Making the Pixels Visible

Websites are one of the most important components of the internet. We use web browsers every day to browse websites using the internet for searching for information, buying goods, reading news, following online lectures, interacting on social media, etc. When a website is opened, it contains many components that are too complex for an ordinary user to be aware of. By using third-party tracking cookies or pixels added for advertising or analytical purposes, ad networks can track the user on the web. As browser extensions that use filter lists became more successful at blocking cookies, followers began to find alternative ways to identify users. One way for followers to identify individuals is to use invisible pixels. In this project, my goal is to perform exploratory data analysis and feature engineering of the dataset, using a previously created invisible pixel dataset, and eventually create a machine learning model that classifies these pixels and convert this machine learning model to suitable form to be used in a browser extension that can be developed.

Erişime Açık
Görüntülenme
3
04.08.2023 tarihinden bu yana
İndirme
1
04.08.2023 tarihinden bu yana
Son Erişim Tarihi
13 Haziran 2024 11:19
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Making the Pixels Visible
Eser Sahibi
(dc.contributor.author)
Işıl Işık Mutlu
Tez Danışmanı
(dc.contributor.advisor)
Femin Yalçın Küçükbayrak
Yayıncı
(dc.publisher)
İzmir Katip Çelebi Üniversitesi Fen Bilimleri Enstitüsü
Tür
(dc.type)
Diğer
Özet
(dc.description.abstract)
Websites are one of the most important components of the internet. We use web browsers every day to browse websites using the internet for searching for information, buying goods, reading news, following online lectures, interacting on social media, etc. When a website is opened, it contains many components that are too complex for an ordinary user to be aware of. By using third-party tracking cookies or pixels added for advertising or analytical purposes, ad networks can track the user on the web. As browser extensions that use filter lists became more successful at blocking cookies, followers began to find alternative ways to identify users. One way for followers to identify individuals is to use invisible pixels. In this project, my goal is to perform exploratory data analysis and feature engineering of the dataset, using a previously created invisible pixel dataset, and eventually create a machine learning model that classifies these pixels and convert this machine learning model to suitable form to be used in a browser extension that can be developed.
Kayıt Giriş Tarihi
(dc.date.accessioned)
2023-08-04
Açık Erişim Tarihi
(dc.date.available)
2023-08-04
Yayın Tarihi
(dc.date.issued)
2023
Tek Biçim Adres
(dc.identifier.uri)
https://hdl.handle.net/11469/3518
Yayın Dili
(dc.language.iso)
eng
Konu Başlıkları
(dc.subject)
third-party cookies,
Konu Başlıkları
(dc.subject)
invisible pixel,
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms