Filtreler
Surface modification of micronized quartz powders and investigation of additives as filling material in polymer matrix composite materials Mikronize kuvars tozlarının yüzey modifikasyonunun yapılması ve polimer matrisli kompozit malzemelerde dolgu malzemesi olarak incelenmesi

Akyüz, Orhan

Doktora Tezi | 2020 | Graduate School of Natural and Applied Sciences

SUMMARYThe interfacing compatibility of the matrix material with the filler material in composite materials is one of the most important factors affecting the performance of the composite. A wide variety of chemical methods are applied to increase the interfacial compatibility of the matrix material with the filler material. The most important of all is the surface modification technique, in which surface-active agents are used to reinforce the matrix-filler bond and where a chemical process is applied to the surface of the filler material.This technique is based on the chemical treatment of the filler material with surface active a . . .gents to increase the compatibility of the matrix-filler materials by forming chemical bond(s) between the matrix material and the filler as well as a physical strength in their interactions. In this study, micronized quartz (MQ) powders, in order to be used as filling material, were first modified with four different surface modification agents. Then, micronized quartz, commercially available as silanized quartz (SQ) and surface modified micronized quartz powders were mixed with Polypropylene (PP) being used as matrix material by high-speed thermokinetic mixer in order to produce composite materials.ÖZETKompozit malzemelerin performansına etki eden en önemli etkenlerden birisi, dolgu ve matris malzemelerinin arayüzey uyumudur. Her iki malzemenin arayüzey uyumunu artırmak için çeşitli kimyasal yöntemler uygulanmaktadır. Bunların en başında matris-dolgu malzemesi bağını/etkileşimini güçlendirmek için yüzey aktif ajanların kullanıldığı ve dolgu malzemesinin yüzeyine kimyasal bir işlemin uygulandığı yüzey modifikasyon tekniğidir. Bu tekniğin temeli, yüzey aktif ajanlarla kimyasal işleme tabi tutulan dolgu malzemesi ile matris malzemesi arasında fiziksel bir bağ kuvvetinin yanında kimyasal bağ oluşturularak matris-dolgu malzemesi uyumunun artırılmasına dayanmaktadır. Bu çalışmada ilk olarak dolgu malzemesi olarak kullanılan mikronize kuvars (MQ) tozları, 4 farklı yüzey modifikasyon ajanı ile muamele edilerek yüzey modifikasyon işlemi yapılmıştır. Daha sonra mikronize kuvars, ticari olarak temin edilen silanize kuvars (SQ) ve yüzey modifikasyonu yapılmış mikronize kuvars tozları ve matris malzemesi (Polipropilen, PP) birlikte yüksek hızlı termokinetik karıştırıcı ile karıştırılarak kompozit malzeme üretimleri gerçekleştirilmiştir Daha fazlası Daha az

Electrochemically modified carbon fibers as an active mass additive in enhanced flooded lead acid battery Elektrokimyasal olarak modifiye edilmiş karbon fiberlerin güçlendirilmiş sulu kurşun asit akülerde aktif malzeme katkısı olarak kullanılması

Turhan, Alper

Doktora Tezi | 2020 | Graduate School of Natural and Applied Sciences

ÖZETKurşun asit akü elektrotlar, kurşun oksidin sülfürik acid ile karıştırılmasıyla elde edilir. İlaveten, bazı karbon türevleri ve bazı polimer fiberler, aktif malzeme etkinliğini arttırmak ve plakaların mukavemetinin arttırılması için pastaya eklenir. Onlarca yıldır, birçok araştırmacı tarafından akülerin şarj olma kabiliyetini arttırmak için çeşitli karbon türevleri aktif katkı malzemesi olarak çalışılmıştır. Karbon bakımından zengin yüzeyler aktif malzemede iletken bir köprü oluştururken aynı zamanda yüzeyin elektrokimyasal etkinliğini de arttırır. Bu nedenle, aktif malzeme içine karbon ilavesi, kurşun asit akülerin kullanım ömr . . .ünü arttırır. Ancak, karbon ilavesi hidrojen çıkışı potansiyelini düşürmesi ve su kaybını arttırması nedeniyle bakım gerektirmeyen aküler için bazı dezavantajlara sahiptir. Su kaybındaki artış asitliğin artmasına neden olur. Bu nedenle, aktif malzemenin korozyon hızı artar ve akü ömrü kısalır. Bazı çalışmalar, elektrokimyasal olarak aktif karbonun, aktif malzeme içine ilave edilen metalik çinko ve kalayın karbon ile kullanılmasının hidrojen gaz çıkışını azaltarak kurşun asit akülerin ömrünü arttırdığını göstermiştir.SUMMARYThe lead acid battery electrodes are produced by mixing lead oxide with Sulphuric Acid to yield a paste. Additionally, some carbon derivatives and some polymeric fibers are added into the mass, known as the active mass, to increase the efficiency and to improve the strength of the plates, respectively. For decades, various types of carbon derivatives have been studied by many researchers as an active additive material to improve the charge acceptance figures of the batteries. Carbon rich surface that constructs a conductive bridge in the active mass, also increases the electrochemical activity of the surface. Thus, carbon adding for active materials increases the cycle life of the lead acid batteries. However, adding carbon have some important disadvantages for maintenance free batteries as a result of the decrease in hydrogen over potential and the increase in water loss. The increment in water loss causes the increase in the acidity. Therefore, the corrosion rate of the active material increases, and battery life is shortened. Some studies showed that using electrochemically activated carbon together with individual metallic zinc and tin in the active material increased the hydrogen evolution and collaboration of carbon with Zn and Sn increased the cycle life of the lead-acid batteries Daha fazlası Daha az

Glucose biosensor applications based on graphene foam/α-Fe2O3 nanocomposite Grafen köpük/α-Fe2O3 nanokompozit tabanlı glukoz biyosensör uygulamaları

Hano, Harun

Yüksek Lisans | 2020 | Graduate School of Natural and Applied Sciences

ABSTRACTThree-dimensional graphene foam (GF) is used as a practical substance due to its high electrical conductivity and high surface area in many advanced applications. Moreover, hematite (α-Fe2O3) nanowires play a significant role in sensitivity and selectivity of biosensors by increasing the surface area of nanocomposite structures. Therefore, a hierarchical GF/α-Fe2O3 nanocomposite structure was developed in this thesis with superior properties for the construction of an enzymatic glucose biosensor.Characterizations of the obtained structure were carried out by using Raman Spectroscopy, X-Ray Diffraction (XRD), X-Ray Photoelect . . .ron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). As a result, graphene was synthesized on nickel foam, and single-layer graphene foam (I2D/IG2.96) was obtained after etching nickel substrate. Thereafter, hematite nanowires with a length of approximately 430 nm were successfully fabricated on graphene foam using hydrothermal method. Thesurface of the fabricated hierarchical nanocomposite structure was coated by chitosan (CS) and glucose oxidase enzyme (GOx) in order to be used as a working electrode of a biosensor. Electrochemical properties of the developed nanocomposite electrode were determined by Cyclic Voltammetry (CV), Chronoamperometry, and Electrochemical Impedance Spectroscopy (EIS). The results showed a sensitivity of 9.61 μAmM-1cm-2 and a wide linear detection against glucose concentrations in the range of 1-5 mM (R20.96451). Besides, the developed glucose biosensor provided a limit of detection (LOD) of 2.39 μM. Selectivity, reproducibility, response time, and storage stability of the sensor were found to be satisfactory. In conclusion, the ITO/GF/α-Fe2O3/CS/GOx sensor can be an alternative for glucose determination in the future.ÖZETÜç boyutlu grafen köpük (GF), sahip olduğu yüksek elektriksel iletkenlik ve geniş yüzey alanı nedeniyle birçok gelişmiş uygulamalarda kullanılmaktadır. Ayrıca, hematit (α-Fe2O3) nanotelleri, nanokompozit yapıların yüzey alanını artırarak biyosensörlerin duyarlılığında ve seçiciliğinde önemli bir rol oynamaktadır. Bu çalışmada ise, enzimatik glukoz biyosensörü yapısında üstün özellikler gösteren hiyerarşik GF/α-Fe2O3 nanokompozit yapısı geliştirilmiştir. Elde edilen yapının karakterizasyonu, Raman Spektroskopisi, X-Işını Kırınımı (XRD), X-Işını Fotoelektron Spektroskopi (XPS) ve Taramalı Elektron Mikroskopisi (SEM) kullanılarak tamamlanmıştır. Bu çalışma sonucunda, nikel köpük üzerinde (I2D/IG2.96) grafen sentezi tamamlanarak transfer işlemi sonrası nikelin ortamdan uzaklaştırılması ile tek katmanlı grafen köpük elde edilmiştir. Daha sonra, hidrotermal yöntemle grafen köpük üzerinde yaklaşık 430 nm uzunluğa sahip hematit nanotelleribaşarılı bir şekilde üretilmiştir. Üretilen hiyerarşik nanokompozit yapının yüzeyi, bir biyosensörün çalışma elektrodu olarak kullanılması için kitosan (CS) ve glikoz oksidaz enzimi (GOx) ile kaplanmıştır. Son olarak geliştirilen çalışma elektrodunun elektrokimyasal karakterizasyonu, Dönüşümlü Voltametri (CV), Kronoamperometri ve Elektrokimyasal Empedans Spektroskopisi (EIS) ile belirlenmiştir. Elde edilen biyosensör, 0-0.6 V potansiyel aralığında, 9.61 μAmM-1cm-2 değerinde bir duyarlılık ve 1-5 mM (R20.96451) aralığında bulunan glukoz derişimlerine karşı geniş bir doğrusal tayin aralığı göstermiştir. Ayrıca geliştirilen glukoz biyosensörü, 2.39 μM değerinde bir tespit limiti (LOD) göstermiştir. Sensörün seçiciliği, tekrarlanabilirliği, tekrar oluşturulabilirliği, cevap süresi ve depolama kararlılığının tatmin edici olduğu görülmüştür. Sonuçlar, ITO/GF/α-Fe2O3/CS/GOx sensörünün gelecekte glukoz tayininde kullanılabilecek bir çalışma elektrodu olabileceğinigöstermiştir Daha fazlası Daha az

Mürekkep uygulanabilir biyokompozit ambalaj filmlerinin geliştirilmesi

Kavas Akarca, Tuba

Yüksek Lisans | 2020 | Fen Bilimleri Enstitüsü

ÖZETGünümüzde ambalaj sektöründe, ince filmler, plastikler ve biyobozunur olmayan mürekkepler kullanılmaktadır. Bu filmler ve mürekkepler sentetik polimer ve reçinelerden oluşmaktadır. Yalnız bu sentetik yapıların doğada mikroorganizmalar tarafından ayrıştırılması oldukça zordur. Bu doğrultuda doğada daha kolay parçalanabilecek biyobozunur materyallere ihtiyaç duyulmaktadır. Tez çalışmasında ambalaj sektöründe yaygın kullanımı olan polietilen (PE) ve kitosan (Ch) polimerleri kullanılarak biyokompozit ambalaj filmleri elde edilmiştir. Kitosan içeren biyokompozit filmler (PE/Ch) ile sektörde kullanım alanı olan ticari ürünlerin karşıl . . .aştırmaları yapılmıştır. PE/Ch biyokompozit filmlerin sürtünme katsayıları ve kalınlıkları ölçülmüş, yapısal ve mekanik özellikleri incelenmiştir. Kitosan partikül boyutu düşürülerek elde edilen homojen görünümlü PE/Ch filmlere sorunsuz bir şekilde mürekkep uygulaması yapılabilmiştir. Bu filmlere sektörde yaygın kullanılan mürekkep ve biyobozunur mürekkep uygulanarak filmlerin biyobozunurluk etkileri araştırılmıştır.ABSTRACTToday, thin films, plastics, and non-biodegradable inks are used in the packaging industry. These films and inks consist of synthetic polymers and resins. However, it is very difficult to decompose these synthetic structures by microorganisms in nature. Accordingly, biodegradable materials are needed which can be broken down more easily in nature. In this thesis, biocomposite packaging films were obtained using polyethylene (PE) and chitosan (Ch) polymers, which are widely used in the packaging industry. Biocomposite films containing chitosan (PE/Ch) were compared with the commercial products used in the industry. Friction coefficients and thicknesses of PE/Ch biocomposite films were measured and both the structural and mechanical properties of films were also examined. Reducing the particle size of chitosan, homogeneous PE / Ch films were obtained and the ink could be applied to the films without any problem. The biodegradability effects of the films were investigated by applying commonly used inks and biodegradable inks to these films Daha fazlası Daha az

Investigations of mechanical and flammability properties of hdpe reinforced flame retardant additives including antimony trioxide Antimon trioksit içeren alev geciktirici katkılı yüksek yoğunluklu polietilen’in mekanik ve alevgeciktiricilik özelliklerinin incelenmesi

Engin, Berk

Yüksek Lisans | 2020 | Graduate School of Natural and Applied Sciences

ÖZETGünümüzde, Yüksek Yoğunluklu Polietilen (HDPE)’nin, kimyasal direnç, kolay üretim tekniği, termal ve elektriksel yalıtımı, yüksek mukavemet/yoğunluk oranı gibi özelliklere sahip olmasından olayı yaygın bir kullanım alanı mevcuttur. Ancak HDPE, içerdiği karbon ve hidrojenden dolayı son derece yanıcıdır, HDPE'nin yangına karşı dayanıklılığını geliştirmek için uygulanabilecek bazı Alev Geciktirici takviye işlemlerivardır. Bu çalışmada Antimon Trioksit (Sb2O3) içeren iki farklı tipte ticari AlevGeciktirici masterbatch belli oranlarda HDPE matrise takviye edilmiştir. Bu şekilde HDPE matris örneği kablo kaplama sistemlerinde kullanıla . . .cak alev geciktirici özellik kazanacaktır. Bu çalışma, plastik boru üreticisi olan bir firmanın ihtiyaçlarını karşılama üzerine yapılmıştır. Bu çalışmanın deneysel basamağında, laboratuvar ekipmanları ile nispeten az miktarda hammadde üretimi gerçekleştirilmiştir. Bu sayede maliyet ve enerji tasarruf edilmiştir. Ayrıca bu çalışma fabrikanın alev geciktirici boru üretiminde yol gösterici bir formülasyon sağlayacaktır. Üretim aşamasında ilk olarak bileşimlerin hazırlanması işlemi çift vidalı ekstrüder ile gerçekleştirildi ve daha sonra bileşenlerin sıcak bir şekilde karıştırıldığı macun, mevcut basınç ve sıcaklıkta plakalar elde etmek üzere preslendi. Malzeme karakterizasyonun gerçekleştirilmesi için üretim işleminin sonunda, her plakadan örnekler alınmıştır. Numunelerin içerdiği fonksiyonel grupların taranması için FourierTranform Kızılötesi Radyasyon (FTIR) spektroskopisi uygulandı.ABSTRACTIn this day and age, High density polyethylene (HDPE) has an extensive usage area in terms of lightweight, chemical resistance, easy production, thermally and electrically insulating, high strength-to-density ratio. However HDPE is extremely flammable because of its chemical structure, which consists of carbon and hydrogen. There is some flame retardant reinforcement process which may be applied to improve theflammability property of HDPE. In this study two different types of a commercial flame retardant masterbatch which consist of Antimony trioxide (Sb2O3) was loaded into the HDPE matrix in this way the HDPE matrix specimen will be gain flame retardant property to be used in cable covering systems. This study will be performed in order to be a beneficial source for industrial organizations, plastic pipe producers in particular. During the experimental phase of the current study, production was carried out with a relatively small amount of raw materials and laboratory equipment.Therefore the followed efficient energy-cost method during the production part of the study was expected to serve as a guideline for the production process of the factory. In the production phase, compounding process was performed in the first place by the twin-screw extruder, and then paste, which is a hot mixture of ingredients, was pressed to obtain plates at available pressure and temperature. Specimens were taken from eachplate at the end of the production process to perform characterization. Later on, specimens were characterized by using the following methods Fourier transform infrared radiation (FTIR) spectroscopy was implemented to detect functional groups and characterizing. Scanning electron microscopy- Energy Dispersive X-Ray Spectroscopy (SEM-EDS) were used to investigate elemental analysis and morphology. Density and Melt flow index (MFI) measurements were carried out to define the viscosity of plastic samples. Moreover, the UL-94 vertical test was carried out to observe the flammability properties of samples Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms