Control and simulation of swarm mobile robots

This thesis presents both control of mobile robots that can move by using collective motion algorithm and simulation of the robots during the motion. The orientation of the robots was controlled remotely by one user during the collective motion. The transmission of orientation data from the remote controller to the robots was done by using XBee modules. The control algorithm of collective motion was developed by using individual-based model. Two modes are considered during the control. These modes are search and swarm mode.
The collective motion was performed by robots that are moving with respect to some pair-wise interactions. The pair-wise interactions between the robots were proposed based on three rules namely attraction, parallel orientation and repulsion fields rules. While the mobile robots try to move toward their neighbors in attraction field, they try to remain close to their neighbors in parallel orientation field. The repulsion field rule avoids the collision with each other during the collective motion.
Since the commercial mobile robots which can be used in swarm robotics are very expensive, the robots used in this study were manufactured in the Prototyping Laboratory, in Izmir Katip Çelebi University. The mechanical parts of mobile robots were designed using SolidWorks and manufactured by using 3D printer technology. Arduino Mega 2560 programmable board was used as control unit of the robots. One electronic circuit, named Arduino Shield Circuit was designed using Proteus 8 Professional. It was produced in order to connect the used electronic components to related pins on Arduino Mega 2560 easily and in a secure way avoiding short circuits.
The simulation code works as a real-time simulation. The code uses the data received from the robots to simulate the motion of the robots. The simulation also saves the all the received data from the robots to one Excel file. Two parameters, polarization and expanse were calculated in order to observe and characterize the motion of the swarm robots by using the saved data.
Lastly the collective motion was tested for a group of two, three, four and five robots. The expanse and polarization values were presented for each test.

Erişime Açık
Görüntülenme
8
02.12.2021 tarihinden bu yana
İndirme
2
02.12.2021 tarihinden bu yana
Son Erişim Tarihi
17 Nisan 2024 17:05
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Control and simulation of swarm mobile robots
Eser Sahibi
(dc.contributor.author)
Şen, Hayrettin
Tez Danışmanı
(dc.contributor.advisor)
Fatih Cemal CAN
Yayıncı
(dc.publisher)
İzmir Katip Çelebi Üniversitesi Fen Bilimleri Enstitüsü
Tür
(dc.type)
Yüksek Lisans
Özet
(dc.description.abstract)
This thesis presents both control of mobile robots that can move by using collective motion algorithm and simulation of the robots during the motion. The orientation of the robots was controlled remotely by one user during the collective motion. The transmission of orientation data from the remote controller to the robots was done by using XBee modules. The control algorithm of collective motion was developed by using individual-based model. Two modes are considered during the control. These modes are search and swarm mode. The collective motion was performed by robots that are moving with respect to some pair-wise interactions. The pair-wise interactions between the robots were proposed based on three rules namely attraction, parallel orientation and repulsion fields rules. While the mobile robots try to move toward their neighbors in attraction field, they try to remain close to their neighbors in parallel orientation field. The repulsion field rule avoids the collision with each other during the collective motion. Since the commercial mobile robots which can be used in swarm robotics are very expensive, the robots used in this study were manufactured in the Prototyping Laboratory, in Izmir Katip Çelebi University. The mechanical parts of mobile robots were designed using SolidWorks and manufactured by using 3D printer technology. Arduino Mega 2560 programmable board was used as control unit of the robots. One electronic circuit, named Arduino Shield Circuit was designed using Proteus 8 Professional. It was produced in order to connect the used electronic components to related pins on Arduino Mega 2560 easily and in a secure way avoiding short circuits. The simulation code works as a real-time simulation. The code uses the data received from the robots to simulate the motion of the robots. The simulation also saves the all the received data from the robots to one Excel file. Two parameters, polarization and expanse were calculated in order to observe and characterize the motion of the swarm robots by using the saved data. Lastly the collective motion was tested for a group of two, three, four and five robots. The expanse and polarization values were presented for each test.
Kayıt Giriş Tarihi
(dc.date.accessioned)
2017-04-28T07:01:02Z
Açık Erişim Tarihi
(dc.date.available)
2017-04-28
Yayın Tarihi
(dc.date.issued)
2016
Yayın Dili
(dc.language.iso)
eng
Konu Başlıkları
(dc.subject)
Mobil robotlar
Konu Başlıkları
(dc.subject)
Mobile robots
Tek Biçim Adres
(dc.identifier.uri)
Http://hdl.handle.net/11469/644
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms