ÖZETSon yıllarda küresel ısınma tehdidinin kendisini daha çok göstermesiyle orman yangınlarını önlemek için dış ortam duman tespitiyle ilgili çalışmaların sayısı artmış ve bu çalışmalarda çoğunlukla dumanın görüntü tabanlı tespitine odaklanılmıştır. Lakin yüksek doğrulukla duman tespitinin en önemli darboğazı zorlu hava koşullarıdır. Özellikle sis, duman gibi gözüktüğü için yüksek doğrulukta tespit yapılmasını engeller. Bu tezde, sis ve duman görüntülerinin tespiti için bir yöntem önerildi. Bu yöntemde, dumanlı ve dumansız çekimleri içeren çeşitli veri tabanlarından videolar görüntülerine ayrıldı. Görüntülerin parlaklık değerleri değiştirilerek yapay olarak sisli görüntüler oluşturuldu. Sisli ve dumanlı örnekleri içeren veri seti, çeşitli renk uzaylarında modern Konvolüsyonel Sinir Ağları mimarileri kullanılarak sınıflandırıldı. Renk uzayları ve derin öğrenme mimarilerinin performansları karşılaştırılarak bellek kullanımı ve sınıflandırma doğruluğu açısından en iyi çözümler belirlendi. Bu çözümlerden biri olan önerilen yöntem, literatür çalışmalarını geride bıraktı.ABSTRACTIn recent years, as the global warming threat manifests itself more, the number of studies on outdoor smoke detection is increased to prevent wildfires, and these studies are mostly focused on image-based detection of smoke. However, the major bottleneck of the detection of smoke with high accuracy is harsh weather conditions. Especially fog, due seems to smoke, prevents detecting with high accuracy. In this thesis, a method is proposed for the detection of fog and smoke images. In this method, videos from various databases including footage with and without smoke are divided into their images. By changing the brightness values of images, foggy images are created artificially. The dataset containing foggy and smoky samples is classified using modern Convolutional Neural Network architectures in various color spaces. By comparing the performances of color spaces and deep learning architectures the best solutions in terms of memory usage and classification accuracy are determined. The proposed method as one of these solutions, is overtaken the literature studies.
Eser Adı (dc.title) | Deep learning based smoke detection for foggy environments Sisli ortamlar için derin öğrenme tabanlı duman tespiti |
Eser Sahibi (dc.contributor.author) | Yıldız, Uğur Emre |
Tez Danışmanı (dc.contributor.advisor) | Mehmet Erdal Özbek |
Yayıncı (dc.publisher) | Graduate School of Natural and Applied Sciences |
Tür (dc.type) | Yüksek Lisans |
Açıklama (dc.description) | xiv, 69 pages |
Açıklama (dc.description) | 29 cm. 1 CD |
Özet (dc.description.abstract) | ÖZETSon yıllarda küresel ısınma tehdidinin kendisini daha çok göstermesiyle orman yangınlarını önlemek için dış ortam duman tespitiyle ilgili çalışmaların sayısı artmış ve bu çalışmalarda çoğunlukla dumanın görüntü tabanlı tespitine odaklanılmıştır. Lakin yüksek doğrulukla duman tespitinin en önemli darboğazı zorlu hava koşullarıdır. Özellikle sis, duman gibi gözüktüğü için yüksek doğrulukta tespit yapılmasını engeller. Bu tezde, sis ve duman görüntülerinin tespiti için bir yöntem önerildi. Bu yöntemde, dumanlı ve dumansız çekimleri içeren çeşitli veri tabanlarından videolar görüntülerine ayrıldı. Görüntülerin parlaklık değerleri değiştirilerek yapay olarak sisli görüntüler oluşturuldu. Sisli ve dumanlı örnekleri içeren veri seti, çeşitli renk uzaylarında modern Konvolüsyonel Sinir Ağları mimarileri kullanılarak sınıflandırıldı. Renk uzayları ve derin öğrenme mimarilerinin performansları karşılaştırılarak bellek kullanımı ve sınıflandırma doğruluğu açısından en iyi çözümler belirlendi. Bu çözümlerden biri olan önerilen yöntem, literatür çalışmalarını geride bıraktı.ABSTRACTIn recent years, as the global warming threat manifests itself more, the number of studies on outdoor smoke detection is increased to prevent wildfires, and these studies are mostly focused on image-based detection of smoke. However, the major bottleneck of the detection of smoke with high accuracy is harsh weather conditions. Especially fog, due seems to smoke, prevents detecting with high accuracy. In this thesis, a method is proposed for the detection of fog and smoke images. In this method, videos from various databases including footage with and without smoke are divided into their images. By changing the brightness values of images, foggy images are created artificially. The dataset containing foggy and smoky samples is classified using modern Convolutional Neural Network architectures in various color spaces. By comparing the performances of color spaces and deep learning architectures the best solutions in terms of memory usage and classification accuracy are determined. The proposed method as one of these solutions, is overtaken the literature studies. |
Kayıt Giriş Tarihi (dc.date.accessioned) | 02.11.2022 |
Açık Erişim Tarihi (dc.date.available) | 2022-11-02 |
Yayın Tarihi (dc.date.issued) | 2021 |
Yayın Dili (dc.language.iso) | eng |
Konu Başlıkları (dc.subject) | Duman kontrolü |
Konu Başlıkları (dc.subject) | Fume control |
Tek Biçim Adres (dc.identifier.uri) | https://hdl.handle.net/11469/2857 |