Bu çalışma, stratejiler oluşturabilmeleri ve gerekli önlemleri alabilmeleri için çeşitli işletmeler için elektrik kullanımının tahmin edilmesi gibi kritik bir konuya odaklanmaktadır. Çalışmanın özel amacı, elektrik kullanımını kaydeden cihazların yanı sıra termokupl içeren sensörler ve analizörlerden elde edilen verileri kullanarak bir üretim hattındaki makinelerin elektrik tüketimini tahmin etmektir. Bunu yapmak için, tahmin modellerinde zaman serisi verilerinin temel özelliklerini yakalama becerisiyle dikkat çeken Prophet tekniği kullanıldı. Ayrıca, çalışma, sıcaklık verilerinin hem kullanımını hem de hariç tutulmasını dikkate alarak güç kullanımını tahmin etmede Prophet yaklaşımının yararlılığını araştırmaktadır. Hem tek değişkenli hem de çok değişkenli senaryolar için tablo ve şekillerde gösterilen bulgular, Prophet yönteminin etkinliğini göstermektedir. RMSE, MAE ve SMAPE puanlarının karşılaştırılması, sıcaklık verilerinin kaldırılmasının, sıcaklık verilerine sahip olmaktan daha iyi tahminlere yol açtığını da gösterir.
Prophet tekniğine ek olarak, bu çalışma güç kullanımını tahmin etmek için LSTM ve
ARIMA modellerinin kullanılmasını önermektedir. LSTM modelleri, zaman serisi
verilerindeki önemli kalıpları tanıma yetenekleriyle tanınır ve bu da onları bu
bağlamda paha biçilmez bir araç haline getirir. LSTM modelleri, uzun vadeli
ilişkileri yakalama kapasitelerinden yararlanarak güç kullanımı için güvenilir
tahminler sağlayabilir. Otoregresif, hareketli ortalama ve fark bileşenlerini birleştiren
ARIMA modelleri, zaman serisi analizinde sağlam bir temele sahiptir ve trendleri ve
mevsimsellik kalıplarını verimli bir şekilde yakalayabilir. LSTM ve ARIMA
modellerinin gelecekteki çalışmalara dâhil edilmesi, performansları hakkında ek
bilgiler sağlayacak ve güç kullanımını tahmin etmek için en iyi tekniğin
belirlenmesine yardımcı olacaktır.
Eser Adı (dc.title) | Yapay Zekâ ve Makine Öğrenimi Araçları ile Elektrik Tüketimi Tahmini |
Eser Sahibi (dc.contributor.author) | Umut Yıldız |
Tez Danışmanı (dc.contributor.advisor) | Sıla Övgü Korkut Uysal |
Yayıncı (dc.publisher) | İzmir Katip Çelebi Üniversitesi Fen Bilimleri Enstitüsü |
Tür (dc.type) | Yüksek Lisans |
Özet (dc.description.abstract) | Bu çalışma, stratejiler oluşturabilmeleri ve gerekli önlemleri alabilmeleri için çeşitli işletmeler için elektrik kullanımının tahmin edilmesi gibi kritik bir konuya odaklanmaktadır. Çalışmanın özel amacı, elektrik kullanımını kaydeden cihazların yanı sıra termokupl içeren sensörler ve analizörlerden elde edilen verileri kullanarak bir üretim hattındaki makinelerin elektrik tüketimini tahmin etmektir. Bunu yapmak için, tahmin modellerinde zaman serisi verilerinin temel özelliklerini yakalama becerisiyle dikkat çeken Prophet tekniği kullanıldı. Ayrıca, çalışma, sıcaklık verilerinin hem kullanımını hem de hariç tutulmasını dikkate alarak güç kullanımını tahmin etmede Prophet yaklaşımının yararlılığını araştırmaktadır. Hem tek değişkenli hem de çok değişkenli senaryolar için tablo ve şekillerde gösterilen bulgular, Prophet yönteminin etkinliğini göstermektedir. RMSE, MAE ve SMAPE puanlarının karşılaştırılması, sıcaklık verilerinin kaldırılmasının, sıcaklık verilerine sahip olmaktan daha iyi tahminlere yol açtığını da gösterir. Prophet tekniğine ek olarak, bu çalışma güç kullanımını tahmin etmek için LSTM ve ARIMA modellerinin kullanılmasını önermektedir. LSTM modelleri, zaman serisi verilerindeki önemli kalıpları tanıma yetenekleriyle tanınır ve bu da onları bu bağlamda paha biçilmez bir araç haline getirir. LSTM modelleri, uzun vadeli ilişkileri yakalama kapasitelerinden yararlanarak güç kullanımı için güvenilir tahminler sağlayabilir. Otoregresif, hareketli ortalama ve fark bileşenlerini birleştiren ARIMA modelleri, zaman serisi analizinde sağlam bir temele sahiptir ve trendleri ve mevsimsellik kalıplarını verimli bir şekilde yakalayabilir. LSTM ve ARIMA modellerinin gelecekteki çalışmalara dâhil edilmesi, performansları hakkında ek bilgiler sağlayacak ve güç kullanımını tahmin etmek için en iyi tekniğin belirlenmesine yardımcı olacaktır. |
Kayıt Giriş Tarihi (dc.date.accessioned) | 2023-07-26 |
Açık Erişim Tarihi (dc.date.available) | 2024-01-24 |
Yayın Tarihi (dc.date.issued) | 2023 |
Yayın Dili (dc.language.iso) | tr |
Konu Başlıkları (dc.subject) | Electricity consumption |
Konu Başlıkları (dc.subject) | Prophet method |
Konu Başlıkları (dc.subject) | Elektrik Tüketim |
Konu Başlıkları (dc.subject) | Prophet metodu |
Tek Biçim Adres (dc.identifier.uri) | https://hdl.handle.net/11469/3507 |