivative 

approaches, the DMD approach, which is a matrix decomposition method, and the SST 

approach, a new TF method. Pre-seizure and seizure EEG segments are decomposed 

into IMFs using the EMD and EEMD method, and time, spectral and non-linear 

features are calculated using the first 3 IMFs (IMF1, IMF3, IMF2) after the IMF 

selection process. In order to compare the success of EMD and EEMD methods, the 

same features are obtained using the approximation and detail coefficient of the DWT 

approach and directly from the EEG signal itself. While the EEMD method gives more 

successful results than the EMD approach for all conditions and classifiers, the most 

unsuccessful classification results are obtained by using features calculated from the 

EEG signal itself. DMD spectra are obtained for pre-seizure and seizure EEG segments 

using the DMD approach, which is a simple matrix decomposition method. Although 

the DMD spectrum has been defined in the literature [58, 98], different features other 

than DMD powers have not been calculated using this spectrum. In our study, it is 

proposed to calculate DMD subband powers and DMD-HOS moments as features. In 

addition, although the multi-channel DMD approach has been used in the literature, 

the single-channel DMD approach has been proposed in our study. The success of the 

DMD approach is compared with the classical PSD obtained using the Welch method. 

The classification performance of both MC-DMD and SC-DMD approaches is higher 

than that of the PSD approach. In addition, the proposed SC-DMD based approach has 

been at least as successful as the MC-DMD based approach. Another seizure detection 

study is carried out using the high TF resolution SST approach which is proposed to 

overcome the disadvantages of classical TF approaches. In the machine learning based 

SST approach, HOJ-TF moment-based and GLCM-based features are calculated as 

features using the magnitude square of SST. The same features are computed using the 

STFT method that is the classical TF analysis method to compare the success of SST. 

The SST approach provided higher classification accuracy than STFT for each 

condition and classifier. In the deep learning based SST approach, SST image are used 

as an input for CNN.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.23: Topographic map of channel based classification accuracies of (a) EEG 

based (b) EMD based (c) EEMD based (d) SC-DMD based, and (e) SST based 

approaches. 

 

For the comparison of machine learning-based approaches, Channel-based 

classification performances of the proposed SC-DMD, SST, EMD, and EEMD 

approaches are given with a topographic map in Figure 4.23. The topographic map is 

created by averaging the ACC values obtained with all classifiers for each method. It 

was stated by the expert neurologists that epileptic attacks in the used data set are left 

hemisphere-focused. It is noteworthy that the channel-based classification success of 

the EEG-based seizure detection approach (shown in Figure 4.23a) is very low, while 
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is very high for the EEMD-based seizure detection approach (given in Figure 4.23c). 

It is also remarkable that in all proposed methods, the channels in the left hemisphere 

yielded successful results of seizure detection (given in Figures 4.23b-4.23e).  

 
Figure 4.24: Comparing of F1-S values of proposed epileptic seizure detection 

approaches. 

 

Average F1-S obtained by the proposed methods, and by the classical approaches are 

calculated for comparison and given in Figure 4.24. Average F1-S values are achieved 

by averaging the F1-S values obtained with all classifiers for each method. The F1-S 

of the proposed EMD and EEMD-based approaches, are higher than those of DWT 

and EEG-based approaches. In the DMD-based seizure detection approach, higher F1-

S values are obtained than that of the traditional PSD approach for the subband power-

based feature set (S-Pow), and moment-based feature set (HOS). Finally, in the SST-

based epileptic seizure detection approach, higher F1-S values are obtained for each 

feature set compared to the STFT approach. In addition, both ML-based and DL-based 

proposed SST methods, demonstrate a high performance rates in classifying our pre-

seizure and seizure segments of IKCU data set. However, the DL based SST approach 

(SST-DL) provided better F1-S than the ML-based approaches.  
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5.  Classification of Alzheimers’ 

Dementia by Using EEG Signals and 

Advanced Signal Decomposition Methods  

In this part of the thesis, two different approaches named EMD and derivatives, and 

SST are performed to distinguish EEG segments of control and AD patients. 

5.1 Alzheimer's Dementia EEG data set (IKCU AD 

data set) 

EEG data were recorded from patients who were evaluated in İzmir Katip Çelebi 

University Faculty of Medicine, Department of Neurology dementia polyclinic and 

diagnosed with early-stage Alzheimer's disease by laboratory tests and neuroimaging. 

EEG signals (30 min for each patient) of 15 AD patients (8 Females; 7 Males, the 

average age is 64.53±8.47, average Mini-mental test score (MMT) is 22/30), were 

recorded using Philips Alice-6 device, from 19 different channels and at a sampling 

frequency of 200 Hz. These signals were collected using surface electrodes from 

electrode positions of Fp1, F7, T3, T5, O1, O2, T6, T4, F8, Fp2, F3, Fz, F4, C3, Cz, 

C4, P3, Pz, P4 using an International 10-20 electrode system. In order to compare the 

EEG data of AD patients, EEG recordings were collected from the age-matched 

control subjects (CS) (5 Females; 6 Males, the average age is 57.09±5.28) using the 

same recording system and electrode placement.  EEG records of CS were collected 

from healthy volunteers meeting the following criteria; 

1. Without any neurological or psychiatric disease, 
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2. Those who did not drink caffeine-containing beverages on the day of EEG 

recording, 

3. No history of alcohol and substance abuse, 

4. Not using any medication that affects cognitive processes, 

In order to collect these EEG signals for our study, ethical approval numbered 83 and 

dated 22.10.2020 is obtained from the Clinical Research Ethics Committee of Izmir 

Katip Celebi University. 

In previous studies [74] since it is important to examine different cortical regions in 

AD, it has been proposed to divide the brain into 5 clusters named Anterior (Fp1, F3, 

Fz, Fp2, F4), Posterior (P3, O1, Pz, P4, O2), Central (C3, Cz, C4), Temporal/left (T3, 

T5, F7) and Temporal/right (T4, T6, F8) to capture the differences in different regions 

of the brain. In our study, all the results are given by considering these 5 different brain 

clusters. In order to achieve related classification performances of brain clusters, 

average classification performances are calculated considering corresponding EEG 

channels. These 5 brain clusters are demonstrated with different colors in Figure 5.1. 

 

 

Figure 5.1: Brain clusters with regard to the electrode sites. The anterior cluster is 

demonstrated with yellow, the temporal right and left clusters are demonstrated with 

green and pink respectively, the posterior cluster is demonstrated with light purple, 

and the central cluster is demonstrated with blue color. 
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5.2 Preprocessing 

At this stage, to remove power line interference and various noises, a Butterworth type 

II band-pass filter with 0.5-40 Hz cutoff frequencies, is applied to each EEG segment. 

All EEG signals are analyzed using two different segment durations as 1 min and 5s. 

EEG signals divided into non-overlapping 1min and 5s segment durations separately. 

Two different approaches called EMD and derivative and SST are used to achieve 

efficient classification performance for AD and control EEG signals. 

5.3 Results and Discussions of EMD and its Derivative 

IKCU AD data set containing 19-channels EEG signals of 11 CS and 15 AD patients 

was investigated utilizing EMD, and EEMD methods, and it is aimed to distinguish 

EEG segments of control and AD patients with high performance.  

First, in order to identify the most distinctive IMFs of EMD and EEMD methods, the 

hybrid IMF selection procedure including energy-based, correlation coefficients-

based, PSD distance-based, and T-test-based IMF selection methods detailed in 

Section 4.2.1 was applied to the achieved IMFs. The example of achieved IMFs using 

EMD and EEMD methods are presented in Figure 5.2. The energy, correlation 

coefficients, PSD distance, and p-value [14, 111-114], of each IMF, were calculated 

and ranking matrices were achieved for each EEG segment of control subjects and AD 

patients. By combining the ranking matrices obtained for each segment, a separate 

ranking matrix was obtained for the control subjects and AD patients. The first column 

of these ranking matrices shows the IMFs with the highest priority. High priority IMFs 

are identified by plotting the histogram of the 1st column of the ranking matrices 

(given in Figure 5.3). When this histogram is evaluated, it is seen that the first 7 IMFs 

(IMF1, IMF2, IMF3, IMF4, IMF5, IMF6, and IMF7) are distinctive for both control 

subjects and AD patients. 
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 5.2:  (a) Surface EEG signal control subject and its first seven IMFs obtained 

using EMD, (b) Surface EEG signal of AD patient and its first seven IMFs obtained 

using EMD, (c) Surface EEG signal control subject and its first seven IMFs obtained 

using EEMD, (d) Surface EEG signal of AD patient and its first seven IMFs obtained 

using EEMD. 

 

 

Figure 5.3:  Histogram of first priority selected IMFs of EEMD method 
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5.3.1 Feature Extraction 

7 time domain and 5 spectral features are computed for each EEG segment of control 

subjects and AD patients using the selected IMFs. To compare the performance of 

EMD and EEMD based classification approaches, DWT based classification approach, 

which is frequently used for the analysis of non-stationary signals, was also conducted 

[38, 92]. The discrete wavelet transform decomposes the input signal 𝑋[𝑛] into sub-

frequency components by preserving the time-frequency resolution. Here, at each 

decomposition level, the input signal is passed through both high-pass and low-pass 

filters. The output of these high-pass and low-pass filters are named the detail (DC) 

and approximation (AC) signals, respectively, and the approximation signal is re-

decomposed until the decomposition level is satisfied [92]. Daubechies4 (db4) mother 

wavelet and 5 level decomposition are used for the proposed study. 

5.3.1.1 Time Domain Feature Set 

After the IMF election process, using selected IMFs, each subband of DWT, 5 EEG 

subbands, and EEG segments itself, conventional features, including energy, mean, 

skewness, and kurtosis values (these formulations are given in Section 4.2.2.1 as 

equation (4.4)) and Hjorth parameters (activity, mobility, complexity) are extracted. 

[24, 38, 92].  

 

𝜇 =
1

𝑁
∑ 𝑋[𝑛]

𝑁−1

𝑛=0

 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟 (𝑋[𝑛]) = 𝜎2 =
1

𝑁
∑(𝑋[𝑛] − 𝜇)2

𝑁−1

𝑛=0

 

 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑣𝑎𝑟(

𝑑𝑋[𝑛]
𝑑𝑛

)

𝑣𝑎𝑟(𝑋[𝑛])
 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(

𝑑𝑋[𝑛]
𝑑𝑛

)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑋[𝑛])
 

 

(5.1) 
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In the above Equations, 𝑋[𝑛] indicates the analized signal, 𝑁 is the size of the signal. 

𝜇 is the mean value.  

5.3.1.2 Spectral Domain Feature Set 

Total power, spectral Entropy, 1st, 2nd, and 3rd moments are computed utilizing the 

spectrum of signals or selected IMFs calculated by the periodogram method [26, 62] 

to achieve the spectral feature dataset. These formulations are given in Section 4.2.2.2 

as Equation (4.5). 

 

5.3.2 Experimental Results 

After performing pre-processing stage and removing various noises, by using EMD, 

and EEMD approaches and multiple classifiers 19-channel EEG signals of 16 AD 

patients and 11 CS were analyzed. All EEG segments were decomposed into IMFs 

using EMD and EEMD methods and the hybrid IMF selection process including 

energy, correlation, power spectral distance, and statistical significance measures was 

conducted for EMD and EEMD approaches in order to identify the IMFs that satisfied 

the highest classification performance. Following the IMF selection process, time-

domain (Energy, Mean value, Skewness, and Kurtosis, and Hjorth parameters) and 

spectral-domain (Total power, Spectral Entropy, 1st, 2nd, and 3rd moments) feature 

sets were generated using the selected seven IMFs (IMF1-7) of EMD and EEMD 

approaches, approximation and 5 detail coefficients of DWT and itself of the EEG 

signal. Finally, two classes of CS and early-stage AD were distinguished using four 

types of classifiers DT, SVM, kNN, and RF.   

Tables 5.1 and 5.2 indicate the results of the evaluation of three decomposition 

methods, the case of no decomposition, and four types of classifiers for time domain 

and spectral domain feature sets, respectively, for 1min segment duration. Here, while 

the classification results of the combined feature set of corresponding IMFs (in EMD 

and EEMD approaches) are indicated with the component of IMFa-IMFb (or IMFa-

b), classification results of the combined feature set of approximation and 5 detail 
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coefficients of DWT are demonstrated with the component of AC+DC1-5. 

Additionally, results of the case of no decomposition are shown with component of 

EEG. 

From Tables 5.1 and 5.2, it is noticed that for both time-domain and spectral-domain 

feature sets, the DWT yield the highest performances to distinguish two classes, and 

the lowest classification performances are achieved using the EMD approach. While 

the highest classification performance with 84.60% ACC, 87.25% F1-S is obtained 

from IMF 1-2-3 component of EMD by using DT classifier, the highest classification 

performance with 92.09% ACC, 93.49% F1-S is obtained from IMF 1-5 component 

of EEMD by using RF classifier for the time domain feature set (Shown in Table 5.1). 

In addition, for the spectral domain feature set, IMF 1-7 components of both EMD-

based (88.36% ACC, 90.52% F1-S) and EEMD-based (90.31% ACC, 92.06% F1-S) 

approaches are reached the highest classification performances using the RF classifier 

(demonstrated in Table 5.2).  The fact that the IMF1-7 component of the EMD and 

EEMD approaches yield better performances in most cases, especially for the spectral 

feature set, or that the performance does not change much compared to other cases, 

supports the success of the IMF selection process. Hence, for the rest of the thesis, we 

used the IMF1 to 7 component of both approaches for the analyses. 

 

Table 5.1: Performance evaluation results (%) of time-domain feature-set for CS and 

AD EEG classification for 1 min segment duration. 

 DT SVM kNN RF 

Method Component ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

EMD 

IMF 1-2-3 84.60 87.25 72.64 78.34 83.90 87.04 90.12 91.95 

IMF 1-3-7 80.38 83.81 71.19 77.81 73.04 78.40 87.05 89.43 

IMF 1-2-3-7 82.86 85.76 72.32 78.36 76.25 80.91 89.80 91.70 

IMF 1 to 5 82.92 85.77 73.86 79.28 80.76 84.51 89.26 91.24 

IMF 1 to 7 82.54 85.58 73.20 78.97 75.92 80.84 88.71 90.80 

 

 

EEMD 

IMF 1-2-3 84.05 86.72 88.64 91.26 90.22 92.02 92.08 93.60 

IMF 1-3-7 81.79 84.93 81.44 86.22 85.14 87.74 89.15 91.15 

IMF 1-2-3-7 83.63 86.44 83.89 88.07 88.22 90.39 91.55 93.16 

IMF 1 to 5 84.86 87.47 87.53 90.51 90.60 92.30 92.09 93.49 

IMF 1 to 7 84.33 87.01 83.01 87.54 89.35 91.32 91.24 92.86 

DWT AC+DC1-5 93.71 94.92 84.13 87.59 91.09 92.82 96.51 97.14 

EEG All EEG 90.81 91.73 75.37 83.26 85.36 88.35 91.16 92.71 
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Table 5.2: Performance evaluation results (%) of spectral-domain feature-set for CS 

and AD EEG classification for 1 min segment duration. 

 DT SVM kNN RF 

Method Component ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

EMD 

IMF 1-2-3 82.51 85.50 77.48 82.54 78.95 83.01 86.98 89.34 

IMF 1-3-7 80.17 83.64 72.42 79.31 72.25 77.86 84.74 87.54 

IMF 1-2-3-7 83.08 85.97 77.39 82.63 77.32 81.89 87.97 90.15 

IMF 1 to 5 82.51 85.42 80.11 84.61 81.12 84.93 88.12 90.28 

IMF 1 to 7 82.51 85.42 79.53 84.63 78.80 83.28 88.36 90.52 

 

 

EEMD 

IMF 1-2-3 82.93 85.89 88.43 90.82 88.48 90.66 88.24 90.44 

IMF 1-3-7 80.70 84.01 82.59 86.44 82.15 85.57 86.07 88.64 

IMF 1-2-3-7 82.03 85.01 87.94 90.55 87.02 89.54 88.73 90.63 

IMF 1 to 5 83.83 86.59 89.23 91.53 89.38 91.37 89.96 91.80 

IMF 1 to 7 83.90 86.66 88.90 91.30 88.99 91.08 90.31 92.06 

DWT AC+DC1-5 91.24 92.77 77.15 82.80 91.91 93.47 93.35 95.66 

EEG All EEG 88.52 90.25 72.00 80.71 85.77 88.20 90.09 91.72 

 

For 1 min segment duration, the CS/AD classification accuracy obtained using three 

different approaches according to different brain clusters for both time domain and 

spectral domain feature sets are given in Figure 5.4. Here, the classification accuracy 

obtained using the IMF 1 to 7 component for the EMD and EEMD approaches is 

evaluated. According to this figure, when all brain clusters and classifiers are 

considered, both time domain and spectral domain feature sets of the DWT method 

provided more successful results in distinguishing control subjects and AD patients 

compared to other methods. In addition, the EMD method is also the most unsuccessful 

approach in distinguishing between control subjects and AD patients when both 

feature sets and all brain clusters are considered. For the time-domain feature set, while 

the highest classification accuracies are obtained using RF classifier for EMD 

(91.53%) and EEMD (93.90%) approaches from the temporal/right brain cluster, the 

highest classification accuracy for the DWT (97.40%) approach is obtained from the 

temporal/left brain cluster using the RF classifier (shown in Figure 5.4a). For the 

spectral domain feature set, it is also noticed that the best classification performances 

are obtained by DWT and RF classifier with an ACC of 95.23% from the 

temporal/right brain cluster. This is followed by EEMD and EMD approaches, using 

the same classifier with classification accuracies of 93.20 and 91.40, respectively from 

the same brain cluster (shown in Figure 5.4b). 
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(a) 

 

 
(b) 

Figure 5.4: The CS/AD classification accuracy for different classifiers and different 

brain clusters obtained using (a) time-domain feature set, and (b) spectral-domain 

feature set. 

 

In order to reveal the effect of the segment duration on the classification performance, 

the same processes are carried out for the 5s segment duration. Tables 5.3 and 5.4 

present the performance evaluation results of the various classifiers based on different 

brain clusters and approaches for 5s segment duration.  Accuracy and F1-score values 
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are presented in these tables as performance metrics. While Table 5.3 shows the 

performance evaluation results achieved using time-domain feature sets of proposed 

approaches, Table 5.4 exposes the performance evaluation results obtained utilizing 

the spectral-domain feature set of those approaches. It is noteworthy in both tables that 

the decrease in segment duration reduces the success of distinguishing EEG segments 

of AD patients and control subjects. In addition, the highest classification 

performances are obtained from the temporal/right brain cluster with the RF classifier 

for both feature sets. The highest classification performance for the time-domain 

feature set with 93.33% ACC, and 94.63% F1-S, is obtained by the DWT approach 

using the RF classifier (given in Table 5.3). In addition, the highest classification 

performance with 92.10% ACC and 93.61% F1-S for the spectral domain feature set 

is obtained by the DWT method (given in Table 5.4). After the DWT approach, the 

second most successful performance is obtained using the EEMD method with 91.40% 

ACC for the time-domain feature set and 89.20% ACC for the spectral domain feature 

set. 

Table 5.3: Performance evaluation results (%) of time-domain feature-set for CS and 

AD EEG classification for 5s segment duration 

 DT SVM kNN RF 

Brain 

Cluster 
Method ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

Anterior 

EEG 85.06 87.38 80.02 84.85 84.14 86.90 86.58 87.55 

EMD 75.32 78.86 64.92 72.61 62.92 67.36 81.76 84.41 

EEMD 80.18 82.92 72.82 76.55 76.76 79.25 87.08 88.71 

DWT 88.42 89.86 82.32 85.54 80.08 82.90 93.04 93.96 

 

 

Central 

EEG 83.67 87.43 72.83 81.73 81.07 85.80 86.50 89.58 

EMD 75.93 81.32 68.80 78.15 67.07 75.16 81.93 86.09 

EEMD 81.00 85.14 72.53 79.89 76.63 81.84 87.23 89.98 

DWT 85.70 88.89 75.20 82.64 78.87 84.15 91.10 93.10 

 

Temporal/

Left 

EEG 87.57 89.45 64.23 75.93 85.20 87.85 88.17 89.68 

EMD 78.13 82.14 67.90 75.65 66.97 73.74 85.83 88.59 

EEMD 82.40 85.08 76.17 80.23 79.63 82.46 89.00 90.71 

DWT 89.00 90.60 73.60 78.90 80.27 83.73 93.33 94.31 

 

Temporal/

Right 

EEG 85.80 88.58 71.53 80.38 80.53 84.27 88.60 90.91 

EMD 80.00 83.84 69.57 76.73 69.40 75.09 86.33 88.98 

EEMD 84.97 87.45 78.63 81.88 82.37 84.83 91.40 92.82 

DWT 88.80 90.88 78.23 82.70 82.13 85.23 93.33 94.63 

 

 

Posterior 

EEG 85.58 88.09 72.80 80.30 81.94 85.14 86.36 88.28 

EMD 75.94 80.04 64.72 73.32 68.66 73.51 82.42 85.61 

EEMD 81.02 83.96 73.30 77.55 77.36 80.24 87.94 89.80 

DWT 86.48 88.67 75.54 80.49 78.96 82.34 91.96 93.33 
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Table 5.4: Performance evaluation results (%) of spectral-domain feature-set for CS 

and AD EEG classification for 5s segment duration 

 DT SVM kNN RF 

Brain 

Cluster 
Method ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

Anterior 

EEG 82.96 85.94 71.30 78.14 78.16 83.53 83.72 86.34 

EMD 73.46 76.91 63.84 73.77 64.62 70.74 79.44 82.24 

EEMD 78.84 81.79 70.42 75.95 80.92 83.41 85.36 87.23 

DWT 87.52 89.19 75.68 80.39 79.40 82.71 91.50 92.67 

 

 

Central 

EEG 81.90 84.76 64.63 76.11 81.03 84.05 83.10 85.57 

EMD 74.23 80.15 66.17 78.26 68.27 76.64 79.93 84.43 

EEMD 80.47 84.79 70.93 79.66 78.80 83.81 85.87 88.95 

DWT 85.60 88.77 69.83 79.50 77.57 83.34 89.93 92.21 

 

Temporal/

Left 

EEG 85.40 87.19 66.30 76.09 85.67 87.87 86.77 88.34 

EMD 77.67 81.76 62.80 75.66 66.97 74.11 84.03 86.92 

EEMD 82.83 85.65 72.33 77.79 80.37 83.70 87.90 89.71 

DWT 89.53 91.13 64.67 75.35 76.63 81.17 92.60 93.76 

 

Temporal/

Right 

EEG 86.17 88.14 70.90 76.32 84.23 86.49 87.90 89.61 

EMD 78.90 82.75 65.57 76.84 66.50 73.29 84.00 86.90 

EEMD 84.27 86.90 72.93 77.55 85.40 87.71 89.20 90.98 

DWT 88.30 90.55 73.57 79.74 82.00 84.95 92.10 93.61 

 

 

Posterior 

EEG 84.08 86.44 63.78 72.82 83.00 85.59 85.38 87.52 

EMD 75.30 79.36 61.72 74.14 65.56 71.91 80.82 82.80 

EEMD 80.34 83.33 71.78 77.47 80.26 83.36 86.38 88.45 

DWT 86.50 88.62 67.30 76.50 77.06 81.08 90.56 92.13 

 

For 1 min segments duration, the variation of the average sensitivity and false 

discovery rate obtained by calculating the average of the SEN and FDR values 

obtained from the classifiers according to the approaches and brain clusters is given in 

Figure 5.5 (5.5 (a) for the time-domain feature set and (b) for the spectral-domain 

feature set.). Here, while sensitivity indicates the ratio of accurately detected AD 

segment to the total AD segment, the false discovery rate denotes the ratio of CS 

segments mistakenly classified as AD to the number of all segments classified in AD 

class. Obtaining low FDR values along with high SEN values reveals the success of 

the classification. It is noteworthy that high SEN and low FDR values are obtained by 

DWT and EEMD methods for each brain cluster. Additionally, the DWT method 

yields the highest SEN and lowest FDR values for both time domain and spectral 

domain feature sets. However, the EMD method has been more unsuccessful when 

compared to the method in which the EEG signals themselves are used without 

applying any decompositions. Moreover, when the classification successes in all brain 

clusters are considered, the classification successes performed with time-domain 

feature sets are higher (given in Figure 5.5(a)).  
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(a) 

 
(b) 

Figure 5.5: Comparison of average sensitivity and false discovery rate  values 

obtained using different approaches and brain clusters; for (a) time-domain feature 

set and (b) spectral-domain feature set.  
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5.4 Results and Discussions of SST Methods 

In this section, the time-frequency representation-based feature extraction and 

classification model to distinguish EEG segments of control subjects and AD patients 

is introduced. TF representations of EEG segments are achieved using nowel SST and 

conventional STFT methods. The magnitudes of SST and STFT are used for feature 

extraction, and 18 different joint TF features are calculated to obtain feature sets. 

Various classifiers are performed to classify the features extracted utilizing SST and 

STFT to distinguish the EEG segments of control subjects and AD patients. 

Two approaches are proposed for feature extraction using TF representations. (i) TF 

representations of all EEG subbands are used for feature calculation separately, as 

previous studies have shown that there are distinctive differences in the EEG signals 

of control subjects and AD patients in the low-frequency EEG subbands. (ii) Secondly, 

TF representations containing all EEG subbands are used for feature extraction. 

Examples of TF representations obtained for the 5s EEG segment duration of a control 

subject and AD patient using the SST and STFT methods described in detail in Section 

3.1.3 are given in Figure 5.6. The TF representations of the EEG subbands are given 

in Figures 5.7 and 5.8 as an example for 5s segment duration of AD patients. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.6: 5s duration EEG segments, (a) control subject, (b) AD patient; magnitude 

STFT of (c) control subject EEG segment, (d) AD patient EEG segment; magnitude 

SST of (e) control subject EEG segment, (f) AD patient EEG segment. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 

 

(f) 

Figure 5.7: For 5s. Segment duration of AD patient EEG, magnitude STFT of (a) all 

EEG, (b) Delta EEG subband, (c) Theta EEG subband, (d) Alpha EEG subband, (e) 

Beta EEG subband, and (f) Gamma EEG subband.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.8: For 5s. Segment duration of AD patient EEG, magnitude SST of (a) all 

EEG, (b) Delta EEG subband, (c) Theta EEG subband, (d) Alpha EEG subband, (e) 

Beta EEG subband, and (f) Gamma EEG subband. 

 

 

 

5.4.1 Feature Extraction 

In this study, joint TF features-based feature sets are generated from joint TF density 

estimates obtained by STFT and SST methods. In the STFT calculations, a Gaussian 

window is used with a 50% overlap.  
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Only time or only frequency domain features or their combination have limited 

performance, because of non-stationary properties of EEG signals. Therefore, TF 

based features that is the extending versions of time-only or frequency-only features 

[23], are extracted using obtained TFRs. In our proposed study, we calculated 18 

different TF-based features.  

1. Time-frequency flux: 

 𝑇𝐹𝑓𝑙𝑢𝑥 = ∑ ∑|𝑆(𝑛 + 𝑙,𝑚 + 𝑘) − 𝑆(𝑛,𝑚)|

𝑀−𝑘

𝑚

𝑁−𝑙

𝑛=1

 (5.2) 

Here, 𝑆(𝑛,𝑚) is the density obtained by the magnitude square of the SST and STFT, 

𝑙 and 𝑚 determine the direction of signal energy in the TF domain. In this study, the 

three TF flux directions considered are the t axis using (𝑙 = 0;𝑚 = 1) called F1, the f 

axis using (𝑙 = 1;𝑚 = 0) called F2, and the diagonal axis (𝑙 = 1;𝑚 = 1) called F3.  

2. Time-frequency flatness 

 𝐹4 = 𝑁𝑀
∏ ∏ |𝑆(𝑛,𝑚)|

1
𝑁𝑀𝑀

𝑚=1
𝑁
𝑛=1

∑ ∑ 𝑆(𝑛,𝑚)𝑀
𝑚=1

𝑁
𝑛=1

 (5.3) 

Here, if there is a single zero value in TF distribution TF flatness is calculate as zero. 

So, in practical implementations, all zeros of a TFD are replaced by very small values 

(for this study we replaced zeros with epsilon). 

3. Time-frequency energy concentration measure 

 𝐹5 = (∑ ∑|𝑆(𝑛,𝑚)|1/2

𝑀−𝑘

𝑚

𝑁−𝑙

𝑛=1

)2 (5.4) 
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4. Time-frequency entropy 

 Normalized Renyi entropy 

 𝐹6 = −
1

2
log2 (∑ ∑(

𝑆(𝑛,𝑚)

∑ ∑ 𝑆(𝑛,𝑚)𝑀
𝑚=1

𝑁
𝑛=1

𝑀

𝑚=1

𝑁

𝑛=1

)3) (5.5) 

 Shannon entropy 

 𝐹7 = − ∑ ∑
𝑆(𝑛,𝑚)

∑ ∑ 𝑆(𝑛,𝑚)𝑀
𝑚=1

𝑁
𝑛=1

𝑀

𝑚=1

𝑁

𝑛=1

log2 (
𝑆(𝑛,𝑚)

∑ ∑ 𝑆(𝑛,𝑚)𝑀
𝑚=1

𝑁
𝑛=1

) (5.6) 

 

5. The statistical features 

 

 

 

𝑀𝑒𝑎𝑛 = 𝐹8 = 𝜇 =
1

𝑁𝑀
∑ ∑ 𝑆(𝑛,𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝐹9 = 𝜎2 = √
1

𝑁𝑀
∑ ∑(𝑆(𝑛,𝑚) − 𝜇)2

𝑀

𝑚=1

𝑁

𝑛=1

 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝐹10 =
1

𝑁𝑀𝜎3
∑ ∑(𝑆(𝑛,𝑚) − 𝜇)3

𝑀

𝑚=1

𝑁

𝑛=1

 

 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝐹11 =
1

𝑁𝑀𝜎4
∑ ∑(𝑆(𝑛,𝑚) − 𝜇)4

𝑀

𝑚=1

𝑁

𝑛=1

 

 

 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝐹12 =
𝜎

𝜇
 

 

 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝐹13 =
1

𝑁𝑀
∑ ∑|𝑆(𝑛,𝑚) − 𝜇|

𝑀

𝑚=1

𝑁

𝑛=1

 

 

 

(5.7) 
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6. TF subband energies 

 

 

 

𝐹14 = 𝑇𝐹𝛿 = ∑ ∑ 𝑆(𝑛,𝑚)

𝑀𝛿

𝑚=1

𝑁

𝑛=1

 

 

𝐹15 = 𝑇𝐹𝜃 = ∑ ∑ 𝑆(𝑛,𝑚)

𝑀𝜃

𝑚=𝑀𝛿+1

𝑁

𝑛=1

 

 

𝐹16 = 𝑇𝐹𝛼 = ∑ ∑ 𝑆(𝑛,𝑚)

𝑀𝛼

𝑚=𝑀𝜃+1

𝑁

𝑛=1

 

 

𝐹17 = 𝑇𝐹𝛽 = ∑ ∑ 𝑆(𝑛,𝑚)

𝑀𝛽

𝑚=𝑀𝛼+1

𝑁

𝑛=1

 

 

𝐹18 = 𝑇𝐹𝛾 = ∑ ∑ 𝑆(𝑛,𝑚)

𝑀

𝑚=𝑀𝛽+1

𝑁

𝑛=1

 

(5.8) 

Here, frequency subset 𝑇𝐹𝛿 contains frequency values corresponding to 𝛿 sub-band 

frequencies (𝑓𝑘 ∈ [0 − 4] Hz) of the EEG, 𝑇𝐹𝜃 contains frequency samples 

corresponding to 𝜃 sub-band frequencies (𝑓𝑘 ∈ [4 − 8] Hz) of the EEG, etc. Hence 5 

subband power features for 𝛿: [0 − 4] Hz, 𝜃: [4 − 8] Hz, 𝛼: [8 − 13] Hz, 𝛽: [13 −

30] Hz, and 𝛾: [30 − 50] Hz bands are obtained considering the sampling frequency 

of 200 Hz 

 

5.4.2 Experimental Results 

In this section, SST and STFT based TFR approaches are proposed to obtain distinctive 

information between control subject and AD patient EEG segments. EEG data 

recorded from 19 different channels from 15 AD patient and 11 control subjects, are 

examined. 5s duration EEG segments are obtained from these EEG signals separately, 

and time-frequency representations are obtained for each EEG segment using both 

STFT and SST approaches. Using the TF representations joint TF features are 
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computed. In our simulations, 18 different Joint TF features are calculated using 

estimated TFR and 1 × 18 joint TF feature vector is obtained for each EEG segment.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.9: Variation of joint TF features in EEG subbands for control subjects and 

AD patients; for (a) Delta subband, (b) Theta subband, (c) Alpha subband, (d) Beta 

subband, and (e) Gamma subband. 
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First, joint TF features are calculated by using TF representations obtained from EEG 

subbands separately, and classification performances are evaluated using 4 different 

classifiers and 10-fold cross-validation. The variation of the obtained features in each 

EEG subband according to the control subjects and AD patients is shown in Figure 5.9 

by calculating the average of the calculated features of SST based approach. Here, it 

is noteworthy that there is a more distinct difference between the features obtained 

from the EEG segments of control subjects and AD patients in the low-frequency delta 

and theta EEG subbands compared to the other subbands.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 

Figure 5.10: Performance evaluation results of SST and STFT based control subject 

and AD patients’ EEG segment distinguish for different EEG subband; (a) Delta 

subband, (b) Theta subband, (c) Alpha subband, (d) Beta subband, and (e) Gamma 

subband 
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Performance evaluation for SST and STFT based approaches using ACC, SEN, PRE, 

and FDR performance matrices are performed utilizing the features calculated for each 

EEG subband and the results are given in Figure 5.10. In Figure 5.10, no significant 

difference is observed between the classification accuracies obtained with the SST and 

STFT approaches. Also, when all classifiers are considered, the highest classification 

performances are obtained for the delta subband. In this subband, the ACC is greater 

than 80% and SEN is greater than 85% for both approaches and all classifiers. 

Classification performance decreased for both approaches in Alpha, Beta and Gamma 

subbands containing high frequency information.  

 

Table 5.5: Brain cluster based classification results of SST and STFT based 

approaches for the delta subband 

 DT SVM kNN RF 

Brain 

Cluster 
Method ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

Anterior 
STFT 81.96 85.96 81.70 86.02 78.84 82.61 83.12 86.15 

SST 82.40 86.31 80.74 85.29 77.04 81.19 83.08 86.11 

 

Central 

STFT 78.67 83.24 76.77 83.13 76.07 81.53 79.60 83.70 

SST 77.90 82.61 75.97 82.82 74.43 80.49 79.83 83.94 

Temporal/

Left 

STFT 83.20 86.61 83.60 86.63 81.80 85.35 86.60 88.81 

SST 84.00 87.30 81.87 85.58 80.03 84.02 86.37 88.64 

Temporal/

Right 

STFT 81.87 85.37 82.60 85.63 81.40 84.21 85.07 87.45 

SST 79.67 83.25 83.03 85.88 81.23 84.03 85.20 87.55 

 

Posterior 

STFT 81.30 85.09 81.10 85.35 79.46 83.59 82.88 85.93 

SST 80.80 84.88 79.54 84.58 77.04 81.72 82.60 85.73 

 

 

Also, since the highest classification performance is obtained from the delta subband, 

the brain cluster-based classification results are given in Table 5.5 for this EEG 

subband and both approaches. The highest classification performances for both 

approaches are obtained using RF classifier from temporal/left brain clusters (STFT: 

86.60% ACC, 88.81% F1-S; SST: 86.37% ACC, 88.64% F1-S). In addition, no 

significant performance difference is observed between the methods when all brain 

clusters are taken into account. 

In the second part of the study, TF representations obtained using SST and STFT 

approaches, containing all EEG subbands are used for feature extraction. The 

classification results of the joint TF features calculated from the obtained TF 
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representations are shown in Table 5.6. The highest performance to distinguish the 

EEG segments of control subjects and AD patients was obtained with 94.07% ACC 

and 95.04 F1-S from Temporal/Left brain cluster using the STFT method and RF 

classifier.  

 

Table 5. 6: Brain cluster based classification results of SST and STFT based 

approaches for all  

 DT SVM kNN RF 

Brain 

Cluster 
Method ACC F1-S ACC F1-S ACC F1-S ACC F1-S 

Anterior 
STFT 89.80 91.31 80.02 83.57 81.18 84.56 93.00 94.03 

SST 88.46 90.40 78.28 82.90 74.46 79.34 91.42 92.83 

 

Central 

STFT 88.57 91.23 79.63 85.34 81.77 86.68 92.40 94.12 

SST 86.93 89.94 74.77 82.72 74.07 81.38 90.37 92.58 

Temporal/

Left 

STFT 91.17 92.67 77.50 82.42 81.83 85.44 94.07 95.04 

SST 89.90 91.63 74.10 80.03 75.37 80.89 92.67 93.89 

Temporal/

Right 

STFT 89.57 91.63 83.73 87.11 84.70 87.95 93.43 94.72 

SST 88.80 90.16 79.53 83.36 78.97 82.08 92.23 93.23 

 

Posterior 

STFT 88.54 90.63 79.00 83.37 80.34 84.25 92.26 93.58 

SST 86.94 89.28 75.12 80.81 72.74 78.37 90.94 92.53 

 

 

 

 

 
 

Figure 5.11: Comparison of average sensitivity and false discovery rate values 

obtained using STFT and SST approaches according to different brain clusters. 
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Moreover, the variation of the average sensitivity and false discovery rate obtained by 

calculating the average of the SEN and FDR values obtained from the classifiers 

according to the approaches and brain clusters is given in Figure 5.11. The highest 

average SEN and lowest average FDR values (STFT: 93.25% SEN, 14.13% FDR; 

SST: 91.79% SEN, 17.67% FDR) are obtained from the central brain cluster for both 

STFT and SST approaches. However, lower FDR values are obtained for the 

Temporal/Left and Temporal/Right brain clusters. For all brain clusters, the STFT 

approach provided slightly higher classification performances than the SST approach.  

 

5.5 Comparison of the proposed CS/AD EEG 

classification approaches 

In this part of the thesis, we introduced different approaches and features to obtain 

discriminative information between EEG segments of AD patients and control 

subjects. Firstly, performance evaluation is conducted using DWT, which is a classical 

decomposition method, and EMD and EEMD, which are relatively new decomposition 

methods, and different feature sets, and the performances of the methods are 

compared. In order to demonstrate the success of the decomposition methods, the same 

analyses are carried out using the EEG signal itself without any decomposition. While 

5-level decomposition and Daubechies4 (db4) mother wavelet are used for DWT, the 

IMF selection process is performed for EMD and EEMD methods. Hybrid IMF 

selection method including energy, correlation coefficient, PSD distance, and t-test-

based IMF selection methods suggested for EMD and EEMD methods in our previous 

studies is also applied for this EEG data set. Time-domain based (energy, mean, 

skewness, kurtosis, activity, mobility, and complexity) and spectral-domain based 

features (total power, spectral entropy, 1st, 2nd, and 3rd moments) are computed by 

using the selected 7 IMFs (IMF1, IMF2, IMF3, IMF4, IMF5, IMF6, and IMF7) of 

EMD and EEMD methods, and detail and approximation coefficients of DWT method. 

It was noted that DWT, which is the classical decomposition method, yield more 

successful results in the problem of distinguishing EEG segments of AD patients and 

control subjects. 
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Secondly, the TF representation-based approach has been proposed for distinguishing 

EEG segments of AD patients and control subjects. Here, the classical TF method 

STFT and the recently proposed SST method, which provides high-resolution TF 

representation, are used to obtain the TF representation. It has been observed that time-

only and frequency-only features are frequently used with different approaches to 

distinguish EEG segments of AD patients and control subjects. However, the TF 

approach and joint TF features have not been found to be used for this problem. In our 

study, 18 different joint TF features (three TF flux, TF-Flatness, TF energy 

concentration measure, two TF entropy, six different statistical features, and five TF 

subband energies) are calculated by using TF representations obtained using SST and 

STFT methods. STFT, which is the classical TF approach, among the proposed TF 

representation-based approaches to distinguish EEG segments of AD patients and 

control subjects, yields relatively more successful results. 

All proposed methods for the problem of distinguishing EEG segments of AD patients 

and control subjects are compared and the results of the comparison are presented in 

Figures 5.12 and 5.13. Since the highest classifications performances are obtained by 

using the RF classifier in all proposed methods, the variation of ACC, SEN and FDR 

values obtained using this classifier according to the methods and different brain 

clusters are shown in Figure 5.12. Because of the most successful classification 

performance for DWT, EMD, and EEMD methods are obtained using time-domain 

features of 5s segment duration, the classification results of this feature set are used 

for comparison. Using time-domain feature sets of DWT and EEMD approaches, the 

highest classification performances of 93.33% ACC, 95.40% SEN, 6.13% FDR and 

91.40% ACC, 93.75% SEN, 8.07% FDR are obtained from temporal/right brain 

cluster, respectively. For the EMD and SST approach, the most significant 

classification performances are obtained from the temporal/left brain cluster with 

85.83% ACC, 91.23% SEN, 13.90% FDR, and 92.67% ACC, 95.03% SEN, 7.23% 

FDR, respectively. However, the most pronounced performance considering all 

approaches is observed for the STFT approach with 94.07% ACC, 95.90% SEN, 

5.80% FDR. 
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(a) 

 
(b) 

Figure 5.12: Comparison of sensitivity and false discovery rate values obtained using 

RF classifier according to all proposed methods and different brain clusters. 

 

In addition, channel-based F1-S values are given on the topography map (shown in 

Figure 5.13) in order to determine the most successful channel in distinguishing the 

EEG segments of control subjects and AD patients by conducting channel-based 

comparisons rather than brain cluster-based comparisons. A single F1-S value is 

obtained for each channel by calculating the average of the F1-S values obtained from 

all classifiers for all approaches. Here, in order to create the color ranges, the maximum 

and minimum F1-S values are obtained by considering the F1-S values obtained from 

all methods. This maximum and minimum value range is divided into 5 equal parts 

and one color is assigned for each part.  
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                              (a) 

 
(b) 

                                 
                                                             (c) 

 

                              (d) 

 

(e) 

Figure 5.13: Topographic map of channel based average F1-S of (a) EMD based (b) 

EEMD based (c) DWT based (d) STFT based, and (e) SST based approaches. 

 

If this topography map is evaluated (in Figure 5.13), the most successful control 

subject and AD patient EEG segment classification performances for all methods are 

obtained from the F8 channel. In addition, the DWT method provided higher channel-
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based F1-S values compared to the EMD and EEMD methods. The STFT method, on 

the other hand, provided higher F1-S values, especially for the channels in the central 

and temporal/right brain cluster, compared to the SST-based control subject AD 

patient EEG segment classification approach. Compared to DWT, there is an increase 

in F1-S values obtained from channels in the central and temporal/right brain clusters 

using the STFT approach. Therefore, the most successful approach among the 

proposed control subject AD patient EEG segment discrimination approaches is STFT, 

which is one of the approaches based on TF representation. 

 

Table 5.7: Performance comparison of control subjects AD patient EEG signal 

distinguish studies. 

Ref.  Classes type 
Subjects 

number 
Feature Performance (%) 

[74] AD/CS 14 AD/ 10 CS Statistical and Spectral 91.77% ACC 

[77] AD/CS 10 AD/ 8 CS Approximate Entropy 
70%-80% SEN, 

75%100%SPE 

[79] 

Mild AD/ 

Moderate AD/ 

CS 

20 Mild AD 

15 Moderate AD 

24 CS 

Spectral Power 

Cherance 

Phase Synchrony 

88.6% ACC, 90.% SEN 

[80] 

Mild AD/ 

Moderate AD/ 

CS 

11 Mild AD 

10 Moderate AD 

11 CS 

Amplitude modulation 

rate of change 
90.6 ACC%, 90.5% SEN 

[81] AD/CS 
50 AD 

50 CS 

Wavelet feature 

Spectral  

complexity 

88%-96% ACC 

[83] CS/AD 
79 AD 

82 CS 

Higuchi fractal dimantion 

Spectral entropy 
66%-77% ACC 

[89] CS/AD 
11 AD 

11 CS 

Lempel-Ziv complexity 

Central tendency metric 
90.9% SEN, 72.7% SPE 

[90] CS/AD 
11 AD 

11 CS 
Lempel-Ziv 77.27%-78.25% ACC 

[92] 

Mild AD/ 

Moderate AD/ 

CS 

31 Mild AD 

20 Moderate AD 

35 CS 

DWT and EMD 

Based features 

EMD: 91.35% ACC 

DWT: 97.64% ACC 

[93] CS/AD 
50 AD 

50 CS 

Spectral feature 

DWT feature 
94% ACC 

Proposed 

Study 
CS/AD 

15 AD 

11 CS 

EMD  

EEMD 

DWT 

STFT 

SST 

90.12% ACC 

92.09% ACC 

93.35% ACC 

94.07% ACC 

92.67% ACC 

 

In addition to comparing the performances of the proposed methods, a comparison is 

conducted with the success of the studies in the literature to classify the EEG segments 

of control subjects and AD patients (given in Table 5.7). In Table 5.7, in some studies 
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[79, 80, 92], both the problem of distinguishing the EEG signals of two-class control 

subjects and AD patients and the problem of distinguishing EEG signals of three-class 

control subjects, mild AD and moderate AD patients are evaluated. In other studies 

[74, 77, 81, 89, 90, 93], only the problem of distinguishing the EEG signals of control 

subjects and AD patients are studied. When the studies of distinguishing the EEG 

signals of control subjects and AD patients are evaluated [74, 77, 81, 89, 90, 93], the 

classification performances obtained within the scope of our study are more prominent. 

Again, according to the studies of distinguishing three-class control subjects, mild AD 

and moderate AD EEG signals, the classification performances obtained within the 

scope of our study are more pronounced [79, 80]. Only in the study [92], higher 

performance values are presented than our proposed study. However, AD detection 

performances are given in that study. The problem of separating the EEG signals of 

moderate AD patients from other groups can provide higher success than other 

problems. In our study, the problem of distinguishing the EEG signals of mild AD and 

control subjects is evaluated. The distinction between these data sets is more difficult. 

Nevertheless, significant classification performances are obtained in our proposed 

study (STFT: 94.07% ACC, 95.90% SEN, 5.80% FDR). 
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6. Conclusion 

Within the scope of the thesis, various methods have been proposed for disease 

detection and follow-up with advanced signal processing methods by using EEG 

signals of two different neurologic disorders, Epilepsy and Alzheimer's dementia, 

which have a high incidence in the world and seriously affect the quality of life. Due 

to the ease of recording and low cost, long-term EEG signals can effectively be used 

to detect neurological disorders. However, monitoring and analysis of long-term EEG 

recordings by neurologists is very time consuming and exhausting. Therefore, to help 

neurologists in the high-quality analysis of EEG signals,  various signal processing 

and analysis approaches such as time domain, frequency domain, time-frequency 

domain, and other advanced methods have been developed [18, 21, 22, 44, 62-65, 120].   

Firstly, EMD and derivative, DMD, and SST-based epileptic seizure detection, 

prediction, and classification approaches are introduced. Two different EEG datasets, 

IKCU and CHB-MIT, are examined for epilepsy detection, prediction, and 

classification. There are many studies in the literature for the detection and 

classification of epileptic seizures. Many studies have been performed in this field by 

using EMD and derivative approaches used in our study [14, 38, 42, 61-63, 95, 96]. 

EMD and its extensions (ensemble, multivariate and other) are suitable for the analysis 

of nonlinear and non-stationary signals such as EEG. In these methods, EEG signals 

are decomposed into IMFs which are zero–mean oscillations. Determining which of 

these IMFs contain useful information is vital for the success of the analysis. In most 

of the previous studies, the first 5 IMFs [95] or first 4 IMFs [32, 61, and 63] have been 

selected, because they contain high-frequency information. In other words, no IMF 

selection process was performed in the initial stage of these studies. On the other hand, 

there are several IMF selection procedures presented in the literature based on energy, 

correlation coefficient, power spectrum, and statistical significance [14, 111–114]. If 

the signal to be analyzed contains noise, the energy and correlation coefficient of the 
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IMFs where the noise component is dominant, will be high and misleading [111]. 

Therefore, the use of these IMF selection methods alone is not sufficient to determine 

the appropriate IMFs. In our study, we propose a hybrid IMF selection approach 

considering energy, correlation, power spectral distance, and statistical significance 

measures. We explore the advantages of the proposed IMF selection in either EMD or 

EEMD approaches as opposed to using randomly selected IMFs. In our epileptic EEG 

classification experiments, the proposed EMD- and EEMD-based approaches 

outperformed the EEG-based and DWT-based approaches for all classifiers and 

feature sets we used. The selection algorithm for both EMD and EEMD suggests 

IMF1, IMF3 and IMF2 in this order. We use these IMFs separately and their 

combinations for feature extraction and evaluate the classification performance. The 

classification performance of selected IMFs and their combinations were generally 

higher than the classification success of randomly selected IMF1–4. It is obvious that 

in another signal processing problem, the selection algorithm may yield a completely 

different set of IMFs. Hence the use of first k IMFs in the classification process, as 

generally done in previous studies, is not the best approach. In our simulations, highest 

classification accuracies were obtained by using the EEMD approach where the 

discriminative information about epileptic seizures in the channels may be revealed 

more clearly (shown in Figure 4.4). Note that, working with 3 or more IMFs increases 

both the computational load and processing time. It may be concluded that performing 

an IMF selection procedure before obtaining the features directly affects the success 

and computational load of the study. 

The DMD method presented as a solution to problems encountered in fluid flow 

studies has recently been applied to neurological signals and successful results have 

been obtained [58, 97-100]. In this study, we explore the application of DMD method 

to single-, as well as multi-channel epileptic EEG signals. A new DMD-spectral based 

approach is presented to distinguish pre-seizure and seizure EEG signals. In the 

literature, multi-channel EEG data are used for DMD analysis. While simultaneous 

analysis of multi-channel EEG signals with DMD algorithm provides an advantage in 

terms of computation time, the effect of EEG channels on classification performance 

cannot be evaluated. In our study, a single-channel-EEG based DMD approach is 

presented. We observe that single-channel-based classification performance is higher 

than multi-channel based classification performances. Hence, it was shown that the 
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DMD algorithm can successfully be used for data recorded from a single channel as 

well. On the other hand, the DMD Spectrum and Power Spectral Density are similar. 

However, while different EEG segments may be analyzed and simultaneously 

characterized using the DMD algorithm by creating high-dimensional EEG data 

matrices, these EEG segments must be separately analyzed using the Fourier transform 

or similar approaches. In our experiment, the Welch Periodogram method using the 

FT is utilized to estimate the power spectral density for comparative analysis.  

Additionally, FT calculates the power spectrum at each uniformly placed frequency 

samples 𝑓𝑘 =
𝐹𝑠

𝑁
; 𝑘 = 0, 1, … , 𝑁 − 1,  𝑁 is the number of samples, while DMD 

spectrum is calculated only for frequency values of the extracted modes of the signal. 

As such, the DMD spectrum may display more than one power component, or no 

power at some frequencies. The higher-order DMD spectral moments, and DMD sub-

band powers are introduced as novel features of DMD spectrum in this study, and 

successfully applied for the classification of pre-seizure and seizure EEG signals. On 

the other hand, in our previous study conducted using the same IKCU data set, and 

applying EMD, EEMD and DWT methods, we achieved 97.14%, 98.13%, and 94.56% 

accuracy values respectively. However, as discussed in that study, EMD and EEMD 

approaches have the disadvantage of computational complexity over DWT method. 

The computational complexity of EMD is 𝑂(𝑁𝑠𝐿𝑁𝑥) where 𝑁𝑠 is the number of 

shifting iterations to extract each intrinsic mode function (IMF), 𝐿 denotes the number 

of IMFs, 𝑁𝑥 is the length of the signal, and 𝑂(. ) shows the order of computation. This 

complexity is multiplied by the number of ensembles 𝑁𝑒 in EEMD [115, 125] making 

EMD and its variants computationally expensive iterative methods. The single channel 

based DMD proposed by us, which clearly has the computational advantages, resulted 

96.7% classification accuracy. The computational complexity of the DMD algorithm 

is reported as 𝑂(𝐾𝑁𝑀), where 𝐾 is the number of modes, 𝑁 and 𝑀 are the dimensions 

of the data matrix [126]. Thus, the above encouraging classification results together 

with the computational advantages, indicate that the proposed DMD method may be 

applied to the analysis of univariate signals such as single EEG channels and other 

non-stationary signals.   

In the literature, quite large amount of studies have been presented for epileptic seizure 

detection and classification using TF analysis methods. The  proposed  method  
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provides  an  alternative  to those  methods  with  successful  results  obtained  on two 

different data sets. A high-resolution TF method called SST is utilized to define a 

classification scheme for epileptic EEG signals. For the proposed machine learning 

based SST approach, novel features, i.e., HOJ-TF moments and GLCM based features 

are extracted using the SST representation. The proposed method is applied to classify 

pre-seizure and seizure EEG segments in the IKCU data set, and to detect seizures in 

the CHB-MIT data set. Classification performances of the proposed approach using 

various classifiers are evaluated by means of statistical metrics. Same experiments  are  

performed  using  the  STFT  of  EEG segments  to  compare  the  performance  of  our  

proposed method. For the IKCU data set, using the HOJ-TF-moment based feature set, 

higher classification performance is achieved in the SST approach than that of the 

STFT for both left and right hemispheres. In addition, the classification accuracies in 

both hemispheres are increased at 5s segment duration over 1s for both approaches 

(shown in Tables 4.13, 4.14). While the SST approach reaches higher classification 

performance in both hemispheres for the GLCM feature set  with  1s  segment  

duration;  for  the  same  feature set with 5s segment duration, the classification 

accuracies of both approaches are very close (Shown in Tables 4.15 and 4.16). 

Moreover, using both HOJ-TF-moment-based and GLCM based feature sets, higher 

precision and recall values for each classifier are achieved in the SST approach of the 

1s segment duration (given in Figure 4.15). As for the patient-based tests, seizure 

detection performances of over 95% are obtained for most patients in both HOJ-TF 

moment and GLCM-based feature sets (shown in Figure 4.16). This shows that the 

proposed method actually captures the differences in EEG signals just before the 

seizure onset and right after the onset. A seizure detection experiment is performed on 

CHB-MIT  data  set  using  the  proposed  SST-based method  with  successful  results  

using  both  HOJ-TF moment-based (94.5% ACC) and GLCM based (95.1%  ACC)  

feature  sets. For the deep learning based SST approach, TF spectra of EEG segments 

are obtained by SST transform, which is a recent and popular high-resolution TF 

analysis approach. These TF images are used to train a ResNet-based CNN 

architecture. The proposed method was tested on two different datasets (IKCU and 

CHB-MIT) in order to validate its robustness and compare its success with existing 

studies.  Moreover, two different CV methods have been used to prove the 

transparency of the obtained results. Especially, SST was used the for the first time  to  
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analyze  epileptic  EEG  signals  in  conjunction  with  DL,  as  well  as  TF-images  

obtained  from SST were used to train a CNN architecture for the first time, to the best 

of our knowledge. Results demonstrated that outstanding performance is achieved in 

predicting and detecting seizures from EEG signals. Particularly,  the  validation  of  

the  proposed  models  with  the  PIP-based  method  indicates  that  it works  well  in  

testing  new  patients. In our previous study [125], EMD and EEMD based Epileptic 

seizure classification approach is introduced using the IKCU data set. Classification 

accuracies of 94.56 %, 97.14 % and 98.13%, were obtained, respectively, for DWT, 

EMD and EEMD approaches that have greater computational cost 𝑂(41𝑁𝑠𝑁𝑙𝑜𝑔𝑁) in 

EMD and multiplied by the number of ensembles 𝑁𝑒 in EEMD approach [115, 125]. 

Upon these evaluations, it may be concluded that the proposed SST based methods 

having lower computational cost 𝑂(𝑁𝑣𝑁𝑙𝑜𝑔2𝑁) [57] and above performance 

evaluation results, may be applied to epileptic seizure classification and detection with 

satisfactory results.  

In the second part of the thesis, various methods have been proposed to distinguish the 

EEG signals of control subjects and AD patients. In the literature, many methods have 

been proposed to obtain distinctive information between the EEG signals of AD 

patients and control subjects [74-94]. In many studies, it was reported that low-

frequency delta subband power of EEG signals of AD patients increased compared to 

control subjects [74, 76-78]. It is also emphasized that the complexity and 

synchronization measurements calculated from the EEG signals of AD patients are 

lower than those of the control subjects [74-90]. In the proposed study, various signal 

decomposition methods such as EMD, EEMD, and DWT and TF representation-based 

approaches such as STFT and SST are presented to classify EEG segments of control 

subjects and AD patients. First, IMFs are obtained from the signals using the EMD 

and EEMD methods, and then the IMFs that showed the most significant differences 

between the two groups are selected by applying the previously suggested IMF 

selection procedures. 7-time domain and 5-spectral domain features are calculated 

using selected 7 IMFs and 5 detail and approximation coefficients of DWT. Signal 

decomposition processes are conducted for both 1min and 5s EEG segment durations. 

For the 1min segment duration, all the proposed approaches yield prominent 

classification performances. While the highest classification accuracies are obtained 

using EMD (91.53%) and EEMD (93.90%) approaches from the temporal/right brain 
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cluster, the highest classification accuracy for the DWT (97.40%) approach is obtained 

from the temporal/left brain cluster for 1 min segment duration. In the proposed TF 

representation-based approach to distinguish EEG segments of AD patients and 

control subjects, TF representations obtained using both STFT and SST approaches 

for 5s segment duration are used to calculate features. 18 different TF features are 

calculated using the TF density functions obtained utilizing the SST and STFT 

approaches. For the SST approach, the most significant classification performance is 

obtained from the temporal/left brain cluster with 92.67% ACC, 95.03% SEN, 7.23% 

FDR. However, the most pronounced performance is observed for the STFT approach 

with 94.07% ACC, 95.90% SEN, 5.80% FDR. When the performances of all proposed 

methods are compared for 5s segment duration, the classification performance of the 

STFT-based approach was higher than the other approaches. Although decomposition-

based approaches have been used frequently in the literature for the classification of 

EEG signals of control subjects and AD patients, TF representation-based approaches 

have been used less frequently. The performance results, which are presented in detail, 

show that the traditional decomposition method DWT and the conventional TF 

representation method STFT-based approaches can be used successfully in 

distinguishing the EEG signals of AD patients and control subjects. 

With the following items summarized the objectives are achieved in this thesis; 

1. The hybrid IMF selection method that includes different approaches such as 

energy, correlation, power spectral distance, and statistical significance test are 

performed and the advantages of this IMF selection process are presented in detail 

for EMD and EEMD methods.  

2. It has been shown that the EEMD method can be used successfully in the 

classification of both Alzheimer's Dementia and epileptic EEG signals. 

3. In addition to the literature, a single-channel DMD approach has been proposed 

for epileptic seizure detection and it has been shown that successful results can be 

obtained by using this approach in channel-based seizure detection. 

4. Higher-order DMD moments and DMD sub-band powers-based novel features are 

introduced using the DMD spectrum, using these features prominent performance 

evaluation results are achieved. 
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5. SST-based seizure detection study is performed and different features are 

calculated using TF representations. 

6. Again, the SST-based CNN approach is used for the first time in the literature for 

the detection of epileptic seizures and successful results are obtained. 

7. TF representation-based AD patient and control subjects EEG classification study 

is performed by calculating joint TF features and promising performance results 

are obtained. 
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