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Control of Robotic Systems Used for Support in 

Cochlear Microrobot Operations  

Abstract 

The rapid development of robot technology has started to be emphasized medical 

robotics increasingly. The potential of robotic systems to facilitate the work of 

healthcare workers, minimize human errors, restore function to lost limbs, and enable 

operations that cannot be performed due to distance or other factors have made this 

field increasingly popular. 

Surgical robotics applications are the trend subfield of medical robotics. In these 

applications, it is aimed to reach the desired task with certain precision and accuracy. 

Therefore, performance of the control system is very crucial for the efficiency of 

robotic systems used in medical applications. Within the scope of this study, control 

of robotic systems used as supportive systems in surgical cochlear microrobot 

operations is studied.  

This study is carried out on two different robotic systems serving identical purpose, 

one of which contains dual serial robot manipulators that must work in coordination 

and the other one contains a parallel robot manipulator, which are planned to be used 

as supportive systems in surgical cochlear microrobot operations. Two robust 

adaptive nonlinear controllers are designed for each of these robotic systems. One of 

the mentioned control designs is realized in the joint space, while the other one is 

designed in task space. Lyapunov based arguments are utilized for the theoretical 

analysis of designed controllers. For the performance demonstration of the designed 
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controllers simulation and experimental studies are utilized. Dynamic models of 

robotic systems, whose prototypes produced within the scope of the project in which 

this study is included, are needed for the simulation studies. To meet this necessity, 

dynamic modeling of mentioned robotic systems is realized via Newton-Euler and 

the Lagrangian formulations as a part of this study. After demonstrating the 

performance of the designed controllers in the simulation environment by using these 

dynamic models, experimental verification is realized by applying the designed 

controllers to prototypes of robotic systems. 

Keywords: Robotic systems, cochlear microrobot operations, nonlinear control, joint 

space control, task space control, robust adaptive control. 
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Koklear Mikrorobot Operasyonlarında Destek için 

Kullanılan Robotik Sistemlerin Kontrolü  

 

Öz 

Robot teknolojisinin hızlı gelişimi ile birlikte medikal robotiğe ağırlık verilmeye 

başlanmıştır. Robotik sistemlerin sağlık çalışanlarının işini kolaylaştırma, insan 

hatalarını en aza indirme, işlevini yitirmiş uzuvlara işlev kazandırma, mesafe ya da 

başka etmenlerden dolayı gerçekleştirilemeyecek operasyonları mümkün kılma gibi 

potansiyelleri bu alanın popülaritesini arttırmıştır. 

Cerrahi robotik uygulamaları medikal robotiğin popüler alt alanıdır. Bu 

uygulamalarda istenilen göreve belirli bir hassasiyet içerisinde ulaşılması hedeflenir. 

Bu nedenle, medikal uygulamalarda kullanılan robotik sistemlerin verimliliği için 

denetim sisteminin başarımı oldukça önemlidir. Bu çalışma kapsamında, cerrahi 

koklear mikrorobot operasyonlarında destekleyici olarak kullanılan robotik 

sistemlerin denetimi ile ilgilenilmiştir. 

Bu çalışma cerrahi koklear mikrorobot operasyonlarında yardımcı sistem olarak 

kullanılması planlanan, biri koordine çalışması gereken iki adet seri robot 

manipülatör diğeri ise paralel bir robot manipülatör içeren aynı amaca hizmet eden 

iki farklı robotik sistem üzerinden yürütülmektedir. Söz konusu robotik sistemlerin 

her biri için iki dayanıklı uyarlamalı doğrusal olmayan denetleyici tasarlanmıştır. 

Bahsedilen denetim tasarımlarından biri eklem uzayında gerçekleştirilirken diğeri 
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görev uzayı için tasarlanmıştır. Tasarlanan denetleyicilerin başarım gösterimleri için 

benzetim ve deney çalışmalarından faydalanılmıştır. Benzetim çalışmaları için, 

prototipleri bu çalışmanın dahil olduğu proje kapsamında üretilen robotik 

sistemlerin, dinamik modellerine ihtiyaç duyulmuştur. Bu gerekliliği karşılamak için, 

bahsedilen robotik sistemlerin dinamik modellemesi, Newton-Euler ve Lagrangian 

formülasyonları aracılığıyla, çalışmanın bir parçası olarak gerçekleştirilmiştir. 

Tasarlanan denetleyicilerin başarımları bu dinamik modeler kullanılarak benzetim 

ortamında gösterildikten sonra, deneysel doğrulama tasarlanan denetleyiciler robotik 

sistemlerin prototiplerine uygulanalarak gerçekleştirilmiştir.    

 

Anahtar Kelimeler: Robotik sistemler, koklear mikrorobot operasyonları, doğrusal 

olmayan kontrol, eklem uzayı kontrolü, görev uzayı kontrolü, dayanıklı uyarlamalı 

kontrol  
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Chapter 1 

Introduction 

Technological developments deeply affect every aspects of life. Robotic systems 

have been commonly used in many areas with the rapidly developing technology. 

Medical robotics is one of the most popular among these areas. Robotic systems find 

a wide area of use in the subfields of medical robotics such as physical therapy, 

rehabilitation and surgical robotics. Considering that, it facilitates the work of 

healthcare professionals, minimizes human error, restores basic function to disabled 

limbs, and can perform operations that cannot be performed due to distance or 

various reasons, robotic systems that can be used effıciently in medical applications 

are very important. In addition to these, the desired task can be achieved with certain 

precision and accuracy with the help of robotic systems. However, supporting the 

robotic system with a suitable control design is an absolute necessity for an efficient 

and precise implementation of the mentioned applications. As a result of these, 

control design for the robotic systems used as supporting systems in medical 

operations has become an attractive topic in the research area of control.  

In [1], a robust controller design was proposed for a robotic tendon actuator 

developed to use in their implementation to human gait assistance. In [2] a control 

system design for a robotic assisted surgical operation with haptic feedback was 

presented. Li et al. proposed a nonlinear disturbance observer based control design 

that uses a fuzzy logic approach to perform power increasing tasks of a robotic 

exoskeleton [3]. C. H. Guzman et al. designed a robust generalized proportional 

integration controller for a robotic system used for hip joint rehabilitation to reduce 

the physical workload of physiotherapists [4]. In [5], an adaptive controller was 

proposed to compensate friction for trajectory tracking control of industrial medical 

robots. In [6], an adaptive fuzzy propotional-integral-derivative (PID) force control 
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for robot-assisted ultrasound, which is used to improve guidance performance for 

anatomical or pathological structures of the lung under free breathing, was presented. 

H. Kolbari et al. introduced an adaptive controller design for a robot-assisted remote 

surgical intervention [7]. Cortesão et al. developed a task space controller for a 

robotic-assisted minimally invasive surgical operations with haptic feedback [8]. In 

[9], a durable 𝐻∞ loop shaping controller was proposed to improve the performance 

of the robotic system used to improve the oscillation structure of the human lower 

limb system. In [10], to control a flexible medical robot arms that plays an important 

role in protecting health workers from disease during the Covid-19 pandemic, three 

control methods were proposed to investigate the robust control method for 

controlling the position of a manipulator. These methods are linear quadratic 

regulator (LQR), pole placement and PID control.  

Wang et al. presented an external load control of a continuum robotic system used in 

surgical operations [11]. In the mentioned study, the load control was performed via 

a hybrid adaptive controller design. Hyun et al. presented that assistive robotic 

manipulation assistance algorithm has potential to enable users who are currently 

unable to use an assistive robotic manipulator, which is kinova assistive robotic arm, 

to use it by using a low cost 3-dimensional depth sensing camera and an improving 

inverse kinematic algorithm and providing an autonomous or semi-autonomous 

robotic manipulation assistance [12]. In [13], a motion control algorithm for a 

parallel robot in the field of laparoscopic surgery and micro surgery operations was 

proposed. In [14], a control method was proposed to compensate nonlinearities by 

implementing a position inverse kinematic model in flexible bending instruments 

used in medical endoscopic systems. 

Ozkul et al. developed an exoskeleton-type robot-assisted rehabilitation system for 

rehabilitation purposes [15]. In the mentioned study an admittance control with inner 

robust position control loop was proposed to reach the main purpose of the study. A 

robust controller design was proposed for vascular interventional surgical robot 

system developed to the implementation to more accurately, safely and stably [16]. 

In [17], a robust feedback controller design was proposed for electromagnetic 

steering microrobots used in various biomedical applications. In [18], a Lyapunov 

based robust control design for 2 degrees of freedom (DoF) lower limb rehabilitation 
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robot to perform specified passive exercises without the physiotherapist was 

presented. Sajadi et al. designed a Lyapunov based control method to improve the 

accuracy of the monitoring procedure for a surgical manipulator to follow a specific 

reference under the effect of external disturbance [19]. 

In [20], a robust adaptive control design is proposed for a class of 5 DoF upper limb 

exoskeleton robot to deal with the problems caused from robust output feedback 

control design applied on this system. Yang et al. proposed a robust adaptive control 

design that uses a fuzzy optimal gain design approach for the control of a 2 DoF 

lower limb exoskeleton robot [21]. Zhang et al. designed a robust adaptive controller 

for a single link joint driven by pneumatic artificial muscles to deal with its 

parametric uncertainty and unmodeled dynamics [22]. 

In [23], the proportional-integral-derivative (PID) controller’s performance was 

introduced in trajectory control of medical robot that has two-link robotic 

manipulator. Seyfi and Khalaji proposed a robust motion controller with a variable-

structure compensator to track the desired trajectories of upper and lower limbs in a 

cable-driven rehabilitation robot [24]. In [25], force training mode was proposed for 

position/force control of medical robots interacting to control the deformation of 

human soft tissues. In [26], three feedback loop controllers were selected and 

implemented, in which the computed torque control (CTC), the proportional 

derivative (PD) control and the PID were presented. In the mentioned study, 

performance of the CTC technique in terms of trajectory tracking of the surgical 

robot was compared with the each other techniques. A force control design for 

robotic-assisted beating heart surgery was introduced by Moreira et al. in [27]. A 

robust force control for the rehabilitation robot that assists with the straight leg lift 

exercise was proposed by Lee and Oh [28].  In [29], CTC method was introduced for 

the trajectory tracking of a surgical robot that is the ex-vivo laceration. 

From all of the aforementioned studies and other studies in the literature two main 

observations can be made; 

1. Serial and parallel robot manipulators are widely used as supportive systems in 

medical robotic applications. 
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2. Robust control approach is commonly preferred into this field by considering 

its ability to deal with possible parameter uncertainties and external disturbances. 

From these observations it is reached that serial and/or parallel manipulators 

supported with robust control approaches can be considered as feasible supportive 

systems for medical robotic applications. Moreover, when the literature is examined, 

it is seen that this type of control design approaches are frequently preferred for the 

control of many robotic systems in the field of medical robotics. 

In [30], a haptic system improved to use in medical applications was controlled via a 

robust control design. Shang and Cong introduced a new robust nonlinear controller 

to increase the tracking accuracy for a planar 2 DoF parallel manipulator [31]. In the 

mentioned study, the proposed controller was designed by combining a nonlinear PD 

controller with a Lyapunov based robust dynamic compensation approach. Fateh 

proposed the voltage control strategy for robust tracking control of a three-joint 

articulated flexible-joint electrically driven robot [32]. A robust backstepping 

controller was designed to the tracking desired speed trajectory for four-bar linkage 

mechanism [33]. Okur et al. proposed a robust position control of tendon-driven 

robot manipulators with full-state feedback to deal with parametric uncertainty in 

system dynamics [34]. Soltanpour et al. designed a robust controller that is able to 

overcome uncertainties in robot dynamics and kinematics for trajectory tracking of 

robot manipulator in task space [35]. In [36], a Lyapunov based robust controller 

design in task space for dual robot manipulator system used for support in cochlear 

microrobot operations was presented. A robust nonlinear task space control for 

parallel manipulator is proposed by Kim et al. [37]. Jin et al. introduced a robust 

motion control strategy that allows to compansate nonlinear terms in robot dynamics 

including friction for a robot manipulator [38]. In [39], a robust controller was 

introduced for position and orientation tracking control of underactuated quadrotor 

aerial robot. 

In the most of the robust control designs it is assumed that all of the dynamics and 

parameters of the controlled system are completely uncertain. As a result of this 

situation, robust controllers generally have a structure that works according to the 

worst case scenario. It can be seen as the main disadvantage of robust controllers 

since it may cause unnecessarily high control effort. In general, supporting the robust 



5 

 

control designs with adaptive parts that try to compensate the uncertainties in the 

system dynamics are seen as a feasible solution to cope with this issue. 

A Lyapunov based robust adaptive controller design was proposed for the trajectory 

tracking of robotic manipulators with uncertain external disturbances [40]. In [41], a 

robust adaptive control design was proposed for the trajectory tracking of a 6-DoF 

parallel robot. In [42] a robust adaptive control strategy was used for trajectory 

tracking control of an industrial robot. In the mentioned study the control design was 

realized in the task space and the parametric variations and uncertain disturbances 

were coped with owing to the robust structure of the designed controller. Chen et al. 

designed a robust adaptive controlller for the trajectory tracking of a two-link direct-

drive robot manipulator [43]. In [44], different robust adaptive controllers were 

utilized for the trajectory tracking of the direct drive selective compliance assembly 

robot arm. In the mentioned study different type of robust adaptive controllers were 

examined in a comparative manner and it was observed that the proposed adaptive 

controllers have better tracking performance than their robust counterparts. Dou and 

Wang designed a robust adaptive motion controller for synchronization of multiple 

two link robot manipulator [45]. Yin and Pan designed a robust adaptive tracking 

controller for the trajectory tracking of a 6 DoF industrial robot to deal with 

parametric uncertainties, external disturbances and uncertain nonlinearities [46]. In 

[47], a robust adaptive control method was introduced for the control of mechanical 

manipulators. In the mentioned study, adaptive feedback linearization control 

strategy was used in accordance with adaptive sliding mode control to overcome 

unmodeled dynamics and noise. A robust adaptive tracking control was designed for 

robotic manipulators by taking the actuator faults, disturbance, uncertain dynamics 

and joint velocity measurement uncertainty [48]. Ahanda et al. proposed a Lyapunov 

based robust adaptive control of an electrically driven three link flexible joint robot 

manipulator to deal with uncertainty and joint space constraints [49]. 

Cochlear microrobot operations, a sub-field of medical robotics, are operations that 

must be carried out with high precision. One of the most effective ways to ensure 

high precision is to efficiently control the robotic systems used as supportive systems 

in these operations. When the related literature is examined it is decided that 

supporting these systems with robotic systems include serial and parallel 
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manipulators and providing the control of these systems via robust adaptive control 

strategies is seen one of the most feasible ways to reach the mentioned purpose. As a 

result of these, all this study is devoted to realize appropriate control designs for the 

system used as supportive systems in cochlear microrobot operations. 

This study seeks to introduce control approaches of the supportive robotic system 

designed to provide the use of medical microrobots in cochlear workspaces. The 

system, designed for inner ear stem cell applications, aims to enable a microrobot 

placed in the inner ear cochlea region to be moved in tetherless way within the 

cochlea ducts. This non-contact movement is carried out thanks to the permanent 

magnets located at the end effectors of the robotic surgical system. The system 

consists of a macro-micro robot manipulator structure that aims to move the micro 

robot that can move without connection in the cochlea. In this structure, the macro 

manipulator is responsible for performing the rough movements of the system, and 

the micro manipulator mounted on the macro manipulator endpoint is responsible for 

performing fragile movements. In applications where this structure is used, speed and 

wide working volume characteristics are obtained owing to the macro manipulator 

and owing to the micro-manipulator carried by the macro manipulator to the task 

space, it is ensured that it can work more precisely locally. 

The supportive system aims to carry out the movement of the microrobot within the 

cochlea ducts in a tetherless way. Since it is planned to use serving this purpose two 

different robotic systems one of which contains serial and the other one contains 

parallel robot manipulators as supportive systems, control designs are realized by 

considering these specific systems. First of all dynamic models of the mentioned 

robotic systems are obtained via recursive Newton-Euler and Lagrangian 

formulations. Then, two robust adaptive nonlinear controllers are designed for each 

of the mentioned robotic systems by considering the structures of the obtained 

system models. At this point some important aspects about control designs should be 

noted. Since the mentioned controllers are robust adaptive, none of the model 

parameters are needed. The dynamic models are used to observe the performance of 

the designed controllers in the simulation environment. Moreover, one of the 

mentioned controllers are designed for joint space while the remaining one is 

designed for task space. Lyapunov-based arguments are utilized for the related 



7 

 

theoretical analysis. Performance of the designed controllers is observed in 

simulation and experimental studies for both of the mentioned systems. 

The rest of the study is organized in the following manner. In Chapter 2 modeling 

and structure of the experimental setups used in this study are introduced. In Chapter 

3, four different robust adaptive control designs, two of which are designed for the 

system containing seral robot manipulators and the other two are designed for the 

parallel manipulator system. At this point it should be noted that for each of the 

mentioned systems, one control design is made in the joint space and the other one is 

realized in the task space. Related analysis, simulation and experimental studies of 

each controller are presented in a detailed manner in Chapter 3. Finally, the study is 

concluded by giving conclusions and possible future works in Chapter 4.  
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Chapter 2 

Structure and Modeling of Serial and 

Parallel Robotic Systems  

In this chapter, dynamic modeling of the systems that are thought to be used as 

supportive systems in surgical microrobot operations is given. Obtaining system 

models that give an idea about the systems' structures and provide an opportunity to 

test the performance of the designed controllers in the simulation environment the 

main objective of the studies conducted in this chapter. 

Considering the structure of the microrobot, whose movement in the cochlea must be 

ensured precisely for a successful operation, two different supportive robotic systems 

are designed. The main purpose of these systems is to produce an electromagnetic 

field between two independent end effectors in which the microrobot can continue its 

movement in a spherical workspace centered on the cochlea with radius Rm. The 

radius Rm is determined approximately according to the cochlear region and the 

dimensions of the head region which is the biggest obstacle in the working volume. 

To achieve this goal, first of all, a robotic system including two independent three 

link revolute joint serial manipulators operating on the same plane is designed and 

constructed. Each of the mentioned robot manipulators has 3 DoF. General structure 

of the first system can be seen in Figure 2.1. The permanent magnets are located in 

the end effector of the robotic surgery system, for this serial system is the 𝐶𝑠 and 𝐶𝑠′ 

as seen in figure 2.1. Maintaining the distance between the two end effectors and 

operating on a cochlea-centered circle with a radius greater than 𝑅𝑚 and are their 

exposure to each other on the same axis the main working principles of the serial 

robotic system. In Figure 2.2 the produced prototype of the serial robotic system is 

shown. 
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Figure 2.1: Serial manipulator system 

 
(a) 

 
(b) 

Figure 2.2: Serial robotic RRR system, (a) Top view, (b) Front view  
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The second robotic system considered as the supportive system includes a parallel 

manipulator structure having 5 DoF and containing double-end effectors. General 

structure of this system can be seen in Figure 2.3. The parallel robot manipulator also 

operates on a cochlea-centered circle whose radius is greater than 𝑅𝑚. However, due 

to its structure, it works differently from the serial robotic system, that is, the two end 

effectors of the parallel system operate in the area where the cochlea is close to the 

head region on a cochlea-centered circle whose radius is greater than R. In the 

parallel system, the end effectors keep their distance to the cochlea and the 

orientation of the magnet in the end effectors constant. The electromagnetic actuator 

is located in the end effector of the robotic surgery system, for this parallel system is 

the 𝐶𝑝 and 𝐶𝑝′  as seen in Figure 2.3.  In Figure 2.4 the produced prototype of the 

serial robotic system is shown. 

 
Figure 2.3: Parallel manipulator system 
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(a) 

 
(b) 

Figure 2.4: Parallel robotic system, (a) Top view, (b) Front view 

In the following sections of this chapter dynamic modeling of the aforementioned 

systems are given in a detailed manner. 

2.1 Dynamic Model of Robot Manipulators  

The mathematical model of a robot manipulator is given as [50] 

 𝑀(𝜃)𝜃̈ + 𝐶�𝜃, 𝜃̇�𝜃̇ + 𝐺(𝜃) + 𝐹𝑓𝜃̇ = 𝜏 (2.1) 

where 𝑀(𝜃) ∈ ℝ𝑛×𝑛 represents the positive-definite and symmetric inertia matrix. 

𝐶�𝜃, 𝜃̇� ∈ ℝ𝑛×𝑛 represents the centripetal-coriolis matrix, 𝐺(𝜃) ∈ ℝ𝑛 denotes vector 

of gravitational forces and 𝐹𝑓 ∈ ℝ𝑛×𝑛 denotes the friction matrix. In (2.1) the control 

input torque is represented by 𝜏 ∈ ℝ𝑛  while 𝜃, 𝜃̇, 𝜃̈ ∈ ℝ𝑛 denote the joint position, 

velocity and acceleration, respectively. Moreover it should be noted that 𝑛 ∈ ℝ 

denotes the total DoF of the robot manipulator in the dynamic model. Obtaining each 

parameters of the dynamic models that are specified from (2.1) according to the 

structures of the systems used in this study is the main purpose of this chapter. 

Newton-Euler and Lagrangian formulations can be utilized to achieve this goal.  
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2.2 Modeling of Serial Robotic System  

Since the serial robotic system includes three link revolute joint robot manipulators, 

this chapter is based on dynamic modeling of 3 DoF RRR robot manipulators. The 

Newton-Euler formulation is used to obtain the dynamic model, and the modeling 

steps and the mathematical equations obtained for each step are given in a detailed 

manner. At this point it should be noted that all dynamic models are presented 

parametrically in the following chapters. Obtaining a model structure where the 

possible changes in the parameters of robot manipulators (link masses, used material, 

link lengths and etc.) can easily be applied is the main purpose of this presentation.  

2.2.1 Newton-Euler Formulation  

Newton-Euler formulation, which explains the relationship between the force acting 

on the center of mass of each link and the link inertia and acceleration, is used to 

obtain the dynamic model terms. The force acting on the center of mass of the link is 

obtained by Newton's Equation given as  

 𝐹 = 𝑚𝑠𝑣̇𝑠𝑐 (2.2) 

where 𝑚𝑠 ∈ ℝ denotes mass of link, 𝑣̇𝑠𝑐 ∈ ℝ denotes acceleration of the center of 

mass of link. The formula used to find inertia moment exerted at the center of mass 

of link is given as  

 𝑁 = 𝐼𝑐 𝜔̇𝑠 + 𝜔𝑠 × 𝐼𝑠𝜔𝑠𝐶  (2.3) 

where 𝜔𝑠 and 𝜔̇𝑠 ∈ ℝ represent angular velocity and angular acceleration of the link, 

respectively while 𝐼𝑠𝑐 ∈ ℝ denotes inertia of the link about its center of mass. 

The force and torque expressions acting on the centers of the mass of each link are 

found by calculating the following forward computation equations for  

 𝑖 = 0,⋯ , (𝑛 − 1)  
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𝜔𝑠𝑖+1 = 𝑅 𝜔𝑠𝑖
𝑖 + 𝜃̇𝑠𝑖+1 𝑍̂𝑖+1 

𝑖+1
𝑖

𝑖+1𝑖+1  
𝜔̇𝑠𝑖+1 =𝑖+1 𝑅 𝜔̇𝑠𝑖

𝑖 + 𝑅𝑖𝑖+1 𝜔𝑠𝑖 × 
𝑖 𝜃̇𝑠𝑖+1 𝑍̂𝑖+1 + 𝜃̈𝑠𝑖+1 𝑍̂𝑖+1 

𝑖+1𝑖+1
𝑖

𝑖+1  
𝑣̇𝑠𝑖+1  = 𝑅𝑖𝑖+1 � 𝜔̇𝑠𝑖+1 × 𝑃𝑖+1 + 𝜔𝑠𝑖 

𝑖 × ( 𝜔𝑠𝑖 
𝑖 × 𝑃𝑖+1 

𝑖 ) 
𝑖

 
𝑖+1 𝑣̇𝑠𝑖 

𝑖 �𝑖+1  
𝑣̇𝑠𝑐𝑖+1 =𝑖+1 𝜔̇𝑠𝑖+1 × 𝑃𝑐𝑖+1 

𝑖+1
 

𝑖+1

+ 𝜔𝑠𝑖+1 × � 𝜔𝑠𝑖+1 × 𝑃𝑐𝑖+1 
𝑖+1

 
𝑖+1 � 

𝑖+1 + 𝑣̇𝑠𝑖+1  
𝑖+1  

𝐹𝑖+1𝑖+1 = 𝑚𝑠𝑖+1 𝑣̇𝑠𝑐𝑖+1 
𝑖+1  

𝑁𝑖+1 =  𝐼𝑠𝑖+1 𝜔̇𝑠𝑖+1 + 𝜔𝑠𝑖+1 × 𝐼𝑠𝑖+1 𝜔𝑠𝑖+1 
𝑖+1𝑐𝑖+1

 
𝑖+1

 
𝑖+1𝑐𝑖+1𝑖+1  

(2.4) 

where 𝜃̇𝑠𝑖+1 ∈ ℝ  and 𝜃̈𝑠𝑖+1 ∈ ℝ represent velocity, and acceleration of the (𝑖 + 1)th 

joint, 𝑍̂𝑖 ∈ ℝ𝑛
 
𝑖  denotes a unit vector pointing along the 𝑖th joint axis, 𝜔𝑠 

𝑖+1
𝑖+1 ∈ ℝ

𝑛 

angular velocity exerted on other link by (𝑖 + 1)th link, 𝜔̇𝑠𝑖+1 
𝑖+1 ∈ ℝ𝑛 represents 

angular acceleration exerted on other link by (𝑖 + 1)th link, 𝑅𝑖𝑖+1 ∈ ℝ𝑛×𝑛 denotes 

rotation matrix, 𝑣̇𝑠 
𝑖+1

𝑖+1 ∈ ℝ
𝑛 represents linear acceleration of (𝑖 + 1)th link frame, 

𝑃𝑖+1 
𝑖 ∈ ℝ𝑛 denotes position vector of  frame (𝑖 + 1) with respect to frame (𝑖), 

 𝑣̇𝑠 
𝑖+1

𝑐𝑖+1
∈ ℝ𝑛 represents linear acceleration of the center of mass of (𝑖 + 1)th link 

and  𝑃𝑐𝑖+1 ∈ ℝ
𝑛𝑖+1  position vector of the center of mass. 

Actuator torques or forces are obtained by utilizing the following backward 

computation equations for 𝑖 = 𝑛,⋯ ,1 

 
 𝑓𝑖 =  𝑅 𝜔𝑠𝑖+1 

𝑖+1 + 𝐹𝑖𝑖
𝑖+1

𝑖𝑖  
𝑛𝑖 =𝑖 𝑁𝑖 +𝑖 𝑅 𝑛𝑖+1𝑖+1 + 𝑃𝑐𝑖

𝑖 × 𝐹𝑖 +𝑖
𝑖+1

𝑖 𝑃𝑖+1 × 𝑅𝑖+1𝑖 𝑓𝑖+1𝑖+1𝑖  
    𝜏𝑠𝑖 = 𝑛𝑖𝑇

𝑖 𝑍̂𝑖 
(2.5) 

where 𝑓𝑖 𝑖 ∈ ℝ𝑛 denotes force exerted on (𝑖 − 1)th link by 𝑖𝑡ℎ link , 𝑛𝑖 𝑖 ∈ ℝ𝑛 

denotes moment exerted on (𝑖 − 1)th link by 𝑖𝑡ℎ link and 𝜏𝑠𝑖 ∈ ℝ represents the 

torque required for the 𝑖th joint. 

2.2.2 Derivation of the Dynamic Model of 3 DoF RRR Robot 

Manipulator via Newton-Euler Formulation  

To obtain the dynamic model of 3 DoF revolute joint robot manipulator, it is 

assumed that the links are at the midpoints of the centers of mass. This situation can 

mathematically be expressed as 
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𝑃𝑐1
1 = � 𝑙𝑠1

2
  0 0�

𝑇
 

𝑃𝑐2
2 = � 𝑙𝑠2

2
  0 0�

𝑇
 

𝑃𝑐3
3 = � 𝑙𝑠3

2
  0 0�

𝑇
 

(2.6) 

where 𝑙𝑠𝑖 represents length of 𝑖𝑡ℎ link. The following assumptions can be made for 

the angular velocity and angular acceleration since the base coordinate system of the 

robot arms does not move 

 
𝜔𝑠0 = 
0 [0 0 0]𝑇 
𝜔̇𝑠0 = [0 0 0]𝑇 . 
0  (2.7) 

Gravity is on the z-axis in the main coordinate system. This situation is 

mathematically expressed as  

 𝑣𝑠̇0 = 𝑔𝑍̂0 = [0 0 𝑔]𝑇0  (2.8) 

where 𝑔 ∈ ℝ represents the gravitational acceleration. The rotation between 

consecutive link axes is expressed by the rotation matrices given below 

 

𝑅 =  �
𝑐𝑜𝑠 𝜃𝑠𝑖+1 𝑠𝑖𝑛 𝜃𝑠𝑖+1 0
−𝑠𝑖𝑛 𝜃𝑠𝑖+1 𝑐𝑜𝑠 𝜃𝑠𝑖+1 0

0 0 1
�𝑖+1

𝑖  

𝑅 =  �
𝑐𝑜𝑠 𝜃𝑠𝑖+1 −𝑠𝑖𝑛 𝜃𝑠𝑖+1 0
𝑠𝑖𝑛 𝜃𝑠𝑖+1 𝑐𝑜𝑠 𝜃𝑠𝑖+1 0

0 0 1
�𝑖

   𝑖+1 .  

(2.9) 

Forward computation equations for each joint can be calculated as follows by 

substituting (2.6)-(2.9) in (2.4) 

For the first joint 

 

𝜔𝑠1 
1 = �0 0 𝜃̇𝑠1�

𝑇
 

𝜔𝑠̇ 1 = 
1 �0 0 𝜃̈𝑠1�

𝑇
 

  𝑣̇𝑠1   
1 = [0 0 𝑔]𝑇 

𝑣̇𝑠𝑐1 
1 = �−𝑙𝑠1

2
𝜃̇𝑠1
2 𝑙𝑠1

2
𝜃̈𝑠1 𝑔�

𝑇
   

𝐹1 
1 = �−𝑚𝑠1

𝑙𝑠1
2
𝜃̇𝑠1
2 𝑚𝑠1

𝑙𝑠1
2
𝜃̈𝑠1 𝑔𝑚𝑠1�

𝑇
 

  𝑁1 =  �0 0
𝑚𝑠1𝑙𝑠12

12
𝜃̈𝑠1�

𝑇

 
1  

(2.10) 
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For the second joint 

 

𝜔𝑠2 =  �0 0 𝜃̇𝑠12�
𝑇

 
2   
𝜔̇𝑠2 = 
2 �0 0 𝜃̈𝑠12�

𝑇
   

𝑣̇𝑠2 
2 = �

𝑙𝑠1𝜃̈𝑠1 𝑠𝑖𝑛 𝜃𝑠2 − 𝑙𝑠1𝜃̇𝑠1
2 𝑐𝑜𝑠 𝜃𝑠2
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2 𝑐𝑜𝑠 𝜃𝑠2

𝑔
�  

𝑣̇𝑠𝑐2 
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−𝑙𝑠2
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2 𝑐𝑜𝑠 𝜃𝑠2

𝑙𝑠2
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𝜃̈𝑠12 +  𝑙𝑠1𝜃̈𝑠1 𝑠𝑖𝑛 𝜃𝑠2 + 𝑙𝑠1𝜃̇𝑠1

2 𝑐𝑜𝑠 𝜃𝑠2
𝑔

�  

  𝐹2 
2 =  �

−𝑚𝑠2
𝑙𝑠2
2
�𝜃̇𝑠12  �2 + 𝑚𝑠2𝑙𝑠1 𝜃̈𝑠1𝑠𝑖𝑛 𝜃𝑠2 − 𝑚𝑠2𝑙𝑠1𝜃̇𝑠1

2 𝑐𝑜𝑠𝜃𝑠2
𝑚𝑠2

𝑙𝑠2
2
𝜃̈𝑠12 +  𝑚𝑠2𝑙𝑠1 𝜃̈𝑠1𝑠𝑖𝑛 𝜃𝑠2 + 𝑚𝑠2𝑙𝑠1 𝜃̇𝑠1

2 𝑐𝑜𝑠 𝜃𝑠2
𝑔𝑚𝑠2

� 

 𝑁2 
2 = �0 0 𝑚𝑠2𝑙𝑠22

12
𝜃̈𝑠12�

𝑇
  

(2.11) 

 

For the third joint 

 

 ωs3 = �0 0 𝜃̇𝑠123�
𝑇

 
3                                                                          

 ω̇𝑠3 = 
3  �0 0 𝜃̈𝑠123�

𝑇
                                                                         

𝑣̇𝑠3    
3  = � 𝑣𝑠̇3𝑥 

3 𝑣̇𝑠3𝑦 
3 𝑔�

𝑇
                                                              

𝑣̇𝑠3𝑥 
3 = 𝑙𝑠1𝜃̈𝑠1 sin�𝜃𝑠23� + 𝑙𝑠2𝜃̈𝑠12 sin𝜃𝑠3 – 𝑙𝑠1 𝜃̇𝑠1

2 𝑐𝑜𝑠(𝜃𝑠23)

− 𝑙𝑠2 cos 𝜃𝑠3�𝜃̇𝑠12�
2  

𝑣̇𝑠3𝑦 
3 = 𝑙𝑠1𝜃̈𝑠1 𝑐𝑜𝑠(𝜃𝑠23) +  𝑙𝑠2�𝜃̇𝑠12�

2 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠2𝜃̈𝑠12 𝑐𝑜𝑠 𝜃𝑠3
+ 𝑙𝑠1𝜃̇𝑠1

2 𝑠𝑖𝑛�𝜃𝑠23� 

𝑣̇𝑠c3 = � 𝑣̇𝑠𝑐3𝑥   
3 𝑣̇𝑠𝑐3𝑦   

3 𝑔�   
3 𝑇

                                                         

𝑣̇𝑠𝑐3𝑥 =    
3 −

𝑙𝑠3
2
�𝜃̇𝑠123�

2 + 𝑙𝑠1 𝜃̈𝑠1𝑠𝑖𝑛�𝜃𝑠23� −  𝑙𝑠2�𝜃̇𝑠12�
2 𝑐𝑜𝑠 𝜃𝑠3  

− 𝑙𝑠1𝜃̇𝑠1
2 𝑐𝑜𝑠�𝜃𝑠23� + 𝑙𝑠2𝜃̈𝑠12 𝑠𝑖𝑛 𝜃𝑠3   

𝑣̇𝑠𝑐3𝑦    
3 =

𝑙𝑠3
2
𝜃̈𝑠123 +  𝑙𝑠1𝜃̈𝑠1 𝑐𝑜𝑠�𝜃𝑠23� + 𝑙𝑠2 �𝜃̇𝑠12�

2𝑠𝑖𝑛 𝜃𝑠3
+ 𝑙𝑠1𝜃̇𝑠1

2 𝑠𝑖𝑛�𝜃𝑠23� + 𝑙𝑠2 𝜃̈𝑠12𝑐𝑜𝑠 𝜃𝑠3 

      F3 
3 = �𝑚𝑠3 𝑣̇𝑠𝑐3𝑥   

3 𝑚3 𝑣̇𝑠𝑐3𝑦   
3 𝑔𝑚𝑠3�

𝑇
  

     N3
3 = �0 0 𝑚𝑠3𝑙𝑠32

12
𝜃̈𝑠123�

𝑇
  

(2.12) 

where 𝑚𝑠𝑖 ∈ ℝ represents mass of 𝑖𝑡ℎ link, 𝜃𝑠𝑖⋯𝑗 = �𝜃𝑠𝑖 + ⋯+ 𝜃𝑠𝑗� ∈ ℝ represents 

sum of joint angle, 𝜃̇𝑠𝑖⋯𝑗 = �𝜃̇𝑠𝑖 + ⋯+ 𝜃̇𝑠𝑗� ∈ ℝ represents sum of joint velocity and 

𝜃̈𝑠𝑖…𝑗 = �𝜃̈𝑠𝑖 + ⋯+ 𝜃̈𝑠𝑗� ∈ ℝ represents sum of joint acceleration. 
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Backward computation equations for each joint are calculated as follows by 

substituting (2.10)-(2.12) in (2.5). 

 For the third joint 

 

𝑓3 
3 = 𝐹3 

3  

𝑛3 = 
3 �0

1
2𝑔𝑚𝑠3𝑙𝑠3

𝑛3𝑧 
3 �

𝑇

 

𝑛3𝑧 = 
3 1

3
𝑙𝑠3

2𝑚𝑠3𝜃̈𝑠123 +
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̈𝑠1 𝑐𝑜𝑠 𝜃𝑠3  

+
1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3𝜃̈𝑠1 𝑐𝑜𝑠 𝜃𝑠23 +

1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̈𝑠2 𝑐𝑜𝑠 𝜃𝑠3

+
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̇𝑠1

2 𝑠𝑖𝑛 𝜃𝑠3 +
1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3𝜃̇𝑠1

2 𝑠𝑖𝑛 𝜃𝑠23

+
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̇𝑠2

2 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̇𝑠1𝜃̇𝑠2 𝑠𝑖𝑛 𝜃𝑠3 . 

(2.13) 

 

For the second joint  

 

𝑓2   =  � 𝑓2𝑥 
2 𝑓2𝑦 

2 −𝑔(𝑚𝑠2 + 𝑚𝑠3)�𝑇2  

𝑓2𝑦2 = (𝑙𝑠1𝑚𝑠3 + 𝑙𝑠1𝑚𝑠2)𝜃̈𝑠1 𝑐𝑜𝑠 𝜃𝑠2 −
1
2
𝑙𝑠3𝑚𝑠3𝜃̈𝑠123𝑐𝑜𝑠𝜃𝑠3

− (𝑙𝑠1𝑚𝑠3 + 𝑙𝑠1𝑚𝑠2) 𝜃̇𝑠1
2 𝑠𝑖𝑛 𝜃𝑠2

−
1
2
𝑙𝑠3𝑚𝑠3�𝜃̇𝑠123�

2 𝑠𝑖𝑛 𝜃𝑠3

− (𝑙𝑠2𝑚𝑠3 +
1
2
𝑙𝑠2𝑚𝑠2)�𝜃̇𝑠12�

2 

𝑛2 = 
2

⎣
⎢
⎢
⎢
⎡ −

1
2
𝑔𝑚𝑠3𝑙𝑠3 𝑠𝑖𝑛 𝜃𝑠3

𝑔(𝑙𝑠2𝑚𝑠3 +
1
2
𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3 +

1
2
𝑚𝑠2𝑙𝑠2)

𝑛2𝑧 
2 ⎦

⎥
⎥
⎥
⎤

 

𝑛2𝑧 = 
2 1

2
�𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠23 + 𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑐𝑜𝑠 𝜃𝑠2

+ 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠2�𝜃̈𝑠1 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝜃̈𝑠2𝑐𝑜𝑠 𝜃𝑠3
+ (

1
3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3)𝜃̈𝑠12 +

1
3
𝑙𝑠32 𝑚𝑠3𝜃̈𝑠123

+
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̈𝑠3 𝑐𝑜𝑠 𝜃𝑠3 −

1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̇𝑠3

2 𝑠𝑖𝑛 𝜃𝑠3

+
1
2

(𝑙𝑠22 𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23)𝜃̇𝑠1
2

− 𝑙𝑠2𝑙𝑠3𝑚𝑠3(𝜃̇𝑠1𝜃̇𝑠3 + 𝜃̇𝑠2𝜃̇𝑠3) 𝑠𝑖𝑛 𝜃𝑠3 

(2.14) 
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For the first joint  

 

𝑓1 =  
1 � 𝑓1𝑥 

1 𝑓1𝑦 
1 −𝑔(𝑚𝑠1 + 𝑚𝑠2 + 𝑚𝑠3)�𝑇 

𝑓1𝑥  
1 =  −(𝑙𝑠2𝑚𝑠3 +

1
2
𝑙2𝑠𝑚𝑠2)𝑠𝑖𝑛𝜃𝑠2𝜃̈𝑠12 −

1
2
𝑙𝑠3𝑚𝑠3 𝜃̈𝑠123𝑠𝑖𝑛(𝜃𝑠23)

−
1
2
𝑙𝑠3𝑚𝑠3𝜃̇𝑠123

2 𝑐𝑜𝑠 𝜃𝑠3

− (
1
2
𝑙𝑠2𝑚𝑠2 + 𝑙𝑠2𝑚𝑠3) 𝜃̇𝑠12

2 𝑐𝑜𝑠 𝜃𝑠2

− �
1
2
𝑙𝑠1𝑚𝑠1 + 𝑙𝑠2𝑚𝑠2 + 𝑙𝑠1𝑚𝑠3 𝑠𝑖𝑛(𝜃𝑠23)2

− 𝑙𝑠1𝑚𝑠3𝑐𝑜𝑠(𝜃𝑠23)2� 𝜃̇𝑠1
2  

𝑓1𝑦 
1 =  

1
2
𝑙𝑠1𝑚𝑠1𝜃̈𝑠1 + (𝑙𝑠2𝑚𝑠3 +

1
2
𝑙𝑠2𝑚𝑠2)𝜃̈𝑠12 𝑐𝑜𝑠 𝜃𝑠2

+
1
2
𝑙𝑠3𝑚𝑠3𝜃̈𝑠123𝑐𝑜𝑠𝜃𝑠23 −

1
2
𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 𝜃̇𝑠123

2

− (
1
2
𝑙𝑠2𝑚𝑠2 + 𝑙𝑠2𝑚𝑠3)𝜃̇𝑠12

2 𝑠𝑖𝑛 𝜃𝑠2
+ �2𝑙𝑠1𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23𝑐𝑜𝑠𝜃𝑠23�𝜃̇1

2 

𝑛1 = 
1

⎣
⎢
⎢
⎡−𝑔 �

1
2
𝑚𝑠3𝑙𝑠3 𝑠𝑖𝑛 𝜃𝑠23+𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠2 +

1
2
𝑚𝑠2𝑙𝑠2 𝑠𝑖𝑛 𝜃𝑠2�

𝑛1𝑦 
1

𝑛1𝑧 
1 ⎦

⎥
⎥
⎤
 

𝑛1𝑦 
1 = 𝑔 �1

2
𝑚𝑠3𝑙𝑠3 𝑐𝑜𝑠 𝜃𝑠23+𝑙𝑠2𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠2 + 1

2
𝑚𝑠2𝑙𝑠2 𝑐𝑜𝑠 𝜃𝑠2

+ 𝑚𝑠1𝑙𝑠1 + (𝑚𝑠2 + 𝑚𝑠3)𝑙𝑠1� 

𝑛1𝑧 
1 = �1

3
𝑙𝑠12 𝑚𝑠1 + 𝑙𝑠12 𝑚𝑠2

+ 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠2 + 𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑐𝑜𝑠 𝜃𝑠2
+ 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠23 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3� 𝜃̈𝑠1
+ �𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠2 + 1

2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑐𝑜𝑠 𝜃𝑠2

+ 1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠23 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3� 𝜃̈𝑠2

+ 1
2
�𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠23 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3�𝜃̈𝑠3

+ (1
3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3)𝜃̈𝑠12 + 1

3
𝑙𝑠32 𝑚𝑠3𝜃̈𝑠123

+ �1
2
𝑙𝑠22 𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2 + 1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23

− 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠2 −
1
2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2� 𝜃̇𝑠1

2

− (1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23 + 𝑙1𝑙2𝑚3 𝑠𝑖𝑛 𝜃𝑠2

+ 1
2
𝑙1𝑙2𝑚2 𝑠𝑖𝑛 𝜃𝑠2)𝜃̇𝑠2

2

− 1
2
�𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�𝜃̇𝑠3

2

− �𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23 + 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠2
+ 𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2�𝜃̇𝑠1𝜃̇𝑠2
− �𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�(𝜃̇𝑠1𝜃̇𝑠3
+ 𝜃̇𝑠2𝜃̇𝑠3)  

(2.15) 
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Torques that are effective on each joints can be obtained as 

 

𝜏s1 = 𝑓1𝑇 
1 𝑍̂1 = �1

3
𝑙𝑠12 𝑚𝑠1 + 𝑙𝑠12 (𝑚𝑠2 + 𝑚𝑠3) + 1

3
𝑚𝑠3𝑙𝑠32 + 1

3
𝑙𝑠22 𝑚𝑠2

+ 𝑙𝑠22 𝑚𝑠3 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos𝜃𝑠23 + 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 cos 𝜃𝑠2
+ 𝑙𝑠1𝑙𝑠2𝑚𝑠2 cos𝜃𝑠2 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos𝜃𝑠3� 𝜃̈𝑠1
+ �1

3
𝑚𝑠3𝑙𝑠32 + 1

3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3

+ 1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos𝜃𝑠23 + 𝑙𝑠1𝑙𝑠2𝑚𝑠3 cos 𝜃𝑠2

+ 1
2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 cos𝜃𝑠2 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos𝜃𝑠3� 𝜃̈𝑠2

+ (1
3
𝑚𝑠3𝑙𝑠32 + 1

2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos 𝜃𝑠3

+ 1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos𝜃𝑠23)𝜃̈𝑠3

+ �1
2
𝑙𝑠22 𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2 + 1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23

− 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠2 −
1
2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2� 𝜃̇𝑠1

2

− (1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23 + 𝑙1𝑙2𝑚3 𝑠𝑖𝑛 𝜃𝑠2

+ 1
2
𝑙1𝑙2𝑚2 𝑠𝑖𝑛 𝜃𝑠2)𝜃̇𝑠2

2

− 1
2
�𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�𝜃̇𝑠3

2

− �𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23 + 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠2
+ 𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2�𝜃̇𝑠1𝜃̇𝑠2
− �𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�(𝜃̇𝑠1𝜃̇𝑠3
+ 𝜃̇𝑠2𝜃̇𝑠3) 

(2.16) 

 

𝜏s2 = 𝑓2𝑇 
2 𝑍̂2 = �1

3
𝑚𝑠3𝑙𝑠32 + 1

3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3 + 1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos 𝜃𝑠23

+ 𝑙𝑠1𝑙𝑠2𝑚𝑠3 cos𝜃𝑠2 + 1
2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 cos 𝜃𝑠2

+ 𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos𝜃𝑠3� 𝜃̈𝑠1
+ �1

3
𝑚𝑠3𝑙𝑠32 + 1

3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3

+ 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3� 𝜃̈𝑠2

+ �
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3 + 1

3
𝑚𝑠3𝑙𝑠32 � 𝜃̈𝑠3

+
1
2
�𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠23 + 𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑐𝑜𝑠 𝜃𝑠2

+ 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠2�𝜃̈𝑠1 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝜃̈𝑠2𝑐𝑜𝑠 𝜃𝑠3
+ �

1
3
𝑙𝑠22 𝑚2 + 𝑙𝑠22 𝑚𝑠3� 𝜃̈𝑠12 +

1
3
𝑙𝑠32 𝑚𝑠3𝜃̈𝑠123

+
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̈𝑠3𝑐𝑜𝑠𝜃𝑠3

+
1
2
�𝑙𝑠22 𝑚𝑠2 𝑠𝑖𝑛𝜃𝑠2 +𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�𝜃̇𝑠1

2

−
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3𝜃̇𝑠3

2 𝑠𝑖𝑛𝜃𝑠3
− 𝑙𝑠2𝑙𝑠3𝑚𝑠3�𝜃̇𝑠1𝜃̇𝑠3 + 𝜃̇𝑠2𝜃̇𝑠3�𝑠𝑖𝑛𝜃𝑠3 

(2.17) 
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𝜏𝑠3 = 𝑓3𝑇 
3 𝑍̂3 = (1

3
𝑚𝑠3𝑙𝑠32 + 1

2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos𝜃𝑠3

+ 1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos𝜃𝑠23)𝜃̈𝑠1 + �1

3
𝑚𝑠3𝑙𝑠32 � 𝜃̈𝑠3

+ �
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3 + 1

3
𝑚𝑠3𝑙𝑠32 � 𝜃̈𝑠2

+ �1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23� 𝜃̇𝑠1

2

+ 1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 𝜃̇𝑠2

2 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3𝜃̇𝑠1𝜃̇𝑠2 

(2.18) 

By substituting (2.16) - (2.18) in (2.1), the dynamic model in (2.1) can be specified 

for 3 DoF revolute joint robot manipulator as 

 𝑀𝑠(𝜃𝑠)𝜃̈𝑠 + 𝑉𝑠�𝜃𝑠, 𝜃̇𝑠�𝜃̇𝑠 = 𝜏𝑠 
 

(2.19) 

where 𝑉𝑠 ∈ ℝ3×3 is a matrix and that is used for the definition given as 𝑉𝑠𝜃̇𝑠 ≜

𝐶𝑠𝜃̇𝑠 + 𝐺𝑠. At this point it should be noted that dimensions of the all terms in (2.19) 

are assumed to be adjusted according to a 3 DoF RRR robot manipulator.  

The following computations can be used to reach elements of the inertia matrix 𝑀𝑠 

and the matrix 𝑉𝑠 given in (2.19) 

 

𝑀𝑠11 = 1
3
𝑙𝑠12 𝑚1 + 𝑙𝑠12 (𝑚𝑠2 + 𝑚𝑠3) + 1

3
𝑚𝑠3𝑙𝑠32 + 1

3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3

+ 𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos𝜃𝑠23 + 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 cos𝜃𝑠2
+ 𝑙𝑠1𝑙𝑠2𝑚𝑠2 cos𝜃𝑠2 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos 𝜃𝑠3 

𝑀𝑠12 = 1
3
𝑚𝑠3𝑙𝑠32 + 1

3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3 + 1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos 𝜃𝑠23

+ 𝑙𝑠1𝑙𝑠2𝑚𝑠3 cos𝜃𝑠2 + 1
2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 cos 𝜃𝑠2

+ 𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos𝜃𝑠3 
𝑀𝑠13 = 1

3
𝑚𝑠3𝑙𝑠32 + 1

2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos 𝜃𝑠3 + 1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 cos 𝜃𝑠23 

𝑀𝑠22 = 1
3
𝑚𝑠3𝑙𝑠32 + 1

3
𝑙𝑠22 𝑚𝑠2 + 𝑙𝑠22 𝑚𝑠3 + 𝑙𝑠2𝑙𝑠3𝑚𝑠3 cos 𝜃𝑠3 

𝑀𝑠23 =
1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑐𝑜𝑠 𝜃𝑠3 + 1

3
𝑚𝑠3𝑙𝑠32  

𝑀𝑠33 = 1
3
𝑚𝑠3𝑙𝑠32  

    𝑉𝑠11 = �1
2
𝑙𝑠22 𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2

+ 1
2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23 −2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠2

− 1
2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2� 𝜃̇𝑠1

− �𝑙𝑠2𝑙𝑠3𝑚𝑠3 sin𝜃𝑠3+𝑙𝑠1𝑙𝑠3𝑚𝑠3 sin𝜃𝑠23� 𝜃̇𝑠3 

(2.20) 
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𝑉𝑠12 = −𝜃̇𝑠1(𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23
+ 2𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛𝜃𝑠2 + 𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2)
− �1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛𝜃𝑠23 +𝑙𝑠1𝑙𝑠2𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠2

+ 1
2
𝑙𝑠1𝑙𝑠2𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2� 𝜃̇𝑠2

− �𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�𝜃̇𝑠3 

    𝑉𝑠13 = −
1
2
�𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�𝜃̇𝑠3 

    𝑉𝑠𝑠21 = 1
2
�𝑙𝑠22 𝑚𝑠2 𝑠𝑖𝑛 𝜃𝑠2 + 𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23�𝜃̇𝑠1

− 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 𝜃̇𝑠3 
    𝑉𝑠22 = −𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 𝜃̇𝑠3 
    𝑉𝑠23 = −1

2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 𝜃̇𝑠3 

    𝑉𝑠31 = �1
2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 + 1

2
𝑙𝑠1𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠23� 𝜃̇𝑠1

+ 𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3𝜃̇𝑠2 
    𝑉𝑠32 = 1

2
𝑙𝑠2𝑙𝑠3𝑚𝑠3 𝑠𝑖𝑛 𝜃𝑠3 𝜃̇𝑠2

2  
    𝑉𝑠33 = 0. 

At this point it should be noted that, the remaining elements of 𝑀 can be reached via 

its symmetry. 
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2.3 Modeling of Parallel Robotic System  

Since the parallel robotic system is a 5 DoF robot manipulator that contains both of 

revolute and prismatic joints and two independently movable end effectors into its 

structure, the modeling study presented in this chapter is specified for this type of 

system. The Lagrange formulation is used to obtain the dynamic model, and the 

modeling steps and the mathematical equations obtained for each step are given in a 

detailed manner. At this point it should be noted that all dynamic models are 

presented parametrically in the following chapters. Obtaining a model structure 

where the possible changes in the parameters of robot manipulators (link masses, 

used material, link lengths and etc.) can easily be applied is the main purpose of this 

presentation.  

2.3.1 Lagrange Formulation  

The Lagrange formulation used to obtain dynamic model terms is given as 

 
𝑑
𝑑𝑡 �

𝜕𝐿
𝜕𝜃̇𝑝𝑗

� −
𝜕𝐿
𝜕𝜃𝑝𝑗 

= 𝜏𝑝𝑗 + � λ𝑖

𝑘

𝑖=1

𝜕Γ𝑖
𝜕𝜃𝑝𝑗 

 , (2.21) 

where 𝑖 = 1,⋯ ,𝑘 and 𝑗 = 1,⋯ ,𝑛. In (2.21), 𝜃𝑝𝑗 ∈ ℝ represent generalized 

coordinates, 𝜏𝑝𝑗 ∈ ℝ represent actuator torques and forces, λ𝑖 ∈ ℝ represent 

Lagrange multipliers and Γ𝑖 ∈ ℝ represent constraint functions. Manipulator’s 

kinetic energy and potential energy are denoted by 𝐾 and 𝑈 ∈ ℝ, respectively while 

the definition 𝐿 ≜ 𝐾 − 𝑈 is utilized. Moreover, 𝑘 ∈ ℝ denotes the total number of 

constraint functions, and 𝑛 ∈ ℝ denotes the total number of generalized coordinates. 

The Lagrange formulation in (2.21) can be decomposed into a total of n equation sets 

that can be expressed as 

 
� λ𝑖

𝑘

𝑖=1

𝜕Γ𝑖
𝜕𝜃𝑝𝑗 

 =
𝑑
𝑑𝑡 �

𝜕𝐿
𝜕𝜃̇𝑝𝑗

� −
𝜕𝐿
𝜕𝜃𝑝𝑗 

− 𝜏𝑝𝑗 

  𝜏𝑝𝑗 =
𝑑
𝑑𝑡 �

𝜕𝐿
𝜕𝜃̇𝑝𝑗

� −
𝜕𝐿
𝜕𝜃𝑝𝑗 

−�λ𝑖

𝑘

𝑖=1

𝜕Γ𝑖
𝜕𝜃𝑝𝑗 

. 

(2.22) 
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Kinetic energy of the system is expressed as 

 
𝐾 =

1
2
��𝐼𝑝𝑖𝜔𝑝𝑖

2 + 𝑚𝑝𝑖�𝜌̇𝑚𝑖𝑢
2 + 𝜌̇𝑚𝑖𝑣

2�
2
�

𝑛

𝑖=1

 

=
1
2
𝜃̇𝑝𝑇𝑀𝜃̇𝑝 

(2.23) 

where 𝜌̇𝑚𝑖𝑢 and 𝜌̇𝑚𝑖𝑣 ∈ ℝ represent u and v component of linear velocities of 𝑖th link 

respectively and 𝜔𝑝𝑖 ∈ ℝ represents the angular velocity of the 𝑖th link.  

Potential energy of the system is expressed as 

 𝑈 = �𝑚𝑝𝑖𝑔ℎ𝑚𝑖 = 𝑔𝑚𝑣
𝑇

𝑛

𝑖=1

𝐻 (2.24) 

where ℎ𝑚𝑖 ∈ ℝ is the height of the link centers of gravity with respect to the global 

reference system, 𝑚𝑣 ≜ [𝑚𝑝1,𝑚𝑝2, … ,𝑚𝑝𝑛]𝑇 ∈ ℝ𝑛 is the vector containing the mass 

of links, 𝐻 ≜ [ℎ𝑚1,ℎ𝑚2, … , ℎ𝑚𝑛]𝑇 ∈ ℝ𝑛 represents the vector containing the heights. 

The part containing the constraint functions in (2.21) is expressed as  

 � λ𝑖

𝑘

𝑖=1

𝜕Γ𝑖
𝜕𝜃𝑝𝑗 

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕Γ1
𝜕𝜃𝑝1 

⋯
𝜕Γ𝑘
𝜕𝜃𝑝1 

⋮ ⋱ ⋮
𝜕Γ1
𝜕𝜃𝑝𝑗 

⋯
𝜕Γ𝑘
𝜕𝜃𝑝𝑗 ⎦

⎥
⎥
⎥
⎥
⎤

�
λ1
⋮
λ𝑘
� = Γ𝑐 . (2.25) 

Finally, equation of motion produced according to Lagrange method can be obtained 

as follows by substituting (2.23)-(2.25) in (2.21)  

 𝑀𝜃̈𝑝 + 𝑀̇𝜃̇𝑝 −
𝜕𝐾
𝜕𝜃𝑝

+
𝜕𝑈
𝜕𝜃𝑝

+

⎣
⎢
⎢
⎢
⎢
⎡
𝜕Γ1
𝜕𝜃𝑝1 

⋯
𝜕Γ𝑘
𝜕𝜃𝑝1 

⋮ ⋱ ⋮
𝜕Γ1
𝜕𝜃𝑝𝑗 

⋯
𝜕Γ𝑘
𝜕𝜃𝑝𝑗 ⎦

⎥
⎥
⎥
⎥
⎤

�
λ1
⋮
λ𝑘
� = 𝜏𝑝 (2.26) 
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2.3.2 Derivation of the Dynamic Model of 5 DoF Revolute 

Prismatic Joint Robot Manipulator via Lagrange 

Formulation 

To obtain the dynamic model of 5DoF robot manipulator, kinetic energy in (2.23) is 

rearranged as 

 
𝐾 =

1
2
𝛳̇𝑝𝑇𝐼15𝛳̇𝑝 +

1
2
𝛳̇𝑝𝑇𝐹𝑇𝐼57𝐹𝛳̇𝑝 +

1
2
𝛳̇𝑝𝑇𝑋𝑇𝑚𝑣𝑋𝛳̇𝑝

+
1
2
𝛳̇𝑝𝑇𝑌𝑇𝑚𝑣𝑌𝛳̇𝑝 

(2.27) 

where  

 

    𝜃̇𝑝 ≜ �𝜃̇𝑝1, 𝜃̇𝑝2, 𝑑̇1, 𝜃̇𝑝1
′, 𝜃̇𝑝2

′�
𝑇
                                           

   𝐼15 ≜

⎣
⎢
⎢
⎢
⎡
𝐼𝑝1 + 𝐼𝑝3

0
0
0
0

0
𝐼𝑝2 + 𝐼𝑝4

0
0
0

0
0
0
0
0

0
0
0

 𝐼𝑝1 + 𝐼𝑝3
0

0
0
0
0

 𝐼𝑝2 + 𝐼𝑝4

 

⎦
⎥
⎥
⎥
⎤

 

   𝐼57 ≜ �𝐼𝑝5 + 𝐼𝑝7
0

0
𝐼𝑝5 + 𝐼𝑝7

� 

      𝐹 ≜

⎣
⎢
⎢
⎢
⎡

2

4

2

3

2

6

1

5

1

2

1

1

W
Z

W
Z

W
00

00
W

 
W
Z

W
Z

Z

Z
 

⎦
⎥
⎥
⎥
⎤
 

      𝑋 ≜

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ppp

pppp

p
l

ppp
l

p
l

pp

p
l

ppp

p
l

pppp

p
l

ppp
l

p
l

pp

p
l

ZZZ
ll

l
l

ZZZ

ll

l
l

p

p

p

p

p

p

p

p

p

φφφ
θθ
θ
θθ
θθ

θ
φφφ

θ

θθ
θ

θθ

θθ
θ

′′′
′−′−

′−

′−′−

′−′−

′−

−

−−
−

−−

−−

−

sinsinsin00
sinsin000
sin0000
sinsin000
sinsin000

0sin000
00sinsinsin
000sin0
000sinsin
000sin0
000sinsin
000sinsin
0000sin

121110

2

2

2

2

987

22

2

22

22

22

2

22

2

22

22

1

1

1

1

1

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(2.28) 
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 𝑌 ≜

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ppp

pppp

p
l

ppp
l

p
l

pp

p
l

ppp

p
l

pppp

p
l

ppp
l

p
l

pp

p
l

ZZZ
ll

l
l

ZZZ

ll

l
l

p

p

p

p

p

p

p

p

p

φφφ
θθ
θ
θθ
θθ

θ
φφφ

θ

θθ
θ

θθ

θθ
θ

′′′
′′
′

′′

′′

′

coscoscos00
coscos000
cos0000
coscos000
coscos000

0cos000
00coscoscos
000cos0
000coscos
000cos0
000coscos
000coscos
0000cos

121110

2

2

2

2

987

22

2

22

22

22

2

22

2

22

22

1

1

1

1

1

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.  

At this point it should be noted that 𝑊1,2 and 𝑍𝑖 for 𝑖 = 1,⋯ ,12 are given in a 

detailed manner in Appendix A.  

From (2.23), (2.27) and (2.28) the inertia matrix 𝑀 ∈ ℝ5×5  can be obtained as   

 𝑀𝑝  = 𝐼15 + 𝐹𝑇𝐼57𝐹 + 𝑋𝑇𝑚𝑣𝑋 + 𝑌𝑇𝑚𝑣𝑌 (2.29) 

and the term 𝑀̇𝑝𝜃̇𝑝 can be obtained as follows from the time derivative of (2.29) 

 𝑀̇𝑝𝜃̇𝑝  =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑀𝑝11

𝜕𝜃𝑝1
⋯

𝜕𝑀𝑝15

𝜕𝜃𝑝1
⋮ ⋱ ⋮

𝜕𝑀𝑝11

𝜕𝜃𝑝2′
⋯

𝜕𝑀𝑝15

𝜕𝜃𝑝2′  ⎦
⎥
⎥
⎥
⎥
⎤

𝜃̇𝑝

⋮

𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑀𝑝15

𝜕𝜃𝑝1
⋯

𝜕𝑀𝑝55

𝜕𝜃𝑝1
⋮ ⋱ ⋮

𝜕𝑀𝑝15

𝜕𝜃𝑝2′
⋯

𝜕𝑀𝑝55

𝜕𝜃𝑝2′ ⎦
⎥
⎥
⎥
⎥
⎤

𝜃̇𝑝

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.30) 
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From (2.27) and (2.29) it can be seen that the term 𝜕𝐾
𝜕𝛳𝑝

 can be expressed as 

 
𝜕𝐾
𝜕𝜃𝑝

=
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑀𝑝11

𝜕𝜃𝑝1
⋮

𝜕𝑀𝑝15

𝜕𝜃𝑝1 ⎦
⎥
⎥
⎥
⎥
⎤

⋯ 𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑀𝑝15

𝜕𝜃𝑝1
⋮

𝜕𝑀𝑝55

𝜕𝜃𝑝1 ⎦
⎥
⎥
⎥
⎥
⎤

⋮ ⋱ ⋮

𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑀𝑝11

𝜕𝜃𝑝2′
⋮

𝜕𝑀𝑝15

𝜕𝜃𝑝2′ ⎦
⎥
⎥
⎥
⎥
⎤

⋯ 𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑀𝑝15

𝜕𝜃𝑝2′
⋮

𝜕𝑀𝑝55

𝜕𝜃𝑝2′ ⎦
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝜃̇𝑝. 

 

(2.31) 

The Centripetal-coriolis matrix 𝐶𝑝 ∈ ℝ5×5 specified for 5 DoF robot manipulator can 

be obtained as follows by using (2.29)-(2.31) in (2.26) and considering this result 

with the general form in (2.1)  

 𝐶𝑝 =
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝑀𝑝11

𝜕𝜃𝑝1
⋮

2
𝜕𝑀𝑝11

𝜕𝜃𝑝2′
−
𝜕𝑀𝑝15

𝜕𝜃𝑝1 ⎦
⎥
⎥
⎥
⎥
⎤

⋯ 𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝑀𝑝15

𝜕𝜃𝑝1
⋮

2
𝜕𝑀𝑝15

𝜕𝜃𝑝2′
−
𝜕𝑀𝑝55

𝜕𝜃𝑝1 ⎦
⎥
⎥
⎥
⎥
⎤

⋮ ⋱ ⋮

𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡2
𝜕𝑀𝑝15

𝜕𝜃𝑝1
−
𝜕𝑀𝑝11

𝜕𝜃𝑝2′
⋮

𝜕𝑀𝑝15

𝜕𝜃𝑝2′ ⎦
⎥
⎥
⎥
⎥
⎤

⋯ 𝜃̇𝑝𝑇

⎣
⎢
⎢
⎢
⎢
⎡2
𝜕𝑀𝑝55

𝜕𝜃𝑝1
−
𝜕𝑀𝑝15

𝜕𝜃𝑝2′
⋮

𝜕𝑀𝑝55

𝜕𝜃𝑝2′ ⎦
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.  

 

(2.32) 

The vector of gravatitional forces 𝐺𝑝 ∈ ℝ5 specified for 5 DoF robot manipulator can 

be obtained as follows by using (2.24) in the general form in (2.1)  

 𝐺𝑝 = �
𝜕𝑈
𝜕𝜃𝑝1

𝜕𝑈
𝜕𝜃𝑝2

𝜕𝑈
𝜕𝑑1

𝜕𝑈
𝜕𝜃𝑝1′

𝜕𝑈
𝜕𝜃𝑝2′

 

�
𝑻

 (2.33) 

where the derivative of the constraint equations according to the system actuator 

variables are zero and Γ𝑐  is the zero vector. 
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By using (2.27)-(2.32) in (2.26), compact form of the dynamic model of 5 DoF robot 

manipulator can be obtained as 

 𝑀𝑝𝜃̈𝑝 + 𝑉𝑝�𝜃𝑝, 𝜃̇𝑝�𝜃̇𝑝 = 𝜏𝑝 (2.34) 

where 𝑉𝑝 ∈ ℝ5×5 is a matrix that is used for the definition given as 𝑉𝑝𝜃̇𝑝 ≜ 𝐶𝑝𝜃̇𝑝 +

𝐺𝑝 = 𝑀̇𝑝𝜃̇𝑝 −
𝜕𝐾
𝜕𝜃𝑝

+ 𝜕𝑈
𝜕𝜃𝑝

. At this point it should be noted that dimensions of the all 

terms in (2.34) are assumed to be adjusted according to a 5 DoF robot manipulator 

that contains both revolute and prismatic joints.  

The following computations can be used to reach elements of the inertia matrix 𝑀𝑝 

and the matrix 𝑉𝑝 given in (2.34) 

 

Mp11=𝐼𝑝1 + 𝐼𝑝3 +
��𝐼𝑝5 +  𝐼𝑝7�(𝑍1)2�

𝑊1
2 +

𝑙𝑝2𝑚𝑝3

4
+  

𝑙𝑝2𝑚𝑝1

4
+ 𝑙𝑝2𝑚2

+  𝑙𝑝2𝑚𝑝5  +
𝑑32𝑚𝑝7(𝑍1)2

4 (𝑊1)2  

𝑀𝑝12 =
�𝐼𝑝5 +  𝐼𝑝7�(𝑍1)(𝑍2)

𝑊1
2 +

𝑙𝑝2𝑚𝑝2 𝑐𝑜𝑠�𝜃𝑝1 − 𝜃𝑝2�
2

+
𝑙𝑝2𝑚𝑝3 𝑐𝑜𝑠�𝜃𝑝1 − 𝜃𝑝2�

2
+ 𝑙𝑝2 𝑚𝑝5 𝑐𝑜𝑠�𝜃𝑝1 − 𝜃𝑝2�

+
𝑑32𝑚𝑝7(𝑍1)(𝑍2)

 (2𝑊1)2  

𝑀𝑝13 = −
�𝐼𝑝5 +  𝐼𝑝7� �𝑑2 +  𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1 +

𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2
𝑊1

�𝑍1 

𝑊1

−  
𝑑32𝑚𝑝7 𝑠𝑖𝑛2 𝜙𝑝 �𝑑2 +  𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1 +

𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2
𝑊1

�𝑍1
2𝑊1

 

𝑀𝑝14 = 0 
𝑀𝑝15 = 0 

𝑀𝑝22 = 𝐼𝑝2 + 𝐼𝑝4 +
�𝐼𝑝5 +  𝐼𝑝7�(𝑍2)2

(𝑊1)2 +
𝑙𝑝2𝑚𝑝2

4
+  𝑙𝑝2𝑚𝑝3 +

𝑙𝑝2𝑚𝑝4

2

+  2𝑙𝑝2𝑚𝑝5 +
𝑑32𝑚𝑝7(𝑍2)2

4(𝑊1)2  

𝑀𝑝23 = −
�𝐼𝑝5 +  𝐼𝑝7� �𝑑2 +  𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1 +  

𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2
𝑊1

�𝑍2
𝑊1

 

−  
�𝑑32𝑚𝑝7 �𝑑2 +  𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1 +  

𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2
𝑊1

�𝑍2�

2𝑊1
 

𝑀𝑝24 = 0 

(2.35) 
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𝑀𝑝25 = 0 

𝑀𝑝33 = 𝑚𝑝6 + 𝑚𝑝7(
𝑑3𝑐𝑜𝑠𝜙𝑝(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +

𝑙𝑝𝑐𝑜𝑠𝜃𝑝2
𝑊1

)

2
− 1)2

+ �𝐼𝑝5 + 𝐼𝑝7�(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝2
𝑊1

)2

+
𝑑32𝑚𝑝7𝑠𝑖𝑛2𝜙𝑝(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +

𝑙𝑝𝑐𝑜𝑠𝜃𝑝2
𝑌𝑊1

)2

4
 

𝑀𝑝34 = −
�𝐼𝑝5 + 𝐼𝑝7��𝑙𝑝𝑐𝑜𝑠𝜃𝑝1

′ −  𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2
′  �𝑍4

𝑊2
2

−  
𝑑32𝑚𝑝7�𝑙𝑝𝑐𝑜𝑠𝜃𝑝1

′ −  𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2
′ �𝑍4

 (2𝑊2)2

+
𝑑3𝑚𝑝7 𝑐𝑜𝑠 𝜙𝑝′ 𝑍4

2𝑊2
 

𝑀𝑝35 = 𝑀𝑝53 = −
�𝐼𝑝5 + 𝐼𝑝7��𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1

′ − 𝑑2 + 𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2′ �𝑍4
𝑊2

2

−
𝑑32𝑚𝑝7�𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1′ − 𝑑2 +  𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2′ �𝑍4

 (2𝑊2)2

+
� 𝑑3𝑚𝑝7 𝑐𝑜𝑠 𝜙𝑝′ �𝑍4

2𝑊2
 

𝑀𝑝44 = 𝐼𝑝1 + 𝐼𝑝3 + 
�𝐼𝑝5 + 𝐼𝑝7�(𝑍3)2

𝑊2
2  +  

𝑙𝑝2𝑚𝑝1

4
+ 𝑙𝑝2𝑚𝑝2 +

𝑙𝑝2𝑚3

4

+ 𝑙𝑝2𝑚𝑝5 +
𝑑32𝑚𝑝7(𝑍3)2

 (2𝑊2)2  

𝑀𝑝45 =
�𝐼𝑝5 + 𝐼𝑝7�𝑍3𝑍4

𝑊2 +
𝑑32𝑚𝑝7𝑍3𝑍4

4 (𝑊2)2 +
𝑙𝑝2𝑚𝑝2 𝑐𝑜𝑠�𝜃𝑝1

′ − 𝜃𝑝2
′ �

2

+
𝑙𝑝2𝑚𝑝3 𝑐𝑜𝑠�𝜃𝑝1

′ − 𝜃𝑝2
′ �

2
+ 𝑙𝑝2𝑚𝑝5 𝑐𝑜𝑠�𝜃𝑝1

′ − 𝜃𝑝2
′ � 

𝑀𝑝55 = 𝐼𝑝2 + 𝐼𝑝4 +
�𝐼𝑝5 + 𝐼𝑝7�(𝑍4)2

𝑊2
2 +

𝑙𝑝2𝑚𝑝2

4
+ 𝑙𝑝2𝑚𝑝3 +

𝑙𝑝2𝑚𝑝4

4

+ 𝑙𝑝2𝑚𝑝5 +
𝑑32𝑚𝑝7(𝑍4)2

 (2𝑊2)2  

𝑉1𝑖     = 𝑣𝑝1𝑖�𝜃̇𝑝1 , 𝜃̇𝑝2 ,𝑑1̇ , 𝜃𝑝1 ,𝜃𝑝2 ,𝑑1� 
𝑉2𝑖     = 𝑣𝑝2𝑖�𝜃̇𝑝1 , 𝜃̇𝑝2 ,𝑑1̇ ,𝜃𝑝1 ,𝜃𝑝2 ,𝑑1� 
𝑉3𝑖     = 𝑣𝑝3𝑖�𝜃̇𝑝1 , 𝜃̇𝑝2 ,𝑑1̇ , 𝜃̇𝑝1

′ , 𝜃̇𝑝2
′ ,𝜃𝑝1 ,𝜃𝑝2 ,𝑑1,𝜃𝑝1

′ ,𝜃𝑝2
′ � 

𝑉4𝑖     = 𝑣𝑝4𝑖�𝜃̇𝑝1
′ , 𝜃̇𝑝2

′ ,𝑑1̇ ,𝑑1, 𝜃𝑝1
′ ,𝜃𝑝2

′ � 
𝑉5𝑖     = 𝑣𝑝5𝑖�𝜃̇𝑝1

′ , 𝜃̇𝑝2
′ ,𝑑1̇ ,𝑑1,𝜃𝑝1

′ ,𝜃𝑝2
′ �     

where j = 1, ⋯ ,5 at this point it should be noted that further detail about the terms in 

(2.35) can be found in Appendix B.The remaining elements of 𝑀𝑝 can be reached via 

its symmetry. 
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.  

 

Chapter 3 

Controller Design and Analysis for 

Robotic Systems 

In this chapter, control designs realized for both robotic systems, theoretical analysis 

of these control designs and performance demonstration of the designed controllers 

in simulation and experimental studies are presented. At this point it should be noted 

that two different robust adaptive controllers one of which is realized in joint space 

while the other one is realized in task space are designed for both robotic systems. 

Theoretical analysis of the designed controllers is realized via Lyapunov based 

arguments while their efficiency and performance are tested in simulation and 

experimental studies. Dynamic models obtained in Chapter 2 are utilized to conduct 

simulation studies while experimental studies are realized on experimental setups 

produced within the scope of the project in which this study is included. Providing 

multiple options that can be used for the control of robotic systems used as 

supportive systems in cochlear microrobot surgical operations is the main reason for 

the control design in both joint and task space. 

It should be noted that the ascept which movement of the joints of both manipulator 

systems are ensured via current driven direct current motors and there is a linear 

relationship between torque and current is accepted as valid during the control 

designs by considering the experimental setup.This relationship was experimentally 

obtained. All the details about obtaining this relationship are given in the Appendix 

C. 
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3.1 Robust Adaptive Control Design for Serial Robotic 

System 

In this chapter, two different control designs are presented for the serial robotic 

system that contains two independent 3 DoF RRR serial robot manipulators. The 

main objective of this system is to control the position of the microrobot by utilizing 

the magnetic field created with the help of magnets located at the end effectors of the 

mentioned robot manipulators. However, to ensure the permanence of the created 

magnetic field and its effectiveness on the microrobot, the movements of robot 

manipulators must be continued so that the distance between their end effectors is 

always protected. The successful operation of the system is possible with the 

synchronous control of the positions of the end effectors. To achieve this goal, the 

main control objective is determined as the end effector of one of the two structurally 

identical robot manipulators to follow the desired trajectory, and the end effector of 

the other to operate synchronously with respect to the first end effector by keeping 

the distance between the two end effectors. 

From the control purpose, it can be reached that the main task is determined in the 

space of end effector and this space is called as task space. There are two possible 

approaches to realize a trajectory tracking in the task space. In the common approach 

frequently encountered in the literature trajectory of the joint space is obtained 

according to the desired trajectory of the task space via inverse kinematic and the 

control design is realized in the joint space. In another approach that has recently 

been encountered in the literature, the control design is directly realized in the task 

space. All approaches are presented in this chapter. Robust control design is 

preferred to take the advantage of the structure that is able to cope with parameter 

uncertainties, parameter changes and external disturbances. To deal with possible 

high control effort necessity of the robust controllers its structure is supported via 

adaptive compensations and as a result of these robust adaptive control designs are 

realized for both joint space and task space controllers. At this point it should be 

noted that the robot manipulators in the robotic system are primarily modeled and 

their models are completely known. However, in the future, control designs 

independent of model knowledge are aimed due to the possible negative effects that 
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situations such as possible changes in experimental systems, system dynamics that 

cannot be modeled, disturbances and etc. can cause in the control signal and process. 

For this purpose, robust adaptive control designs are proposed for both cases.  

The following items are accepted as valid during the control designs by considering 

the experimental setup: 

• The angular position and angular velocity of all joints are measurable. 

• The position and velocity of the end effectors of both robot manipulators are 

measurable. 

• All measurable system states are known by the other robot manipulator. 

• The control input signal is sent to both robot manipulators via the same 

computer with an equal amount of time delay. 

In the following subsections, control designs, related analyses and performance 

verifications of designed controllers are presented in a detailed manner. The most 

important thing to consider here is that, although the control objectives are common, 

the two controller structures are different completely different it and realizing a 

performance comparison between them is not an appropriate approach. Obtaining 

more than one controller designs that are available for the experimental system and 

are suitable for achieving the control objective is the main aim of realizing the 

trajectory tracking in both joint space and task space. 
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3.1.1 Joint Space Control of 3 DoF RRR Serial Manipulator 

The main purpose of the joint space control is to reach the tracking trajectory in the 

joint space by using inverse kinematics in order to find the equivalent of the tracking 

trajectory determined in the task space. And then, a control design that makes the 

difference between the angular positions of the joints and the determined trajectory 

to zero is proposed. Robust control design approach is preferred to cope with 

parametric uncertainties. However, as can be seen from the literature, the biggest 

challenge of this type of control design is the possibility of needing a higher control 

effort. To overcome this issue, the designed robust controller is supported with 

adaptive compensations, which is a frequently preferred approach in the literature.  

3.1.1.1 Model Properties 

The dynamic model in (2.19) is used with the following skew-symmetry and 

boundedness properties that are valid for all robot manipulators having an identical 

structure with robot manipulators used in this study 

 ℎ𝑇 �1
2
𝑀̇𝑠 − 𝑉𝑠� ℎ = 0,∀h ∈ ℝ3. (3.1) 

At this point it should be noted that, the robotic system consists of two robot 

manipulators having the identical structure. Since the proposed control design is 

independent from system parameters, it is a valid control design for all structurally 

identical robot manipulators. For this reason, the control purpose can be achieved by 

applying the control design made on the model given in this chapter to both robot 

manipulators. Owing to this issue the control designs proposed in this chapter are 

given by considering the general structure given in (2.19) and at the end of the 

control design process a controller that can be used for the control of both robot 

manipulators included in the serial robotic system. The only notation specification is 

made in the simulation sections to show the control gains of two robot manipulators 

separately. 
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3.1.1.2 Error System Development  

The tracking error is defined as the difference between the desired trajectory 

obtained via inverse kinematics from the desired of the end effector and the 

measured positions of the joint angles. The mathematical expression of the tracking 

error is given as 

 𝑒𝑒 ≜ 𝜃𝑠𝑑 − 𝜃𝑠 (3.2) 

where 𝜃𝑠𝑑 ∈ ℝ
3 denotes second order differentiable, bounded, and sufficiently 

smooth desired trajectory. Boundedness of the desired trajectory and its first and 

second order time derivatives are other properties that are utilized in the control 

design. An auxiliary error term denoted by 𝑟𝑒 ∈ ℝ3  is defined as 

 𝑟𝑒 ≜ 𝑒̇𝑒 + 𝛼𝑒𝑒𝑒 (3.3) 

where 𝛼𝑒 ∈ ℝ3×3 is a positive definite, diagonal and constant gain matrix. The 

following expression can be obtained by premultiplying the time derivative of (3.3) 

is with 𝑀𝑠 and and adding the term 𝑉𝑠𝑟𝑒  to the both sides of the resulting equation  

 𝑀𝑠𝑟̇𝑒 = 𝑓𝑑𝑒 − 𝜏𝑠 − 𝑉𝑠𝑟𝑒 − 𝑒𝑒 (3.4) 

where (2.19) and (3.2) are utilized. An auxiliary term 𝑓𝑑𝑒 ∈ ℝ
3 is defined as  

 𝑓𝑑𝑒 ≜ 𝑀𝑠𝜃̈𝑠𝑑 + 𝑉𝑠𝜃̇𝑠 + 𝑉𝑠𝑟𝑒 + 𝑀𝑠𝛼𝑒𝑒̇𝑒 + 𝑒𝑒 . (3.5) 

For the following steps of the controller design and analysis, this auxiliary can be 

decomposed as 

 𝑓𝑑𝑒 = 𝑌𝑒�𝜃𝑠, 𝜃̇𝑠, 𝜃̇𝑠𝑑 , 𝜃̈𝑠𝑑�𝜙𝑒 (3.6) 

where 𝑌𝑒�𝜃𝑠, 𝜃̇𝑠, 𝜃̇𝑠𝑑 , 𝜃̈𝑠𝑑� ∈ ℝ
3×𝑛 denotes the regression matrix containing the 

certain and measurable terms while 𝜙𝑒 ∈ ℝ𝑛 indicates the uncertain constant vector 

containing the system parameters. To cope with the mentioned uncertainty, an adaptive 
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compensation terms 𝜙�𝑒 ∈ ℝ𝑛 is utilized and the adaptive compensation error  𝜙�𝑒 ∈ ℝ𝑛  

is defined as 

 𝜙�𝑒 ≜ 𝜙𝑒 − 𝜙�𝑒. (3.7) 

By substituting the (3.6) and (3.7) into (3.4), the open loop error system can be 

obtained as 

 𝑀𝑠𝑟̇𝑒 = 𝑌𝑒�𝜃𝑠, 𝜃̇𝑠, 𝜃̈𝑠𝑑�𝜙�𝑒 + 𝑌𝑒�𝜃𝑠, 𝜃̇𝑠, 𝜃̈𝑠𝑑�𝜙�𝑒 − 𝜏𝑠 − 𝑉𝑠𝑟𝑒 − 𝑒𝑒 (3.8) 

3.1.1.3 Control Design  

Control input is designed as   

 𝜏𝑠 = 𝑌𝑒𝜙�𝑒 + 𝐺𝑒𝑟𝑒 (3.9) 

where 𝐺𝑒 ∈ ℝ3×3 denotes the positive definite, constant and diagonal control gain 

matrix. The closed loop error system required for stability analysis can be obtained 

as follows by substituting the designed controller in (3.8)  

 
 𝑀𝑠𝑟̇𝑒 = 𝑌𝑒�𝜃𝑠, 𝜃̇𝑠, 𝜃̈𝑠𝑑�𝜙�𝑒 − 𝑉𝑠𝑟𝑒 − 𝐺𝑒𝑟𝑒 − 𝑒𝑒 . (3.10) 

After that point the analysis can be continued with the stability analysis. 

3.1.1.4 Stability Analysis 

Theorem 1: The global asymptotic stability of the closed loop error system 

mathematically expressed as 

 
 

‖𝑒𝑒(𝑡)‖𝑖∞  𝑎𝑛𝑑 ‖𝑟𝑒(𝑡)‖𝑖∞ → 0 𝑎𝑠 𝑡 → 0 (3.11) 

can be provided via the control design in (3.9) . 

Proof: The nonnegative Lyapunov function candidate  𝑉𝑒�ee, re,ϕ�e� ∈ ℝ is selected 

as  
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 𝑉𝑒 =
1
2
�𝑒𝑒𝑇𝑒𝑒 + 𝑟𝑒𝑇𝑀𝑠𝑟𝑒 + 𝜙�𝑒

𝑇𝜙�𝑒�. (3.12) 

Time derivative of the Lyapunov function can be obtained as  

 
𝑉̇𝑒 = 𝑒𝑒𝑇(𝑟𝑒 − 𝛼𝑒𝑒𝑒) − 𝑟𝑒𝑇𝐺𝑒𝑟𝑒 + 𝜙�𝑒

𝑇 �−𝜙�̇𝑒 + 𝑌𝑒𝑇𝑟𝑒�

+ 𝑟𝑒𝑇 �
1
2
𝑀̇𝑠 − 𝑉𝑠� 𝑟𝑒 − 𝑟𝑒𝑇𝑒𝑒 

(3.13) 

where (3.3), time derivative of (3.7) and (3.10) are utilized. 

If the adaptive compensation 𝜙�𝑒 is updated according to the following rule 

 𝜙�̇𝑒 = 𝑌𝑒𝑇𝑟𝑒 (3.14) 

and the skew-symmetry property in (3.1) are utilized, (3.13) can be upper bounded as 

 𝑉̇𝑒 ≤ −𝛽𝑒‖𝑧𝑒‖ 
 

(3.15) 

where 𝛽𝑒 ∈ ℝ denotes the positive constant defined as 

 𝛽𝑒 ≜ −min{𝜆𝑚𝑖𝑛(𝛼𝑒), 𝜆𝑚𝑖𝑛(𝐺𝑒)} (3.16) 

and the vector of combined error 𝑧𝑒 ∈ ℝ6 is (3.16) is defined as 

 𝑧𝑒 ≜ [𝑒𝑒𝑇 𝑟𝑒𝑇]𝑇. 
 

(3.17) 

In (3.16), 𝜆𝑚𝑖𝑛(⋅) denotes the minimum eigenvalue of the matrix. 

The boundedness of 𝑉𝑒(ee, re,ϕ�e) can be reached from (3.12) and (3.15) and it can 

be utilized to guarantee the boundedness of 𝑧𝑒(𝑡) and its elements (i.e., 𝑧𝑒(𝑡), 𝑒𝑒(𝑡) 

and 𝑟𝑒(𝑡) ∈ ℒ∞). Standard signal chasing arguments can be utilized to show the 

boundedness of the all of the remaining closed-loop operation signals. The 

boundedness of 𝑟𝑒(𝑡) and 𝑒𝑒(𝑡) can be utilized along with (3.3) to show the 

boundedness of 𝑒̇(𝑡) (i.e., 𝑒̇𝑒(𝑡) ∈ ℒ∞) and this results can be used to shown that 

𝑒𝑒(𝑡) is a uniformly continuous signal. Finally, it can be shown that  𝑧𝑒(𝑡) ∈ ℒ2 from 

the integration of both sides of (3.15) and it proves that 𝑒𝑒(𝑡) and 𝑧𝑒(𝑡) ∈ ℒ2. The 
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asymptotic tracking result in Theorem 1 can be obtained when all of these 

boundedness statements are considered with the Barbalat’s Lemma [61].  

3.1.1.5 Simulation Studies 

The following link lengths and masses that were selected in accordance with the 

experimental setup were used in the dynamic model in (2.19) for the simulation 

studies 

 𝑙𝑠1 = 𝑙𝑠2 = 0.105 𝑚, 𝑙𝑠3 = 0.04 𝑚 

𝑚𝑠1 = 95.18 𝑔,𝑚𝑠2 = 78.78 𝑔,𝑚𝑠3 = 11.19 𝑔. 
(3.18) 

At this point it should be noted that the dimensions given in (3.18) are same for both 

of the robot manipulators in the serial robotic system. The desired trajectory of the 

first robot manipulator denoted by 𝜃𝑠𝑑𝑚1
∈ ℝ3 was determined in the joint space as 

follows, and the desired trajectory of the second robot manipulator was adjusted to 

follow position changes in the first robot manipulator while maintaining the distance 

between the end effectors 

 𝜃𝑠𝑑𝑚1
(𝑡) = �

81.14 − 3.007 𝑐𝑜𝑠(0.632𝑡 )  − 0.129 𝑠𝑖𝑛(0.632𝑡)
71.02 − 7.082𝑐𝑜𝑠(0.632𝑡 ) + 0.09566𝑠in (0.632𝑡)
117.8 − 4.074𝑐𝑜𝑠(0.632𝑡 ) + 0.03005𝑠𝑖𝑛 (0.632𝑡)

� 

[𝑑𝑒𝑔] 

(3.19) 

The initial position of the first robot manipulator was selected as 𝜃𝑠𝑚1
(0) =

[73 83 110]𝑇[𝑑𝑒𝑔], and the initial position of the second robot manipulator was 

selected as 𝜃𝑠𝑚2 (0) = [110   − 128   100]𝑇[𝑑𝑒𝑔]. Controller gains were selected as 

follows via trial-and-error method for both robot manipulators 

 
αe1,2 = 𝑑𝑖𝑎𝑔{5, 4, 3}  
Ge1,2 = 𝑑𝑖𝑎𝑔{ 0.05,0.04, 0.003} (3.20) 

where 𝛼𝑒𝑖 and 𝐺𝑒𝑖 ∈ ℝ
3×3 denotes the gain values adjusted for 𝑖𝑡ℎ robot manipulator 

for 𝑖 = 1 and 2. 
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Desired trajectories and actual positions are shown in Figures 3.1 and 3.2 for the first 

and second robot manipulators, respectively. Tracking errors are shown in Figures 

3.3 and 3.4 for the first and second robot manipulators, respectively. From Figures 

3.1-3.4, it can be seen that the control objective was met. Torques applied to the 

joints of the first and second robot manipulators are shown in Figures 3.5 and 3.6, 

respectively. 

 
Figure 3.1: Desired vs. actual positions of the first robot manipulator’s joints 

 
Figure 3.2: Desired vs. actual positions of the second robot manipulator’s joints 
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Figure 3.3: Tracking error of the first robot manipulator’s joints 

 
Figure 3.4: Tracking error of the second robot manipulator’s joints 

 
Figure 3.5: Control input torques for the first robot manipulator joints 
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Figure 3.6: Control input torques for the second robot manipulator joints 

 
Figure 3.7: Adaptive compensation terms for the first robot manipulator 
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Figure 3.8: Adaptive compensation terms for the second robot manipulator 

3.1.1.6 Experimental Results  

Performance of the designed controller was tested on the experimental setup by 

keeping the desired trajectory, initial positions and control gains identical with the 

simulation studies presented in Chapter 3.1.1.5.  

Desired trajectories and actual positions are shown in Figures 3.9 and 3.10 for the 

first and second robot manipulators, respectively. Tracking errors are shown in 

Figures 3.11 and 3.12 for the first and second robot manipulators, respectively. From 

Figures 3.9-3.12, it can be seen that the control objective was met. Torques applied 

to the joints of the first and second robot manipulators are shown in Figures 3.13 and 

3.14, respectively. 
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Figure 3.9: Desired vs. actual positions of the first robot manipulator’s joints 

 
Figure 3.10: Desired vs. actual positions of the second robot manipulator’s joints 

 
Figure 3.11: Tracking error of the first robot manipulator’s joints 
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Figure 3.12: Tracking error of the second robot manipulator’s joints 

 
Figure 3.13: Control input torques for the first robot manipulator’s joints 

 
Figure 3.14: Control input torques for the second robot manipulator’s joints 
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Figure 3.15: Adaptive compensation terms for the first robot manipulator 

 
Figure 3.16: Adaptive compensation terms for the second robot manipulator 
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3.1.2 Task Space Control of 3 DoF RRR Serial Manipulator 

Different from the joint space control the desired trajectory of the first manipulator 

can directly be determined in terms of position of the end effector. Owing to this 

issue, inverse kinematic can be avoided and the control purpose can directly be 

determined in the space where the main study is realized. To determine the control 

purpose in the task space, the task space must also be included in the dynamic model. 

This situation is possible by using a two-stage model whose first stage is the dynamic 

model given in (2.19) and second stage is another dynamic equation that give the 

transition between joint and task spaces. In this chapter, the backstepping control 

design approach is used, considering the suitability of the approach for the control of 

systems with multiple stage models. In accordance with the purpose of the mentioned 

approach, a virtual control input is designed to obtain the zero convergence of the 

tracking error defined in the task space, and it is shown that the control objective can 

be achieved when the designed controller is substituted with one of the system states. 

Then, the control signal is designed to make the error between the virtual control 

input and the system state used to instead of this input zero. 

3.1.2.1 Model Properties  

To include the task space into the dynamic model of 3 DoF revolute joint serial robot 

manipulator, the dynamic model in (2.19) is used with the forward kinematic model 

given as 

 𝑥𝑠 = 𝑓(𝜃𝑠) (3.21) 

where 𝑥𝑠  ∈ ℝ3 represents end position of the end effector in Cartesian coordinate 

systems and forward kinematics model is given with the function denoted as 

f:ℝ3 → ℝ3. Time derivative of (3.21) can be expressed with Jacobian matrix 

𝐽𝑠(𝜃𝑠) ∈ ℝ3×3 

 𝑥̇𝑠 = 𝐽𝑠(𝜃𝑠)𝜃̇𝑠 (3.22) 

where the Jacobian matrix of the each of the robot manipulators is defined as 
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� (3.23) 

The two stage dynamic model, whose stages are given in (2.19) and (3.22), 

respectively, are used for the control design presented in this chapter. Moreover, 

skew-symmetry property given in (3.1) and the availability of the Jacobian matrix in 

(3.23) are utilized. At this point it should be noted that, availability of the Jacobian 

matrix is commonly preferred approach in the task space control design of robot 

manipulators and since the Jacobian matrix just contain measurable angular positions 

and link lengths it doesn’t disrupt the robustness of the designed controller. 

Invertibility of the Jacobian matrix for all system states is another property that is 

used in the control design.  

3.1.2.2 Error System Development 

The tracking error is defined as the difference between measured position of the end 

effector and the tracking trajectory. 

 eg ≜ xs − xsd (3.24) 

where xsd ∈ ℝ
3represents one times differentiable, bounded, and smooth enough 

tracking trajectory. Boundedness of the desired trajectory and its first order time 

derivative are other properties that are utilized in the control design. The difference 

between virtual control input and angular velocity is defined as an auxiliary error 

term that is given as 

 𝑒𝑣 ≜ 𝜃̇𝑠 − 𝜏𝑣 (3.25) 

where τv ∈ ℝ3 represents virtual control input. The following result can be obtained 

when (3.22) is substituted in the time derivative of (3.24) 

 𝑒̇𝑔 = 𝐽𝑠𝜃̇𝑠 − 𝑥𝑠𝑑 (3.26) 
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The virtual control input is designed as  

 𝜏𝑣 = 𝐽𝑠−1(𝑥̇𝑠𝑑 − 𝐺𝑔𝑒𝑔) (3.27) 

where 𝐺𝑔 ∈ ℝ3×3 is a positive definite, constant and diagonal gain matrix. If the 

virtual control input in (3.27) is substituted with 𝜃̇𝑠 in (3.26) the following result is 

obtained 

 𝑒̇𝑔 = −𝐺𝑔𝑒𝑔 (3.28) 

The error system in (3.27) can be considered as a closed loop error system and a 

preliminary Lyapunov-like analysis can be realized onto it. For this analysis, a non-

negative Lyapunov function candidate defined as 

 𝑉𝑣 ≜
1
2
𝑒𝑔𝑇𝑒𝑔 (3.29) 

Time derivative of (3.29) is obtained as 

 𝑉̇𝑣 = −𝑒𝑔𝑇𝐺𝑔𝑒𝑔 
 

(3.30) 

where (3.28) is utilized. This result is enough to show that, so that the control 

objective is met. However, to make the analysis in (3.29) and (3.30) a valid analysis, 

zero convergence of the auxiliary error term defined in (3.25) must be obtained. 

After this point, necessary analysis is made to guarantee this situation. 

The time derivative of (3.25) is premultiplying with 𝑀s and (2.19) and (3.24) are 

utilized in the resulting equation to obtain the open loop error system given as 

 𝑀𝑠𝑒̇𝑣 = 𝑓𝑔 + 𝜏𝑠 − 𝑉𝑠𝑒𝑣 (3.31) 

where Vsev is added to both sides. The auxiliary term 𝑓𝑔�𝜃𝑠, 𝜃̇𝑠, 𝑥𝑠𝑑 , 𝑥̇𝑠𝑑 , 𝑥̈𝑠𝑑� ∈ ℝ
3 is 

defined as  

 𝑓𝑔 = −𝑉𝑠𝜃̇𝑠 + 𝑉𝑠𝑒𝑣 − 𝑀𝑠[𝐽𝑠̇−1�𝑥̇𝑠𝑑 − 𝐺𝑔𝑒𝑔� + 𝐽𝑠−1(𝑥̈𝑠𝑑 − 𝐺𝑔𝑒̇𝑔)] (3.32) 
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The auxiliary term in the above equation can be decomposed as 

 𝑓𝑔 = 𝑌𝑔�𝜃𝑠, 𝜃̇𝑠, 𝑥𝑠𝑑 , 𝑥̇𝑠𝑑 , 𝑥̈𝑠𝑑�𝜙𝑔 (3.33) 

In equation (3.32) 𝑌𝑔�𝜃𝑠, 𝜃̇𝑠, 𝜃̈𝑠𝑑� ∈ ℝ
3×𝑚 structure shows the regression matrix 

containing the fully known only measurable terms and the trajectory, while 𝜙𝑔 ∈ ℝ𝑚 

indicates the uncertain vector containing the constant system parameters. To cope with 

the mentioned uncertainty, adaptive compensation of uncertainty is used and adaptive 

compensation error  𝜙�𝑔 ∈ ℝ𝑚  is defined as 

 𝜙�𝑔 ≜ 𝜙𝑔 − 𝜙�𝑔 (3.34) 

By substituting the equations (3.33) and (3.34) into (3.31), the open loop error 

system can be obtained as 

 𝑀𝑠𝑒̇𝑣 = 𝑌𝑔(𝜃𝑠, 𝜃̇𝑠, 𝜃̈𝑠𝑑)𝜙�𝑔 + 𝑌𝑔(𝜃𝑠, 𝜃̇𝑠, 𝜃̈𝑠𝑑)𝜙�𝑔 + 𝜏𝑠 − 𝑉𝑠𝑒𝑣 (3.35) 

3.1.2.3 Control Design  

Control input is designed as follows  

 𝜏𝑠 = −𝑌𝑔𝜙�𝑔 − 𝐺𝑎𝑒𝑣 (3.36) 

where  𝐺𝑎 ∈ ℝ3×3 denotes the positive definite, constant and diagonal control gain 

matrix. The closed loop error system required for stability analysis can be obtained 

as follows by substituting the designed controller in (3.35)   

 𝑀𝑠𝑒̇𝑣 = −𝑌𝑔𝜙�𝑔 − 𝐺𝑎𝑒𝑣 − 𝑉𝑠𝑒𝑣. (3.37) 

After that point the stability analysis can be continued with the stability analysis. 
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3.1.2.4 Stability Analysis  

Theorem 2: The global asymptotic stability of the closed loop error system 

mathematically expressed as 

 
 

�𝑒𝑔(𝑡)�
𝑖∞

 𝑎𝑛𝑑 ‖𝑒𝑣(𝑡)‖𝑖∞ → 0 𝑎𝑠 𝑡 → 0 (3.38) 

can be provided via the control design in (3.36) . 

Proof: The non-negative Lyapunov function candidate  𝑉𝑔�𝑒𝑣, 𝑒𝑔,𝜙�𝑔� ∈ ℝ is 

selected as  

 𝑉𝑔 = 𝑉𝑣 +
1
2
�𝑒𝑣𝑇𝑀𝑠𝑒𝑣 + 𝜙�𝑔

𝑇𝜙�𝑔� (3.39) 

Time derivative of the Lyapunov function can be obtained as 

 
𝑉̇𝑔 = −𝑒𝑔𝑇𝐺𝑔 𝑒𝑔 − 𝑒𝑣𝑇𝐺𝑎𝑒𝑣 + 𝜙�𝑔

𝑇 �−𝜙�̇𝑔 + 𝑌𝑔𝑇𝑒𝑣�

+ 𝑒𝑣𝑇 �
1
2
𝑀̇𝑠 − 𝑉𝑠� 𝑒𝑣 

(3.40) 

where (3.30), time derivative of (3.34) and (3.37) are utilized.  

If the adaptive compensation 𝜙�𝑔 is updated according to the following rule 

 𝜙�̇𝑔 = 𝑌𝑔𝑇𝑒𝑣 (3.41) 

and the skew-symmetry property in (3.1) are utilized, (3.40) can be upper bounded as 

 𝑉̇𝑔 ≤ −𝛽𝑔�𝑧𝑔� (3.42) 

where 𝛽𝑔 ∈ ℝ denotes the positive constant defined as 

 𝛽𝑔 ≜ −min�𝜆𝑚𝑖𝑛�𝐺𝑔�, 𝜆𝑚𝑖𝑛(𝐺𝑎)� 
 

(3.43) 

and 𝑧𝑔 ∈ ℝ6 is the vector of combined error defined as 

 𝑧𝑔 ≜ �𝑒𝑔𝑇 𝑒𝑣𝑇�
𝑇. 

 
(3.44) 
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The boundedness of 𝑉𝑔(ee, re,ϕ�e) can be reached from (3.39) and (3.42) and it can 

be utilized to guarantee the boundedness of 𝑧𝑔(𝑡) and its elements (i.e., 𝑧𝑔(𝑡), 𝑒𝑔(𝑡) 

and 𝑒𝑣(𝑡) ∈ ℒ∞). Standard signal chasing arguments can be utilized to show the 

boundedness of the all of the remaining closed loop operation signals. Finally, it can 

be shown that  𝑧𝑔(𝑡) ∈ ℒ2 from the integration of both sides of (3.42) and it proves 

that 𝑒𝑔(𝑡) and 𝑧𝑔(𝑡) ∈ ℒ2. The asymptotic tracking result in Theorem 2 can be 

obtained when all of these boundedness statements are considered with the 

Barbalat’s Lemma [61].  

3.1.2.5 Simulation Studies  

Dimensions of the robot manipulators were used as given in (3.18). The desired 

trajectory of the first robot manipulator was determined in the task space as follows, 

and the desired trajectory of the second robot manipulator was adjusted to follow 

position changes in the first robot manipulator while maintaining the distance 

between the end effectors 

 xsdm1
= �

0.03𝑐𝑜𝑠(𝑎1)
0.03𝑠𝑖𝑛(𝑎1)

−90
�  �

𝑚
𝑚

deg
�  (3.45) 

where 

 𝑎1 = 0.2625 − 0.2587 𝑐𝑜𝑠(0.6285𝑡 ) − 0.00023 𝑠𝑖𝑛(0.6285𝑡) (3.46) 

The initial position of the first robot manipulator was selected as  

xsm1
(0) = [0.028 0.01 −103]𝑇[𝑚 𝑚 𝑑𝑒𝑔], and the initial position of the second 

robot manipulators was selected as xsm2
(0) = [−0.0356 0.00083 92]𝑇 

[𝑚 𝑚 𝑑𝑒𝑔].  Control gains were selected as follows for the first robot manipulator 

via trial-and-error method 

 
𝐺𝑔1 = 𝑑𝑖𝑎𝑔{2, 2, 3}  
𝐺𝑎1 = 𝑑𝑖𝑎𝑔{0.06, 0.06, 0.007} (3.47) 

Control gains were selected as follows for the first robot manipulator via trial-and-

error method 

 
𝐺𝑔2 = 𝑑𝑖𝑎𝑔{1.5, 1, 1}  
𝐺𝑎2 = 𝑑𝑖𝑎𝑔{0.1, 0.05, 1} (3.48) 
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Desired trajectories and actual positions of end effectors of the first and second robot 

manipulators are shown in Figures 3.17 and 3.18 against time, respectively. The 

movements of the end effectors in Cartesian coordinate system can be seen in 

Figures 3.19 and 3.20 with their desired movements in Cartesian coordinate system. 

Tracking errors for the tracking of end effectors are shown in Figures 3.21 and 3.22 

for the first and second robot manipulator, respectively. From Figures 3.17-3.20, it 

can be seen that the control objective was met. Torques applied to the joints of the 

first and second robot manipulators are shown in Figures 3.23 and 3.24, respectively. 

Adaptive compensation of the first and second robot manipulators are shown in 

Figures 3.25 and 3.26, respectively. 

 
Figure 3.17: Desired vs. actual positions of the first robot manipulator’s end effector 

 
Figure 3.18: Desired vs. actual positions of the second robot manipulator’s end 

effector  
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Figure 3.19: Desired vs. actual positions of the first robot manipulator’s end effector 

 
Figure 3.20: Desired vs. actual positions of the second robot manipulator’s end 

effector 

 
Figure 3.21: Tracking error of the first robot manipulator’s end effector 
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Figure 3.22: Tracking error of the second robot manipulator’s end effector 

 
Figure 3.23: Control input torques for the first robot manipulator’s joints 

 
Figure 3.24: Control input torques for the second robot manipulator’s joints 
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Figure 3.25: Adaptive compensation terms for the first robot manipulator 

 
Figure 3.26: Adaptive compensation terms for the second robot manipulator 
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3.1.2.6 Experimental Results  

Performance of the designed controller was tested on the experimental setup by 

keeping the desired trajectory, initial positions and control gains identical with the 

simulation studies presented in Chapter 3.1.2.5.  

Desired trajectories and actual positions of end effectors of the first and second robot 

manipulators are shown in Figures 3.27 and 3.28 against time, respectively. The 

movements of the end effectors in Cartesian coordinate system can be seen in 

Figures 3.29 and 3.30 with their desired movements in Cartesian coordinate system. 

Tracking errors for the tracking of end effectors are shown in Figures 3.31 and 3.32 

for the first and second robot manipulator, respectively. From Figures 3.27-3.32, it 

can be seen that the control objective was met. Torques applied to the joints of the 

first and second robot manipulators are shown in Figures 3.33 and 3.34, respectively. 

Adaptive compensation of the first and second robot manipulators are shown in 

Figures 3.35 and 3.36, respectively. 

 
Figure 3.27: Desired vs. actual positions of the first robot manipulator’s end effector 
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Figure 3.28: Desired vs. actual positions of the second robot manipulator’s end 

effector 

 
Figure 3.29: Desired vs. actual positions of the first robot manipulator’s end effector 

 
 Figure 3.30: Desired vs. actual positions of the second robot manipulator’s end 

effector 
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Figure 3.31: Tracking error of the first robot manipulator’s end effector 

 
Figure 3.32: Tracking error of the second robot manipulator’s end effector 

 
Figure 3.33: Control input torques for the first robot manipulator’s joints 
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Figure 3.34: Control Input Torques for the Second Robot Manipulator’s Joints 

 
Figure 3.35: Adaptive compensation terms for the first robot manipulator 
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Figure 3.36: Adaptive compensation terms for the second robot manipulator 
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3.2 Robust Adaptive Control Design for Parallel 

Robotic System 

In this chapter, two different control designs are presented for the parallel robotic 

system that contains a 5 DoF robot manipulator that contain both of revolute and 

prismatic joints and two independently movable end effectors into its structure. The 

main objective of this system is to control the position of the microrobot by utilizing 

the magnetic field created with the help of magnets located at the mentioned end 

effectors. However, to ensure the permanence of the created magnetic field and its 

effectiveness on the microrobot, the movements of the end effectors must be 

continued so that the distance between them must always be protected in a tracking 

rule. The successful operation of the system is possible with a feasible control 

design. As it can be seen from the dynamic model in (2.38), the structure of the 

parallel robotic system is considered as a 5 DoF integrated structure and the control 

problem must be solved by considering this issue. 

Similar with the serial robotic system it can be considered that the main task is 

determined in the space of end effectors and this space is called as task space and, 

similar to control designs realized for the serial robotic system, a task determined in 

this main space can be realized via joint space or directly in the task space. Each of 

approaches is presented in this chapter. Robust control design is preferred to take the 

advantage of the structure that is able to cope with parameter uncertainties, parameter 

changes and external disturbances. To cope with possible high control effort 

necessity of the robust controllers its structure is supported via adaptive 

compensations and as a result of these robust adaptive control designs are realized 

for both joint space and task space controllers. At this point it should be noted that 

the robot manipulators in the robotic system are primarily modeled and their models 

are completely known. However, in the future, control designs independent of model 

knowledge are aimed due to the possible negative effects that situations such as 

possible changes in experimental systems, system dynamics that cannot be modeled, 

disturbances and etc. can cause in the control signal and process. For this purpose, 

robust adaptive control designs are proposed for both cases.  

The following items are accepted as valid during the control designs by considering 

the experimental setup: 
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• The angular position and angular velocity of all joints are measurable. 

• The position and velocity of the end effectors are measurable. 

In the following subsections, control designs related analyzes and performance 

verifications of designed controllers are presented in a detailed manner. The most 

important thing to consider here is that, although the control objectives are common, 

the two controller structures are completely different it and realizing a performance 

comparison between them is not an appropriate approach. Obtaining more than one 

controller designs that are available for the experimental system and are suitable for 

achieving the control objective is the main aim of realizing the trajectory tracking in 

both joint space and task space. 

3.2.1 Joint Space Control of 5 DoF Parallel Robot 

Manipulator 

The main purpose of the joint space control is to reach the desired trajectory in the 

joint space by using inverse kinematics to find the equivalent of the desired trajectory 

determined in the task space. And then, a control design that makes the difference 

between the angular positions of the joints and the determined trajectory to zero is 

proposed. Robust control design approach is preferred to cope with parametric 

uncertainties. However, as can be seen from the literature, the biggest challenge of 

this type of control design is the possibility of needing a higher control effort. To 

overcome this issue, the designed robust controller is supported with adaptive 

compensations, which is a frequently preferred approach in the literature.  

3.2.1.1 Model Properties 

The dynamic model in (2.34) is used with the following skew-symmetry property 

that is valid for all robot manipulators having an identical structure with robot 

manipulators used in this study 

 ℎ𝑇 �
1
2
𝑀𝑝̇ − 𝑉𝑝� ℎ = 0 ∀ℎ ∈ ℝ5. (3.49) 
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3.2.1.2 Error System Development 

The tracking error is defined as the difference between the desired trajectory 

obtained via inverse kinematics from the desired trajectory of the end effector and 

the measured positions of the joints. The mathematical expression of the tracking 

error is given as 

 𝑒𝑓 ≜ 𝜃𝑝𝑑 − 𝜃𝑝 (3.50) 

where 𝜃𝑝𝑑 ∈ ℝ
5 denotes a second order differentiable and sufficiently smooth 

desired trajectory. Boundedness of the desired trajectory and its first and second 

order time derivatives are other properties that are utilized in the control design. An 

auxiliary error term denoted by 𝑟𝑓 ∈ ℝ5  is defined as 

 𝑟𝑓 ≜ 𝑒̇𝑓 + 𝛼𝑓𝑒𝑓 (3.51) 

where αf ∈ ℝ5×5 is a positive definite, diagonal and constant gain matrix. The 

following expression can be obtained by premultiplying the time derivative of (3.51) 

is with M and and adding the term 𝑉𝑝𝑟𝑓  to the both sides of the resulting equation 

 𝑀𝑝𝑟̇𝑓 = 𝑓𝑑𝑓 − 𝜏𝑝 − 𝑉𝑝𝑟𝑓 (3.52) 

where (2.34) and (3.50) are utilized. An auxiliary term 𝑓𝑑𝑓 ∈ ℝ
5 is defined as 

 𝑓𝑑𝑓 ≜ 𝑀𝑝𝜃̈𝑝𝑑 + 𝑉𝑝𝜃̇𝑝 + 𝑉𝑝𝑟𝑓 + 𝑀𝑝𝛼𝑓𝑒̇𝑓. (3.53) 

For the following steps of the controller design and analysis, this auxiliary term can 

be decomposed as 

 𝑓𝑑𝑓 = 𝑌𝑓�𝜃𝑝, 𝜃̇𝑝, 𝜃̇𝑝𝑑 , 𝜃̈𝑝𝑑�𝜙𝑓 (3.54) 

where 𝑌𝑓�𝜃𝑝, 𝜃̇𝑝, 𝜃̇𝑝𝑑 , 𝜃̈𝑝𝑑� ∈ ℝ
5×𝑛 structure shows the regression matrix containing 

the fully known only measurable terms and the trajectory, while 𝜙𝑓 ∈ ℝ𝑛 indicates 

the uncertain vector containing the constant system parameters. To cope with the 
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mentioned uncertainty, adaptive compensation of uncertainty is used and adaptive 

compensation error  𝜙�𝑓 ∈ ℝ𝑛  is defined as 

 𝜙�𝑓 ≜ 𝜙𝑓 − 𝜙�𝑓 (3.55) 

By substituting (3.54) and (3.55) into (3.52), the open loop error system can be 

obtained as 

 𝑀𝑝𝑟̇𝑓 = 𝑌𝑓�𝜃𝑝, 𝜃̇𝑝, 𝜃̈𝑝𝑑�𝜙�𝑓 + 𝑌𝑓�𝜃𝑝, 𝜃̇𝑝, 𝜃̈𝑝𝑑�𝜙�𝑓 − 𝜏𝑝 − 𝑉𝑝𝑟𝑓 (3.56) 

3.2.1.3 Control Design  

Control input is designed as follows  

 𝜏𝑝 = 𝑌𝑓𝜙�𝑓 + 𝐺𝑓𝑟𝑓 (3.57) 

where 𝐺𝑓 ∈ ℝ5×5 denotes the positive definite, constant and diagonal control gain 

matrix. The closed loop error system required for stability analysis can be obtained 

as follows by substituting the designed controller in (3.56)  

 𝑀𝑝𝑟̇𝑓 = 𝑌𝑓�𝜃𝑝, 𝜃̇𝑝, 𝜃̈𝑝𝑑�𝜙�𝑓 − 𝑉𝑝𝑟𝑓 − 𝐺𝑓𝑟𝑓. (3.58) 

After that point the analysis can be continued with the stability analysis. 

3.2.1.4 Stability Analysis 

Theorem 3: The semi-global asymptotic stability of the closed loop error system 

mathematically expressed as 

 
 

�𝑒𝑓(𝑡)�
𝑖∞

 𝑎𝑛𝑑 �𝑟𝑓(𝑡)�
𝑖∞
→ 0 𝑎𝑠 𝑡 → 0 (3.59) 

can be provided via the control design in (3.57) for the selection of control gains 

𝜆𝑚𝑖𝑛(𝛼𝑓) and 𝜆𝑚𝑖𝑛�𝐺𝑓� > 1
2
. 
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Proof: The nonnegative Lyapunov function candidate  𝑉𝑓�ef, rf,ϕ�f� ∈ ℝ is selected 

as  

 𝑉𝑓 =
1
2
�𝑒𝑓𝑇𝑒𝑓 + 𝑟𝑓𝑇𝑀𝑝𝑟𝑓 + 𝜙�𝑓

𝑇𝜙�𝑓� (3.60) 

Time derivative of the Lyapunov function can be obtained as   

 
𝑉̇𝑓 = 𝑒𝑓𝑇�𝑟𝑓 − 𝛼𝑓𝑒𝑓� − 𝑟𝑓𝑇𝐺𝑓𝑟𝑓 + 𝜙�𝑓

𝑇 �−𝜙�̇𝑓 + 𝑌𝑓𝑇𝑟𝑓�

+ 𝑟𝑓𝑇 �
1
2
𝑀̇𝑝 − 𝑉𝑝� 𝑟𝑓 

(3.61) 

where (3.51), time derivative of (3.55) and (3.58) are utilized. 

If the adaptive compensation 𝜙�𝑓 is updated according to the following rule 

 𝜙�̇𝑓 = 𝑌𝑓𝑇𝑟𝑓 (3.62) 

and the skew-symmetry property in (3.49) are utilized, (3.61) can be upper bounded 

as 

 
𝑉̇𝑓 ≤ −𝛽𝑓‖𝑧𝑒‖ 

(3.63) 

where 𝛽𝑓 ∈ ℝ denotes the positive constant defined as 

 𝛽𝑓 ≜ −min ��𝜆𝑚𝑖𝑛�𝛼𝑓� −
1
2
� , �𝜆𝑚𝑖𝑛�𝐺𝑓� −

1
2
�� 

 
(3.64) 

and the fact that 1
2
�𝑒𝑓�

2 + 1
2
�𝑟𝑓�

2 ≥ �𝑒𝑓��𝑟𝑓� is utilized. The vector of combined 

error 𝑧𝑓 ∈ ℝ10 is (3.66) is defined as 

 𝑧𝑓 ≜ �𝑒𝑓𝑇 𝑟𝑓𝑇�
𝑇

. 
 

(3.65) 

The boundedness of 𝑉𝑓(𝑒𝑓, 𝑟𝑓,𝜙�𝑓) can be reached from (3.60) and (3.63) and it can 

be utilized to guarantee the boundedness of 𝑧𝑓(𝑡) and its elements (i.e., 𝑧𝑓(𝑡), 𝑒𝑓(𝑡) 

and 𝑟𝑓(𝑡) ∈ ℒ∞). Standard signal chasing arguments can be utilized to show the 

boundedness of the all of the remaining closed loop operation signals. The 

boundedness of 𝑟𝑓(𝑡) and 𝑒𝑓(𝑡) can be utilized along with (3.51) to show the 
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boundedness of 𝑒̇𝑓(𝑡) (i.e., 𝑒̇𝑓(𝑡) ∈ ℒ∞) and this results can be used to shown that 

𝑒𝑓(𝑡) is a uniformly continuous signal. Finally, it can be shown that  𝑧𝑓(𝑡) ∈ ℒ2 from 

the integration of both sides of (3.63) and it proves that 𝑒𝑓(𝑡) and 𝑧𝑓(𝑡) ∈ ℒ2. The 

asymptotic tracking result in Theorem 3 can be obtained when all of these 

boundedness statements are considered with the Barbalat’s Lemma [61].  

3.2.1.5 Simulation Results  

The following link lengths and masses that were selected in accordance with the 

experimental setup were used in the dynamic model in (2.34) for the simulation 

studies 

 

𝑙𝑝  =  0.1𝑚,𝑑2  =  0.12𝑚,𝑑3 = 0.19𝑚, 

𝑚𝑝1 = 𝑚𝑝2 = 𝑚𝑝3 = 𝑚𝑝4 = 0.25𝑘𝑔, 

𝑚𝑝5 = 1𝑘𝑔,𝑚6 = 0.136𝑘𝑔,𝑚7 = 0.364𝑘𝑔, 

(3.66) 

At this point it should be noted that the dimensions given in (3.66) are the same for 

both side of 5 DoF parallel robot manipulator. The desired trajectory of the robot 

manipulator denoted by 𝜃𝑝𝑑 ∈ ℝ
5 was determined in the joint space as  

 𝜃𝑝𝑑 =

⎣
⎢
⎢
⎢
⎢
⎡  0.39206𝑡3  −  2.9415𝑡2  +  142

0.036𝑡3  −  0.2255𝑡2  + 32.25
−0.000195𝑡3 + 0.0015𝑡2 + 0.07075

𝜃𝑝𝑑1′

𝜃𝑝𝑑2
′ ⎦

⎥
⎥
⎥
⎥
⎤

 
⎣
⎢
⎢
⎢
⎢
⎡

deg
deg
m
deg
deg

⎦
⎥
⎥
⎥
⎥
⎤

 (3.67) 

The desired trajectory of 𝜃𝑝𝑑1
′ ,𝜃𝑝𝑑2

′  is a trajectory determined according to the 

positions of the end effector of the first side of parallel manipulator system 

(𝜃𝑝1 ,𝜃𝑝2  and 𝑑1). The initial position of the five bar is 

𝜃𝑝(0) = [131.5   29   0.073  43 150]𝑇. Control gains were selected as follows via 

trial-and-error method 

 αf = 𝑑𝑖𝑎𝑔{10, 10, 1,10,10}  
Gf = 𝑑𝑖𝑎𝑔{0.33, 0.3, 5,0.36,0.36} (3.68) 

Desired trajectories and actual positions are shown in Figure 3.37. Tracking errors 

are shown in Figure 3.38. From Figures 3.37 and 3.38, it can be seen that the control 
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objective was met. Control input torques are shown in Figure 3.39. Adaptive 

compensation is shown in Figures 3.40. 

 
Figure 3.37: Desired vs. actual positions of the parallel manipulator’s joints 
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Figure 3.38: Tracking error of the parallel manipulator’s joints 

 
Figure 3.39: Control input torques for the parallel manipulator’s joints 
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Figure 3.40: Adaptive compensation terms of parallel manipulator system 

3.2.1.6 Experimental Results  

Performance of the designed controller was tested on the experimental setup by 

keeping the desired trajectory, control gains identical with the simulation studies 

presented in Chapter 3.2.1.5. The initial position of the five bar is 𝜃𝑝(0) =

[131.5   29   0.073  43 150]𝑇.  

Desired trajectories and actual positions are shown in Figure 3.41. Tracking errors 

are shown in Figure 3.42. From Figures 3.41 and 3.42, it can be seen that the control 

objective was met. Control input torques are shown in Figure 3.43. Adaptive 

compensation is shown in Figures 3.44. 
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Figure 3.41: Desired vs. actual positions of the parallel manipulator’s joints 

 
Figure 3.42: Tracking error of the parallel manipulator’s joints  
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Figure 3.43: Control input torques for the parallel manipulator’s joints 

 
Figure 3.44: Adaptive compensation terms of parallel manipulator system 
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3.2.2 Task Space Control of 5 DoF Parallel Robot 

Manipulator 

Different from the joint space control the desired trajectory of the robot manipulator 

can directly be determined in terms of the position of the end effector. Owing to this 

issue, inverse kinematic can be avoided and the control purpose can directly be 

determined in the space where the main study is realized. To determine the control 

purpose in the task space, the task space must also be included in the dynamic model. 

This situation is possible by using a two-stage model whose first stage is the dynamic 

model given in (2.34) and second stage is another dynamic equation that gives the 

transition between joint and task spaces. In this chapter, the dynamic model of the 5 

DoF robot manipulator is rearranged and in the final form a dynamic model that both 

incudes the task space and joint space and provides an opportunity to determine the 

control objective in the task space is obtained. Then, the control objective is tried to 

be reached via the newly defined dynamic model. The non-square structure of the 

Jacobian matrix of the robot manipulator controlled in this part of the study is the 

main reason of the mentioned rearrangement. 

3.2.2.1 System Model and Properties of Parallel Manipulator  

The main property that separates the system model given in this chapter from the 

system model given in the previous control design is included of the forward 

kinematics model in the design.  

 𝑥𝑝 = 𝑓(𝜃𝑝) (3.69) 

where 𝑥𝑝  ∈ ℝ6 denotes the end effector position in the cartesian coordinate system 

and forward kinematics model is given the function denoted as 𝑓:ℝ5 → ℝ6. Time 

derivative of (3.69) can be expressed with Jacobian matrix 𝐽𝑝�𝜃𝑝� ∈ ℝ6×5 as 

 𝑥̇𝑝 = 𝐽𝑝�𝜃𝑝�𝜃̇𝑝 (3.70) 

where the Jacobian matrix of the robot manipulator is defined as 
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 𝐽𝑝(𝜃𝑝) ≜
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 (3.71) 

All other properties and definitions related to the model are used as given in the 

relevant subsection of the previous controller design of parallel manipulator. 

An additional assumption used for the control design in this part is the invertibility of 

the Jacobian matrix related term 𝐽𝑝𝑇𝐽𝑝 for all angular values. By using this 

assumption, (3.70) can be rearranged as  

 𝐴𝑥̇𝑝 = 𝜃̇𝑝 (3.72) 

where the newly defined matrix denoted by 𝐴 ∈ ℝ5×6 is defined as 𝐴 ≜ �𝐽𝑝𝑇𝐽𝑝�
−1𝐽𝑝𝑇. 

The following result can be obtained by substituting (3.72) and its time derivative 

into (2.34) 

 𝑀𝑝𝐴𝑥̈𝑝 + 𝑀𝑝𝐴̇𝑥̇𝑝 + 𝑉𝑝𝐴𝑥̇𝑝 = 𝜏𝑝. (3.73) 

At this point it should be noted that availability of the Jacobian matrix makes the 

matrix 𝐴 an available matrix and structure of this matrix makes 𝐴𝑇𝐴 an invertible 

matrix. After that point the following system state can be defined 

 𝑥𝑁 ≜ 𝐴𝑥̇𝑝 (3.74) 

and the following first order dynamic model, which will form the main of the 

controller design, can be obtained by utilizing (3.74) into (3.73)  

 𝑀𝑝𝑥̇𝑁 + 𝑉𝑝𝑥𝑁 = 𝜏𝑝. (3.75) 

From (3.75) it is clear that after that point the control objective 𝑥𝑝 → 𝑥𝑝𝑑 can be 

determined in terms of 𝑥𝑁 as long as 𝑥𝑁𝑑 ∈ ℝ
5 is selected properly and 𝑥𝑁 → 𝑥𝑁𝑑 

result is obtained. Appendix D can be examined to seek the detailed information 
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about this issue. At this point it should be noted that into the mentioned control 

objective 𝑥𝑁𝑑 denotes the desired trajectory for 𝑥𝑁.  

3.2.2.2 Error System Development 

The tracking error is defined as  

 𝑒𝑑 ≜ 𝑥𝑁𝑑 − 𝑥𝑁 (3.76) 

where xN𝑑 a first order differentiable and sufficiently smooth desired trajectory. 

Time derivative of (3.76) is premultiplied with M to obtain the following result 

 𝑀𝑝𝑒̇𝑑 = 𝑓𝑔𝑑 − 𝜏𝑝 − 𝑉𝑝𝑒𝑑 (3.77) 

where (3.75) and (3.76) are utilized and 𝑉𝑝𝑒𝑑 is added to both sides of the resulting 

equation. The auxiliary term 𝑓𝑔𝑑(𝜃𝑝, 𝜃̇𝑝, 𝑥𝑁𝑑 , 𝑥̇𝑁𝑑) ∈ ℝ6 is defined as  

 𝑓𝑔 = 𝑀𝑝𝑥̇𝑁𝑑 + 𝑉𝑝𝑥𝑁 + 𝑉𝑝𝑒𝑑 (3.78) 

For the following steps of the controller design and analysis, this auxiliary can be 

decomposed as 

 𝑓𝑔𝑑 = 𝑌𝑑�𝜃𝑝, 𝜃̇𝑝, 𝑥𝑁𝑑 , 𝑥̇𝑁𝑑�𝜙𝑑 (3.79) 

where Yd�θp, θ̇𝑝, xNd , ẋNd� ∈ ℝ
6×𝑘 denotes the regression matrix containing the 

certain and measurable terms while 𝜙𝑑 ∈ ℝ𝑘 indicates the uncertain constant vector 

containing the system parameters. To cope with the mentioned uncertainty, an adaptive 

compensation terms 𝜙�𝑑 ∈ ℝ𝑘 is utilized and the adaptive compensation error  𝜙�𝑑 ∈ ℝ𝑘  

is defined as 

 𝜙�𝑑 ≜ 𝜙𝑑 − 𝜙�𝑑 (3.80) 

By substituting (3.79) and (3.80) into (3.77), the open loop error system can be 

obtained as 

 𝑀𝑝𝑒̇𝑑 = 𝑌𝑑�𝜃𝑝, 𝜃̇𝑝, 𝑥𝑁𝑑 , 𝑥̇𝑁𝑑�𝜙�𝑑 + 𝑌𝑑�𝜃𝑝, 𝜃̇𝑝, 𝑥𝑁𝑑 , 𝑥̇𝑁𝑑�𝜙�𝑑 − 𝜏𝑝
− 𝑉𝑝𝑒𝑑 (3.81) 
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3.2.2.3 Control Design  

Control input is designed as follows  

 𝜏𝑝 = 𝑌𝑑𝜙�𝑑 − 𝐺𝑑𝑒𝑑 (3.82) 

where 𝐺𝑑 ∈ ℝ6×6 denotes the positive definite, constant and diagonal control gain 

matrix. The closed loop error system required for stability analysis can be obtained 

as follows by substituting the designed controller in (3.81) 

 𝑀𝑝𝑒̇𝑑 = −𝑌𝑑�𝜃𝑝, 𝜃̇𝑝, 𝑥𝑁𝑑 , 𝑥̇𝑁𝑑�𝜙�𝑑 − 𝐺𝑑𝑒𝑑 − 𝑉𝑝𝑒𝑑 (3.83) 

After that point the analysis can be continued with the stability analysis. 

3.2.2.4 Stability Analysis 

Theorem 4: The global asymptotic stability of the closed loop error system 

mathematically expressed as 

 
 

‖𝑒𝑑(𝑡)‖𝑖∞  → 0 𝑎𝑠 𝑡 → 0 (3.84) 

can be provided via the control design in (3.82). 

Proof: The nonnegative Lyapunov function candidate 𝑉𝑑�𝑒𝑑 ,𝜙�𝑑� ∈ ℝ is selected as. 

 𝑉𝑑 =
1
2
�𝑒𝑑𝑇𝑀𝑝𝑒𝑑 + 𝜙�𝑑

𝑇𝜙�𝑑� (3.85) 

Time derivative of the Lyapunov function can be obtained as   

 𝑉̇𝑑 = −𝑒𝑑𝑇𝐺𝑑  𝑒𝑑 + 𝜙�𝑑
𝑇 �𝜙�̇𝑑 − 𝑌𝑑𝑇𝑒𝑑� + 𝑒𝑑𝑇 �

1
2
𝑀̇𝑝 − 𝑉𝑝� 𝑒𝑑 (3.86) 

where time derivative of (3.80) and (3.84) are utilized. If the adaptive compensation 

𝜙�𝑑 is updated according to the following rule 

 𝜙�̇𝑑 = 𝑌𝑑𝑇𝑒𝑑 (3.87) 

and skew-symmetry property in (3.49) are utilized, (3.86) can be upper bounded as 
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 𝑉̇𝑑 ≤ −𝜆𝑚𝑖𝑛(Gd)‖ed‖2 (3.88) 

The boundedness of 𝑉𝑑(𝑒𝑑 ,𝜙�𝑑) can be reached from (3.85) and (3.88) and it can be 

utilized to guarantee the boundedness of 𝑒𝑑(𝑡) (i.e., 𝑒𝑑(𝑡) ∈ ℒ∞). Standard signal 

chasing arguments can be utilized to show the boundedness of the all of the 

remaining closed-loop operation signals. It can be shown that  𝑒𝑑(𝑡) ∈ ℒ2 from the 

integration of both sides of (3.88). The asymptotic tracking result in Theorem 4 can 

be obtained when all of these boundedness statements are considered with the 

Barbalat’s Lemma [61].  

3.2.2.5 Simulation Studies  

Dimensions of the robot manipulator were used as given in (3.66). The desired 

trajectory of the first end effector was determined in the task space as follows, and 

the second end effector follows the position changes in the first end effector by 

protecting the distance distance between them 

 𝑥𝑝𝑑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−0.000547𝑡3 + 0.0041𝑡2 + 0.1258
−0.000388𝑡3 + 0.0029𝑡2 + 0.1147

19.25
𝐶𝑢′ 𝑑
𝐶𝑣′𝑑
𝜙𝑝′ 𝑑 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (3.85) 

The desired trajectory of 𝐶𝑢′ 𝑑 ,𝐶𝑣′𝑑and 𝜙𝑝′ 𝑑 is a trajectory determined according to the 

positions of the end effector of parallel manipulator system 𝐶𝑢,𝐶𝑣 and 𝜙𝑝. The initial 

position is selected as ( ) [ ]Tpx 5.162113.0131.01.20121.0154.00 = .  Controller 

gains were selected as follows via trial-and-error method 

 𝐺𝑑 = 𝑑𝑖𝑎𝑔{0.33, 0.36,12,0.36,0.36} (3.86) 

Desired trajectories and actual positions of the first and second end effectors are 

shown in Figures 3.45 and 3.46 against time, respectively. The movements of the end 

effectors in Cartesian coordinate system can be seen in Figures 3.47 and 3.48 with 

their desired movements in Cartesian coordinate system. Tracking errors for the 

tracking of end effectors are shown in Figures 3.49 and 3.50 for the first and second 
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end effector, respectively. From Figures 3.45-3.50, it can be seen that the control 

objective was met. Control input torques are shown in Figure 3.51. Adaptive 

compensation is shown in Figures 3.52. 

 
Figure 3.45: Desired vs. actual positions of first end effector of parallel manipulator 

system 

 
Figure 3.46: Desired vs. actual positions of second end effector of parallel 

manipulator system 
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Figure 3.47: Desired vs. actual positions of first end effector of parallel manipulator 

system 
 

 
Figure 3.48: Desired vs. actual positions of second end effector of parallel 

manipulator system 
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Figure 3.49: Tracking error of first end effector of parallel manipulator system 

 
Figure 3.50: Tracking error of second end effector of parallel manipulator system 
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Figure 3.51: Control input torques for the parallel manipulator’s joints 

 
Figure 3.52: Adaptive compensation terms of parallel manipulator system 
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3.2.2.6 Experimental Results 

Performance of the designed controller was tested on the experimental setup by 

keeping the desired trajectory, control gains identical with the simulation studies 

presented in Chapter 3.2.2.5. The initial position was selected as 𝑥𝑝(0) =

[0.1543   0.1215   18.1 − 0.1309  0.1133 162.5]𝑇. 

Desired trajectories and actual positions of the first and second end effectors are 

shown in Figures 3.53 and 3.54 against time, respectively. The movements of the end 

effectors in Cartesian coordinate system can be seen in Figures 3.55 and 3.56 with 

their desired movements in Cartesian coordinate system. Tracking errors for the 

tracking of end effectors are shown in Figures 3.57 and 3.58 for the first and second 

end effector, respectively. From Figures 3.53-3.58, it can be seen that the control 

objective was met. Control input torques are shown in Figure 3.59. Adaptive 

compensation is shown in Figures 3.60. 

 
Figure 3.53: Desired vs. actual positions of first end effector of parallel manipulator 

system 
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Figure 3.54: Desired vs. actual positions of second end effector of parallel 

manipulator system 

 

 
Figure 3.55: Desired vs. actual positions of first end effector of parallel manipulator 

system 
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Figure 3.56: Desired vs. actual positions of second end effector of parallel 

manipulator system 

 
Figure 3.57: Tracking error of first end effector of the parallel manipulator system 
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Figure 3.58: Tracking error of second end effector of the parallel manipulator system 

 
Figure 3.59: Control input torques for the parallel manipulator’s joints 
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Figure 3.60: Adaptive compensation terms of parallel manipulator 
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Chapter 4 

Conclusion 

The control of supportive robotic systems that designed to provide the use of medical 

microrobots in cochlear workspaces was aimed and realized in this study. Intended to 

use in medical microrobot operations in the cochlear work area, the system consists 

of a macro-micro robot manipulator structure that provides to untethered movement 

within the cochlea ducts. This study includes two different robotic systems serving 

same aim, one of which contains two identical serial RRR 3 DoF robot manipulators 

while other one contains a revolute-prismatic joint 5 DoF parallel robot manipulator. 

The main purpose of these systems were to control the position of the microrobot in 

the cochlear work area using the magnetic field generated by the help of magnets 

located in the end effectors of the robot manipulators. To achieve this goal, the main 

control objective was set that one of the end effectors of the robot manipulator 

follows the desired trajectory, and the other end effector works in synchronize with 

the first end effector, and determines and follows its own tracking trajectory. The 

second end effector calculates the desired trajectory based on orientation of first end 

effector, workspace limit in the cochlear working area and the distance between the 

first end effector and the cochlea. 

The high precision need of cochlear microrobot operations was met by controlling 

the system used in these operations. Two robust adaptive nonlinear controllers were 

designed for each of the robotic systems to provide the high precision required by 

cochlear microrobot operations. The robust control design was proposed as it can 

cope with possible changes in experimental systems, parametric uncertainties and 

external disturbances. However, to cope with the possible need for high control effort 

of robust controllers, this structure was supported with adaptive compensations and 

robust adaptive control design was realized for the systems. One of the controllers 
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was designed for the joint space, while the other was designed for the task space for 

each robotic system. Owing to the task space control, the burden of reaching the 

desired trajectory in the joint space was avoided by using inverse kinematics in the 

joint space control.  

The theoretical analysis of each designed controller was proved through Lyapunov-

based methods. Dynamic models of each of the robotic systems planned to be used as 

supporting systems in cochlear operation were obtained via recursive Newton-Euler 

and Lagrangian formulations. Obtained dynamic models were used to observe the 

performance of the designed controllers in the simulation environment. After the 

performance demonstration of the control designs were realized via simulation 

studies, their experimental performances were observed. The experiments on each of 

the robotic system verify the function of the adaptive terms and the robustness for 

model uncertainties. 

Instead of using adaptive compensations neural network term can be used to cope 

with parametric uncertainties. Owing to this issue performances of robust adaptive 

and neural network based controllers can be observed in a comparative manner. 

Designing neural network based controllers to reach the control purposes mentioned 

in this study is considered as a future work. Moreover, to decrease the possible 

negative effects caused due to sensor precision problems, designing output feedback 

versions of the designed controllers is also aimed. 
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Appendix A  

The open form of 𝑾𝟏,𝟐 and 𝒁𝒋  for j=1,⋯,12   

The open form of 𝑊1,2 and 𝑍𝑗  for 𝑗 = 1,⋯ ,12 defined in (2.28) can be obtained as 

 
𝑊1 = 2𝑙𝑝2𝑐𝑜𝑠(𝜃𝑝1 − 𝜃𝑝2) + 𝑑12 + 𝑑22 + 2𝑙𝑝2

− 2𝑑1𝑙𝑝 (𝑠𝑖𝑛𝜃𝑝1 + 𝑠𝑖𝑛𝜃𝑝2) + 2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1
+ 𝑐𝑜𝑠𝜃𝑝2) 

(A.1) 

 
𝑊2 = 2𝑙𝑝2𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 𝑑12 + 𝑑22 + 2𝑙𝑝2

+ 2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1′ + 𝑐𝑜𝑠𝜃𝑝2′ ) − 2𝑙𝑝𝑑1(sin𝜃𝑝1′

+ sin𝜃𝑝2′ ) 
(A.2) 

 𝑍1 = 𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1 −  𝜃𝑝2� +  𝑙2 +  𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1                      
−  𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝1 (A.3) 

 𝑍2 = 𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1 −  𝜃𝑝2� + 𝑙𝑝2 + 𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2                      
−  𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2 (A.4) 

 𝑍3 = 𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1′ −  𝜃𝑝2′ � +  𝑙𝑝2 −  𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1′                       
− 𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝1′  (A.5) 

 𝑍4 = 𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1′ −  𝜃𝑝2′ � +  𝑙𝑝2 −  𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2′                       
− 𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2′  (A.6) 

 𝑍5 = − 𝑑2 − 𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1 −  𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2                                   (A.7) 

 𝑍6 =  𝑑2 − 𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1′ −  𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2′                                       (A.8) 

 

𝑍7 = −
1
2
𝑑3(𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1 −  𝜃𝑝2� +  𝑙𝑝2 +  𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1       

− 𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝1)/(2𝑙𝑝2𝑐𝑜𝑠(𝜃𝑝1 − 𝜃𝑝2) + 𝑑12 + 𝑑22 +
2𝑙𝑝2 + 2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1 + 𝑐𝑜𝑠𝜃𝑝2) − 2𝑑1𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1 +
𝑠𝑖𝑛𝜃𝑝2)) 

(A.9) 
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𝑍8 = −
1
2
𝑑3(𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1 −  𝜃𝑝2� +  𝑙𝑝2 +  𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2       

               − 𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2)/(2𝑙𝑝2𝑐𝑜𝑠(𝜃𝑝1 − 𝜃𝑝2) + 𝑑12 + 𝑑22 + 2𝑙𝑝2
+ 2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1 + 𝑐𝑜𝑠𝜃𝑝2)
− 2𝑑1𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1 + 𝑠𝑖𝑛𝜃𝑝2))   

(A.10) 

 
𝑍9 =

1
2
𝑑3�𝑑2 + 𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1 +  𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2�/(                     
2𝑙𝑝2𝑐𝑜𝑠(𝜃𝑝1 − 𝜃𝑝2) + 𝑑12 + 𝑑22 + 2𝑙𝑝2            

                  +2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1 + 𝑐𝑜𝑠𝜃𝑝2) − 2𝑑1𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1 + 𝑠𝑖𝑛𝜃𝑝2)) 

(A.11) 

 

𝑍10 =
1
2
𝑑3(𝑑2 − 𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1′ −  𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2′ )/(                        

2𝑙𝑝2 𝑐𝑜𝑠(𝜃𝑝1′  −  𝜃𝑝2′ ) + 𝑑12 + 𝑑22 + 2𝑙𝑝2 
+2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1′ + 𝑐𝑜𝑠 𝜃𝑝2′ ) 
−2𝑙𝑝𝑑1(𝑠𝑖𝑛 𝜃𝑝1′ + 𝑠𝑖𝑛 𝜃𝑝2′ )) 

(A.12) 

 

𝑍11 =
1
2
𝑑3(𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1′ −  𝜃𝑝2′ � + 𝑙𝑝2 −  𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝1′             

                     − 𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝1′ )/(2𝑙𝑝2 𝑐𝑜𝑠(𝜃𝑝1′  −  𝜃𝑝2′ ) + 𝑑12 + 𝑑22

+ 2𝑙𝑝2 + 2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1′ + 𝑐𝑜𝑠 𝜃𝑝2′ )
− 2𝑙𝑝𝑑1(𝑠𝑖𝑛 𝜃𝑝1′ + 𝑠𝑖𝑛 𝜃𝑝2′ ))    

(A.13) 

 

𝑍12 =
1
2
𝑑3(𝑙𝑝2 𝑐𝑜𝑠�𝜃𝑝1′ −  𝜃𝑝2′ � + 𝑙𝑝2 −  𝑑2𝑙𝑝 𝑐𝑜𝑠 𝜃𝑝2′             

               − 𝑑1𝑙𝑝 𝑠𝑖𝑛 𝜃𝑝2′ )/(2𝑙𝑝2 𝑐𝑜𝑠(𝜃𝑝1′  −  𝜃𝑝2′ ) + 𝑑12 + 𝑑22 + 2𝑙𝑝2

+ 2𝑑2𝑙𝑝(𝑐𝑜𝑠𝜃𝑝1′ + 𝑐𝑜𝑠 𝜃𝑝2′ )
− 2𝑙𝑝𝑑1(𝑠𝑖𝑛 𝜃𝑝1′ + 𝑠𝑖𝑛 𝜃𝑝2′ ) 

(A.14) 
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Appendix B  

Elements of 𝑽𝒑(𝜽𝒑, 𝜽̇𝒑)  

The open form of elements of  𝑉𝑝(𝜃𝑝, 𝜃̇𝑝) can be obtained as 

 

𝑉𝑝11 = 𝜃̇𝑝2(1
4

(𝑙𝑝2𝑚𝑝2 + 𝑙𝑝2𝑚𝑝3 + 2𝑙𝑝2𝑚𝑝5) sin�𝜃𝑝1 − 𝜃𝑝2� +
𝑍2𝑙𝑝((𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)�𝑑1 cos𝜃𝑝1 + 𝑑2 sin𝜃𝑝1 +
𝑙𝑝 sin(𝜃𝑝1 − 𝜃𝑝2)�(𝑑12 − 2 𝑙𝑝𝑑1sin𝜃𝑝2 + 𝑑22 +
2𝑙𝑝𝑑2 cos 𝜃𝑝2))/2𝑊1

3) − 𝑑̇1((3𝑍1𝑙𝑝�𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7��𝑑2

2 sin𝜃𝑝1 −𝑑12 sin𝜃𝑝1 − 𝑙𝑝2 sin𝜃𝑝1 − 2𝑙𝑝2 sin𝜃𝑝2 +
2𝑑1𝑙𝑝 + 𝑙𝑝2 sin�𝜃𝑝1 − 2𝜃𝑝2� + 2𝑑1𝑙𝑝 cos�𝜃𝑝1 − 𝜃𝑝2� +
2𝑑2𝑙𝑝 sin�𝜃𝑝1 − 𝜃𝑝2� + 2𝑑1𝑑2 cos 𝜃𝑝1� −
𝑙𝑝�𝑑1 cos𝜃𝑝1 +𝑑2 sin𝜃𝑝1 +
𝑙𝑝 sin�𝜃𝑝1 − 2𝜃𝑝2���𝑍5𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7 cos𝜙𝑝 𝑑3 +
4𝐼𝑝5𝑍5 + 4𝐼𝑝7𝑍5��𝑑1

2 − 2𝑙𝑝𝑑1 sin𝜃𝑝2 + 𝑑22 +
2𝑙𝑝𝑑2 cos 𝜃𝑝2�/8𝑊1

3) − 𝜃̇𝑝1 �𝑍1𝑙𝑝�𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7��𝑑1 cos𝜃𝑝1 +𝑑2 sin𝜃𝑝1 + 𝑙𝑝 sin�𝜃𝑝1 − 2𝜃𝑝2���𝑑12 −
2𝑙𝑝 𝑑1sin�𝜃𝑝2� + 𝑑22 + 2 𝑙𝑝𝑑2cos 𝜃𝑝2�� /4𝑊1

3  

(B.1) 

 

𝑉𝑝12 = 𝜃̇𝑝2(1
2

(𝑙𝑝2𝑚𝑝2 + 𝑙𝑝2𝑚𝑝3 + 2𝑙𝑝2𝑚𝑝5) 𝑠𝑖𝑛�𝜃𝑝1 − 𝜃𝑝2� −
(𝑍1𝑙𝑝�𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7��𝑑1 𝑐𝑜𝑠 𝜃𝑝1 + 𝑑2 𝑠𝑖𝑛 𝜃𝑝1 −
𝑙𝑝 𝑠𝑖𝑛�𝜃𝑝1 − 2𝜃𝑝2��(𝑑12 − 2𝑙𝑝 𝑑1𝑠𝑖𝑛�𝜃𝑝1� + 𝑑22 +
2 𝑙𝑝𝑑2𝑐𝑜𝑠�𝜃𝑝1�)/𝑊1

3)) − 𝜃̇𝑝1(1
4

(𝑙𝑝2𝑚2 + 𝑙𝑝2𝑚3 +
2𝑙𝑝2𝑚5) 𝑠𝑖𝑛�𝜃𝑝1 − 𝜃𝑝2� − (𝑍1𝑙𝑝2�𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7�(𝑑22 𝑠𝑖𝑛�𝜃𝑝1 + 𝜃𝑝2� − 𝑑12 𝑠𝑖𝑛�𝜃𝑝1 + 𝜃𝑝2� +
2𝑙𝑝𝑑1𝑐𝑜𝑠𝜃𝑝1 + 2𝑙𝑝𝑑1𝑐𝑜𝑠𝜃𝑝2 + 2𝑙𝑝𝑑2𝑠𝑖𝑛𝜃𝑝1 +
2𝑙𝑝𝑑2𝑠𝑖𝑛𝜃𝑝2 + 2𝑑2𝑑1𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2))/2𝑊1

3) +
𝑍2𝑙𝑝(�𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7�(𝑑1 𝑐𝑜𝑠(𝜃𝑝1) +
𝑑2 𝑠𝑖𝑛(𝜃𝑝1) + 𝑙𝑝 𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))(𝑑12 − 2 𝑙𝑝𝑑1𝑠𝑖𝑛 𝜃𝑝2 +
𝑑22 + 2𝑙𝑝𝑑2 𝑐𝑜𝑠 𝜃𝑝2))/2𝑊1

3))) − 𝑑̇1((𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑍1𝑑22𝑠𝑖𝑛𝜃𝑝2 − 𝑍2𝑑12 𝑠𝑖𝑛 𝜃𝑝1 − 𝑍1𝑑12𝑠𝑖𝑛𝜃𝑝2 +
𝑍2𝑑22𝑠𝑖𝑛𝜃𝑝1 − 2𝑍1𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 − 𝑍1𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 −
𝑍2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 − 2𝑍2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 + 2𝑑1𝑙𝑝𝑍1 + 2𝑑1𝑙𝑝𝑍2 +
𝑍2𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1 − 2𝜃𝑝2) − 𝑍1𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1 − 𝜃𝑝2) +
2𝑍1𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2 + 2𝑍2𝑑1𝑑_2𝑐𝑜𝑠𝜃𝑝1 + 2𝑍1𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1 −

(B.2) 
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𝜃𝑝2) + 2𝑍2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1 − 𝜃𝑝2) − 2𝑍1𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 −
𝜃𝑝2) + 2𝑍2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))/4𝑊1

3) + (𝑍5𝑙𝑝2�𝑚𝑝7𝑑32 +
4𝐼𝑝5 + 4𝐼𝑝7�(𝑑22 𝑠𝑖𝑛�𝜃𝑝1 + 𝜃𝑝2� − 𝑑12 𝑠𝑖𝑛�𝜃𝑝1 + 𝜃𝑝2� +
2𝑙𝑝𝑑1𝑐𝑜𝑠𝜃𝑝1 + 2𝑙𝑝𝑑1𝑐𝑜𝑠𝜃𝑝2 + 2𝑙𝑝𝑑2𝑠𝑖𝑛𝜃𝑝1 +
2𝑙𝑝𝑑2𝑠𝑖𝑛𝜃𝑝2 + 2𝑑2𝑑1𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)/2𝑊1

3) −
𝑍2𝑙𝑝(�𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7�(𝑑22 𝑠𝑖𝑛�𝜃𝑝1� −
𝑑12 𝑠𝑖𝑛�𝜃𝑝1� − 𝑙𝑝2 𝑠𝑖𝑛�𝜃𝑝1� − 2𝑙𝑝2 𝑠𝑖𝑛�𝜃𝑝2� + 2𝑑1𝑙𝑝 +
𝑙𝑝2 𝑠𝑖𝑛�𝜃𝑝1 − 2𝜃𝑝2� + 2𝑑1𝑙𝑝 𝑐𝑜𝑠�𝜃𝑝1 − 𝜃𝑝2� +
2𝑑2𝑙𝑝 𝑠𝑖𝑛�𝜃𝑝1 − 𝜃𝑝2� + 2𝑑1𝑑2 𝑐𝑜𝑠𝜃𝑝1)/2𝑊1

3) +
𝑑3𝑚7𝑙𝑝2 𝑐𝑜𝑠 𝜙𝑝 (𝑑22 𝑠𝑖𝑛�𝜃𝑝1 + 𝜃𝑝2� − 𝑑12 𝑠𝑖𝑛�𝜃𝑝1 +
𝜃𝑝2� + 2𝑙𝑝𝑑1𝑐𝑜𝑠𝜃𝑝1 + 2𝑙𝑝𝑑1𝑐𝑜𝑠𝜃𝑝2 + 2𝑙𝑝𝑑2𝑠𝑖𝑛𝜃𝑝1 +
2𝑙𝑝𝑑2𝑠𝑖𝑛𝜃𝑝2 + 2𝑑2𝑑1𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))  

 

𝑉𝑝13 = 𝜃̇𝑝2((𝑙𝑝2(𝑍5𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7cos𝜙𝑝𝑑3 + 4𝐼𝑝5𝑍5 +
4𝐼𝑝7𝑍5)(𝑑22sin(𝜃𝑝1 + 𝜃𝑝2) − 𝑑12sin(𝜃𝑝1 +
𝜃𝑝2))+2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2 + 2𝑑1𝑑2cos(𝜃𝑝1 + 𝜃𝑝2)))/4𝑊1

3 −
(1
4
𝑍5𝑙𝑝2(d32mp7 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑22sin(𝜃𝑝1 +

𝜃𝑝2))−𝑑12𝑠𝑖𝑛(𝜃𝑝1 + 𝜃𝑝2)) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 + 𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2 +
+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/2𝑊1

3 + (1
4
𝑍2𝑙𝑝(d32mp7 +

4𝐼𝑝5 + 4𝐼𝑝7)(𝑑22𝑠𝑖𝑛𝜃𝑝1 − 𝑑12𝑠𝑖𝑛𝜃𝑝1 − 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 −
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1 − 2𝜃𝑝2)+2𝑑1𝑙𝑝cos(𝜃𝑝1 −
𝜃𝑝2) + 𝑑2𝑙𝑝sin(𝜃𝑝1 − 𝜃𝑝2)+2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1))/2𝑊1

3 +
(𝑍1𝑙𝑝(mp7d32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − 𝑑22𝑠𝑖𝑛𝜃𝑝2 +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑙𝑝cos(𝜃𝑝1 − 𝜃𝑝2) + 𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/4𝑊1

3 − (𝑑3𝑙𝑝2𝑚𝑝7cos𝜙𝑝(d22sin (𝜃𝑝1 +
𝜃𝑝2)) − d12sin (𝜃𝑝1 + 𝜃𝑝2)) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/4𝑊1

2) −
𝜃̇𝑝1((𝑍1𝑙𝑝(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑22𝑠𝑖𝑛𝜃𝑝1 −
𝑑12𝑠𝑖𝑛𝜃𝑝1 − 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 − 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛�𝜃𝑝1 −
2𝜃𝑝2�+2𝑑1𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1 − 𝜃𝑝2�) + 𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 −
𝜃𝑝2)+2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1))/8𝑊1

3 + (𝑙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝1 +
𝑑2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))(𝑑12 − 2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝2 + 𝑑22 +
2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝2)(4𝐼𝑝5𝑍5 + 4𝐼𝑝7𝑍5 + 𝑍5𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝𝑑3))/8𝑊1

3) − 𝑑̇1(𝑍1(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝2)(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 − 𝑑1 +
𝑙𝑝𝑠𝑖𝑛𝜃𝑝2))/2𝑊1

3  

(B.3) 

 𝑉𝑝14 = 𝑉𝑝15 = 0 (B.4) 
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𝑉𝑝21 = 𝜃̇𝑝2((𝑙𝑝2 𝑚𝑝2 𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))/4 + (𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1 −
𝜃𝑝2))/4 + (𝑙𝑝2𝑚𝑝5 𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))/2 + (𝑍2𝑙𝑝2(𝑚𝑝7𝑑32 +
4𝐼𝑝5 + 4𝐼𝑝7)(𝑑22 𝑠𝑖𝑛(𝜃𝑝1 + 𝜃𝑝2)−𝑑12 𝑠𝑖𝑛(𝜃𝑝1 + 𝜃𝑝2) +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/8𝑊1

3 −
(𝑍1𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑1𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑠𝑖𝑛𝜃𝑝2 −
𝑙𝑝 𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))(𝑑12 − 2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1𝑑1 + 𝑑22 +
2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1𝑑2))/𝑊1

3) − 𝜃̇𝑝1((𝑙𝑝2𝑚𝑝2𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))/2 +
(𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))/2 + (𝑙𝑝2𝑚𝑝5𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2)) +
(𝑍2𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑1𝑐𝑜𝑠𝜃𝑝1 + 𝑑2𝑠𝑖𝑛𝜃𝑝1 +
𝑙𝑝𝑠𝑖𝑛 (𝜃𝑝1 − 𝜃𝑝2))(𝑑12 − 2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝2 + 𝑑22 +
2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝2))/4𝑊1

3) − 𝑑̇1((𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑍1𝑑22𝑠𝑖𝑛𝜃𝑝2–𝑍2𝑑12𝑠𝑖𝑛𝜃𝑝1–𝑍1𝑑12𝑠𝑖𝑛𝜃𝑝2 +
𝑍2𝑑22𝑠𝑖𝑛𝜃𝑝1– 2𝑍1𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1–𝑍1𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 𝑍2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 −
2𝑍2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 + 2𝑍1𝑑1𝑙𝑝 + 2𝑍2𝑑1𝑙𝑝 + 𝑍2𝑙𝑝2𝑠𝑖𝑛 (𝜃𝑝1 −
2𝜃𝑝2)–𝑍1𝑙𝑝2𝑠𝑖𝑛 (2𝜃𝑝1 − 𝜃𝑝2) + 2𝑍1𝑑1𝑑2𝑐𝑜𝑠 𝜃𝑝2 +
2𝑍2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1 + 2𝑍1𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) +
2𝑍2𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) − 2𝑍1𝑑2𝑙𝑝𝑠𝑖𝑛 (𝜃𝑝1 − 𝜃𝑝2) +
2𝑍2𝑑2𝑙𝑝𝑠𝑖𝑛 (𝜃𝑝1–𝜃𝑝2)))/4𝑊1

3 + (𝑙𝑝2(𝑍5𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠∅𝑝𝑑3 + 4𝐼𝑝5𝑍5 + 4𝐼𝑝7𝑍5)(𝑑22𝑠𝑖𝑛 (𝜃𝑝1 +
𝜃𝑝2) − 𝑑12𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/8𝑊1

3 +
(𝑍1𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − 𝑑22𝑠𝑖𝑛𝜃𝑝2 +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/8𝑊1

3)  

(B.5) 

 

𝑉𝑝22 = 𝑑̇1((𝑍2𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − d22sin𝜃𝑝2 +
2𝑙𝑝2sin𝜃𝑝1 + 𝑙𝑝2𝑠𝑖n𝜃𝑝2 − 2d1𝑙𝑝 + 𝑙𝑝2sin(2𝜃𝑝1 − 𝜃𝑝2) −
2d1𝑙𝑝cos (𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝sin(𝜃𝑝1 − 𝜃𝑝2) −
2d1d2cos𝜃𝑝2))/2𝑊1

3 − 𝑍2𝑙𝑝((𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − d22sin𝜃𝑝2 + 2𝑙𝑝2sin𝜃𝑝1 + 𝑙𝑝2𝑠𝑖n𝜃𝑝2 −
2d1𝑙𝑝 + 𝑙𝑝2sin(2𝜃𝑝1 − 𝜃𝑝2) − 2d1𝑙𝑝cos (𝜃𝑝1 − 𝜃𝑝2) +
2𝑑2𝑙𝑝sin(𝜃𝑝1 − 𝜃𝑝2) − 2d1d2cos𝜃𝑝2))/8𝑊1

3 +
(𝑍5𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑1𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑠𝑖𝑛𝜃𝑝2 −
𝑙𝑝 sin(𝜃𝑝1 − 𝜃𝑝2))(𝑑12 − 2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝1 + 𝑑22 +
2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝1))/8𝑊1

3 +
(𝑑3𝑙𝑝𝑚𝑝7𝑐𝑜𝑠𝜙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑠𝑖𝑛𝜃𝑝2 − 𝑙𝑝 sin(𝜃𝑝1 −
𝜃𝑝2))(𝑑12 − 2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝1 + 𝑑22 + 2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝1))/4𝑊1

2) −
𝜃̇𝑝1((𝑙𝑝2𝑚2𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2))/4 + (𝑙𝑝2𝑚3sin(𝜃𝑝1 −
𝜃𝑝2))/4 + (𝑙𝑝2𝑚5sin(𝜃𝑝1 − 𝜃𝑝2))/2 − (𝑍2𝑙𝑝2(𝑚𝑝7𝑑32 +
4𝐼𝑝5 + 4𝐼𝑝7)(𝑑22sin (𝜃𝑝1 + 𝜃𝑝2) − d12sin (𝜃𝑝1 + 𝜃𝑝2) +

(B.6) 
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2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 +
𝜃𝑝2)))/2𝑊1

3+(Z2𝑙𝑝2(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)𝑑22sin (𝜃𝑝1 +
𝜃𝑝2) − d12sin (𝜃𝑝1 + 𝜃𝑝2) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 +
𝜃𝑝2))/8𝑊1

3−(Z1𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑1𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑠𝑖𝑛𝜃𝑝2 − 𝑙𝑝 sin(𝜃𝑝1 − 𝜃𝑝2))(𝑑12 −
2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝1 + 𝑑22 +
2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝1))/8𝑊1

3)−𝜃̇𝑝2(𝑍2𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑1𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑠𝑖𝑛𝜃𝑝2 − 𝑙𝑝 sin(𝜃𝑝1 − 𝜃𝑝2))(𝑑12 −
2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝1 + 𝑑22 + 2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝1))/4𝑊1

3  

 

𝑉𝑝23 = −𝜃̇𝑝1((1
8
𝑙𝑝2(𝑍5𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑑3𝑐𝑜𝑠𝜙𝑝 + 4𝐼𝑝5𝑍5 +

4𝐼𝑝7𝑍5)(𝑑22𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) − 𝑑12𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/𝑊1

3 +
(𝑍1𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − 𝑑22𝑠𝑖𝑛𝜃𝑝2 +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/8𝑊1

3+(𝑍2𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑22𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) − 𝑑12𝑠𝑖𝑛 (𝜃𝑝1+𝜃𝑝2) +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 +
𝜃𝑝2))/4𝑊1

3−(𝑍5𝑙𝑝2(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑22𝑠𝑖𝑛 (𝜃𝑝1 +
𝜃𝑝2) − 𝑑12𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 +
𝜃𝑝2)))/4𝑊1

3−(𝑑3𝑙𝑝2𝑚𝑝7𝑐𝑜𝑠𝜙𝑝(𝑑22𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) −
𝑑12𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 +
𝜃𝑝2)))/2𝑊1

2)−𝜃̇𝑝2((𝑍5𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑1𝑐𝑜𝑠𝜃𝑝2 − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) + 𝑑2𝑠𝑖𝑛𝜃𝑝2)(𝑑12 −
2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝1 + 𝑑22 + 2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝1))/8𝑊1

3 −
(𝑍2𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − 𝑑22𝑠𝑖𝑛𝜃𝑝2 +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/8𝑊1

3 + (𝑑3𝑙𝑝𝑚𝑝7𝑐𝑜𝑠𝜙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝2 −
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) + 𝑑2𝑠𝑖𝑛𝜃𝑝2)(𝑑12 − 2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝1 + 𝑑22 +
2𝑙𝑝𝑑2𝑐𝑜𝑠𝜃𝑝1))/4𝑊1

3) − 𝑑̇1(𝑍2(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1) − 2𝑑1𝑑2 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝2) +
2𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1 + 𝜃𝑝2)) − 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 − 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2))/8𝑊1

3  

(B.7) 
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 𝑉𝑝24 = 𝑉𝑝25 = 0 (B.8) 

 

𝑉𝑝31 = 𝜃̇𝑝2((𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑍1𝑑22𝑠𝑖𝑛𝜃𝑝2 −
𝑍2𝑑12𝑠𝑖𝑛𝜃𝑝1–𝑍1𝑑12𝑠𝑖𝑛𝜃𝑝2 + 2𝑍2𝑑1𝑙𝑝 +
𝑍2𝑑22𝑠𝑖𝑛𝜃𝑝1– 2𝑍1𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1–𝑍1𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 −
𝑍2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1– 2𝑍2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 + 2𝑍1𝑑1𝑙𝑝 + 𝑍2𝑙𝑝2 𝑠𝑖𝑛(𝜃𝑝1 −
2𝜃𝑝2) –𝑍1𝑙𝑝2 𝑠𝑖𝑛(2𝜃𝑝1 − 𝜃𝑝2) + 2𝑍1𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2 +
2𝑍2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1 + 2𝑍1𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) +
2𝑍2𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) − 2𝑍1𝑑2𝑙𝑝 𝑠𝑖𝑛(𝜃𝑝1–𝜃𝑝2) +
2𝑍2𝑑2𝑙𝑝 𝑠𝑖𝑛(𝜃𝑝1–𝜃𝑝2)))/8𝑊1

3) + (𝑙𝑝2(𝑍5𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑑3𝑐𝑜𝑠𝜙𝑝 + 4𝐼𝑝5𝑍5 + 4𝐼𝑝7𝑍5)(𝑑22𝑠𝑖𝑛 (𝜃𝑝1 +
𝜃𝑝2) − 𝑑12𝑠𝑖𝑛 (𝜃𝑝1 + 𝜃𝑝2) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/4𝑊1

3 +
(𝑍1𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − 𝑑22𝑠𝑖𝑛𝜃𝑝2 +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛 (2𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛 (𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/4𝑊1

3) − 𝑑̇1((𝑙𝑝(𝑍5𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑑3𝑐𝑜𝑠𝜙𝑝 + 4𝐼𝑝5𝑍5 + 4𝐼𝑝7𝑍5)(𝑑22𝑠𝑖𝑛𝜃𝑝1 −
𝑑12𝑠𝑖𝑛𝜃𝑝1 − 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 − 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 + 2𝑑1𝑙𝑝 +
𝑙𝑝2 𝑠𝑖𝑛(𝜃𝑝1– 2𝜃𝑝2) + 2𝑑1𝑙𝑝𝑐𝑜𝑠 (𝜃𝑝1– 𝜃𝑝2) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1))/8𝑊1

3 + (𝑍1(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝2)(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(−𝑑1 + 𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
𝑙𝑝𝑠𝑖𝑛𝜃𝑝2)/4𝑊1

3 − 𝜃̇𝑝1(𝑙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝1 + 𝑑2𝑠𝑖𝑛𝜃𝑝1 +
𝑙𝑝𝑠𝑖𝑛 (𝜃𝑝1 − 𝜃𝑝2))(𝑑12 − 2𝑙𝑝𝑑1𝑠𝑖𝑛𝜃𝑝2 + 𝑑22 +
2𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝2)(𝑍5𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑑3𝑐𝑜𝑠𝜙𝑝 + 4𝐼𝑝5𝑍5 +
4𝐼𝑝7𝑍5))/4𝑊1

3  

(B.9) 

 

𝑉𝑝32 = 𝜃̇𝑝1((𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑍1𝑑22𝑠𝑖𝑛𝜃𝑝2 −
𝑍2𝑑12sin 𝜃𝑝1 − 𝑍1𝑑12𝑠𝑖𝑛𝜃𝑝2 + 𝑍2𝑑22sin𝜃𝑝1 −
2𝑍1𝑙𝑝2sin 𝜃𝑝1 − 𝑍1𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 𝑍2𝑙𝑝2sin 𝜃𝑝1 −
2𝑍2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 + 2𝑍1𝑑1𝑙𝑝 + 2𝑍2𝑑1𝑙𝑝 + 𝑍2𝑙𝑝2sin (𝜃𝑝1 −
2𝜃𝑝2) − 𝑍1𝑙𝑝2𝑠𝑖𝑛�2𝜃𝑝1 − 𝜃𝑝2� + 2𝑍1𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2 +
2𝑍2𝑑1𝑑2cos 𝜃𝑝1 + 2𝑍1𝑑1𝑙𝑝cos�𝜃𝑝1 − 𝜃𝑝2� +
2𝑍2𝑑1𝑙𝑝cos�𝜃𝑝1 − 𝜃𝑝2� − 2𝑍1𝑑2𝑙𝑝sin (𝜃𝑝1 − 𝜃𝑝2) +
2𝑍2𝑑2𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1 − 𝜃𝑝2�))/8𝑊1

3 + (𝑍5𝑙𝑝2�𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7�(𝑑22𝑠𝑖 𝑛�𝜃𝑝1 + 𝜃𝑝2� − 𝑑12𝑠𝑖 𝑛�𝜃𝑝1 + 𝜃𝑝2� +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2cos (𝜃𝑝1 + 𝜃𝑝2)))/4𝑊1

3 −
(𝑍2𝑙𝑝�𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7�(𝑑22𝑠𝑖𝑛𝜃𝑝1 − 𝑑12𝑠𝑖𝑛𝜃𝑝1 −
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 − 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛�𝜃𝑝1 −
2𝜃𝑝2�+2𝑑1𝑙𝑝cos (𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 −

(B.10) 



100 

 

𝜃𝑝2)+2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1))/4𝑊1
3 +

(𝑑3𝑙𝑝2𝑚𝑝7𝑐𝑜𝑠𝜙𝑝(𝑑22 sin�𝜃𝑝1 + 𝜃𝑝2� − d12 sin�𝜃𝑝1 +
𝜃𝑝2� + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2+2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/2W1

2) +
𝑑̇1((𝑍2(2𝑑1 − 2(𝑠𝑖𝑛𝜃𝑝1 + 𝑠𝑖𝑛𝜃𝑝2)𝑙𝑝)�𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7�(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2))/8𝑊1

3 +
(𝑍5𝑙𝑝�𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7�(𝑑12𝑠𝑖𝑛𝜃𝑝2 − 𝑑22𝑠𝑖𝑛𝜃𝑝2 +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛�2𝜃𝑝1 − 𝜃𝑝2� −
2𝑑1𝑙𝑝cos (𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/(8𝑊1

3) + (𝑑3𝑙𝑝𝑚𝑝7𝑐𝑜𝑠𝜙𝑝(𝑑12𝑠𝑖𝑛𝜃𝑝2 −
𝑑22𝑠𝑖𝑛𝜃𝑝2 + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 +
𝑙𝑝2 sin�2𝜃𝑝1 − 𝜃𝑝2� − 2𝑑1𝑙𝑝cos (𝜃𝑝1 − 𝜃𝑝2) +
2𝑑2𝑙𝑝 sin�𝜃𝑝1 − 𝜃𝑝2� −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/2W1

2)−𝜃̇𝑝2(((𝑍5𝑙𝑝(𝑚𝑝7𝑑32 +
4𝐼𝑝54𝐼𝑝7)(𝑑1𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑠𝑖𝑛𝜃𝑝2 − 𝑙𝑝𝑠𝑖 𝑛(𝜃𝑝1 −
𝜃𝑝2))(𝑑12 − 2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1𝑑1 + 𝑑22 + 2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1𝑑2))/𝑊1

3 +
𝑑3𝑙𝑝𝑚𝑝7𝑐𝑜𝑠𝜙𝑝�𝑑1𝑐𝑜𝑠𝜃𝑝2+𝑑2𝑠𝑖𝑛𝜃𝑝2 − 𝑙𝑝 𝑠𝑖𝑛�𝜃𝑝1 −
𝜃𝑝2��(𝑑12 − 2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1𝑑1 + 𝑑22 + 2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1𝑑2))/(2𝑊1

2))  

 

𝑉𝑝33 = 𝜃̇𝑝2′ ((((𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )/𝑊2 − (𝑙𝑝(2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1 +
2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/8𝑊1 + (𝑍4(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ −
𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ )(𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 𝑑1 + 𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ ))/4𝑊2

3 +
(𝑙𝑝(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/(2𝑊1𝑊2

2)) + 𝜃̇𝑝1′ (((𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ /𝑊2 −
(𝑙𝑝(2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1 + 2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ −
𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 + 4𝐼𝑝7𝑍6))/8𝑊1 +
(𝑙𝑝(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6)(𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 − 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 2𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ ))/(2𝑊1𝑊2

2) + (𝑍3(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ )(𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 𝑑1 +
𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )/(4𝑊2

3)) − 𝜃̇𝑝2((𝑍2(2𝑑1 − 2𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1 +
𝑠𝑖𝑛𝜃𝑝2))(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝2))/8𝑊1

3) + 𝑑̇1((𝑍5(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(2𝑑1 − 2𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1 + 𝑠𝑖𝑛𝜃𝑝2))(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝2))/4𝑊1

3 + (𝑑3𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ (2𝑑1 − 2𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1′ +

(B.11) 



101 

 

𝑠𝑖𝑛𝜃𝑝2′ ))(𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ ))/2𝑊2
2 +

(𝑑3𝑚𝑝7𝑐𝑜𝑠𝜙𝑝(2𝑑1 − 2𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1 + 𝑠𝑖𝑛𝜃𝑝2))(𝑑2 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2))/2𝑊1

2 + ((𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)𝑍6(2𝑑1 − 2𝑙𝑝(𝑠𝑖𝑛𝜃𝑝1′ + 𝑠𝑖𝑛𝜃𝑝2′ ))(𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ ))/(4𝑊1𝑊2

2)) − 𝜃̇𝑝1((3𝑙𝑝(𝑍5𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝𝑑3 + 4𝐼𝑝5𝑍5 + 𝐼𝑝7𝑍5)(𝑑22𝑠𝑖𝑛𝜃𝑝1 −
𝑑12𝑠𝑖𝑛𝜃𝑝1 − 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 − 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 + 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1 −
2𝜃𝑝2) + 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1))/8𝑊1

3 − (𝑍1(𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 +
𝑙𝑝𝑐𝑜𝑠𝜃𝑝2)(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 − 𝑑1 +
𝑙𝑝𝑠𝑖𝑛𝜃𝑝2))/4𝑊1

3)  

 

𝑉𝑝34 = 𝜃̇𝑝1((𝑍3𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝1′ +
3𝑑22𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 −
𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 2𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ ))/4𝑊2

3 −
(((𝑙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2 −
(2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 −
𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/
𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/4𝑊1 + (𝑍3𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(2𝑑1𝑙𝑝 −
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 𝑊2𝑠𝑖𝑛𝜃𝑝1′ −
2𝑙𝑝2𝑠𝑖𝑛�𝜃𝑝1′ − 2𝜃𝑝2′ � + 2𝑑1𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ � +
𝑑2𝑙𝑝𝑠𝑖𝑛�2𝜃𝑝1� + 2𝑑1𝑙𝑝 𝑠𝑖𝑛2 𝜃𝑝1′ − 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ +
2𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/4𝑊2

3) −
𝑑̇1((((𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ )/𝑊2 − (𝑙𝑝(2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1 +
2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/8𝑊1 + (𝑍3(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ −
𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ )(𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 𝑑1 + 𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ ))/4𝑊2

3) +
𝜃̇𝑝2((𝑙𝑝2(𝑍5𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝𝑑3 + 4𝐼𝑝5𝑍5 +
4𝐼𝑝7𝑍5)(𝑑22𝑠𝑖𝑛(𝜃𝑝1 + 𝜃𝑝2) − 𝑑12𝑠𝑖𝑛(𝜃𝑝1 + 𝜃𝑝2) +
2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1 + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2 + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1 +
2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2 + 2𝑑1𝑑2𝑐𝑜𝑠(𝜃𝑝1 + 𝜃𝑝2)))/4𝑊1

3 +
(𝑍1𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2 − 𝑑22𝑠𝑖𝑛𝜃𝑝2 +
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2 − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1 − 𝜃𝑝2) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1 − 𝜃𝑝2) −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2))/4𝑊1

3) + 𝜃̇𝑝2((((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 +
(2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝sin (𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 −
𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/
𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/4𝑊1 + (𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(2𝑍3𝑑1𝑙𝑝 −
2𝑍4𝑑12𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −

(B.12) 



102 

 

2𝑍4𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍4𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑍3𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝 +
𝑊2𝑍3𝑠𝑖𝑛𝜃𝑝2′ + 𝑊2𝑍4𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
2𝑍4𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ −
2𝑍3𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ − 2𝑍4𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍4𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ +
2𝑍3𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑍4𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) +
𝑍3𝑑2𝑙𝑝𝑠𝑖𝑛�2𝜃𝑝2′ � + 𝑍4𝑑2𝑙𝑝𝑠𝑖𝑛�2𝜃𝑝1� +
2𝑍3𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝1′ +
2𝑍3𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ + 2𝑍4𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ +
2𝑍3𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/8𝑊2

3 +
(𝑍3𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛�2𝜃𝑝1′ − 𝜃𝑝2′ � −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/4𝑊2

3)  

 

𝑉𝑝35 = 𝜃̇𝑝2((((𝑙𝑝(𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′  +𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/4𝑊1 + (𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(2𝑑1𝑙𝑝 −
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 𝑊2𝑠𝑖𝑛𝜃𝑝2′ −
2𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ − 2𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ +
2𝑑1𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ � + 𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝2) +
2𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝2′ − 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ + 2𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ +
2𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/4𝑊2

3 + (𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −
2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/(4𝑊2

3)) −
𝑑̇1((((𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )/𝑊2 − (𝑙𝑝(2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1 +
2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′  + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/(8𝑊1) + (𝑍4(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ −
𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ )(𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 𝑑1 + 𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ ))/(4𝑊2

3)) +
𝜃̇𝑝1′ ((𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(2𝑍3𝑑1𝑙𝑝 −
2𝑍4𝑑12𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −
2𝑍4𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍4𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑍3𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝 +
𝑊2𝑍3𝑠𝑖𝑛𝜃𝑝2′ + 𝑊2𝑍4𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
2𝑍4 𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ −
2𝑍3𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ − 2𝑍4𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍4𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ +
2𝑍3𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑍4𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) +
𝑍3𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝2′ ) + 𝑍4𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝1′ ) +
2𝑍3 𝑑1𝑙𝑝 𝑠𝑖𝑛2𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝 𝑠𝑖𝑛2 𝜃𝑝1′  +

(B.13) 



103 

 

2𝑍3𝑑2 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′  + 2𝑍4𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ +
2𝑍3𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/
(8𝑊2

3) − (((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ +
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3  + 4𝐼𝑝5𝑍6 + 4𝐼𝑝7𝑍6))/(4𝑊1) +
(𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 − 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 2𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ ))/(4𝑊2

3))  

 𝑉𝑝41 = 𝑉𝑝42 = 0 (B.14) 

 

𝑉𝑝43 = 𝜃̇𝑝2′ ((((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ +
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 + 4𝐼𝑝7𝑍6))/(8𝑊1) +
(((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ −
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 + 4𝐼𝑝7𝑍6))/(4𝑊1) −
(𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 − 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 2𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ ))/(8𝑊2

3) + (𝑍3𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −
2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/(4𝑊2

3))  

(B.15) 

 

𝑉𝑝44 = 𝜃̇𝑝2′ ((𝑙𝑝2𝑚𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝5𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/2 + (𝑍3(𝑚𝑝7𝑑32 +
4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ +
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(8𝑊2) +
(𝑍4(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 𝑑2𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(8𝑊2) + (𝑍3𝑙𝑝2(𝑚𝑝7𝑑32 +
4𝐼𝑝5 + 4𝐼𝑝7)(𝑊2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) − 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 2𝜃𝑝2′ ) −
2𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ −
2𝑑12𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑22𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑1𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �𝑐𝑜𝑠𝜃𝑝2′ + 2𝑑2𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ − 𝜃𝑝2′ �𝑐𝑜𝑠𝜃𝑝1′ +
2𝑑2𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑1𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ −
𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1𝑑2cos (𝜃𝑝1′ −
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𝜃𝑝2′ )))/2𝑊2
3)−𝑑̇1′ ((𝑍3𝑙𝑝(𝑚𝑝7𝑑3

2 + 4𝐼𝑝5
+

4𝐼𝑝7
)(𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −

2𝑑1𝑙𝑝 − 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 2𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ ))/(8𝑊2

3) −
(((𝑙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2 −
(2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 𝑑_2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 −
𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/
𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/(8𝑊1) + (𝑍3𝑙𝑝(𝑚𝑝7𝑑3

2 + 4𝐼𝑝5
+ 4𝐼𝑝7

)(2𝑑1𝑙𝑝 −
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 𝑊2𝑠𝑖𝑛𝜃𝑝1′ −
2𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ − 2𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ +
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝1′ ) + 2𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝1′ −
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ + 2𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ +
2𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/2𝑊2

3) + (𝑍3𝑙𝑝𝜃̇𝑝1′ (𝑚𝑝7𝑑3
2 + 4𝐼𝑝5

+
4𝐼𝑝7

)(2𝑙𝑝3𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 𝑙𝑝3𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) −
𝑊2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑙𝑝2𝑐𝑜𝑠𝜃𝑝1′ + 2𝑑2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ +
2𝑑2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑑2𝑙𝑝 − 𝑑12𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝1′ ) −
𝑑22𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝1′ ) −𝑊2𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 2𝑑1𝑙𝑝2𝑐𝑜𝑠(2𝜃𝑝1′ −
𝜃𝑝2′ ) + 𝑊2𝑑2𝑠𝑖𝑛𝜃𝑝1′ ))/4𝑊2

3  

 

𝑉𝑝45 = 𝜃̇𝑝2′ ((𝑙𝑝2𝑚𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/2 + (𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/2 + 𝑙𝑝2𝑚𝑝5𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + (𝑍4(𝑑32𝑚𝑝7 + 4𝐼𝑝5 +
4𝐼𝑝7)((𝑙𝑝(𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2))/(4𝑊2) + (𝑍3(𝑑32𝑚𝑝7 + 4𝐼𝑝5 +
4𝐼𝑝7)((𝑙𝑝(𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2))/(4𝑊2) + (𝑍4𝑙𝑝2(𝑑32𝑚𝑝7 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑊2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) − 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 2𝜃𝑝2′ ) −
2𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ − 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ +
2𝑑12𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑22𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ − 2𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �(𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 𝑑2𝑠𝑖𝑛𝜃𝑝1′ ) + 2𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ −
𝜃𝑝2′ �(𝑑2𝑐𝑜𝑠𝜃𝑝2′ + 𝑑1𝑠𝑖𝑛𝜃𝑝2′ ) + 2𝑑1𝑑2cos (𝜃𝑝1′ −
𝜃𝑝2′ ))/4𝑊2

3) − 𝑑1̇((𝑙𝑝(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)(2𝑍3𝑑1𝑙𝑝 −
2𝑍4𝑑12𝑠𝑖𝑛𝜃𝑝1′ − (2𝑍3𝑙𝑝2 + 2𝑍4𝑙𝑝2)(𝑠𝑖𝑛𝜃𝑝1′ + 𝑠𝑖𝑛𝜃𝑝2′ ) −
2𝑍3𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝 + 𝑊2𝑍3𝑠𝑖𝑛𝜃𝑝2′ + 𝑊2𝑍4𝑠𝑖𝑛𝜃𝑝1′ −
2𝑍3𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 2𝑍4𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �(𝑠𝑖𝑛𝜃𝑝1′ + 𝑠𝑖𝑛𝜃𝑝2′ ) − 2𝑍4𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �(𝑠𝑖𝑛𝜃𝑝1′ +
𝑠𝑖𝑛𝜃𝑝2′ ) + 2𝑍3𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑍4𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ ) + 𝑍3𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝2′ ) + 𝑍4𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝1′ ) +
2𝑍3𝑑1𝑙𝑝 sin2 𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝1′ +
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2𝑑2𝑙𝑝(𝑍3𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ + 𝑍4𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ) + 2(𝑍3 +
𝑍4)𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/(4𝑊2

3) − (((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝7𝑍6 +
4𝐼𝑝7𝑍6))/(8𝑊1) + (𝑍4𝑙𝑝(𝑑32𝑚𝑝7 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 2𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ ) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ ))/8𝑊2

3) −
𝜃̇𝑝1′ ((𝑙𝑝2𝑚𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝5𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ +
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ −
𝑑2𝑐𝑜𝑠𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(2𝑊2) +
(𝑍3(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 −
(2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 −
𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/
(8𝑊2) + (𝑍4(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝1′ −
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ +
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ −
𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(8𝑊2))  

 𝑉𝑝51 = 𝑉𝑝52 = 0 (B.17) 

 

𝑉𝑝53 = 𝜃̇𝑝2′ ((((𝑙𝑝(𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/(8𝑊1) + (𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −
2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/8𝑊2

3) −
𝜃̇𝑝1′ ((((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ +
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 + 4𝐼𝑝7𝑍6))/(4𝑊1) +
(((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ −
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 +
2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 + 4𝐼𝑝7𝑍6))/8𝑊1 −
(𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝1′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 − 𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 2𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ ))/(4𝑊2

3) + (𝑍3𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −

(B.18) 



106 

 

2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/8𝑊2

3) −
𝑑1̇((((𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )/𝑊2 − (𝑙𝑝(2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1 +
2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ )(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/(4𝑊1) + (𝑍4(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2 + 𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ )(𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ − 𝑑1 +
𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ ))/(2𝑊2

3) + (𝑙𝑝(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 +
4𝐼𝑝5𝑍6 + 4𝐼𝑝7𝑍6)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ + 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/(4𝑊1𝑊2

2))  

 

𝑉𝑝54 = 𝜃̇𝑝2′ ((𝑙𝑝2𝑚𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝5𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/2 + (𝑍4(𝑑32𝑚𝑝7 +
4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ +
𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ −
𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(8𝑊2) +
(𝑍3(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝(𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑑1𝑐𝑜𝑠𝜃𝑝2′ +
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ −
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ +
𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(8𝑊2)) −
𝜃̇𝑝1′ ((𝑙𝑝2𝑚𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/2 + (𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/2 + 𝑙𝑝2𝑚𝑝5𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + (𝑍3(𝑑32𝑚𝑝7 + 4𝐼𝑝5 +
4𝐼𝑝7)((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ +
𝑑2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(4𝑊2) +
(𝑍4(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝(𝑑1𝑐𝑜𝑠𝜃𝑝1′ − 𝑑2𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2 − (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝1′ + 𝑑2𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ +
𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ )))/𝑊2

2))/(4𝑊2) + (𝑍3𝑙𝑝2(𝑑32𝑚𝑝7 +
4𝐼𝑝5 + 4𝐼𝑝7)(𝑊2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) − 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 2𝜃𝑝2′ ) −
2𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ + 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝2′ −
2𝑑12𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑22𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑1𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �𝑐𝑜𝑠𝜃𝑝2′ + 2𝑑2𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ − 𝜃𝑝2′ �𝑐𝑜𝑠𝜃𝑝1′ +
2𝑑2𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑1𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ −
𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ 𝑐𝑜𝑠𝜃𝑝2′ −
2𝑑1𝑑2𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/(4𝑊2

3)) − 𝑑̇1 ((((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼5𝑍6 +
4𝐼7𝑍6))/(8𝑊1) + (𝑙𝑝(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)(2𝑍3𝑑1𝑙𝑝 −
2𝑍4𝑑12𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ −

(B.19) 



107 

 

2𝑍4𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍4𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑍3𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝 +
𝑊2𝑍3𝑠𝑖𝑛𝜃𝑝2′ + 𝑊2𝑍4𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍3𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ −
2𝑍4𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 2𝑍3𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ −
2𝑍3𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ − 2𝑍4𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ − 2𝑍4𝑙𝑝2𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ +
2𝑍3𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑍4𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) +
𝑍3𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝2′ ) + 𝑍4𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝1′ ) +
2𝑍3𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝1′ +
2𝑍3𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ + 2𝑍4𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ +
2𝑍3𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑍4𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/4𝑊2

3 +
(𝑍3𝑙𝑝(𝑑32𝑚𝑝7 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/(8𝑊2

3))  

 

𝑉𝑝55 = −𝑑̇1 ((((𝑙𝑝(𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ − 𝜃𝑝2′ �2 +
(2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))(𝑙𝑝 −
𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝cos (𝜃𝑝1′ − 𝜃𝑝2′ )))/
𝑊2

2)(𝑍6𝑚𝑝7𝑑32 + 2𝑊1𝑚𝑝7𝑐𝑜𝑠𝜙𝑝′ 𝑑3 + 4𝐼𝑝5𝑍6 +
4𝐼𝑝7𝑍6))/(8𝑊1) + (𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(2𝑑1𝑙𝑝 −
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ − 2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 𝑊2𝑠𝑖𝑛𝜃𝑝2′ −
2𝑙𝑝2 cos�𝜃𝑝1′ − 𝜃𝑝2′ � 𝑠𝑖𝑛𝜃𝑝1′ −
2𝑙𝑝2 cos�𝜃𝑝1′ − 𝜃𝑝2′ � 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) +
𝑑2𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝2′ ) + 2𝑑1𝑙𝑝𝑠𝑖𝑛2𝜃𝑝2′ − 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ +
2𝑑2𝑙𝑝𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ + 2𝑑1𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/(2𝑊2

3) +
(𝑍4𝑙𝑝(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)(𝑑12𝑠𝑖𝑛𝜃𝑝2′ + 3𝑑22𝑠𝑖𝑛𝜃𝑝2′ +
2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝 + 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑑1𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) +
2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝2′ ))/(8𝑊2

3)) − 𝜃̇𝑝1′ ((𝑙𝑝2𝑚𝑝2𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝3𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ))/4 + (𝑙𝑝2𝑚𝑝5𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/2 + (𝑍4(𝑚𝑝7𝑑32 + 4𝐼𝑝5 + 4𝐼𝑝7)((𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝1′ − 𝑑1𝑠𝑖𝑛𝜃𝑝1′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2))/(8𝑊2) + (𝑍3(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)((𝑙𝑝(𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2 + (2𝑙𝑝2(𝑑1𝑐𝑜𝑠𝜃𝑝2′ + 𝑑2𝑠𝑖𝑛𝜃𝑝2′ − 𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ −
𝜃𝑝2′ ))(𝑙𝑝 − 𝑑2𝑐𝑜𝑠𝜃𝑝2′ − 𝑑1𝑠𝑖𝑛𝜃𝑝2′ + 𝑙𝑝𝑐𝑜𝑠(𝜃𝑝1′ −
𝜃𝑝2′ )))/𝑊2

2))/(8𝑊2) + (𝑍4𝑙𝑝2(𝑚𝑝7𝑑32 + 4𝐼𝑝5 +
4𝐼𝑝7)(𝑊2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) − 𝑙𝑝2𝑠𝑖𝑛(2𝜃𝑝1′ − 𝜃𝑝2′ ) −
2𝑙𝑝2𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑1𝑙𝑝𝑐𝑜𝑠𝜃𝑝1′ − 2𝑑2𝑙𝑝𝑠𝑖𝑛𝜃𝑝1′ +
2𝑑12𝑐𝑜𝑠𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑22𝑐𝑜𝑠𝜃𝑝2′ 𝑠𝑖𝑛𝜃𝑝1′ − 2𝑑1𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ −
𝜃𝑝2′ �𝑐𝑜𝑠𝜃𝑝1′ − 2𝑑2𝑙𝑝𝑐𝑜𝑠�𝜃𝑝1′ − 𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝1′ +
2𝑑2𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ − 𝜃𝑝2′ �𝑐𝑜𝑠𝜃𝑝2′ + 2𝑑1𝑙𝑝𝑠𝑖𝑛�𝜃𝑝1′ −

(B.20) 
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𝜃𝑝2′ �𝑠𝑖𝑛𝜃𝑝2′ + 2𝑑1𝑑2𝑐𝑜𝑠𝜃𝑝1′ 𝑐𝑜𝑠𝜃𝑝2′ +
2𝑑1𝑑2𝑠𝑖𝑛𝜃𝑝1′ 𝑠𝑖𝑛𝜃𝑝2′ ))/(2𝑊2

3)) − 𝜃̇𝑝2′ (𝑍4𝑙𝑝(𝑚𝑝7𝑑32 +
4𝐼𝑝5 + 4𝐼𝑝7)(2𝑙𝑝3𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) + 𝑙𝑝3𝑠𝑖𝑛(2𝜃𝑝1′ − 2𝜃𝑝2′ ) −
𝑊2𝑙𝑝𝑠𝑖𝑛(𝜃𝑝1′ − 𝜃𝑝2′ ) − 2𝑑1𝑙𝑝2𝑐𝑜𝑠𝜃𝑝2′ − 2𝑑2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝1′ −
2𝑑2𝑙𝑝2𝑠𝑖𝑛𝜃𝑝2′ − 2𝑑1𝑙𝑝2𝑐𝑜𝑠(𝜃𝑝1′ − 𝜃𝑝2′ ) + 2𝑑1𝑑2𝑙𝑝 +
𝑑12𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝2′ ) + 𝑑22𝑙𝑝𝑠𝑖𝑛(2𝜃𝑝2′ ) + 𝑊2𝑑1𝑐𝑜𝑠𝜃𝑝2′ −
𝑊2𝑑2𝑠𝑖𝑛𝜃𝑝2′ ))/(4𝑊2

3)  
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Appendix C  

Motor Torque and Current Relation Experiment Quotes  

At this point an important issue about control experiments must be highlighted. As it 

can be seen from the structures of the control design presented in this chapter all 

control inputs are designed as torque inputs. However, in the prototype systems 

current controller motors were used. As a result of this, the relationship between the 

current and torque was required. This requirement was provided with an 

experimental data based method. This process is tried to be explained in this chapter.  

The data were collected after the motor and torque sensor were fixed as in the Figure 

(C.1) and (C.2). A linearization was made according to the input and output values of 

each motors. According to these equations, the characteristic equation of each motors 

were achieved. These equations are given in the Table C.1.  

 
(a) 

 
(b) 

Figure C.1: Two different view, (A) Front view, (B) Top view. 
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(a) 

 
(b) 

Figure C.2: Two different view, (A) Front View, (B) Top view. 
 

 
 

Figure C. 3: Curve fitting for motor calibration 

Table C.1: Calibration table showing the linearization of each motor 

MX-64  

ID1 𝑦 = 108.2 × 𝑥 − 15.47 

ID2 𝑦 = 122.3 × 𝑥 − 23.7 

ID3 𝑦 = 122.3 × 𝑥 − 23.7 

ID4 𝑦 = 111.9 × 𝑥 − 16.8 

ID5 𝑦 = 94.68 × 𝑥 − 14.37 

ID6 𝑦 = 116.7 × 𝑥 − 25.7 

XM-540   

ID1 𝑦 = 97.2 × 𝑥 − 0.567 
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Appendix D  

Defining the Control Purpose of 𝒙𝒑 in Terms of 𝒙𝑵 

If the desired trajectory of newly defined state is selected as 

 𝑥𝑁𝑑 = 𝐴(𝑥̇𝑝𝑑 − 𝐾𝑝𝑒𝑝) (D.1) 

and 𝑥𝑁 → 𝑥𝑁𝑑 condition is satisfied, (3.74) can be rearranged as 

 𝐴𝑒̇𝑝 = −𝐴𝐾𝑝𝑒𝑝. (D.2) 

At this point it should be noted that in the above equations, 𝑒𝑝 ∈ ℝ6 is a tracking 

error defined as 

 𝑒𝑝 ≜ 𝑥𝑝𝑑 − 𝑥𝑝 (D.3) 

and 𝐾𝑝 ∈ ℝ6×6 denotes positive definite, constant, diagonal gain matrix. If the both 

sides of the resulting equation is premultiplied with (𝐴𝑇𝐴)−1𝐴𝑇 it can be reaaranged 

as 

 𝑒̇𝑝 + 𝐾𝑝𝑒𝑝 = 0 (D.4) 

and this result mathematically proves that 𝑒𝑝 → 0 exponentially fast. From this result 

it can be reached that the main control purpose can be reached as long as 𝑥𝑁 → 𝑥𝑁𝑑 

condition is satisfied for the selection given above. 
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Publications from the Thesis 

Conference Papers 

1. Karayaman G, Gezgin E, Çetin L, Bıdıklı B, Cerrahi Mikrorobot 
Operasyonlarında Yardımcı Sistem Olarak Kullanılan Çift Robot Kollu Sistem için 
Lyapunov Tabanlı Görev Uzayı Denetimi Tasarımı ,TOK 2021 

 

 

Projects 

1. Project Fellow in The Scientific and Technological Research Council of Turkey 
with Project No: 218E055 
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