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Controlling the Motion of Capillary Driven Interfaces in 

Channels with Chemical Heterogeneity 

Abstract 

The use of self-driven fluids (e.g., droplets, capillary flows) attracts many researchers 

as the external driving mechanisms are diminished or eliminated. The contact angle 

hysteresis generates a driving force (a pressure difference across interfaces). This 

pressure depends on the interaction with the solid substrates and is controlled if one 

varies the surface energy of the walls. Self-transport and manipulation of interfaces 

play an important role in the development of microfluidic devices, self-cleaning, 

water harvesting and heat transfer enhancement. In this study, we search for the 

effects of surface energy on the motion of interfaces. To this end, we model the 

motion of fluid particles and integrate the governing equations using the D2Q9 

binary lattice Boltzmann method for the two-phase flow. We, first, validate our 

solver for canonical static and dynamic problems. We, then, discuss two main 

contributions; The first one is, for capillary driven flows, we show how to deviate the 

interface speed from the ones moving in channels with uniform wall energies, the 

conditions under which the interface stagnates (like a passive valve in a channel). 

Tuning the wettability of the channel walls, we provide a simple criteria for stopping 

the interface: the summation of the equilibrium contact angles interface make with 

the channel walls at the bottom and top wall need to satisfy 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
  ≥ 𝜋. The 

second contribution is that, by varying the surface energy and fluid viscosities, we 

systematically study the behavior of single droplets on surfaces, their merging 

mechanism and equilibrium shapes and motions within confinements.  

Keywords: Capillarity, Wetting, Interface, Microfluidics, Lattice Boltzmann 

Method, Interfacial Flow, Contact Lines, Wettability Gradient 
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Kanal İçerisindeki Kapilerite ile İlerleyen Arayüzlerin 

Kimyasal Heterojen Yüzeyler ile Kontrolü 

Öz 

Harici tahrik mekanizmaları azaldığından veya ortadan kalktığından, kendi kendine 

hareket eden sıvıların (örn. damlacıklar, kılcal akışlar) kullanımı birçok 

araştırmacının ilgisini çekmektedir. Temas açısı histerezisi, bir itici güç (arayüzler 

arasında bir basınç farkı) üretir. Bu basınç, katı yüzeylerle etkileşime bağlıdır ve 

duvarların yüzey enerjisi değiştirilerek kontrol edilir. Arabirimlerin kendi kendine 

taşınması ve manipülasyonu, mikroakışkan cihazların geliştirilmesinde, kendi 

kendini temizlemede, su toplamada ve ısı transferinin geliştirilmesinde önemli bir rol 

oynar. Bu çalışmada, yüzey enerjisinin arayüzlerin hareketi üzerindeki etkilerini 

araştırıyoruz. Bu amaçla, sıvı parçacıklarının hareketini modelliyoruz ve iki fazlı akış 

için D2Q9 ikili kafes Boltzmann yöntemini kullanarak, yöneten denklemleri entegre 

ediyoruz. Öncelikle standart statik ve dinamik problemler için çözücümüzü 

doğrularız. Daha sonra, iki ana katkıyı tartışıyoruz; Bunlardan birincisi, kılcal tahrikli 

akışlar için, arayüz hızının, değişmeyen duvar enerjilerine sahip kanallarda hareket 

edenlerden nasıl saptırılacağını ve böyle bir arayüzün hangi koşullar altında 

durduğunu (bir kanaldaki pasif bir valf gibi) gösteriyoruz. Kanal duvarlarının 

ıslanabilirliğini ayarlayarak arayüzü durdurmak için basit bir kriter sağlıyoruz: 

arayüzün alt ve üst duvardaki kanal duvarlarıyla yaptığı denge temas açılarının 

toplamı 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
  ≥ 𝜋 'yi sağlamalıdır. İkinci katkı ise, yüzey enerjisini ve sıvı 

viskozitelerini değiştirerek, tek damlacıkların yüzeyler üzerindeki davranışını, 

bunların birleştirme mekanizmasını ve sınırlamalar içindeki denge şekillerini ve 

hareketlerini sistematik olarak inceliyoruz.  

Anahtar Kelimeler: Kapilarite, Islatma, Arayüzey, Mikroakışkanlar, Lattice 

Boltzmann Metodu, Arayüzey Akışı, Kontakt Çizgileri, Islanabilirlik Gradyanı  
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Chapter 1 

Introduction 

The experimental and theoretical studies of self-driven droplets and flows have made 

major strides in recent years. But there are still lots of unanswered concerns and a lot 

to learn about these systems. The potential for self-driven droplets and the flows to 

produce significant insights and developments makes this an interesting and popular 

area of research. The physics of fluids on micron-scale is affected by the surface 

energy of the interfaces, here, the strong interaction between the fluid and solid 

substrate [1,2]. The motion of the contact line where the liquid meets the solid 

surface is dominated by viscous and surface tension forces rather than inertial and 

gravitational forces [3,4].  The ratio of the two forces is the Capillary number. The 

motion of the interface is driven only by the pressure difference across the liquid 

interface. Any variation in the chemical structure of the surface over which the 

contact line moves, changes the dynamics of the contact line motion. For example, in 

heat transfer on the surfaces, manipulation of droplets by wetting gradients are 

promising to increase the efficiency of heat transfer. Occurrence of condensation 

either as filmwise condensation (FWC) or dropwise condensation (DWC) affects the 

mechanism of heat transfer.  As continuous film creates a resistance for heat transfer, 

dropwise condensation is more effective. But in high rates of temperature differences 

(degree of subcooling), it cannot be possible to observe DWC [5,6].  

Surface tension must be taken into account while doing a research of self-driven 

droplets and flows since it is a major factor in influencing the form and stability. 

When an interface meets a solid surface, it makes a certain angle with the interface 

which is called contact angle. This angle depends on the nature of the solid surface 

and the history of how the interface is established. To help with the remaining of the 

thesis, we start with some basic definitions like wetting and contact angle hysteresis.  
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Wetting, which is defined as a liquid's capacity to stick to a solid surface, is an 

important factor of many natural and industrial processes. There are so many 

applications that require the liquid spreading on solid substrates (solid substrate 

could be a homogeneous surface or like a porous surface). There are types of wetting 

according to that amount of the sticking capacity. In terms of types, the notion of 

"wetting transition" which is used to explain how liquids behave on solid surfaces, 

was denoted by de Gennes in [7]. The "complete wetting" and "partial wetting" 

systems are shown in Figure 1.1. 

 

Figure 1.1: Liquids on a solid substrate, (a) hydrophobic (180° > 𝜃𝑒𝑞 > 90°) and (b) 

hydrophilic (𝜃𝑒𝑞 < 90°) systems show the partial wetting; the wetting is stronger in 

(b) than (a), (c) shows the complete wetting (𝜃𝑒𝑞 = 0°). 

The ability of a liquid to wet a solid surface is called as wettability, and it is affected 

by the relative energies of the liquid-solid and liquid-vapor interfaces. If the liquid-

vapor interface energy is greater than the liquid-solid interface energy, we can say 

the surface is hydrophobic, but if the liquid-solid interface energy is greater than the 

liquid-vapor interface energy, then we can define the surface as hydrophilic (water 

attracting).  

For atomically smooth and chemically homogeneous surfaces, this angle is unique 

[8]. However, in nature, there are always heterogeneities or the surface can be 

designed as heterogeneous on purpose [9]. In this case, the contact angle is not 

unique; there is contact angle hysteresis (CAH) [10-12]. The heterogeneities, either 

physical or chemical, may cause contact line pinning/depinning. Many natural and 

engineering processes, including capillary action, adhesion, and friction depend on 

wettability. Surface chemistry, surface roughness, temperature, pressure, and the 

characteristics of the liquid and the solid parameters, all of them can affect the 

wettability. In this thesis, we mainly interest in the surface chemistry. 

𝜃𝑒𝑞 𝜃𝑒𝑞 



3 

 

The phenomenon known as contact angle hysteresis (CAH) can be seen when the 

contact angle between a liquid droplet and a solid surface changes according to the 

direction in which the droplet is moving. The larger contact angle at the droplet’s 

front is called the "advancing contact angle," and the smaller contact angle at the 

back or tail of the droplet is called the "receding contact angle." The "hysteresis 

loop" is a measure of the "wetting behavior" of the liquid on the solid substrate and 

this is known as the difference between the advancing and receding contact angles. 

In systems where the solid's surface energy varies or when the surface is chemically 

or mechanically heterogeneous, contact angle hysteresis can be seen more often. 

The contact angle hysteresis can also be affected by parameters such as droplet size, 

droplet velocity, and the impurities in the liquid or on the solid surface. In materials 

science, chemistry, and engineering, understanding and controlling the contact angle 

hysteresis is more important in terms of the functionality of processes that depend on 

wetting behavior. 

Because the spreading droplets over rough substrates and evaporation/condensation 

of droplets cause a natural motion of interfaces, the CAH over heterogeneous 

surfaces for such interfaces takes the great attention of many researchers [13-15]. 

The droplet may attain an equilibrium shape, pin(depin) to(from) structures, move 

due to hysteresis. For example, if the surface is more wetting (more prone to 

spreading out) at one end than at the other, the droplet tries to move towards the 

more wetting end. This happens because the liquid spreads more and make a larger 

contact area with the solid substrate at the more wetting end, which can cause the 

droplet to be pulled towards that direction due to capillary forces [1, 16-20]. In other 

words, the droplet moves from low-surface energy side towards the high-energy side. 

It is known that self-transport is faster for low-surface tension fluids like ethanol 

compared to water as it is more wetting [21,22] on fixed substrate. But without 

altering the surface tension of the droplet, its shape or motion can be controlled by 

varying the surface energy of the surfaces [23]. Geometric gradients like self-motion 

of droplets on conical surfaces is also possible (see, e.g., Ding et al 2023 [24]). 

Assisted by both surface gradients and wetting gradients, a droplet may further be 

accelerated. The capillaries also provide such motion for the interfaces. For a liquid 

filling a capillary, the motion of the interface is driven only by the pressure 
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difference across the liquid interface. With the advancement in the understanding of 

wetting phenomena, its use in microfluidic devices has been increasing. 

Interface motion in capillary driven flows and wetting phenomena on heterogeneous 

substrates (e.g., self-transport and manipulation of droplets) are observed in nature 

[25,26], mostly in plants-trees [27], lotus leaves [28], desert beetles [29] and 

butterfly wings [30] etc.; and in engineering applications such as lab-on-chips [31-

34], heat transfer enhancement [35,36], self-cleaning [37], oil recovery [38], 

painting, and inkjet printing [39-41].  Understanding and controlling the motion of 

such interfaces are important in microfluidic devices. Generally, the interfaces are 

controlled with active methods (actuators, valves), which require labor and are not 

scalable, autonomous, and easy to adapt and implement [42,43]. We, instead, 

investigate the use of different wettability regions, e.g., provided by chemical 

heterogeneity in the control of interfaces passively which has plenty of advantages 

[44,45]. The idea of changing the wettability of surfaces and combining with liquid 

infusion or lubricant impregnation can be utilized, also, to vary the droplet speed, 

orientation, size etc. [46-50]. 

The lattice Boltzmann method is one of the numerical methods to be able to integrate 

the governing equations that control the motion of two-phase systems. Navier-

Stokes, continuity and phase-field equations are modified into lattice Boltzmann 

equation with using Chapman Enskog expansion in the limit of long length and time 

scales [51]. This mesoscopic numerical method can be used for various types of 

problems, from simple fluids to complex chemical reactions. So, like the topological 

heterogeneities [52,53], similar effects are observable with chemical heterogeneities 

[8,54-56]. In this thesis, we use D2Q9 lattice Boltzmann method for simulating the 

problems because of the methods mobility for wetting problems and its lower 

computing cost due to its step-by-step solution (i.e., no requirement of matrix 

inversion), compared to traditional methods such as Finite Element, Finite Volume, 

Boundary Element Methods etc. 

In the thesis' following sections, we begin by introducing the method that we use to 

simulate capillary problems. We summarize different implementations for the 

method as Bhatnagar–Gross–Krook (BGK), Multiple Relaxation Time (MRT) etc. 

[57]. After the methodology, we present validations of our solver for static (Young 
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equation) and dynamic (Washburn's and Cox-Voinov laws) problems. Later, we 

discuss the effect of chemical heterogeneity on the interface motion within capillaries  

and mechanism of self-driven single or multiple droplets on and within chemically 

structured surfaces. 
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Chapter 2 

Model Problem 

The problem setups for droplet and capillary interface cases are given in the figures 

2.1 and 2.2 below. For both models, left-right ends are treated as periodic. For 

droplet modelling, top surface is away from the droplet. But for the confinement 

effect and capillary modelling, the top surface touches to the interface/s. The node 

number (lattices) change for different cases. The meadow green color shows the 

liquid as fluid 1(𝛼) and the moss green color shows the gas as fluid 2(𝛽). 

 

 
 

Figure 2.1: Capillary Model, wall length is 𝐿 and filling length (𝑙) is distance that 

liquid penetrates into the capillary tube. 𝑛𝑥 = 700 and 𝑛𝑦 = 42 lattices along 𝑥 and 

𝑦-directions, respectively; and capillary walls are placed in the middle of the domain 

at the top and bottom. For different viscosity cases we set the kinematic viscosities to 

𝑣𝑙 = 0.83 and 𝑣𝑔 = 0.067 (this corresponds to 𝜏𝛼 = 3, 𝜏𝛽 = 0.7 as in [58]). 

The L-length channel walls for the capillary are shown in black. The periodic top and 

bottom sides give us a flat interface that mimics infinite reservoirs at both ends, 

while the periodic inlet and outflow bounds guarantee mass conservation. We set 

𝜅 = 0.04, 𝑎 = 0.04 and 𝑀 = 1 in the lattice Boltzmann implementation with 

Multiple-Relaxation Time.  

L
periodic B 

periodic B periodic B 

periodic B 

lperiodic 

B 

periodic 

B 
h

           



7 

 

 

Figure 2.2: Droplet Model, 𝑛𝑥 and 𝑛𝑦 are the number of lattices used along x and y 

directions, time dependent contact angle 𝜃(𝑡) (according to problems) may be unique 

or different at both contact lines.  

The problems we are interested in are affected greatly by the contact line dynamics. 

In Figure 2.2, we show our droplet model. Except the domain length and viscosity 

ratios, the same parameters within capillary model are used in this model. The 

wetting angle the contact lines make with the surfaces determine the statics and 

dynamics of the problem. To this end, we validate our solver for both static and 

dynamic problems. 

2.1 Governing Equations 

The Navier-Stokes equations of motion and the continuity for a Newtonian fluid, 

denoted by equations (2.1a) and (2.1b) in index notation, respectively, govern the 

motion of fluid particles inside the capillary in the continuum regime. 

𝜕𝑡(𝜌𝑣𝑖) + 𝜕𝑗(𝜌𝑣𝑗𝑣𝑖) = −𝜕𝑗𝑃𝑗𝑖 + 𝜕𝑗 (𝜂(𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖)) + 𝜌𝐹𝑖 ,  (2.1a) 

𝜕𝑡𝜌 + 𝜕𝑗(𝜌𝑣𝑗) = 0, (2.1b) 

where 𝜌 is the density, 𝜂  is the dynamic viscosity of the fluid, and 𝑣𝑗 is the fluid 

velocity. In equations (2.1a) and (2.1b), the indices i, j vary from 1 to 2 in two-

dimensional problem and twice appearing index j in an expression means summation 

over it. In right-hand side of the equation (2.1a), there are three terms: First term 
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includes the pressure tensor 𝑃𝑗𝑖  which is defined below (equation 2.2), second term is 

related with viscous forces and the last term defines the external body force per unit 

volume, 

𝑃𝑗𝑖 = (𝑝0 − 𝜅∅∇2∅ −
𝜅
2

|∇∅|2) 𝛿𝑗𝑖 + 𝜅𝜕𝑗∅𝜕𝑖∅. (2.2) 

There are pressure forces and surface tension forces inside the pressure tensor, and 

there is also an order parameter from the Landau Free Energy that will be defined 

shortly. Equation (2.2) gives the definition of the bulk pressure as 

𝑝0 =
𝑐3

3
𝜌 + 𝑎 (

1

2
∅2 +

3

4
∅4). (2.3) 

  

Interface profile and fluid motion are related with pressure as follows [59]. For non-

uniform composition, −∅∇𝜇 models the surface tension forces which comes from the 

divergence of 𝑃𝑗𝑖 , moreover, it has a localized effect on the fluid (chemical potential 

creates the opposite motion of the two phases denoted by ±∅). ∅ controls the 

interface changes. 

∅∇𝜇 = 𝜕𝑗𝑃𝑗𝑖 , (2.4) 

and the phase field is governed by Cahn-Hilliard type equation [60,61] 

𝜕𝑡∅ + 𝜕𝑗( ∅𝑣𝑗) = 𝑀∇2𝜇. (2.5) 

𝑀 is referred to as mobility in equation (2.5), which regulates the strength of the 

diffusion. The phase field ∅ responds to gradients by diffusion (as seen on the right-

hand side), and it also changes over time as a result of 𝑣𝑗's convection (as given on 

the left-hand-side). 
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2.2 Thermodynamics of the fluid: Modelling Free 

Energy 

We use Landau theory to describe the binary fluids' free energy. It uses ∅ as a order 

parameter. First terms describe a second order phase transition in Landau function.  

Landau free energy is defined as 

𝐹 = ∫ (𝜑(∅) +
𝜅
2

|∇∅|2) 𝑑𝜗 + ∫(𝜀∅)𝑑𝑆 
 

(2.6) 

where 𝜗 is the volume and 𝑆 is the bounding surface of the corresponding volume, 

and the bulk free energy density 𝜑(∅) is 

𝜑(∅) =
𝑐2

3
𝜌ln𝜌 + 𝑎 (−

1

2
∅2 +

1

4
∅4). (2.7) 

We take 𝜌 as a fluid density and ∅ is the order parameter ∅ = ±1. 𝑐 can be written as 

∆𝑥

∆𝑡
 (∆𝑥 spacing between the points or lattices and ∆𝑡 time step) and 𝑎 is a constant. 

The 𝜅 term in equation (2.6) gives the interfaces with surface tension by penalizing 

non-uniformities (penalizes sharp gradients) in ∅. Surface tension between the 

phases is given by 𝛾𝑙𝑣 = √8𝜅𝑎/9 [62]. 

While the first terms describe a second-order phase transition in the Landau function, 

the second integral in equation (2.6) shows the solid-fluid interactions and models 

the surface tension between them. We control the contact angle with the 𝜀 parameter. 

For controlling the contact angle, we take partial derivative for ∅ at the boundary, 

with respect to the normal of the surface 𝜕⊥∅|𝑤 = 𝜀/𝜅. 
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Figure 2.3: Phase separation, equilibrium values at ±∅. 

We show the order parameter in Figure 2.3, the minimum points define the 

equilibrium state at fixed volume and temperature, equilibrium states are given by 

global minima of the free energy,  𝐹. The variation of equation (2.6) with respect 

to ∅ defines the chemical potential which is constant in equilibrium as 

𝜇 =
𝛿𝐹

𝛿∅
= 𝑎(−∅ + ∅3) − 𝜅∇2∅. (2.8) 

For the numerical solution of the governing equations, we use lattice Boltzmann 

Method. Applying Chapman-Enskog expansion [51] shows that the lattice 

Boltzmann method recovers the hydrodynamic (governing) equations. 
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Chapter 3 

Numerical Method 

3.1 Lattice Boltzmann Method 

The discretization of the Boltzmann equation leads to the development of the Lattice 

Boltzmann method, a mesoscopic numerical integration approach for fluid dynamics. 

It describes how a gas or liquid behaves at this level. A particular lattice Boltzmann 

method known as the D2Q9 model uses a two-dimensional lattice with nine discrete 

velocity vectors and offers a wide range of fluid flow modeling. 

By include a free energy functional in the Boltzmann equation, the D2Q9 model is 

able to represent thermodynamic variations in temperature and pressure. This 

functional can be used to calculate values like the equation of state, heat capacity, 

and surface tension 𝛾𝑙𝑣 = √8𝜅𝑎/9 [63] since it represents the system's total energy, 

which includes both kinetic and potential energy.  

In order to add free energy into the D2Q9 model, we must first develop a set of 

distribution functions that express the possibility of coming along a particle with a 

specific velocity at a specific location in space and time. The Boltzmann equation is 

then used to evolve these distribution functions, which allows for particle collisions 

and interactions with the surrounding fluid. 

Due to its ease of use and adaptability, the lattice Boltzmann method (LBM) has 

grown in popularity recently for computational fluid dynamics (CFD). The 

Boltzmann equation, which defines how the distribution function of a system of 

particles evolves, forms the basis for this thesis. This distribution function is 
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discretized on a lattice in LBM, and a series of discrete steps are used to mimic the 

particle dynamics. We use fixed nodes in LBM, there is no moving mesh. 

The ability of LBM to simulate a variety of physical processes, such as fluid flow, 

heat transfer, and chemical reactions, is one of its key benefits. As it does not require 

the usage of explicit meshes, it is particularly well suited for issues involving 

complicated geometries and boundary conditions. 

 

 

Figure 3.1: Implementation of LBM Flow-chart 

 

A set of discrete velocities and a lattice structure must first be defined in order to 

implement LBM. After initializing the distribution function, the system is evolved 

using the steps as shown in Figure 3.1: 
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1. Macroscopic variables: The macroscopic variables (e.g., density, velocity) are 

computed from the distribution function. 

2. Collision: A collision operator, which simulates the interactions between 

particles and the surface forces, is used to transform the distribution function. 

3. Boundary conditions: To adjust for any external forces or system constraints, 

the distribution function is modified. 

4. Streaming: Depending on their velocities, the particles are transferred from one 

lattice site to another. 

 

Until the system reaches a steady state or the desired simulation period has ended, 

these stages are repeated. 

 

3.1.1 Macroscopic Variables 

All dimensions are given in lattice units. As we analyse the physical behaviour of 

interfaces for a binary fluid system, we use two distribution functions as 𝑓𝑖(𝑟, 𝑡) and 

𝑔𝑖(𝑟, 𝑡). The subscript 𝑖 shows the directions defined in a vector 𝑒𝑖 , that the lattice 

point can travel. The values are as follows: 𝑒0 = (0,0), 𝑒1 = (+𝑐, 0), 𝑒2 = (−𝑐, 0), 

𝑒3 = (0, +𝑐), 𝑒4 = (0, −𝑐), 𝑒5 = (+𝑐, +𝑐), 𝑒6 = (−𝑐, −𝑐), 𝑒7 = (−𝑐, +𝑐), 𝑒8 =

(+𝑐, −𝑐) and the illustration of the directions is given in Figure 3.2. 

 

Figure 3.2: The subscript 𝑖 shows the directions defined in a vector 𝑒𝑖  , that the lattice 

point can travel. 
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The physical quantities can be constructed from the distribution functions by 

𝜌 = ∑ 𝑓𝑖

𝑖

, ∅ = ∑ 𝑔𝑖

𝑖

, 𝜌𝑣 = ∑ 𝑓𝑖𝑒𝑖

𝑖

. (3.1a) 

In LBM, we separate the collision equation (3.1b-3.1c) and streaming equation (3.1d-

3.1e) operations [64] as given by  

𝑓𝑖
′(𝑟, 𝑡) = 𝑓𝑖(𝑟, 𝑡) − 𝑖𝑛𝑣[𝑀] (𝑆(𝑀[𝑓𝑖 − 𝑓𝑖

𝑒𝑞])), (3.1b) 

𝑔𝑖
′(𝑟, 𝑡) = 𝑔𝑖(𝑟, 𝑡) −

1

𝜏∅

[𝑔𝑖 − 𝑔𝑖
𝑒𝑞], (3.1c) 

𝑓𝑖(𝑟 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖
′(𝑟, 𝑡), (3.1d) 

𝑔𝑖(𝑟 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑔𝑖
′(𝑟, 𝑡). (3.1e) 

 

3.1.2 Relaxation Parameters 

For the collision part, there is a collision operator parameter which includes a time 

constant 𝜏 as "relaxation time" parameter and describes the speed of the system to 

reach its equilibrium. The viscosity and heat diffusivity are affected by the relaxation 

time. Actually, Boltzmann’s original collision operator is a non-trivial. It includes all 

the possibilities for a collision of two-particles. However, there is a simple operator 

that directly captures the relaxation of the distribution function with using single 

relaxation time (SRT) 𝜏, to its equilibrium. Bhatnagar, Gross and Krook (BGK) 

collision operator [65] is given by 

𝛺(𝑓) = −
1

𝜏
(𝑓 − 𝑓𝑒𝑞). (3.2) 

Though the BGK operator is simple and efficient, it has lower accuracy and stability 

problems compared to Two-Relaxation-Time and Multiple-Relaxation-Time 

operators. We implement Multiple-Relaxation-Time (MRT) operator because it 

consists of more than two free parameters (relaxation times) to be arranged for more 
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stable and accurate results. In the BGK operator, we define only one relaxation 

parameter for the Boltzmann equation; but, in the multiple relaxation time, we define 

multiple relaxation parameter inside 𝑆 matrix; 𝑀 matrix and its inverse [63].  

The equilibrium distribution functions can be shown as 𝑓𝑖
𝑒𝑞

 and 𝑔𝑖
𝑒𝑞

. The relations 

between 𝑓𝑖  and 𝑔𝑖  is provided with 𝑓𝑖
𝑒𝑞

  and 𝑔𝑖
𝑒𝑞

. We choose the equilibrium 

functions and gradients in a way to reduce spurious velocities around the interfaces 

[58]. 

The relaxation parameters seen in equation (3.1c) and in matrix 𝑆 (equation 3.1b) are 

𝜏𝜌 and 𝜏∅. While the 𝜏∅ is fixed and unity, 𝜏𝜌 varies from one lattice node to another 

by 

𝜏𝜌 = 𝜏𝛽 +
∅ + 1

2
(𝜏𝛼 − 𝜏𝛽), (3.3) 

where 𝜏𝛼 and 𝜏𝛽  are the relaxation parameters that describe the fluids' viscosities. 

These relaxation parameters are related to the kinematic viscosity and mobility as 

𝜈 = ∆𝑡
𝑐2

3
(𝜏𝜌 −

1

2
), (3.4a) 

𝑀 = ∆𝑡𝛤(𝜏∅ −
1

2
), (3.4b) 

where 𝛤 is a parameter that we set in the equilibrium to change mobility [58]. 
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3.1.3 Push-Pull Penetrations 

The terms "push" and "pull" in the LBM relate to two various methods of updating 

the distribution function, which expresses the probability density of particles filling 

various states on a lattice. 

 

                                               

                                               

 

Figure 3.3: (a) Push propagation, (b) Pull propogation 

By streaming the particles from their existing lattice sites to new sites in accordance 

with a set of discrete velocities, the "push" approach modifies the distribution 

function shown in Figure 3.3(a). Following the streaming process, the particles 

interact in collisions with one another and with any outside forces. The distribution 

function is updated during the collision step, and it is checked to see if the local 

equilibrium requirement is met. 

A different approach to update the distribution function that is created to increase the 

stability of the LBM is the "pull" method as illustrated in Figure 3.3(b). The 

distribution function is changed twice in the pull technique. The particles are pushed 

to new locations in the first stage, but their velocities are not changed. To make sure 

that the distribution function meets the local equilibrium requirement, the velocities 

are updated in the second step. 

  
Streaming 

Streaming 

(a) 

(b) 



17 

 

Generally, the pull method is more difficult and memory-intensive than the push 

method, but it has the potential to be more stable, particularly when the Reynolds 

number is large. 

 

3.1.4 Boundary Conditions 

The boundary conditions are a key factor in determining how the system behaves at 

the domain's boundaries in the LBM. The no-slip boundary condition, which 

specifies that the fluid velocity is equal to zero at the solid walls of the domain, is the 

boundary condition that is most frequently utilized in LBM. 

 

The midway bounce-back technique is one approach for LBM implementation of no-

slip boundary requirements. This method effectively cancels out the effects of the 

particles that have opposing directions at the boundary by having particles that arrive 

at a boundary node during the streaming step to be reflected back to their original 

positions with the opposite velocities. 

 

Both the "push" and "pull" variations of LBM can be solved using the halfway 

bounce-back technique. In the push technique, for instance, a particle is reflected 

back when it encounters a boundary node during the streaming stage, and the related 

distribution function is changed with a negative weight. The second step of the pull 

technique has no effect on the particles that are reflected at the boundaries, and the 

velocities of the reflected particles are not updated in the pull method. 

It's important to note that this method requires the solid wall to be represented as a 

separate lattice, is inapplicable to curved or irregular boundaries, and may introduce 

errors at the boundary layer. Depending on the issue or level of accuracy desired, 

other more advanced boundary conditions methods like "Zou He" [66] etc. are also 

available. 
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Figure 3.4: Illustration of implementing the boundary condition 

In this thesis, halfway bounce-back method [67] (𝑓𝑖(𝑥𝑁, 𝑡 + ∆𝑡) = 𝑓𝑜𝑝𝑝(𝑖)
∗ (𝑥𝑁, 𝑡)) is 

used to apply no-slip boundary condition on the walls as seen in Figure 3.4. 
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Chapter 4 

Interfaces with Chemically 

Homogeneous Surfaces: Validation 

We devote this section to interfaces meeting chemically homogeneous surfaces for 

validation purposes. The capability of our solver for an interface to attain the correct 

equilibrium angle (static and dynamic angle) is crucial for the moving interfaces. 

We, first, validate our solver for static wetting problems on chemically homogeneous 

substrates for different surface energies. We measure the contact angles of certain 

droplet-substrate combinations to compare with the Young value. Second, we 

analyse the motion of interfaces within a capillary. 

4.1 Static Validation 

When a droplet meets a clean surface and remains in hydrostatic equilibrium, the 

contact angle it makes with the surface is given by the Young [68] value as 

cos𝜃𝑒𝑞 =
𝛾𝑠𝑣 − 𝛾𝑠𝑙

𝛾𝑙𝑣
, (4.1) 

where  𝛾𝑠𝑣, 𝛾𝑠𝑙 and 𝛾𝑙𝑣 are the surface tensions between solid-vapor, solid-liquid and 

liquid-vapor interfaces, respectively. 

For a given liquid with fixed 𝛾𝑙𝑣, we vary the surface energy by tuning the normal 

gradient of ∅ at the boundary and setting the equilibrium contact angle given by 

equation (4.2) 
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√
2𝜅

𝑎
𝜕⊥∅|𝑤 = 2sgn (𝜃𝑒𝑞 −

𝜋

2
) × [cos (

Θ

3
) (1 − cos (

Θ

3
))]

1
2

 , (4.2) 

where Θ = arccos((sin 𝜃𝑒𝑞)2) [62]. 

 

Figure 4.1: (a) The variation of equilibrium contact angle with gradient of ∅ at the 

wall 𝜕⊥∅|𝑤, for the same and different viscosities, respectively. Circles and triangles 

are simulation results obtained using MRT lattice Boltzmann. We show the 

theoretical expression given in equation (4.2) with a solid line. (b), (c) and (d) shows 

the equilibrium shapes of the droplets with 60°, 90° and 120° respectively. 

We place a droplet on a flat, atomically smooth, and chemically uniform substrate. 

The droplets are not exposed to any external forces, and the surface tension is 

assumed to be uniform. We allow the droplets to converge to their equilibrium shape 

after initializing them as semicircles. The contact angle is time dependent and 

variation of it is given in Figure 4.2(a). In Figure 4.1(a), we compare the computed 

equilibrium contact angles with equation (4.2) and show the interface profiles for 

both partial wetting and non-wetting cases through in Figure 4.1(b)-(d). For the 

60° equilibrium angle droplet spreading illustration by time are also given in 4.2 as 

in one panel (b).  We perform the contact angle measurement by fitting a circle to the 

interface which is defined at the transition of ∅ from −1 to 1.  The theory and 

computation match for the range of contact angles studied using MRT lattice 

Boltzmann method for both equal and different viscosity fluids. Using BGK instead 
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of MRT ends up with a deviation from the theory for different viscosities. A similar 

observation can be seen in Pooley et al. [63]. 

 

Figure 4.2: There are 3 cases as seen in Figure 4.1 (b),(c) and (d). In panel (a), the 

contact angle variations with respect to time are given. In panel (b), the evolution of 

the interface starting from a semi-circle to the one satisfying an equilibrium angle of  

60° is given.  

We also measure the pressure difference across the interface at equilibrium and 

validate 𝑝𝑑 − 𝑝𝑜~𝛾/𝑟 where 𝑝𝑑  is the pressure inside the droplet, 𝑝𝑜 is the outside 

pressure, 𝛾 is the surface tension between droplet and outside fluid and 𝑟−1 is the 

radius of curvature of the droplet interface.  

 

4.2 Dynamic Validation 

Capillary filling is one of the examples of moving contact line problems due to 

pressure difference across the moving interface. Because the motion does not require 

an external driving mechanism, it is one of the promising methods used in 

microfluidics. Washburn [69] defines the filling of a smooth capillary with constant 

surface energy. By neglecting the inertial effects, end effects and viscous effects due 

to displaced fluid (e.g., gas) by the filling liquid, the motion of the penetrating 

incompressible liquid is defined by Poiseuille flow. The position of the interface as 

function of time can be shown to obey the following power law relation 

𝑧(𝑡)2 − 𝑧0
2 = 𝑙(𝑡)2 = (

𝛾𝑙𝑣ℎcos𝜃(𝑡)

3𝜂
) 𝑡, (4.3) 
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with 𝑧(𝑡 = 0) = 𝑧0 and 𝑙 being the filling length. The dynamic viscosity of the liquid 

is 𝜂, the channel gap thickness is ℎ and 𝜃 is the contact angle the liquid makes with 

the channel walls. 

When the viscosity of the displaced fluid is comparable to the liquid viscosity filling 

the capillary, we use the modified version of Washburn's equation. In equation (4.4), 

both viscosities affect the filling (in equation (4.3), the small one is neglected): 

𝜂𝛼

𝑙(𝑡)2

2
+ 𝜂𝛽 (𝐿𝑙(𝑡) −

𝑙(𝑡)2

2
) = (

𝛾𝑙𝑣ℎcos𝜃(𝑡)

6
)(𝑡 + 𝑡0). (4.4) 

For fluids having the same viscosity, equation (4.4) reduces to equation (4.5): 

𝑙(𝑡) = (
𝛾𝑙𝑣ℎcos𝜃(𝑡)

6𝜂𝛼𝐿
)(𝑡 + 𝑡0). 

(4.5) 

  

In equations (4.4) and (4.5), 𝑡0 is the integration constant which can be adjusted 

depending on the initial position of the interface. It is zero if 𝑙(0)=0. While equation 

(4.5) scales linearly with time, equation (4.3) scales as ½ power of time as seen in 

Figure 4.4. 

 

Figure 4.3: Capillary filling problem setup. The wall length is 𝐿, the meadow green 

fluid is liquid and the other one is gas. Filling length (𝑙) is the distance that liquid 

penetrates into the capillary tube. For the rest of the thesis, the contact angle on 

black-colored regions on capillary walls is equal to 𝜃𝑒𝑞 = 60°. 

In Figure 4.3, we show the problem setup. The channel walls of length 𝐿 are shown 

in black. The periodic inlet and outlet boundaries ensure mass conservation while the 

top and bottom periodic sides provide us with a flat interface mimicking infinite 

reservoirs at both ends. All dimensions are given in lattice units. We use 𝑛𝑥 = 700 

and 𝑛𝑦 = 42 lattices along 𝑥 and 𝑦-directions, respectively; and place the capillary 

walls in the middle of the domain at the top and bottom. We set 𝜅 = 0.04, 𝑎 = 0.04 
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and 𝑀 = 1 in the MRT lattice Boltzmann implementation. Varying 𝑀 affects the 

interface velocity [58]. For different viscosity cases we set the kinematic viscosities 

to 𝜈𝑙 = 0.83 and 𝜈𝑔 = 0.067 (this corresponds to 𝜏𝛼 = 3, 𝜏𝛽 = 0.7 as in [58]). The 

details of the choice of equilibrium distributions etc. are given in Appendix A. 

 

Figure 4.4: The simulation result of filling length as function of time, comparison 

with Washburn's equation for same (a) and different (b) viscosities. Magenta color is 

used for 𝜃𝑒𝑞 = 75°, blues for 𝜃𝑒𝑞 = 60°, reds for 𝜃𝑒𝑞 = 45°  and blacks for 𝜃𝑒𝑞 =

30°. The symbols are our computations, the solid lines in (a) modified theoretical 

values for the same viscosity fluids flows (equation 4.5) and in (b) are theoretical 

values for different viscosity fluids flows (equation 4.3) which are calculated with 

dynamic angles. The dashed lines in (a) are corrected values for the same viscosity 

cases. 

The differences are, where we observe deviations from initial conditions, Poiseuille 

flow profile and inertial effects. In Figure 4.4(a), solid lines come from modified 

Washburn's equation [55] and dashed lines are theoretical values with a refinement 

of 𝑙𝑒𝑓𝑓 = 𝑙 +
ℎ

2
. So, we add imaginary walls with a length of  

ℎ

2
 at both ends of the 

capillary tube to get rid of inlet/outlet effects. A similar approach can be seen in 

Pooley et al. [58]. The filling length data form straight lines because the viscous 

dissipation occurs in capillary at the same rate. So we observe, it is independent of 

the interface position. As shown in Figure 4.4(b), after the interface passes the 

beginning of the capillary, the results agree with Washburn's equation. For the filling 

distances at a certain time, as we expect, the interface moves faster for lower wetting 

angles. 
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Because the capillary driven flow is a contact line motion problem, we also validate 

if the dynamic contact angles satisfy the Cox-Voinov [70,71] relation which states 

there is a linear relationship between the cube of dynamic contact angle and the 

Capillary number. 

 

Figure 4.5: Variation of contact angle with 𝐶𝑎, (a) 𝜃𝑒𝑞 = 75°, (b) 𝜃𝑒𝑞 = 60°, (c) 

𝜃𝑒𝑞 = 45°, (d) 𝜃𝑒𝑞 = 30°, arrows show the filling direction.  

We show in Figure 4.5 this linear variation of 𝐶𝑎 with the cube of the dynamic 

contact angle for four different surface energies. Considering each individual case, as 

the viscosities of the filling and displaced liquids are different, the contact angle of 

the filling liquid decreases with time and as a result the speed of the filling slows 

down [72]. But if we compare all cases for different contact angles, speed of the 

capillary increases with increasing wettability (with lower 𝜃𝑒𝑞) as shown in Figure 

4.4. 
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Figure 4.6: Filling length variation with 𝐶𝑎, (a) 𝜃𝑒𝑞 = 75°, (b) 𝜃𝑒𝑞 = 60°, (c) 𝜃𝑒𝑞 =

45°, (d) 𝜃𝑒𝑞 = 30°. 

For comparison, see the mean velocities (with using 𝐶𝑎 values above) for different 

wettabilities with constant viscosity and surface tension in Figure 4.6. 

Apart from these validations, we compare the velocity of the interface with the one 

given in Figure 4.6 of Pooley and Yeomans [58] and it matches well. 

To this end, we validate our solver for both static and dynamic problems.  
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Chapter 5 

Effect of Chemical Heterogeneity 

The roughness and chemical heterogeneity are common features of surfaces except 

the ones manufactured in a laboratory as atomically smooth and chemically 

homogeneous. Inspired by nature, these features are mimicked to control the motion 

of interfaces. Among the various micro-fluidic devices, capillary driven flows are 

popular as there is no need for an external driving mechanism. We study the motion 

of interfaces in a channel which is driven by capillarity. To slow down or stagnate 

the interface motion within some regions, we investigate the effects of varying 

wettability. This can be achieved using electrowetting [73-75] or the channels can be 

manufactured with chemically and/or physically heterogeneous patterns to pin/depin 

the interface as a passive control method. We mimic such a surface by chemical 

heterogeneities on the channel walls. 

By chemical heterogeneity we mean the energy of the surface is not uniform, it is 

altered by modifying the surface chemistry rather than the topology. We achieve this 

numerically by adjusting the normal gradient of 𝜙 within the region of interest to 

achieve the desired 𝜃𝑒𝑞. 

Using the channel geometry given in Figure 4.2; we, first, observe the deviation of 

the interface speed from Washburn's law when there is a chemical defect on the 

channel walls. To this end, we consider two cases: one with more (𝜃𝑒𝑞 = 30°) and 

one with less hydrophilic (𝜃𝑒𝑞 = 75°) region on the top wall than the rest of the 

channel walls which is set to 𝜃𝑒𝑞 = 60°. We show this deviation for single defect in 

Figure 5.1(a) by plotting the time variation of the filling length. We set the length of 

the defect region to 20 lattices and the deviation from the Washburn's law for 𝜃𝑒𝑞 =

60° everywhere is obvious. The contact line accelerates as it approaches a more 

hydrophilic area, increasing the filling speed as the slope rises until it passes the area 

and reaches the regular slope (see squares). The opposite is true for defects that are 

less hydrophilic. During this region, the contact line motion slows and returns to its 
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initial speed after (see triangles). We demonstrate the deviation for single patterns on 

top and bottom walls in overlapping and staggered configurations in panel (b) of the 

same figure. 

 

Figure 5.1: The deviation of filling length from Washburn law for 𝜃𝑒𝑞 = 60°, with 

(a) single defect on the capillary (squares for 𝜃𝑒𝑞 = 30°and triangles for 𝜃𝑒𝑞 = 75°), 

(b) multi-defects on the capillary (black squares for overlapped 𝜃𝑒𝑞 = 30° regions, 

black triangles for overlapped 𝜃𝑒𝑞 = 75° regions, red squares for staggered 𝜃𝑒𝑞 =

30° regions and red triangles for staggered 𝜃𝑒𝑞 = 75° regions), to speeds up or down 

of the interface. 

If the patterns are arranged in an overlapped form, the interface motion will slow 

down more effectively since the contact lines at the top and bottom walls do the 

same. But, with the staggered configuration, the slowing is constrained since one of 

the contact lines moves more quickly while the other moves more slowly. We show 

this in Figure 5.2 by comparing the two configurations. This observation suggest that 

overlapped heterogeneities prevail over staggered ones to stop the motion of the 

interfaces. 
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Figure 5.2: Comparison of the effect of wall pattern on the interface motion, the left 

panel is for the overlapped configuartion while the right panel is for the staggered 

configuration, (a) t =50000, (b) t =150000, (c) t=400000. 

With this motivation, we search for the equilibrium states of the interface; namely, 

the conditions which flatten the interface resulting in no pressure difference across 

the interface to derive the motion so that interface stops. In plane, the existence of 

interface curvature drives the motion. Such a flat interface is possible, for example, if 

both top and bottom contact angles attain 90°. In the Figure 5.3, we observe a 

vertical flat interface satisfying our claim. For the top and bottom defects, we set the 

surface energies for the liquid to have contact angles of 90° while the rest of the 

channel walls remain at 60°. 

Normal stress balance at a local point at the interface with uniform surface tension 𝛾 

requires 

𝑝𝑙 − 𝑝𝑔 = 𝛾∇ ∙ 𝒏~
𝛾

𝑟
, (5.1) 

where 𝒏 is the outward unit normal pointing from the liquid into the gas and 𝑟 is the 

radius of the curvature of the interface approximated by a circular arc. For the flat 

case, 𝑟 goes to infinity and the pressure difference across the interface vanishes. This 

mechanism stops the interface. 
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Figure 5.3: Interface of the capillary at 90 degree regions. 

But if the regions are staggered not overlapped, then the filling of the capillary may 

not stop as seen in Figure 5.4. Panels (b) to (e) display the corresponding interface 

profiles, while panel (a) displays the interface position's deviation from a uniform 

surface energy surface. The flow slows down but does not stop because 𝜃𝑒𝑞
𝑏𝑜𝑡 +

𝜃𝑒𝑞
𝑡𝑜𝑝

 < 180°, it continues to move and only the interface can be flat at the 

intersection of the regions for a small time interval. Therefore, at that point, the 

conditions are changed to 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 < 180° and the interface again starts to 

move. Further with time, again the interface becomes symmetric with respect to 

middle of the domain. 

 

Figure 5.4: History of interface movement for staggered configuration with 𝜃𝑒𝑞 =

90° deffects. The solid line in (a) shows the computed interface position for uniform 

𝜃𝑒𝑞 = 60°, dashed line is for staggered configuration. The interface shapes at several 

instants encircled in (a) are shown in panels (b) to (e). 

In the Figure 5.5, we see the stopping condition is provided only if 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥

180°. This means that the flat interface does not have to be vertical. As long as, at 

any point in time, the contact angles at the top and bottom walls sum up to 𝜋, the 

interface could be stopped even for a staggered configurations with hydrophobic 

regions. 

The use of more hydrophobic regions for overlapped configurations does not affect 

the stopping mechanism, namely a vertical interface form. But for the staggered 
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configuration, more hydrophobic regions stop the interface at an inclined position as 

seen in Figure 5.5. 

 

Figure 5.5: Various stopping cases, (a) case 1: Interface of the capillary at 120 

degree regions with staggered configuration, (b) case 2, (c) case 3, (d) case 5, (e) 

case 6; see Table 5.1 for details. 

Table 5.1: Stopping conditions using the same setup as in Figure 5.5 for different 

wettability at defect regions. Except case 7 (𝜃𝑒𝑞 = 30°), all cases have 𝜃𝑒𝑞 = 60° out 

of the defects. 

Parameters 

and 
Conditions \ 

Case 
Numbers 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

𝜽𝒆𝒒
𝒃𝒐𝒕 & 𝜽𝒆𝒒

𝒕𝒐𝒑
 120&120 100&100 150&150 90&90 100&90 90&120 90&120 

Vertically,  

𝜽𝒆𝒒
𝒃𝒐𝒕 + 𝜽𝒆𝒒

𝒕𝒐𝒑
 

≥ 𝟏𝟖𝟎° 

Yes No Yes No No 
2𝑛𝑑 

region 
No 

Reaches 𝟐𝒏𝒅 

region? 
No Yes No Yes Yes Yes Yes 

Bottom-side 

contact 
angle (~%1) 

112 100 113 - 100 60 - 

Top-side 
contact 

angle (~%1) 
68 80 67 - 80 120 - 

Pinning at 
𝟏𝒔𝒕 or 𝟐𝒏𝒅 

region? 
First Second First - Second Second - 

Stopping 

angle side 
Top-side 

Bottom-

side 
Top-side - 

Bottom-

side 

Bottom-

side 
- 
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As we see in the Table 5.1, stopping conditions vary with the wettability of 

overlapped walls. We define a simple relation between the cases as; 

i. If 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 180°, the interface stops and the contact line attains the 𝜃𝑒𝑞 

on the hydrophobic side. 

ii. Else, 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 < 180°, the interface moves but the contact line speed is 

decreased. When the contact points are on walls that provide 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥

180°, the interface starts to slow down. It tries to attain 𝜃𝑒𝑞 for the side that 

has already depinned. 

We believe that our simulation would motivate further numerical and experimental 

stuidies for a possible setup for passively driven capillary flows to control the 

interface motion. 
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Chapter 6 

Motion of Droplets on Wettability 

Gradient Surfaces 

We consider small droplets for which the gravitational forces are negligible and 

study, in this section, their motion driven by surface energy gradients. To be able to 

explain the source of this driving mechanism, we, first, define the equilibrium 

contact angles of droplets on surfaces which do not provide motion. The simplest of 

such cases is substrates with uniform surface energy around the contact line in 

equilibrium. This does not require the surface energy be uniform everywhere if there 

is pinning at a physical roughness. For clean surfaces, the angle contact lines of a 

droplet makes with the substrate is defined by the Young value. We, here, define the 

contact angles at the left and right of the center of mass of a droplet as  

cos(𝜃𝑒
𝑙) =

𝛾𝑆𝑉
𝑙 − 𝛾𝑆𝐿

𝑙

𝛾
, cos(𝜃𝑒

𝑟) =
𝛾𝑆𝑉

𝑟 − 𝛾𝑆𝐿
𝑟

𝛾
.  (6.1) 

 

We set the domain length to 𝑛𝑥 = 500 and height to 𝑛𝑦 = 50 as seen in Figure 6.1. 

We initialize the motion by placing the droplet of radius 30 lattice units at 𝑥 = 50 as 

a semi-circle by using a linear wettability gradient reducing from 𝜃𝑒
𝑙𝑒𝑓𝑡

  to 𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

.  

 

      

 

Figure 6.1:  Problem set-up for the droplet motion on wettability gradient surface 

𝑛𝑥 

𝑛𝑦 

𝜗𝑑  𝜗𝑑  

𝜃𝑒
𝑟 𝛾𝑆𝑉

𝑟  𝛾𝑆𝐿
𝑟  

𝛾 
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When the surface energy of the surface the droplet contacts is non-uniform, the 

contact angles at the two triple junctions are different. If there were any equilibrium 

state, the angles would be equilibrium angles that we can call as 𝜃𝑒
𝑙  and 𝜃𝑒

𝑟 (as 

defined in equation (6.1)). The wetting gradient and inequality of the contact angles 

initates the motion of droplet. Due to hysteresis, it is known that the dynamic angle 

would be less than the equilibrium angle if the contact line recedes; it would be more 

if the contact line advances. For a negative wetting gradient surface, the left contact 

line tries to attain larger contact angle compared to the right contact line. When the 

left contact line recedes, because the contact angle is smaller than equilibrium angle, 

the following inequality holds: 

𝛾𝑆𝑉
𝑙 − 𝛾𝑆𝐿

𝑙 > 𝛾 cos(𝜃𝑒
𝑙). (6.2) 

 

When the right contact line advances, on the other hand, as the advancing contact 

angle is larger than the equilibrium contact angle there, the corresponding inequality 

becomes 

𝛾𝑆𝑉
𝑟 − 𝛾𝑆𝐿

𝑟 > 𝛾 cos(𝜃𝑒
𝑟). (6.3) 

 

Summation of the surface tension forces at the two contact lines, then, requires  

𝛾𝑆𝑉
𝑟 − 𝛾𝑆𝐿

𝑟 − (𝛾𝑆𝑉
𝑙 − 𝛾𝑆𝐿

𝑙 ) > 𝛾 (cos(𝜃𝑒
𝑟) − cos(𝜃𝑒

𝑙)) > 0  (6.4) 

 

for 𝜃𝑒
𝑙 > 𝜃𝑒

𝑟, as is the case for negative wetting gradient surface. This generates a net 

force in positive 𝑥-direction which moves the droplet toward right. One could also 

design a surface with positive wetting gradient and this would drive the motion 

toward left. In other words, the difference in the contact angles results with a Laplace 

pressure gradient along the interface, this pressure difference drives the motion. 

 

When the spreading coefficient 𝑆 = 𝛾𝑆𝑉 − 𝛾𝑆𝐿 − 𝛾 < 0, the fluid termed as partial 

wetting and it can also be defined in terms of the Young value as 𝑆 = 𝛾(cos 𝜃𝑒 − 1). 

For slender droplets, the speed of the droplet on small wetting gradients scales as 

𝜗𝑑  ~ 
ℎ0

𝜂

𝑑𝑆

𝑑𝑥
=

ℎ0𝛾

𝜂

𝑑 cos 𝜃𝑒

𝑑𝑥
≈

ℎ0𝛾

𝜂
𝜃𝑒

𝑑𝜃𝑒

𝑑𝑥
 where ℎ0 is the height and 𝜂 is the dynamic 
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viscosity of the droplet, respectively. The driving force explained above is balanced 

by the viscous stress mostly near the moving contact lines and this balance 

determines the moving speed [76]. For a droplet moving with constant speed 𝜗𝑑 , it 

scales linearly with  
𝑑𝜃𝑒

𝑑𝑥
 for fixed ℎ0 corresponding to the equilibrium angle 𝜃𝑒(𝑥0) 

measured at 𝑥0. 

In Figure 6.2, we show how the droplet speed varies with wetting gradient (measured 

in degrees per unit lattice length for different wettability gradient obtained by 

varying the wetting angle at the left of the domain (𝜃𝑒
𝑙𝑒𝑓𝑡

), as 

150°, 135°, 120°, 90°, 60°, and keeping the one at the right of the domain (𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

) 

fixed at 30°). The droplet moves with a constant speed and we observe a linear 

relationship between the two for the wetting angles we study: 30° ≤ 𝜃𝑒 ≤ 150°. We 

should note that, the equilibrium angle approaches 30° toward the end of the domain 

for all the cases and the theoretical prediciton is valid for small angles. 

 

Figure 6.2:  Variation of droplet speed as function of wetting gradient. Hollow 

squares are the terminal speeds for various wetting gradients, dashed line is shown to 

emphasize the linearity; filled square shows the effect of viscosity ratio. 
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One would expect, however, the droplet to slow-down if the viscosity of the outside 

fluid is increased. To show this effect, we study more cases with viscosity ratios of 

λ=0.1 and 1 on fixed wetting gradient surface, namely 120°-30° case. We show this 

variation on the same plot with filled squares in Figure 6.2 with a clear observation 

of slowing down of the droplet if it moves in a viscous fluid.   

 

6.1 Merging of Droplets 

Motivated with the simple idea of the previous subsection, we are able to move 

droplets toward each other and merge. We propose this as a possible use in self-

cleaning or water harvesting applications. For example, one could merge small 

droplets which are able to resist gravity on car shields or windows, merge by the 

wetting gradient. This would increase the effective bond number [77] of the merged 

droplet and for sufficiently large volumes, it would move downwards with the aid of 

gravity. In another example, the merged droplets could be transported directionally 

depending on the gradients of the wetting patterns on the substrate. We also show 

that for the merging, the size of the droplet can be different. To this end, we place 

two droplets on the substrate as shown in Figure 6.3. The gradients are set to be 

symmetric with respect to 𝑥 = 𝑥0 (mid of the domain) with a gradient of 2 ∗ (𝜃𝑒
𝑙 −

𝜃𝑒
𝑟)/𝑛𝑥. We set 𝑛𝑥 and 𝑛𝑦 to 250 and 100, respectively, with droplet radii of 30 in 

lattice units. The history of droplet motion is shown in panels (a) to (d) of Figure 6.3 

for equal size droplets. In panels (e) to (h) of the same figure, we show the merging 

of different size droplets. As can be seen from the velocity vectors (we only show the 

asymmetric case as it is more intriguing), the outside fluid is squeezed by the motion 

of the two droplets and leaves the gap at an oblique path due to asymmetry. After the 

merge, the free surface attains its equilibrium shape; again, at a later time shown in 

panel (i), we observe the deformation of the interface toward a circular arc; the 

velocity is maximum at the location where the interface is away from the 

equilibrium. 

 

To check the influence of viscosity ratio, we change the λ from 0.83/0.067 to 0.1 

and 1. We observe that the droplets slow down due to the increased shear stress on 

the interface. The droplets move in more viscous fluid, but eventually they merge 

and attain the same equilibrium shape as in the different viscosity case. 
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The change in the gradient of the wetting would change the speed, as shown in the 

previous section, and time for the coalescence; however, it would not affect the idea 

of merging droplets at a desired location to increase the effective bond number.  

 

This proposition of such wetting gradients used in the merging of droplets further 

motivates us to stop the motion of a droplet at a desired location. We, finally, 

postulate that the self-motion of a droplet stops at 𝑥0, with the aid of symmetrically 

structured gradient walls with respect to the stopping location, 𝑥0. 
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Figure 6.3: The evolution of the merging droplets on wettability gradient surface. (a)-

(d) t=5000, 15000, 20000, 50000; (e-h) t=5000, 15000, 30000, 50000; (i) velocity 

vectors before the different size droplets merge corresponding to (g). 
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Chapter 7 

Confinement Effect  

When the droplet is confined from top with a wall as well as bottom, it wets both of 

the surfaces. For uniform surface energy surfaces, the droplets attain an equilibrium 

shape which can be called as a fluid column. Because the contact angles of the 

interfaces are the same at all triple junctions, the shape of the interface becomes a 

circular arc meeting the walls at the wetting angle. The shape for any contact angle is 

determined by the geometry. Because the curvature of radius of the interfaces are the 

same, the pressure jump across the interfaces are the same and there is no pressure 

difference to drive the column in the confinement. However, generating a wettability 

gradient surface can trigger the motion.  
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Figure 7.1: The interface profiles for a droplet confined between walls. (a) 

Equilibrium shape for 𝜃𝑒 = 30°, (b) Equilibrium shape for 𝜃𝑒 = 120°; the motion of 

liquid column with surface energy gradient (c) t=50000, (d) t=100000, (e) t=150000. 

 

To show this, we first give an equilibrium shape of columns for several surface 

energies and show the motion if the surfaces designed with surface energy gradient. 

The same affect is also possible for a wedge shape confinement, but this is a 

geometric modification for the motion as seen in the self-motion of droplets on 

conical surfaces and inside wedges (like the self-movement of droplets on cactus 

spines or liquid columns inside the duck weak). 

 

In Figure 7.1, the two equilibrium shapes obtained for 𝜃𝑒 = 30° and 𝜃𝑒 = 120° in 

panels (a) and (b), wetting and non-wetting columns, respectively. Becuase the 

surface energies are uniform along the walls; the fluid column cannot move without 

an external force. The wetting gradient is obtained by setting 𝑑𝜃𝑒/dx to (𝜃𝑒
𝑙 −

𝜃𝑒
𝑟)/𝑛𝑥 with 𝜃𝑒

𝑙 = 120°, 𝜃𝑒
𝑟 = 30 and 𝑛𝑥 = 250. This gradient is double of the one 
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shown in Figure 4.1(a) for 120-30 case and half of the one shown in Figure 6.3. As 

the viscosity ratio and surface tension between liquid and outside fluid is the same, 

one would than expect the speed of the column to be twice of the droplet without 

confinement. The existence of two liquid-solid interfaces doubles the driving force 

due to hysteresis; however, the viscous losses double as well. Henceforth, the same 

argument used in Chapter 6 applies.  But this time, the pressure difference is not 

along a single interface: the radius of curvature of the leading interface (though 

uniform along it) is different than the radius of curvature of the trailing interface 

(again uniform), this difference generates the Laplace pressure difference from 

trailing interface to leading interface and this drives the liquid column. The driving 

mechanisms of single droplet moving on wettability gradient and the one confined 

look similar but they are different in terms of Laplace pressure. 
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Chapter 8 

Conclusion 

In this thesis, we study the interface motion in capillary channels driven by capillary 

pressure only and self-driven droplets. Apart from the importance of such motions in 

microfluidic devices as it does not require an external device to drive the motion, it 

provides us a flow domain to understand and control the interface motion. For this 

purpose, we modify the surface energy of the channel walls and investigate the 

passive control mechanism of interfaces instead of active methods. 

The problem is investigated by modeling the motion of two-phase flows of 

Newtonian fluids and integration of the governing equations using MRT lattice 

Boltzmann Method. This method has many advantages for wetting applications 

against traditional solvers such as Finite Element Method (FEM) according to 

computing cost, applicability, mobility between cases etc. We first validate our 

solver for static and dynamic problems and discuss the effects of surface energy on 

the motion of interfaces. 

We discuss five main problems: (i) Accelerating or decelerating the interfaces, (ii) 

interface stopping conditions, (iii) self-motion of single droplets on surfaces (iv) 

merging of droplets of same and different size droplets (v) self-driven motion of 

liquid columns within a confinement. According to cases of interface motion driven 

by capillarity, we can change the contact line speed and stop the interface as needed 

by playing with the energy of the surfaces. For changing the contact line speed, we 

add chemical defects on the walls which have different wettability properties. As we 

expect, according to wettabilities of defects, deviation from the Washburn is 

observed in Figure 5.1 and for stopping conditions, we show that the defects should 

provide 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 180° with contact points of interface. The configurations of 

the defects can change the stopped position of the interface.  We explain the 



42 

 

mechanism of the self-motion and show both the effects of gradient and viscosity 

ratios as well as suggesting several control mechanisms to be used for several 

applications by directing the motion or stopping the motion of droplets at desired 

locations or merging them. We also discuss how to self-propel liquid columns 

confined by walls in a wettability gradient channel otherwise, in uniform surface 

energy channels, it would stop.  

 

Considering all the problems discussed, we contribute to the understanding and 

passive control of the interface motion driven by capillarity for further numerical and 

experimental studies. 
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Appendix A 

The Choice of Equilibrium Distribution  

Based on minimizing the magnitude of spurious velocities close to interfaces, we 

present the optimal equilibrium distributions and stencils for computing spatial 

derivatives for the lattice Boltzmann algorithm [63] as 

𝑓𝑖
𝑒𝑞(𝒓) =

𝑤𝑖

𝑐2
(𝑝0 − 𝜅∅∇2∅ + 𝑒𝑖𝛼𝜌𝑢𝛼 +

3

2𝑐2
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𝑐2

3
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+
𝜅
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𝜕𝑦∅𝜕𝑦∅ + 𝑤𝑖
𝑥𝑦

𝜕𝑥∅𝜕𝑦∅),  
(A.1) 
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(A.2) 

  

for 𝑖 = 1, … , 8,where 𝑤1−4 =
1

3
, 𝑤5−8 =

1

12
 and twice appearing indices mean 

summation over those indices. Other parameters are 𝑤1−2
𝑥𝑥 = 𝑤3−4
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=

1

3
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6
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4
. 

When 𝑖 = 0, stationary values are selected to maintain the concentration of each 

species, 

𝑓
0
𝑒𝑞(𝒓) = 𝜌 − ∑ 𝑓

𝑖
𝑒𝑞(𝒓)

8
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,           𝑔
0

𝑒𝑞(𝒓) = ∅ − ∑ 𝑔
𝑖

𝑒𝑞(𝒓).

8
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(A.3) 

Derivatives and the Laplacian terms are calculated with using stencils,  

𝜕̅𝑥 =
1

12∆𝑥
[
−1 0 1

−4 0 4

−1 0 1

] ,      ∇̅
2

=
1

6(∆𝑥)2 [
1 4 1

4 −20 4

1 4 1

]. 
(A.4) 

 

 


